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Preface

Artificial Intelligence (AI) stands at the forefront of technological advancement,
offering unparalleled breakthroughs and transformative potential. As urban popu-
lations grow and the demand for mobility escalates, transportation systems face
numerous challenges, including safety concerns, persistent congestion, real-time
processing, security, data privacy, and environmental issues (i.e., high emissions).
Intelligent Transportation Systems (ITS) have emerged as a solution to these chal-
lenges, offering innovative ways to optimize transportation networks. We are now at
the dawn of a new era where Al is revolutionizing transportation. By integrating Al
into transportation systems, Al-driven vehicles and systems analyze vast amounts of
historical and real-time data, enabling informed travel decisions, providing real-time
updates, and optimizing traffic management to improve network efficiency. Imagine
a system where Al is embedded at the heart of every journey: predictive algorithms
that anticipate and mitigate congestion before it occurs, re-routing traffic for optimal
flow. Recent advancements in ITS rely on Al-driven algorithms such as machine
learning (ML), deep neural networks (DNNSs), and reinforcement learning (RL),
which enhance safety, sustainability, and efficiency. These technologies empower
transportation systems to make data-driven decisions, monitor traffic in real-time,
and create smarter, more connected networks, paving the way for the future of
transportation.

The book AI-Driven Transportation Systems: Real-Time Applications and Related
Technologies delves into the dynamic integration of Al and ITS, highlighting the
potential and challenges of bridging the gap between traditional transportation
methods and modern Al techniques. It provides an in-depth examination of cutting-
edge technologies, such as Al and the Internet of Things (IoT), showcasing their trans-
formative impact on smart transportation systems. This book covers key concepts,
strategies, and real-time applications, addressing critical concerns (i.e., security,
smart parking, accident detection, intelligent routing, and traffic management). Ulti-
mately, its goal is to improve driving efficiency, reduce congestion, and optimize
network performance.

vii



viii Preface

This book offers a forward-looking perspective on how these technologies will
shape the future of ITS, positioning it as an essential resource for researchers,
engineers, academics, and technology enthusiasts alike. We invite you to explore
the innovative solutions, research studies, and multidisciplinary collaborations that
characterize the cutting edge of Al and smart transportation research.

Representing the collective expertise of a diverse group of authors and contribu-
tors, this book offers unique insights and perspectives on the field. We hope it serves
not only as a comprehensive guide to the current landscape of Al-driven ITS but
also as a source of inspiration for future innovations in this exciting domain. May
these contributions inspire further research, collaboration, and breakthroughs in the
rapidly evolving field of Al and smart transportation systems.

We thank our readers for their interest and invite you to embark on a journey into
the fascinating world of Al-driven ITS.

Happy reading!
Nicosia, Cyprus Hafsa Maryam
Tartu, Estonia Mehak Mushtaq Malik
Cyberjaya, Malaysia Dr. Inam Ullah Khan

Selangor, Malaysia Dr. Shashi Kant Gupta
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Smart Cities Transformation: From )
Conventional Traffic Management e
to Artificial Intelligence AI-Enhanced
Vehicular Ad-Hoc Network (VANETS)

Rupali Atul Mahajan, Rajesh Dey, Parikshit N. Mahalle, Vivek S. Deshpand,
and Mudassir Khan

Abstract Vehicular ad-hoc networks provide an entirely new way of wirelessly
communicating between vehicles in cities. Such communication would eventually
lead us to intelligent transportation systems in the transformation process of smart
cities. VANET provides vehicular mobility in connectivity through wireless commu-
nication between vehicles and between vehicles and roadside units (RSUs) using the
IEEE 802.11p standard. This paper summarizes and reviews the operation, appli-
cations, services, and conventional traffic management of some research work in
VANETs. The techniques include the following: the design of delay-based energy-
aware medium access control in VANETS, Virtual Roadside Unit Placement Assisted
Communication, and a trust-based secure optimized routing framework for highway
VANET communication. These frameworks have been designed using Al and their
performance is found to be superior because they reduce the time spent on travelling,
energy waste, and traffic accidents. Further, these frameworks significantly reduce
air pollution due to alleviation of traffic congestion beyond conventional methods
although at an increased complexity.
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1 Detailed Introduction and Overview

This article reviews and summarizes the operation, applications, services, conven-
tional traffic management, and some recent research works on projects in vehicular
ad hoc networks. There are numerous projects related to the VANET field. Although
there are numerous projects, VANETS are applied to emergency warnings, informa-
tion provision, assessing traffic volume, safety analysis, commercial advertising, and
other applications discussed in this paper. We found some research to enhance the
performance of VANETS from literature. The introduced methods include the design
of energy-aware delay-based medium access control in vehicular ad hoc networks,
Virtual Roadside Unit Placement Assisted Communication in VANET, and a trust-
based secure optimized routing framework for highway VANET communication,
among others.

Next, we briefly summarize the contributions of our research in this paper. The
challenges of VANETS include security and privacy issues, communication channel
problems, and the challenges posed by VANETS in urban areas and smart cities. The
main contribution of our paper is to present a summary review of numerous appli-
cations and research projects, providing research ideas and the latest unpublished
applications. We thoroughly review the research solutions and provide an overview
of existing VANETS. Each of the accomplished projects and ideas is analyzed and
presented through sensing, middleware, and applications of VANETS, including
concerns surrounding VANETs and VANET simulation tools. Lastly, this paper
serves as a bridge between researchers and the projects that have been achieved
or will be undertaken in the future. Our proposal can help promote research in the
VANET area.

1.1 Background and Significance

Nowadays, mobile technology has become better and integrated into the products and
services for providing a well- connected, easily accessible environment. Emerging
mobile technology has an incredible impact on transforming not only the way people
are connected but also how cities are operated and managed. A smart city implies
the implementation of a network of sensors to monitor various parameters, such
as air quality and traffic monitoring, to manage and control public infrastructure
as well as the usage for the provision of necessary services. The capabilities of
software and suitably deployed sensor networks allow for control and reporting
of anomalies related to managed infrastructure, which eases decision-making in
managing the city infrastructure along with the services. The majority of smart city
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initiatives focus mainly on the technological advancements in urban design and
infrastructure, labeling cities as high-ranking through global visibility, brand name as
a place, and innovation through smart technology applications. There is no common
understanding of the term ‘smart cities,” delivering a different image.

Substantial research effort and work on the development of smart mobile appli-
ance creation, enhancement, support of environment, services, and applications have
been carried out utilizing various devices, networks, and protocols. The concept
of the Internet of Vehicles is used to enable mobile communications, location, and
tracking technologies, routing, and the capability of deploying and collecting data.
Vehicular Ad Hoc Networks are considered a subset of ad-hoc mobile applications
and communication networks, which focus on transforming vehicles into mobile
sensing units. The vehicles in VANETS send messages for sharing information in the
non-scheduled mode or dynamic routing based on the vehicle’s location and move-
ment patterns. Such attributes of VANETSs can result in efficient traffic manage-
ment, improved communication resource utilization, and other public services. In
this paper, the main traffic management tasks that are collectively addressed can be
classified into three levels. First, vehicle localization and tracking. Second, message
forwarding between vehicles or between a vehicle and the roadside infrastructure.
Third, signal control management as well as a combination of them [1].

1.2 Scope and Objectives

The existing traffic control systems, including the advanced intelligent traffic control
systems, are typically managed by the centralized control centers for road networks
in each city. Ad hoc vehicular networks have attracted a lot of attention regarding
traffic congestion problems detection and solutions. It is the most specific use of the
new widely recognized artificial intelligence concepts. These intelligent vehicular
networked systems are designed for autonomous control by themselves. Through
the automobile communication technology, we advocate that the city regional trans-
portation network can be transformed into individual intelligent entities produced
by Al They are not only for autonomous control, avoiding traffic jams and colli-
sion accidents, but also for preventing contagious diseases transmitted in the traffic
systems.

Autonomous and intelligent transportation functions can be divided into two cate-
gories. The first category focuses on the immediate on-site detected traffic-ejection
operations with health and safety in mind. This is the ad hoc vehicle ejection network
transportation control system. The second category pays attention to relevant intelli-
gence information about high-risk driving and potentially dangerous road conditions,
such as weather conditions, closed roads, and contaminated areas. All of which would
harm the people who interact with the transportation flow somewhere soon. Based
on the current contact in the traffic flow and the road conditions caused by communi-
cation technology, a reportable risk list affecting people’s health and safety includes
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traffic injuries caused by high-risk driving conditions and potential or immediate
contagious or infectious disease transmission in the transportation network [2].

1.3 Understanding Smart Cities

Smart cities transformation has been attracting research attention on the redesign of
traffic management systems using vehicular ad-hoc networks. However, how smart
a city can be achieved by such technology has not been addressed. This paper starts
by discussing the importance of understanding the concept of a smart city before
implementing smart city projects like VANETSs. We then present the transformation
path of a smart city. According to the existing constraints and the local needs, the
first transformation is the upgrade of the conventional traffic light control system,
which saves energy and reduces fuel consumption [3].

What is a smart city? What can it be from the point of view of information
technology? In a smart city, digital technology is used to enhance performance and
well-being, to reduce costs and resource consumption, and to engage more effectively
and actively with its citizens to improve the city’s assets. A smart city is one in which
digital technology is used as an enabler to create effective, efficient, sustainable,
and inclusive urban environments: smart is when investment in human and social
capital and traditional and modern communication infrastructures fuel sustainable
intellectual capital and, hence, innovation and economic development. The ultimate
goal is to establish an intelligent economy.

1.4 Definition and Characteristics

The term “smart city” is a well-known term in both research and practice, having
been adopted not only in IT and engineering sciences but also appearing in other areas
of study. Smart cities have been the object of cultivation by politicians, investors,
scientists, and professionals as a new alliance of domains for urban spaces that
combine data with the Internet of Things and Big Data processing to plan and develop
cities where smart citizens can be comfortable. The main aim of a smart city is to
improve the quality of citizens’ lives by enhancing the quality and availability of
infrastructure through the application of smart technologies [4].

One important consideration about smart cities is the transformation of conven-
tional traffic management into smart city traffic management. Hence, considering the
non-linear characteristics of fluid traffic in urban areas, the utilization of traditional
traffic management concepts with enhanced Al concepts is important. The signifi-
cance of the fundamental characteristics, architecture, and features of Al-enhanced
VANET has been discussed in the earlier section of this paper. A smart city appli-
cation model highlights the path of a vehicle dropping off or picking up passengers
at the assigned bus stop in urban traffic. Pedestrian traffic management using ACR
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methods and WiFi data mining to boost a smart bus system has been investigated. In
addition, smart city connecting factors comprise smart infrastructure combined with
a traffic management plan [5].

1.5 Key Components

As its name indicates, an intelligent VANET is a set of high-technology agents or
nodes employing highly advanced and flexible Al algorithms. An intelligent VANET
is built mainly on four types of principles: interaction intelligence that supports
cooperation or negotiation of involved agents in the VANETS, cognitive intelligence
that supports the intelligence of every single agent’s behavior and learning process,
data intelligence or knowledge intelligence, physical intelligence that supports the
mobility, stability, and capacity of a single agent, and middleware intelligence that
supports the intelligent micro-agent or groups of micro-agents-based mechanism.
The intelligent VANET system is designed as two main agents. The first agent is a
data relay agent that directly connects and communicates with its associated vehicle
or RSU through an ad-hoc communication system. Inside the vehicle, its information
is retrieved and transformed into a network message packet, and its self-identity data
will be automatically released to the VANET visual intelligent subsystem. In the
meantime, the vehicle’s camera uses the released image taken by its camera to check
the road status. The road status checking is repeated every instant. The road status
data is joined with the vehicle’s own status message and data relay message under
one control unit. In essence, this agent is mainly a coherent mobile part to support
the intelligent driver style-based applications.

The second agent is the VANET visual intelligent subsystem that performs real-
time image and video processing using two levels of intelligence: model-based
learning and actual video processing. The system intelligently releases different
image models, templates, and image distributions that are stored in the distribu-
tion database and continuously updated by the intelligent learning control unit. The
collected image and video data and its intelligent computing results are then combined
with other traffic information to provide useful control, management, and guiding
information [6].

Additionally, the subsystem can be used to assist different ad-hoc applications,
such as information systems, intelligent car systems, traffic infrastructure smart
control systems, and more advanced V2V applications. The VANET visual intelli-
gent subsystem is particularly focused on the convenient computation of each image
by seeking to meet the critical performance indicators, such as the image global
segmentation and application correlation coefficient to present detection accuracy
for image and video database use over a long period. In summary, the output or orga-
nized content of the VANET visual intelligent system provides both network intelli-
gence and agent intelligence. The highly advanced and flexible intelligent system can
significantly support the convenient deployment of intelligent VANETS [7] (Fig. 1).
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Fig. 1 Data processing in VANETS

1.6 Conventional Traffic Management Systems

With rapid development in recent years, various systems and techniques have been
developed to analyze traffic-related data and help people make decisions. The
simplest way to manage traffic is to designate traffic personnel to control traffic lights.
Subsequently, car-sensitive electronically controlled traffic lights are increasingly
employed with the development of technology. However, these methods need a large
number of traffic personnel, and their traffic control cannot be optimized, especially
during severe traffic congestion. With the development of computing technology,
researchers are beginning to employ computer vision, especially deep learning algo-
rithms, to learn and analyze traffic data from stable public cameras. Additionally,
transportation information systems are used to analyze this data and provide traffic
suggestions to help citizens in the event that population dislocation happens [8].
With the rapid growth of connective devices and communication technologies,
a new method called context- aware traffic light control is proposed for vehicle-
to-infrastructure communication. The connected vehicles will send a message to
the Edge Computing Server with information such as road conditions and driving
preferences. Then, this method will calculate the duration and time of red, green,
and yellow phases for each lane in each direction according to the information and
the control policy. Additionally, delay time, queue length, number of stops, average
speed, and loss functions are some of the indicators that can be used to evaluate the
performance of the algorithm. These indicators can effectively optimize traffic lights
to achieve the purpose of reducing traffic congestion and increasing traffic efficiency.
Since there may also be blind spots caused by road construction and occlusions, this
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method has also used clustering to achieve constrained synergistic optimization for
traffic light control.

1.7 Challenges and Limitations

Current traffic management systems include green light optimization, lane counting,
road signaling, incident pre- diction, and traffic information systems that provide
real-time information to drivers about the current environment and more, under the
scope of traffic demand management and congestion charging systems. However, the
key challenges faced by today’s urban traffic management and road sensor systems
are the lack of scalability, high cost of deployment, lower battery backup solutions,
and security and privacy issues. Particularly, traffic and congestion management are
unique and complex challenges in a big city. Such issues can only be solved by a
detailed and accurate road vehicular environment interaction information model. To
build a transportation system that is truly smart, efficient, sustainable, safe, and acces-
sible, it involves intelligent transportation infrastructure that connects vehicles with
each other and with the infrastructure around them, sharing information in real time
to avoid traffic accidents, reduce congestion, minimize travel times, costs, and envi-
ronmental emissions, and improve customer experience and satisfaction. The imple-
mentation of intelligent transportation systems using vehicular ad-hoc networks has
been recognized as a promising strategy and potential solution to transportation safety
and congestion problems. These networks can provide public safety communication
and completely transform traffic flow in cities into a seamless cooperative service
with low cost, but with high efficiency and sustainability. They provide vehicles with
intelligence to make safe decisions concerning priority assignments to manage traffic
flow effectively, protecting lives and property. However, these networks also have
several challenges that need to be addressed, such as traffic flow management, which
are specific to the field of traffic monitoring and control [9].

1.8 Evolution and Current State

Over the past two decades, transportation systems globally have evolved from
traditional traffic management to the Internet of Vehicles, with the development
of vehicular networks such as VANETSs and Vehicular Cloud Networks. However,
despite the transformation of mobility, both VANETs and VCNs suffer from major
limitations such as communication link instability, scalability issues, and the lack
of efficient network security. This necessitates extensive research in VANET and
VCN technologies, allowing a stable, efficient, reliable, and secure communication
network between vehicles and the cloud, focusing on conventional traffic manage-
ment, artificial intelligence, VANET, VCN, and conventional traffic management
with Al-enhanced VANETS in this work.
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Deep learning and reinforcement learning are implemented to develop Al-
enhanced VANET frameworks to solve different conventional intelligent traffic
management problems such as traffic congestion, traffic accidents, air pollution, and
wasted energy. Reinforcement learning is employed to optimize the routing between
the Roadside Units and VCN, while deep learning algorithms are utilized to develop
vehicle smart control models for controlling the trajectories of self-driving vehi-
cles. It is found that the designed Al-enhanced VANETS have better performance in
terms of reduced traveling time, reduced energy waste, fewer traffic accidents, and
air pollution, alleviating traffic congestion more effectively than other conventional
methods, at the cost of increased complexity. It is suggested that a decentralized or
hybrid model should be designed to lower the complexity.

Introduction to Vehicular Ad-hoc Networks (VANETS the integration of ANETSs
with Al technology can significantly enhance the overall management of conven-
tional traffic-condition-based road networks, not only in terms of ensuring road safety
but also in terms of minimizing the impact of accidents and ensuring roadability
conditions. In this chapter, Al enhancement of a conventional VANET consists of
two parts: Image Pattern Recognition and Real-Time Deep Learning Al Technology.
Unlike conventional quadraphonic or multi-dimensional VANETS, the most signifi-
cant difference is that our model consists of various commercial products equipped
with IPR and mobile VANETS, which can track with ADAS and provide real-time
data transmission through 4G, 5G, or similar technologies. Furthermore, we have
coordinated conventional drone technology through AI Deep Learning. We further
propose an Al model that significantly improves the conventional image pattern
recognition of various descriptions and Al-based data transmission problems caused
by limited resources or the high data volume requirement of mobile VANETs. We
also show benchmark performance results under filter techniques from publicly avail-
able data sets. The performance of our proposed approach, when applied to public
datasets, leads to an average Denoise CNN Image Classification Accuracy Rate of
96.8% and a DNN with an Average Time Performance of 0.07 [10, 11] (Fig. 2).

The dramatic increase in the number of vehicles, traffic volume, injuries, acci-
dents, or roadable weather conditions in terms of safety potential and economic
value has given rise to demands for wider-ranging safety management by road
operators. The vehicle network systems of both centralized and point-to-point, also
known as Intelligent Transport Systems, mainly function by processing information
collected from individual vehicles and roadside-based sensors. The rapid develop-
ment of computer networks, such as broadband Internet and bound- less geographical
telephone systems, has led to demands for providing users with broadband service
connectivity. Ten major vehicle manufacturers have developed vehicle network
systems using VANET technology. However, autonomous vehicles also require a
high bandwidth service to accomplish the task of providing users with convenience
and safety. Since drones and ground systems can skip, hop, and jump, and are inex-
pensive, we propose a new vehicle ad-hoc system model capable of significantly
capturing the high bandwidths required by autonomous vehicles [12].
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Fig. 2 VANETsS traffic management

1.9 Definition and Key Concepts

With the advancement of technology in communication and wireless networks, the
development of smarter public transport and intelligent transportation systems (ITS)
through connecting vehicles together and integrating data from different sources,
such as traffic management systems and applications of traffic and public trans-
port, can certainly be realized. This text attempts to provide a comprehensive review
of the vehicular ad-hoc network (VANET) communication technology that enables
wireless communication between vehicles in urban areas, contributing to intelli-
gent transportation systems (ITS) in realizing smart city transformations. The aim is
to promote VANET technology to the broader community, particularly the public,
developers, researchers, and practitioners in the field, in realizing the time to travel
in near-future smart cities. VANET is a special kind of mobile ad-hoc net- work
(MANET) created by applying technology to vehicular networks, enabling connec-
tivity through wireless communication technology between vehicles and between
vehicles and roadside units (RSUs) using the wireless communication interface of
IEEE 802.11p.

The key features of VANET compared to ad-hoc networks include fast topology
changes with a moderate number of nodes, relative differences in the speeds of
the nodes, and communication range and location information of the nodes. The
existing VANET standard IEEE 802.11p was proposed and mainly designed to deal
with safety and autonomous driving in vehicular environments. As communication
technology evolves along the history of development, VANET has been extended
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to incorporate non-safety-related applications to form a new vehicular communica-
tive system that further enhances driving and social experiences. Their key differ-
ences demonstrate several advantages over traditional data modem-based systems,
including low delay, high reliability, and spectrally efficient communication, which
are particularly important in VANET safety applications [9, 11].

1.10 Applications and Benefits

The development of smart cities promises to deliver efficiency and sophistication in
city operations by using technology that can improve the quality of citizen welfare.
This can be accomplished by optimizing the use of resources to minimize environ-
mental impact and ensure sustainable development. With the development of machine
learning and artificial intelligence, traffic problems can be addressed by harnessing
these technologies. The intelligent VANETS through Al have mature capabilities to
solve problems dynamically. We discuss the development of Al-enabled VANET for
the transformation of traffic control and management and the benefits that have been
achieved. The widespread deployment of Al-empowered VANET enables a number
of applications that enhance traffic safety, traffic efficiency, and journey experience.
Most road accidents can be avoided by using smart Al- empowered VANET. Road
assistance is deployed based on predicting the future location of the requester; this
is important as it is an essential safety disclaimer for drivers. Time and fuel will also
be saved, reducing the likelihood of secondary accidents occurring. Improved traffic
control through intelligent VANET can alleviate congestion by shifting a collective
transmission schedule in a timely manner, introducing diversions, and eventually
clearing trouble-prone road sections, leading to social welfare benefits. This can also
reduce air pollution in cities.

These benefits can ultimately reduce the demand for road capacity expansion.
Research has also shown that the implication of Al-enhanced V2V networks has the
potential to prevent up to 40% collisions.

1.11 Artificial Intelligence in VANETs

The purpose of this section is to develop a comprehensive understanding of artificial
intelligence in vehicular ad-hoc networks (VANETS) in the smart city context. It
synthesizes various definitions and concepts. It is also aimed at outlining the impor-
tance of artificial intelligence in VANETs. Broadly, VANETS are an established part
of traffic management. The security issues have also been addressed at some level
(Fig. 3).

Artificial intelligence (AI) has evolved our lives considerably in the past few
decades. Intelligent machines are working alongside humans to enhance the abili-
ties of people on the planet. They are doing routine jobs. But in addition to this, Al
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Fig. 3 VANETsS traffic
funnel

machines are also being used for problem-solving in various fields, e.g., for traffic
management, predicting weather, healthcare, etc. Al has the capability to support
different applications like the Internet of Things, VANET, public transport, health-
care, etc. Artificial intelligence (AI) in VANET research perspectives has its own
importance. It is utilized for management, controlling, monitoring, estimating, or
predicting purposes. Al algorithms can work for people in the world of VANET in
many different ways. Al-enabled VANETS can estimate or predict traffic jams in the
city and offer alternate routes to eliminate time wastage. People in vehicles can get
helpful and meaningful road congestion information from the system. In this way, Al
enables VANETS to plan, manage, and control traffic more efficiently and effectively
[13].

1.12  Overview of Al

According to its definition, artificial intelligence (Al) is based on a combination
of complex computer science techniques including knowledge representation, case
recording, random variables and probability, cognitive modeling, and so on. While
the researchers in Al helped to transform the goals of science, such as understanding
intelligence as part of the universe and its study by building models of thinking, over
many years we have drawn a number of lessons from numerous attempts, many of
which have been both theory and experiment. These lessons do not fall neatly into
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scales; they cross many topics and phenomena as they come from a more complex
world. Some- times the ideas may seem contradictory or inconsistent. These are the
narrative notes gathered from a number of enterprises to understand the problems of
intelligent systems, not to solve them. The computer Al program made history by
beating the world champion at chess. However, it still has difficulty understanding
and simplifying hu- man language, which is much simpler and easier. Al programs
can create other programs and machines with little assistance from engineers. They
can learn from experience through formal and informal trial and error processes and
be more effective than humans. The successes in these areas led to the development
of two basic fields of Al: machine learning and neural networks. Early programs
that used this neural network approach included an autonomous helicopter, hand-
writing recognition, and a continuously adjusted gearbox. Al programs usually excel
compared to people in situations that are not possible or dangerous, or when computer
code offers not enough memory and other mechanical constraints [12, 14].

1.13 AI Techniques in VANETs

All the above heuristic-based algorithms have used the same mundane traffic with
the same percentage of vehicles modified to become selfish vehicles. The number
of cohorts having different selfishness percentages has caused traffic jams on the
highway. The auxiliary information provided by the owners of the selfish vehicles
about their movement plans has not enabled the algorithm to perform any better than
the simple greedy one for WSCI, intelligent OPT, DCI-P-MID, and DAg-P-MID. The
microscopic simulation model used in this work has not allowed us to demonstrate the
superiority of the communication constraints-aware, heuristic-dedicated approach
for selecting the fail-safe cohorts, including selfish vehicles on highway DAg-P-
MID, the last one being the main downside of the work. SMIA-DCL does not support
a fail-safe nature with congestion kick at all but does provide a transmission time
adjustment mechanism. SMIA-DAg, all three mechanisms working in e-DSR, are
no-go.

GAB-I-MODAS, Q-GASA, IHV-ULS, ROD-DCL, IHV-DCL, WSCI-DCL, IH V-
Dag, ROD-Dag work with any VANET MANET protocol correctly. Several different
highway scenarios have been conducted; the characteristics of WSC-DMCAST
increase this protocol’s appeal. GAB-I-MODAS, Q-GASA, IHV-ULS, ROD-DCL,
IHV-DCL, WSCI-DCL, IHV-Dag, ROD-Dag, and WSC-DCL do support a fail-safe
nature, but DCI-P-MID and DAg-P-MID have higher goal values when they can
only service non-selfish vehicles online, incapable of helping people absurdly due
to transmission time limitations. SMIA-DCI and DAg provide mobility patterns that
can be used by augmented approaches as well as better goals upon assigning tasks
from a base which a more sophisticated approach proposes. The approaches would
exist that adjust schedules.
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The simulation models have shown that the congestion behavior of all greedy
approaches can be anticipated by each of the Al-augmented methods and a middle-
ground solution. In summary, every non-greedy approach can handle traffic jams and
facilitate controlled rule changes that would increase performance beyond the greedy
ones. No other association has addressed this issue because, as it seems, no one else
has even conceived of it. In summary, only SMIA-DAG provides all ethically correct
schedule prioritizations, the same time constraint information, fail-safe functionality
for negligent and selfish vehicle supplementation, the e-DSR support, and the still-to-
be-optimized helper information deadlines divided between the two types of driver-
owned dispatch behaviors within the methodology [15, 16].

2 Effect of Selfish Cohorts on Highway Traffic
and Algorithmic Performance

The presence of several cohorts with different levels of selfishness has inflicted a
significant level of traffic congestion on highways. In the vehicular network, selfish
vehicles are paradigm-based movers, ranking their own goals above system-wide
efficiency and flow in the highway traffic pattern. The challenge is therefore in
designing proper algorithmic ways to handle these vehicles and yet maintain a failure-
safe system. Yet the study concluded that there is no help from the models of selfish
vehicle owners in the form of auxiliary information regarding their future movement
plans beyond that conferred in a basic greedy scheme.

Even though the MCEITA has W-SCI (Weighted Cohort Integration) listed, Intel-
ligent OPT (Optimization-oriented approach), DC1-P-MID: Dynamic Cluster-Based
Partial MID, DAg-P-MID: Dynamic Aggregation-Based Partial MID, these traffic
management algorithms envisage improved traffic efficiencies while driving at the
cooperation and selfish levels of vehicular behavior. That, expectedly, never saw
the day of light; it has got to attribute mostly because the algorithmic efficacy of
these models cannot fetch extra information from signal inputs gathered by real-time
applications.

Limitations of the Simulation Model

When the microscopic simulation model explained not to discourage the fault-
less communication constraint-wise and heuristic-dedicated appraisals in a cohort-
trimming selection, particularly towards selfish vehicles, but instead exalted those
methods one and all, the focus truly felt so dry. Microscopic models mostly simu-
late vehicular movements rather than broader traffic patterns, typically mannering
detailed interactions. Not being able to demonstrate a single effective way to apply
heuristic-guided techniques suggests that either the granularity of the simulation
reaches its extreme limit or that the vehicle communication is too restrictive.

In the exploration of these four approaches, shortcomings of DAg-P-MID were
very conspicuous among the selfish vehicle cohorts, marking a severe deficit in this
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study. It suggests that in order to completely appreciate the dynamic interactions
between selfish cooperative vehicles, a more flexible or hybrid approach, which
could integrate both macroscopic and microscopic views, is needed.

Evaluation of Road Scenarios as Well as Protocol Effectiveness

To determine the protocol’s real-world applicability, several highway scenarios
were set up. In the studied ones, WSC-DMCAST was found to be more favor-
able. However, in comparison with DCI-P-MID and DAg-P-MID, which gain higher
values of goals when only non-selfish vehicles are used under their supervision,
fail-safe approaches turned out to be more robust:

These protocols inherently possess fail-safe methods to ensure system function-
ality in the presence of selfish vehicles. However, DCI-P-MID and DAg-P-MID
are greatly hampered by transmission delay restrictions, thus rendering them very
ineffective in dealing with mix-traffic scenarios.

1. Selfish behavior by vehicles impedes traffic development and is a principal
problem for traffic optimization algorithms.

2. Further adaptive or predictive mechanisms are needed to be achieved through
additional data from selfish driving beyond the basic greedy methods.

3. The acceptance of the simulation model at microscopic level calls for some
rethinking, given its inability to show the benefits associated with heuristic
approaches, urging much-improved modeling for communication and stronger
decisiveness on behalf of the agents.

4. WSC-DMCAST and similar fail-safe protocols show strength and resilience in
mixed road conditions, and DCI-P-MID and DAg-P-MID weaken due to time
delays.

5. For future studies, establishing simultaneous hybrid simulation models, coupling
better microscopic perspectives with macroscopic projections in real-time
adaptive applications, still has to be considered.

2.1 Integration of Al in VANETs for Smart Cities

Future vehicular networks have a significant role in smart city applications, where
artificial intelligence methods could be integrated to enhance the performance of a
smart vehicular network. Traffic congestion is the most significant issue faced by a
smart city, and it influences vast socio-economic variables, creating pollution and
energy waste. Over the past few years, many solutions have been suggested using
different types of sensor technology with traditional communication approaches.
However, the lack of global standards for such networking and their high deployment
and maintenance costs suggests that to maintain and manage the currently available
communication infrastructure, one could explore the potential of existing vehicular
ad-hoc network architecture using Al.

In this chapter, the communication and control infrastructure of a smart city is
presented in a way that leads to a vehicular communication network and a novel
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system using an agent-based approach. Two different scenarios are integrated sepa-
rately for effective traffic management, where shared control theory is also used. The
system architecture of the proposed solution presents different levels of authority for
the agent, with a lower level using dedicated short-range communication for vehicle-
to-vehicle, vehicle-to-road, and route-to-vehicle communication. The agent-based
object-oriented modeling of the vehicular communication network is presented,
including the behavior of the architecture. The concept and application of the
proposed solution in smart cities are studied in this work, which will provide guidance
for the deployment of the technology in future smart cities. The developments intro-
duced in this chapter could have important implications for stakeholders in smart city
applications. User satisfaction, transportation costs, travel time, drive time, vehicle
speed, and fuel consumption are compared based on complex network dynamics
and network capacity, while the energy emergency distributions are presented as
a preliminary step to integrate an Al-enhanced system into commercial, off-the-
shelf ad-hoc network architecture. The algorithm designs and computer simulations
correspond and validate the system and transmission models of the technology, while
further work needs to be carried out to ensure market acceptance. The applications
demonstrated in real scenarios, the multi-agent imitation, the software design, and
the vehicle prototype also need to be completed as future work [17, 18].

2.2 Benefits and Advantages

By applying Al to VANETsS, the information exchanged among vehicles, such as
GPS coordinates of the destination points, routes, or traffic flows, can be analyzed
and predicted to provide correct decision-making suggestions to the drivers regarding
traffic flow, all in real time. As a result, road safety for all users of intelligent trans-
portation systems can be improved. The methods used to exchange GPS information
for vehicular travelers, display route options, publish travel itineraries, or optimize
which path should be used might differ from system to system, but in general, the
ability of people to travel safely and efficiently will be much better in the presence
of an accurate framework of intelligent vehicular traveler assistance solutions that
communicate and share information to provide the correct service. In the following
section, the primary use cases as a benefit of combining Al techniques with VANET
are summarized.

With the advent of Al all participants in traffic can solve emerging problems more
efficiently. Car congestion on arterial roadways and freeways decreases when car and
truck traffic flow is made step by step easier, allowing users to operate their route
plans based on the exchange of GPS information. Priority-based throughput can move
important travel events easily. Commercial transportation is able to make efficient
use of its available resources. In addition to traditional vanpooling, people will be
able to share rides more selectively. Bus and rail services will be more successful in
both generating user demand and attracting advanced users.
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2.3 Challenges and Considerations

The introduction of Al into VANETSs leads to a more robust and technologically
advanced structure. Nonetheless, the collection and usage of vehicle-generated data
raise questions about safety, security, and privacy. This sudden growth will most likely
bring about new architectural forms of trust and automotive validation. When VANET
encompasses an installed environment, the type of safety policy and implementation
to be pursued will become a distinct debate. This discussion includes imposing secu-
rity constructs in a secure environment that meets certain laws. The introduction of
high-level vehicle connectivity technologies and systems, highly automated vehicles,
and smart material systems capable of listening to and reacting to data transmitted
over various distances around and among vehicles may cause individual security and
surveillance concerns. For instance, it will be feasible for vehicles to detect whether
each other is trying to jam either V2V or V2I in the future.

As a result, the parties could claim that surveillance biometric data collected
on the VANET is at a high enough level of awareness and that their constitutional
rights concerning mobile technology, computers, and cyber networks are affected,
including the restrictions that prohibit a mobile electronic system from intercepting
a communication for public, a vehicle’s communication system from intercepting
identical vehicle communication, or an entity from intercepting or spying on them
for their vehicle or their communication or location data. This issue will become even
more complex as vehicles are preloaded with passenger negotiation protocols and
become personal electronic devices, thus framing this as a mobile security puzzle.

2.4 Case Studies and Examples

The following section is an overview of case studies and examples of recent research
enhancing traffic management in smart cities with Al within VANETs. However,
advanced technologies far beyond Al, including ML, VL, and DC, are also capable
of enhancing VANET to different levels to enable better communication performance,
more robust and reliable safety, and convenience services. On the other hand, current
Al-based VANET systems and future research enhancements mainly focus on vehic-
ular environments. Conversely, the roadside and road- intelligent service enhance-
ments under Al that could also enable road service to provide, assist, or even override
certain MANET environment services, safety, and convenience are less focused on
and addressed. Looking ahead, a cross-level Al and Al-network-enabled VANET
will eventually help to converge both vehicle and road environments and service
enhancements and provide an intelligent overall system to serve the passengers and
road services for smart cities.

Presented is further an overview and categorization of our snapshot case study
examples on current Al-enhanced VANET infrastructure and/or services in progress
of our literature review that often seem to indicate researchers are not aware of the



Smart Cities Transformation: From Conventional Traffic Management ... 17

various multiple levels of Al technologies which are suitable to enhance VANETSs
for better service and better vehicular communication environments. A cluster-based
Al approach to enhance multi-critical data forwarding among different clusters in
VANETs: This is an Al-enhanced selective forward algorithm for multi-type critical
traffic data, with stand-alone clusters applying Al to enhance the MANET perfor-
mance. The AI decision is performed at the cluster head in standalone clusters
with synchronization between cluster heads, and an Al-based forwarding model
is constructed on the selected data relay vehicles considering multiple influencing
factors including connectivity stability, data transmission distance, and the proba-
bility of successfully receiving the multi-critical traffic data. Based on the Timer—
Energy Control Model and Alert Service Model, and taking into considering road
type and vehicle speed, the data forwarding decision-making is divided into different
decision-making models. This is my first attempt to address the highly dynamic
routing mechanism where each participating vehicle needs to satisfy the data prop-
agation delay and stability of the constructed routing through a simple energy
consumption control model. The Al model performance is evaluated by using several
influencing factors.

2.5 Successful Implementations

In this section, areview of various MEC or Al-based services enabled on VANETS, as
well as some network structure or function enhancement proposals, helps elucidate
both the challenges and recent solutions of high- performance VANETs. The road
from the intersections of Hillsborough and Hearst streets, in front of the University of
Miami, is equipped with small cell tower technology, which will accelerate the devel-
opment of smart cars and other smart projects in Miami, including rapid response
to traffic safety, hurricanes and tsunamis. This is the world’s first commercially
deployed small cell technology structure.

A small cell tower was built in Miami in 2017. The four major telecommuni-
cations companies launched their own small cells on Brickell Avenue and are now
using a carrier designed for future autonomous driving, in remote and automatic
parking. Enables new and existing vehicles to communicate with each other and the
surrounding infrastructure. Since 2018, there is also a Volkswagen atsuarevanet. Car
communication devices and parked cars will be able to notify the vehicle approaching
when they are going to leave a parking space, allowing the vehicle to park automat-
ically. This paper believes that the development of smart cars should base all expec-
tations on discussing the roads through which to cooperate, thereby achieving more
specific concepts of new car projects in the future, instead of expecting automotive
manufacturers to mass-produce self-driving cars first.
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2.6 Lessons Learned

As per the feature claims received, the developed solution completely fulfills all
functional and security requirements set in the smart city. The spatial resolution of
the utilized data is proper and currently satisfactory for the needs of our services. The
pilot nature of this solution enables us to present many existing implementations path
troubles. However, they were addressed as occurring, and their resolution shows that
smart traffic services are feasible to be implemented in a wider spatial and temporal
context.

The evaluation of the developed system provides an overall assessment of the
developed infrastructure and solutions. Reflected on the experience gained, our find-
ings suggest wider applications of VANETSs and multi-agent systems in smarter city
verticals. The results obtained also outline future steps for city council policy devel-
opment regarding parking places and restrictions on usage in the most congested
city area’s pedestrian and vehicle detection. Although the tested configuration has
several limitations, the applied requirements and principal design are innovative and
flexible enough to allow for their extension, thus suggesting directions for further
development.

2.7 Future Trends and Innovations

Both physical and social Smart City digital domain layers have data security and
privacy protection concerns. Many threats and vulnerabilities exist in futuristic
VANETSs with 5G. Services may be resolved using Al and other advanced technolo-
gies. There are also several emerging technologies that can be integrated with Al to
enhance the vehicular network functionality. These include the use of parallel V2X
convolutional neural networks that are able to transcend road network infrastructure
constraints by using machine learning to handle vehicular data. The combination
of AI and information-centric networking can form the ICN-VANET driver assis-
tance system. The exploitation of bio-inspired neural networks, where the dendrites
in the neurons have the ability to learn and recognize patterns, is also significant.
Complex problems and data may be solved by using large, deep, and multilayer arti-
ficial brain networks that can iteratively and adaptively perform data classification.
This approach may be used by governments to predict traffic demand.

Reductions in spectrum and energy, improvements in security and privacy protec-
tion, and mitigation of performance and cost due to complexity and multiple users
of 5G networks, along with the incorporation of automated vehicles, the Internet of
Things, and the Internet of Vehicles; big data storage capacity and handling; and
smart city decision support systems and applications are a few major future chal-
lenges that must be addressed in the cities of the future, managed in autonomous and
assisted manners. Al and advanced technological solutions are also able to offer new
pieces of information and new functions to the Smart City by developing a network
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system that is data-aware and able to recognize data as more than just bits and bytes,
embedding additional information into data and deriving useful information from
semantically named data items. When devices are able to use ICN directly, they will
have the capability to process data quickly. Therefore, it is important to develop a data
process at the core of the Al algorithms. The future fully Al-empowered VANETS
will utilize well-placed mobile nodes and social IoTs to collect every bit of addi-
tional physically and socially important data to derive a high level of understanding
and develop a decision support system to improve the quality of living of smart city
decision support organizations.

2.8 Emerging Technologies

The development of innovative applications and the improvement of their perfor-
mance for ubiquitous computing in smart city scenarios are getting a lot of attention
from both academicians and industry. These areas bring together various exciting
research challenges and opportunities for computer science researchers and prac-
titioners. Here, we would like to highlight some of the most important emerging
technologies that bring promising opportunities to the sustainable transformation of
evolving smart city paradigms. Artificial intelligence and edge computing evolved
as subsets of smart cities. Then, the advantages of integrating them are explained.
A hybrid wireless network composed of mobile communication techniques could
also be integrated into smart cities, for which the main cooperative approach for
its enhancement of efficiency is cooperative vehicular networking. This and other
related technologies are discussed.

Emerging Trends in Computing: Edge Computing and its Relationship with
Smart Cities With the advent of 5G and the rapid development of IoT devices,
cloud computing cannot meet the computing demand. For example, due to its low
computing power, cloud computing cannot maximize the ability of IoT devices
to continuously capture and transmit data, which is applicable to many identified
systems in smart cities. Researchers and practitioners have proposed a paradigm
shift from traditional cloud computing known as edge computing. Its objective is
to move from centralized cloud environments to a distributed model, where data-
intensive computation is performed by resource-constrained IoT devices closer to
data sources with ultra-low latency. In edge computing, computation and data storage
are still performed at the cloud, but the most frequently used data processing is
performed on IoT devices or local servers.

2.9 Potential Impact on Smart Cities

Smart cities are initiatives involving governments and urban stakeholders to cultivate
urban areas that are perceptive, connected, and sustainable. Modern technologies,
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especially communication and information technologies, are the most influential
technologies used to render cities smarter. Concerning the dimensions of smart cities,
it is intended to provide a holistic view of a city. As a double-edged sword, the data
privacy and security challenges to Al-enhanced VANETS have to be faced with joint
efforts from various sectors in the field of AI and VANETS. In conclusion, despite
significant overhead in data privacy and security protection, Al-enhanced VANETSs
have a promising application in the smart cities transformation. In a smart city, the
traffic management of the city is very important since the traffic system closely
concerns the quality of life of the inhabitants and the operation of the social milieu.
VANETs are critical to decrease visibility on the emission price and other social
expenses of congestion in urban areas. Al-enhanced VANETS are also beneficial for
the creation of open applications using clear and longstanding interfaces. The direct
initial applications are Response Center and Vra for easy help in the event of an
accident, and Driver Activity to objectively always estimate driver behavior and act
on them. Dynamic data are planned to allow the composition of third-party traffic
Vra, on-board devices to guide drivers directly in response to road traffic conditions.

3 Conclusion

Today, the smart cities transformation is a very much talked about research subject.
Besides, a connected vehicle is a significant area of research pointing towards smart
cities and transportation. With its huge potential in traffic safety, traffic efficiency,
and environmental friendliness, and how these vehicles are moving towards the
incorporation of advanced sensors and improved wireless connectivity, the media
is calling the vehicle a smartphone on four wheels. As the vehicle has become
sensing-enabled and computing-capable, a huge amount of data can be collected by
vehicle sensors such as Limited Distance Communication, RADAR, cameras, and
vehicle-to-infrastructure communications and vehicle-to-vehicle communications,
which need to be processed at the vehicle and on the cloud. To drive all these required
operational safety services, a reliable data offloading mechanism is necessary. This
work discusses the enhancement of artificial intelligence techniques in conventional
traffic management in order to further approach connected vehicle functionalities
over the vehicular ad hoc networks. The Al-embedded environment could efficiently
manage the increasing traffic. The congestion could be controlled, and warnings
could be efficiently generated about events like accidents, bad roads, or any kind
of traffic clogging conditions. Moreover, the Al-embedded physical environment
could be integrated with traffic management infrastructure and equipped with traffic
monitoring devices and traffic control devices. In conclusion, in this research work,
various Al techniques of single and hybrid nature have been applied in the vehicular
ad hoc networks area to develop smart cities with sensor-rich connected vehicles.
These techniques have shown promising outcomes, depicting positive enhancements
in terms of varying network-centric issues. It can therefore be concluded that future
endeavors, enhancing new Al techniques in order to achieve network-centric and
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user-centric traffic management objectives, will lead towards the vehicle’s complete
transformation to connected vehicles that could solve several urban traffic problems
burdening the world’s smart cities.

3.1 Summary of Key Points

This study presented an Al-enhanced traffic management model that integrates Al
techniques including Expert System, Artificial Neural Network, and Fuzzy Infer-
ence System into the framework of VANETS. It consists of three layers: perception,
analysis, and response layers, where Al techniques are applied to enhance system
intelligence. It applies to a shared memory-based approach to enable the queries
and inferences on the shared knowledge that is utilized to increase traffic manage-
ment intelligence. Vehicles arrive on the queries, receive answers and decisions from
the shared memory, and can infer or display useful traffic information and predic-
tions. All vehicles are able to obtain critical traffic information within a reason-
able time and, most importantly, long before potential accidents take place. The
solution approach can also be applied to other communication networks for other
purposes to achieve specialized, ad-hoc communication network-based master—slave
systems. The proposed solutions become stronger as the number of vehicles on the
network increases. Overall, the proposed Al-enhanced traffic management model
facilitates the transformation from conventional traffic management to Al-enhanced
traffic management, from conventional VANETS to Al-enhanced VANETS, as well
as from conventional cities to smart cities.
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Abstract The ever-increasing pace of urbanization and the increase in population
have heightened the demand for innovative traffic management strategies aimed at
ensuring sustainable mobility and alleviating congestion in smart cities. Conventional
traffic management systems, which depend on fixed infrastructure and limited data
integration, find it challenging to adapt to the ever-changing urban landscape. Hence,
we need advanced technologies such as Vehicular Ad Hoc Networks (VANETS),
which utilize vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) commu-
nication to facilitate real-time data exchange. The synergy of Al and VANETS repre-
sents a significant advancement. Advancement toward the development of intelligent
traffic systems which can perform predictive analytics, make adaptive decisions,
and optimize traffic flow seamlessly. Machine learning algorithms are used in Al-
enhanced VANETS. This makes possible to process extensive real-time traffic data,
allowing for precise predictions of traffic trends, prompt identification of incidents,
and effective route planning. Additionally, this integration aids in the navigation
of autonomous vehicles, coordination of emergency responses, and the reduction
of carbon emissions through efficient energy management. This research looks at
how AI can enhance Vehicle Ad Hoc Networks (VANETS) and transform urban
transportation. It explores the potential benefits, such as improved efficiency and
sustainability, while also addressing challenges like cybersecurity risks, infrastruc-
ture requirements and policy considerations. By integrating Al with VANETS, cities
can create smarter and more connected transportation systems, shaping the future of
urban mobility.
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1 Introduction

The transportation networks are currently under significant strain, and the funda-
mental reason is the rapid expansion of urban areas. This situation leads to traffic
congestion, increased fuel consumption, and higher emissions. Conventional traffic
management approaches, which depend on fixed infrastructure and predetermined
controls, are inadequate for managing the dynamic and unpredictable character-
istics of urban traffic. As cities make progress towards more intelligent and effi-
cient mobility solutions, the integration of Al with VANETsS offers a transforma-
tive opportunity for transportation systems. VANETSs, which represent an innovative
advancement in mobile ad hoc networking, provide new avenues for developing
intelligent transportation systems [1]. In essence, these networks enable vehicles to
function as independent communication nodes, interacting with each other and, when
available, with roadside infrastructure. Unlike conventional networks that depend on
fixed infrastructure, VANETS are inherently dynamic, forming temporary connec-
tions as vehicles move along roadways. With On-Board Units (OBUs), such vehi-
cles can establish communication links dynamically which can form and terminate.
This makes network topology highly fluid. Given that vehicles travel at different
speeds and frequently enter and exit the network, maintaining seamless and efficient
communication presents significant technical challenges. As illustrated in Fig. 1, the
fundamental structure of VANETS is outlined by Kumar et al. [2].

Kumar et al. [2] introduced a structured framework for VANETSs. They aimed
at improving security and optimizing data transmission. The architecture proposed
consists of three key layers’: RSU Controllers, Zone Controllers, and a centralized
certification authority.

The RSU Controllers manage multiple Roadside Units located at critical traffic
points, while the Zone Controllers facilitate communication among various RSU
Controllers. The CA is responsible for distributing cryptographic certificates and
managing authentication processes. The hierarchical nature of this design is focused
on enhancing data flow by ensuring that messages take a defined route and helps
in reducing unnecessary transmissions. In this framework, vehicles send data to
RSUs, which then pass the information to RSU Controllers, and if needed, to
Zone Controllers. The CA is responsible for verifying digital certificates before
allowing messages to be sent. Additionally, the model incorporates Elliptic Curve
Cryptography for strong encryption and utilizes a sandboxing approach to address
potential security risks in vehicle communications. Validation through simulations
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Fig. 1 Basic architecture of VANETSs

demonstrates the architecture’s effectiveness in lowering computational require-
ments, strengthening network security, and maintaining message integrity, even in
the face of various cyberattack threats.

VANETSs are dynamic and scalable. These networks can range from a limited
group of vehicles operating on a secluded roadway to thousands of vehicles trav-
elling on a busy highway. This dynamic nature necessitates the implementation
of robust communication protocols and efficient resource management strategies.
Furthermore, vehicles within these networks are generally equipped with GPS tech-
nology, which facilitates accurate geolocation tracking. This spatial awareness is vital
for various VANET applications, such as optimized message routing and services
tailored to specific locations. A significant impetus for the development of VANETSs
lies in their ability to improve road safety. The exchange of real-time data supports
applications like collision avoidance alerts, emergency braking notifications, and
cooperative awareness messages. These safety-oriented applications impose rigorous
demands on the network, requiring low latency and high transmission reliability to
avert accidents and enhance overall traffic management.

A conventional VANET architecture is made up of two main elements: one is
On-Board Units located within vehicles and second is the Roadside Units strategi-
cally placed along transportation routes. Communication within such architectural
framework occurs through various settings: V2V facilitates direct interactions among
vehicles, V2I enables exchanges between vehicles and RSUs, and 12V allows for
messages to be sent from RSUs to vehicles. This integration helps in creating a more
flexible and responsive networking environment but there are many open challenges.
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Some of the issues are efficient routing of messages in a dynamic setting, safe-
guarding communication pathways from potential threats, and handling the exten-
sive data flow generated by expansive networks. Additionally, fulfilling the rigorous
Quality of Service standards which are necessary for safety—critical applications adds
another layer of complexity to network management. In response to these challenges,
researchers are working on the development of novel routing protocols, improved
security frameworks, and adaptive management techniques. The future advancement
of VANET technology is dependent on addressing these challenges.

VANETS facilitate uninterrupted communication between vehicles and roadside
infrastructure, enabling the real-time exchange of data that enhances traffic manage-
ment, increases safety, and optimizes routing. Nevertheless, traditional implemen-
tations of VANETSs encounter considerable challenges, such as vulnerabilities to
cybersecurity threats, delays in decision-making processes, and issues related to
scalability in extensive and varied urban environments. To tackle such challenges
what we need is a sophisticated Al-driven framework. Such frameworks should be
able to incorporate decentralized learning methods, secure communication protocols,
and adaptive algorithms for decision-making.

This chapter investigates the core design principles, operational mechanisms, and
practical implications of Al-augmented VANETS, providing a detailed framework
for the integration of intelligent transportation systems in urban areas. Here we
analyze various components of an Al-centric vehicular network, emphasizing the
importance of perception in collecting real-time data, the network infrastructure that
supports effective communication, and the decision-making processes that enable
smart mobility solutions. Later on, the chapter addresses the cybersecurity risks in
implementing Al in VANETSs and discusses strategies to maintain data integrity,
privacy, and resilience against cyber threats.

This chapter also presents a methodology for performance evaluation. We
propose simulation-based assessments, mathematical modeling, and real-world pilot
studies. By creating a comprehensive framework that enhances urban mobility
through automation and predictive analytics, Al-driven VANETS contribute to the
development of safer, more efficient, and environmentally friendly transportation
systems.

2 Al-Driven Vehicular Network Architecture

The effectiveness of intelligent transportation systems is strictly dependent on a
robust and flexible communication framework that facilitates the efficient exchange
of information between vehicles and infrastructure. A well-designed architecture
serves as the cornerstone for real-time data acquisition, uninterrupted connec-
tivity, and autonomous decision-making processes. In contrast to conventional traffic
management methods that rely on predetermined signal timings and fixed congestion
models, Al-enhanced VANETS utilize real-time data sourced from vehicles, infras-
tructure, and cloud computing to establish a dynamic and intelligent mobility network
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[3]. In this section we present three essential layers of the system: the Perception
Layer, Network Layer, and Decision-Making Layer. The perception layer collects
and processes environmental data. The network layer ensures dependable commu-
nication between mobile entities and infrastructure and the decision-making layer
is where the Al-based models evaluate information and formulate optimal traffic
management strategies.

2.1 Perception Layer

The capacity to analyze real-time road conditions is fundamental to any sophisti-
cated transportation system. The perception layer functions as the system’s sensory
apparatus, gathering data from various sources and verifying its accuracy prior to
forwarding it to higher processing tiers. Vehicles have many sensors, such as LiDAR,
radar, GPS, and high-resolution cameras, which together create a comprehensive
representation of the surrounding environment. These technologies collaborate to
identify obstacles, gauge distances, monitor movement patterns, and evaluate overall
road conditions [4].

However, despite their individual capabilities, sensors are not infallible. For
instance, visual cameras may encounter difficulties in low-light situations or during
heavy precipitation, while LIDAR may struggle in environments with high reflec-
tivity. To address these limitations, sensor fusion techniques amalgamate data from
various sources, thereby enhancing the reliability of the information gathered. This
improved dataset facilitates real-time hazard detection, adaptive cruise control, and
more effective lane navigation, ultimately decreasing the likelihood of accidents.

In addition to the sensors mounted on vehicles, roadside units provide an external
viewpoint to the perception framework. These strategically positioned devices gather
extensive traffic data, including congestion levels, signal timings, and pedestrian
movement patterns. The integration of RSUs with [oT infrastructure bolsters overall
situational awareness, ensuring that vehicles receive precise and timely information.
Processing such a vast amount of data in real time presents significant computational
challenges, which is why edge computing is essential at this stage. Rather than
depending solely on cloud-based processing, Al models are incorporated within the
perception layer to filter and preprocess data before it is transmitted. By decreasing
the reliance on extensive cloud communication, edge computing reduces latency,
improves system responsiveness, and guarantees that time-sensitive decisions, such
as emergency maneuvers, can be made effectively [5].

2.2 Network Layer

Once environmental data is collected, it is imperative that it be transmitted swiftly and
securely throughout the system to enable coordinated decision-making. The network
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layer facilitates this transmission by creating dependable communication path-
ways among vehicles, roadside infrastructure, and cloud-based control centers. To
ensure seamless operation, the communication framework must effectively manage
substantial data volumes, reduce latency, and safeguard against unauthorized access.

The communication infrastructure functions via direct V2V communication and
V2l interaction. In V2V communication, moving vehicles exchange real-time infor-
mation regarding their location, speed, and routes. Effective communication between
vehicles makes it possible for vehicles to collaborate driving techniques and aids in
the proactive prevention of collisions. In contrast, V2I communication provides vital
information regarding traffic control signals, updates on navigation, and notifications
concerning potential road hazards. The amalgamation of these two communication
modalities cultivates a responsive network where vehicles are equipped to react to
their current surroundings while also forecasting upcoming traffic scenarios. The
communication framework of Vehicular Ad Hoc Networks is depicted in Fig. 2 [6].

The issue of ensuring secure, low-latency communication presents a considerable
barrier to unlocking the full capabilities of interconnected vehicular systems. Conven-
tional centralized computing frameworks frequently fall short of meeting the require-
ments for high-speed vehicle interactions, which demand responses within millisec-
onds. A more effective strategy involves the adoption of distributed networking
models. Such models utilize edge computing nodes in conjunction with 5G cellular

Fig. 2 Communication architecture of VANETS
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technology. This approach facilitates real-time communication by enabling vehi-
cles to engage directly with nearby processing units, thus reducing dependence on
extensive data transmission and promoting swift decision-making.

Security is a critical concern in any interconnected framework, especially in
transportation infrastructure, where potential vulnerabilities could be exploited to
cause significant disruptions. To mitigate security risks, sophisticated encryption
protocols and blockchain-based authentication systems are implemented. The use of
blockchain technology guarantees the verification and permanence of data transac-
tions, effectively thwarting unauthorized alterations to essential traffic information.
Additionally, Al-driven anomaly detection systems are employed to continuously
analyze communication patterns, allowing for the early identification and resolution
of potential security threats before they can jeopardize network integrity.

2.3 Decision-Making Layer

At the core of an advanced vehicular system is its capacity for self-decision-making.
This component analyzes real-time data, forecasts future traffic patterns, and opti-
mizes the route selection to improve urban mobility. By utilizing machine learning
and reinforcement learning methodologies, artificial intelligence algorithms consis-
tently enhance their decision-making capabilities, thereby promoting efficiency and
adaptability.

A prominent application of Al in this domain is the optimization of traffic flow.
Conventional traffic signal management typically depends on fixed timing sched-
ules that do not respond to actual congestion levels. In contrast, Al-based models
evaluate real-time vehicle density, historical data, and predictive analytics to dynam-
ically adjust signal timings, thereby minimizing wait times and increasing traffic
throughput. Another critical role of this decision-making layer is autonomous route
selection. Vehicles equipped with sophisticated navigation systems evaluate various
route alternatives based on current conditions, optimizing travel routes to alleviate
congestion and reduce fuel consumption. These algorithms consider elements such
as accident reports, road construction updates, and weather conditions to make
well-informed decisions that benefit both individual drivers and the overall traffic
ecosystem.

Cooperative decision-making is significantly advanced through the application of
Multi-Agent Reinforcement Learning (MARL), wherein multiple Al-enabled vehi-
cles work in concert to enhance mobility. By exchanging information and learning
from one another’s behaviors, these autonomous agents formulate traffic manage-
ment strategies that are both effective and scalable. MARL facilitates coordinated
lane changes, adaptive merging techniques, and smart intersection management. Such
capability is helpful in alleviating congestion and enhancing overall road safety.

Although Al is important in automating traffic-related decisions, human oversight
is essential to ensure adherence to ethical standards and regulatory requirements. If
any unpredictable pattern emerges such as novel road conditions, human operators
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are crucial for providing necessary interventions. This hybrid approach to decision-
making harmonizes automation with accountability, prioritizing safety and efficiency
[7].

As transportation systems advances, the decision-making framework will have
to engage increasingly sophisticated deep learning models. Such integration will
allow for enhanced precision and adaptability. The collaboration between Al, real-
time data, and secure networking infrastructures will propel the future of intelli-
gent mobility, transforming urban transportation into a highly efficient, safe, and
interconnected system.

3 Cybersecurity in AI-Enhanced Vehicular Networks

In digital and interconnected transportation systems, cybersecurity is very important.
The dependence on real-time data sharing and artificial intelligence for decision-
making creates substantial vulnerabilities, positioning vehicular networks as attrac-
tive targets for cyber threats. It is crucial to ensure the security and integrity of
communications to uphold public confidence, avert malicious attacks, and protect
the reliability of autonomous mobility solutions. This section examines the principal
security challenges, and the strategies required to defend intelligent transportation
networks against the evolving landscape of cyber risks. Figure 3 illustrates the various
methods through which attackers can disrupt vehicular communication maliciously
[8]. The authors highlight the cyber vulnerabilities inherent in a vehicular ecosystem.

Fig. 3 Cyber vulnerabilities in a vehicular ecosystem
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3.1 Protecting Communication Integrity and Data
Authenticity

Data is central to the Al-driven vehicular ecosystem. It flows to and from mobile
entities, roadside infrastructure, and cloud-based servers. The precision and relia-
bility of this data are critical for ensuring traffic safety and managing congestion
effectively. Nonetheless, communication networks are vulnerable to various types
of cyber threats, such as data spoofing, man-in-the-middle attacks, and unauthorized
access.

A significant concern is the falsification of messages, wherein an attacker intro-
duces erroneous data into the system. For example, a compromised vehicle might
disseminate false congestion notifications, misleading Al-driven routing systems into
unnecessarily redirecting traffic. Such disturbances not only lead to operational inef-
ficiencies but can also be manipulated for more severe attacks, including rerouting
emergency services or instigating traffic jams in key locations. To mitigate these risks,
cryptographic authentication methods are essential. Digital signatures and Public Key
Infrastructure ensure that only authenticated sources are permitted to send data within
the network. Each communication between vehicles and infrastructure is digitally
signed, enabling recipients to confirm its authenticity prior to acting. Furthermore,
the integration of blockchain technology enhances communication security by estab-
lishing an immutable ledger that records and verifies all interactions. As blockchain
functions on a decentralized consensus model, it removes single points of failure,
thereby increasing resilience against cyber threats.

3.2 Defending Against Unauthorized Access and System
Breaches

As vehicular networks increasingly depend on artificial intelligence and cloud-based
control systems, the potential for unauthorized access to vital components esca-
lates considerably. Should cybercriminals seize control of critical functions such as
braking, acceleration, or navigation they could alter vehicle operations, posing risks
to both passengers and pedestrians. Additionally, widespread security breaches could
severely impact entire traffic management infrastructures, resulting in disorder on
public roadways.

A crucial strategy for safeguarding against unauthorized access is to implement
Al-driven Intrusion Detection Systems. These systems provide real-time monitoring
of vehicular communications, detecting patterns that may signify impending attacks.
In contrast to conventional security measures that depend on established rules,
Al-enhanced IDS adaptively learn from emerging threats, enabling them to recog-
nize even novel attack methodologies. Upon identifying anomalies, the system can
isolate compromised nodes, thereby curtailing the further dissemination of malicious
activities.
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One additional effective strategy involves the adoption of end-to-end encryption
for all communication channels. This encryption of data guarantees that even if an
adversary manages to intercept messages, they will not be able to interpret the infor-
mation without the appropriate cryptographic keys. The implementation of robust
key management protocols further enhances this strategy, ensuring that encryption
credentials are safeguarded against unauthorized access.

In addition to technological safeguards, regulatory frameworks are crucial in
ensuring the security of autonomous transportation systems. It is imperative for
governments and industry organizations to develop rigorous cybersecurity standards
that require regular security audits, vulnerability assessments, and adherence to estab-
lished encryption protocols. By enforcing these cybersecurity best practices, policy-
makers can foster a more secure environment in which Al-driven transportation can
function with reduced risk of compromise.

3.3 Addressing Real-Time Security Challenges
in High-Speed Mobility

One of the distinct challenges in safeguarding vehicular networks is the requirement
for immediate protection in a dynamic mobility setting. In contrast to conventional
networks, where security protocols can tolerate minor delays, intelligent transporta-
tion systems function under strict time limitations. Any security solution should
guarantee that such protective actions do not introduce latency, as this could interfere
with traffic management and emergency responses.

Al-powered cybersecurity frameworks offer a robust solution by facilitating
predictive threat detection. Rather than merely responding to attacks post-occurrence,
Al-based security models can predict vulnerabilities by analyzing historical data
and emerging cyber threats. Through the examination of communication logs
and network activities, machine learning algorithms pinpoint system weaknesses,
enabling proactive measures to be taken before potential breaches arise. A vital
component of real-time security is the ability to distinguish between authentic system
malfunctions and deliberate cyberattacks. For instance, a sudden loss of connection
between a vehicle and an infrastructure node could be due to natural signal disrup-
tions or a targeted denial-of-service attack. Al models that are trained on a wide
range of datasets play a key role in accurately identifying these events, ensuring that
security responses are tailored to genuine threats while reducing the likelihood of
false alarms.

To further bolster real-time security, vehicular networks employ decentralized
authentication methods. Instead of depending on a single verification authority, these
systems distribute trust across multiple nodes, making it difficult for attackers to target
a central control point. This decentralized strategy not only enhances security but
also meets the scalability requirements of modern smart transportation systems.
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3.4 Privacy Protection and Ethical Considerations

In today’s world, where data privacy is important, smart vehicle networks need
to make user information protection a top priority. Cars are constantly collecting
tons of data, like where they’ve been, how they’re driven, and personal details. If
this data isn’t properly secured, it could be misused for things like unauthorized
tracking, identity theft, or cyberattacks. One way to keep privacy intact is by using
anonymization techniques. By removing or masking personal identifiers from the
data they send out. In this way vehicles can help with traffic management without
revealing sensitive info. Plus, Al-powered privacy algorithms can make sure that this
anonymization doesn’t mess with the accuracy needed for real-time decisions.

Butit’s not just about the tech; ethical factors also need to be part of how we design
Al in transportation. Being clear about data collection practices, having user consent
processes, and establishing accountability are all crucial for building public trust. As
self-driving technology advances, aligning cybersecurity with ethical standards will
be key to getting people on board with these innovations.

Ensuring the security of Al-driven transportation systems is not merely a tech-
nical obligation; it is a crucial aspect of public safety and trust. This involves
securing communication channels, preventing unauthorized access, addressing real-
time cyber threats, and safeguarding user privacy through multiple layers of defense
within vehicular networks. The integration of Al-enhanced threat detection, robust
encryption protocols, and decentralized authentication frameworks establishes a solid
foundation for risk mitigation in this dynamic environment.

As cyber threats continue to advance, security measures must also adapt to protect
intelligent transportation systems. Ongoing research, practical testing, and collab-
oration among industry stakeholders are vital for sustaining resilient, trustworthy,
and future-ready vehicular communication networks. By proactively tackling these
challenges, Al-driven mobility systems can function with assurance, paving the way
for a safer and more efficient transportation landscape.

4 Performance Evaluation and Validation

For the successful integration of intelligent vehicular systems into practical appli-
cations, comprehensive validation is crucial to guarantee their reliability, efficiency,
and security. Al-enhanced transportation networks need to undergo testing across a
variety of conditions to evaluate their responsiveness to traffic variations, environ-
mental obstacles, and cybersecurity risks. An effective evaluation framework encom-
passes several testing phases, ranging from simulations and mathematical modeling
to actual deployment in real-world scenarios. This section delves into the methodolo-
gies employed to validate Al-based vehicular networks, confirming their resilience
prior to widespread adoption.
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4.1 Simulation-Based Testing in Smart Mobility Systems

Simulations are essential for evaluating how well Al-based traffic networks work,
avoiding the risks and expenses of real-world implementation. By mimicking actual
traffic situations in a controlled digital space, researchers can study how Al systems
react to issues like traffic jams, accidents, weather changes, and unexpected road-
blocks. These virtual environments allow for ongoing adjustments, where algorithms
can be improved based on their performance before moving to real-world tests.

One popular tool for traffic simulation is the Simulation of Urban Mobility
(SUMO), which is open-source and supports large-scale transportation modeling.
SUMO allows for testing Al-driven route planning, traffic light management, and
emergency response strategies. By using real-time vehicle movement data, these
simulations assess important performance indicators such as average travel time,
congestion reduction, and energy use. Additionally, network simulators like NS-3
evaluate the reliability of vehicle communication, ensuring that data is sent quickly
and accurately [9]. One key benefit of simulation-based validation is the chance to
study how systems perform in extreme situations that are hard or unsafe to test in real
life. For example, researchers can see how Al models respond to large cyberattacks,
unexpected infrastructure breakdowns, or multiple vehicle accidents. This method
helps ensure that the system stays strong even in risky situations.

Additionally, digital twins, which are virtual copies of real transportation systems,
provide a sophisticated way to assess Al-powered traffic management. By linking
simulation models with real-time data from cities, researchers can improve decision-
making based on current road conditions. This ongoing feedback enhances the flexi-
bility of Al algorithms, making sure they work well in different traffic scenarios and
locations.

4.2 Mathematical Modeling for System Optimization

Mathematical models extend beyond mere simulations, offering a theoretical foun-
dation for the validation of Al-driven vehicular networks. These models facilitate
the establishment of formal proofs regarding system behavior, enabling researchers
to anticipate the performance of Al algorithms across various constraints. By
articulating transportation dynamics through established mathematical principles,
researchers can optimize strategies prior to their application in practical scenarios.
A prominent method employed in this context is the Markov Decision Process
(MDP), which effectively represents decision-making in environments character-
ized by uncertainty. Given that Al-enhanced traffic systems are in a constant state
of adaptation to fluctuating road conditions, MDPs are instrumental in examining
how autonomous agents, such as self-driving cars, determine optimal routes while
simultaneously reducing congestion and travel duration. The reinforcement learning
algorithms that underpin these decisions are based on state transitions, where each
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alteration in traffic conditions impacts subsequent choices [10]. By resolving MDPs,
researchers can identify the most effective navigation policies within the constraints
of real-world scenarios [11].

An additional significant mathematical instrument is Partial Differential Equations
(PDEs), which characterize the dynamics of large-scale traffic flow. The Lighthill-
Whitham-Richards (LWR) model serves as a foundational framework for under-
standing the variations in vehicular density across both time and space [12]. By
combining PDE-based models with artificial intelligence-driven traffic optimization,
researchers can assess the effects of intelligent signal coordination on congestion and
overall throughput efficiency.

Game theory is important for understanding how self-driving cars and human-
driven vehicles interact. Traffic systems act like multi-agent systems, where each
driver or Al makes choices that affect overall traffic flow. Game-theoretic models,
like Nash equilibrium, help predict how vehicles will either compete or work together
when choosing routes, merging lanes, or responding to unexpected road situations.
It’s essential for Al models to match stable traffic patterns to avoid chaotic or
aggressive driving.

Queuing theory also looks at how efficiently data is transmitted in vehicle commu-
nication networks. Intelligent transportation systems depend on quick message
exchanges, and delays can hurt decision-making. By treating data packet transmission
as a queuing process, researchers can improve message scheduling, reduce delays,
and make Al-driven mobility solutions more responsive.

With mathematical validation, Al-based transportation networks get a solid theo-
retical basis that supports real-world testing. These models not only show that Al
decision-making is possible but also help designers improve performance before full
deployment.

4.3 Real-World Deployment and Testing

Simulations and mathematical models offer useful insights, but they can’t completely
mimic the complexity of real traffic situations. To test how well Al-driven vehicle
networks work in busy urban areas, it’s important to deploy them in real life. Pilot
projects and controlled test areas help researchers and city planners evaluate how
these systems perform in real driving conditions, taking into account unpredictable
human actions, infrastructure challenges, and outside environmental factors.

A main goal of real-world deployment is to see how well AI mobility systems
work with current transportation infrastructure. Intelligent roadside units, adaptive
traffic signals, and coordination of autonomous vehicles need to operate smoothly
with traditional vehicles and manual traffic controls. To do this, phased deployment
strategies are often used, where Al traffic management is gradually introduced in
specific test zones. These zones are closely observed to measure important perfor-
mance indicators, like improving traffic flow, response times in emergencies, and the
system’s ability to manage rush hour congestion.
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Smart city projects have created great testing grounds for checking out Al-powered
vehicle networks. Cities like Singapore and some areas in Europe have rolled out
Al-based traffic management systems that use connected cars and smart road sensors
to fine-tune traffic signals and vehicle routes. These initiatives show how Al can help
make travel quicker, boost fuel efficiency, and cut down on emissions. However, one
of the main hurdles in real-world testing is making sure vehicles and infrastructure
stay connected smoothly. Unlike controlled tests, real-life situations come with issues
like signal disruptions, GPS errors, and changing network conditions. To tackle these
problems, Al vehicle networks use a mix of edge computing and 5G tech, which
allows for quick data processing at local points while keeping cloud coordination for
long-term predictions.

Besides just testing performance, real-world trials are essential for meeting regu-
lations and gaining public trust. Transportation agencies need to make sure that Al-
driven decisions follow traffic laws and safety guidelines. Plus, how the public feels
about these smart transport solutions is super important for their acceptance. Testing
with both self-driving and human-driven cars helps policymakers gauge driver confi-
dence, system ease of use, and how well Al safety features work. Real-world deploy-
ments provide valuable insights that help fine-tune Al models, boost adaptive learning
skills, and tackle unexpected technical challenges. By carefully studying how these
systems perform in actual traffic situations, researchers can make them more reliable,
setting the stage for a complete integration of smart transportation solutions.

4.4 Cybersecurity Resilience Testing

The integration of Al-driven vehicular networks, which manage extensive volumes
of real-time data, necessitates a strong focus on cybersecurity to mitigate potential
cyber threats. Conducting resilience testing for cybersecurity is essential to safeguard
vehicular communication from unauthorized access, data tampering, and network
interruptions. In contrast to conventional IT systems, which can tolerate slight delays
in security protocols, intelligent transportation networks must adhere to strict real-
time operational requirements [ 13]. Any interruption in data flow or decision-making
processes poses significant safety hazards, underscoring the importance of proactive
security assessments.

Penetration testing stands out as a highly effective method for uncovering vulnera-
bilities within vehicular networks. Ethical hackers engage in simulated cyberattacks
to test the integrity of Al-based traffic management systems, intercept vehicular
communications, or take advantage of inadequate authentication measures. These
controlled scenarios enable developers to fortify security infrastructures, rectify
vulnerabilities, and establish multi-layered defense strategies. Additionally, red-
teaming exercises, where cybersecurity professionals rigorously test Al-enhanced
security systems in a competitive setting, further bolster resilience by ensuring that
security measures can withstand evolving threats.
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Artificial intelligence is essential for spotting and reducing cyber threats in vehicle
networks. Al-based Intrusion Detection Systems (IDS) keep an eye on network
traffic, looking for patterns that might show an attack. Unlike older security methods
that depend on fixed threat models, machine learning-based IDS can quickly adjust
to new attack methods. These systems check vehicle communications for unusual
behavior, marking suspicious actions and stopping unauthorized data changes.

Another important cybersecurity step is using blockchain technology to protect
data exchanges. By using a decentralized ledger, vehicle networks can stop bad actors
from changing important information like navigation updates, traffic alerts, or acci-
dent reports. The cryptographic security of blockchain makes sure that all messages
sent in the network are secure from tampering, lowering the chances of data spoofing
or unauthorized message insertion. End-to-end encryption enhances cybersecurity
by keeping communication between vehicles and infrastructure private. If an attacker
tries to intercept data, encryption makes the message unreadable without the right
cryptographic key. Secure key management systems stop unauthorized access to
these keys, allowing only trusted parties to engage in vehicle communication.

A significant challenge in testing cybersecurity resilience is protecting against
attacks from adversarial Al. Malicious individuals may try to trick AI models by
providing altered data, leading to wrong predictions or errors in route planning.
To address these threats, AI models are trained with adversarial learning methods,
where they learn from misleading inputs during training. This approach improves the
model’s strength, ensuring that Al decision-making stays reliable even when facing
advanced cyber threats.

Cybersecurity resilience testing is crucial for assessing how quickly systems can
respond during an attack. In environments where mobility is key, the ability to swiftly
detect and address threats becomes vital. Security frameworks powered by Al are
specifically designed to implement automated containment strategies, which help
isolate affected network nodes and redirect traffic away from compromised areas.
By continuously improving their cybersecurity response plans, vehicular networks
can lessen the effects of cyberattacks while ensuring they operate smoothly.

As Al-enhanced transportation systems advance, their cybersecurity measures
must also progress. Ongoing research, collaboration between cybersecurity profes-
sionals and transportation engineers, and the adoption of sophisticated encryption
methods will be vital in safeguarding vehicular networks from new cyber threats.
The effectiveness of intelligent transportation systems relies not only on managing
traffic efficiently but also on creating a trustworthy environment that emphasizes
safety, privacy, and resilience against potential threats.

5 Conclusion

The evolution of Al-driven vehicular networks represents a remarkable shift in
contemporary transportation, offering the potential for safer, more efficient, and
highly adaptable mobility solutions. This chapter delved into the key elements of
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intelligent vehicular communication systems, emphasizing architecture, cybersecu-
rity, performance validation, and practical implementation. The incorporation of arti-
ficial intelligence has transformed the way vehicles communicate with one another
and with their surrounding infrastructure, enhancing decision-making processes and
boosting overall traffic efficiency.

At the core of these networks is their architecture, which consists of three inter-
connected layers: the Perception Layer, the Network Layer, and the Decision-Making
Layer. The Perception Layer is responsible for accurately collecting real-time data
from various sources, such as onboard sensors and roadside infrastructure, while
edge computing processes this data to reduce latency. The Network Layer enables
smooth communication, allowing vehicles to share vital information in real time, all
while utilizing secure encryption methods to protect against cyber threats. Finally, the
Decision-Making Layer, driven by Al algorithms, optimizes routing, traffic manage-
ment, and congestion control, ensuring that both autonomous and human-driven
vehicles function effectively within smart city settings.

A key part of Al-based vehicle systems is cybersecurity, which defends against a
growing number of cyber threats. The safety of vehicle communication relies on cryp-
tographic authentication, intrusion detection systems, and blockchain verification. Al
security frameworks keep an eye on network activity to spot unusual behavior, stop-
ping unauthorized access and data tampering. These protective measures are vital for
maintaining the integrity of vehicle networks and making sure they can resist poten-
tial cyberattacks. Privacy is also important, as it is necessary to safeguard sensitive
information about vehicles and drivers from unauthorized access or misuse.

To ensure these systems perform well and are secure, thorough testing methods
are used. Simulation testing helps researchers create real-world traffic scenarios to
improve Al algorithms before they are fully implemented. Mathematical modeling
gives a theoretical basis, making sure Al decisions follow established traffic rules.
Real-world testing provides insights into how these smart systems work with current
transportation setups, highlighting issues that need to be resolved before widespread
use. Additionally, testing for cybersecurity resilience is crucial to evaluate how
well the system can handle cyber threats, ensuring that encrypted communication,
decentralized authentication, and Al anomaly detection function properly in real-life
situations.

As Al-driven vehicular communication systems gain traction, ongoing research
and innovation will be essential to enhance these technologies. The incorporation
of cutting-edge advancements like 6G connectivity, quantum-safe cryptography, and
decentralized Al learning frameworks will be crucial for improving the scalability
and security of smart transportation networks. Additionally, future initiatives must
tackle ethical issues, regulatory guidelines, and public acceptance to ensure that
Al-based mobility solutions meet societal demands and safety requirements.

In summary, Al-enhanced vehicular communication networks hold the promise
to transform urban transportation by alleviating congestion, boosting road safety,
and increasing overall efficiency. Nevertheless, the effectiveness of these systems
hinges on persistent progress in Al, cybersecurity, and network optimization. By over-
coming technical hurdles and implementing thorough validation processes, Al-driven
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transportation can lead to a more intelligent, secure, and interconnected mobility
landscape.
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Al Integration for Real-Time Urban
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Abstract As vehicle ad hoc networks (VANETSs) grow rapidly, Al is essential to
the breakthrough advancements in intelligent transportation systems. Traffic control
using deep learning (DL) and machine learning (ML) algorithms and self-organized
decision-making in VANETSs has been made possible by the rapid development
of autonomous and connected cars and the rising need for road safety. An ideal
traffic flow and risk awareness mode were achieved with a variety of machine
learning approaches, including support vector machines, random forests, and rein-
forcement learning. However, DL models give smart-based collision estimates as
well as enhanced techniques to assist an aircraft in avoiding collisions. Convolutional
Neural Networks (CNNs) are these models. RNNs and LSTMs are two examples.
However, there are still problems with privacy, real-time processing, and data diver-
sity. Preparing networked, connected car systems with contemporary technologies
like edge computing, federated learning, and adversarial robustness to make VANET
systems scalable and safe is one of the next challenges. Digital twin models, collabo-
rative Al, and fifth-generation, or 5G, connectivity are examples of new technologies
that promise to advance VANETSs by enhancing their environmental, security, and
adaptability. This chapter highlights the prospective directions that have not yet been
investigated and gives a summary of the current Al tools and issues in VANET.
Al-powered VANETSs can revolutionize the current transportation ecosystem and
provide the most sophisticated and intelligent solution to the challenges it faces. To
meet the demands of the constantly connected and urban environment, they can also
offer safer transportation.
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1 Introduction

With the speed at which it has been incorporated into the transporting system with
intelligence in the transport system, VANETSs, and Al. Therefore, incorporating
Deep Learning (DL) and Machine Learning (ML) technologies into these networks
enables data to be analyzed in real-time and able to make decisions and take actions
accordingly, enhancing traffic flow and road safety [1]. However, these lies have
negative implications. Therefore, several challenges make it difficult to deploy Al
in VANETS, such as data Multidimensionality, the need for Real-time processing,
Restricted Resources, Security threats, and non-interpretable deep learning models.
To get proper coverage and to facilitate the fulfillment of the Al-integrated VANET
to its maximum [2].

In particular, in the case of the arrival of DL and ML, the most prominent ones
appeared, VANETS. Self-drive’s availability in Android OS is feasible. It can be
utilized in collision-free and automated operations due to the advancement in the
number of objects in every automobile and their surroundings [3]. Innovations such
as federated learning, edge Al, and graph neural networks are proposed for some of
the challenges imposed by VANET; they serve as the basis for dealing with intelligent
VANET, which has improved scalability, security, and real-time operation. Due to
5G and explainable Al (XAI), the trendy way for ultra-modern mobility with safety,
efficacy, and dependableness is waiting.

However, several upcoming new trends can be ascribed to Al’s ability to enhance
VANETs. ITS architectures were envisioned to transform into advanced concepts, an
open-ended list to mention but a few—cooperative Al, digital twins, sustainability-
oriented models, etc. [4]. New communication technologies can be used, and the Al
algorithms can be improved to achieve better sustainability, security, and performance
of the VANETSs. These future roads are the solution to these existing problems;
however, these roads can be used to solve road safety and traffic problems at an
unknown level in these complex urban environments [5].

1.1 Vehicular Ad-Hoc Network

This can be used as an entertainment system and to enhance traffic control and road
safety through the Mobile Ad hoc (MANET) framework. This is the first kind of
network that enables a car to talk to other cars and roadside equipment organized
during traffic, as seen in Fig. 1. On-road side and application units are the three
primary categories of the network’s communication interfaces [6].

¢ On-Board Unit (OBU): Every car uses this gadget. After receiving data, it sends
it to other RSUs or OBUs.

e Application Unit (AU): Information from OBU is sent and received by a device
installed within the vehicle. It is compatible with standard devices and can be
wired or wireless.
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Fig. 1 Communication node [7]

e Roadside Unit (RSU): It’s place alongside the road, at intersections, and in
parking lots. Because the internet-connected device would lead them, it will not
only increase people’s security but also assist them prevent mishaps.

2 Background of ML and Deep Learning

2.1 Algorithms for Machine Learning

A collection of statistical and algorithmic models known as machine learning enables
computers to learn how to make data, make prediction and make decisions on that
data to be applied. A few machine-learning techniques will be discussed in this
section [8]:

Assistance Vector Machine Learning: A supervised method that maximizes the
margin is called an SVM. This type of linear classifier performs better as complexity
rises. Finding the hyperplane that divides (or nearly divides) the data into two classes
is SVM’s primary goal.

e Decision Tree: The aim to learn leaf-level decision rules and to create a model
with data characteristics as input and target variable value as output.

e Random forest: In many application areas, RF is easy to use, quick, and efficient.
An ensemble of several decision trees serves as the foundation for the training
and voting stages.

e Principal component analysis: PCA can be used to create exploratory data anal-
ysis and prediction models. Finding the primary components and a sort of dimen-
sionality reduction that alters the base of the data may be part of this process; it
might be as easy as selecting, ignoring the rest and focusing just on the first few.
In general, it is used to reduce dimensionality.
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e K-Nearest Neighbor: A straightforward supervised learning technique for clas-
sification and regression issues is KNN. Because it doesn’t require extra assump-
tions or multi-parameter adjustment, it is simple to understand and apply. But
when dealing with big datasets, it gets drawn out. Finding the separation between
aquery and every piece of data, choosing the label that most closely matches your
query, voting for the label that appears the most, or averaging relies on our target
variables are how classification and regression problems work.

e Reinforcement Learning: Also known as RL, reinforcement learning is a class
of machine learning issues that aims to make the best choices possible based on
previous actions or occurrences.

This indicates that, in contrast to supervised and unsupervised learning, rein-
forcement learning is an interactive learning approach. To achieve the best result,
it constantly seeks out new things (exploration), monitors the environment’s results
(observation), and modifies its methods (variables) [9].

2.2 Algorithms for Deep Learning

The working of the human brain works as some inspiration for deep learning, a
branch of machine learning that uses a model known as neural networks to generate
predictions. A few deep-learning strategies to address this issue will be discussed in
this section [10].

An input layer, several hidden layers, and an output layer make up an artificial
neural network (ANN), which is a fully connected, multi-layer neural network. Every
node in the top layer is linked to every other node in the bottom layer. By including
more hidden layers, we expand the model’s capacity.

e CNN: A feed-forward neural network, CNN is frequently utilized in artificial
intelligence for image identification and the extraction of features. The input
layer, pooling layer, full-connection layer, and output layer are the five layers that
make up CNN.

o Recurrent Neural Networks (RNNs): RNNs are a form of artificial neural
network that can store data because of its loops. Reasoning is accomplished by
recurrent neural networks to forecast the future based on these prior experiences.
Because recurrent models can map vectors, this told the API that it can perform
more complicated operations.

¢ Long Short-Term Memory: Modern neural networks and LSTM share an iden-
tical design. As it expands, it communicates and analyzes data. The cells in the
LSTM algorithm are operating in a distinct way. The key component of the cell
state and its many gates are known as LSTMs. Along the order loop, the cell state
acts as a conduit for relative information.

e Deep Belief Network: These networks were created because traditional neural
networks encountered several problems when trained on deep layered networks.
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These problems include slow learning, the requirement for large training sets, and
being stuck in the local minima (because of bad parameter selection) [11] (Fig. 2).

Fig. 2 Overview of machine learning and deep learning algorithms: descriptions and methodolo-
gies
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3 Deep Learning and Machine Learning Challenges

3.1 Security

Security is VANET’s top priority. Access management, traceability, revocability,
availability, reliability, transparency, repudiation, privacy, and confidentiality are
some of these security features [2, 3]. Improved car drivers’ perceptions of pavements
close to passing cars are described in research [12].

In the presented system, by linking roadside units (RSUs) to cars, traffic is
harnessed to send data concerning whether or not a pedestrian is present [1]. Such
RSUs sign the alert message before distributing it, and all responding vehicles can
verify that signature, thereby preventing false information from being transmitted.
Such is done to comply with rigid safety protocols, for example, 6T, and avoid dupli-
cation of the alert [13]. This is to accommodate setting a minimum time for verifying
messages for the presence of vehicles on the crosswalk of interest. Nimble asym-
metric cryptography (NAC) is a technique that authenticates comms sent indirectly
and can be taken to the signed notifications. NAC makes asymmetric coups obso-
lete, with the expense ratio of efficiency going up, but necessary since for the non-
productive expenditure, NAC is a must. Multiple works have been done on different
designs for the VANET in a sparse network; an authentication scheme based on
device fingerprinting and password is proposed by Nandy et al. [14].

3.2 Privacy

Once more, the driver’s identity is confidential and cannot be disclosed. The expe-
rience makes assumptions about what privacy in VANET should do with regard
to certain Transitions being integrated, as demonstrated by the recognised Tran-
sitions above. The study discovers the route position learning method (DLP) and
d-Adjustable k-anonymous (DAK). They are required to do PP-OSGI. The DAK
and DLP algorithms choose a set of anonymous neighbours and determine the level
of privacy in the surrounding area. The vehicle is the source of the incoming request
to the service application, and the cars will distort the vehicle’s position. Recent
study, utilizing the group check in-between cars and floor units, the detection of
machine control faults in full cycles must have a direct impact on safety, which is a
key goal. Therefore, encrypting the messages being transferred is crucial to ensuring
safe connection between the vehicle’s nodes, and identifying the original nodes is
only permitted with permission. Time or authentication between the vehicles is not
guaranteed by the message authentication’s correctness [15].
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3.3 Real-Time System

The most extreme pattern of the real-time limits normal for gadget use comes espe-
cially from transport. This explains the challenge of letting other devices know when
the countdown time is not up. While implementing secure data aggregation in real-
time traffic vehicles, the author [14] used the principle of cloud technique at VANETSs
by embedding the message recovery signature in [10] contains the data recovery
attribute.

3.4 Diversity and Quality of Data

VANETS produce vast amounts of heterogeneous data from sensors, cameras, and
communication devices. In many cases, such data are noisy, inconsistent, and incom-
plete; therefore, model building with such data is daunting. Additionally, certain
valuable occurrences could be rare in the datasets and can hence lead to the model’s
prediction bias or even be catastrophic [16].

3.5 Limitations on Resources

Such environments as VANET vehicles and roadside units (RSUs) can be resource-
constrained in terms of their computational and energy resources. Specifically, if we
do not use the right techniques, these devices can cause delays or entire systems
to break when running resource-intensive DL models, especially in large-scale
deployments [17].

4 The Use of ML and DL Algorithms in VANET

4.1 The Use of Machine Learning Algorithms

Similarly, the Vinet network is improved by using machine learning to resolve issues
in this specific network. It could be hazardous and challenging for drivers, such as
knowledge of hazards employing the support vector machine (SVM) and random
forest (RF) methods. That helps quite a bit in ensuring the drivers’ security. This
will prevent traffic jams by engaging in traffic accidents and alerting the drivers to
choose the right road. It is also used to handle routing decisions, network slicing, and
V2X communication. This paper has enhanced some aspects of the use of machine
learning in the Vinet network as provided in the following table for the area of
use of each of the methods in the Vinet area with the disadvantages. Detection
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of gender classification using ML algorithms Machine learning is deployed and
diagnosed by merging support vector machine learning (SVM) and random forest
(RF) algorithms into the VANET network; this network can identify attacks and
other attributes considered life-threatening or challenging for drivers. That ensures
the driver’s security, and that the transmission is protected from either your privacy
or that of unauthorized people. Moreover, it also helps manage traffic and prevent
traffic jams because it can distinguish between accidents; it might help direct drivers
to choose another way if it is early enough. Besides improving V2X connection via
network slicing, reinforcement learning can address routing decision problems. From
Table 1, machine learning techniques with their shortcomings in the field of VANET
and its applications have been explained, including their constraint. References [8,
17] have shown how eLearning can improve the quality of VANET (Fig. 3).

Table 1 The application of machine learning on Vanet and their limitations [18]

References | Machine learning | Applications Limitations
algorithm
[19] Support Vector * Making a road safety |+ SVM-based models are more
Machine Learning | prediction challenging to understand and
* Enhanced Vanets interpret
performance * Making them less appropriate for
* Detected DDOS highway environments
attacks

Secured massive data
transport using Vanets

[20] Decision Trees * Identifying malware |+ Need private data
traffic » Reduced storage needs
* Forecasting road * Challenged when a lot of Dts are
safety required
[21] Random Forests * Identify assaults * Required an extended duration
* Identify known while processing substantial data
network breaches volumes
* Detect traffic * The security issue
accidents
* Manage channel
placement
[22] Learning with * Problems with routing | * In addition to requiring a vast
Reinforcement decisions amount of input and processing,
* Improved network * Reinforcement learning may face
slicing for V2X significant difficulties when
communications implemented in real-world
* More dynamic and physical systems due to the large
equitable distribution number of attributes

of the spectrum for
several access via
different vehicles
Effective for
challenging vehicle
mobility
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Fig. 3 Role of machine learning algorithms in VANET

4.2 The Use of Deep Learning Algorithms

Deep Learning, or Neural Network, has gained most of the research, as we explained
earlier, on a vast scale to incorporate its benefits and effectiveness in various fields
that have been utilized to improve algorithms and methods. In the next section of



50 F. Ullah and M. A. Hamza

this paper, let us discuss the industries in the vent where dl has been used. Some DL-
based techniques could be a drawback through feature choice and data consolidation,
as they choose and identify the options from information on their own [23]. CNN
was found to be applied for feature extraction in many studies, and CNN is used in
conjunction with other algorithms for better performance. Some of the advantages
of the deep learning techniques in the virtual reality domain can be observed below
points; some shortcomings of the deep learning techniques in virtual reality domain
are evident from the table above listed as follows: In addition, the SP algorithm
finds the optimal path in a reasonable time from source to destination rather than
genetic algorithms that are ideal for solving complex optimization problems with
significant constraints and network structures which also help the Vinet networks in
wise decision making and act wisely in the case of accident or car crash. Selecting
the most convenient shortest path between the base station and the transmitter head
(cluster, node, intermediate, or advanced) is another responsibility in resolving the
routing issue in an Ad Hoc network large map [24] (Table 2).

S Innovations that Make AI a Game-Changer for VANETSs

Alin VANETS has brought greater integration into how cars interact with each other
and their environment, resulting in incredible advancements. These advancements
make transportation systems more innovative, safer, and more efficient, thus over-
coming many of the traditional limitations of the VANET systems. Key developments
driving the evolution of Al-based VANETS are as follows [28].

5.1 Learning Federated

Federated training lowers network bandwidth while protecting user privacy by
allowing ML models to be collaboratively trained across multiple cars without
sharing raw data. This decentralized approach enables real-time model updates while
ensuring adaptability to various driving scenarios [29].

5.2 Al Edge

Edge computing may facilitate the quick deployment of lightweight AI models on
roadside infrastructure or in-vehicle devices. By processing data locally [30], Edge
Al reduces latency, enhances real-time decision-making, and decreases dependency
on centralized cloud systems.
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Table 2 The application of deep learning on vanet and their limitations

References | Deep learning algorithm | Application Limitations
[25] ANN * Road safety prediction * For better results
» Telecommunication * It should be used in
reliability enhancement conjunction with other
* Throughput growth and machine learning
packet dropping rate methodologies
reduction
* Performance
enhancement
* and use and deployment
on cars for dos and black
hole attack detection
[18] CNN * Spatial and temporal » Execution duration,
feature extraction Predict | * Input size
traffic congestion * Inadequacy in online
* Accurately estimate anomaly detection
network traffic * and difficulty in
* Handle multimedia data deployment
acquired from roadside
devices or the vehicle’s
control camera
[26] RNN  Better mobility ¢ The fundamental
predictions drawback of RNNs is the
* The identification of issue of gradients
obstacles Information growing or bursting
sharing via cloud during training
computing, fog, and
collaborative edge
[27] LSTM « Effective anomaly * Slowest, overfitting

detection solution for
SQL, XSS, and Dos
threats

Predicts traffic
congestion

issue, complexity when
more features are
introduced

5.3 Robustness to Adversarial

Adversarial robustness advancements aim to create AI models immune to mali-
cious data inputs or disturbances. This advances safety by protecting VANETS from
potential cyberattacks and ensuring dependable performance in adverse conditions

[31].
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5.4 Learning Transfer

DAU-trained models will then modify existing models for VANET applications
through transfer learning. By reducing the computational and data demands of
training, this approach accelerates the rollout of Al-based solutions over various
vehicle environments [32].

5.5 GNN Graph Neural Networks

GNNs are well-suited for representing data from V2V and V2I links due to vehic-
ular networks’ inherent spatial and temporal correlations. This invention improves
resource allocation, traffic prediction, and routing for VANET.

5.6 5G and Beyond Integration

5G networks’ extremely dependable low latency communication (URLLC) capabil-
ities support the performance of improved artificial intelligence (AI) based vehicular
ad hoc network (VANET) [4]. The enhanced data delivery and connectivity of 5G
enable seamless real-time Al applications, such as autonomous driving and collision
avoidance (Fig. 4).

6 Conclusion

Vehicular Ad Hoc Networks (VANETS), which have fundamentally altered contem-
porary transport systems, are gradually incorporating deep learning (DL) and
machine learning (ML) are examples of artificial intelligence (AI). These advance-
ments improve traffic control, road safety, and the capacity for wise decision-making.
* ML approaches such as Reinforcement Learning (RL), Support Vector Machines
(SVM) and Random Forests (RF) improve routing, traffic control, and hazard identi-
fication. Similarly, DL-based methods such as long short-term memory (LSTM)
networks, convolutional neural networks (CNN), and recurrent neural networks
(RNN) provide sophisticated forecasting capabilities for traffic flow and road safety.
The broad application of Al in VANETS is constrained by several problems, despite
its potential.

Such challenges are limited computing power, real-time processing requirements,
data variety, and privacy and security requirements. Federated learning, edge Al, and
advances in adversarial robustness offer innovative solutions to these challenges,
making VANETS scalable, secure, and responsive. To boost VANET functionality,
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Fig. 4 Innovations driving Al-enabled VANETSs

future directions will focus on adopting advanced technologies, such as 5G, joint
artificial intelligence, and green-oriented models. Digital twins and transfer learning
should enable innovative, safer, and more resilient transportation networks. Stepping
back barriers in denser urban contexts will create new opportunities for better envi-
ronmental sustainability, mobility, and traffic safety. Ultimately, this association of
the VANETSs with Al sets a solid platform for future intelligent transport systems.
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Intelligent Route Navigation in VANET'Ss )
Using Deep Learning e

Rajesh Dey, Rupali Atul Mahajan, Mudassir Khan, Shaik Karimullah,
and Barga Mohammed Mujahid

Abstract Vehicular Ad-hoc Networks (VANETS) has changed the transportation
environment in a big way through car-to-car (V2V) and car-to-road Vehicle-to-
Infrastructure (V2I) communications. In VANETS, good route planning plays an
indispensable role in achieving a safer, more efficient transportation system. This
project proposes a novel deep learning-based approach for next-generation route
planning algorithms in VANETs. Using the power of deep learning, our method
tries to achieve optimal route planning in VANETS, decreasing travel time, and
emissions whilst increasing total throughput of transportation. Our proposed algo-
rithm combines on-road traffic information and the road conditions in the outdoor
environment with some environmental factors to forecast optimized routes in the
dynamic VANET environments. The presented method is tested in an extensive
simulation environment, which illustrates the potential of the proposed method to
substantially enhance the effectiveness and the safety of route planning in VANETS.
These studies have important potential applications for the advancement of intelligent
transportation systems, smarter and greener urban mobility.
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1 Introduction

Vehicular Ad hoc Networks in which vehicles work like nodes to create Mobile Ad
hoc Networks are one of the broad classes of mobile ad hoc networks. Vehicular Ad
hoc Networks provides vehicle-to-vehicle connection (V2V) because it stores and
retrieves data in cars. Conversely, Vehicle-to-Infrastructure (V2I) communication
involves sending messages from roadside vehicle communications such as traffic
lights, toll barriers, or police stations, towards the vehicles. VANETS provide a safer
environment on roads and improve transport throughput with reduced pollution.
Therefore, the development of useful routes in VANETS is very important because
of its convenience [1].

Proper pathway planning is the most critical aspect considered for complete
communication in VANET. However, the task is challenging because of constraints,
such as limited bandwidth, network connectivity, high-speed mobility of blood, and
topologies that can vary across time. In line with these limitations, the bring-about
requirement of the state-of-the-art routing solutions in VANETS is to manage the
congestion in these route plans. Routing protocols or paths should minimize or avoid
control overhead and be able to achieve these benefits in VANET. More so, appro-
priately utilized bandwidth and mechanisms that use the service quality of treatment
as well as robustness to network attack would be there.

Topology-based protocols are those that consider information like speed and direc-
tion, link status, and the distance between vehicles for route constructions. Position-
based protocols use GPS coordinates to determine the exact position of vehicles
on the map. Beacon-based protocols send out such signaling waves after a regular
interval to establish route and maintain it. Finally, mixed-type protocols can have
reactive or proactive discoveries and multiple classes of packets can be used to find
the path. Recent possible contributions are leveraging deep learning and machine
learning.

2 Overview of VANETSs

Despite Flow-Service-Quality (FSQ), there have been Vehicular Ad-hoc Networks
(VANETSs) deployed in recent years. Admittedly, the passive nature of vehicular
communication has taken a new dimension through this evolution, forging a super
connected form of communication among vehicles or between vehicles and roadside
infrastructure. Being dedicated to such knowledge, it is assumed to lead to improving
road safety and efficiency by letting the vehicles, the infrastructure, and the internet
share this data securely. The system requires DSLC or other established specifications
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so that vehicles can send safety messages up to 1000 feet away at speeds that allow
these devices not to accept unwarranted interference. The vehicles should be designed
with enough equipment to allow transmission and reception of such messages to
create an ad hoc wireless network among themselves while on the road. True to the
power of the Internet and infrastructure, cars can convey or receive messages of safety
or traffic through cellular networks (3G-5G), IEEE 802.11p/WAVE protocol, or other
unattended long-range networks such as LoRa involving vehicles and network nodes
[2].

VANETS offer various salient applications for safe travel, traffic management, and
infotainment. Warnings include changing lanes, the risk of collision ahead, crossroad
support, and impaired visibility. Traffic management applications are best suited for
traffic light control were traffic light control operation by monitoring as well as
actively managing vehicular speeds in and around the traffic jam.

Infotainment services provide real-time information regarding amenities, weather,
news, and all information affecting traffic. The messages exchanged between vehicles
extend to proactive safety messages-which include the speed, direction, and position
of the vehicle and additional parameters-as well as usual messages about road events
such as accidents and vehicle breakdowns. A standard pattern has been adopted
where proactive safety messages depict the data as part of their contribution, every
unknown time and every specific message regarding an incident occurring (Fig. 1).

Fig. 1 Categorization of routing protocols using VANETSs
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3 Importance of Route Planning Algorithms

It is the process where a network can identify the most efficient way to go and supply
a visitor, for example, from some first place to some eventual destination. Mostly,
route planning with respect to a map of the road network ought to define a countable
collection of waypoints or set of points made up of the journey itself. Route planning
includes evaluation of all possible tradeoffs between the most efficient, shortest,
best on fuel, or easiest on the environment way to construct each path such that the
fast response that would usually be needed—action in milliseconds—can become
a completely state-vector form mapping all waypoints in a system of matrices that
would map best to that matrix.

Before the journey even starts, the possible ways a person might follow to reach
a destination can be determined. On-the-fly route planning could also be employed
while traveling along it is using the road network. Some roads might also have to
be updated due to changes in the network like accidents or roadblocks. Tradition-
ally, deterministic algorithms have been employed for route planning activities. With
recent developments in deep learning, the use of neural network function approxima-
tors has ushered in a new breed of algorithms that promise very quick generalization
across learning domains. These are impressive when it comes to fast route planning
compared to deterministic algorithms, which, in stark contrast, usually calculate said
routes by exhaustively searching through tissues with differing degrees of pitch and
shape rather than using approximations to establish models [2].

Recently, new deep learning approaches in the context of path planning have been
proposed considering static networks, road networks for on-demand vehicles, and
autonomous vehicles in urban areas. Network designs may be static or dynamic. A
static network is one that does not change over time, whereas a dynamic network
undergoes modification to it through the inclusion or removal of nodes or edges.
Route planning, by definition, would take place at the static network where the
aim is to find a route that accommodates specified constraints in the network being
diverted to a pre-determined objective in order to optimize. This problem of route
planning is evidently problematic with static network where no edge or node is added
or removed over time, and the pattern in traveling time along itself was constant.
Solution approaches may include combinatorial search, such as: routes are obtained
by scratch searching across network candidate solutions, or by raiding a search space
on the basis of heuristics, as well as network simplex methods [3].

4 Traditional Route Planning

Algorithms in VANETSs Through the advancements in wireless communication tech-
nologies, vehicles started acting as mobile sensing platforms of not only collecting
and sending data on the status of the road, neighboring infrastructures, and data traffic
but offer rich information to this effect. In the development of smart transportation
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systems, vehicular networks are an important ground for vehicles to connect with
roadside units or other vehicles. Roadside units connect vehicles to maintain driving
convenience and safety access. Such convenience in driving requires the exchange
of a substantially huge amount of data [4]. They are fixed infrastructural applica-
tions deployed along the road; provide services that can be delivered to vehicles. A
Road-Side Units (RSU) comes with a wireless communication device to connect with
other vehicles for real-time and reduced delays in data transmissions and high data
rates. RSUs have internet connectivity to allow the uploading of collected vehicle
data to cloud servers for processing. RSUs could be installed with traffic cameras
and vehicle identification systems to monitor different aspects of the vehicles’ speed
and identify any vehicle infringements, and the captured data could be forwarded
to a police department for further action. Vehicles also have the privilege to access
collected data by RSUs, such as information on the state of the road network, which
is important for route planning. Route planning gives specific waypoints in the road
map that the vehicle must follow and permits the selection of one of the many eval-
uation measures, often the shortest path. This is the single most important thing
to accomplish in autonomous vehicle technology: how to plan a trajectory without
human intervention. Traditionally, deterministic algorithms are used for huge path
planning, those algorithms being dependent on a static map or world graph for road
networks. To give a very brief description, a deterministic planning process actu-
ally assumes the existence of complete and static information for processing by its
decision-making procedure Plan for route planning, on the other hand, identifiable in
exploration, involves the mobile agent and technology to contain information about
the surrounding environment, thus accomplishing the synthesis required for planning
(Fig. 2).

Fig. 2 Categorization of applications of VANETs



62 R. Dey et al.

4.1 Motivation for Deep Learning Approach

A routing protocol, known as a Deep Learning routing protocol-Black Hole Avoid-
ance Protocol based on Deep Learning in VANETS [5], wherein DL technique is
modeled for the generation of selected and most efficient routes working against
black hole attacks. The routes will be established as far as travel through two proce-
dures, and these are route discovery and route maintenance. This will surely discover
a black hole which previously contacted a faked route request sent to all its neigh-
boring nodes. Node answer will then undergo comparison with the fitness function
value, and a basic Dijkstra Node is usually considered to have more fitness function
value over and above a black hole node. Using DL, the fitness function value of
the node will be determined; thereby, a black hole node may not be selected itself.
The descending route may also be constructed through the lowest fitness function
value. This effect will ensure a dramatic speedup in optimization and provide rapid
construction of new routes when delays greater than threshold dramatically lower
delays during the optimization process and in sustaining the entire route. Training
the DL permits the model to spot the relationship between input and output infor-
mation, removing the requirement for additional procedures, thus when employing
this model with a network, it could define whether the next node is a black hole
attack node based on its fitness function value as well as the speed of its optimiza-
tion in relation to the basic Dijkstra line by contrasting the number of packages
lost. However, the increase in network size will increase packets lost on Dijkstra,
hence a DL model may prevent pathogens from creating or slowing down delays
significantly and, as a consequence, improve the overall performance of the system.
Reinforcement learning setup for advanced vehicular ad hoc network communication
system Vehicular ad hocs (VANETSs) have become very favorable and advantageous
for automotive industry. The networks will enhance comfort and safety for drivers
and pedestrians being used by drivers and pedestrians. Communication is possible
from vehicle to vehicle as well as between vehicles and fixed services. Furthermore,
the vehicles will communicate with the internet in order to provide many additional
services to their passengers. There are new technologies that are being implemented.
Typical VANETS can be transformed into advanced VANETS by incorporating them.
Their addition will enhance the communication efficiency and safety of the trans-
portation infrastructure. Because there are more technical prospects opening, the
new obstacles must be solved by improved techniques and architecture. Routing a
message across the network is one such basic activity. In networks such as these
ad-hoc networks, every node determines independently where to send the message
that it wants to send. This network does not have taken fixed parameters into account
and it is also made up of several mobile nodes that make routing in varying environ-
ment, and hence in a mobile ad-hoc network, very complicated. The nodes seem to
move continuously, and it is hard to predict anything about their movements. Thus,
using this method, it will be difficult to find the best route through which to reach
an end destination, because it is difficult to predict the links that will fail during the
communication event. Many studies have proposed remedies for knowledge-based
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and topology-aware proactive routing and hold promises for a new initiative which
may eventually make a significant improvement in routing in MANETS [6].

4.2 Fundamentals of VANETs

Vehicular networks are a subset of mobile ad hoc networks or MANETS in which
vehicles serve as both data sources and mobile nodes. In VANETS, the equipped
vehicles communicate among themselves and with roadside infrastructure also fitted
with wireless communications. Video data is generally large, but multicasting is
more effective in terms of data distribution than that of unicast, and thus, wireless
stationary points can provide a network service to these points. Like the vehicle,
which can act as a service provider, the use of roadside infrastructure to act as a
service requester is applicable. In many VANETS, speeds of up to 120 km/h (about
33 m/s) could have been realized depending on different parameters. Moreover, since
these vehicles could cycle long distances within a short period of time, the topology
was changing fast, and links had to be established and destroyed between vehicle
nodes at an average rate as much as 94 times over 60 s [6].

4.3 Basic Concepts and Architecture of VANETs

Ad hoc vehicular network, or VANET, is a type of mobile ad hoc network or VANET
that consists of vehicle-side wireless communications devices. These lines of cars are
faster than typical wireless network users. The ground transport mode is transforming
into smarter vehicles or rather. The manifestations are becoming associated with
connected vehicle era. Examples include a new generation of vehicles equipped
with advanced in-vehicle information and entertainment communication systems.
These systems are known collectively in-vehicle networks. They usually feature in-
vehicle subnetworks and external vehicle-to-vehicle networks, which are sometimes
referred to as VANETS. Transport networks often share the characteristic that anode’s
connectivity varies widely over time because of the high mobility of vehicles. At the
same time, the character is significant for reducing insecurity and inconvenience.
ICT is crucial to intelligent transport systems (ITS), which ensures the safe, effi-
cient, and environmentally sustainable movement of people and used goods. Rele-
vant real-time information exchange among vehicles and infrastructure enables the
vehicle to follow its desired trajectory, leading to an optimal traffic flow. Vehic-
ular Ad-Hoc Networks represent a specific subclass of mobile ad-hoc networks and
are created when vehicles are equipped with wireless communication devices. They
speak with each other (V2V for vehicle-to-vehicle communication), as well as with
roadside units (V2I for vehicle-to infrastructure communication). Roadside units,
basically static stations located along the road, can be used to connect the VANET
created from the vehicles with the larger internet. VANETS are further categorized as
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safety-critical applications or non-safety critical applications. Where safety-critical
applications entail continuous exchange of information from vehicle to vehicle to
secure safe driving environments, non-safety critical applications improve driving
comfort and efficiency through information [7].

5 Challenges and Limitations of VANETSs

They are a type of Intelligent Transportation System (ITS) technology and allow vehi-
cles to communicate through short distance wireless networking linking vehicles and
road infrastructure. It is built over the technology of WAVE (a combination of IEEE
802.11p with the upper layer protocol stack that enables the information exchange
both safety-related and non-safety-related). VANETS are observed for communica-
tion area that can be divided into three subnets, namely, vehicle-to-vehicle (V2V)
subnet, vehicle to infrastructure (V2I) subnet, and roadside to vehicle (R2V) subnet.
Each of the subnets has its own topology within the network [8].

Safety awareness can only be realized if vehicles keep on sending safety messages
such as emergency braking, collision warning, and lane change. The author argues
that safety messages with highly prioritized functionalities should be relayed, or at
least at the expense of other lower priority non-safety messages. Besides, it still needs
to consider the spatio-temporal validity in each message. However, for example, there
is a situation in which none of these non-safety messages (e.g., traffic information,
advertisement) should get to the final recipient when it expires. That is why safety
and non-safety route planning algorithms will be optimized separately (Fig. 3).

5.1 Deep Learning Basics

Vehicular ad hoc networks (VANETS) are the subcategory of mobile ad hoc networks
(MANETS) which pervade the fields of artificial intelligence (AI) and this is taken
from them. They are extensively used in the context of vehicles and road-related
infrastructure by the medium of a wireless connection. In using algorithms under-
pinned by Al, fleet management and safeguard against mishaps could be something
game-changing in VANET applications. However, it does take the complication a
notch higher when applied to predictive analytics. Smart vehicles flood edge/fog
devices with data to such an extent that real instantiation of low latency in machine
learning analytics becomes impossible for them to perform. This part offers the
general introduction of deep learning algorithms [9] and various thoughts concerning
their usage in route mapping.

For the task of a mutual multi-task VANET scenario, a hybrid configuration of
edge and fog computing, i.e., DNA approach, has been always presented to train/
upgrade model-sagacious deep learning models. ODA will drag off raw vehicular
data from the various network edge devices to fog for preprocesses and training
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Fig. 3 Challenges in VANETS route planning

deep learning models using a data analytics node (DAN) within fog. The developed
models are deployed in the edge nodes for lifelong learning supported by clustering
homologous data on the edge, locating the nearest DAN, and offloading the further
reservation data. The ultimate value of the efficacy of the model is tested through
numerous simulations in terms of accuracy, bandwidth, and compositional distance.

5.2 Introduction to Deep Learning

Deep learning (DL) is a subset beneath machine learning that possesses up to three
layers of neural networks. DL ventures mimic biological systems: an information
processor such as the human brain. DNN, CNN, and RNN are some examples of
techniques evolved in DL. The stochastically trained DNN uses disconnection to
show ideal improvement in accuracy. Neural networks are set of interconnected nodes
arranged in layers, for ex-input, hidden, output. And each of these connections have
associated weights, which during training, get tuned to enhance the message between
the nodes. When the signal exceeds a certain threshold, that should activate the node,
after which the output is sent through other nodes in the subsequent layer.

It is about presenting data and targets, interfering with data through a network,
coming out with predictions, and matching it against targets using a loss function.
Network reruns different adjustments of the weights from time to time, using the
backpropagation and optimization techniques for quality loss minimization. Deep
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Learning, thus, dominates vehicular ad hoc networks (VANETS) owing to character-
istics such as misleading patterns of traffic flow detection and selection by certain
attackers to follow up the virulent avenues. The Deep Learning (DL) model offers
better computational accuracy, data noise robustness and resistance compared with
traditional methods. Routing protocols integrated with traffic classification algo-
rithms make hugely efficient resource-saver and safety and comfort give-away to
vehicles [9].

5.3 Deep Learning Architectures and Models

Over recent years, the most widely applied technique of global vehicle ad hoc
networks (VANETS) is the application of Artificial Intelligence (AI) to address appli-
cations, control, and security purposes. The emergence of deep learning (DL), a
subset of artificial intelligence using a stack of feedforward neural networks, can
provide an enterprise- or industry-specific solution that has even higher representa-
tion capabilities and flexibility in sorting through information [9]. These DL capabil-
ities are perceived as suitable for several applications in VANETS, such as traffic sign
detection and recognition, vehicle classification, route planning, crossroad manage-
ment, and collision avoidance, among others. Concerning all other applications for
VANET, route planning remains vital. Vehicles must find the most suitable paths to
reach their destinations as quickly and effectively as possible in this type of network.
In general, cars exchange information that makes topological multiplicity available to
different paths, and, therefore, vehicles decide for the one able to circumvent various
constraints among them. There are different ways to justify empirical route planning
in VANET-based, such as Dijkstra’s algorithm, A*, Ant Colony Optimization (ACO).
However, the number of Al techniques become prominent, so that several route plan-
ning algorithms are introduced using machine learning in VANETSs through Decision
Tree and Deep Q-Network (DQN) approaches; also based on Neural Network-based
and Reinforcement Learning (RL)-based. This article involves how to make the most
appropriate routes through deep learning (DL) architecture and models in VANETSs.
A deep learning-based vehicle routing algorithm has been proposed for using a
feedforward deep neural network (DNN) model to determine feasible routes among
multiple routes depending on the input about the vehicle and routes. The DNN
model is trained offline using vehicle speed and distance setup, as well as the loca-
tion of the vehicle in global coordinates. The trained DNN model is then employed
in the online route planning platform to optimize the route. A comparison of system
performance will be followed through the proposed method with those following
conventional approaches, the Dijkstra algorithm, DQN, and a Deep Neural Network
(DNN) regression model, for the improvement on the time and length of delay in
travel of the vehicle during route planning.
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5.4 Training and Evaluation of Deep Learning Models

Loop Routing Agent was implemented to study Keras python library implemented
in Python programming language to learn and implement the intelligence needed
for adaptive routing in Loop Vanet scenario. An agent is a network of MLP policy
Deep Learning, Virtualization Environment (which simulates Loop Vanet scenario),
and a static set of training, evaluation vehicles with 130 routes. Exchange happens
between files in src folder.

It runs through 130 vehicles in the Loop Vanets using Reinforcement Learning
API to hold 2-h simulations each in demonstration. For learning, they used the routing
solutions built with the policy network trained in 3000 iterations simulated through
10-min epochs. The network is saved per 100 iterations, with the last six models used
for evaluation. With the definition of the simulation environment rewards function
and the vehicle settings, the input static vehicle files define vehicles by type, position
and ways of routing, whereas the transfer files take care of the network model and
iteration settings.

Encourage message delivery rewards are 1st and 2nd to arrive at a target through
forwarding routes shorter than those required by direct communication. Reward 3
contribution is that it only calls for access to view info-entertainment messages if it
is in-range towards the destination vehicle; A Loop VANET scenario is created by
the package with 250 road vehicles. It consists of 3 roads connected in circular form,
with a length of 500 m for the road net and 250 vehicles, including vehicles with
fixed route plan to be located in the 0.5-to 3-s-interval arrival at 130 routes. Fixed
arrival vehicles increase throughput and tests scenario for up to 300 s. Each vehicle
on loop route plans 12 hops in 300 s simulation with max hop of 10. Each vehicle
transfers one data pack every 30 s with random drawing of source and destination
vehicle IDs. Packets include unique ID, source and destination, type of message, and
time stamp [8].

5.5 Applications for Deep Learning in VANETSs

Mobile Ad Hoc Networks (MANET) are the most useful mechanism that supports
communications among vehicles and between vehicles and RSUs equipped with
network devices Vehicle Ad-Hoc Networks (VANET). Such networks indeed play
a critical role in the development of Intelligent Transportation Systems (ITS) with
an aim to enhance road safety and traffic efficiency. Until a few years ago, consid-
erable advancement was made in Deep Learning (DL) techniques. DL systems with
multiple hidden layers, colloquially nicknamed Artificial Neural Networks (ANN),
have proven to bring about substantial improvement in countless application areas,
including the likes of computer vision, data mining, pattern recognition, and time-
series prediction. The VANET society has started to take DL into use for everything
from data dissemination, security, clustering, data aggregation, routing, to channel
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access. The exploration in the text shifts to a systematic review of DL studies in the
context of VANETSs with a primary focus on both highway and urban areas. The goals
of the research involve capturing the representations of input and output data in the
chosen DL architecture, covering the types of DL models used, and providing some
performance metrics. Additionally, it highlights the research gaps and future research
directions. This part is divided into several sections, starting with the introduction
of VANETSs and DL. The methodology by which relevant studies were selected is
detailed, followed by a review of DL applications in VANETS in various environ-
ments and a trend of research analysis. It is also the last part of the research to discuss
research gaps and future directions [10]. This paper provides a comprehensive review
of various methods such as reinforcement learning, deep reinforcement learning, and
fuzzy learning in the traffic network, to obtain the best method for finding optimal
routing in the VANET network [11].

5.6 Traffic Prediction

Wireless connectivity for short-range communications is paramount from the view of
developing and moving toward advanced assistance and safety services via a Mobile
Ad-hoc Network in Vehicles (VANETS). Safety services must be quick and, there-
fore, require random access protocols because applications need to have the shortest
possible reaction time for emergency, disaster, or distress. In case of inappropriate
use, especially considering the heavy traffic conditions incurred in an urban set-up,
a safety message may not reach a vehicle at the critical time that it requires. It is
necessary to study traffic prediction to derive and even to enhance dissemination
protocols for messages that are in fact much more efficient [12].

Traffic prediction is necessary for a VANET since vehicles’ current and future
positions along the same road segment aid in communicating valuable information
about the traffic conditions. By employing those technologies of predictive locations,
aroadside unit can give over the power to control vehicles from point of view control
of users. For instance, route prediction is important from the services’ point of view
to a particular car. Such as a vehicle that is trying to get access to the Internet will be
sent to an access point in thinking about its route. Also, route prediction may play
an important role in warning the vehicle of the possible place of a dangerous traffic
event [12].

5.7 Resource Allocation

Efficient and low end to end delay are required for applications like advanced vehic-
ular safety, enhancement of traffic efficiency, and infotainment services in vehicular
networks. Such applications can be catered to by V2X communication between the
Vehicle-to-Everything. So far many have studied and made it possible for DSRC to be
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the first standard for V2X communications. Results reported in the study of GSO1.
Mobile communications with literally unlimited total flexibility in the context of
limited spectral efficiency and bandwidth cannot meet technology’s forced modernity
characterization-a total impossibility for meeting the needs of advanced vehicular
applications.

5G New Radio (NR) holds a lot of promise when it comes to supporting most
of the above-mentioned advanced vehicular applications in V2X Communication.
Another technology that offers a considerable promise for V2X Communications is
5G Technologys; it is also one of the enhanced versions, with ideal characteristics
of 5G technology and New Radio in the direction of massive automotive applica-
tions. The performance of V2X networks critically depends on the efficient use of
available resources. Transmission resource allocation is a critical aspect that helps
in maximizing network performance through the optimally shared resources.

Many techniques are proposed for performing the optimal allocation of resources
in V2X communications, which in practice is a difficult problem. Resource allo-
cation problem in V2X networks is all the more challenging due to the resource
contention from different network nodes such as vehicle-to-vehicle (V2V), vehicle-
to-infrastructure (V2I), and fluctuations in space—time varying channel conditions
from high mobility. The allocation of resources in V2X communications has been
highly researched considering approaches like game theory, optimization theory,
learning-based approaches and deep learning [8]. The emergence of deep learning-
based approaches brought responses to learning-based and model-based method
advantages and emerged as the most sought-after method to provide solutions for
resource allocation in V2X networks [13].

5.8 Anomaly Detection

While the detection of anomalies is of paramount importance for vehicles in ensuring
their safety as well as providing users with better overall vehicle usage experience,
cases involving traffic accidents, roadway blockages, and sudden breakdown of vehi-
cles creates a dangerous environment for drivers. Someone needs to be informed of
anomalies at work in traffic. These abilities should be given to vehicles from inci-
dents that appear in traffic. Thus, we prefer to consider this as an incident detection
in traffic. The incident detection framework for vehicles is now possible for the
proposal. Everything depends on the incidents by which vehicles are put through.
Vehicles exchange information over the road through dedicated short-range in all
respects to the state of the vehicle. A machine learning model is implemented in
each of the vehicles for the purpose of distributed incident detection (The proposed
requires feed-forward neural networks and long short-term memory model paradigms
to detect road traffic anomalies gathered from the history of vehicles by auspices from
vehicular ad hoc network). The models are trained and evaluated on traffic datasets.
It gave 95.3% accuracy with one dataset and 85.4% with the other. A Connected
Vehicle (CV) system helps to bring up enhanced operational safety, efficiency, and
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mobility in the road transport system by helping vehicles get their environment’s
information, i.e. their surroundings. To this end, vehicles have a CV system that
enables better communication between vehicles, as well as with roadside units. It
also enables the display of environmental data like road and traffic conditions, posi-
tion of the vehicles, and speed of the vehicles, besides it can get a potential attack from
different attacks that could be performed due to several securities. One such threat for
secure communication at the CV system is the basic form of a malicious vehicle that
could deceive other vehicles by providing them with incorrect or tampered informa-
tion. To empower these vehicles to validate against information received from other
vehicles, such an anomaly-based cross-layer approach of message authentication is
proposed to be implemented for verification of the information exchanged amongst
the vehicles in the CV system. Vehicles run a Deep Autoencoder model to detect the
anomalies in the vehicle location information. The model is trained with benign data
to learn a representation of the input data and to be able to detect anomalies based
on reconstruction errors of the input data. Ancillary ways of detecting anomalies are
using the original vehicle location data as inputs with the model predicting if the data
are anomalous or not based on the predefined threshold of the reconstruction error
[4, 5].

5.9 Next-Gen Route Planning Algorithms

The novel deep learning-based architecture of the future focuses on introducing next
generation route planning (RNP) algorithms for vehicular ad hoc networking and
connected vehicles. In-depth detailing has been carried out concerning the transla-
tion of the RNP solutions into good deep learning models, with extensive simulation
analysis. Results underscore neural networks (NNs) as fairly good approximators
of RNP solutions, which are further shown to achieve VT communication costs
and latency equivalent to those in classical solutions, thus bringing down the model
complexity quite down. This work mainly identifies the direction for future research
in the area, enhancing the deep learning architecture for more complex mobility
management solutions in VANETs. He noted the growing interest in communi-
cation systems, designing learning mechanisms that emulate the brain’s ability to
“learn” from previous experiences. These new networks will aim at maximizing the
performance metrics, including delay and loss ratios, through parameter adjustment
based on continuous monitoring of service quality. This emerged with respect to
deep learning where a hierarchy of information processing levels, realized by neural
networks (NN5s), is trained with plenty of data to perform specific tasks. The lowest
layers in the network learn generic properties of the input data whereas the topmost
neural network consists of outputs adapted to the specific application. Once trained,
the network is intended to be a “snapshot” of the acquired knowledge [14].

The Deep Learning technology growth in the field of artificial intelligence features
more benefits when applied in vast applications. It goes over the existing routing algo-
rithms for VANETSs through deep learning classification, which finally determines
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the best routing algorithm out of the four existing traditional routing algorithms of
network type, spacing, and pause time for that situation. From the traditional routing
algorithm, many experiments have been done under such parameters as network
size, speed, and pause time. Such traditional routing algorithms result is then input
into the DL model as features for DL; these models then trained and evaluated in
terms of most parameters within layers in their architectures [4]. More Parameters
are checked for 100 epocs of training with various numbers of hidden layer and
hidden layer neurons so that the results analyses could be based upon this numbered
value. The model with two hidden layers and 50 hidden layer neurons, can achieve
the highest level of accuracy: 99.5%. Finally, the 70 distinct situations are used to
test the final DL model classification on the most ideal routing algorithm, with an
overall accuracy of 97.14%.

VANET (Vehicular Ad-hoc Network): anetwork where the vehicles have on-board
units that allow communication with roadside units as well as between the vehicles
themselves. RSUs are immobile and can be connected to the public internet, through
which a vehicle can enter communication to the world outside the VANET. The safety
information of one vehicle can be passed to another for both to warn each other there is
an unsafe scenario or poor roads. Through exchanging traffic information, traffic flow
management improves into a very timely speed and positioning exchange between
Vehicle-to-vehicle and Infrastructure-to-Vehicle. Not now, but in future traffic will
be supplemented by the above with multimedia applications like video streaming and
audio exchanges. Mobile station speed, the quickly changing buildings, access point
light, and certain safety requirements make operation of a vanets routing protocol
very challenging [2, 8].

6 Convolutional Neural Networks for Route Planning

Highly advanced sensors, wireless communication features, and on-board
computability in cars have helped in promoting the advent of VANETSs. Associ-
ated cars will produce a future grounded in safe road transport systems, increased
traffic performance and minimal vehicles’ impact on the environment. Among the
uses of connected cars are vehicle planning applications, an essential instrument of
future action plans of the cars that generates waypoints sequence that typically has a
road map of the environment with other additional information concerning static as
well as dynamic characteristics. Route planning confines the way a vehicle is artifi-
cially generated from one or more steps in time. Each of these is planned when input
is provided through this planning system and its road map, including additional data
describing static and dynamic features. It becomes necessary to predict the path that
meets the desired operational objectives through the road network for route plan-
ning, without which application cannot work properly in connected and automated
vehicles (CAVs). With the rapid growth of the Internet of Things and coupled appli-
cations in transportation, vehicles turn into CAVs that can sense the surrounding
environment, taking decisions, and actions. Route planning in VANETS is a complex
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real-time decision problem where one needs to generate good-quality routes within
a limited amount of planning time. This problem also tends to be quite complex
because the routes should be balanced: Several other competing objectives have to
be taken into account by the driver such as driving time and energy consumption.
Future many-core processing systems-on-chip are going to center around promising
communication architectures like the Network on Chip (NoC)-that offer scalable,
high-bandwidth communication links among embedded IP cores. The many-core
NoC routing algorithm mixes deterministic routing with a locally adaptive strategy.
CNNss are quite useful as convolutional layers of the processing unit used in image
processing, pattern recognition, and computer vision applications. It is built like
a stack of convolutional layers followed by down-sampling layers and then fully
connected layers [12]. These are arrays of convolutional kernels, where each kernel
convolved with the input data extracts local features.

Afterwards, a nonlinear block follows to enhance the model’s capability and learn
more complex data patterns. It forms a map for an input characteristic-that is, each
neuron has connections to a local area of input data. Down-sampling layers are aimed
at minimizing computation and parameters by lowering the resolution of the feature
map. The last layer (fully connected) flattens the feature map in which every neuron
in the layer is connected to all previous neurons. CNN output is a probability distri-
bution of class labels. CNN has many advantages over traditional machine learning
methods: it learns feature representation automatically from the input data rather
than handcrafting features- robust to noise and distortion in input data. It requires
a smaller number of parameters compared to fully connected networks because of
weight sharing of each kernel across the feature map (i.e. local connectivity). CNN
has been immensely successful in various applications, such as image classifica-
tion, object detection, and face recognition. Wireless Sensor Networks Based on
Multi-Criteria Clustering and Optimal Bio-Inspired Algorithm for Energy-Efficient
Routing and the deep learning classifier, namely deep recurrent neural network clas-
sifier is used assign a real-valued review to each input twitter data thus, classifying
the input data into two classes, such as positive review and negative review [15, 16].

A novel approach to enhancing the stability of Vehicular Ad Hoc Networks
(VANETS) through a hybrid optimization technique that combines ensemble learning
and metaheuristic algorithms. The authors, Gagan Preet Kour Marwah and Anuj Jain,
analyze performance metrics such as delay, energy consumption, and throughput,
demonstrating significant improvements over existing routing protocols. The study
emphasizes the importance of adaptive routing in dynamic vehicular environments
and provides valuable insights for researchers and practitioners in the field of
intelligent transportation systems and network optimization [17].

6.1 Case Studies and Experiments

For the comprehensive assessment of the suggested DLP-Routing routing approach,
a wide array of performance evaluations proved the most effective compared with the
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Veins framework that simulates vehicle interactions on an 802.11p-based wireless
network. The scenario used in the city traffic simulation is Taipei, with the four
routing protocols simulated to compare performance against DLP-Routing, namely
the Optimal Routing, Random Routing, ROP-UB Routing and RL Routing. Each
simulation runs 800 s during which a certain number of fixed vehicles are deployed
in one defined area of 4 km x 4 km, which are capable of putting up an VANET
employing IEEE 802.11p transceivers. Different traffic input parameters that are
being employed are vehicle density, speed, and cruising time.

The DLP-Routing algorithm is based on a deep neural network model, which is
trained-offline using simulation data. The model by predicting the vehicle’s state,
network state, and destination node selects the optimal path using reinforcement
learning techniques combined with DLP-Routing to allow the routing strategies to
be trained online based on vehicle interactions in real-time. As far as traditional deep
network models are concerned, multilayer models of deep neural networks boost
the accuracy of the routing strategy, making them capable of effectively capturing
this feature set space in a greater state space. These deep network models are based
not only upon modeling individual vehicle routing strategies but also neighboring
vehicle states are included to develop cooperative routing strategies [1, 4, 6].

6.2 Real-World Implementation of Deep Learning Route
Planning

For example, an easy-to-use open-source solution for route planning based on
deep learning and the runnable documentation of the said are still sought after for
enhancing their salts this entry. The deep learning-based route planning solution
proposed here has been introduced to implement in reality. The route planning system
is operationalized by using the deep learning model that has been trained through
the use of simulation. These include both the necessary files for offline training as
well as the ones required for online planning to ease duplication. For the demon-
stration of the real-world use of the route planning system, two implementations are
given in this application: one through Autonomous Vehicle Simulation Environment
and the second through simulation games. Showing the very first instance, there is
another avenue ahead as people opted to consider route planning to be a fundamental
operation for numerous activities on vehicles, such as automation driving and V2V
communication. Along with the upgrading of artificial intelligence, there comes the
introduction of deep learning technologies.

This makes it possible for deep learning that uses neural networks in route planning
to be introduced for driving more complex scenarios. Closure on route planning
for test use with the two demonstrated use cases, AVSE and Gameworld. AVSE
stands for Traffic Mix Simulation for Evaluating Opportunities in Automated Vehicle
Technologies and V2V Networking, which can be used for various technologies
related to automated driving vehicles and V2V networking. A straightforward small
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scenario is necessary. So, we set traffic lights on both sides, especially the terminals
connected to cell ends. Both fixed and connected traffic lights with Deep Q Network
models switched between them and build lightweight and accurate simulations.

6.3 Performance Evaluation and Comparison
with Traditional Methods

Smart cities have indeed become lifelines concerning safety, comfort, and carrying
conveniences with the aid of vehicular ad hoc networks (VANETS). Highly dynamic
topologies in VANETS led to plenty of challenges in designing an efficient commu-
nication protocol. One major and imperative issue is route planning, the performance
of data transmission being highly influenced by route planning in VANETS. In past
years, there have been various heuristic routing algorithms, and they have been espe-
cially carved to support the enhancement of the packet delivery ratio (PDR) and
equally reduce the delay in data transmission in VANETs. Deep learning (DL),
being the new lion in the jungle at present, has found myriad applications in different
fields, such as computer vision, natural language processing, and network secu-
rity. Booming research in deep learning concerning wireless networks, as stated by
Amalia et al. [4], provides the inspiration for the Fellowship. That is why a novel
route planning algorithm which is based on deep learning has been conducted. For
operating on each node, vehicle speed, direction, position, and timestamp informa-
tion are utilized as inputs to a trained deep neural network (DNN) model to guess the
expected global transmission delay to the destination node for all potential subsequent
hop. Subsequently, the most probable next hop is found by minimizing the estimated
delay. Therefore, two benefits are ascribable to the proposed deep learning route
planning algorithm with respect to VANETs. First, the proposed approach achieves
more accurate next hop selection in comparison with traditional heuristic-based route
planning algorithms by employing a DNN model already trained to predict expected
global transmission delays. Second, these processes avoid the expensive optimiza-
tion of parameters in time-consuming ways found at the end of a DNN initiation time
before being deployed with traditional heuristic methods [8]. Routing Protocols for
Constraint Devices Internet of Things Network to improve the adhoc network using
different protocols discussed [18].

6.4 Challenges and Future Directions

VANET stands for Vehicular Ad-hoc networks, where vehicles and roadside units
(RSUs) facilitate communication between on-board units (OBUs) in one vehicle
and OBUs in another vehicle. RSUs are stationary units whose location acts as both
enablers to facilitate vehicle data aggregation and internet service provisioning to the
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vehicle. They are primarily used in creating a dedicated short-range communication
(DSRC) environment for safety, city information, and cooperative system standards
regarding intelligent transportation. Deployment of these units initially considers
city topology and traffic flow, but several studies have shown that they have been
very badly deployed and are underutilized [9].

The following steps to be implemented in the close future stand on designing
deep learning-based route planning algorithms to exploit VANETSs and RSUs to the
best. Those algorithms proposed predicted the next best RSU from trajectory data as
input and benchmarked with an ordinary OBU vehicle routing algorithm to assess
the precision level. The prediction model is LSTM-based, and LSTM models with
fully connected (FC) layers enable the bidirectional prediction. These models have
considered city wise RSU networks, and one can find the introduction of this RSU
network training into three different cities” networks and an aggregated dataset that
provides vehicle diversity. 85% accuracy makes the results mostly overlap. It has
potential to be generalized for other cities as well [8].

7 Challenges in Implementing Deep Learning in VANETSs

There is a challenging scenario concerning how DL is rolled out in vehicular ad
hoc network (VANETS) with respect to today’s edge computing node problems for
increases in the number of new algorithms and applications for the next generation.
Edge nodes with DL capabilities face diverse tests in managing wireless modulation
transitions during active link speeds and possible links disconnection, not to mention
deterioration of quality of service (QoS) originating from various factors. A common
occurrence in VANETS is that of link fading, which introduces time-variant loss
and delay of all the data packets. This, therefore, means that data packets get lost
whenever the link becomes hopped down, which would make the other edge nodes
search for another path. It is expected that the deep neural network (DNN)-based
routing paths will converge over time. There are also trade-offs in those scenarios:
data transmission delays and learning with a DNN for path selection are most essential
while keeping QoS provision on them. Further, looking at the previous paragraph it
remains commendable to ignore the universal nature of the DNN, ensuring that it can
easily recognize “similar” data but still has quality loss due to time-rate behavior. It
was observed generally that models of DNNs required many epochs for training with
the data. Eventually, such huge data must run to configure the weights of the model
to generate valid learning outputs. Conversely, applying DNN models within very
constrained and outlier data sets would not fulfill the universal minimum acceptance
of loss criteria. Also, it is likely that time slots will be multiplied many times over to
learn a good routing path during delay time related to QoS [2].
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8 Future Directions

Going deeper and further into several methodological aspects of the very recent
proposed method is necessary to see the improvement in efficiency in routing in
VANETSs. Maybe that is why only one model sometimes does not cater to all envi-
ronments because, for the route plan generation, it is based on one model that contin-
uously improves itself in all environments under the proposed continuous learning
concept. Thus, to accommodate this DNN-RP for all types of applications, many
research paths could be established or iterated, like deploying several DNN-RP
models trained for various parameters, data sets, and configurations for different
environments so the vehicles can choose from among them. Another way is to make
a global model DNN-RP as a prototype, which has been pre-trained in a much wider
and various dataset from different environments and scenarios so that it can be used
as a basic model and then fine-tuned at each vehicle end locally with the specified
data reducing the need for a large bandwidth. This method does not require data
aggregation thus ensures better privacy of vehicle [9]. In our work, we had advo-
cated the dependence on cross layers methodology for gathering, formulation and
processing data in DNN-RP on the platform of the applications on the network layer
of the vehicle. Suggesting as groundwork for further exploring paths in the narrow
area to potentially broader intelligence DNN based model’s deployment in other
VANET applications, now and in the future, on those same layers or other newer
layers of the OSI model stack, then, at the first creation, route planning intelligence
is very much hoped to be enhanced.

9 Conclusion

The advancements in Deep Learning algorithms have been doing wonders across
various major domains such as Image Processing and Natural Language Processing.
Within the areas of application above, Neural Networks have been mostly exploited
in housing a wide array of research and development works in the communica-
tion tier for vehicle-to-vehicle as well as vehicle-to-infrastructure networks. Neural
Networks promise solutions that are hardware accelerated and thus require signif-
icantly lower computational times compared with actual computations. The text
presented an overview of applicable potential applications of deep learning systems
in routing, proactive prediction, and rein-formative learning. Experimental results
obtained for the Vehicular Ad Hoc Networks-employing Deep Learning Techniques-
demonstrated the improvement of performance as well as offering some new features
compared to contemporary Routing Solutions of networks. There are multiple
planned future directions of work: -the practical implementation of the models
proposed using deep learning-specifically the next RL-and hardware acceleration
for the Acceleration Systems. Current availability is found in the form of Embedded
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Systems with higher characteristics, which support extensive deployment of the
proposed routing algorithms in Real Life Scenarios.
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AI-Driven Security Mechanisms )
for IoT-Enabled VANETSs i

Bilal Ahmed, Arusa Kanwal, and Narmeen Shafqat

Abstract Vehicular Adhoc Networks (VANETSs) are wireless communication
networks that allow smart vehicles to communicate in real time. This communication
can happen in multiple ways: Vehicle-to-Vehicle (V2V), where cars share informa-
tion directly with each other, and Vehicle-to-Infrastructure (V2I), where vehicles
connect with roadside systems like traffic lights. VANETS help improve road safety
and traffic management. These networks utilize various Internet of Things (IoT)
devices, including cameras, sensors and GPS modules to share real-time informa-
tion with each other, such as location, speed and condition of the road. However, the
increased connectivity comes with a greater exposure to cyber threats such as service
disruption, identity spoofing, and manipulation of data, which can subsequently
compromise the safety of the driver and the integrity of the network. Unfortunately,
traditional security mechanisms are incapable of addressing evolving and context-
specific cyber threats in VANETs. This chapter deals with an exploratory approach to
how Artificial Intelligence (AI) can help counter these challenges through anomaly
detection, attack prediction, and adaptive security measures. Integrating Al-driven
security mechanisms into IoT-enabled VANETS can transform the transportation
ecosystem, making it safer, smarter, and more resilient.
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1 Introduction

In today’s era of smart cities and advanced transportation, vehicles are more
connected than ever before. This connectivity is made possible through decentral-
ized networks called Vehicular Adhoc Networks (VANETS). As depicted in Fig. 1,
these networks allow vehicles to communicate with each other (Vehicle-to-Vehicle
or V2V), with roadside infrastructure such as traffic lights and sensors (Vehicle-to-
Infrastructure or V2I), and even with cloud-based systems that store and process
this traffic data [1]. VANETs leverage wireless communication technologies such
as Dedicated Short-Range Communications (DSRC) and IEEE 802.11p to enable
reliable and low-latency communication [2]. This enables VANETS to significantly
contribute to road safety by providing drivers and traffic management systems with
timely alerts about potential dangers, such as nearby accidents, sudden braking of
vehicles ahead, or hazardous road conditions like ice or fog. If an accident happens,
vehicles in the area can automatically broadcast emergency signals, helping other
drivers take precautions and allowing emergency services to respond faster. VANET's
also improve traffic management by analyzing real-time traffic data and adjusting
traffic signals based on congestion levels, and suggesting better routes to drivers.
Ultimately, VANETS play a key role in building smarter, more sustainable cities by
making transportation safer and more efficient.

Fig. 1 Typical communication modes in VANETS



Al-Driven Security Mechanisms for IoT-Enabled VANET's 81

Modern vehicles are increasingly equipped with multiple Internet of Things (IoT)
devices, such as cameras, Light Detection And Ranging (LIDAR) sensors, and Global
Positioning System (GPS) modules. These sensors further enhance the effectiveness
of VANETS by providing advanced sensing, communication, and data analytics capa-
bilities [3]. For instance, these devices help vehicles detect pedestrians, road signs,
and obstacles more accurately, improving situational awareness. In addition, smart
cameras and motion sensors can analyze driving behavior and detect unsafe practices
such as sudden lane changes, speeding, or drowsy driving and timely alert the driver.
IoT-based smart diagnostics can even detect mechanical issues (e.g., brake failure
or low tire pressure) and alert the driver before critical failures occur. Moreover, the
integrated IoT devices make traffic management smarter, as roadside infrastructure
continuously collects and analyzes real-time traffic conditions to optimize traffic flow
and enables better decision-making for drivers and traffic authorities. In essence, the
combination of IoT and VANETSs make transportation more intelligent and proactive
[4].

For VANETS to function effectively, it is essential to ensure authentication and
data confidentiality, integrity and reliability at all times [5]. However, as modern
vehicles, especially self-driving cars, are extremely packed with sensors, communi-
cation modules, and smart systems, they also become more complex and vulnerable
to cyberattacks. Adversaries can forge messages, disrupt services, or manipulate
sensors, leading to potentially dangerous situations. For instance, an adversary could
set up fake traffic signals or roadside infrastructure, misleading vehicles into unsafe
routes. A real-world example of this is the Jeep Cherokee hack from 2015, where an
attacker remotely took control of critical functions like steering and braking through
the car’s Uconnect system [6]. Such incidents highlight growing concerns, partic-
ularly for autonomous vehicles like Tesla’s Autopilot, which rely heavily on V2V
and V2I communication. As cars become smarter, it is not optional to secure these
communication networks, but a necessity to ensure road safety.

Traditional security measures like encryption, firewalls, and real-time threat detec-
tion have been crucial in protecting VANETS from cyber threats. These methods work
by securing data exchanges between vehicles and infrastructure, blocking unautho-
rized access, and detecting suspicious activity. However, as cybercriminals develop
more advanced and unpredictable attack strategies, these conventional defenses
struggle to keep up. This has led researchers to explore more adaptive, intelligent
security approaches that can evolve alongside cyber threats. This is where Artificial
Intelligence (Al) is proving to be a game-changer. Unlike traditional methods, Al
can learn and adapt to new threats in real time, making it much more effective at
detecting unusual behavior in a vehicle’s network. By analyzing vast amounts of
data, Al can spot anomalies, such as an adversary attempting to manipulate traffic
signals or take control of a car, and respond instantly before any damage is done.
Al-driven security can also predict potential attacks by recognizing patterns in cyber
threats, allowing car manufacturers and cybersecurity researchers to stay one step
ahead [7, 8].

The remainder of the chapter discusses the topological structure and architec-
tural design of VANETS, the major cyber threats they face, and the current security
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measures in place. It also identifies existing gaps in these solutions and gives insights
into how approaches driven by Al can tackle these challenges effectively.

2 Literature Survey

The following section outlines the infrastructure and communication modes of
VANETS, offering insights into their operational characteristics and security require-
ments, and setting the stage for the subsequent sections.

2.1 VANETs:s Infrastructure

VANETs are a type of wireless network that allows vehicles to communicate without
relying on fixed infrastructure [9]. They share similarities with Mobile Adhoc
Networks (MANETS), which are self-organizing networks where mobile devices
(nodes) communicate directly without needing mobile towers or base stations.
However, unlike MANETSs, VANETS are specifically designed for vehicle commu-
nication. Vehicles in VANETS act as mobile nodes, exchanging data through V2V
or V2I communication modes [10].

2.1.1 Structural Layers of VANETSs

As illustrated in Fig. 2, VANETS consist of two distinct layers: the top layer and
the bottom layer, which together define the functionality of VANETSs and enable
communication between vehicles and roadside infrastructure.

The top layer consists of Trusted Authority (TA) which is trusted by all partic-
ipants. It is equipped with robust computational capabilities and extensive storage
capacity to manage the security and functionality of the entire system [11].

The bottom layer consists of On-Board Units (OBUs) and Roadside Units (RSUs).
OBUs are communication devices installed in vehicles, enabling them to exchange
data with other vehicles and infrastructure. RSUs are fixed units, such as traffic
lights or road sensors, that help facilitate communication between vehicles and the
network by collecting and transmitting important traffic and safety information [12]
with OBUs using the DSRC protocol and with the TA through a secure wired channel
[13]. The typical architecture of VANETS is illustrated in Fig. 3.
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Fig. 2 Structural layers in VANETSs

Fig. 3 Typical architecture of VANETSs

2.1.2 VANETs Communication Modes

VANETSs support real-time communication between multiple entities using wire-
less communication technology. The primary communication modes in VANETSs
include:-
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V2V: Vehicles use onboard sensors to monitor their surroundings and communi-
cate with nearby vehicles [14]. V2V communication links are used to exchange
real-time information between vehicles regarding road conditions and other safety
information messages to prevent collisions. [15].

V2I: V2I communication links allow the vehicles to communicate with VANET
infrastructure deployed on the road (e.g., RSUs, traffic signals). It provides access
to the internet and other central services required for improved navigation and
safety [16].

Infrastructure to Infrastructure (I2I): This facilitates communication between
VANET infrastructure components, such as RSUs and traffic management centers,
to share real-time traffic patterns and enhance overall system coordination [16].
Vehicle-to-Pedestrian (V2P): V2P links use mobile devices or wearable sensors
to facilitate the exchange of information between vehicles and nearby pedestrians,
thereby preventing road accidents and improving pedestrian safety [17].
Vehicle-to-Cloud (V2C): V2C links transmit data between the vehicles and cloud.
This facilitates operations like big data analytics, decision making and predicting
traffic congestion [18].

2.1.3 VANETs Communication Standards

For vehicles to communicate effectively, they utilize following specialized wire-
less communication standards that allow them to share real-time traffic and safety
information, helping to prevent accidents and improve traffic flow [4].

IEEE 802.11p: This is an extension of 802.11 Wi-Fi standard, specifically built
for facilitating V2V and V2I communication by providing high throughput and
low latency performance [19].

DSRC: This wireless communication technology enables vehicles to share impor-
tant safety and traffic information with each other and with roadside systems. The
effective communication range of DSRC varies depending on the environment. In
open highway settings, DSRC can maintain a strong connection over distances up
to approximately 1219 m (about 0.75 miles). However, in urban areas, where build-
ings and other obstacles can interfere with signals, the effective communication
range typically decreases to around 520 m (about 0.32 miles) [20].

2.2 VANET:s Operational Characteristics

The following subsection outlines key operational characteristics that influence the
performance and functionality of VANETS.

Mobility: VANETSs mobility is driven by vehicle movement along specific road-
ways, and constrained by traffic regulations. This dynamic mobility complicates
the task of predicting network topology and the precise location of the vehicle [21].
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With varying node speeds, from stationary RSUs to high-speed vehicles, commu-
nication reliability is also affected [22]. High mobility decreases transmission
range, and moderate mobility leads to disruptions and latency [23, 24].

e Network Size: VANETS in dense areas, such as cities and highways, require
robust communication systems to manage high vehicle and infrastructure density,
particularly in traffic jams or accidents [25]. VANETSs can cover vast areas,
but increased data traffic and extended coverage raise challenges in maintaining
reliable communication [26].

e Safety: VANETS enable safety applications by ensuring seamless communication
between nodes like RSUs and OBUs, delivering timely information to prevent
accidents and enhance road safety [27].

e Network Coverage: Network coverage varies with vehicle density. High-density
areas improve connectivity and real-time application performance, while low-
density areas risk fragmented networks and unreliable communications, impacting
safety—critical services [16].

e Power Resources: Unlike a typical IoT setup, nodes in VANETSs do not face power
limitations, as OBUs are mostly powered by vehicle batteries, supporting contin-
uous, resource-heavy tasks like cryptographic processing [28] and improving
network coverage through the use of multiple antennas [29].

2.3 VANET:s Security Characteristics

For smart vehicles, security is one of the stringent requirements to ensure the safety of
the passengers and the surrounding environment [30]. Below we outline key security
characteristics specific to VANETS that are essential for the smooth, secure, and
efficient operation of VANETS, particularly in ensuring passenger safety, maintaining
traffic management, and protecting privacy and data integrity.

2.3.1 Privacy

Drivers may hesitate while sharing details about their vehicles or intended desti-
nations due to concerns about potential privacy violations [31]. Addressing these
privacy challenges in VANETs demands balancing the protection of personal
information while respecting individual privacy preferences.

2.3.2 Data Confidentiality

Protecting confidentiality entails safeguarding sensitive information concerning the
vehicle and the driver against unauthorized access, thus preventing eavesdropping and
unwanted tracking. Researchers have made use of symmetric encryption techniques
like Advanced Encryption Standard (AES) for fast and efficient data protection,
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asymmetric techniques like Elliptic Curve Cryptography (ECC) for secure message
exchange and sometimes hybrid encryption to enhance speed and reliability. Besides,
Attribute-Based Encryption (ABE) restricts access to specific data based on user
permissions [32] and differential privacy techniques introduce harmless noise into
shared data, making it difficult for adversaries to extract meaningful information
[33]. A key challenge in maintaining confidentiality in VANETS is ensuring that
encryption does not introduce delays in real-time communication [34].

2.3.3 Data Integrity

Data integrity guarantees that messages are not altered in transit by any adversary. To
this end, cryptographic hash functions, like MACs and digital signatures, are used to
verify the integrity of the message [35]. Because of some real-time challenges, some
recent research work explored lightweight integrity verifications like homomorphic
hashing methods.

2.3.4 Network Availability

Auvailability ensures constant access to every resource on the network, not affected
by existing vulnerabilities or by message flooding attacks. Cryptography techniques,
accompanied by trust-based algorithms and protocols, are applied to protect the
mentioned characteristic while ensuring the continuity of the resilience of the network
[36].

2.3.5 Key Management

Securely managing the keys and revocation of expired or compromised keys is
another critical characteristic of secure VANETSs. An extendable number of nodes
(i.e., vehicles) can result in a large set of keys requiring revocation, which increases
the complexity and overhead associated with the revocation process [31].

2.3.6 Anonymity/Pseudonymity

The most prominent security feature in VANETS is pseudonymity. It conceals the
identity of legitimate participants by hiding it, thus keeping their identity private.
Legal entities do not use their actual information for communication but use a
pseudonym for anonymous communication. Hence, this method preserves users’
privacy and ensures that communication is safe and trustworthy within the network
[37].
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2.3.7 Node Authentication

The purpose of authentication is that only legitimate vehicles and legitimate infras-
tructure nodes should be able to participate in the communication within the VANET
so that attacks targeting false data injection by malicious entities can be prevented.
Authentication in VANETSs can be classified into two types, namely Public Key
Infrastructure (PKI) based and Identity (ID) based schemes. PKI refers to a secu-
rity framework through which the communicators are authenticated with the aid of
digital certificates and cryptographic key pairs. It demands a certification authority
to assist in the management and issuance of these certificates alongside certificate
verification [38]. In contrast, ID-based authentication does not use any certificates,
but relies on a set of predefined identity information for verification, but suffers from
key escrow and possible eavesdropping issues [39].

2.3.8 Non-repudiation

Non-repudiation, another crucial security characteristic in VANETS, ensures that
the sender cannot deny generating a specific message. This characteristic links the
content of a message directly to its originator, providing accountability and trust
within the communication process [40].

2.3.9 Secure Location Validation

Location verification ensures accurate identification of node positions during
communication. Implementing reliable mechanisms for location validation not only
protects against potential attacks but also enhances the accuracy of the data validation
process [37].

While these security characteristics are essential for ensuring the reliable and
safe operation of VANETS, the following sections examine the various threats that
VANETS face, highlighting the vulnerabilities that need to be addressed to maintain
their security and functionality.

3 Threats and Current Mitigation Strategies
in IoT-Enabled VANETSs

IoT-enabled VANETSs have the potential to completely transform transportation
systems. However, the combination of wireless communication and IoT devices,
the decentralized network architecture, and the open communication environment
introduces many security risks in VANETs. Below, we explore these key threats and
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Fig. 4 Security threats to VANETSs

the current mitigation strategies being employed to secure VANET infrastructure and
operations. These threats are summarized in Fig. 4.

3.1 Eavesdropping and Data Interception

VANETSs wireless communication channels are naturally prone to eavesdropping
attacks, giving adversaries an edge to intercept private information including driver
behaviour and vehicle whereabouts which could be exploited by unauthorized users to
track and monitor vehicles [41]. An adversary can obtain unauthorized access to trans-
mitted data by using technologies such as Software-Defined Radios (SDRs), which
are programmable radio devices that can intercept and manipulate wireless commu-
nications. Mitigation measures include using modern encryption techniques, such as
the AES to ensure data secrecy. Researchers have also introduced a new approach
called Cryptography Mix-Zone (CMIX) which uses identity-based authentication
to protect data confidentiality [42]. In CMIX, vehicles temporarily change their
identities while passing through designated zones, thereby preventing unauthorized
tracking and ensuring secure communication.

3.2 Denial-of-Service (DoS) and Distributed
Denial-of-Service (DDoS) Attacks

A DosS attack is characterized by one source which sends unwanted and high volumes
of traffic or non-valid requests in a manner that denies access to legitimate users in
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the network. A DDoS attack has several sources located at various different places
and carry out their attack simultaneously with much increased force; therefore, such
attacks are tougher to be prevented [43]. Such risks can be reduced using techniques
like rate-limiting algorithms (that limit the number of data packets sent from a source
within a specific time period) and Intrusion Detection Systems (IDS), which monitor
and identify malicious activities in the network. Previous work has also proposed
routing techniques, such as Secure and Efficient Adhoc Distance Vector (SEAD),
which uses a one-way hash function [44] and a Dedicated Short-Range Communi-
cation (DSRC) based on-demand routing method [45], to prevent DoS attacks and
ensure attackers cannot manipulate the routes of safe network nodes.

3.3 Sybil Attacks

In a Sybil attack, an adversary may break the trust and dependability by introducing
various bogus identities in VANETSs. These attacks have the potential to impair
decision-making, interfere with communication, and cause routing errors. Digital
certificates and PKI are two essential authentication methods for confirming the
validity of network entities. If a malicious node is detected, its cryptographic keys
are quickly revoked to limit damage [46]. However, deployment of PKI for VANETSs
is complex and requires careful management of keys and certificates. To detect Sybil
attacks early, researchers have proposed Robust Sybil Attack Detection (RobSAD),
a method that analyzes differences in how genuine and fake vehicles move. By
identifying irregular motion patterns, RobSAD helps improve VANET security and
ensures safer communication between vehicles [47].

3.4 Man-in-the-Middle (MITM) Attacks

MITM attacks happen when an adversary intercepts and modifies traffic between
legal nodes. By inserting bogus data or changing messages, an adversary might create
scenarios that misdirect vehicles or jeopardize safety. End-to-end encryption tech-
nologies like Transport Layer Security (TLS) can protect communication integrity
and secrecy [48]. Prior work has demonstrated that effective user authentication also
allows users to combine encryption and PKI to validate a batch of message signature
pairs without a trusted identity [49].

3.5 Spoofing and Impersonation

Spoofing attacks occur when an adversary imitates genuine vehicles or infrastructure
nodes on the VANET. For instance, the adversary may use GPS spoofing to mislead
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vehicles into the wrong route or dangerous conditions [50]. An adversary could alter-
natively impersonate a legitimate vehicle and send false traffic data to disrupt network
traffic. To mitigate the possibility of spoofing, cryptographic authentication measures
such as digital signatures and MAC should be used in verifying the legitimacy of
the nodes and messages they broadcast. PKI should be used for vehicle-to-vehicle
authentication [51], to sign messages for warnings [52] or to create group commu-
nications [53]. Authenticated Routing for Adhoc Networks (ARAN) was proposed
as a solution in [54], which employs public key cryptography for authentication
and timestamps to ensure the freshness and validity of the route. Another study
enables vehicle authentication through regional Certificate Authorities (CAs) which
are trusted entities responsible for issuing digital certificates. It uses dynamic anony-
mous keys (temporary keys that protect user identity) and short-lived certificates to
enhance security and privacy [51]. In this way, only legitimate authorities can link a
vehicle’s Electronic License Plate to its alias, ensuring secure communication.

3.6 Routing Attacks

The goal of routing attacks is to interfere with VANETS’ routing protocols, alter data
pathways or divert traffic to hostile nodes, resulting in delays, data loss, or network
isolation [41]. Message authentication and secure routing algorithms, including
protected Adhoc On-demand Distance Vector (AODV), are two ways to secure the
routing protocols and guarantee safe and appropriate data routing over the network.
AODV is a routing protocol used to find the best path for data in adhoc networks.
To defend against routing attacks, sensors and software are digitally signed. These
problems are resolved in ARAN and SEAD routing protocols [55] by using cryp-
tographic certificates, symmetric cryptography, and MAC and one-way hash func-
tions. Moreover, an effective method Hop-by-hop Efficient Authentication Protocol
(HEAP), based on AODV protocol, is suggested in [48] for protecting the network
from routing attacks. It limits the distance travelled from the source to the destination
using a geographical leash; if the threshold is exceeded, the packet is dropped. By
increasing the trust between various nodes in VANETs, [56] offers some ways to
improve security of various adhoc routing protocols.

3.7 Physical Layer Attacks

VANETsS that depend on wireless communication are at risk from physical layer
threats such as signal interference and jamming. An adversary can disrupt communi-
cation by sending a high-power signal on the same frequency in a jamming attempt.
This can be especially problematic in safety—critical situations, such as emergency
braking or accident avoidance. Countermeasures such as spread spectrum techniques
and IDS are crucial to ensuring network resilience. Researchers suggest Frequency
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Hopping, where the system rapidly switches between frequencies to avoid interfer-
ence [57]. If an attack occurs, vehicles can also change their communication channel
to restore connectivity. Another approach is to enable VANETS to switch between
different wireless technologies, ensuring uninterrupted communication even if one
channel is compromised [58].

3.8 Replay Attacks

A replay attack occurs when an adversary intercepts and resends previously trans-
mitted network data to trick a system into thinking it’s communicating with a legit-
imate user. By exploiting weaknesses in the authentication process, the adversary
can impersonate a trusted vehicle or server, gaining unauthorized access to sensitive
information. This can allow them to manipulate communication, disrupt services, or
even take control of certain network functions. To prevent replay attacks in vehicular
networks, network-wide synchronized time and nonces (timestamps) can be used
to detect outdated messages [59]. The most effective defense is verifying received
data against multiple trusted sources, ensuring responses are based on accurate and
current information [60].

3.9 Malware Attacks

An adversary transmits malicious or spam messages across the network, thereby
utilizing network bandwidth and increasing transmission latency. Because of the
absence of centralized administration and the required infrastructure, this type of
attack is challenging to control. For example, adversaries may send spam or malicious
messages to a group of users. While users might ignore these messages, similar to how
they disregard advertisements, the sheer volume of unwanted data can still slow down
communication, disrupt network performance, and create security vulnerabilities
within the system. Using trustworthy hardware prevents unauthorized nodes from
changing current protocols and settings [61].

3.10 Brute Force Attacks

Brute force attacks on VANETS involve repeatedly guessing encryption keys or
authentication credentials to gain unauthorized access to the network [62]. Langley
et al., have proposed an authentication solution [63] that combines a vehicle’s unique
identity number with a long timestamp, hashing them together to enhance security.
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4 Security Gaps in IoT-Enabled VANETSs

Even while currently employed mitigation methods provide reasonable protection
from certain threats faced by IoT-enabled VANETS, some loopholes cannot be
avoided as these techniques often grapple with scalability, adaptability, and the
dynamically changing characteristics of VANETSs. The subsequent section elabo-
rates on these limitations and areas for potential improvements in providing safety
designs for VANETS.

4.1 Gaps in Threat Intelligence Sharing

Effective threat intelligence sharing is critical for recognizing and mitigating
emerging threats in IoT-enabled VANETSs. However, the absence of defined proto-
cols and the inability to process threat intelligence data in real-time limit the flow
of critical security information. As a result, VANETSs may struggle to use collec-
tive knowledge to adaptively fight against coordinated attacks. To bridge these gaps
and improve VANET system security, standardized and real-time threat intelligence
exchange mechanisms must be developed. In addition, the volume of data created by
IoT devices in VANETS requires real-time analysis in order to detect new hazards
quickly. However, many present systems cannot handle this data rapidly enough,
resulting in delayed responses. Therefore, authors of [64] investigate and suggest the
requirement for real-time context-based threat detection in VANETS.

4.2 Inadequate Trust Management in Dynamic,
Decentralized Environments

Trust management is an important aspect of ensuring secure communication between
vehicles and infrastructure in IoT-enabled VANETSs. Howeyver, trust is hard to main-
tain because these networks are highly dynamic and decentralized. In contrast to
traditional systems with a central authority, VANETS rely on peer-to-peer interac-
tions, which makes them vulnerable to malicious node behavior and data manipula-
tion. Vehicles often encounter unknown nodes, making it hard to verify the reliability
of shared information. With no centralized authority for trust, the network faces the
risk of accepting false or misleading data by increased complexity in security. Prior
work has proposed a decentralized trust management system [65] which builds and
assesses trust by observing the behavior and interaction amongst nodes within the
network, thereby eliminating the requirement for a central authority. One study has
also explored the use of blockchain in VANETS for a decentralized and tamper-proof
way of trust management [66].
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4.3 Vulnerable Communication Protocols in Dynamic
Environments

As discussed before, IoT-enabled VANETS are exposed to security threats in dynamic
environments due to their decentralized nature and high mobility. Most of the
currently used protocols, like TLS, offer strong encryption; however, they are not
considered suitable for high-mobility low-latency vehicular networks. To enhance
security in smart cities, Sumit et al. [67] propose a dynamic routing strategy that
leverages an optimized chaotic secure multi-verse optimization algorithm, improving
secure data transmission in VANETS [67]. In addition, Gupta et al. [68] introduced an
authentication-based secure data dissemination framework for 5G-based vehicular
communications to tackle these security challenges.

4.4 Insufficient Privacy Protection Mechanisms

Lack of privacy protection mechanisms in IoT-enabled VANETSs coupled with
frequent information sharing leads to privacy violations like location tracking, unau-
thorized data access, and identity disclosure [69]. Emerging privacy-preserving
solutions include blockchain-enabled identity management systems for improving
privacy in VANET clouds. This approach uses the decentralized characteristic of
blockchain for protecting user identities and data transactions, thereby minimizing
the risks associated with centralized data storage [70]. However, privacy protection
solutions are still weak, and need further development as these measures fail to effi-
ciently adapt to the ever-changing topology and real-time communication needs of
VANETSs. Hence, the scope for the continued research is to formulate adaptable and
scalable privacy-enhancing technologies that will find acceptance in the dynamic
contexts of IoT-enabled VANETS.

4.5 Deficiencies in Intrusion Detection and Threat Response
Systems (IDTRS)

IoT-enabled VANETS pose significant network security threats due to weaknesses
in IDTRS. These systems seek to identify and counter illicit access, malware, and
other anomalies in static environments. However, because of their inability to handle
the high mobility and dynamic nature associated with VANETS, they often fail
to recognize or respond to threats in real-time. In addition, VANETSs decentral-
ized topology complicates efforts to monitor network traffic and identify malicious
activity. Scaling issues are caused by the ever-increasing numbers of interconnected
autos and IoT devices. Traditional systems might be overwhelmed in computation
and storage resulting in performance drop and increased susceptibility [71]. From the
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adversary’s perspective, advanced machine-learning techniques are routinely used
to mimic legitimate behaviors to evade those IDSs. The current gap in detection
capabilities underlies the urgent demand for next-generation IDS solutions that inte-
grate real-time behavioral analytics and collaborative threat detection mechanisms
to increase efficacy against emerging threats.

5 Al-Driven Security Mechanisms in IoT-Enabled VANETSs

To tackle aforementioned challenges, we need smarter solutions that can keep up
with the constantly changing nature of VANETSs. This subsection highlights using
Al as a promising solution to quickly detect threats, manage trust between vehicles,
and protect user privacy.

5.1 Al for Intrusion Detection and Anomaly Detection

The dynamic and decentralized nature of VANETS leaves traditional IDS with limited
capability to identify sophisticated, multidimensional attacks. Al-based IDS use
Machine Learning (ML) to learn from network traffic and detect deviations from
standard behavior, allowing them to adapt to changing threats.

Typically, known attacks are detected using Supervised Learning methods [72],
such as Random Forest and K-Nearest Neighbors (KNN) that make use of labeled
data. In simple words, supervised learning trains a model using pre-classified data in
order to recognize similar patterns in newly presented data. Random Forest technique
enhances the accuracy by combining the features of many decision trees to make the
final classification, whereas KNN classifies a new data point based on its similarity
to existing classified points. Hence, such models can analyze network traffic and help
detect known malicious activities such as spoofing and DOS attacks.

In contrast, unknown or unseen threats can be identified with unsupervised
learning techniques such as K-means clustering. Unlike supervised learning, unsu-
pervised methods work with no labeled data and are geared toward the identification
of hidden patterns or anomalies. Specifically, K-means clustering groups similar
data points, making it useful for detecting unusual network traffic that deviates from
normal behavior. Besides, hybrid models [73] combine supervised and unsupervised
learning to improve detection accuracy for both known and unknown attacks, with
reduced false positives.

In addition, Reinforcement Learning (RL) enables the IDS to alter detection
strategies on the run. RL works by continuously learning from interactions with
the network environment, optimizing responses to new and evolving threats without
needing predefined labels. In essence, with the help of AI, VANET security systems
can proactively identify and eliminate cyber-attacks before any damage is done.
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5.2 Al for Trust Management

VANETs are extremely decentralized and highly mobile networks; therefore, incor-
porating Al would strengthen the trust management in such networks. Traditional
reputation-based systems [74] fail to effectively handle the dynamic nature of
VANETS since they are based on static models and insufficient data. Al techniques
can easily get around these limitations by providing real-time behavioral assessment
of the nodes resulting in a timely and more precise approach to trust management.
Depending on different criteria to source their judgment on reliability, Al models can
apply regression, classification, and clustering. Based on past interactions, regres-
sion [75] would predict future behaviour, classification would label nodes capable
of malicious versus trustworthy behaviour under their history, and clustering would
join nodes into groups according to similar parameter sets of characteristics.
Moreover, context-aware trust models [76] come in handy inside VANETS, which
are dependent on highly dynamic contingents such as traffic conditions, environ-
mental circumstances, and node mobility. The Al model correlates the trust level with
the real-time input variables, ensuring that decision-making about node interactions
remains relevant and accurate under dynamically changing conditions. In the case
whereby a vehicle suffers repeated traffic accidents or behaves erratically following
environmental circumstances like the state of the road, the trust give-up behaviour
can be adjusted by the Al Unlike static evaluation scenarios, this dynamic trust
management will have a solid impact on the security, risk mitigation, and effective
communication across nodes in a VANET system from adversaries’ interruptions.

5.3 Al for Privacy Protection

Privacy protection in IoT-enabled VANETS is crucial since the data transferred is
sensitive, including vehicle positions, speed, and driver behaviour. Al enhances
privacy security by preventing breaches while ensuring the efficiency of VANET
services. Al reliably attaches differential privacy [77] to VANETS, thereby ensuring
that the privacy of individual vehicles is preserved even if data is shared for safety or
traffic management purposes. The differential privacy mechanism allows system
analysts to extract useful information from the mechanisms while retaining the
anonymity of the particular person or vehicle within the data set by carefully intro-
ducing noise in the data. Al algorithms can apply differential privacy to sensitive
vehicle data, such as speed and location, to ensure these attributes cannot be linked
with specific individuals or vehicles. The protected private information can allow the
system or authorities to perform tasks like accident prediction or traffic optimization.

Driver behaviour and vehicle trajectories can also be efficiently masked in Al-
protected systems [78]. Al models can automatically identify sensitive components
of a data stream and use tools like encryption or pseudonymization to protect privacy.
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Pseudonymization involves replacing identifying information, like a vehicle’s regis-
tration number or driver’s name, with an artificial identifier, such as a random number
or pseudonym. Al may hide location information by, for example, slightly moving a
vehicle, such that its precise path is not tracked; meanwhile, these systems are still
able to perform essential functions like congestion management and routing.

5.4 Al for Secure Communication Protocols

In VANETS, secured data transmission becomes essential as communication path-
ways come under threat from eavesdropping, DoS, and MITM attacks. Traditional
cryptographic mechanisms may be effective in many cases, but they are usually
never adequate to satisfy the high mobility and latency demands of VANETS since
they do not dynamically adapt to the fast-changing conditions of the network. Al
can guarantee the generation of reliable communication protocols and secure data
transmission in real time. Additionally, Al can adaptively enhance current encryption
methods [79] by altering encryption parameters based on real-time conditions and
threats. For instance, Al could decide to raise the levels of encryption in areas that are
experiencing high traffic attacks or simply switch to an entirely different encryption
algorithm with a much higher security level.

The Al-powered routing protocols [80] enhance the security of the transmitted
data by dynamically choosing the safest paths for transmission. These protocols
hence change through self-adaptation and adjustments for the dynamic conditions
that affect network topology and conditions for ongoing traffic, and data is prevented
from malicious entities or compromised nodes. For example, an Al algorithm can
recognize strange behavior and detect a vehicle or infrastructure node that is compro-
mised and reroute the data immediately via the more secure path to minimize cyber
threats.

5.5 Al for Attack Prediction and Prevention

Using predictive models [81] trained on previous attack data, Al can spot trends
indicating new dangers before they worsen, allowing for timely intervention. DDoS
attacks, for instance, might be predicted by looking at traffic patterns for unusual
request spikes, which are a prevalent characteristic of these attacks. The Al system
can monitor traffic on the network, track its volume and frequency, and even detect
anomalies that may signal a potential DDoS attack. Preventive measures may thus be
initiated once detected, such as slowing traffic or isolating the attacked nodes. Once
a routing disruption is observed in the patterns detected in the changes of the routing
table and anomalous route-pathing, Al can take preventive measures by rerouting
any traffic or isolating the vulnerable path for safe communication. In this way, Al
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remains a very good tool that boosts network reliability and secures data flows against
several types of attacks on VANETSs.

5.6 Al for Real-Time Threat Response

A real-time threat response by Al is important to defend against threats to VANETS,
especially when such threats become changeable and adaptive. Early threat detection
along with autonomous responses ensures safe network operation even after an attack.
In the event of a MITM attack [82], Al can immediately reroute traffic or impose
stronger encryption to avoid data interception or manipulation. By continuously
analyzing attack patterns in real-time, Al adapts security protocols on the fly, such
as implementing TLS encryption or VPN tunnels to safeguard data integrity and
confidentiality. With its ability to monitor network activity and assess risks in real-
time, Al minimizes potential damage and keeps vehicular communication secure.
Besides this, the incorporation of RL [83] would allow the continuous improvement
of Al systems, as RL-based systems can learn from successes and failures in previous
attacks and fine-tune their response strategies to offer more effective attack responses
in the future. Al ensures that VANETS are not only proactively protected, but also
capable of real-time response against potential threats.

5.7 Federated Learning for Privacy-Preserving Security

One of the challenges in implementing Al into loT-enabled VANETS is protecting
privacy. Federated learning promises to address this by enabling learning across
various decentralized devices without requiring the sharing of private data. This
approach thus maintains an individual vehicle’s and user’s privacy yet allows the Al
system to learn from a vast and varied dataset [78]. It thus allows for collaborative
learning while making sure of confidentiality for the sensitive data within each device,
lowering the risk of data exposure and maintaining compliance with the privacy
requirements.

In essence, the use of Al can lead to a significant improvement in IoT-enabled
VANETs (as shown in Fig. 5). Al can improve communication through optimized
link management, data congestion, and routing by predicting traffic flow patterns. Al
can also enhance immediate detection of accidents by analyzing real-time sensor data
and predicting hazards to assist in road safety by providing collision alerts. Finally, Al
can deal with traffic management through pattern recognition and real-time decision-
making to allow for intelligent traffic routing, scheduling, and monitoring so that road
safety and efficiency are increased.
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Fig. 5 Al improving communication, road safety and traffic management in VANET'Ss

6 Challenges and Future Directions

Even in Al-enabled IoT systems, the decentralized and dynamic nature of VANETS
presents challenges. In addition, the mobility of nodes leads to constantly changing
network topologies, complicating the management and establishment of stable secu-
rity frameworks. In that line, further research endeavors should focus on the future
development of adaptive lightweight algorithms that can handle the dynamic charac-
teristics of VANETS. In this case, developing models will include using various tech-
niques, such as model pruning, quantization, and knowledge distillation, that aim to
improve Al systems through performance and scale for these increasingly dynamic
topologies. Another prominent solution is edge computing, which will enable Al
tasks to be performed close to the data sources. It will also drastically reduce latency
for real-time threat detection and enhance overall network security. Additionally,
delivering 5G as well as 6G technologies will be critical for ultra-low latency, high-
speed communication, and network slicing, which will prioritize critical system-
related data and support the seamless operation of VANETSs. Finally, by engaging
both network instabilities and swift changes in topology, any Al-driven security
frameworks can provide reliable stability, efficiency, and scalability to VANETS and
offer them greater resilience against emerging cyber threats.
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7 Conclusion

Integrating Al with the IoT-based VANET is potentially going to greatly enhance both
the security and efficiency of transportation systems in the near future. Contrary to
conventional security mechanisms, Al-based systems, like intrusion detection, real-
time threat mitigation, and protection of privacy, provide adaptive as well as proactive
defense. Its ability to identify evolving threats and optimize communication protocols
to prevent attacks in real-time makes it an effective means to counter cyber risks in
VANETSs. As the technology of Al advances, standardization of security protocols
will be very important in ensuring that VANETSs operate smoothly and securely,
paving the way for safer, smarter, and more resilient transportation networks.
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Securing VANETS for Internet of Things )
(IoT): AI-Driven Solutions for Privacy oock o
and Intrusion Detection

Tayyaba Basri

Abstract In IoT-enabled smart cities vehicular ad hoc networks (VANETS) are
necessary for smart transport systems, yet combining them with 5G and high mobility
settings presents significant safety concerns. The flexibility, immediate attack reac-
tion, and new malicious attacks like Sybil, GPS spoofing, and Al-driven attacks
that compromise accuracy of data, privacy and system reliability are challenges for
traditional centralized security frameworks. As a way to tackle these challenges this
research presents a unique Al-blockchain hybrid system which combines blockchain
technology for decentralized trust management with machine learning (ML) for reac-
tive identification of intrusions. Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) are two Deep Learning models which our approach
uses for identifying evolving risks like DDoS and Man-in-the-Middle attacks with
96% accuracy. Additionally, blockchain guarantees unbreakable verification of iden-
tities and data origins which decreases Sybil attacks by 40%. Additionally, by over-
coming delays and scalability problems that classical Public Key Infrastructure (PKI)
has, Elliptic Curve Cryptography (ECC) strengthens confidentiality verification. By
applying comprehensive investigation this study demonstrate how the combined
system helps immediate action in changing VANET networks while also reducing
growing security threats. The proposed model provides a strong basis for future smart
cities where effectiveness and safety are crucial by promoting the development of
safe, adjustable, and privacy aware modes of transport.
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1 Introduction

This paper focuses on Vehicular Ad Hoc Networks (VANETS), which were invented
due to the development of vehicle technology, intelligent transportation systems,
and wireless communication. Improves the effectiveness of the system through direct
communication among automobiles and other mobile devices, notrelying on roadside
units [1]. The Internet of Things (IoT) has brought about changes to both industries
and to people’s lives by linking devices such as appliances in homes and factories
and controlling and communicating with them intelligently. This connectivity has
enhanced efficiency but has opened up new security risks since many IoT devices
are resource constrained and hence easily compromised by attackers [2]. There are
great potentials of enhancing VANETSs with the increasing application of artificial
intelligence (AI) techniques in various areas such as data processing, healthcare, and
cyber security. Methods like Swarm Intelligence (SI) and Machine Learning (ML)
have a lot of promise for resolving the issues VANETS faces. Although Al is being
integrated in VANET systems, not enough research has been done to determine how
these techniques may be completely utilized to enhance interactions between vehicles
[3]. Based on their goals and the attacker’s level of system knowledge, adversarial
attacks can be classified. Having said that, there are four primary categories. Non-
targeted attacks use minor adjustments, such as random noise, to trick machine
learning models into generating inaccurate or unwanted results without concentrating
on a particular label or class. By carefully changing inputs to resemble the intended
target, targeted attacks, on the other hand, are more active and seek to cause models
create particular wrong outputs. Because they produce a single mutation or pattern
that deceives the model across a broad range of inputs, unrelated of the particular
data, universal attacks are more potent and difficult [4].

The fast and decentralized mobility of cars is making it difficult for conventional
safety techniques in Vehicular Ad-Hoc Networks (VANETS), for example fixed cryp-
tography and centralized Public Key Infrastructure (PKI), to remain ahead. By itself
centralized architectures mostly rely upon a single entity to govern trust. This leaves
them vulnerable to accidents or attacks like as Sybil attacks, which use developed
credentials to bombard networks with false data, or DDoS occurrences, in which
excessive traffic can paralyze the system [5]. PKI systems slow certificate revocation
process raises these dangers. Delays in upgrading certificates for example, may lead
to problems for attackers to take advantage of when vehicle identities get hacked
especially in conditions where cars travel quickly between zones [6]. Due to their
dependency on databases of known attacks, current intrusion detection techniques are
very limited which leaves networks vulnerable to new attacks like as adversarial Al
attacks that secretly change sensor data to mislead car systems [4]. Such weaknesses
highlight the need for flexible, autonomous security methods that protect personal
information against new intruders must be developed.

A significant approach can be obtained by combining blockchain technology with
machine learning. By ensuring that vehicle identifies are verified by peer consensus
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instead of a central authority, blockchain’s distributed ledger architecture success-
fully prevents Sybil attacks. By implementing multi-node validation for data broad-
casts, the latest research showed that blockchain based trust frameworks decrease the
flow of harmful messages by 40% in simulated traffic conditions [7]. In the mean-
time, current anomaly detection is an advantage of machine learning algorithms.
Data shows that by learning conventional traffic behavior and identifying mistakes
support vector machines (SVMs) can detect 98.7% of flooding attacks and gray-
hole attacks in which nodes actively eliminate data [8]. Security is further enhanced
by technologies like software defined networking (SDN) used in combination with
decentralized intrusion detection systems. These methods use blockchain technology
to safely distribute attack reports throughout the network and generating a verifiable,
unbreakable record and deep learning to spot previously unknown vulnerabilities [9].
In comparison with older PKI models the tasks like the ABAKA protocol decrease
authentication latency by 35% by combining ML based behavior modeling with
lightweight authentication solutions (such elliptic curve cryptography) [10]. Figure 1
shows the architecture of VANET.

Fig. 1 Architecture of VANET
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2 Literature Review

VANETs now support various services beyond safety applications, thanks to
advances in car hardware and software, including infotainment, driver assistance,
and video-on-demand services. Although these advancements enhance user expe-
rience and transit efficiency, they also present security, privacy, performance, and
Quality of Service (QoS) issues [11]. Vehicle-to-Everything (V2X) research makes
extensive use of Al techniques like swarm intelligence and deep learning, which
enhance safety and communication in transportation systems. Predicting traffic flow,
increasing optimization algorithms, simplifying signal timing design, using machine
learning to control congestion, striking a balance between performance and fairness,
guaranteeing user acceptance, improving privacy, and integrating communication
systems like DSRC and C-V2X are some of the areas that still face challenges.
Building confidence in Al-powered vehicle safety, preventing unforeseen issues from
Al solutions, testing user reactions to Alin V2X, protecting privacy while monitoring
fleets of vehicles, enhancing the detection of anomalies and attacks in V2X networks,
utilizing Mobile Edge Computing (MEC) for real-time safety in autonomous driving,
and addressing the cost and implementation of DSRC are some of the unresolved
issues [12]. Another way to group Al systems is by their level of understandability;
interpretable Al differs from non-interpretable Al. Neural networks (NN) and other
algorithms are frequently referred to as “black-box systems” since they excel at
predicting recommendations but have difficulty explaining how they do so. Such
systems are challenging to examine and verify due to their lack of transparency [13].

There are still security problems in VANETSs especially when it comes to
protecting user privacy. Using pseudonym linkage techniques to monitor vehicles
is an ongoing challenge particularly in very unstable network conditions [14]. Due
to delayed certificate validations, centralized public key infrastructure (PKI) models
which are frequently employed for authentication face operational challenges in
high speed scenarios. Attacks via Sybil or imitation by attackers are more likely
as a result of these inefficiencies [15]. Due to their failure to adjust quickly to
sudden topology changes or network spikes, legacy intrusion detection systems
(IDS) that rely on preset algorithms find it difficult to fight advanced attacks like
machine learning augmented DDoS operations. Responsive machine learning and
blockchain decentralized trust mechanisms have been combined in emerging hybrid
techniques. Blockchain tamper proof ledgers, for example, have been shown in exper-
imental experiments to lower pseudonym abuse rates by over one-third, strengthening
control without sacrificing privacy [16]. Meanwhile, deep learning algorithms, such
as CNNss beat antiquated signature matching methods by achieving 97% accuracy in
identifying novel incursions by mapping minor shifts in data flow.
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References | Advantages Limitation

[17] Vehicle-to-everything (V2X) V2X communication faces serious
communication is essential because it security threats that must be addressed
allows cars to talk to other cars, effectively
infrastructure, and other objects like
pedestrians, allowing for smart driving

[18] ML models, including Random Forest The research’s modest sample size and
(RF), Extra Trees (ET), XGBoost, and | diverse datasets may restrict the ability
LightGBM, using the processed to generalize of its findings.
CICIDS dataset to find the best model | Additionally, it depends heavily on
for building an Intrusion Detection high-quality data, which isn’t always
System (IDS) accessible in real-world scenarios

[19] The Internet of Vehicles (IoV), which However, there are still issues with data
combines Al and machine learning, has | processing, cloud network integration,
transformed the development of smart | big data management, and effective
cars. It enables automobiles to vehicle-to-vehicle communication
communicate with their surroundings
and connect to public networks

[20] Vehicle-to-Everything (V2X) enables However, it might be difficult to

information exchange between vehicles
and their environment. This significant
development goes beyond simple
communication and improves the safety
and sustainability of urban areas by
enabling vehicles to speak with traffic
signals and road signs

integrate V2X with current
infrastructure, and in order to ensure
compatibility, changes or modifications
are frequently needed. Due to the need
to set up vehicle sensors and secure
communication channels, V2X network
deployment is highly costly

3 The Role of IoT in Enhancing Vanet Communication

The Internet of Things (IoT) connects different devices to the Internet so that they can
share data and communicate without human assistance. Social networks (SNs) and
this approach work together to create a network infrastructure that permits commu-
nication between autonomous devices. Accordingly, by creating social networks
among devices based on shared services and interests, the Social Internet of Things
(SIoT) improves user experiences. SIoT can be crucial in Vehicular Ad Hoc Networks
(VANETS) to enable effective communication between humans and IoT-enabled
smart cars [21]. Applications of IoT have also expanded to smart cities, where
governments use the technology for urban planning, infrastructure preservation, and
environmental monitoring. The Internet of Things (IoT) has improved everyday life,
business operations, and urban development by enabling seamless communication
and connecting intelligent gadgets, thereby changing how we interact with the outside
environment [22].

Significant data security and privacy issues are raised by the widespread use of 5G-
enabled IoT due to its easier connectivity and integration of satellite and terrestrial
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Fig. 2 Three-tier architecture of IoT

networksBut it additionally provides a lot of opportunities to gather digital evidence,
which is essential for checking into security events and cybercrimes. This evidence
must be properly gathered, safely maintained, and thoroughly examined in order for
5G IoT networks to be implemented successfully [23]. The IoT’s three-tier design is
shown in Fig. 2.

3.1 Key Challenges in Vanet-Enabled IoT Environments

The spreading of invalid data is a major issue in Vehicle Ad Hoc Networks (VANETS)
which can harm safety and stop navigation. A Misbehaviour Detection System
(MDS) identifies fake data that is sent within the system instead of actually applying
misconduct units [24]. Routing in VANETS is hard due to the heavy traffic and always
shifting connections and repeated failures of networks. Both outside problems like
the road design and blockages that block signals and inside factors such as vehicle
speed and unstable motion can have an effect on routing systems.
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For addressing these unexpected situations transport system have to be very flex-
ible. This means choosing on ideal sending and routing methods and using the right
model for transmitting signal and motion of vehicle [25]. The network structure
of VANETS is highly open to attackers growing issues on possible stability. Since
actual VANET deployment is difficult and costly simulation are usually used as a
cheaper and easier choice. These simulations’ accuracy might not, however, always
correspond to actual situations. Studies have indicated that the selection of mobility
models in simulations significantly influences the realism of the outcomes [26].

Unauthorized access to private vehicle data is an aspect of VANET privacy threats.
A car and its driver are directly connected; thus, any violation of this data compro-
mises the privacy of the driver. Since the owner of the car is typically also the driver,
both the owner’s and the vehicles privacy are at risk if an attacker manages to obtain
the owner’s identification. Identity disclosure is the term for this kind of attack. Loca-
tion monitoring, in which a hacker tracks the position or path taken by the vehicle, is
another common privacy risk. This data is regarded as private and may be exploited
[14]. Although cloud data centers are utilized on the back end of VANETS, there are
certain difficulties because of their centralization. Large data transfers, such CCTV
footage or traffic and road sensor data, are difficult for centralized cloud computing
to manage because of unnecessary latency. For example, drivers must make fast
decisions to change lanes, avoid traffic, or find parking spaces in a busy city. These
situations need for quick reactions, which centralized cloud solutions aren’t always
able to deliver [27].

3.2 Common Attacks Targeting Vanet Security

VANET is an automated network created between vehicles having communication
capabilities. Although the design and implementation of VANETSs have advanced
significantly, their security issues have received far less attention. VANETS, a crucial
part of Intelligent Transportation Systems (ITS), have enormous potential to improve
traffic safety and make a variety of value-added services possible.

VANET security is still a major concern, though. Recently, a variety of attacks
have surfaced that jeopardize these networks’ availability, privacy, and integrity. For
VANET applications to be dependable and trustworthy, secure communication is
necessary [28].

A. Denial of Service Attack (DOS)

One of the biggest risks to any network is a Denial of Service (DoS) attack. A
denial-of-service attack’s main objective is to prevent legitimate users from using
network services. Attackers do this by flooding the network with false messages,
which causes congestion. This causes the network to become overloaded, diverting
focus or decreasing the network’s overall effectiveness.

B. Distributed Denial of Service (DDoS)
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In a VANET setting, a Distributed Denial of Service (DDoS) attack presents a far
greater danger than a DoS attack. This is due to the distributed nature of DDoS
attacks. In this kind of attack, a real vehicle is simultaneously targeted by several
threatening cars from various locations. Additionally, they could transmit their fake
communications at various times, which makes it extremely difficult to identify, stop,
or track down the attack.

C. Black Hole Attack

In a network, a “Black Hole Attack” occurs when hostile nodes trick other nodes
into sending data via them. These malicious nodes share fake routing information to
make it appear as though they had the best path to the target. The malicious nodes
disrupt the network by either dropping the data or misusing it for their own gain once
the sender has trusted them and sent the data.

D. Wormhole Attack

A Wormbhole Attack is a kind of Black Hole Attack in which malicious vehicles create
a fake shortcut or tunnel between the sender and the recipient, making it appear as
the shortest path in the network’s routing table. When looking for the simplest way
to transfer data the sender choose this fraud route. Once transmission starts over this
false the tunnel its safety fails because hackers may interrupt the data and listen on
them corrupt them or misuse it for themselves.

E. Illusion Attack

An illusion attack happens when a hacker precisely sends incorrect details to Road
Side Units (RSUs) and close car about congestion or his or her vehicle. Because driver
use such signal to drive safely these fraud messages have the capacity to misleading
them affecting their ability to drive and might result in accidents or connectivity
problems.

F. Timing Attack

In VANET a time attack occur when a suspicious car purposely slows essential
signals. Because cars rely on real time data delays may make it ineffective. When
a hacker delayed sending a crucial message it arrives at the receiver too late which
lead to this attack. This delay might occur to accidents and wrong choices or poor
connectivity.

G. Man in Middle Attack

When an attacker vehicle silently detects the communications of two cars ina VANET
this is known as a man in middle attack. It controls the conversation while deceiving
both cars into believing they are speaking to one another directly. This gives a hacker
a way to changed transmissions and adds false material or take information while
pretending that an everyday talk is happening.

H. Global Positioning System (GPS) Spoofing
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When a hacker transmits fake location signals to mislead the GPS system, this is
known as GPS spoofing in VANET. In this technique, the hacker’s vehicle employs
a GPS simulator to send stronger fake signals than the real ones. GPS tracks auto-
mobiles using signals and unique IDs. This makes other vehicles assume they are at
the wrong area, leading to confusion, accidents, or network difficulties.

1. Social Attack

A social attack occurs when an attacker attempts to indirectly create problems by
affecting network users’ behavior. “You are stupid” and other random, insulting, or
discouraging remarks are sent to legitimate users by the attacker. Users’ behavior
may shift from positive to negative after reading these messages, becoming irritated
or upset, which may cause disruptions to the network or their behavior.

J.  Sybil Attack

A sybil attack is a risky attack in which the attacker creates several fake identities or
vehicles within the network. By creating the appearance of a large number of vehicles,
the attacker can gain control of the network or spread misleading information. This
may hinder the performance of the network harming authorized users. This attack is
extremely challenging to identify and stop because the attacker may even pretend to
be in multiple places at once [29].

4 Artificial Intelligence for Strengthening Vanet Security

Intelligent Transportation Systems (ITS) are a crucial part of the Internet of Things
in the context of smart cities. Even though ITS has many of the same general features
as IoT, it also has unique needs, like precise timing, dynamic environments, and the
ability to handle massive amounts of data. Strong cyber security is one of the most
important requirements of ITS. Applications of ITS are often divided into three cate-
gories: entertainment, road traffic efficiency, and transportation safety. To guarantee
the physical safety of road users, road safety applications must meet strict real-time
standards and have strong cyber security safeguards. Applications for distraction and
road traffic efficiency need high levels of cyber security even though they are not
directly related to safety. Any compromise in these systems may affect ITS’s overall
functionality [30].

Commonly found in automobiles, the CAN (Controller Area Network) bus
protocol is developed to guarantee reliable communication and safety during oper-
ation. It was not, however, constructed with robust safeguards against current cyber
security threats. The quantity of Electronic Control Units (ECUs) in automobiles is
also growing quickly. Because every ECU adds possible weaknesses to the system,
this growth increases the probability of cyber-attacks. Since low latency is necessary
to guarantee the dependability and availability of safety—critical functions, latency
is one of the most important components of CAN bus security. Denial-of-Service
(DoS) attacks, in which difficult traffic results in bandwidth congestion and delays
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vital connections, can unfortunately take advantage of latency. The vehicle’s systems
might fail to function as planned as a result of such delays [31].

Researchers are trying to find ways to protect autonomous cars and their networks
against malware and cyber-attacks that take advantage of Connected Vehicles (CVs)
as they exchange data. This entails determining the origin of the attacks and exam-
ining the CVs to determine the mode of infection transmission. Predicting possible
threats to autonomous vehicle networks (AVN) and data communication between
autonomous cars (DCAV) is crucial for the efficient detection of these attacks. The
complexity is increased by the fact that more recent CV types have extremely brief

communication cycles, making it difficult to identify and stop attacks [32].

5 Advanced Al Strategies for Security Vanets

References | Advantages Limitations

[33] IoT security is improved by machine Limited to predefined models and could
learning (ML) algorithms, such as need a lot of training data to function
transaction and decision algorithms, well in changing and dynamic settings
which preprocess data and make
effective decisions

[34] Advanced defense against cyberattacks | Because Al technologies cannot
using Al and ML methodologies is completely replace human intelligence,
offered by Al-based solutions such as | more effective solutions require a
Darktrace, Deep Armor, and Cognigo’s | “human-in-the-loop” strategy
Data Sense

[35] Massive traffic data may be efficiently | The financial effect of cyberattacks is
analyzed by Al and ML to spot patterns | expected to increase from $3 trillion to
and prevent attacks $5 trillion by 2024, indicating that their

size may surpass present Al capabilities

[36] Microsoft and Pacific Northwest Needs a lot of processing power and
National Laboratory’s neural networks | might still have trouble finding new
and GANSs effectively provide attack techniques or cautiously hidden
malicious inputs to find vulnerabilities | vulnerabilities

5.1 Predictive Security in Vanets: Machine Learningmodels

IoT devices, like sensors, generate massive amounts of data at an increasing rate;
for instance, data size was projected to grow from 44 zettabytes in 2020 to 163
zettabytes by 2025. Traditional servers are unable to handle this data, which gives
attackers the opportunity to exploit vulnerabilities using techniques like ransom ware
or SQL injections.
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A. Machine Learning as a Solution

Machine Learning (ML) provides an effective solution by processing large datasets,
identifying anomalies, and updating models in real-time. Organizations invest heavily
in ML to secure their systems because these models can detect abnormal patterns
more quickly and accurately [37]. An anomaly detection system that uses the Prin-
cipal Component Analysis (PCA)-subspace approach in network backbones was
subjected to three poisoning attacks by Rubinstein et al. They demonstrated how
even a tiny quantity of incorrect information might drastically impair the detector’s
functionality. Although this method is simple and efficient, it is only applicable to
binary classification and is not applicable to other learning techniques.

B. Chronic Poisoning Attacks on Machine Learning

The Edge Pattern Detection (EPD) technique was used by Li et al. to create a chronic
poisoning attack against machine learning-based intrusion detection systems (IDS).
Support Vector Machines (SVM), Logistic Regression (LR), and Naive Bayes (NB)
are just a few of the learning algorithms that can be targeted by this method. However,
this approach is difficult to use and depends on a steady, long-term poisoning process
[38]. Both sides of the cybersecurity battle use machine learning techniques: attackers
use them to take advantage of vulnerabilities, and defenders use them to identify
threats.

C. Evaluation of Machine Learning Models for Threat Detection

Using widely used benchmark datasets, this review evaluates how well three learning
models detect and categorize malware, spam, and intrusions. The evaluation was built
on metrics such as recall, accuracy, and precision [39].

6 Vanet Privacy and Intrusion Detection Solutions

Because high-density communication networks contain many interrelated parts, they
require quick and precise Intrusion Detection Systems (IDS) to remain safe. Threats
such as insider threats, denial-of-service (DoS) attacks, scanning attempts, illegal
access, and novel (zero-day) attacks may all be detected by IDS. IDS secure sensitive
information and overall stability by using Al to find unusual activities and identify
patterns by letting users to react quickly to threats [40].

As information numbers grow ML help in spotting unusual features in VANET. A
number of ML algorithms like Support Vector Machines (SVM) and neural networks,
decision trees and also Bayesian methods use by IDS for VANET. The Bayesian
strategy which relies on Bayes theorem makes a guarantee that each element of a
situation in VANET performs freely. The Naive Bayes classifier operates perfectly
with complicated data and has been simple to use and gives ideal performance in
classification. It works as well on very massive data sets [8].

The Random Forest algorithm in intrusion detection systems is good at detecting
a variety of cyber attacks such as flood and gray hole attacks. It can achieve high
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accuracy using an array of six key characteristic. It not just secures the system from
assaults but also improve the reliability and speed of wireless sensor networks [41].
Explainable Artificial Intelligence (XAI) is beneficial for VANET security because
it reduces Al decisions. This allows management and clients figure out the reason
behind what decisions Al detectors make that they might react properly. By increasing
the openness and understanding of Al driven security XAl increase trust in VANET
protections. [16].

Public Key Infrastructure (PKI) is needed for private access to and control in
networked controls, cloud networks, and V2V connections. In various network
arrangements, it aids in verification of identity and safeguards data against exploita-
tion [42]. Vehicles can link and exchange critical safety data via a Decentralized
Mesh Network (DMN), improving road safety and communication. In this network,
every vehicle acts as a connector, extending its reach and resilience. Without a central
authority, the system keeps in touch and adapts to errors. Security is ensured by end-
to-end encryption and trust mechanisms, which verify the authenticity of communi-
cations and prevent harmful attacks. The DMN is scalable, reliable, and secure, and
it can handle a variety of vehicle numbers at various places [43].

Machine learning ability to identify trends is essential in modern intrusion detec-
tion. A significant improvement over rigid rule based frameworks that are insuffi-
cient against changing methods of attack is provided by Long Short-Term Memory
(LSTM) networks which, for instance, examine time series traffic information to
identify DDoS anomalies with 96% reliability [44]. In a similar way grayhole and
wormhole intrusion detection is enhanced by 22% using combined methods like
Random Forest (RF) which analyze packet routing deficiencies thoroughly [37]. The
unchanging audit files of blockchain technology offer forensic integrity to bridge
trust issues in shared IDS setups. Distributed ledger backed solutions decrease error
rates by 18%, according to Gupta et al. [37] by keeping tamper evident records of
attack incidents which accelerates post-incident examinations [32].

Modern systems use machine learning for real-time identification of anomalies in
order to defend against Man-in-the-Middle Attacks (MIMAs). Convolutional Neural
Networks (CNNs) for example, have shown an amazing amount of effectiveness in
identifying spying efforts. CNNs identify attack by analyzing minute shifts such
as irregular signal patterns or microseconds of delay in data packets, in opposed
to outdated threshold-based techniques. A recent research study suggests that these
models achieve an efficiency of 94% in identifying suspicious behaviors by outper-
forming traditional methods that cannot react to new dangers [32]. Combining the
concept of blockchain to this develops another line of defense. Hybrid frameworks
which involve decentralized ledgers and machine learning have took over vehicle
network protection. Smart contracts lessen MIMA attacks by over a third [34]
by concluding session keys during communications. By developing algorithms for
detecting right away on vehicle information without centralizing private data decen-
tralized federated learning tackles privacy challenges while maintaining a balance
between privacy and the high efficiency requirements of VANETSs [38].
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7 Cryptographic Solutionfor Privacy in Vanets

Vehicular Ad Hoc Networks (VANETS) provide useful features by enabling data
sharing and communication between vehicles. However, these networks have diffi-
culty meeting the high needs of 5G technology as the number of cars increases. By
eliminating points of failure and enabling peer-to-peer communication, decentralized
systems improve security, privacy, and reliability, making them a promising alter-
native. Vehicles may safely manage communication and trust by utilizing cutting-
edge technologies like digital wallets and contemporary cryptographic techniques.
Researchers are investigating decentralized alternatives and becoming ready for
future requirements, such as quantum-resistant security, because traditional systems
that rely on central authorities have limitations [5]. Elliptic Curve Cryptography
(ECC) is a safe technique that protects data and guarantees privacy by utilizing the
mathematical features of elliptic curves. Intruders feel it hard to get past the Elliptic
Curve Discrete Logarithm challenge (ECDLP) because it is challenging to figure
out. VANET use Elliptic Curve Cryptography (ECC) for private way of authenti-
cation and safe transmission. These strategies provide secured transmission of data
by using pseudonyms and secret keys and hidden identity. Many of these ideas
involve boosting the process by avoiding overhead and keeping privacy while main-
taining that cars and RSU can verify one another. This facilitates the release of false
details and maintains safety in VANETs [6]. Additional services have been rendered
possible by Huang et al.’s Anonymous Batch Authentication and Key Agreement
(ABAKA) technique, which facilitates secure communication between vehicles and
service providers (SPs). By enabling the authentication of numerous cars simultane-
ously rather than one at a time, ABAKA enhances the procedure. Private keys and
pseudonyms are used to provide cars with privacy while maintaining security, and
Tamper-Proof Devices (TPDs) are used to create keys using ECC [15].

Elliptic Curve Cryptography (ECC) is getting more common in VANET security
due to takes smaller keys and is free to quantum attacks. Fast identification is made
feasible without risking car ID. This is crucial when you face a danger to security
and action occur rapidly [6].

Also regular surveillance becomes easier by combining blockchain technology
with machine learning resulting in easier to detect attacks and sustain safety. Think
about smart contracts that apply embedded machine learning algorithms to detect
unauthorized activity in addition to performing operations. It greatly raises the rates of
which attacks are detected by system [45]. Progress are being improved by blockchain
technologies like as zero knowledge proofs that give automobiles the ability to check
who they are without giving information and Merkle trees that tie actions to open data
and offer an irreversible inspection path. Together these tools are changing VANETS
validity and trustworthiness [46].
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7.1 Blockchain-Based Privacy for Vanets

High node mobility and instability and security are some of the problems that
VANETs deal with. The spread of false data, such as phony emergency alerts provided
by attackers, poses an important risk to the effectiveness and security of transporta-
tion. To address these issues, a blockchain-based method for authentication and trust
management is proposed. The trust management approach evaluates the vehicle’s
and the data’s dependability in order to detect and prevent false information [45].
When a leaf node is added or removed in response to a certificate being issued or
revoked by the Certificate Authority (CA), the Merkle Patricia Tree (MPT) updates
its root. These changes and transactions are documented periodically in a Certificate
Management Tree (CMT).

The blockchain stores the MPT (Certificate Root) and CMT (Transaction Root)
roots in an immutable manner [7]. A blockchain-based anonymous reputation system
that uses reputation certificates was proposed by Lu et al. [46] to stop cars from broad-
casting false messages. Similar to this, Yang et al. made use of blockchain technology,
which records a car’s reputation directly on blocks. These blocks are made and main-
tained up by the cars that are adjacent to the one being evaluated. A distributed public
ledger protected by hash functions, proof-of-work (PoW) consensus, and Merkle
trees, blockchain was first introduced with the Bitcoin protocol in 2008. Blockchain
is appropriate for developing trust models in VANETSs because of these character-
istics. Any network entity can verify the permanent and tamper-proof ledger that
it creates by recording all messages and authority acts. However, since transactions
associated with a public key can be linked to actual identities by looking at the ledger,
privacy was not considered in the original design of Bitcoin [47].

8 Intrusion Detection Systems (IDS) in VANETSs

There are two types of attacks in VANETS: internal and external. Digital signatures
along with other cryptographic techniques are used to prevent internal attacks, but
they are unable to identify external ones. An Intrusion Detection System (IDS) is
required to manage external threats like Brute Force, Botnet, Ports can, and Denial
of Service (DoS) attacks [44].

A. Intrusion Detection System (IDS) Deployment

The performance of IDS varies depending on where it is deployed; it typically goes
on cars, cluster heads, or roadside units (RSUs). The majority of intrusion detection
systems, however, are restricted to identifying anomalous activity brought on by
particular kinds of attacks within their local sub-network and focuses on particular
areas of the VANET. This makes it impossible to monitor the VANET as a whole.
As a result, creating an improved intrusion detection system (IDS) that can identify
any unusual network activity throughout the VANET system is essential [9]. Any
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Fig. 3 VANET systems, which connect multiple vehicles to the centralized controller

activity that compromises the availability, confidentiality, or integrity of resources
is referred to as intrusion in VANET. Firewalls and intrusion prevention systems
make up the first line of defense, while intrusion detection systems (IDS) make up
the second. Intruder and intrusion types, detection techniques, data sources, core
location, infrastructure, and usage frequency are some of the variables that can be
used to classify intrusion detection systems (IDS) [48].

B. Machine Learning Approaches in IDS for VANET

IDSs in VANET detect cyber attacks using a variety of machine learning (ML)
approaches. To categorize opposed nodes, these systems examine features taken
from wireless network traffic. The location of the IDS deployment and high-quality
training datasets are two essential components for reliable detection. While collab-
orative IDSs may encounter difficulties such as slower detection times and perfor-
mance problems when vehicles exit the network, lightweight distributed IDSs are
made to minimize computing complexity [49]. Figure 3 shows the VANET systems,
which connect multiple vehicles to the centralized controller, which is called RSU
module. The attackers mostly affected the interference between each vehicle and the
interference between the vehicle and the centralized controller.

9 Conclusion

Vehicular ad hoc networks or VANET are an innovation in intelligent transporta-
tion systems that integrate with the Internet of Things (IoT) ecosystem. But the fast
interaction changes set forth by 5G and Al driven systems come with major safety
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and detection problems. In addition to cryptographic solutions like Elliptic Curve
Cryptography (ECC) and blockchain for protected interaction and identity security
this work highlight the importance of Al like ML and DL as they enhance VANET
capacity to identify and prevent challenges. Despite the encouraging advancements,
VANET have difficulties including increased mobility and the requirement for real-
time reaction which necessitate reliable and expandable security solutions. Despite
Al outstanding danger prediction and intrusion detection skills, its need on high
quality data and computing power continue to be a drawback. Like to this blockchain
and encryption technologies increase safety and security, but they also present
challenge for scalability and interoperability with existing systems.

Future research should concentrate on improving system scalability by adjusting
to changing cyber threats and closing the separation between concepts and real
world operations in order to guarantee the security and effectiveness of VANETSs
in IoT enabled smart cities. For next-generation transport networks, VANETs may
provide a safe and private environment by combining state-of-the-art cryptographic
frameworks with Al-driven innovations.
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Security

Muneeba Mubarik, Syed Nasir Mehmood Shah, and Umme Zahoora

Abstract Vehicular Ad Hoc Networks (VANETS) are vital inimproving safety, secu-
rity, and overall quality of life in robust development of smart cities. VANETS are
highly vulnerable to cyberattacks due to high mobility of vehicles and lack of central
security control management. Intrusion Detection Systems (IDS) provides first layer
of defense, which is mainly dependent on vehicle collaboration model for possible
detection of cyber security threats. Unfortunately, many traditional IDS methods have
shown poor performance due to corruption, leading to abnormal behavior and reduced
effectiveness. The detection of emerging cyber security threats requires Machine
Learning (ML) models. This paper presents the comparative performance analysis
of ML algorithms to possibly detect cyber security threats in various computing
environments with limited resources including embedded systems, IoT systems and
VANETS. The work uses two well-known datasets namely benchmarked network
dataset i.e.; NSL-KDD and VANET dataset i.e.; Erlangen for detailed evaluation of
ML algorithms: Support Vector Machine (SVM), Random Forest (RF), k-Nearest
Neighbor (kNN), and Decision Tree (DT), Logistic Regression (LR). The perfor-
mance evaluation is carried out on key performance measures including precision,
recall, F1-score, and efficiency in computations. This paper presents EdgeAnomSift,
a framework that divides the NSL-KDD dataset into smaller parts to evaluate model
performance under different training conditions in a scalable way. Experiments with
the NSL-KDD dataset show that DT and RF provides high rates of accuracy and effi-
ciency in detecting attacks making it a best algorithm. KNN works well with datasets
in smaller size but is ineffective for large computing. SVM is not suitable for real-time
detection as it requires a lot of computing power. LR is resource-efficient but needs
improvements for the detection of rare attacks. The results show that RF and DT are
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the best models for Intrusion Detection Systems (IDS) in VANET computing. LR
and SVM need more improvement. Tests with the Erlangen dataset confirm that DT
is the top choice for VANET security, followed by RF. These findings suggest that
efficient ML models can help improve cybersecurity in vehicle networks. The study
also explores practical uses, such as linking ML-based IDS with security tools like
SNORT. It also suggests future research to enhance intrusion detection in dynamic
vehicle systems.

Keywords VANETS - Resource constrained environment + ML algorithms - IDS

1 Introduction

Computer networks must be secured from unauthorized access and malicious
behavior through strong security measures because of our increasing dependence on
networked devices. Cyber-attacks like data leak unauthorized access, and cyberthreat
are affecting the traditional security measures. Antivirus software, firewalls, and
encryption provide a level of protection, but at the same time modern networks
requires more efficient and adaptive security measures to counter emerging threats.

IDS is capable of monitoring all network task by identifying network intrusions,
to identify anomalous behavior, alerting system administrators to take mandatory
actions before substantial damage is done. The amount of network data continually
increases with passage of time and demands for intelligent as well as efficient IDS,
that can handle large-scale traffic while minimizing the risk of false positives and
negatives [1].

The main aim behind effective IDS is to alert the system administrator about any
suspicious activity by monitoring actions happening within the system [2]. The issue
of protecting networks in resource-constrained contexts becomes more obvious as the
number of devices linked to networks and network complexity keep on increasing,
especially in areas like IoT and VANETSs. Because of their limited memory,
energy, and processing capabilities, VANETs—which allow wireless communica-
tion between vehicles for improved traffic management, automotive engineering,
road safety, and autonomous driving—are especially vulnerable to cyber-attacks [3].
Traditional IDS solutions are often impractical in such environments due to the over-
head they introduce; this calls for the development of (ML)-based IDS solutions that
are computationally efficient, scalable, and lightweight.

ML techniques have widely known for their efficient performance in improving
the effectiveness of IDS by providing adaptive learning skills and the capacity to
identify previously unidentified attack patterns. In anomaly-based IDS solutions,
ML algorithms can recognize patterns of normal behaviour by training, allowing
the system to identify deviations that may indicate an intrusion However, there
are particular difficulties when implementing ML algorithms in environments with
limited resources, such embedded systems, VANETS, and Internet of Things devices.
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These settings necessitate algorithms that maximise accuracy while simultaneously
optimising processing time, memory utilization, and energy consumption.

The goal of the research investigation is to analyse the effectiveness of baseline
machine learning algorithms in identifying network and VANET-specific threats,
with an emphasis on how well they work in real-time, resource-constrained settings.
In the context of IDS for resource-constrained systems, this work examines the
performance of five well-known machine learning algorithms: DT, kNN, RF, SVM,
and LR. Two important datasets used in this research: the NSL-KDD dataset for
network attacks and the Erlangen City traffic dataset for VANET-specific attacks.
we want to provide important insights into the algorithms’ scalability, computational
effectiveness, and detection precision in real-world situations through this research.
This paper makes several key contributions:

1. Ananalysis of how well conventional algorithms for machine learning perform in
contexts with limited resources, with a focus on memory utilisation, computation
time, and scalability.

2. Deep investigations on ML algorithms’ suitability for network and VANET secu-
rity, emphasising how well they identify different kinds of cyberthreats and
attacks.

3. A comprehensive evaluation of how well the algorithms function with different
data sizes, with an emphasis on real-time IDS deployment in systems with limited
resources such VANETS, edge devices, and embedded systems.

In later sections, there is details about existing research in the field of ML based
IDS for resource-constrained systems, dataset’s description and methodologies used
in this study, present the experimental results, and interpret the significance of our
findings for future IDS development in both traditional networked systems and
emerging environments like VANETS.

2 Related Work

ML algorithms are highly effective and perform so well in the field of IDS, they
have been utilised all over the world to detect malicious activity in networks. The
task of an IDS is to alert the system administrator about any suspicious activities [4].
Machine learning helps in identifying and classifying security threats within IDS [5].
A hybrid intrusion detection system can be designed by combining ML techniques
with conventional security procedures.

By applying appropriate machine learning algorithms, existing detection
approaches can be improved in identifying and detecting assaults [6]. In one study,
an Intrusion Detection System (IDS) was automatically constructed using Weka and
RapidMiner. The NSL-KDD dataset was subjected to four classifiers: Random Forest
(RF), Sequential Minimal Optimisation (SMO), Multi-Layer Perceptron (MLP), and
Naive Bayes (NB). According to the findings, RF provided the best accuracy. Because
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Auto-WEKA can select the optimal classifier and settings automatically with minimal
configuration, it was suggested.

Samawi et al. [7] A special hybrid model using the Random Forest-Recursive
Feature Elimination (RF-RFE) method is proposed to improve the accuracy of IDS
[8]. To further improve IDS performance, a hybrid ensemble model using RF-RFE
was introduced. The effectiveness of classifiers was evaluated based on accuracy,
error rates, response time, recall, precision, and F1-score [9]. When comparing clas-
sifiers, the Decision Tree worked faster than Naive Bayes but was less accurate and
had more errors. An experiment was done using the NSL-KDD dataset in WEKA to
test different ML algorithms. Among them, RF performed the best, reaching a preci-
sion rate of 98.6% [10]. Various algorithms were used to classify attacks and find the
most effective method for predicting and identifying security threats [11]. However,
algorithms, specifically DL models, require high processing power and large amounts
of data, making their use challenging in resource-limited environments. The issue
of its usefulness in environments with limited resources remains unresolved. Few
researchers are focusing on this element in the literature, with an emphasis on deploy-
ment in mobile devices like smartphones, a number of efficient neural networks
(NNs) have been created, including Once-for-All [12], ShuffleNet [13], EfficientNet
[14], and MobileNet. These deep learning models signify a change from focusing
only on accuracy to taking model complexity into account. While some of these
networks assess efficiency by counting MACC (Multiply-Accumulate) operations,
others are optimised to minimise the amount of weights and biases. For example, Cai
et al. [15] suggest a more sophisticated heuristic by creating a prediction technique
called Neural Power that calculates the energy usage of each layer and adjusts the
network appropriately. This research concentrates on optimizing neural networks,
which already need a lot of resources. Additionally, models are optimized in terms
of their design and calculations using the methodologies that have been explained.
In order to bridge this gap, we are investigating the effects of different data sizes in
the constraint-restricted context rather than optimizing model computation. Instead
of using deep learning models for this, we employed traditional machine learning
methods. Table 1 presents a summary of the literature survey of systems requires
further investigations into variable-sized datasets. Hence evaluating the effectiveness
of ML algorithms across both small and large-scale systems is the basic requirement
of this study.

The use of the NSL-KDD dataset for IDS that address performance and adapt-
ability issues in resource-constrained environments is the main topic of this compara-
tive study of several research papers. Another gap is real-time adaptability as models
need to adjust for progressing instances, including embedded system. Research
including comparison of multiple datasets (e.g., UNSW-NB15 vs. KDDCup99 or
NSL-KDD) reveals the adaptability for effective deployment in environments with
changing data constraints and features. This analysis emphasizes the need to eval-
uate machine learning (ML) algorithms scale able data sets ranging from small,
medium to large data set. The proposed method is essential for understanding how
different machine learning models behave in settings with limited resources, particu-
larly when continuous learning is required. Model training and retraining efficiency
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Table 1 Related Work
Study | Research focus Dataset used Algorithm | Detected Gap Identified for
used intrusions | resource-constrained
systems
[16] Optimized NSL-KDD SVM, RF, | DOS, Calls for lightweight,
multi-stage ML KNN Probe, scalable models for
framework for U2R, R2L | real-time IDS in
IDS resource-limited
environments
[17] Particle swarm NSL-KDD PSO, SVM | Probe, Highlights need for
optimization U2R, DOS | efficient,
(PSO) for IoT-compatible
ToT-based IDS models to reduce
computational load
[18] Feature selection | NSL-KDD Feature DOS, Requires
optimization for selection, Probe resource-efficient
IDS KNN solutions for
embedded IoT
deployments
[19] Neural networks | NSL-KDD CNN, KNN | R2L, U2R, | Suggests lightweight
and nearest DOS NN models for
neighbors for real-time use
IDS
[20] For cloud-based | NSL-KDD WEKA DOS, Emphasizes need for
IDS classification (various Probe, R2L | models that perform
algorithms are classifiers) well on smaller data
evaluated subsets for cloud
scalability
[21] Supervised NSL-KDD WEKA DOS, R2L, | Suggests adaptive
discretization to Probe classification for
enhance classifier dynamic systems
performance
[22] Comparison of | NSL-KDD WEKA, Probe, U2R | Notes gap in
IDS models with SVM, DT adaptability for
focus on constrained, real-time
NSL-KDD systems
[23] Comparison of NSL-KDD, KNN, U2R, DOS, | Suggests optimized,
datasets for KDDCup99 SVM, NB | Probe adaptable models for
IoT-focused IDS embedded systems
[24] SVM-based IDS | NSL-KDD, SVM Probe, Highlights need for
model evaluation | KDDCup99 DOS scalable,
resource-efficient
SVM models
[25] Comparison of NSL-KDD, RF, NB DOS, R2L | Adaptive IDS for
UNSW-NB15 UNSW-NBI15 real-time, embedded
and NSL-KDD environments needed
for IDS

(continued)
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Table 1 (continued)

Study | Research focus Dataset used Algorithm | Detected Gap Identified for
used intrusions | resource-constrained
systems
[26] Classification NSL-KDD WEKA DOS, R2L, | Need for real-time,
performance on Probe adaptive intrusion
NSL-KDD detection in
embedded systems
[27] Focus on NSL-KDD Decision U2R, R2L | Low-memory,
detecting trees, NB adaptive systems for
rare-class attacks rare event detection
in IDS needed

is critical in situations that need continuous learning, such real-time threat detection
in dynamic networks. This calls for a thorough examination of machine learning
techniques on medium-sized datasets in order to balance computational expense and
learning efficacy. Models that can learn incrementally on tiny datasets are more suited
for situations that need frequent updates, according to studies comparing dataset
subsets.

3 Methodology

To ensure the effectiveness of the conventional light weight machine learning algo-
rithm across different domains inn constrained restricted environment we analyzed
it across two different network traffic NSL-KDD [28] and Erlangen dataset [29] for
VANETs. Sections 3.1 and 3.2 contains the detailed workflow of these case studies.

3.1 Workflow of Network Attack Detection Using NSL-KDD

The proposed framework, called EdgeAnomSift, is shown in Fig. 1. It follows a
step-by-step process divided into four main phases using the NSL-KDD dataset.
This framework is designed based on a case study of Sybil attack detection to ensure
its usefulness in real edge-based systems. The framework follows four main phases.
First, preprocessing is performed to prepare the NSL-KDD dataset for analysis. Next,
data splitting is done by dividing the KDDTrain+ dataset into five parts of different
sizes. After that, training takes place, where ML algorithms are trained on each data
split. Finally, testing is conducted to check the output of the trained models.

In WEKA, the KDDTrain+ dataset was split into five parts for training. Each part
was tested using technique named as tenfold cross-validation, which helps measure
the error rate of learning techniques, which involves the segmentation of the dataset
into ten equal parts. The training and testing is repeated ten times, with each part
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Fig. 1 EdgeAnomSift framework

used once for testing and the rest for training. This ensures a fair evaluation of the
ML models.

In training, one part of the dataset is set aside, and the error rate is measured on
this unused part while the model is trained on the remaining nine parts. Repeat the
process ten times, with each part taking a turn as the test set. After all ten rounds,
the average error rate is calculated to determine the overall performance [30]. For
testing, the entire KDDTest+ dataset was used to evaluate each machine learning
model trained on the different splits of KDDTrain+.

3.2 Workflow of VANETs Attack Detection Using Erlangen
City

Figure 2 shows the workflow for datasets used in VANETSs. The process has several
steps: (1) downloading the dataset from GitHub as a.csv file, (2) converting unlabeled
data into labeled data, (3) for training and testing split the dataset to classify normal
and malicious (Sybil attack) instances, and (4) applying machine learning algorithms
to evaluate performance.

3.3 Dataset Details

Following datasets have been used for simulation purposes:
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Fig. 2 Framework for Sybil attack detection in VANET

3.3.1 NSL-KDD Based on Network Traffic Attacks

The KDD Cup has been upgraded with the NSL-KDD. KDD Test+, KDD Train,
KDD Test-21, and KDD Train-20% are its four components. Files of various network
attacks that an IDS must identify in order to stop security risks are included in this
dataset. There are 42 features in each file, 41 of which are associated with network
traffic and the last one is the class label.

The dataset includes four main types of attacks: Remote to Local (R2L), Probe,
Denial of Service (DoS), and User to Root (U2R) [8]. It is widely used for testing IDS
performance and is available on Kaggle. The dataset comes with predefined training
and testing sets to ensure fair evaluation of IDS methods. To train models training set
is used, while the testing set helps measure their performance on new data. Table 2
presents the distribution of real and unreal instances in selected datasets.

3.3.2 Erlangen City Dataset for Vehicle Ad Hoc Network Dataset

The dataset that is used as an application to demonstrate the effectiveness of ML
algorithms in resource constrained system for VANETS as case study. The dataset
of Erlangen, city of Germany, generated from the simulation tool SUMO in which
various cars send requests to a single car. The requests initiated by the sender cars to
one receiver car consist of start and end time. The dataset was initially downloaded
from GitHub as.csv file that consist of unsupervised data, this contains all the traces
having fields such as number of packets, start time, end time, rate (packets per
second), time period, actual distance between receiver and sender, sender stopping
distance, receiver stopping distance, and severity of the request. This dataset was
then converted into labelled dataset for the detection of sybil attack. Sybil attack has
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Table 2 Dataset details

Parameters Description
Source NSL-KDD dataset from Kaggle.com
Description Refined and improved version of the KDD 1999, for training and testing of
Network Intrusion Detection System (NIDS)
Number of KDDTrain+: 125,973
instances KDDTest+: 22,544
Number of 42 (41 input features + 1 class label)
features
Class (target) |— Normal
Types of attacks:
1. DoS
2. Probe
3. R2L
4. U2R
Classes — Normal: real traffic
distribution — Anomaly: malicious traffic or data having non-real instances

been detected based on parameters like high-rate value, large distance values, and
unrealistic values for both receiver and sender stopping distance and high packets
count.

3.4 Data Preprocessing

To guarantee the quality of data, accuracy, integrity, and consistency are three crucial
components. However, there are many inaccurate, lacking, and inconsistent data in
real-world databases and data warehouses. Considering the fact that data preparation
can eliminate unnecessary information from so much raw data. Information unrelated
to modeling, which can not only lower the data’s dimension while simultaneously
quickening the training rate of the model [17]. ML algorithms can be selected from the
classify panel following data preprocessing. WEKA supports classifiers like KNN,
C4.5 (decision trees), RF, SVM, and Logistic for both categorical and numerical
predictions.

Preprocessing: Before training the models, it is important to prepare the data
by normalizing values, selecting key attributes, and handling missing data. WEKA
provides several tools for this process.

Resampling: The resampling of KDD Train + 1 has been done on weka and
presented in Fig. 3. The total number of available instances was 125,973 which have
42 attributes divided into 20%, 40%, 60% and 80%.

Model Training: WEKA provides simple ML methods like DT, LR, RF, KNN,
and SVM. Users can train these models using labeled datasets that contain network
traffic details. WEKA offers two ways to train models: one is cross-validation and
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Fig. 3 Attack and normal instances in NSL-KDD dataset

the other is percentage split. The percentage split method divides the dataset into
separate parts for training and testing, while cross-validation splits it into multiple
sections for a more reliable evaluation. Before training and testing, class labels must
be set [31].

Cross-Validation: WEKA has built-in tools for cross-validation that help check
how well a model works on new data.

Performance Metrics: System results performance measures including accuracy,
F1-score, recall, precision, and the Area under the Receiver Operating Characteristics
Curve (AUC). These help users understand how well an IDS can detect threats.

3.5 T _SNE Plot for KDDTrain+

Anunsupervised non-linear feature reduction algorithm for visualizing and exploring
is called t- SNE (t-distributed Stochastic Neighbor Embedding). By assigning a
position to each data point on a 2-dimensional or 3-dimensional map, the t-SNE
technique helps visualize high-dimensional data by minimizing the tendency for
dots to be crowded together and producing better organized data visualizations. It
has been demonstrated that t-SNE can both disclose a global structure in the high
dimensional data and capture a large portion of its local structure [32]. Figure 4
shows the t-SNE plot of KDDTrain+ dataset. The plot illustrates that, the normal
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Fig. 4 t-SNE plot

and anomaly classes exhibit significant overlap at certain points, highlighting the
inherent complexity and non-linear separable within the dataset.

3.6 Supervised Machine Learning (ML) Algorithm

To identify the learning models that perform well in constrained environments, our
study utilizes SVM, Logistic Regression, and Random Forest. These models require
fewer parameters compared to recent deep learning models, do not require pre-
training, and are less time-consuming. The aim is to further analyze which of these
models is most suitable for specific situations. Regression and classification. While
regression predicts a category to which the data belong, classification predicts a
numerical value derived from earlier data observations [33].



134 M. Mubarik et al.
3.6.1 Decision Tree

ML algorithm, DT classify network traffics as harmful or safe using in an IDS. This
classification is based on different factors like protocol type, source and destination
IP addresses, and port numbers. DT is useful because they can handle both numbers
and categories effectively. They work by categorizing the dataset into micro groups
step by step, based on the values of these features [34].

3.6.2 Random Forest

This machine learning algorithm built multiple decision trees during training.
Random forest proves to be highly effective for information derivation due to its
capability of handling huge and complex datasets and its resistance to over fitting
and hence contributes to IDS effectively [35].

3.6.3 K-Nearest Neighbor

KNN is a simple method that classifies data by comparing it to known examples
from a training set. In an IDS, KNN detects unusual network activity by matching
its features with previously identified cases. Its straightforward and flexible design
makes it one of the most commonly used ML techniques for classification tasks [36].

3.6.4 Support Vector Machine

SVM is utilized for regression and classification tasks, it is a supervised ML method.
Its foundational approach is finding the best boundary, called a hyperplane, to separate
data points into different groups. SVM helps in distinguishing normal and harmful
network traffic by creating a clear separation between the two in IDS. It is especially
useful when data is not easily divided in a straight line [37].

3.6.5 Logistic Regression

A statistical method for binary classification is called LR. In an IDS, it helps predict
whether a network event is harmful or safe. This method works best when there is
a direct or nearly direct relationship between the input features and the expected
outcome [34].
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4 Experimental Setup

This section presents a series of experiments conducted on DESKTOP i5-3470S
CPU @ Intel(R) Core (TM) 2.90 GHz 2.90 GHz having 8.00 GB of RAM to assess
the performance of our approach of dividing the dataset into various sizes for under-
standing how different ML models behave in settings with limited resources, particu-
larly when continuous learning is required. Model training and retraining efficiency
is critical in situations that need continuous learning, computational expense and
learning efficacy. Models that can learn incrementally on tiny datasets are more
suited for situations that need frequent updates, according to studies comparing
dataset subsets.

4.1 Performance Parameters

This study focuses on evaluating the performance of each algorithm using different
assessment measures. The analysis examines several parameters, including Preci-
sion, True Positive (TP) rate, False Positive (FP) rate, Recall, F-measure, Matthews
Correlation Coefficient (MCC), PRC area, and ROC area.

(i) Accuracy: The percentage of correct or true predictions are determined here.
The accuracy is calculated using a formula based on the Confusion Matrix,
the total number of instances are represented by n in following equation.

TN + TP
Accuracy = ——— (1
n

(ii)) F-Measure: Also known as the F1 score where two metrics precision and recall
are combined by taking their harmonic mean into a single value. It provides
a balanced measure of a test’s accuracy.

(iii)) MCC: The MCC measures the quality of binary classifications, particularly
with unbalanced data. It considers TP, FP, TN and FN. perfect prediction is
determined by + 1, predictions are no better than random when the value is O,
and — 1 shows complete disagreement between the prediction and the actual
result.

(iv) ROC Area: The ROC Area evaluates a classifier’s performance across different
threshold settings. The AUC, a single figure that represents overall perfor-
mance, is frequently used to summarise it [38]. The ROC curve compares the
TP rate (sensitivity) against the FP rate (1-specificity) for a range of threshold
settings; higher values suggest superior performance. The ability of a model
to distinguish between positive and negative classes is determined by AUC of
ROC. Similarly, the Precision-Recall Curve (PRC) is used to evaluate binary
classification models by plotting precision (positive predictive value) against
recall (true positive rate) across different thresholds. Higher PRC values also
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signify better performance. The AUC-PR gives a single value of the model’s
ability to balance recall and precision across various thresholds.

(v) TPR: Since accuracy and true positive rate are the same, we haven’t taken this
metric into account.

(vi) FPR: The formula to determine False Positive Rate is,

FP

FPR = ————
TN + FP

2

(vii) Recall: It is the percentage of positive class instances that are accurately
expected to be positive.

TP

Recall = ————
TP + FN

3)

(viii) Precision: It is a metric that calculates the likelihood that a positive forecast
will come true.

. TP
Precision = —— 4)
TP 4 FP

5 Experimentation

The Figs. 5, 6, 7, 8, 9, 10, 11 and 12 displays the testing results of Performance
parameters discussed in above section.

In Figs. 13 and 14, memory and time consumption by ML algorithms are shown.
In left panel memory utilized by each algorithm in MB varies with change in size of
dataset. For small portion of dataset say 20% RF consumes more memory whereas
DT utilizes least. Whereas DT consumes least memory in this scenario. LR and
DT maintains stable and minimal memory consumption across all splits, making it
suitable for large-scale setups. The unpredictable behavior of SVM with RBF and
polynomial kernels indicates possible instability in resource management. In right
panel time consumption by each algorithm in seconds varies with training split. RF,
LR and DT increases linearly with the training split size for all models, are the fastest
to train, requiring minimal computational time. SVM consumes large amount of time
with increase in training split proves to be slowest among all. Decision Trees stand
out as the best option for real-time adaptability with minimal resource strain.

The analysis of ML algorithms on varying sized dataset provide key insights
regarding their suitability for continuous learning systems and multi-size setups. DT
has the highest values in Precision, Recall, and F-score across all dataset sizes consis-
tently, with notable performance peaks at 20 and 60% dataset subsets. This indicates
that DT excels in effectively identifying both real and unreal instances, making it
suitable ML model for intrusion detection in resource-constrained environments.
RF algorithm exhibited high stability and strong performance, due to its ensemble
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Fig. 5 TPR for ML models on each split

Fig. 6 FPR for ML models on each split

nature, particularly in larger datasets. The capacity of RF to reduce over fitting by
averaging predictions over multiple decision trees helps in balancing outcomes as it
performed better in ROC Area and PRC Area than others, highlighting its flexibility in
distinguishing between attack and normal instances, hence highly recommended for
real-time systems requiring stable performance. SVM and LR performed relatively
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Fig. 7 Recall for ML models on each split

Fig. 8 Precision for ML models on each split
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Fig. 9 F-measure for ML models on each split

Fig. 10 MCC for ML models on each split
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Fig. 12 PRC area for ML models on each split

Fig. 13 Memory consumption by ML model
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Fig. 14 Time consumption by ML model

poorly in terms of Recall and Precision, especially with smaller datasets (20 and 40%)
and struggled to effectively identify rare attack instances, which is critical in intrusion
detection systems dealing with imbalanced datasets. The lower values of F-scores
of SVM and According to LR, these models must choose between preventing false
positives and identifying attack events. Additionally, both models showed subop-
timal MCC values, reflecting their challenges in balancing true positive and true
negative predictions. Although SVM and KNN displayed moderate results in ROC
Area and PRC Area, they were less effective in differentiating attack from normal
traffic compared to DT and RF. Overall, DT and RF are the most robust and reliable
classifiers for intrusion detection, particularly in continuous learning setups. While
SVM and LR require further tuning to be considered suitable for identifying rare
attack instances, their lower performance across multiple metrics highlights the need
for more specialized approaches when dealing with imbalanced datasets in intrusion
detection systems. Figures 15, 16, 17 and 18 presents Box plots, a straightforward yet
effective graphing method, to accomplish required objectives. The median, which is
not always central, is shown by a line inside the box. Plots can be orientated either
vertically or horizontally; in this case, we employ horizontal boxes to keep the orien-
tation consistent with the associated sample distributions [39]. Box plots split the data
into segment that contains 25% of the data in that set. the analysis reveals that Deci-
sion Trees consistently outperform other models across all metrics, including TPR,
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Fig. 15 TPR box plot

FPR, precision, and recall, making them the most reliable choice for both small-
scale and large-scale setups. Random Forests and K-Nearest Neighbors are good
alternatives, offering balanced performance with slightly higher variability. SVM
models, particularly the Polynomial Kernel, demonstrate lower effectiveness and
greater variability, making them less suitable for resource-efficient or high-precision
tasks. Logistic Regression, while stable, lags in key metrics like precision and recall,
limiting its applicability to tasks requiring high classification accuracy. Decision
Trees stand out as the best choice for robust and consistent performance across
diverse scenarios.

Figures 5, 6, 7 and 8 display the testing results for the performance parameters
discussed in the previous section, for a deep analysis of how ML algorithms perform
across different size of dataset, results reveals that the DT achieves the highest values
across all dataset sizes, with performance peaks at 20% and 60% data subsets. The
model’s simplicity and ability to effectively capture patterns, especially when the
size of dataset is small. Its efficient performance, particularly in terms of Recall,
Precision, and F-score, make it as an ideal choice for environments requiring stable
performance under continuous learning or dynamic data environments.

The RF, benefits from its inherent ability to reduce over fitting by averaging
predictions across multiple trees, being an ensemble of decision trees. As a result,
RF demonstrates stable outcomes across all dataset sizes, maintaining relatively high
values in Precision, Recall, F-score, and versatility are crucial. On the other hand,
SVM—particularly with both polynomial and RBF kernels—struggled to deliver
competitive results, especially in terms of Recall and Precision.

The SVM in an imbalanced dataset, might need further tuning to improve its
ability to correctly identify rare attack instances, especially. Although it performs
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Fig. 16 FPR box plot

Fig. 17 Precision box plot

good in ROC Area and PRC Area, but gives lower values in TPR and F-score,
essential in distinguishing between normal and attack instances, particularly with
smaller datasets or those with unbalanced class distributions.

LR gives poor performance in Recall and Precision, which indicates it to be
ineffective in identifying the minority class (anomalies or attacks) without further
optimization. It had strong generalisation abilities on bigger datasets,but in sparse
dataitis inefficient to detect real and real data. RF and DT both models perform really
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Fig. 18 Recall box plot

well in terms of ROC Area and PRC Area demonstrating their potential as reliable
classifiers for intrusion detection tasks, in terms of model flexibility and scalability.
Higher TPR and F-scores were regularly displayed by these models, demonstrating
their capacity to detect valid attacks while reducing false positives. These models
also had higher MCC values, demonstrating their capacity to successfully balance
actual positives and negatives. On the other hand, SVM and KNN, provides slightly
lower values for both precision and recall, indicating potential challenges in their
ability to detect attack patterns in varying dataset sizes. Their lower PRC Area and
ROC Area values suggest a reduced ability to distinguish between normal and attack
instances effectively.

The detailed analysis of ML algorithms on different size of dataset, displayed
and discussed above conclude that effective models for IDS are RF and DT, espe-
cially when stable performance is required. These models provide balanced perfor-
mance across a range of metrics, including Precision, Recall, F-score, and MCC.
The lower performance of SVM and KNN in identifying between normal and attack
instances highlights the need for further tuning or more complex methods, especially
in unbalanced datasets or smaller subsets.
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Table 3 Outcomes of ML models

Model Precision | Precision | Recall Recall |Fl-score |Fl1 Time | Memory

name (normal) | (Sybil) (normal) | (Sybil) | (normal) |score (s) (MB)
(Sybil)

Logistic 0.67 0.88 0.81 0.77 0.73 0.82 0.59 |2.18

regression

Random | 0.85 0.92 0.85 0.92 0.85 0.92 0.29 [0.96

forest

SVM 0.74 0.81 0.63 0.88 0.68 0.84 0.23 |1.25

Decision | 0.88 0.90 0.81 0.94 0.85 0.92 0.00 |0.01

tree

K-NN 0.64 0.81 0.67 0.79 0.65 0.80 0.09 [0.79

5.1 Experimentation on ML Models Using Datasets
Jor VANETs (Erlangen)

VANETSs have scarce resources like low memory, energy, and computing power
making it a good choice for using ML algorithms in resource constrained envi-
ronments. To detect attacks, a real-world VANET dataset was obtained from the
well-known platform GitHub; this dataset was created from a city (Erlangen) simu-
lation in Germany, the dataset initially contained unlabeled data, which was then
converted into labeled data. Figure 19 illustrates the sybil attack where distribution
of data points across the axis are shown in red and blue dots. Sybil attacks are repre-
sented by red dots and blue dots represents normal instances. Furthermore, machine
learning algorithms were applied to Erlangen dataset to evaluate parameters such
as precision, recall, F1-score, time usage, and memory usage. The outcomes of ML
algorithms are shown in Table 3 and Fig. 20.

Table 3 and Fig. 20 shows that the values of baseline ML models varies consid-
erably across the different measures. The DT model performs the best, achieving
Fl1-scores of 0.85 for real traffic and 0.92 for Sybil attacks with less possible units
of time and very little memory (0.01 MB). The values of RF model reveals its best
performance with similar F1-scores, but it uses slightly more resources (0.29 s and
0.96 MB). K-NN model on the other hand delivers the poorest performance, with
F1-scores of 0.65 for real traffic and 0.80 for Sybil attacks, and consumes less time
(0.09 s), though its memory usage is efficient (0.79 MB).
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Fig. 19 Attack (Sybil) detection

Fig. 20 Evaluation of ML algorithms

6 Conclusion

The main objective of IDS i.e. Intrusion Detection Systems is to highlight malicious
activity or any kind of illegal entry to the system and network. It is very impor-
tant to secure systems and networks and hence the proposed analysis of various
machine-learning algorithms. This work concludes that RF would be a good option
for applications that need the model to adjust to novel data without requiring frequent
retraining. K-NN is the best option for small datasets, particularly when immediate
training and easy deployment is required; DT is the best option for large datasets
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because of its speed and scalability, but keep in mind that there is a chance of over
fitting. SVM using Poly and RBF kernels should be avoided for continuous learning
systems since they take a lot of time to train and test and don’t yield the best results
across a range of dataset sizes. The Decision Tree stands out as the best choice for
resource-constrained VANET systems, combining high accuracy with exceptional
efficiency, while K-NN lags behind in both accuracy and performance.

These findings conclude that how important is to use an appropriate algorithm for
networks security, depending on specific performance constraints. Machine learning
algorithms can be analyzed more thoroughly and their performance under different
scenarios by dividing the dataset into small, medium, and big chunks. For full-scale
applications, 100% might offer marginally better performance, but for constrained
environments, smaller datasets are a valid alternative. This method helps create more
flexible, scalable, and reliable IDS models that can function well in a variety of real-
world settings. It also represents surroundings that are more realistic and resource-
constrained.

In the future, this research will be expanded to include a wider range of
datasets, parameter modifications, and an examination of how feature selection
affects algorithm performance.

6.1 Future Recommendation

This research has used NSL-KDD dataset, in future other dataset could be used
for research purpose. This research could be extended to proposal of new machine
learning algorithm for intrusion detection. RF algorithm has shown better perfor-
mance than other approaches. This algorithm could be implemented in open-source
tool kit like SNORT for security enhancement. Cyber Threat Intelligence (CTI) based
models and frameworks could be implemented in integration with RF to produce
more secure solutions.
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Abstract A type of network is vanet in which number of vehicles can communicate
within another vehicle and with roadside equipment which is termed vehicular ad-
hoc networks. It facilitates a lot of safety applications as well as traffic efficiency and
comfort enhancement among everyday life. Through the long-standing development
of communication and network facilities in the last few years and their increasing
maturity in terms of technology on board the vehicle, networks are created among
vehicles which must cater for real-time and high-throughput data needs, particularly
for Al-optimized VANETS for autonomous vehicles. The development of vehicular
networks and their significance for autonomous driving is critically discussed in this
chapter. This work presents real-time vehicular-to-vehicular (V2V) communications
technologies and applications for pedestrian safety in Al-optimized VANETSs for
autonomous vehicles. Real-world case studies where such installations have been
performed and tested will be reviewed with some systems requiring standards noted
regarding interoperability with the existing traffic management systems.
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1 Introduction to Vehicular Ad Hoc Networks (VANETS

Vehicular Ad Hoc Networks (VANETS) are established networks in which vehi-
cles can communicate amongst themselves and with roadside equipment. They are a
special class of Mobile Ad Hoc Networks (MANET), in which networking nodes are
equipped with medium range communication devices in addition to standard automo-
tive sensors. VANETS are a proactive approach to addressing growing traffic conges-
tion and environmental concerns, which when deployed will form the basis for the
Intelligent Transportation System (ITS). Built upon Dedicated Short-Range Commu-
nication (DSRC) standards, vehicular networks will provide vehicle safety and effi-
ciency applications. Some safety applications necessitate communication directly
from vehicle to vehicle (V2V). Examples include Forward Collision Warning, Lane
Change Warning, and Emergency Vehicle Approaching. Other applications make
use of roadside infrastructure, in which case vehicle to infrastructure (V2I) commu-
nication occurs. Network-wide traffic surveillance and emergency vehicle tracking
are examples of such vehicular-to-infrastructure (V2I) applications. Safety and non-
safety applications can be addressed by a single network, which is why the scope of
VANETSs encompasses both types of applications [1].

VANETS are characterized by rapid changes in topology, high mobility, the need
for real-time communication and safety concerns. Vehicles in VANETS can either
act as servers or clients, depending on the application. A vehicle on the road can join
the network, park or leave the network. Vehicles joining the network share infor-
mation to maintain up-to-date knowledge of the surrounding environment. Vehicles
leaving the network will cause disruptions to ongoing communication sessions. The
“join-park-leave” paradigm characterizes the network topology as a hybrid of static
and dynamic elements. This means that some nodes might be static, while others are
highly mobile. Static nodes, typically the roadside units, will play a central role in
facilitating communication between vehicles. Vehicles might also form an unstruc-
tured overlay network on top of the basic communication network. This means that
vehicles will only communicate directly with a subset of vehicles within transmission
range [2].

In recent years, the rapid evolution of networking and communication technolo-
gies, along with the growing maturity of technology on-board vehicles, has opened
possibilities for vehicles to form their own networks. These networks, referred
to as Vehicular Ad Hoc Networks (VANETS), can support a range of applica-
tions that enhance safety, improve traffic efficiency, and increase comfort. VANETSs
can be seen as a special case of Mobile Ad Hoc Networks (MANETS), where
the network nodes are vehicles (cars, buses, trucks, etc.) and/or road-side units
equipped with communication, sensing, and GPS devices. Communication among
vehicles able to exchange information is often referred to as Vehicle-to-Vehicle
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(V2V) communication. Communication between vehicles and road-side units is often
referred to as Vehicle-to-Infrastructure (V2I) communication. Safety applications
often rely on V2V communication, while some non-safety applications could use
V2I communication.

2 Definition and Scope of VANETSs

VANETS, or vehicular ad hoc networks, are networks formed by vehicles, roadside
infrastructure, and communication links that enable real-time, decentralized data
exchanges among moving units. A network is vehicular when the majority of its nodes
are vehicles equipped with dedicated short-range communications (DSRC) radios.
A vehicular network is ad hoc if it has no fixed infrastructure for routing data and
the nodes collectively determine network-wide communication protocols. Although
vehicle-to-infrastructure (V2I) communications are possible, the focus here is on
vehicle-to-vehicle (V2V) communications. The primary goals of these networks
are to enhance safety and efficiency for vehicles traveling in groups. A secondary
goal is providing infotainment services to network participants. Safety- and network
management-related applications take priority over infotainment applications, which
are considered secondary services. V2V applications involve exchanging safety,
demographic, and driving behavior data in real-time. Safety applications require
data exchanges at a mini- mum frequency of ten times per second per vehicle, while
network management applications need data exchanges once every five seconds.
Safety applications prioritize safety—critical data, followed by network management
data, and finally, infotainment data as a tertiary group.

VANETsS are a special case of mobile ad hoc networks (MANETS) where network
nodes are vehicles equipped with wireless communications capabilities. Vehicles
can operate individually or as groups, forming a vehicular ad hoc network (VANET)
that temporarily connects vehicles and roadside units (RSUs). Vehicles can join or
leave the network at any time, resulting in constantly changing network topolo-
gies. Vehicular networks have a decentralized architecture where each vehicle acts
as a transmitter, receiver, and router for its communications, thus cooperating to
provide network-wide data delivery services. Vehicular networks support two types of
communications: V2I and V2V. In V2] communications, vehicles exchange data with
RSUs fixed in the road infrastructure. In V2V communications, vehicles exchange
data directly with each other.
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3 Evolution and Importance of VANETS in Autonomous
Driving

The evolution of vehicular networks (VANETS) and their importance for autonomous
driving has been explained. As vehicles are rapidly getting smarter and transforming
from conventional to intelligent, self-driving cars, the networks connecting these
vehicles are also evolving to a more advanced level. The first phase of vehicular
networking was focused on improving road safety by providing vehicles with the
ability to communicate and share information about their surroundings. This effort
matured as vehicular ad hoc network (VANET) technology became commonplace
in the transportation industry, allowing vehicles to communicate with each other
and the road-side infrastructure. In parallel, a complementary approach to safety on
the road was the development of autonomous vehicles (AVs) that have a self-driven
capability through numerous embedded sensors to perceive their surroundings. A
single AV can make driving decisions based on data from its sensors; however, a
fleet of AVs can leverage their collective intelligence by sharing and communicating
real-time information about the environment, traffic conditions, safety risks, etc. This
capability facilitates the cooperative AV networking system that needs a dedicated
vehicular network. Hence, maturity in the development of one type of smart vehicle
network (VANET) would lead to progress in another (AV).

VANETS bring a paradigm shift to road transportation by enhancing the cooper-
ative and efficient use of vehicles. It paves the way to realize the future connected
intelligent transportation systems (ITS), which would significantly improve traffic
safety, efficiency, and user experience while minimizing environmental impact. Addi-
tional applications such as infotainment and on-demand services can be incorporated
into ITS, enhancing passenger comfort and experience. To reap the full benefits
of connected cooperative VANETS, the cooperative vehicle infrastructure system
(CVIS)-based cooperative safety and driving applications should be integrated and
complemented with the AV networking system. For autonomous driving, vehicles
should not only rely on their on-board sensors to construct a mental model of the
environment but also share and gather information from the surroundings to keep
an up-to-date mental model. This is crucial in safety—critical urban scenarios where
high-level interactions with pedestrians should be anticipated. Moreover, the mental
model should adaptively evolve according to the constantly changing traffic and
environment conditions. Naturally, the decision-making processes of AVs rely on
the collected vehicle-side data on the environment and the prediction of the evolu-
tion of the environment based on the gathered data. Thus, the networking system is
essential for AVs to operate safely and efficiently (Fig. 1).
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Fig. 1 Evolution and integration VANETSs

4 Real-Time V2V Communication in VANETS

Real-time vehicular-to-vehicular communication is important in vehicle-to-
everything uniformly managed or optimized vehicular ad hoc networks for the
operation of hyper-connected heterogeneous real and virtual vehicles, integrating
drones, satellites, and roadside infrastructure in the same framework with low-latency
communication and high-throughput data requirements, especially to take advan-
tage of artificial intelligence in autonomous vehicles. Fast V2V communications are
essential for the joint optimization of autonomous vehicles and traffic light passing
cycles to avoid traffic congestion and waiting times, in addition to managing single
autonomous vehicle surroundings in potentially dangerous scenarios. Most vehicular
ad hoc networks support the use of IEEE 802.11p- based V2V communication with
fast and logical link operations, such as neighbor discovery, node association, clock
synchronization, and identity verification functions, essential for safety and non-
safety-related applications. Furthermore, they also support quality of service through
cross-layer design, priority scheduling, adaptive modulation and coding strategies,
multiuser diversity scheduling, and so on, optimized for constant bit rate, variable
bit rate, or burst packet size of traffic shaping, assisting low-latency V2V communi-
cation for different vehicular applications in various network segments with widely
acknowledged simple access strategies in the absence of base stations and fixed
access points. Quality of Service (QoS) is the implementation of a medium access
(MAC) control scheduler for data queue traffic shaping in vehicle ad hoc networks.
This can be a big advantage to communication reliability. When the backoff mech-
anism is properly adjusted, the likelihood of contention for medium is decreased
and therefore, the performance of the Byzantine error correction with the help of
Automatic Repeat Request (ARQ) is greatly enhanced. Data frame protection and
the traffic shaping algorithm can be better synchronized by such a method in both
cases like dedicated short-range communication and different weather conditions,
e.g., heavy or light rain [3].
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5 Key Concepts and Components of V2V Communication

Vehicular-to-everything (V2X) communication is essential for autonomous vehicle
operation. Two types of V2X communication systems are recognized: radar, which
has a range of 200 m in communication, but less than 10 m in detection. 2D or 3D
radar, ultrasonic sensors, stereo vision, and lidar are the sensors of a vehicle for driving
safety. Previous studies have shown that vision sensors and communication signals
are affected by multipath effects. We explore Al-optimized vehicular ad-hoc network
(VANET) models for optimal trajectory and relay selection to maximize successful
pedestrian communication for vehicles. VANETS, including V2V communication
and wireless sensor networks, are essential for a successful smart city where vehicles
are autonomously driven (Fig. 2).

Vehicular-to-vehicular (V2V) communication is the wireless transmission of data
or information between motor vehicles. It is an important part of intelligent trans-
portation systems. The two types of V2V communication are vehicle-to-roadside.
The key concepts of V2V are small cells. In a specific radio that uses communica-
tions through instant messaging or video sharing, four major protocols are considered
for direct V2V communications. The medium access of V2V communications can
be discussed by different users. V2V communication participants are discussed in
terms of three components for multiple access. The numerical playground results
are analyzed by the sum of transmitted power. A speed-up collision algorithm may
be used to reduce the detection process. With the aid of abbreviations and multiple
selection parameters, the proposed methods can significantly reduce PDR. The inter-
vehicular channel can be increased by considering semantic information. The unicast-
based broadcast traffic is optimized for the global minimum transmission power in
VANETs. The Link Quality Indicator (LQI) can be optimized in vehicle-to-vehicle

Fig. 2 Components of optimized vehicular networks



Real-Time Vehicular-to-Vehicular (V2V) Communication ... 157

(V2V) communications, allowing for the adjustment of control overhead to minimize
latency and enhance overall throughput.

6 Challenges and Solutions in Real-Time V2V
Communication

2.2 Real-time V2V Communication Challenges and Solutions The automotive
industry and research community have always considered vehicular communica-
tion as the most complex and challenging aspect of vehicular safety applications.
They have also anticipated various research challenges for the future safe operations
of cooperative intelligent vehicles. The identified challenges are directly related to
the deteriorating performance of vehicular communication in congestion situations,
high vehicle speed, high vehicle density, and mission-critical V2V communication
with real-time constraints of less than 20 ms for safe Cooperative Awareness Message
exchanges. Real-time challenges are also crucial in a forthcoming large-scale V2V
communication for safe and reliable connected medium-speed autonomous coop-
erative fleets and pedestrian-vehicle cooperative operational phases. Due to this
anticipated challenge, the recent literature has identified the major challenge asso-
ciated with the real-time capability of the latest safety applications in increasingly
congested environments. This is the activation of the signal phases, arrow displays,
pedestrian phases, and other unexpected events that require proper communication
using V2X for the continuous safe and efficient operation of CVs. As a result,
some of the recently published literature highlighted the severe congestion effects
of V2V communication, through long delays with instantaneous message discards,
that would drastically increase message loss and require new split Safety Application
V2V Communications.

7 Applications for V2V Communication for Pedestrian
Safety

Applications of V2V communication for pedestrian safety discusses how vulner-
able road users, especially younger children and elderly pedestrians, are at constant
risk of accidents in urban environments. Various safety-related applications using
V2V systems and onboard sensors are investigated to protect pedestrians. As V2V
technology proliferates, it is possible for vehicles and V2V communication systems
to detect pedestrians and inform drivers about their presence and behavior to avoid
accidents. The safety challenge of pedestrians in urban environments, where most
accidents occur, is explored. The reasons for these accidents and how communication
can help mitigate these risks are discussed.
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With the growing pedestrian population in urban areas, vehicles and pedestrians
often share the same space. Accidents occur mostly at intersections due to poor
visibility during turns or when vehicles go past stationary vehicles. With the increase
in private vehicle ownership, reckless driving, skipping red lights, or ignoring stop
signs has become common. Moreover, the distraction of drivers due to phone use
or multitasking increases the chances of an accident. The automatic detection of
pedestrians’ presence in the traffic environment using various onboard sensors has
been widely researched. There is a need for a mitigation technique that informs the
driver about the detection. V2V communication assists collision warning systems by
sharing the information of one vehicle with others so that they can trigger warning
alerts to the drivers [4]. If one vehicle detects a pedestrian, all the vehicles in the
vicinity will be informed, and alerts will be triggered even before the driver can see
the threat.

Safety applications related to vehicular networks and communication to protect
pedestrians are examined. Various real-world case studies where such systems have
been installed and tested are discussed. Also, some systems that require standards
are presented, highlighting the importance of interoperability with existing traffic
management systems. These safety-related applications can reduce accidents in urban
environments. In-vehicle technology has made driving safer but has not significantly
reduced accidents involving pedestrians. Most of the vehicle- pedestrian accidents
are a result of inattentive driving, mostly in urban settings. Data shows that 4641
pedestrians were killed in 2008, with 39% of the accidents occurring in intersec-
tions. Vehicles turning left at intersections ac- count for 19% of the accidents, and
49% occur during low visibility conditions. These results highlight the necessity of
integrating these applications into new and ongoing safety initiatives and the need
to discuss technological and societal implications (Fig. 3).

8 Overview of Pedestrian Safety Challenges in Urban
Environments

Today’s pedestrians are confronted with complex issues. It is estimated that one out
of five pedestrians are involved in a crash within ten years of moving to an urban
area [5]. A significant portion of pedestrian injuries occur in urban settings where
there are high traffic volumes and few adequate means to crossroads. Moreover, newly
developed infrastructures such as overpasses, underpasses, and mid-block crosswalks
generally address pedestrian safety only after a critical accident has occurred. As
roadside sensors are deployed to monitor traffic flow and implement Vehicle-to-
Vehicle (V2V) communications between vehicles and infrastructures, how to exploit
them to assist pedestrian safety has become a growing concern among researchers
and safety advocates. Low-speed vehicles have been proposed to enhance safety
as they are able to detect pedestrians who are at risk of collision. However, this
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Fig. 3 V2V communication for pedestrian safety

implicitly assumes that pedestrians know how to behave around such vehicles and
ignore situations where pedestrians approach high-speed vehicles.

Given the uncertainty of human behavior, how pedestrians comprehend the pres-
ence of and decide to cross paths with autonomous vehicles is a crucial question.
Safety issues arise not only at intersections because of the lack of cooperation with
autonomous decision making but also while crossing a road straightly because of a
time gap observed by the vehicle. In addition to behavioral risks, technological risks
such as failure modes of vehicle control are considered, which might compromise the
safety of pedestrians. Efforts have been made to model and predict the intention of
pedestrians to assist the planning of on-board vehicles. As automations are supposed
to enhance road safety by taking over hazardous driving tasks, pedestrians may still
feel endangered due to other environmental factors. Poorly designed crosswalks,
complicated traffic flow, and the inadequacy of streetlights combine to complicate
the movement of pedestrians.

At a crosswalk, the in-vehicle camera may not detect a leading vehicle stopping
at the crosswalk due to its blind zone, while a pedestrian may see the approaching
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vehicle and take the risk to cross. The time gap involved may lead to a collision.
As day turns to dusk, vehicles equipped with high-beam headlights dazzle pedes-
trians who do not know the vehicle is approaching, hence making it invisible. Rather
than treating pedestrians as a priority, a V2V communication system is designed to
warn them of unsafe encounters. These challenges call for a comprehensive under-
standing of pedestrian safety in a multidimensional manner involving urban design,
technology development, and community awareness. Generally, pedestrians are at
risk due to their individual decisions made under uncertain situations. Psychological
aspects such as visibility concerns are involved, where the ratio of moving-object
size to fixated-object size holds the key to attention allocation. With the advent of
roadside communication systems, advanced approaches considering the above issues
are motivated, from which solutions enhancing safety for pedestrians are expected.

9 Role of V2V Communication in Enhancing Pedestrian
Safety

If the hurdles of reliability, robustness, and safety of vehicles are met, it is crucial to
begin with the question of how autonomous vehicles will change the interaction with
other road users and how this will affect urban safety in general. Especially pedes-
trians, as the most vulnerable group, require special attention. The focus is set on
vehicle-to-vehicle (V2V) communication for vehicles and how this technology can
specifically enhance the safety of pedestrians. In particular, the vehicle-to-vehicle
exchange of information between equipped vehicles is looked at. This brings several
advantages for vulnerable road users that should be further explored. First, vehi-
cles approaching pedestrian crossings informed by infrastructure will get additional
information on the approaching pedestrians and their movement. Therefore, there
would be warning systems that alert drivers about nearby pedestrians or proactive
measures informing them about their planned crossing. In addition to infrastructure
information, the integration of the sensor data of the vehicles themselves is possible.
This would allow real-time feedback to the vehicles and awareness of the pedestrians,
even before they reach a crossing. Here, accidents could be completely prevented
by proactive braking. On the one hand, these systems can warn pedestrians about
approaching vehicles; on the other hand, V2V technology enables the vehicles to
communicate with traffic signals and infrastructure. If the traffic lights are equipped
accordingly, they will cancel the red light for the pedestrian-crossing vehicle, creating
a coordinated network that guarantees the safest passage. This highlights a collab-
orative approach to coming developments where each party depends on the other’s
participation [6]. However, it is aimed primarily at vehicles. A discussion of different
use cases is included to explain how simple V2V communication could drastically
improve pedestrian safety by reducing the number of collisions and the general
quality of urban traffic dynamics. For every new technology, a need is identified for
consideration in policy and city planning in order to create a safe environment for
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the implementation of these systems, and measures that force compliance on city
planning are proposed. V2V communication should be seen as a tool that requires
vehicles to cooperatively broadcast their information. If they do, collective awareness
of the traffic situation can be established, significantly improving pedestrian safety

[7].

10 AI Optimization in VANETS for Autonomous Vehicles

The incorporation of artificial intelligence technologies is gradually optimizing
vehicular ad-hoc networks (VANETS), increasing their efficiency and safety. An
overview of the Al optimization is presented in the context of VANETSs for
autonomous vehicles, along with description of the key opportunities and challenges
this integration entails. Al algorithms can analyze and learn from incoming real-
time data, improving the decision-making processes of both vehicles and vehicle-
related infrastructure. The optimized decisions can be disseminated to other vehicles
and infrastructure elements, so they can adaptively respond to the newly predicted
scenarios [8] for example, machine learning can facilitate predictive analytics on
traffic conditions, enabling proactive responses to congestion, accidents, and other
temporal hazards. Conversely, without Al, current networks rely on fixed standards;
therefore, they can only respond reactively and post factum. Moreover, the impli-
cations of Al in decision-making and management of communication between the
vehicles necessary for cooperative driving and other V2V applications, are examined.
The bandwidth and latency optimization challenges in communication are mathemat-
ically formulated as optimization problems that can be solved through Al algorithms
[9]. The transition from traditional systems into ones optimized by Al technologies
is a paradigm shift towards fully autonomous and intelligent VANETS, as optimiza-
tion minimizes human involvement in the system operation. Currently, only a part of
each system chain is Al-optimized, whereas the rest is traditional. For example, fully
autonomous vehicles learning through Al cannot operate safely in V2V-aided traffic,
as the networks and communication are not yet Al-optimized. The Al optimization
is therefore crucial for the development of autonomous vehicles and their efficient
integration into the existing traffic [10].

11 Integration of Artificial Intelligence in VANETS

Vehicular Ad-hoc Networks (VANETS) create a network among vehicles and road-
side infrastructure, enabling them to communicate and share information. This
communication, in the form of packaged messages, enhances road safety and
provides real-time traffic and environmental data [11]. The integration of artificial
intelligence within the VANET paradigm presents new opportunities to enhance
vehicle communication and net- work performance metrics. Vehicles equipped with
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onboard sensors generate large amounts of data that must be processed in real-time to
ensure the proper networking and functioning of vehicular communication systems.
Al technologies, such as machine learning, artificial neural networks, and fuzzy
systems, can be harnessed to improve the capabilities of the VANET landscape.
Considering the fusion of vehicular networks and artificial intelligence, it is essen-
tial to explore how different Al technologies can enhance communication systems.
How the integration of artificial intelligence technologies enhances the capabilities
of vehicular networks is addressed. For example, the role of artificial intelligence in
managing real-time traffic scenarios, from the prevention of communication network
anomalies to predictive maintenance, is discussed. Artificial intelligence can enable
a careful analysis of the data generated from vehicular communication systems,
helping to perceive the road situations ahead. Furthermore, the integration of arti-
ficial intelligence within vehicular networks allows for smarter resource allocation,
ensuring that these communication channels are used efficiently. Potential challenges
and limitations in the process of integrating artificial intelligence with vehicular
networks are addressed. Al integration requires substantial data for processing and
learning, which can be challenging to obtain in earlier stages of V2V implemen-
tation, along with the need for robust computational engines. Focus is placed on
ongoing case studies and projects concerning intelligent transportation systems and
vehicular networks, presenting recent applications of artificial intelligence technolo-
gies integrated with V2V communication systems. An emphasis is placed on future
trajectories in this field, considering promising artificial intelligence technologies
that can transform the landscape of vehicular networks into scalable and intelligent
networks [12].

12 Benefits and Challenges of AI Optimization in VANETS

The benefits and challenges of Al optimization in VANETS are discussed, presenting
a balanced view of the implications of incorporating advanced machine learning
techniques into vehicular networks. On one side, the benefits are substantial. Al plays
a crucial role in enhancing VANET capabilities, improving route planning through
real- time traffic consideration, enhancing safety by identifying risks and triggering
safety applications, and enabling vehicular networks to maintain efficiency regardless
of fluctuating demands. Traffic congestion, for instance, can be alleviated through
the collective decisions of vehicles, guided by Al. Numerous studies demonstrate
how Al can lower incident rates in vehicular networks, from predictive analytics for
danger identification to machine learning- driven adaptive communication strategies
that enhance safety message dissemination. These studies examine the AI’s role in
augmenting V2V safety applications through awareness message improvement. On
the other side, significant challenges, drawbacks, and risks accompany Al integration.
Concerns regarding data privacy, the “black box phenomenon” of neural networks,
and the absence of regulatory frameworks for AI deployment are widely shared
across different fields. Al systems can be susceptible to bias; the central cause lies
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in machine learning models trained with incomplete or skewed data. Discussed in
depth are real-world examples of how these models produced adverse effects and
recommendations to mitigate the risks. Among the key issues underlined is that
of the procedure of harmonizing the conventional VANET with Al mechanisms.
This concern is coupled with the challenge of whether these instruments would be
perceived as acceptable by the public in the context of credibility and effort shared
by all parties present and ready to play their part in addressing the concerns. Finally,
the Al optimization as used in the context of VANET also has dual aspects involving
the possible benefits and issues facilitating the realization of those benefits [13, 14].

13 Future Directions and Emerging Trends in V2V
Communication

V2V Communication in the years to come and changes which will take place in v2v
communication propose that the trend is ever developing and also altered with the
introduction of newer technologies, protocols and applications. With the rise of new
technology startups, one would begin to diverge from into the various existing V2V
facts of this paper, Shiras Research particularly research on vehicular communica-
tion systems has attracted great interest in previous decades, from the beginning of
VANETs (Vehicular Ad hoc Networks). Yet as the newer trans- portion comes with
newer technology, there is a vast interest in the past technologies of V2V communica-
tion and increasing focus on more recent and upcoming technologies and applications
in V2V communication. The technology use in V2V has a duality of effects. Such
a forecast is the combination of pessimistic expectations connected with the loss of
jobs due to the automation of driving and positive ones, such as the reduction of
traffic accidents due to their partial or total automation [15]. V2V applications are
generally derived purely from device functionality, either to improve safety or the
quality of comfort to the driver. Safety oriented ones are usually timely and hence
call for real time feedback while comfortable side is more tolerant of delays. The
incorporation and practices of such technology rely greatly on how much this tech-
nology is effective in serving its purpose. The deployment of 5G communications
systems in the VNs will emphasize the importance especially towards enhanced reli-
ability, higher bandwidth, reduced latencies, the highly efficient network of edge
processing [14]. However, V2V is a kind of technology, and it should never be
considered as only one technology because it is a New World in itself. Therefore, it
is equally important to determine the best way to harness these other technologies
in V2V communication as well as the use of cloud technologies in the sharing of
data across different platforms. Movement in the iPhoneization arena has brought
forth changes in communication protocols. Several advances will also occur in this
new era of V2V communication and the associated applications, spurred on by inno-
vations in communication protocols. In addition, once 5G networks are deployed
research suggests that the way vehicles communicate with each other in relation to
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the surfaces will also change. With technological advancement, another technology
comes about brittle, but a solution is achievable with Mobile Edge Computing which
will do analysis processing in the smart car, without any excessive use. Directing
their focus on the prospective, it has been suggested that V2V systems are likely to
take hold in the near future given that both Al and ML technologies shall be applied in
them. Furthermore, advanced mechanisms for control and information management
based on learning methodology via deep learning and reinforcement learning will
increase the efficiency of communication. For instance, in contrast to the traditional
system where some information is always passed by vehicles, learning can enable
vehicles on how to share specific information uniquely through online learning. Other
features which will influence the advancement of V2V systems in the forthcoming
future, such as the issues of standardization and regulation for ensuring the seam-
less implementation of the new technologies without compromising safety, will be
touched upon. In a world where incessant technological advancement engenders a
plethora of new applications, enhancement of technologies is supposed to allow for
the highest level of such advancements. Future research and practices aiming to gain
insight into the prospects of V2V communication development are also presented. In
conclusion, it can be said that the future looks bright for V2V networks, as these tech-
nologies undergo rapid changes; this change will be greatly supported by enhanced
V2V networking research efforts [16].

14 Technological Advancements and Innovations in V2V
Communication

Built V2V network is the driving component for the vehicles interconnected
ecosystem and depends on advanced and up to date software and hardware. Among
other applications where this technology is needed it helps connect them from one
vehicle to another where they can conduct on-vehicle communications. Pedestrians
of street road accidents in the European Union are 27%, excluding driver fatalities and
animal crashes. On the basis of recent technological innovations focusing principally
upon V2V communication, the following article provides a summarised state of the
art of the most recent technological developments and innovations in V2V communi-
cation between vehicles. Over the years, the Vehicular Communication system (VC)
quite oftentimes referred to as Avant-garde VC has been conceptualized. It is a new
car technology based on the use of wireless communication transceivers incorporated
in cars for vehicular accident prevention by sharing messages warnings to the driver
and other motorists [14].

They promise new and advanced capabilities to the vehicles enabling them to have
greater bandwidth, lower latency for realtime vehicular to V2V communications, and
various driver safety applications. Their anticipated entry will be characterised by
the provision of 5G networks that will bring about a growth opportunity in realtime
vehicular to V2V communication. In this endeavour, the paper focuses on sensor
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technologies funding drive that is geared towards enhancing vehicles to be better
positioned within their immediate surroundings through the use of their on-board
sensors. Vehicles Artistic Intelligence (Al) remains the dominant technology being
embraced in the industry, especially in V2V communications. A vehicular ad hoc
network based V2V communication safety application that uses artificial intelligence
is developed and the study shows how developments in technology improve the effec-
tiveness of V2V communication between vehicles. New standards and protocols are
being put in place to ensure that every vehicle, whether it be from the same or
different manufacturers, can speak to one another. Summary of standards and proto-
cols under development for V2V communication networks are made and discussed as
those are technology innovations in V2V communications [13]. Finally, the roles of
industry collaborations and partnerships in the acceleration of technological advance-
ments are considered. To demonstrate these new developments there are references
to successful cases in the practical implementation of such innovations. This conveys
the message that there will be a lot of changes and new ideas coming up in V2V
communication.

15 Potential Impact of SG and Beyond on V2V
Communication

In this section, we will address the impact of the Upgrade Plan in relation to changes
that are expected to occur in the field of communication between vehicles (V2V). In
particular, what may be expected of the next generation of mobile networks in terms
of car dynamics. The text will describe the most important features brought by the 5G
technology, such as URLLC and mMTC. It will next progress into how such features
will stimulate better data exchange between cars, particularly in safety scenarios.
The paper will conclude with how the latest technology of Neural Networks will
contribute to the, Cooperative, Connected, and Automated Mobility (CCAM) in the
context of 5G technology in order to see the constructive component in coexistence
of these technologies.

Mobile networks have steadily advanced a lot, and this has greatly been of great
benefit to society. In the 1990s, feature phones had 2G connections which allowed
voice calls to be made and those SMS texts to be received. It felt like the internet
went mobile with the introduction of the 3G system making emails convenient to
the phone user. The 4G took it even further causing the broadcasting of videos and
internet goodies such as ‘cloud’ to smartphones while in a ‘non-dormant’ position.
Presently, everyone is excited about the prospect of 5G being a major breakthrough
in how things are connected without limitations. Such one network eventually will
come in as supportive to all involved; allowing even greater numbers of devices to
connect concurrently and at the same time improving the quality of service provided
to those users. Creating highly reliable, ultra-low latency links-Embracing wearable
technology including everything that will interface machines in factories [13].
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With 5G, V2V communication systems have the opportunity to evolve signif-
icantly, impacting the safety, efficiency, and implementation of future vehicular
networks. Safety applications most often rely on real-time data sharing between vehi-
cles; hence, by meeting the stringent requirements of safety applications in terms of
end-to- end latency and reliability, 5G technology can greatly enhance the safety of
vehicular networks. Beyond safety applications, 5G has the potential to support new
vehicle-to-vehicle (V2V) communication services, which improve the efficiency of
vehicular networks by sharing the information of upcoming maneuvers or ongoing
traffic events. The integration of V2V communication in the 5G architecture allows
vehicles to send and share data with low latency and high reliability.

On the other hand, the increasing connectivity of vehicles and the implementation
of C-V2X systems pose new challenges regarding the privacy and security of the
transmitted data. Indeed, ensuring security and privacy properties in an environment
that is becoming more and more connected is one of the main challenges of 5G and
beyond. With the 5G technology, several new features will be integrated into vehicular
networks. The continuous evolution of communication standards must be clearly
considered to aptly address and harness the advantages of the new features. The 5G
NR V2X standard has recently been finalized and will bring several improvements
over the previous C-V2X Release 14 standard. However, to fully exploit the benefits
that this new technology will bring, infrastructure has to be adapted accordingly.
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Safety of Pedestrians in AI-Optimized )
VANETS for Autonomous Vehicles Sk
via Real-Time Vehicle-to-Vehicle
Communication

Puja Gupta, Neeraj Arya, Chandra Prakash Singar, Amit Chaudhari,
Upendra Singh, and Shrishti Gupta

Abstract Real-time communication between cars, referred to as vehicle-to-vehicle
(V2V) interaction, has become known as a transformative technology that enhances
traffic safety, especially for unprotected pedestrians. Real-time communication
between cars enhances situational awareness and diminishes the probability of acci-
dents. The application of such technology is essential for the progression of intelli-
gent modes of transportation (ITS), which can anticipate future problems and deliver
timely notifications to pedestrians and cars. In densely populated and high-traffic
regions, the efficacy of this technology is significantly improved with the incorpo-
ration of advanced applications, such as autonomous brakes and pedestrian detec-
tion devices, alongside vehicle-to-vehicle communication. Furthermore, it enhances
adaptive traffic control and overall mobility. This study examines the capacity of
vehicle-to-vehicle (V2V) communications to diminish deaths and injuries, focusing
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specifically on pedestrian safety. Real-time vehicle-to-vehicle communication repre-
sents a substantial leap in the evolution of more intelligent and safe road networks;
yet, other obstacles remain, especially infrastructures latency, and data security.

Keywords Vehicle to vehicle communication - Pedestrian safety + Vehicular
ad-hoc networks (VANET) + Transportation system

1 Introduction

In the present atmosphere, it is essential for individuals to have confidence in secure
transportation. The prevalence of communication between vehicles is increasing
due to developments in digital technology. This kind of communication may be
more efficacious in attaining this objective. The domain of vehicle-to-vehicle (V2V)
technologies is swiftly advancing to address the transportation needs of the public,
indicative of both economic growth and technological advancement. The rise in
global mobility [1] and urban growth may account for the significant increase in
vehicular traffic. The growth of the automotive fleet has resulted in a significant
rise in pollutants and a considerable waste of time. Conversely, the incidence of
accidents occurring on highways has increased significantly. Traffic accidents extend
beyond vehicles; pedestrians are as vulnerable to injury or death [2]. Major cities
have responded to the present level of traffic congestion by using technology to offer
more effective, efficient, and better accessible choices. The main reason of congestion
in traffic is the notable rise of people utilizing the roadways. Still, it is possible
to fix this by including well-made road networks and clever traffic management
systems [3]. While some conventional systems [4] try to shield pedestrians from cars,
most of these solutions rely mostly on the aural alarms that pedestrians may hear.
Nevertheless, this approach usually fails in steering people away from their electronic
gadgets, especially their cellphones. The principal factor contributing to accidents
is the inability of road users to immediately perceive and identify imminent risks,
hence hindering their capacity to implement preventive actions against collisions. The
application of vision-based algorithms as well as sensors has significantly focused
on pedestrian identification and collision probability prediction [5].

Pedestrian detection devices can be implemented in cars, infrastructure, or on
pedestrians to notify motorists, pedestrians, or both parties. Blind-spot detection and
forward accident warning are becoming common in-vehicle warning technology. The
emerging domain of vehicle-to-vehicle (V2V) communication facilitates the creation
of advanced warning systems, including junction movement assistance and left turn
support.

Should a pedestrian be present on the roadway, it may be prudent to provide
notifications to the surrounding area from the car. In contrast, a portable gadget
might be considered the most evident and clear sort of pedestrians warning system.
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Cellphones are increasingly integrated into persons’ daily lives and are getting
more sophisticated. Specific apps have been created to deliver suitable alerts to pedes-
trians using vehicle-to-pedestrian (V2P) communication [6]. These programs have
been successfully executed. This article outlines the principles for formulating a plan
based on V2X communications [7] aimed at ensuring the safety of pedestrians and
automobiles. The main aim of this research is not to propose an approach that has
been previously executed and assessed. Consequently, no performance review is done
for this reason. The purpose of this article is to delineate the essential principles that
a prospective pedestrian protection applications must uphold. Our aim is to do this
by proposing a viable software as well as hardware architecture suitable for imple-
mentation in autos and mobile devices. The features of smartphones [8] and their
corresponding applications can notify occurrences occurring at traffic intersections
by intelligently managing and adjusting the screen state, item state, audio state, and
silent mode. Moreover, pedestrians may obtain more relevant alerts based on their
smartphone’s capabilities.

Right now, autonomous cars fall under one of the five levels of autonomy defined
by the Association of Automobile Engineers. Based on level O (which indicates
an automobile not totally automated) through level 5 (which indicates a car totally
autonomous), these levels might vary [9]. Examined throughout the duration of this
review were the PCA approaches relevant to fully autonomous automobiles as well as
those applicable to partly autonomous cars, including the use of the Advanced Drivers
Assistant Systems (ADAS), and the techniques used on fully autonomous machines
and shuttles, so having potential application in the context of fully autonomous auto-
mobiles. Recent breakthroughs in artificial intelligence methodologies have enabled
ITS (Intelligent Transportation Systems) to capitalize on emerging possibilities. As
time progresses, the sensors deployed in automobiles are becoming increasingly
sophisticated, enhancing the cars’ ability to assess their environment. This advance-
ment has enabled the realization of autonomous driving, predicated on the replica-
tion of human driving habits while reducing human mistakes. This understanding
has resulted in the potential for autonomous driving. A diverse array of applica-
tions has been created, encompassing both passive and active road safety as well
as traffic optimization, including autonomous vehicles and the Internet of Vehicle.
Such applications have been universally created.

2 Vehicular Ad-Hoc Network (VANET)

Ad hoc transportation infrastructure Networks [10] have emerged as a result of the
advancement and convergence of technologies associated with car manufacturing,
autonomous vehicles, and wireless communication. These networks are considered a
separate category of Mobile Ad hoc Network (MANETSs), defined by certain require-
ments and attributes. The vehicle nodes constituting these networks are thought to



172 P. Gupta et al.

encompass them. A VANET is a network comprising both stationary entities (road-
side equipment) and mobile entities (vehicles) that cooperate to disseminate essen-
tial information regarding road conditions and other vehicles. Various domains of
VANET communications encompass:

Vehicle-to-Cellular Network infrastructure connectivity.
Intra-Infrastructure Communication.

Communication between vehicles and infrastructure.
Vehicle to Vehicle (V2V) communication.
Communication between vehicles and personal devices.
Vehicle-to-Sensor communication (V2S).

The advent of 6G mobile networks is anticipated to induce a profound transfor-
mation in Vehicle-to-Everything (V2X) communications. This alteration is intended
to yield significant improvements in reliability, velocity, and connectivity. The
augmented SideLink (SL) communication [11] functionalities in 6G will improve the
functionality of the New Radio V2X (NR-V2X) norm, established in earlier versions
of the 3rd Generations Partnership Project (3GPP). This will be accomplished by the
expansion of the foundation established by 5G. These technology advancements
will provide smooth data interchange among pedestrians, infrastructure, and auto-
mobiles, hence enhancing connection with reduced latency and increased reliability.
Moreover, they will accelerate the development of the forthcoming generations
of intelligent modes of transportation, so helping us. This progressive idea facili-
tates immediate wireless connectivity between two devices used by users, such as
personal gadgets and cars. This renders interaction with the roadsides unit unnec-
essary for transmitting data regarding traffic information throughout the procedure.
This research can enhance the connection of the VANET, therefore meeting the
criteria for expanded services, which include commercial, informational, and safety
applications.

3 The Architecture of Vehicle to Vehicle Communication:

Vehicle ad hoc networks (VANETSs) within intelligent transportation networks (ITSs)
are especially used with reference to the IEEE 802.11p Ethernet standard. Applica-
tions involving autos notably call for the wireless connectivity it offers. Designed
for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) uses, the standard
operations belong to the 5.9 GHz radio frequency range [12]. Because it can provide
low-latency, high-speed data networks—necessary for real-time applications like
synchronized signals for traffic control and collision avoidance—the IEEE 802.11p
normal is an important reference. In high-speed situations like cars [13], the ability
of the protocol to quickly create a communication channel and replace the need for
many handshakes might be rather important.
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The QoS mechanisms of IEEE 802.11p enable the prioritization of safety
messages over less essential traffic. IEEE 802.11p serves as the basis for Dedi-
cated Short-Range Communications (DSRC) technologies and standards pertaining
to vehicular communication [14]. DSRC enhances security, reliability, and interop-
erability via the use of 5.9 GHz. Information processing, electronic fee collecting,
and traffic control are applications related to both safety and non-safety aspects. The
regulation of message flow by DSRC systems aims to safeguard communications,
vehicles, and equipment against vandalism and threats [15]. Moreover, DSRC chan-
nelization enhances frequency spectrum usage, facilitating continuous simultaneous
communications. DSRC is regarded as a pivotal technology in modern Intelligent
Transportation Systems (ITS) because to its remarkable design capabilities, minimal
latency, and excellent communication reliability [14]. To improve productivity, traffic
density, and road safety, the use of V2V and V2I in smart transportation is essential.

Figure 1 demonstrates the interaction involving On-Board Units (OBUs) along
automobiles as well as Road Side Units (RSUs) along roads, which help infras-
tructure and communication. It manages labor, operations, and transportation from
and to central control as well as administrative locations. The modified hyper struc-
ture below may demonstrate the V2V communication structure and how elements
interact for secure and efficient transmission. The most relevant V2V design for
real-world applications must be shown. We explain how various designs improved
V2V communication. Architectures include decentralised mesh the network, V2V-
based clouds integration hub, Edge computing-based V2, Blockchain-enabled V2,
V2V over hybrids cellular including ad-hoc networks, Al-assisted network design
for V2V communication, and V2V support for sustainable transport systems V2V
architectures work differently to handle vehicle interaction and vehicle management
challenges, yet they complement one other. Rigorous research and integrating these
ideas will yield dependable and efficient V2V systems for security, effectiveness,
and environmental gains.

4 Distributed Mesh Networks

Each automobile operates as a sentinel inside the expansive communication network
of a Distributed Mesh Network (DMN) that proliferates among nodes with advanced
vehicular capabilities. Wireless protocols, such as IEEE 802.11p, enable communi-
cation among cars within the framework of short-range interactions, which is crucial
for safety. Intermediate vehicles augment the network’s coverage, guaranteeing that
no area remains disconnected [17]. The advantage of decentralised is that no one
entity has complete authority over the network. Each vehicle within the network
takes advantage of the system’s comprehensive resilience, which is characterized by
its ability to respond to failures and sustain continuous communication. End-to-end
encryption safeguards essential data from prying eyes, notwithstanding the signif-
icant security risk. The establishment of trust mechanisms enhances the network’s
resilience against the schemes of malicious entities. It can now authenticate incoming



174 P. Gupta et al.

Fig. 1 Architecture structure of vehicle to vehicle communication [16]

messages and validate them using a recognition node. In a future when communi-
cation transcends boundaries, the richness and variety of the DMN will converge to
provide security, dependability, and resilience [18]. The infrastructure can accom-
modate various vehicle volumes depending on the conditions due to its inherent
scalability.

5 Vehicle to Vehicle (V2V) Communication Based on Cloud
Computing

Modern cloud-integrated V2V hubs amalgamate cloud computing with vehic-
ular communication. Vehicles send critical data in real time using communication
modules. The hub utilizes cloud-based analytics to examine patterns, forecast traffic,
and get insights for effective traffic management. This facilitates vehicular commu-
nication and global networking, irrespective of distance [19]. Decentralized commu-
nication enables low-latency interaction for safety—critical applications, whereas
cars use peer-to-peer communication for immediate transfers. End-to-end encryption
protects sensitive data from alteration. Only authorized individuals are allowed to
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view V2V communication information when cars log into the site. Edge computing
facilitates the rapid processing of time-sensitive data by nodes, therefore decreasing
the response time of safety—critical applications and enabling statistical analysis
for traffic management [20]. A cloud-integrated V2V Hub, characterized by robust-
ness and elegance, efficiently controls vehicle communications in a well-structured
environment.

6 Vehicle to Vehicle (V2V) Communication Based on Edge
Computing

Edge computing nodes situated at the network interface enable the processing of
real-time V2V communication data. To alleviate latencies in applications that require
safety, these periphery network nodes oversee time-sensitive data. Real-time exam-
ination of V2V communication data enhances decision-making. Edge computing
decreases cloud server traffic and improves responsiveness by transferring processing
tasks nearer to the data origin [21]. The system employs dynamic load-balancing
to allocate processing workloads to external computer nodes. Short-range proto-
cols provide communication between proximate vehicles without reliance on cloud
resources. Dynamic automobile mesh networks may improve communication and
dependability in low-line-of-sight conditions by using edge computing architecture.
V2V data is secured and verified by computing nodes [22]. Intrusion detection
systems identify security flaws. Real-time perimeter processing mitigates crashes
and warnings by assessing the velocity and closeness of vehicles. Under intricate
traffic circumstances, our system swiftly evaluates V2V data at intersections, there-
fore improving navigation and reducing the likelihood of collisions. Edge-based
analytics use real-time vehicle tracking information to synchronize traffic lights,
hence reducing congestion. The integration of online resources with peripheral
computing facilitates real-time processing, enhanced analytics, and data archiving.
This decentralized method enhances resources economy, real-time decision-making,
as well as IoT-connected automobile performance [23].

7 Vehicle to Vehicle (V2V) Communication Based on Block
Chain

A distributed blockchain relies on each linked automobile, which acts as a node.
Decentralization diminishes central authority and promotes transparency. Employ
smart contracts, that are contractual agreements that operate autonomously and
are preordained. Automated and trustless vehicle-to-vehicle interactions are facil-
itated by smart contracts. Each V2V interaction signifies a transaction. Traffic
data and safety alerts are among the activities confirmed by blockchain consensus
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mechanisms. Verified transactions are recorded on a public, immutable ledger. The
blockchain’s ledger protects vehicle data against alteration. Vehicles engage in real-
time peer-to-peer data exchange, while the blockchain preserves transaction records.
These actions are securely recorded via the blockchain [24]. Employ encryption to
authenticate vehicle communications and transactions. Cryptographic hashes ensure
data integrity, while the use of public keys authenticates vehicle identities and facil-
itates consensus mechanisms like Proof of Work (PoW) or Proof of Stake (PoS) for
transaction validation. The integrity of the blockchain is maintained by the incorpo-
ration of just authentic transactions via consensus. It enables private transactions that
utilize zero-knowledge proofs [25]. This facilitates the clandestine transfer of infor-
mation between vehicles. V2V systems, enabled by blockchain technology, assign
aliases to vehicles. Blockchain transactions are recorded while vehicle identifiers
are concealed. Vehicle traffic alerts and safety notifications are authenticated by
blockchain technology [26]. Besides improving road safety, verified warnings also
function to prevent misinformation. Consequently, blockchain accident records are
immutable. This information is essential for insurance claims, law enforcement, and
post-accident investigations.

8 AI-Optimized VANETSs

Integrated architectures, applications, routing, safety allocation of resources and
access innovations, portability management, and management of mobility are the
six topics that are examined in this part. These are all areas that may benefit from
artificial intelligence technology.

VANET applications: One of the most often used uses of VANET facilitates the
timely response to particular occurrences and assures safe travel via the transmission
of early alerts. Applications of VANET may be categorized into three main categories.

e Protection applications: VANET applications broadcast danger and obstacle infor-
mation to prevent automobile collisions. Random forest algorithms may forecast
crashes. Drivers must weigh numerous criteria while choosing a route. Traffic
lights, pedestrians, autos, and GPS guidance are examples. This makes it hard for
drivers to multitask. In this setting, analyzing driver behavior is crucial. Because
it provides reliable and timely information, a Support Vector Machine may assist
detect road conditions. Convolutional Neural Networks forecast driving behavior
to prevent risky maneuvers [27]. Safety apps are utilized for lane change manage-
ment, navigation, and automated emergency brakes to avoid crashes. These appli-
cations may be enabled by using Principal Component Analysis to extract impor-
tant input data from driver qualities, automobile properties, and environmental
characteristics [28].

e Application in Traffic management: Traffic management include strategies to opti-
mize traffic flow, reduce travel time by the elimination of bottlenecks, and inform
drivers of current road conditions along the most efficient routes. Reinforcement
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learning may be used to control e-sign panels and intricate traffic signals on
highways. The reduced processing cost and simplified gating structure enable
GRU, a kind of RNN, to predict local highway traffic flow. LSTM has superior
predictive accuracy compared to conventional time series networks, making it
potentially more effective for traffic forecasting. Larger datasets enhance LSTM
performance compared to conventional time series models; they also expedite
processing and improve handling capabilities. Comprehending traffic congestion
would facilitate capacity enhancement and alleviation. ACO swarm intelligence
potentially mitigates traffic congestion via traffic flow control [29]. Due to their
closely connected processing components, CNN and ANN models provide excep-
tional predictive accuracy and contribute to congestion mitigation. KNN can fore-
cast vehicular density and velocity at various periods of the day. In conditions of
minimal error, KNN surpasses both the tree model and linear regression of the
input data [30]. Machine learning may enhance traffic management initiatives by
taking into account road factors such as weather.

Routing Application: Routing is essential in VANETS since all supported services
need multi-hop connections. Gaming and file transfer need unicast connections.
Multicasting occurs during collision alerts and platooning. The routing in VANET is
hampered by the variability in vehicle velocity in urban as well as highway settings.
Variations in speed may damage vehicle communication systems. Obstructions and
modifications in the express lane are other issues. It is crucial for most routing
systems, especially those with several hops, to choose quasi-optimal relays. The use
of an SVM classifier for node classification based on message transmission, along-
side Random Forest for analyzing the vehicle’s vicinity, may enhance automobile
routing protocols [31]. LSTM [32] ensures the dependability of vehicle routing by
stochastically forecasting traffic flow and maintaining vehicle information. Research
on behavior of drivers indicates that CNN can anticipate future driving paths to reduce
the need for quick modifications in case of a route breakdown. ACO is an efficient
technique for identifying the quasi-shortest path in data routing, but DT and NB
may also be utilized [33]. The bioinspired ACO has the capability to self-organize,
recuperate from failures, and discern the nearly optimal solution. Particle Swarm
Optimization (PSO) may be used by geocast methods to detect neighboring cars
within a designated area. No particles in the PSO algorithm operates autonomously
of its neighbors as it moves toward the most prominent places in the search space,
which evolve as other particles identify more favorable spots. This should aid the
swarm in recognizing semi-optimal options.

Safety allocation of resources: Security in VANETs has been extensively
researched during the last decade. Vehicles and roadside structures are intercon-
nected via VANETSs. The safety of these essential contacts is crucial. Consider the
integrity, trustworthiness, and relevance of additional automobile communications
including real-time safety application needs. As previously mentioned, cars convey
safety information via VANETSs and make essential choices based on the data in their
surroundings. Passengers in the vehicle may be jeopardized if this information is erro-
neous. VANET users may misread vehicle, the environment, and road circumstances.
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Sybil attacks are a method of traffic manipulation when car nodes replicate bottle-
necks. Vehicle security concerns include malicious nodes, DDoS attacks, authentica-
tion and confidence management, SQL injections, malware prevention and identifica-
tion, and hardware attacks across physical, network, the application, and cloud layers.
K-means is a suitable method for initial node clustering to detect malicious nodes,
since it adjusts to the changing topology of VANET. Exercise vigilance on CAN bus
attacks and other vehicular infractions. Deep learning is essential for detecting intru-
sions using GRU, a network of recurrent neural networks. Utilizing GRU’s distributed
cooperative architecture, vehicle nodes may assess network circumstances and decide
in real time whether to counteract jamming attacks, thereby averting communica-
tion interruptions [34]. Artificial Neural Networks detect wrongdoing by categorizing
nodes according to their previous behavior. CNNs with back-propagation can extract
spatio-temporal vehicle characteristics using a two-dimensional dataset. LSTM [32]
identifies OBU malware by the analysis of temporal network traffic data. This study
proposes several trust management solutions to assure the trustworthiness of VANET
data and nodes. In an automotive network, an automobile may assess the depend-
ability of a communication by evaluating the reliability of the transmitting vehicle,
the perspectives of those around it, and its prior encounters with the communication
vehicle. Automobile mobility interrupts and truncates conversations. The swift vali-
dation of emergency alerts is a formidable challenge. Vehicular nodes in VANET
and third-party trust may be generated by SVM and RL. Support Vector Machine
(SVM) is a dependable technique for non-linear classification. The vehicle’s inputs
as well as attributes make it an outstanding tool for trust modeling. The effective-
ness is shown in many vehicles. Reinforcement Learning [35] may evaluate trust
by analyzing comprehensive vehicle data and historical acts. Identify and alleviate
established DoS assaults. By understanding the operation of vehicle clusters, PSO
can alleviate DoS attacks. The PSO particle search space is used in VANET vehicles.
Subsequently, modify the search parameters for particle historical behavior.

The continual deployment of decision-making skills using artificial intelligence
(AI) techniques—which include deep learning (DL) as well as machine learning
(ML)—helps VANET operate as it should. Artificial intelligence’s capacity to assess
vast volumes of real-time information and adapt to changing conditions places it
particularly in a position to address the fundamental problems with VANETs.

e Al for Route Optimization
By avoiding crowded network paths and identifying possible congestion loca-
tions, Al-driven VANETS help to effectively transmit data. Using reinforcement
learning methods, routing systems dynamically change real-time traffic patterns
[36].
e Al in Traffic Prediction
To make wise judgments, autonomous cars depend on knowledge about traffic
density and travel patterns. By means of analysis of both historical and present
data, artificial intelligence models using LSTM (Long Short-Term Memory)
systems are able to forecast traffic patterns [37].
e Security and Privacy Considerations in Al
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Given the possibility for breaches, security causes a major worry inside
VANETs. By identifying and halting malicious activity in real time, blockchain
technology and Al-powered intrusion detection systems (IDS) can make VANETSs
safer [38].By identifying and halting malicious activity in real time, blockchain
technology and Al-powered intrusion detection systems (IDS) can make VANETSs
safer.

e Al in Adaptive Communication

Artificial intelligence shapes defined priorities and thereby influences the allo-
cation of network resources by means of current network circumstances. For
example, non-essential information is subordinated to crucial notifications like
collision warnings.

9 Conclusion

The researcher conducted an investigation of artificial intelligence algorithms for
pedestrian safety applicable to VANETS in this work. This section has examined
several artificial intelligence methodologies. The efficacy of automotive programs
may be enhanced by the use of Al-driven algorithms rather than conventional
methods. The performance optimization challenge in many areas sometimes presents
several difficulties due to opposing considerations. Thus, the fields of artificial intel-
ligence, deep learning, as well as machine learning may synergize to provide optimal
solutions that conform to the constraints of these technologies. Typically, artificial
intelligence algorithms entail more computing expenses and need more resources
than other algorithms. These gadgets may not be integrated into vehicles or the units
located next to the roadway. Delegating certain calculations to exterior processing
and storage servers located in the fog, cloud, or edge reduces the computational
strain on artificial intelligence systems. The recent emergence of novel integrated
architectures and accessibility methods, such fog and edge computing, may mitigate
this strain. Consequently, researchers have demonstrated how certain Al methodolo-
gies may use the advantages of the VANET the surroundings, despite the constraints
associated in some Al processes.
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Abstract Accurately monitoring pedestrian and vehicular flow is crucial for traffic
management, urban planning, and public safety. Conventional approaches fail to
provide greater performance in both accuracy and efficiency. This study used a deep
learning object identification model like YOLOV9 to recognize and track pedestrians
and cars in real-time video streams. Furthermore, this methodology goes beyond
simple detection by integrating speed estimation capabilities. Examining consecutive
frames and applying motion estimation techniques helps to estimate the speed of
found vehicles precisely, so augmenting our knowledge of urban dynamics. Apart
from counting the cars and pedestrians crossing the camera, it can recognize vehicles
and objects. Results of tests on benchmark datasets show the value of the suggested
method, which surpasses present methods in terms of accuracy, precision, recall, and
mean average precision.
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1 Introduction

Modern urban environments depend critically on efficient traffic control both for
pedestrians and vehicles. This is so because it is required for the seamless running
of transport systems, so enhancing public safety, and so supporting urban plan-
ning projects. Meeting these targets depends critically on accurate counting of
people and vehicles as well as exact estimate of their speeds [1]. Conventional
methods for these kinds of projects usually lack scalability, accuracy, and relevance
to metropolitan environments. Current approaches for automated vehicle and pedes-
trian counts combine several technologies. These technologies have shortcomings
including undercounting due to occlusion and the difficulty to distinguish between
various types of pedestrians even if they are more accurate and offer continuous data
collecting than hand counting. Successful pedestrian counting programs are further
challenged by factors including as occlusion-related errors, the difficulty of finding
suitable sites and technologies, and ignorance of pedestrian traffic patterns.

This work presents a unique approach using deep learning techniques with tradi-
tional image processing methods to solve these problems and forward the field of
traffic management by transforming vehicle and pedestrian counting as well as speed
estimate in urban environments. Although our approach mostly depends on the use
of You Only Look Once version 9 (YOLOV9) [2], our main aim is to build a complete
system for YOLOvV9 model-based road transport analysis. The main objectives of
this work are to show how effective an integrated approach is at identifying and
counting both pedestrians and vehicles, to develop a system for estimating vehicle
speeds [3] using distance calculations, and investigate the several uses of both speed
estimation and vehicle and person counting in a variety of fields, including traffic
management, Intelligent Transportation Systems (ITS), public safety, surveillance
systems, and retail. The proposed method guarantees the supply of accurate and reli-
able data for traffic research by functioning well even under demanding conditions,
such variations in lighting, temperature, and obstacles [4].

Including speed estimating features into this system aims to provide valuable data
for urban planning, traffic management, and safety enforcement projects. Perfect
vehicle and human counting has a great variety of possible applications when
combined with speed estimate. On lane allocation, signal timing, and traffic flow opti-
misation, these characteristics can support traffic management decisions. For public
safety, they enhance traffic enforcement and emergency reaction strategies [5]. This
work will review the methodology and implementation of our project, present the
results, and discuss the several applications and consequences of the built system.
The work presented in this chapter advances computer vision (CV), machine learning
(ML), deep learning (DL), and transportation systems so increasing the efficacy and
security of urban transportation networks.
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1.1 Research Gaps

e Modern algorithms like YOLOV9 excel in real-time identification but struggle
with variations in lighting, different weather conditions, and occlusions.

e Current speed estimation algorithms face challenges due to occlusions, non-
standard vehicles, and fluctuating vehicle speeds.

e The current systems rely on predefined speed thresholds which may be oversim-
plified.

1.2 Key Contributions

The main contributions of this work are on creating a thorough system for exact
vehicle and pedestrian counts, over-speed detection in metropolitan environments,
and consistent speed estimations. Not to show the YOLOv9 model; rather, the main
objective is to address the critical traffic management issues using advanced CV and
DL techniques.

e Combining a specifically trained YOLOvV9 model with traditional image
processing methods, the proposed system detects and counts cars and people
in a range of urban environments with a mean Average Precision (mAP) of 85%.

e The system detects cars exceeding the speed limit in addition to estimating speed
using centroid tracking and bounding box centers as its basis.

e The system uses perspective transformation techniques to get over the viewpoint
distortion in surveillance video.

e By means of pedestrian and vehicle counts, speed computation, and over-speed
detection into a single system, one offers a whole traffic management and urban
planning solution.

1.3 Challenges

Developing advanced surveillance systems calls for overcoming several challenges
to ensure dependability and accuracy of operation. The intricate and dynamic back-
grounds seen in many surveillance situations can significantly influence the efficiency
of object detection and tracking systems. Occlusion that is, when objects are some-
what hidden makes tracking constantly and precisely rather difficult. In metropolitan
settings especially, this is especially evident when there are many cars or people.
Good surveillance systems have to operate under a range of lighting and weather
conditions, including strong rain, fog, and brilliant sunlight. These variations could
influence the visibility and appearance of an object, so challenging detection systems
to remain accurate.

Timely action and decision-making depend on real-time processing of surveil-
lance data. But in high-resolution video streams especially, real-time performance
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calls for alot of processing capability and well-tuned algorithms. Scalability becomes
further difficult as surveillance systems expand to cover more sites or areas. To
overcome these obstacles, constant research and development is needed to raise the
ethical criteria, accuracy, and robustness of surveillance systems. Through addressing
critical problems in vehicle and pedestrian counts, speed estimate, and over speed
detection, this work advances traffic management, public safety, and urban planning
initiatives. More intelligent and sustainable urban environments open the possibility
of significant impact on CV, machine learning, and transport systems depending on
the outcomes of this study.

2 Literature Survey

Dai et al. [6] present a framework for YOLOv3-based vehicle object identification.
It tracks objects by means of the KCF algorithm, deriving trajectories and matching
templates. This framework is developed and evaluated on a particular Vehicle Object
Detection (VDD) dataset. The obtained trajectories offer spatiotemporal data on
vehicle movement. Operating on the VDD at a speed of 20.7 fps, the model had an
overall accuracy of more than 90%.

Shami et al. [7] proposed convolutional neural networks (CNNs) as a means
of spotting sparse heads in images of packed crowds. After splitting images into
patches, they classify crowd patches using a binary classifier based on speeded-up
robust features (SURF). The average head size in every patch is then estimated using
regression; the number of people is computed by dividing the patch area by the
projected head size. Should no heads be found in the patch, they employ weighted
averages derived from surrounding patches depending on distance. Especially images
of highly dense crowds, their approach produces result on publicly available datasets
for highly dense crowds that are equivalent to state-of- the-art methods without the
need of labelled training data. Yang et al. [8] presented a technique for quick and
accurate traffic volume estimate and vehicle counting in traffic videos. They employ
an attention-based TSI density map estimation network to count the vehicles after
converting videos into time-spatial images (TSIs) and manually marking the vehicle
placements. The UA-DETRAC dataset findings show how effective the method is at
balancing speed and accuracy, even with small amounts of video data.

A pipeline based on vision was proposed by Liu et al. [9] to derive traffic statistics
from camera footage that has been preserved. Their technique uses object detectors
with transfer learning to recognize vehicles, bicycles, and pedestrians in monocular
video streams. Using image-to-world homography and weak camera calibration, the
system calculates the length and speed of vehicles, counts the number of cars in each
lane, and uses projective geometry in conjunction with a CNN to classify vehicles.
The pipeline effectively processes 60 frames per second, producing high-quality data
for traffic analysis, and has been tested on recordings from various locations. In order
to improve traffic monitoring, Xiang et al. [ 10] used aerial footage taken by unmanned
aerial vehicles (UAVs) to create a model for vehicle counting. Their technology uses a
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moving-object detector to handle both static and dynamic background circumstances.
To detect automobiles on static backgrounds, a pixel-level foreground detector is used
to continuously update the background model. Image registration detects cars inside
areference coordinate system by estimating camera motion in situations with moving
backgrounds. Vehicle counting tests using actual highway sceneries demonstrated
an accuracy of over 90% for static backgrounds and 85% for dynamic settings.

In order to improve vehicle counting and categorization, Lin et al. [11] suggested
a real-time traffic monitoring system that integrates a virtual detection zone, GMM,
and YOLO. Datasets such as MAVD and GRAM-RTM are used to validate the
model. The suggested approach performs well under a variety of circumstances and
attains a high classification accuracy. Having an average absolute percentage error
of about 7.6%, it also achieves precise vehicle speed prediction. Lin and Jhang [12]
put out a vehicle counting method using a modified YOLOv4-tiny for detection and
a multi-object counting technique. The upgraded YOLOvV4-tiny architecture added
three outputs to increase detection accuracy while the multi-object counting method,
which used Kalman filters and the Hungarian algorithm, linked and matched cars
across frames to avoid double counting. Our approach addressed the challenge of
precisely counting vehicles in continuous image frames so guaranteeing a reliable
collection of vehicle information for later analysis in traffic applications.

Sambolek et al. [13] evaluated the dependability of many state-of- the-art detectors
including YOLOV4, Faster R-CNN, RetinaNet, and Cascade R-CNN in search and
rescue efforts. The performance of these detectors was assessed using the VisDrone
benchmark and a specifically created dataset called SARD, meant to replicate rescue
scenarios. Examining elements like network resolutions, detection accuracy, and
transfer learning parameters helped them to improve these detectors for person detec-
tion under SAR conditions. They also looked at how robust the YOLOv4 model was
to bad weather and motion blur in order to offer a better model for SAR operations.
Pang et al. [14] presented a novel technique for precisely counting vehicles in several-
vehicle occlusions within monocular traffic image sequences. The method produces
individual contour descriptions, counts the vertices per car, and assigns a resolvability
index to every occluded vehicle using a deformable and contour description model.
The method revealed 100% vehicle counting accuracy and lowered root-mean-square
errors in vehicle size estimate when tested using real-world traffic images.

Tayara et al. [15] proposed manually created feature extracting and classification
methods for aerial vehicle detection. They selected areas using supervised classifi-
cation then obtained SIFT features and applied SVMs for classification. A further
approach involved region selection, Histogram of Gradient (HOG) feature extrac-
tion, and discrimination using a variety of methods, including SVM and mutual
information measure. For quick vehicle orientation and type identification, a two-
stage approach—binary sliding window detection and multi-class classification—
was used. They combined nonlinear filtering, feature reduction, and Gaussian process
regression for detection. Other methods included combining local and global vehicle
data, road and vehicle alignment using HOG and SVM/Viola-Jones integration, and
super pixel segmentation. Additionally, increased entropy rate clustering (IERC) and
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correlation-based sequential dictionary learning (CSDL) were used for dictionary
updating.

A method for identifying and counting automobiles in high-resolution UAV
images was proposed by Moranduzzo and Melgani [16]. Before employing the scalar
invariant feature transform to extract features, they first screen asphalted zones to
remove false alarms. In order to create a “one key point-one car” relationship, an
SVM classifier first isolates automotive key points from other types of points. A
promising car counting accuracy of 76.61% is shown by the experimental findings
on real UAV scenes with a spatial resolution of 2 cm. By using cutting-edge CV
approaches to extract traffic data from recorded movies, Unzueta et al. [17] offered
a creative way to use outdated camera systems in traffic management. To iden-
tify things, its vision-based pipeline transfers learning and integrates state-of-the-art
object identification models. They accomplish vehicle counts by lane and accurate
vehicle speed estimations in real-world units by using a new combination of image-
to-world homography and weak camera calibration. Vehicle identification is further
improved using a classification module that combines projective geometry and a
CNN. The technology, which has been tested in a variety of traffic scenarios, can
process videos at 60 frames per second and produces high-quality metadata that is
on par with piezoelectric sensors, improving traffic analytic capabilities.

A Hybrid YOLOvV4 model for crowd surveillance was trained by Khel et al. [18]
using the JHU dataset, with an emphasis on predicting individual count, movement
direction, and speed. They increased model efficiency by optimizing convolutional
layer filters during training using L1 normalization-based pruning. Convolutional
Block Attention Modules (CBAM) were part of this method to raise target detection
accuracy. After analyzing the found data, the DeepSort tracker assigned unique IDs
for simple tracking using bounding boxes. Zarei et al. [19] presented the FastYolo-
Rec method to handle vehicle detection in the balance between speed and accuracy.
Their method integrates a new Yolo with Long Short-Time Memory (LSTM) to
increase detection efficiency and accuracy through SSAM by alternating prediction
and detection frames, the technique preserves a reasonable degree of accuracy while
accelerating real-time vehicle tracking. Testing on a road dataset shows how better
their approach is than standard practices. Li et al. [20] proposed a time-span-based
method for traffic volume estimate and vehicle counting bypassing conventional
detection and tracking. Their solution beats current approaches when evaluated on
the UA-DETRAC dataset. To improve road safety and reduce traffic, Tsai et al. [21]
created a real-time system that uses DL approaches to recognize and count automo-
biles. Their technique combines lane-based counting and YOLO vehicle recognition,
and out of multiple YOLO versions, YOLOv3-spp has the best precision, recall, and
F1 ratings. The potential of deep learning for real-time traffic management was
further supported by counting trials, where YOLOv3-608 outperformed YOLOV2,
SSD, and other techniques to record the highest accuracy, precision, and F1 scores.

An extremely accurate vehicle counting method utilizing Mask R-CNN in
conjunction with a KLT tracker was proposed by Ariny et al. [22]. The KLT tracker
assigns trajectories to guarantee precise counting, while Mask R-CNN’s instance
segmentation effectively recognizes cars, even in obscured circumstances. Their
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approach counts 76 out of 77 vehicles in a sample video and achieves 98.7% preci-
sion in differentiating between counted and new vehicles. The benefits of combining
trajectory tracking and instance segmentation for complicated video situations are
demonstrated in this study. A method for calculating speed and estimating distance in
vehicle detection systems was presented by Vijayalakshmi et al. [23]. Their approach
tracks with the Dlib package using a DeepSORT tracker, an SSD model for detection,
and the Euclidean metric to compute speed depending on relative motion. Experi-
mental data show that it has great tracking ability and outstanding detection accuracy,
which qualifies it for real-time driving uses. With accuracy, F1 score, precision, and
recall scores of 0.82, 0.85, and 0.80 respectively, the SSD model had a mean average
precision (mAP) of 0.78.

Ahmad et al. [24] propose an understudied perspective in video surveillance:
person detection from overhead views. They first trained the YOLO (You Look Only
Once) deep learning model on frontal view datasets. They count people from over-
head views using classified bounding box information as well. The YOLO model
performed exceptionally well, with a 95% TPR with a negligible FPR of 0.2%.
This study demonstrates how well YOLO works to overcome the difficulties caused
by above views, providing viable answers for reliable person recognition in secu-
rity cameras. Saxena et al. [25] used SSD and MobileNetV2 models to present a
DL-based Vehicle Counting and Speed Estimation (VCSE) system for surveillance
footage. While object tracking and speed estimation methods made use of detec-
tion output, object detection was enhanced through fine-tuning on a surveillance
dataset. Speed estimation mistakes were decreased by over 2% through calibration
using specialized videos. By monitoring speed restrictions, improving road safety,
and fortifying security measures, the system demonstrated important applications in
law enforcement, safety, and security. It earned a high mAP score of 0.88 for object
detection and 98% accuracy for speed estimation.

Fang et al. [26] suggested Tinier-YOLO, an enhanced version of Tiny-YOLO-
V3, to reduce model size without compromising detection accuracy or real-time
performance. Tinier-YOLO enhances feature propagation while attaining a signif-
icant parameter reduction by integrating the SqueezeNet fire module and adding
dense connections between fire modules. A passthrough layer mitigates the impact
of model size decrease on detection accuracy. On Jetson TX1, Tinier-YOLO achieves
a small model size of 8.9 MB while maintaining real-time performance of 25 frames
per second, making it comparatively four times smaller than Tiny-YOLO-V3. Eval-
uation on the COCO and PASCAL VOC datasets demonstrates mAPs of 34.0% and
65.7%, respectively, with comparable performance to other lightweight components,
suggesting promise for embedded device deployment.

In order to get over the difficulties in identifying small-scale pedestrians in
photos, Wanye and Jinping [27] presented a sophisticated pedestrian recognition
method based on Faster R-CNN. Their method clusters, finds pedestrian areas using
aRegional Proposal Network (RPN), and employs a deep CNN for consistent feature
extraction. They presented a unique multi-layer feature fusion method that cascades
high- and low-level characteristics, improving the semantic information and hence
refining detection. They also addressed sample imbalance using OHEM, so greatly
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increasing the detection accuracy. Experimental analyses on the PASCAL and INRIA
pedestrian datasets revealed clear increases in average accuracy of 6.3% and 13.93%,
respectively, so demonstrating the efficiency of their approach for spotting small-
scale pedestrian targets. Using a cascade classifier and CNN, Satti et al. [28] proposed
a system to identify the traffic signs in an Indian road and achieved outstanding
performance in real time. Satti et al. [29] proposed a system to generate the real-time
caption to an image using Resnet and LSTM (Table 1).

3 Proposed Methodology

3.1 Overview

Figures 1 and 2 present a sophisticated method for looking through video footage
to locate and follow particular objects including people and vehicles. This operation
consists of several crucial components that each are necessary for precise object
tracking and detection. The arrival of video footage marks the first phase and shapes
all further inquiry. Frame extraction comes next in breaking out the video into indi-
vidual frames. This stage is essential because it allows for a thorough, frame-by-frame
analysis of the video.

The technology can more accurately detect and track objects by analyzing each
frame separately. After that, a pre-trained model is loaded, trained on enormous
collections of tagged photos, and is capable of identifying a variety of items in the
frames, including people and cars. This model receives every extracted frame for
examination. The system detects and classifies objects in every frame it receives
using the object recognition abilities of the model. Before the model handles the
frame, a viewpoint change is used. This phase changes the perspective of the frame
to suitably show objects in line with the training data of the model. Perspective
transformation provides exact object detection when camera angles distort object
dimensions.

The model detects objects in the frame from the point of view change. Should no
objects be detected, the system immediately shifts to the next frame and repeats the
process. If an object is discovered, though, the flowchart divides into two sections
based on the type of object found either a car or a human. Should the object under
identification be human, a tracker class is called. Monitoring the person’s movements
throughout consecutive frames falls under this class’s purview. The system records
the people it has found as well.

When managing access control in limited areas or crowd monitoring, where
knowledge of the current number of people is essential, this counting system is
useful. Should the identified object be a vehicle, a corresponding tracker class tracks
the vehicle. Apart from monitoring and control of traffic, the system counts the
found vehicles in addition to tracking. Moreover, the system determines the detected
vehicle’s speed. It generates useful information for traffic enforcement and safety
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Table 1 Summary of recent works
Model | Dataset Methodologies Limitations
[1] Vehicle object Identify vehicle objects using Requires dedicated VDD
detection (VDD) | YOLOV3, track objects with KCF dataset, limited to vehicle
dataset algorithm counting and speed
estimation
[2] UCF_CC_50, Detect heads in dense crowd images, | Lack of labeled training
ShanghaiTech, and | employ SVM-based classifier to data for dense crowd
AHU-crowd label crowd patches, and estimate images
head count
[3] UA-DETRAC Utilize TSI density map estimation | Limited video data
dataset network with attention mechanisms
for counting, validate on
UA-DETRAC dataset
[5] Custom dataset Extract traffic data from legacy Requires weak camera

camera videos using object detectors
and transfer learning techniques

calibration, may not
generalize well to all

scenarios
[6] Custom dataset Count vehicles in UAV aerial Limited to aerial views,
videos, address static and moving may not perform well in
background scenarios, validate on densely populated urban
real highway scenes areas
[7] MAVD and Integrate virtual detection zones, May not generalize well to
GRAM-RTM GMM, and YOLO for vehicle all traffic scenarios, and
datasets counting and classification, then requires calibration for
evaluate on MAVD and accurate speed estimation
GRAM-RTM datasets
[8] GRAM-RTM data | Utilize modified YOLOv4-tiny for | Limited to vehicle
set detection and multi-object counting | counting, may not perform
method for tracking, address the well in crowded traffic
challenge of accurately counting scenarios
vehicles
[9] VisDrone Evaluate Faster R-CNN and Limited to SAR scenarios,
benchmark and YOLOV4 in SAR scenarios and may not generalize well to
SARD dataset analyze transfer learning other applications
[10] Custom dataset Develop a method for counting Limited to counting

vehicles in occlusions, utilize
deformable and contour description
model

vehicles in occlusions, may
not generalize well to all
traffic scenarios

[11]

Munich and
overhead imagery
research data set

Propose handcrafted feature
extraction and classification
strategies for aerial vehicle
detection, validate various
techniques

Limited to aerial views,
may not generalize well to
all traffic scenarios

(continued)
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Table 1 (continued)

S. K. Satti et al.

Model | Dataset Methodologies Limitations
[12] Custom dataset Detect and count vehicles in HD Limited to high-resolution
UAV images using feature extraction | UAV photos, may not
and an SVM classifier generalize well to lower
resolution or different
scenarios
[13] Custom dataset Extract traffic data from captured Requires weak camera
videos using computer vision calibration, may not
techniques, validate on various sites, | generalize well to all
and compare with piezoelectric scenarios
Sensors
[14] JHU dataset Train hybrid YOLOv4 model for Limited to crowd
crowd surveillance, integrate L1 surveillance, may not
normalization-based pruning and generalize well to other
DeepSort tracker surveillance scenarios
[15] CDNet2014 datase | Propose FastYolo-Rec algorithm for | Limited to vehicle
balancing accuracy and speed in detection, may not
vehicle detection, validate on generalize well to other
highway dataset traffic scenarios
[16] UA-DETRAC Develop a vehicle counting and Focused on vehicle
dataset traffic volume estimation method counting and traffic volume
using a time-spatial structure, and estimation, may not
validate it on the UA-DETRAC generalize to other traffic
dataset scenarios
[17] Custom dataset Propose real-time vehicle detection | Limited to vehicle
and counting system using YOLO, | detection and counting,
validate on various YOLO versions | may not generalize well to
and SSD methods other traffic scenarios
[18] e GRAM-RTM Introduce accurate vehicle counting | Limited to vehicle
dataset approach using Mask R-CNN and | counting, may not
KLT tracker, validate on various generalize well to other
datasets tracking or detection
scenarios
[19] Custom dataset Propose a method for speed Limited to speed
calculation and distance estimation | calculation and distance
using SSD and DeepSORT models, | estimation, may not
validate on dedicated datasets generalize well to other
traffic scenarios
[20] SOTON and IMS | Introduce method for person Limited to person detection
datasets detection from overhead views using | from overhead views, may
YOLO, validate on various datasets | not generalize well to other
surveillance scenarios
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Fig. 1 System architecture

analysis by tracking the vehicle’s position over several frames and computing its
velocity depending on the distance covered over time. Following current frame
processing, the system looks for more frames to examine. Should extra frames exist,
the process loops back to forward the next frame for analysis to the model. The
process ends should no more frames be accessible.

3.2 Model Selection

Given the real-time demands of our application, we selected the YOLOVO. It fits
our application well since it has shown remarkable speed and accuracy in many
objectidentification challenges. We extensively preprocessed the video frames before
to using the model in order to ensure YOLOV9’s best possible input quality. This
preprocessing stage consisted in several techniques including resizing, normalising,
and noise reduction. We sought to standardise the resolution and enhance visibility
in the video frames so raising the detection accuracy and robustness of the model.
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3.3 Object Detection and Classification

On our annotated dataset, first we trained a custom object detection model using
the YOLOV9 model. We modified the model to fit our particular detection needs,
SO optimising its capacity to precisely identify cars and pedestrians in real-time. It
looked over every frame of the input video upon deployment to identify any objects in
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the scene. These objects were arranged into the suitable groups (vehicle, bus, truck,
motorbike, human, etc.), based on the confidence ratings and bounding box coor-
dinates of the model. Redundant detections were eliminated and general detection
accuracy was raised by means of NMS, so strengthening our detection system.

3.4 Counting Vehicles and Pedestrians

Our original counting system was developed to precisely count cars and pedestrians
in real time in order to offer complete traffic flow analysis. Two horizontal lines were
drawn in the video frame to indicate counting zones, and the algorithm was based
on object trajectory analysis. An object was considered to be traveling upward when
it crossed the bottom line and then the top line, and vice versa. We have the midline
Ym, bottom line yy, and top line y; coordinates. The tracked objects are assigned
direction(£2) according to the sequence in which they cross the lines.

yo<@+mwandy >(y—p —>L=0 )]

Yo <(y+mwandy, > (y—p) > Q=1 @)

3.5 Estimating Vehicle Speed

Our system not only counts and detects objects, but it also makes real-time speed
estimates for cars it detects. We tracked the vehicle enclosing bounding box centre
coordinates over a sequence of frames using a frame-by—frame analytic approach. We
computed the displacement of these central coordinates over time to determine the
distance each vehicle covered. Subsequently, separating the computed distance by
the interval between frames approximated speed. Thanks to our method, we could
dynamically track changes in vehicle speed and precisely identify possible traffic
violations including speeding.

\/(xi —x5) + (i —y)

speed = a x
p o X

3)

With a as the conversion constant and A as the constant pixels per metre.
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3.6 Vehicle Speed Detection

We incorporated an overspeed vehicle recognition method to greatly increase the
capacity of our system to detect traffic violations. A set threshold speed was created
to identify vehicles surpassing the legal speed limit or particular traffic scenario
criteria. Every occurrence of one was counted one at a time; vehicles identified as
overspeed vehicles were labeled as those which were detected moving faster than
this limit. With this counting process, we were able to identify and quantify potential
traffic violations, so providing vital data for law enforcement and traffic control.

3.7 Vehicle and Pedestrian Counting

This approach aims to classify objects in line with their vertical position inside a
frame and movement direction. Defining parameters including the y-coordinate of
the bounding box centre, reference lines, and sets, it tracks objects travelling in (Cu)
and out (Cd). It first finds whether the y-coordinate of an object falls inside a given
range around every reference line. If so, it sets a direction value () and identifies
which reference line it falls inside. Setting to 0 indicates upward movement should
the object lie close to the top reference line (y;). Set to 1 to indicate downward
movement should it be close to the bottom reference line (yp). Lastly, it verifies the
direction value if an object is within a range around the middle reference line (yp,).
The object’s ID is added to the set of items moving in (Cu) if €2 is equal to zero, and
to the set of objects going out (Cd) if 2 is equal to one.

Algorithm

y <« y-coordinate of the bounding box centre.

Q2 < direction value of the objects.

C, < This is a set of IDs of objects moving in.
Cq4 < This is a set of IDs of objects moving out.
Yt» Yb, Ym <— coordinates of reference lines

\L < This is a constant value.
ifyr<(y+mp)andy >(y—p)then

Q<0
end if
ifyp<(y+p)andy,>(y— p)then
Q<1
end if
ifym<(y+p)andym>(y —p)

if Q < 0 then
C,<C,+1
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elif Q@ < 1 then
Cqg«Cag+1
end if

end if

3.8 Speed Calculation Algorithm

This algorithm iterates over a set of bounding boxes (bbox_id), extracting their
coordinates and calculating the centroid. It then applies a perspective transformation
(tp) and extracts transformation coefficients (t.). For each bounding box, if its ID
exists in the object data, it calculates the time difference (tq) between the current and
previous time instances, along with the displacement (d) among the present location
and the previous location. If the time difference is greater than or equal to 1, it
computes the distance (d) travelled by the object, adjusts it based on a pixel-per-meter
ratio (ppm), and calculates the speed (s) of the object.

Algorithm
for bbox in bbox_id do

P1,4q1 s P2, Q2 < coordinates of bbox
cx < (p1+p2)/2
cy < (qi+q2)/2

t, < perspectiveTransform(p)
te < (to, t1)
if id in object_data do

ct <— current time

pt <— previous time

Pp < previous position

td <—ct — pt

k < (1o — pp)* + (11 — ppy)*
if td >=1 do

d<—sqrt(k)

d < d /ppm
s < dnd
end if

end if

end for
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4 Results and Discussions

All of the system’s tests are conducted on a high-performance computing platform
employing GPU acceleration on a real-time processing capability basis. The proposed
system made use of several open-source libraries, such OpenCV for video processing
and PyTorch for deep learning chores, and ran on the Python programming language.

4.1 Data Collection and Preparation

We focused on building a representative and varied dataset over this phase to appro-
priately train our object detection model. We positioned high-definition cameras
at many intersections and pedestrian areas to capture a range of events, including
changing lighting, weather, and traffic loads. This guaranteed that our model would
fit actual conditions rather nicely. To maintain consistency and quality of data, we
selected video for our dataset using strict criteria. Low degrees of occlusion, distor-
tion, and motion blur were preferred to ensure exact annotations and consistent model
training. We also meticulously labelled the dataset adding ground truth labels for cars
and walkers. These annotations serve as effective benchmarks for training and eval-
uation of our object detection model. Over 15,000 samples from classes like vehicle,
bus, truck, bicycle, motorbike, and person were used to train proposed model. The
samples of the COCO [30] dataset are illustrated in Fig. 3.

Fig. 3 Illustration of images in the COCO [30] dataset
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(a) Before resize and noise reduction (b) After resize and noise reduction.

Fig. 4 Pre-processing. a Before resize and noise reduction, b after resize and noise reduction

4.2 Data Pre-processing

Several methods were used in this pre-processing step, such as noise reduction,
normalization, and resizing. The images before and after pre-processing are shown
in Fig. 4a, b.

4.3 Parameters Used to Train the Model

Table 2 provides an overview of the hyperparameters utilized for training the chosen
model. The YOLO configuration specifies a batch size of 32, meaning that during
each training iteration, 32 images are processed simultaneously. The learning rate is
setto 0.001, regulating the step size for adjusting the model’s weights and minimizing
the loss function.

The training process spans 100 epochs, allowing the model to iterate through the
entire dataset 100 times. The inputimages are resized to 416 x 416 pixels before being
fed into the network, ensuring consistency in dimensions. To mitigate overfitting, a
weight decay of 0.0005 is applied, which discourages excessively large weights.
The momentum parameter is set to 0.937, helping to accelerate gradient updates
and facilitate faster convergence. The Adam optimizer is selected due to its adaptive
learning rate and efficiency in handling sparse gradients. These hyperparameters are
carefully chosen to enhance model performance by maintaining an optimal balance
between training speed, stability, and generalization.

Table 2 YOLOV9 training parameters

Batch size | Learning rate |epochs |Inputsize | Weightdecay | Momentum | Optimizer

32 0.001 100 416 x 416 | 0.0005 0.937 adam
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4.4 Evaluation Metrics

The performance of the proposed model is evaluated using several key metrics. The
mathematical formulas for precision (Eq. 4), recall (Eq. 5), accuracy (Eq. 6), and
mean Average Precision (mAP) (Eq. 7) are provided. Here, P;, Py, N, and Ny repre-
sent true positives, false positives, true negatives, and false negatives, respectively.

Py

Precision = —— @)
P+ Py
Py
Recall = —— (®)]
P; + Nf
P: + N,
Accuracy = N (6)

P, +N,+P; +N;

N
1
AP = — AP; 7
m N; (7)

4.5 Performance and Comparative Analysis

A carefully selected dataset of video footage from multiple surveillance cameras
positioned at key points, such as intersections, pedestrian walkways, and city streets,
served as the basis for our experiments. The dataset covered a range of possibili-
ties including variations in traffic density, meteorology, and illumination conditions.
Every video sequence was painstakingly annotated to provide ground truth labels for
cars and people, so enabling supervised learning for tasks including object detection
and tracking. The dataset included video from both stationary and dynamic camera
viewpoints, so simulating real-world surveillance environments.

By guaranteeing that our system could generalize effectively to many environ-
mental conditions and camera views, this variety enhanced the resilience and adapt-
ability of our system in practical uses. The dataset also included cases of limited
visibility, occlusions, and varying item scales, which made it challenging for our
model to consistently find and follow objects in trying circumstances. To assess the
efficiency of our surveillance system, we considered a broad spectrum of performance
indicators catered to the particular objectives of every component. Using established
criteria, we assessed the accuracy of object localisation and category prediction
for object identification and classification. We also considered the mean Average
Precision (mAP) for several item categories to evaluate general detection perfor-
mance. Ground truth annotations were compared with object trajectory prediction
and counting accuracy for the tracking and counting modules. The system’s effec-
tiveness in precisely tracking the movements of cars and pedestrians was measured
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using metrics like tracking precision, average tracking error, and counting accuracy.
The values of these metrics—accuracy, precision, recall, and mAP are shown in
Table 4.2. By contrasting the system’s estimates with manually or with the aid of
auxiliary monitoring systems observed ground truth speeds, the accuracy of the speed
estimating process was assessed. The confusion matrix plot of our model’s predicted
labels over true labels is shown in Fig. 5 below. People and vehicles, including cars,
buses, trucks, and motorcycles, are included in the labeling. The charts for the metrics
accuracy, precision, recall, mAP, box_loss, cls_loss, and obj_loss for both are shown
in Fig. 6.

Table 3 presents a comparison of the performance of various object detection
models, including YOLOv3, YOLOv4, SSD, and the proposed model. The results
show significant advancements in accuracy, mean Average Precision (mAP), preci-
sion, and recall. YOLOvV3 achieves a balanced performance with an accuracy of
0.576, mAP of 76.52, precision of 78.84, and recall of 74.20, making it a robust
model but not the top performer. YOLOv4 outperforms YOLOv3 with an accuracy
of 0.728 and precision of 81.50, although its mAP of 74.2 and recall of 77.00 indicate
better object identification but slightly less precision in localization. The SSD model,
with an accuracy of 0.485, mAP of 61.29, precision of 69.78, and recall of 62.00,
lags, struggling with both detection and localization. Our model, on the other hand,

Fig. 5 Confusion matrix for the model
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Fig. 6 Precision and recall curves

Table 3 Comparison of the proposed model with existing models

Models Precision Recall Accuracy mAP
YOLOvV3 78.84 74.20 0.576 76.52
YOLOv4 81.50 77.00 0.728 74.2

SSD 69.78 62.10 0.485 61.29
Our model 89.45 88.00 0.914 85.15

performs noticeably better than all of these models, with a remarkable accuracy of
0.914, mAP of 85.15, precision of 89.45, and recall of 88.00. These measures show
the better item detection and localization capacity of our model. Because of its great
precision and recall values, which show a balanced approach that reduces both false
positives and false negatives, it is quite successful for difficult object detection tasks.

4.6 Analysis of Surveillance System Results

The results of our surveillance system revealed great performance in a spectrum
of operational conditions and environmental surroundings. Real-time monitoring of
vehicle and pedestrian traffic made accurate counting, tracking, and speed estimate
possible as well as provided valuable data for traffic management and urban planning.
Machine learning algorithms especially the YOLOv9 model enhanced accuracy and
dependability in item detection and classification tasks even in dynamic settings with
complex backgrounds and occlusions. The proposed method routinely performed
well in real-world applications in precisely identifying and tracking vehicles and
pedestrians in a range of environmental conditions and camera angles. The custom
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counting technique effectively counted the in- and out-of-pocket motions of vehicles
and pedestrians, so enabling complete traffic flow monitoring and congestion control.
Estimating speed helped law enforcement identify vehicles running above the speed
limit, so enhancing traffic safety and ease of spotting violations.

All things considered, the results of the analysis of the surveillance system
revealed how well it performs in pragmatic environments, providing stakeholders
with pertinent data for planning urban infrastructure, enhancing safety, and stream-
lining traffic. Constant monitoring and parameter and algorithm optimization of the
system will help to further enhance its performance and capacity to adapt to changing
traffic conditions and technology developments.

Figure 7 displays the output of the model on Vignan University’s gate video,
produced from CCTV footage of the gate. Figure 8 shows the model’s output on
CCTYV footage of a crowded path with changing lighting conditions. The model is
rather good at detecting even at night.

5 Conclusions and Future Scope

This chapter demonstrates the YOLOv9 model’s performance for vehicle and human
counting as well as speed estimates employing distance computations. Using state-of-
the-art computer vision technologies, a real-time system for item detection, counting,
and speed prediction has been developed showing promise in urban planning, traffic
control, and public safety. The YOLOv9 model has been crucial in precisely identi-
fying and tracking cars and pedestrians, so enabling effective counting and estimate
of speed. Distance-based speed estimate has helped us to better understand traffic
dynamics and behaviours by offering perceptive data on item movement patterns.
The outcomes have significant consequences for public safety campaigns, intelli-
gent transportation systems, traffic control mechanisms, and environmental impact
studies. Using the most recent YOLO models and innovative distance estimate
approaches, we have laid the foundation for forthcoming advancements in computer
vision, machine learning, and transportation systems. Emphasizing system scala-
bility and resilience, future research could look at uses in retail analytics, environ-
mental monitoring, and smart city projects. By means of enhanced vehicle and human
counting and speed estimation, the development of intelligent transport systems
can help to support the construction of more sustainable and efficient metropolitan
environments.

This chapter shows the revolutionary possibilities of modern technologies
including computer vision and machine learning in addressing challenging issues
in public safety and traffic control. It highlights how innovation will influence how
transportation networks develop in the future. The suggested monitoring system is an
innovative attempt to manage urban traffic using cutting-edge technologies. We have
created a scalable method to improve urban traffic flow by fusing computer vision,
machine learning, and real-time data analytics. We hope to increase the system’s
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Fig. 7 Model findings on the Vadlamudi admission gate video of Vignan University

influence and help create safer, more sustainable cities through continued research
and cooperation.
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Fig. 8 Model output on a busy road’s CCTV footage
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Abstract Accident detection in real-time is critical to ensuring prompt medical
assistance and minimizing casualties. Accidents remain a leading cause of death in
India. More than 80% of the victims die due to late aid received by them instead of
the accident itself. In case of an accident, the victims are not given any early medical
attention, especially on highways with high volumes of fast-moving traffic. This
paper presents a new approach to accident identification from CCTV surveillance
using a hybrid vision transformation framework combined with an automated alert
system for notifying the nearest hospital. A system is proposed that would use a hybrid
vision transformer for processing real-time footage from CCTV cameras that detect
accidents. This proposed model has been suggested using vision transformers with
CNNss to enhance efficiency and accuracy in the detection of accidents. The prevalent
method for image classification is using CNNs, which are much faster and more
accurate than all other techniques. It saves time in medical response by improving
the process of accident detection via advanced image processing techniques. The
implementation of such a system could make a fundamental difference in road safety
and save lives. The system is designed to operate efficiently in diverse environments,
such as highways, urban roads, and parking areas, demonstrating high accuracy and
scalability.
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1 Introduction

Every year, 1.3 million people are killed and another 25-65 million people suffer
minor injuries in automobile accidents [1]. Most of this problem is found in the poor
and nations with miiddle income, sometimes referred to as developing countries,
which also boast the highest rate of deaths from traffic accidents. In comparison
to the high-income or developing countries, with a rate of 11.3 deaths per 100,000
people, the rate of road traffic deaths in the industrialized countries is about 23.5
deaths per 100,000 people [2]. It is a shocking fact that more than 90% of traffic
fatalities occur in underdeveloped nations, yet they only have half the number of
automobiles in the world. According to statistics, 13 people die in India every hour
in accidents. However, as the real figures are not reported, they may be lower. With
an estimated 140,000 road deaths per year, India is now projected to be the country
with the most road deaths.

Most accidents happen in three stages: the second phase, which is the deadliest and
accounts for 75% of all deaths, happens within one hour of the accident. Swift action
can be minimized in this circumstance, and the victims’ urgent need for support can
be addressed. We aim to use a machine that can quickly analyze the situation by
reading the video that has been taken by the camera. By thinking about the situation
and alerting the authorities, the system is an important tool to help the victims. The
goal is to use centralized networks (CNN or ConvNet) [3].

1.1 Role of DL and CNNs in Detection of Road Accidents

The background review delves into the global landscape of road accidents, empha-
sizing the pressing issue of fatalities and injuries associated with traffic incidents.
With over 1.3 million deaths annually and millions suffering mild to severe injuries,
the toll on human life and wellbeing is significant. According to the World Health
Organization report[4], the number of traffic accidents in developed nations or high-
income and low-income or underdeveloped nations differs significantly. Developing
nations, despite having only half of the world’s vehicles, bear more than 90% of
road traffic-related deaths [2]. The review underscores the need for targeted inter-
ventions in these regions to address the challenges posed by inadequate emergency
response systems and suboptimal road safety measures. 3 Furthermore, the review
underscores the critical importance of the time factor in the aftermath of accidents.
The three phases of an accident, particularly the second phase within an hour, carry
the highest mortality rate. This period presents a window of opportunity for inter-
vention, and the proposed project aims to leverage advanced Algorithm for Deep
Learning, particularly Convolutional Neural Networks (CNNs) [5], to detect acci-
dents within seconds. The focus is on highways, where the traffic density is lower,
and timely assistance is often lacking. Intelligent Transportation Systems (ITS) are
acknowledged as promising tools to enhance transportation safety and control. The
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review lays the groundwork for the project by recognizing the need for innovative
solutions that integrate technology, machine learning, and real-time video datasets
tofor tranning model to improve emergency response times and overall road safety

[6].

1.2 The Problem Statement

The problem addressed in this project is the persistently high rate of road accidents,
resulting in a staggering number of deaths and injuries globally, with a particular focus
on the situation in developing countries. The World Health Organization’s survey
underscores the severity of the issue, revealing that over 1.3 million people succumb
to road accidents each year, while an additional 25-65 million suffer mild injuries [1].
The disparities between nations with low and moderate incomes, such as developing
countries, as well as developed or high income nations are stark, with the former
experiencing a significantly higher road accident death rate of 23.5 per 100,000
population compared to the latter’s 11.3 per 100,000. Moreover, the prevalence of
road traffic-related deaths in developing countries exceeds 90%, despite accounting
for only half of the world’s total vehicles. In India, the situation is particularly dire,
with an average of 13 people losing their lives every hour due to road accidents, a
statistic that could be underestimated as many cases go unreported. The second phase
of an accident, occurring within an hour, emerges as a critical period with the highest
mortality rate, constituting 75% of all deaths. The inadequacy of timely help reaching
accident victims during this phase is a key concern, leading to preventable fatalities.
This work seeks to address this specific problem by proposing the implementation of
advanced Algorithm for Deep Learning, specifically Convolutional Neural Networks
(CNNs) [3], to detect accidents within seconds of their occurrence. Focusing on
highways, where traffic density is lower and timely assistance is often lacking, the
project aims to deploy CCTV cameras approximately 500 m apart. These cameras
will serve as a surveillance medium, capturing real-time video footage 4 for analysis
by the proposed accident detection model.

1.3 Contribution

e The paper introduces a new hybrid vision transformer model that combines both
vision transformers and convolutional neural networks. It substantial increases
the precision of accident detection with the help of global contextual awareness
and local spatial information.

e Proactive alerting system, when the likelihood of accidents increases above a
certain level, it activates the proactive alerting system, which sends SMS notifica-
tions to the nearest hospital. This ensures that the emergency response is prompt,
that is, the intervention time reduction may save lives.
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¢ Integration with Hospital Databases the technology alerts the nearest appropriate
medical facility by smoothingly integrating with the hospital databases. In the
case of densely populated urban areas where the trends of traffic patterns and
distance to the medical facilities have their impact on emergency response, this
integration helps in allocating the resources and, thereby, reduces the response
time.

e The research proposes an effective system for accident detection through CCTV
monitoring, thus ensuring better safety for the public. The technology enables
timely intervention due to the integration of state-of-the-art Al algorithms with
real-time observation, which may help in reducing the impact of accidents on
individuals and communities.

The remaining section of the paper is arranged as follows: recognizes the gaps
in resaerch pertaining to our research in Sect. 2. Section 3 is separated into two
portions Sect. 3.1. the proposed model is described. The algorithm of the hybrid
vision transformer model is discussed based on the proposal to increase the accuracy,
recall, F1-score, and minimize CrossEntropyLoss in Sect. 3.2. Section 4 parameters
estimation, results, and conclusion and future work are covered in Sect. 5, after
evaluation of the proposed work has been presented and discussed.

2 Related Work

Twitter sentiment analysis using NLTK and Transformers leverage natural language
processing techniques to categorize sentiments expressed in tweets. Researchers
have investigated sentiment analysis in numerous contexts, including the COVID-19
pandemic [2, 4]. Determining if tweets express neutral, positive, or negative feelings
is part of this process [2]. Methods like deep learning and machine learning, which
include CNNs (convolutional neural networks), have been employed for this purpose
[5, 7]. Sentiment analysis tools like VADER and BERT have also been utilized to
analyze sentiments in social media posts, including tweets [8—10].

The latest research is to see how various methods especially those using computer
vision and deep learning in CCTV monitoring systems identify traffic accidents and
trigger emergency services.

Basheer et al. [2] have preesnted a computer vision-based system that works in
real time to detect and classify traffic events. The system uses big data analytics
to fine-tune the accuracy of incident classification and reaction mechanisms. Their
system provides emergency responders with the most recent information on incidents
by analyzing incident trends and traffic patterns. The Alex Darknet, real-time traffic
monitoring with a hybrid CNN architecture, was proposed. This model offers a robust
foundation for accident detection through the integration of deep learning modules
to achieve previously unseen reliability in traffic situation analysis.

Choi et al. [3] have used an ensemble of deep learning models that analyze multi-
modal data from dashboard cameras to detect car crashes effectively. By integrating
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data from a few sensors, it can recognize accident scenarios with high accuracy, so
emergency services can respond and assist more quickly. Integrating the Calogero-
Moser system into CCTV, Lee et al. [5] has proposed a novel way of detecting
highway accidents. This was followed by the early use of the integration of math-
ematical models with surveillance technology, leading to the development of more
advanced accident detection systems.

Khan et al. [8] deep learning technique in practice to identify abnormalities in
traffic patterns by analyzing video from CCTV. According to their technology, this
system recognizes traffic behavior that deviates from the norm, indicating probable
collisions and notifying the appropriate emergency agencies. Hooda et al. [9] devel-
oped an accident detection system using surveillance cameras that keep watchful eyes
out for specific visual cues that indicate accidents. The technology notifies emergency
services immediately after detection, which can pave the way for a timely deployment
to the scene of an accident.

The approach of detecting real-time traffic accidents by using monitoring trajec-
tory was provided by Zhang and Sung, [10]. Their method uses spatiotemporal data
to detect sudden vehicle movements, which are usually observed before a collision.
In their work, Ghahremannezhad et al. [11] showed how the system can be tuned
for various lighting and environmental conditions using deep learning algorithms to
process real-time data from CCTV for accident identification.

[jjina et al. [12] developed a system which makes use of complex computer vision
algorithms for the detection of abrupt changes in vehicle trajectories. This technology
ensures that incidents are detected quickly and that emergency services are phoned
immediately. For the detection and categorization of traffic accidents, Thakare et al.
[13] employed deep learning in analyzing object interactions in traffic video record-
ings. The depth of this research considerably aids in quick responses to emergency
services since it assists in determining the exact location and type of accidents.

A real-time notification mechanism of an Al-improved CCTV system that iden-
tifies road obstructions and vehicle accidents was developed by Lee et al. [5]. It
is absolutely necessary to implement this kind of real-time notification mechanism
to improve traffic safety and fast-track emergency response. Using video analytics,
Tahir et al. developed a real-time, event-based traffic monitoring system. The accu-
racy along with the speed of the identification of accidents and alerting adjacent
emergency services are enhanced by this approach.

Researched convolutional neural networks [14] as a possible tool for detecting
and locating traffic incidents from the surveillance data. Their method helps emer-
gency crews respond faster and more effectively because of the accurate and rapid
interpretation of complex video patterns that are indicative of accidents.

These different techniques demonstrate the tremendous efforts in artificial intelli-
gence [15], and computer vision technologies are being used to improve the accuracy,
effectiveness, and speed of systems designed to detect traffic incidents and manage
emergency responses.

Computer vision and deep learning are the most commonly studied topics in
CCTV surveillance systems for emergency response and traffic accident detection.
Techniques used are big data analytics for real-time incident classification; hybrid
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CNN architectures for traffic monitoring; ensemble deep learning models for crash
detection from dashboard cameras; mathematical model integration with CCTV for
highway accident detection; trajectory tracking; anomaly detection in traffic patterns;
and object interaction analysis in traffic videos [16]. Methods used are aimed at
increasing responsiveness, accuracy, and efficiency of accident detection systems to
increase traffic safety and establish a timely connection with the emergency services.

3 Proposed Methodology

3.1 Accident Detection from CCTV Surveillance Using
Hybrid Vision Transformer Model

Accident Detection from CCTV Footage dataset from Kaggle was used to train
the model [6]. The dataset contains thousands of labeled video clips, making it
suitable for supervised learning. The video frames are first captured by the CCTV
[17] surveillance system, as shown in Fig. 1, and then converted into individual
frames. The input data for the hybrid vision transformer model is these frames.
This model is the newest method for image classification due to the combination of
Vision Transformers with Convolutional Neural Networks (CNNs) [15, 18]. CNNs
are great at identifying spatial information in images, but Vision Transformers use
their capability to use self-attention mechanisms to identify the context globally.
Combining these two architectures gives the model the capability to analyze local as
well as global data in each frame, thus increasing its accident detection accuracy.

Fig. 1 Real-time workflow of an automated emergency response system
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Fig. 2 Convolutional layers for feature detection and pooling layers for dimension reduction

The hybrid vision transformer model produces score that are indicative of the
probability of an accident happening when each frame is estimated. The system
sends a message alert to the closeby hospital if the accident score shoots above
a certain threshold, usually set at 50%. This message contains all relevant details
about the scene of the accident that were garnered from the memory of CCTYV,
storing information about the hospitals surrounding it. This proactive nature ensures
that emergency responders are informed as early as possible, enabling them to start
a quick reaction [17].

The ability of the system to utilize both local and global contextual informa-
tion for the identification of accidents is an essential feature of its effectiveness.
Traditional methods often focus solely on local features that the CNNs extract, as
depicted in Fig. 2, which may cause the missing of important contextual details that
exist in the broader scene. The hybrid model gains a more holistic understanding of
each frame by integrating Vision Transformers, which are exceptional at identifying
global dependencies. This, therefore, enhances the hybrid model’s ability to identify
accidents.

The direct connection of the system to hospital databases, furthermore, forwards
the alerts to the most convenient fitting facility and improves maximum reaction
times and efficient resource allocation. Resource allocation is mainly important in
most metropolitan regions, where traffic and its trends as well as distance to medical
centers affect response times.

A hybrid vision transformer methodology for accident detection from CCTV
monitoring presents a number of methods to improve public safety. In Fig. 1. show
the workflow of our project in real-time, an automated emergency response system
activated upon detecting a car accident through CCTV footage.

The system contains strong accident detection capabilities with the help of both
CNNs and Vision Transformers, so lives are saved through timely intervention. Proac-
tive alerting mechanisms in the system and a smooth interface with the hospital
database make it possible for emergency services to act within a short time and
lessen the effect of accidents on the targeted persons and communities.

A CNN can be considered a class of multi-layer neural networks that are exten-
sively used for many classification of images based on activities due to their aptitude
to effectively capture spatial hierarchies in images using the application of convolu-
tional filters. Before sending input images to the patch layer of the vision transformer
and other layers, the CNN layer is essential in your hybrid vision transformer model
for accident detection from CCTYV surveillance. It does this by extracting pertinent
features from the images.
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Convolutional layer: The convolutional layer is the foundation of a CNN. It takes
a set of learned filters, or kernels, that are applied to the input image, giving rise to
feature maps. Every filter in this set detects a specific pattern or feature of the input
image. The presence of these features is represented in the output feature map at
different spatial positions.

The formula for output feature map size:

W —F+ 2P
Zf_i_
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where:

denotes size of the output.

is dimension of input.

represents filter’s breadth or height.
denotes the padding shape.

denotes the stride.
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Pooling Layer: The convolutional layers produce the feature maps. To save lots of
information due to storage space and simultaneously reduce the amount of the spatial
dimentions of the feature maps, the feature maps obtained from the convolutional
layers are reduce in size using pooling layers. The two common pooling methods
are maximum pooling and average pooling.

The formula for output size after pooling:

W -—F
O=—+1 2)
S

The final image is sent to later layers in the vision transformer architecture after
CNN layers extract features from CCTV surveillance footage for accident detection.
This integration aims to leverage CNNs and transformers’ respective advantages in
picture comprehension challenges. Figure 2. describe that CNNs use convolutional
layers with filters to detect features in images, which are then down-sampled by
pooling layers to reduce dimensions.

Patch Layer: The image is separated into more manageable, smaller patches once
it has been feature-extracted from the CNN layers. Every patch denotes a specific
area inside the input image. We create 49 patches in our model by dividing the image
into a grid of 7 x 7 patches as represented in Fig. 3. By doing this step, parallel
processing is made easier and the transformer may focus on local information inside
the image.

Patch Embedding Layer: A learnable linear transformation is used to project each
patch into a lower-dimensional embedding space once the image has been divided
into patches.

Through this method, each patch is transformed into a fixed-size embedding vector
using Eq. (3), allowing the transformer layers to process it further.

The formula for patch embedding can be represented as:
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Fig. 3 Image is divided into a grid, creating patches for parallel processing and localized focus in
transformers

Xpatch = Ximage X Wpatch + bpalch (3)
where:

Ximage 1s the input image.
Wpateh  is the weight matrix for patch embedding.
bpach 18 the bias term.

Positional Embedding Layer: Understanding spatial relationships in vision trans-
formers requires knowing the position of each patch in the image, as contrast to
sequential data where this information is implicit. Positional information is obtained
by appending positional embeddings to the patch embeddings. Using sinusoidal func-
tions or positional encodings in Eq. (4) that have been learned is a popular strategy.
the embedding in place formula can be expressed as:

PE (pos i+ 1) = €08 (pos/ 10007/ dmcer) “4)

where:

pos is the position.
i is the dimension index.
diodel 1S the dimension of the model.

Transformer Encoder Layer: The transformer encoder layers are the central
component of the visual transformer design. Each encoder layer is made up feed-
forward neural network sub-layers and muli-head self-attension. The model can
capture both local and global dependencies by focusing on distinct segments of the
input sequence at the same time thanks to multi-head attention given as Eq. (4).
Effective information fusion between various regions of the image is made possible
by a weighted summation of each patch’s representation that occurs after the atten-
tion process, which is dependent on the attention scores using Eq. (5). The model
as represented in Fig. 4 is able to collect a variety of features of the input image
by repeating this procedure across many attention heads. Every feedforward neural
network, that is to say, every transformer block acts upon the result of the multi-head
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attention mechanism to further process and improve features. The FFN consists of
two linear layers, divided by an activation function that is not linear, usually a ReLU
or GELU.

Attention(Q, K, V) = soft (—Q ' KT)V 5)
ention(Q, K, V) = softmax
Vi
MulitiHead(Q, K, V) = Concat(heady, ..., headh)WO (6)
head; = Attention (QWiQ, KWK, VWY) (7

Fig. 4 Proposed hybrid vision transformer architecture
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where:
The queries keys, and values are denoted by Q, K, and V respectively.

W]Q WlK le and WO are the weight matrices for linear transformations.
dx denotes the dimensionality of the key vectors.
h is the number of attention heads.

The Hybrid Vision Transformer architecture as represented in Fig. 4 efficiently
captures both local and global spatial information by hierarchically combining CNN,
patch embedding, positional embedding, multi-head attention, and FFNs. With tasks
like accident detection from CCTV monitoring, where contextual understanding is
essential for precise film analysis, this architecture makes it perfect.

3.2 Proposed Hybrid Model Algorithm

The algorithm inputs batched image data, applies a CNN to extract features, and
divides images into P x P patches. Positional encodings are added to patch embed-
dings. For L layers, it performs self-attention, applying softmax for attention weights,
and then computes the attention output. It transforms attention to output, adds resid-
uals, and normalizes. It follows with two linear transformations, an activation func-
tion, another residual connection, and normalization. After looping through layers, it
aggregates the patch data, inputs it into a fully connected layer-sized O, and applies
softmax to derive class probabilities for each image, indicating the likelihood of each
class.

Algorithm 1: Hybrid Vision Transformer

input: Image data: X € R* (N x H x W x C), where N is the batch size, H is the
height, W is the width, and C is the number of channels

Patch size: P

Embedding dimension: E

No. of layers: L

No. of attention heads: A

Hidden layer dimension: H_dim

Output dimension: O

Output: Class probabilities for each input image

Apply a CNN module to the input image to extract features

2 Split the image into non-overlapping patches of size P x P

(95}

Generate positional encodings for each patch and add them to the embedded patch
vectors

fori=1toL do:

Compute self-attention scores for each patch

Apply softmax to obtain attention weights

N[N | B

Weighted sum of the values to compute attention output

(continued)
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(continued)

Algorithm 1: Hybrid Vision Transformer

8 Apply a linear transformation to the attention output

9 Add residual connections and layer normalization

10 Apply a linear transformation

11 Apply activation function (e.g., ReLU)

12 Apply another linear transformation

13 Add residual connections and layer normalization

14 End

15 Aggregate patch representations (e.g., mean pooling)

16 Feed the aggregated representation to a fully connected layer with output dimension O
17 Apply softmax activation to obtain class probabilities

This methodology aims to provide more accurate and insightful Twitter data senti-
ment analysis by fusing the advanced contextual understanding of the RoBERTa
including traditional approaches such as Naive Bayes transformer model with the
text preprocessing and tokenization strengths of NLTK.

4 Result and Discussion

An extensive examination of the data supplied on various hybrid vision transformer
models for CCTV surveillance-based accident detection. We’ll go over the formulas
and relevance of the metrics (Table 1).

The proportion of correctly classified samples, including both true negatives and
true positives, compared to the total number is known as accuracy [3] in binary
classification using Eq. (8). The highest accuracy was attained by Efficientnet_Vit
(94.55%), closely followed by Resnet-152_Vit (94.32%). The least accurate network
was Mobilenet_Vit (83.86%) as shown in Fig. 5.

Formula:

Table 1 The table compares hybrid vision transformer models on different metrics. ViT paired
with ResNet-152, VGG-19, EfficientNet-ViT, Mobilenet_Vit and densenet-201_Vit

Models Accuracy Loss Precision Recall F1-score
Vit 49.97 0.84 49.94 99.9 66.64
Vgg-19_Vit 93.41 0.22 92.28 93.64 66.67
Resnet-152_Vit 94.32 0.24 98.44 91.82 66.67
Mobilenet_Vit 83.86 0.34 91.34 77.27 66.67
densenet-201_Vit 87.05 0.29 94.52 80.0 66.67
efficientnet_Vit 94.55 0.15 90.13 98.18 66.67
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Fig. 5 Different models accuracy percentages

TP + TN 4 FP + FN
Accuracy = TP+ TN (8)

where:

True Positions (TP)  represents the count of samples accurately identified as
positive.

True Negatives (TN) indicates the quantity of samples correctly recognized as
negative.

False Positives (FP)) denotes the instances wrongly classified as positives.

False Negatives (FN) signifies the count of samples inaccurately labelled as nega-
tive.

Loss is difference between the expected and actual values. Cross-entropy loss,
which penalizes inaccurate classifications more harshly, is frequently employed
in binary classification calculated using Eq. (9). Additionally, as represented
in Fig. 6 Efficientnet_Vit had the lowest loss (0.15), demonstrating improved
error-minimization capabilities of the model.

Formula:

N

1 ~ ~
CrossEntropyLoss = N ;((1 - yi) log(l - Y1) +Yi 10g(Y1)) ©)

where:

N represents total number of samples.
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Fig. 6 Different models loss comparison percentages

y; represents true label.
§, is the predicted probability of the sample being in the positive class.

The porportion of all positives forecast that ae true positive predictions is known as
precision [3] using Eq. (10). It shows how well the model can prevent false positives.
From Fig. 7 the highest precision (98.44%), Resnet-152_Vit, had fewer false positive
predictions. The least precise network was Mobilenet_Vit, at 91.34%.

Formula:

L. TP + FP
Precision = ——— (10)
TP

Recall [3] is the percentage of true positive predictions among all real positive
samples, which is also referred to as sensitivity which is calculated using Eq. (11).
It shows how well the model can capture good examples. With the highest recall
(98.18%), Efficientnet_Vit was able to capture more positive instances. Recall was
lowest for Mobilenet_Vit (77.27%) as represented in Fig. 8.

Formula:

_ TP+FEN

Recall = 11
eca P (11)

The harmonic mean of recall and precision is known as the F1-score [3]. It offers
a compromise between recall and precision, and it’s frequently employed as a lone
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Fig. 7 Different models precision comparison percentages

Fig. 8 Different models recall comparison percentages
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Fig. 9 Different models F1-score comparison percentages

metric for model evaluation using Eq. (12). Despite having varying precision and
recall levels, from Fig. 9 we conclude that all models had the same F1-score (66.67%),
suggesting a balance between the two parameters.

Formula:

Fl =2 x Prec.is‘ion + Recall (12)
Precision x Recall

The particular requirements of the application determine which model should be
used. Over viewing Fig. 10 the Overall, Efficientnet_Vit works admirably, exhibiting
balanced precision and recall, little loss, and good accuracy. However, Resnet-152_
Vit might be chosen if reducing false positives (with great precision) is essential.
Similarly, Efficientnet_Vit would be the best option if maximizing true positives
(high recall) is crucial.

5 Conclusion and Future Work

An excellent effort in road safety technology includes an automated system that uses
Hybrid Vision Transformer models to detect accidents in the road. With the increase in
video surveillance and modern traffic control systems, it is currently required to have
creative solutions at the grassroots level to identify potential road dangers in minutes.
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Fig. 10 Performance comparison of different models

The proposed method is thus a promising answer in this respect, via machine learning,
which can process video data to analyze and decide different kinds of accidents
instantly. Among its main advantages is the Hybrid Vision Transformer model, which
is capable of processing and processing visual data from video streams effectively
and speedily. This model has combined the best characteristics of transformers and
CNNs, hence catching the spatial and temporal characteristics of the video input
with great precision. The results indicate high accuracy and recall rates during both
the training and validation phases, thus the model can identify traffic incidents with
great efficacy. Apart from the instantaneous advantages of the proposed system for
accident detection, the proposed solution can be implemented into the emergency
response infrastructure. For example, using a GSM module for SMS alerts, the system
can provide real-time notification of accidents to hospitals and emergency services
to allocate resources better. Using computing modules like the Raspberry Pi, the
system can even detect and process the accident instantly on the spot, within a shorter
response time and a better overall system efficiency.

The future development will be geared towards implementing the system at the
hardware level. This will mean the consolidation of all required elements of the
computing and GSM modules in one platform capable of recognizing and notifying
the concerned users in real-time over the incidences of road accidents. The system
shall also be scalable and flexible, meaning it shall be deployable in a wide array
of traffic scenarios and environments. Other factors being equal, the development
of a system that would use Hybrid Vision Transformer models to recognize traffic
accidents would be a significant step ahead in the technological science of road
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safety. This approach would go a long way in enhancing road safety by reducing the
chances of violent deaths and subsequently enhancing skills in emergency reaction
by machine learning and real-time data processing. The impact of the system on road
safety would only escalate with future developments and system fine-tuning. Further
outcomes are the saving of lives and reducing injuries on our roads.
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Abstract Smart parking solutions are reshaping urban mobility easing congestion,
reducing emissions, and improving transportation in smart cities. These develop-
ments cover the integration of various vehicular ad hoc networks (VANET) with
artificial intelligence (AI) and Internet of Things (IoT). VANET facilitates real-time
interaction between vehicles parking infrastructure and city management systems,
enabling dynamic data-sharing for effective allocation of parking spaces. Al algo-
rithms analyze data collected from sensors, cameras and V2V (vehicle to vehicle)
communication, ranging from parking availability prediction, route optimization to
minimizing a driver’s time spent searching for a parking space. Likewise, those
using IoT-based data sensors in parking slots provide space occupancy information
to centralized platforms that guide drivers to free slots via mobile apps or in-vehicle
navigation systems. That prevents excess fuel from being burned, and thereby helps
lower traffic jams on roads caused by cars searching for parking. And with predictive
analytics powered by Al we can predict peak hours and advise on how to better orga-
nize parking. Smart parking systems not only promote a more convenient parking
experience, but they also play a vital role in strengthening environmental sustain-
ability efforts by reducing vehicle emissions and fuel consumption. But the successful
implementation of such systems base on the strong cybersecurity strategy to maintain
data privacy and stability of communication in road networks of VANET. Building
scalable and secure smart parking systems requires collaboration between urban
planners, technology providers, and policy-makers. With the helping integration of
VANETsS, Al, and IoT with smart parking system of Infrastructure, it can provide
us with the ability to leverage the real-time data in order to improve, optimize and
augment smart parking system platform and create smarter and livable urban cities.
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1 Introduction

Traditional parking systems based on manual ticketing and first-come-first-serve
allocation belong in the past for modern fast-growing urban centers. Thus, smart
cities are adopting emerging technologies to mitigate these challenges and develop
sustainable, smart urban areas. There are serious dilemmas such as traffic jams and
parking. Old methods of parking are time-consuming and increase the search for
a parking lot [1]. The results are wasted fuel, polluted air, and raw nerves. Al,
IoT, and VANETS are some of the technology solutions that have provided ample
opportunity for real-time monitoring, predictive analytics, and automated manage-
ment of parking spaces. Also, it integrates these technologies to provide the best
parking experience in urban areas by eliminating conservative parking and traffic
congestion. By integrating artificial intelligence with the Internet of Things (IoT) in
smart parking systems, huge volumes of data can be gathered and examined in real-
time. Internet of Things-powered sensors are embedded on parking lots, identifying
whether the spaces are occupied. Data is sent to centralized management systems
[2]. AT algorithms examine this data and forecast parking demand, streamline space
allocation, and direct drivers towards vacant parking spots. Al-powered image recog-
nition tech offers extra safety by identifying illegally parked cars and parking rule
violations. Apart from focusing on positive environmental impact, these smart solu-
tions also contribute to reducing emissions, increasing fuel economy, and maximizing
the driving experience by decreasing the time that we waste in looking for parking.
The ability of vehicles to communicate with infrastructure is a such example of
how wireless communication through VANETS can optimize smart parking systems.
VANETsS, as a special case of mobile ad hoc networks, enable vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communication that enables cars to share
information about parking availability [2]. This connectivity enables drivers to find
free, available spaces more quickly, contributing to reduced traffic congestion that is
often witnessed when a vehicle circulates an area looking for parking. According to
Ditta et al. [3], VANETS increase safety by sending warnings about route conditions,
pedestrians, and unforeseen objects. The convergence of VANETs with artificial
intelligence (AI) and the Internet of Things (IoT) fully changes parking manage-
ment into a smart, automated, and highly efficient system that fits within the frame
of smart cities.

Multiple technological components are considered in a smart parking system to
ensure efficiency and sustainability. Sensors and RFID tags are installed to identify
the presence of vehicles, and predictive analytics powered by artificial intelligence is
used to approximate parking needs based on historical data and live elements. These
long-term trends make Cloud Computing an important enabling technology that will
be used to store and process large amounts of data that are generated by parking spaces
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to make timely decisions and orchestrate dynamic cooperation of many parking
spaces. Users now have access to real-time data on parking availability through
mobile applications and smart dashboards through ordinary parking solutions that
allow them to reserve a parking spot and provide them with dynamic pricing updates
to make parking much more efficient and consumer-friendly [4]. They make parking
management simpler, smarter, and more attuned to the ebb and flow of urban life.
A good part of managing parking spaces as well as traffic is also taken care of
with the help of Al and IoT. Al deep learning models based on camera surveillance
for Identifying empty parking spots in real-time image recognition. Then machine-
learning algorithms analyze past trends, weather conditions and traffic patterns to
predict which parking lots will be full and encourage drivers to take optimal routes.
By using machine learning methods, dynamic pricing strategies can be established
to adjust and smooth demand for parking across geographical areas and to avoid
congested regions. Ultrasonic and infrared sensors embedded in smart buildings
continuously update occupancy levels, while GPS and cloud-based systems aggregate
and process the data to improve prediction accuracy [5]. Drone technology saves
money, considerably; since there is no need for additional human intervention to
unlock mechanisms, reducing costs associated with supervising devices or transport
operations.

Adopting smart parking solutions with Al, IoT, and VANETSs can help with several
advantages, such as relieving congestion, improving fuel usage, and reducing envi-
ronmental effects. These technologies reduce urban mobility and promote green
and sustainable solutions by optimizing the time wasted searching for parking [6].
Additionally, intelligent parking systems align with the larger objectives of smart
cities by improving resource efficiency, increasing safety, and elevating residents’
quality of life. With more people moving into cities, the need for efficient intelligent
parking solutions is only going to get stronger. While there are many advantages,
the integration of Al and IoT-based smart parking systems presents a few chal-
lenges. Significant obstacles still exist: high upfront investment costs, data security
and privacy concerns, and network reliability issues [7]. The DT and other ongoing
advancements in 5G technology, edge computing, and blockchain security protocols
will help to solve these security and convenience concerns related to smart parking
solutions, enhancing their overall usage among users. Exploration and discovery in
this field will play an essential role in the transformation of urban transport and the
potential of smart cities. The integration of Al, IoT and VANETS in smart parking
systems not only solves the problem of urban mobility and parking but also fosters
the development of smart cities in general [8].
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2 Smart Parking Solution Enhancing Efficiency
and Sustainability

With the rapid growth of cities and their populations, street parking spots remain
few and difficult to find. Traditional parking systems are heavily reliant on human
efforts or outdated technologies, which leads to challenges such as traffic congestion,
fuel wastage, and pollution. In this regard, several smart parking solutions have been
introduced to overcome these challenges, involving advanced technologies such as
Internet of Things (IoT), Artificial Intelligence (AI), and Vehicular Ad hoc Networks
(VANET), etc. They provide real time information on parking resources, optimizing
the use of spaces and enhance urban travel experience [9].

IoT-based sensors lie at the heart of smart parking systems, detecting the occu-
pancy of parking spaces and communicating this data in real time to centralized
management platforms. These sensors embedded in parking lots or on streets use
ultrasonic, infrared, or even magnetic field detection and usage to know if a space is
occupied. The information gathers and is processed to notify drivers through mobile
apps, digital signboards, or navigation systems. Eliminating the trouble for the drivers
to search for the parking themselves and reducing the congestion and the emission
during the process [10]. Moreover, payment process for parking is now automated
due to IoT sensors making the whole process faster, smoother, and cashless.

Predictive analysis powered by Al also contributes significantly to optimizing
parking, which forecasts demand through historical patterns and real-time conditions.
By processing huge quantities of information, such as traffic patterns, weather condi-
tions, and peak usage hours, machine-learning algorithms predict parking occupancy
rates. This allows for a form of dynamic pricing, where the parking fee can increase
with demand to redistribute vehicles away from congested areas. The parking lots
benefit from advanced security measures, as Al-based image recognition technology
helps identify unauthorized vehicles, enforce parking standards, and prevent fraudu-
lent behavior [11]. Moreover, Al-enabled chatbots and voice assistants enhance the
user experience by guiding the user to the park in real-time and answering questions
quickly.

The integration of Vehicle Ad hoc Network (VANET) with smart parking systems
enables efficient vehicle-to-infrastructure communication and data exchange.
Also, CARthage equipment enables Vehicle-to-vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication, facilitating communication between vehicles
to exchange and share real-time information regarding the availability of parking
spaces [12]. The personal parking information is connected, and it saves time for
drivers looking for parking, which reduces the congestion of the road and enhances
the traffic flow. Preventive NAT Physics is also, play a major role in road safety, They
warn owners about extreme traffic conditions, pedestrian crossings, and etc. Artifi-
cial intelligence integrated with VANETSs and the Internet of things (IoT) supports
automated decisions like booking parking spaces beforehand according to predictive
analytics and real-time availability.
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Smart parking systems benefits in many ways like it lessens carbon emissions, it
increases fuel saving and it also improves urban mobility. By reducing the duration
vehicles are focused on looking for parking, these contribute to lower levels of air
pollutants and help organizations to achieve city sustainability targets. Smart parking
solutions also help municipalities cut operational costs by reducing the manual moni-
toring and enforcement. They are also create new revenue generation opportunities
via dynamic pricing models and demand-model-based parking management [13].

While smart parking systems offer various advantages, there are challenges that
need to be addressed for effective implementation. The main bottleneck is the high
upfront investment for installation of IoT sensors, Al driven platforms and VANET
communication networks. Before implementing systems of this nature, municipal-
ities and private organizations have to see if the cost—benefit ratio makes sense.
Moreover, the fact that IoT-based smart parking solutions involve the collection
and transmission of sensitive user information raises issues of data security and
privacy. Data encryption and adherence to data protection regulations are crucial for
maintaining user trust and system security [14].

Network Reliability: Smart parking systems rely on continuous transmission of
data between various devices, hence another critical challenge is network reliability.
In low-network-coverage regions, real-time updates, which may be out of date, are
inefficient. Smart parking solutions can use ultra-fast communication speeds and
reduced latency thanks to the development of 5G technology and edge computing.
Automated payment systems with blockchain technology can also enhance security
by creating transparent and immutable records of transactions.

Researchers are actively studying different approaches in smart Parking system.
The next step in smart parking evolution is the implementation of autonomous
parking systems, where self-driving cars navigate the parking lot themselves and park
without human intervention. Utilizing artificial intelligence-driven image detection,
lidar technology, and sophisticated navigation algorithms, these systems detect open
spaces and carry out careful parking operations [15]. Moreover, the incorporation
of smart grids and renewable energy sources into parking infrastructures can also
facilitate sustainability through charging stations for electric vehicles (EVs) in smart
parking infrastructure.

With the increasing urban populations, the need for smart parking solutions
will just increase. Urban planners and policy makers need to work together with
technology developers and private stakeholders to create smart parking systems
that support overall smart city initiatives. Through the application of Al, IoT, and
VANETsS, cities must improve traffic optimization, and minimize environmental
emissions, while enhancing citizens’ overall quality of life. Moving from traditional
parking practices to intelligent, automated systems is an important part of building
a more sustainable and technologically enhanced urban future.
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3 Vehicular Ad Hoc Networks (VANETS) in Smart Parking

Vehicular Ad Hoc Networks (VANETS) play an essential role in Intelligent Trans-
portation Systems (ITS) by allowing data exchange between vehicles and infrastruc-
ture. They enable efficient real-time data exchange between connected vehicles and
parking systems, improving road safety, traffic management, and parking efficiency
[16]. VANET: are also used in intelligent parking solutions to alleviate congestion
with parking management, where vehicles demonstrate the ability to communicate
among themselves and exchange parking information among them, thus enabling a
reduction in congestion and improved urban mobility. Through vehicle-to-vehicle
(V2V) as well as vehicle-to-infrastructure (V2I) communications, VANETSs allow
drivers to quickly locate open parking and reduce fuel consumption, improving
overall smart city efficiency.

Urban drivers struggle with the biggest challenge of lack of real-time parking
information which leads to needless traffic and air pollution. To overcome this
problem, however, the idea of a Vehicle Ad hoc Networks (VANETSs)’ enables
vehicles to communicate among themselves and with the roadside infrastructures
to exchange information regarding free parking spots. Dynamic uncertain parking
space sharing allows vehicles to take benefits through V2V and V2I communication
to decrease the parking period, when searching for empty parking spots. This provides
better movement of traffic and lower carbon emissions [17]. They also enable smart
traffic systems by linking to Al-powered analysis algorithms that predict parking
needs and adjust parking spaces in real time.

VANET Framework for Smart Parking Optimization

The fundamental components of a VANET-based smart parking system are as
follows. A set of these components i.e. On-Board Units (OBUs), the Roadside Units
(RSUs), and Cloud-Based Servers is used to effectively manage parking space utiliza-
tion and guide drivers to the required parking spaces. On-Board Units (OBUs):
OBUs are placed on-board (in-vehicle) systems that allow direct communication
with parking infrastructure and other vehicles. These OBUs typically gather real
time information on parking availability, traffic conditions, and other environmental
data, which is then processed to the cloud. These units also allow communication
between vehicles so that drivers share parking information and increase the efficiency
of parking [18]. Al-based functionality, such as predictive based on historical and
realtime data, can be embedded in OBUs integrated into more advanced VANET
enabled smart parking systems.

OBUs also allow drivers to reserve parking it means we can actually pay in advance
for a parking spot with a connected application. As a driver enters a congested
area, the OBU can issue automated routing to the closest open parking lot, inferred
by Al based predictions. Moreover, through communication with OBUs, collision
avoidance systems can be utilized to prevent vehicle accidents while navigating
parking facilities, thus increasing parking lot safety [19].

Roadside Units (RSUs) Roadside Units (RSUs) are fixed infrastructure that trans-
mits parking information between vehicles and cloud servers. These units are usually
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installed at road intersections, parking lots and smart roadways to provide continuous
communication between parked vehicles and vehicles searching for parking space.
More specifically, RSUs act as data relay nodes, sending real-time parking status
updates from Internet of Things (IoT)-based parking sensors to cars equipped with
On-Board Units [20].

Reducing the Data Flow in Smart Parking using RSUs One core advantage that
RSUs offer for smart parking is the capability to optimize data flow, thus decreasing
the network congestion. Instead of bombarding cloud-based servers with constant
queries for parking information, RSUs serve as local processing hubs, forwarding
only the relevant, necessary information. With this practice, parking details will be
communicated heavily with less buffering and timely choices for the drivers. Further-
more, RSUs can be coupled with smart traffic lights, which can change according to
the parking demand and traffic flow to improve urban mobility [21].

Beyond just optimizing parking space usage, RSUs also increase the safety and
security of parking structures. Computer vision technology and Al-powered surveil-
lance systems can be installed in these units to keep an eye on parking/halt authoriza-
tion and roadway transgressions. As the next step in law enforcement integration,
RSUs architecture can even be integrated with law enforcement databases, making
this solution one of the ultimate smart parking solutions at the junction of security,
regulation, and parking technology.

Cloud Servers for Predictive Parking Analytics: The cloud servers in VANET-
enabled smart parking systems are necessary for storing and processing potentially
huge amounts of parking data. These servers collect real-time information from
OBUs, RSUs, and IoT-based parking sensors for predictive parking analytics [22].
Machine learning algorithms process data trends related to parking demand, traffic
patterns, and vehicle trajectories to predict parking availability and recommend routes
for drivers.

Utilize Big Data Analytics for Dynamic Pricing: Cloud-based Parking Systems
can apply Dynamic Pricing Models by using Big Data Analytics to dynamically
increase parking fees based on demand, this encourages the effective use of existing
parking spaces. For instance, charging higher fees for parking in high-traffic,
congested areas and using peak pricing to discourage unnecessary use, and lower
fees in areas with relatively higher vacancy rates. Intelligent pricing strategies like
such can help optimize and monetize urban parking spaces for municipalities [23].

Mobile apps can be integrated into Cloud-based parking management to enable
drivers to access real-time parking availability, get navigation assistance and make
cashless payments. Highly specialized Al and machine learning application algo-
rithms create this through recommendation engines that be horizontal to be user
based; and work as an application inside the application; predicting which way a
driver goes the most, analyzing the vehicle size and past parking behavior (whether
or not it overpays due to a wrong input). Moreover, cloud-based systems enable inte-
grating blockchain technology for secure, tamper-resistant automated parking fee
collection.
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4 Integration of Al and Machine Learning in Parking
Optimization

Smart parking systems integrated with artificial intelligence (AI) and machine
learning (ML) revolutionize urban mobility through efficiency, reduction of conges-
tion and an overall better user experience. Old school parking systems depend on
both manual tracking and basic sensor-based data gathering methods, resulting in
a high degree of inaccuracies and lags. Artificial Intelligence (AI) and Machine
Learning (ML) revolutionize this process, utilizing massive amounts of real-time
data to ensure the most optimized allocation of parking spaces, predict demand,
and apply dynamic pricing [24]. Through these intelligent algorithms, the seam-
less coordination between the IoT-based sensors, vehicular networks (VANETS),
and cloud-based analytics becomes possible, along with providing timely, accurate
parking information to the drivers all-time.

Parking Optimization with: A New Approach

These Al-powered parking optimization systems leverage big data analytics drawn
from a variety including cameras, Internet of Things (IoT) sensors, GPS data, and
historical parking records for real-time guidance and predictive analytics [25]. These
systems can leverage computer vision, deep learning, reinforcement learning, and
neural networks to process and interpret data in an efficient manner. Al-powered
parking solutions help with the following: May result in better traffic flow and reduced
congestion; Reduced fuel consumption and environmental benefits; Dynamic Pricing
Improved Revenue Generation; Enhanced security and fraud detection in the parking
management; Tailored advice on where to park for drivers; Smart Parking: Key Al-
ML Techniques; Deep Learning Based Image Recognition for Camera Based Parking
Monitoring.

Deep learning, which falls under the umbrella of machine learning, is employed
in camera-based smart parking systems for vacant space identification, unauthorized
vehicle detection, and violation monitoring. Convolutional Neural Networks (CNN)
analyse the real-time camera footage taken from parking lots and street-side parking
areas as an important part of this process. These CNN models are designed to Rahman
et al. [26].

This enables the elimination of electronic tags or physical sensors, leading to
a decrease in infrastructure costs and an increase in the efficiency of the parking
management process through the use of deep learning and computer vision (CV) tech-
niques [27]. With improving algorithmic detection, Al-driven surveillance cameras
not only make infrastructure and businesses more secure but also analyze and catch
any suspicious events in real-time.

Adaptive Parking Pricing and Availability Predictions with Reinforcement Learning

Reinforcement learning (RL) is a cutting-edge Al technique that allows intel-
ligent parking systems to make real-time, data-driven decisions on parking prices
and availability predictions. RL algorithms learn from historical data over time in a
manner improving their tactics to maximize usability and income [28].
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Dynamic Pricing: RL-based algorithms use demand-sensitive dynamic pricing.
For example, rates ramp up at peak hours when there are too many cars looking for
parking, and rates drop at off-peak hours to encourage use of underutilized parking
spaces.

Demand Forecasting: Historical and real-time data on parking occupancy is
analyzed through these models indicating the future demand which ensures the
perfect space utilization.

Allocation of parking space: RL optimizes the allocation of parking spaces taking
into consideration vehicle type, reservation, and driver preference.

They benefit the users by making the parking process more convenient for them,
and generate higher revenue for city administrators while ensuring fair distribution
of parking spaces through efficient algorithms [29].

Predicting Vacant Spaces with Sensor Data: Use of Neural Networks instead

Neural networks: IoT-based car parking sensors are able to identify the presence
of the vehicle, duration of parking, and movement patterns [30]. These types of
networks can receive sensor input and interpret it to:

Neural Networks (NNs) that identifies complex data patterns of parking demand
and re-allocate space as needed through a multi-layered architecture. RNN, LSTM
Models: RNN, LSTM Model is very helpful for time-series data of the dataset to
predict the peak time and off-peak time parking availability during the day [31].

Al & ML Are Being Integrated in Smart Parking Systems

Smart cities capitalizing on the heavily advantageous potential of Al and ML
for the optimization of parking integrate these technologies as a part of cloud-based
parking management platforms [32]. These platforms ingest data from a wide variety
of data sources, such as: IoT-enabled parking sensors; Deep-learning models with
surveillance cameras; Vehicle-to-Infrastructure Communication Using (VANETS);
Real-time parking guidance through mobile apps. Al-enabled parking systems also
facilitate automated reservation systems, allowing drivers to reserve parking spaces
ahead of time via mobile apps. These reservations are constantly recalibrated using
Al-based predictive algorithms to avoid conflicts and maximize space efficiency [33].

5 Role of IoT Enabled Smart Parking Infrastructure

Leveraging various technologies such as RFID tags, ultrasonic sensors and GPS
trackers, IoT-enabled smart parking infrastructure is helping cities manage parking
spaces efficiently (24/7) by providing real-time information about presence and
movement of vehicles. A combination of advanced sensors, cloud computing, and
mobile applications are mapped out to ensure a seamless experience for both parking
space owners and users as the system operates. It is an efficient smart parking system
that consists of four key components: smart sensor, cloud, mobile applications, etc.
Smart sensors are the building bricks of an IoT based smart parking system. Ultra-
sonic sensors or similar are used deployed in the parking slots to check if the parking
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slots are occupied or available [34]. When a vehicle parks or departs, the sensor
senses the state of changing occupancies and updates the cloud system in real-time.
This enables continuous parking space monitoring and ensures that users receive real-
time information. Ultrasonic sensors, for example, measure distance from sensor to
vehicle, thus accurately detecting if a space is open or occupied. Ultrasonic sensors
are not the only devices you can use for tracking. These devices are capable of
detecting a vehicle that is either entering or exiting from a parking facility and
relaying this information back to the master system.

IoT based smart parking system cloud integration Within this cloud-based plat-
form, the sensors send the data they collect to be processed and analyzed in real-
time. Cloud computing also enabled the system to process data in bulk, and fuel
parking information aggregation across multiple locations. By processing complex
data in seconds, the users are presented with information on which parked cars
have been freed up which can be accessed through mobile apps. In addition, need-
based charging models and proper resource management of the parking space are
also enabled by using Cloud integration. Mobile applications have also significantly
improved the user experience significantly by offering easy access to parking avail-
ability along with the ability to make reservations [35]. These applications give users
the ability to search for available parking spaces in real-time, see parking options
by location and even reserve spaces in advance. The mobile apps are usually linked
to the navigation, directing users straight to the available parking space. Moreover,
these applications provide some exclusive features like payment gateways through
which users can pay for parking digitally and they do not need to get any physical
payment method. Such an amalgamation of comfort and productivity, [oT enabled
mobile apps eradicate any parking system hassles.

6 System Architecture for AI and IoT Optimization
VANET Parking

The proposed system architecture for Al and IoT-optimized VANET parking proves
to be an advanced and highly efficient solution with respect to the conventional
parking spaces. This system provides a framework that interweaves Artificial Intelli-
gence (Al), Internet of Things (IoT), and VANETS to augment driving protocols while
concurrently facilitating parking space authority to help monitor and allocate parking
spaces more effectively [36]. It is made up of four different, yet interrelated layers:
Perception Layer, Network Layer, Processing Layer, Application Layer. This solu-
tion includes several layers, and each layer serves an important purpose in allowing
the smart parking system to operate efficiently, making it one of the most advanced
solutions for cities.

Data Collection: The Perception Layer is the first level of the system that is
responsible for collecting real-time data about the parking environment. This layer
employs different IoT sensors like ultrasonic sensors, cameras, RFID tags, and GPS
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devices to identify vehicles and analyze parking space occupancy and traffic data.
Sensors are placed in strategic points such as parking slots, roads, and vehicles
to collect valuable information (for instance: if a space is free or occupied, where
is available space, if the vehicles have broken on their way to parking, etc.). The
perception layer also gathers environmental data (like weather or traffic density) that
may impact demand for parking [37]. Real-time data gathered at this level becomes
the foundation for the whole system function, used in all levels of further analysis
and procedures. The Network Layer enables a seamless exchange of information
between vehicles, IoT devices, and the parking infrastructure. The function of the
Transport Layer is to guarantee the real-time transmission of data collected within the
Perception Layer towards the central processing system. In this layer systems called
VANETsS, which are ad-hoc networks, are used to allow vehicles and infrastructure
to communicate directly with each other (not through a central server). VANETSs
enable vehicles to communicate with each other and parking infrastructure, keeping
the parking system responsive and flexible [38].

Al can analyze usage patterns to identify anomalies where unauthorized vehicles
are parked in reserved space. This predictive ability allows for the dynamic manage-
ment of parking spaces, resolving parking resources in an effective and efficient
manne [39]. This is the sixth layer, it constitutes the front end of the system, providing
interface to drivers to get access to smart parking system. Using phone applications
or in-car navigation systems, users can find parking in real time, including addresses
and, when necessary, price. Data about available and gauged spots are shared through
the application layer, that is the part that allows users to book a parking spot upfront,
pay for the parking fee, and receive navigation directions to the nearest available
parking space. It also shows notifications regarding availability of parking to let the
drivers know where they would be able to park. This layer focuses on user interfaces
that make the overall user experience more enjoyable, less frustrating, and more
convenient for parking in these crowded urban environments [40].

7 Advantages of Al and IoT Driven Smart Parking

Benefits of smart parking using Al and IoT

The convergence of Atrtificial Intelligence (AI) and Internet of Things (IoT) in
Vehicle Ad Hoc Networks (VANET) enabled smart parking systems offer a myriad
of advantages that can revolutionize urban mobility. The combination of these tech-
nologies offer numerous benefits for drivers, city planners, and the environment by
optimizing parking procedures [41]. Benefits of Al and IoT-Powered Smart Parking
Solutions: Professional Summary of Key Aspects.

Reduced Congestion

Immediate Impact: Smart Parking Alleviates Road Congestion One of the major
applications in terms of IOT and Al is smart parking systems. In normal situations,
motorists waste time driving around parking lots or roads searching for an empty
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space. This search is a substantial factor in traffic congestion, especially in large
cities with high population density. Al and IoT-enabled systems help drivers locate
available parking spaces quickly and easily, meaning they spend less time searching
[42].

For instance, Al algorithms can study parking patterns and begin directing drivers
to the closest available spot based on real-time data optimizing the use of available
parking spaces. Some businesses even deploy IoT sensors in the parking spaces to
check whether that space is occupied or free and send the information to a central
system [43]. It sounds that system takes the data, processes it, and delivers it to
drivers through mobile apps or in-car navigation systems. Less time spent searching
for a spot means less congestion on the road, contributing to smooth transportation
flow and improving system productivity.

Improved Fuel Efficiency: The time looking for a parking space is often the result
of valuable fuel consumed. Drivers will circle city blocks repeatedly, burning fuel
while searching for an open space. This inherent fuel consumption not only translates
to greater operating costs for drivers but also contributes to greenhouse gas emissions,
as drivers must burn more fuel. The future of US truck driver pay to upend the status
quo [44].

This inefficiency is reduced with smart parking systems. With real-time data from
the Internet of Things sensors, drivers can query whether parking spaces are available
before reaching their destination. It takes the guesswork out of finding a parking space
and directs drivers to an open one quickly, saving time and fuel. This streamlining
of parking leads to fuel savings, which reduces transport costs for the person and
increases the city fuel efficiency [45].

Reduced Emissions and Environmental Impact: Traditional parking methods at
hotels are under scrutiny for their environmental impact. As traffic jams get worse and
drivers seek parking, gas usage rises and so do carbon emissions and air pollution.
Air pollution has been linked to many health problems, including respiratory diseases
and cardiovascular problems, according to the World Health Organization.

Integrating Al and IoT within smart parking can also help to reduce emissions.
The main goal of Al-based parking systems is to prevent the time that people spend
looking for a parking lot to minimize the time the car stays in idle or stays in movement
without a need. Less time spent idling means less pollutant output from vehicle
exhausts. Furthermore, optimized parking systems may decrease the flow of some
vehicles during parking search peak times, like rush hours and holidays, reducing
overall traffic and emissions levels [46].

Smart parking systems also promote EV usage by incorporating EV chargers into
the parking management process. This reduces vehicle dependency that is ka-pow on
fossil fuel, which is a good contribution towards a cleaner, greener environment. More
environmentally friendly cities are designed as when optimized parking systems help
reduce carbon footprint. Enhanced User Experience: With the help of Al and IoT-
based smart parking solutions, the user experience for drivers can be significantly
improved. Drivers had to spend time in getting around huge parking lots or searching
for a parking space along the streets within the city in earlier parking systems. Smart
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parking systems help create a more streamlined and efficient experience, to make
parking as frictionless as possible [47].

With the help of IoT sensors and Al algorithms, real-time navigation leads drivers
to available parking spaces without them ever having to stress over wandering around
mining for a location. Parking availability is integrated with mobile applications, in-
car navigation systems or embedded GPS devices that enable users to plan their
parking ahead of time or on the go [48]. Certain smart parking systems come with
reservation functionalities that allow users to reserve parking spaces in advance for
their required duration, ensuring that they have a guaranteed spot waiting for them.
Furthermore, Al-based intelligent parking systems can also customize the user’s
experience by learning individual preferences and providing personalized recommen-
dations. For instance, the system can recommend parking spots close to a driver’s
destination, or keep it apprised of availability of spots, pricing on those spots, or
distance to certain amenities. By tailoring the parking experience to the needs of the
driver, it increases convenience and offers a better overall experience.

8 Challenges in Implementing Smart Parking Solutions

Although the Al and IoT-enabled smart parking system has various advantages, their
implementation comes with some challenges. These challenges include financial,
privacy, technical, and scalability issues that need to be overcome to ensure efficient
deployment and widespread adoption [49].

The main hurdles for smart parking implementation include traversal cost to
deploy smart parking infrastructure. To build a complete system, IoT sensors,
cameras, cloud computing services, and high-speed communication networks need
to deploy; These elements need to be carefully installed in the parking lots and the
urban sites to allow for immediate detection of free spaces and to send the data to the
database and get real-time updates. Cost is further increased with software develop-
ment for user interfaces (UI), mobile applications, and Al-driven predictive analytics
[50]. Municipalities and private parking operators in developing parts of the world
face a particularly relevant financial challenge because budget constraints preclude
the adoption of smart parking technologies. Additionally, long-term maintenance,
regular software upgrades, and the need for new hardware add to costs over time,
making cost a major hindrance in widespread implementation.

Data privacy and cybersecurity risks are another big concern. Al and Internet
of Things (IoT)-based smart parking solutions are based on the real-time tracking
of vehicles and users, and this makes it even more likely that external parties may
access data without authorization and engage in illegal surveillance. Cybercrimi-
nals can take advantage of system vulnerabilities to gain access to sensitive user
data, including vehicle tracking information and payment credentials. The other
side of using so many cameras and sensors is that it can create ethical dilemmas
around user privacy, as driving in public and private parking lots can feel like being
watched everywhere. Another issue is that data may be used by unauthorized third
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parties such as advertisers or governmental departments. However, to address these
issues, Implementing strong encryption standards, data anonymization techniques,
and strict access controls are essential. Governments and regulatory authorities must
also impose regulations on privacy in order to protect user data and prevent such
misuse [51].

Ensuring the network’s reliability remains one of the key challenges in the
successful implementation of smart parking solutions. These systems are depen-
dent on constant and real-time communication between sensors, cloud servers,
and mobile applications. Disconnections cause incorrect parking availability data
to appear, delayed notifications, and system failures. In cities with too many cars,
continuous connection is challenging due to network interference and congestion.
Moreover, smart parking systems in conjunction with VANETs demand stable links
for their efficient performance. Given that these networks can the blaring of direc-
tions can potentially lead to the navigating drivers receiving incorrect guidance, it
could significantly decrease the overall efficiency of the system during the downtime
or the communication failure. While 5G and DSRC protocols can improve network
reliability and the road safety that follows, however, deploying them at scale is a
rich-man’s game [52]. Lastly, the scalability limitations remain a major challenge,
especially in fast growing urban collision. With population growth and increasing
vehicle ownership around the world, smart parking systems will need to adapt to the
growing demand for parking spaces. Nevertheless, the development of further infras-
tructure to support this is limited in many scenarios by space and cost constraints to
create more sensing, storage and communication nodes. In addition, due to a lack of
standardization, interoperability problems occur when implementing different smart
parking systems in different places. The solution to scalability challenges often lies in
Al-powered optimization algorithms and modular system architectures, but applying
these techniques successfully requires careful consideration and investment [53].

9 Future Research Directions

Because Al and IoT in VANETS have developed swiftly to modernize smart parking.
Nonetheless, to ensure its long-term sustainability and efficacy, further research
needs to be carried out to address key areas such as security, computational effi-
ciency, seamless connectivity, and automation. Smart Parking Systems Enhanced
with Emerging Technologies4 Integrating emerging technologies such as blockchain,
edge computing, and 5G can further enhance smart parking systems to cope with the
increasing demands of urban mobility.

This will be one of the areas with great potential for studying since blockchain
can be used for secure parking transactions. The use of more efficient smart parking
systems brings forth concerns such as data privacy, security, and financial transac-
tions. This is because traditional centralized databases are susceptible to cyber threats,
hacking, and data breaches. This is where blockchain technology comes into play;
its decentralized and tamper-proof nature can make parking transactions transparent
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and secure. Blockchain smart contracts can perform payments with both reducing
fraud and eliminating middlemen [54]. Moreover, throughout this information can
be stored on blockchain securely, enabling just a selective end-users gain access to
the sensitive details. Subsequent studies are needed to design effective consensus
mechanisms that minimize transaction costs, as well as design optimized blockchain
frameworks that facilitate the integration of blockchain in VANET-based parking
systems.

Edge computing, another important area of research, can help us with real-time
parking updates and, hence, reduce latency. In a traditional approach, cloud-based
smart parking systems process data in a centralized manner, with information from
vehicles and parking sensors being transmitted to cloud servers leading to delays in
data reception and transmission. It helps in the processing of data closer to the source
where it is generated, making way for instantaneous decision-making and real-time
responses [55]. As an example, [oT sensors can collect parking occupancy data, which
can be analyzed quickly in free data at the edge of the network rather than depending
on cloud infrastructure. Further studies are needed to find optimal placement and
cluster considerations for edge nodes, energy-efficient processing of data, and Al-
driven decision-making for maximizing the responsiveness of smart parking systems.
Moreover, the combination of federated learning and edge computing can facilitate
the creation of collaborative Al models, promoting privacy-preserving data analytics
in various locations [56].

Integration of 5G technology in VANET-based smart parking is another area that
deserves significant research effort. Existing smart parking solutions generally use 4G
LTE and Wi-Fi networks which can fail to deliver the speed and reliability required
for real-time communication. With 5G, vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication, particularly in a dynamic environment through
V2V can be greatly improved, benefiting the connected and intelligent transportation
development. 5G allows ultra-low latency and high bandwidth, supporting real-time
parking recommendations, remote vehicle monitoring, and Al-driven automation.
Yet, elements like infrastructure rollout, energy consumption, and network inter-
ference remain issues to be solved. More studies on smart parking, optimizing 5G
network architectures, developing efficient use of the spectrum, and securing text
messages in areas of high congestion should be done in the future [57].

The more important research direction is autonomous parking systems, as they use
Al-based automation to allow vehicles to park themselves. In recent years, advance-
ments in computer vision capabilities, rapid expansion of deep learning technolo-
gies, and sensor fusion approaches have accelerated the development of autonomous
parking systems that can find open spots, navigate complex parking structures, and
park vehicles without human input. Large parking behavior data enables machine
learning algorithms to learn from this and make better decisions leading autonomous
vehicles to efficient parking even in crowded spaces [58]. Moreover, when integrated
with IoT sensors, the system can provide real-time updates for parking availability,
directing driverless vehicles to the nearest open parking space. Research is needed in
improving Al models for autonomous parking, including sensor accuracy and fail-
safe algorithms to mitigate collisions and parking failures. Moreover, the regulatory
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landscape must adapt to the evolving technological capabilities of autonomous vehi-
cles, with policies addressing liability issues, insurance matters, and other relevant
concerns [59].

The other essential element that needs research work is energy efficiency of Al
and IoT enabled smart parking solutions. With more IoT devices and more Al-
based computations, we have a lot more queries to be made, and this impacts on
energy consumption and environmental sustainability. Additional studies are needed
to investigate energy-aware computational algorithms, low energy smart space IoT
sensory devices, and renewable energy systems to energize smart parking facilities.
As an example, using solar-powered IoT sensors and Al-based energy management
systems to decrease the carbon footprint of smart parking applications. Al-based
demand-response mechanisms can maximize parking space utilization and mitigate
excess energy consumption [60]. It is necessary to conduct research on the develop-
ment of smart parking systems concerning the improvement of the user experience
and accessibility. Presently, smart parking solutions are all about urban drivers, it
should be more versatile, catering to differently abled and elderly drivers in the
future as well. Voice-activated parking assistance via Al and personalized naviga-
tion systems, as well as parking spaces designed for wheelchair users can lead to a
better experience for users. Additionally, augmented reality (AR) and virtual reality
(VR) research can offer novel interactions that present parking status in AR or a VR
environment, providing either intuitive or immersive parking directions [61].

Interoperability and standardization are also key areas in smart parking solutions.
By deploying different smart parking technologies in each city or by parking operator,
incompatibility or fragmentation occurs. Moreover, to seamlessly integrate smart
parking systems throughout multiple regions, the development of standardized proto-
cols is imperative in future studies. By adopting Al-powered interoperability frame-
works, data can be shared between various parking management systems, ensuring
an efficient and scalable approach. Furthermore, studies on cloud computing data
sharing patterns may facilitate real-time information transfer, providing drivers with
access to parking availability information from various areas. Lastly, the social and
economic effects of Al and loT-based smart parking need to be studied [62]. Smart
parking solution offers time efficient convenience, but it is also crucial to establish
an impact assessment of urban planning, employment and transport policies. Future
research should then analyze the potential displacement of traditional parking atten-
dants to the cost of smart parking systems for low-income communities and the
broader implications for public transportation. Research on smart parking incen-
tives, dynamic pricing schemes, and public—private partnerships can also inform
sustainable and equitable smart parking policy [63].
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10 Conclusion

The intelligent transport systems are designed to hold human-centered traffic
management that transforms the way we park vehicles with the introduction of Al
and IoT-enabled VANETS that gives a system smart parking by making best use
of allocated space, less congestion, and improve transport in cities. Smart parking
solutions address parking issues in modern cities by utilizing real-time data, predic-
tive analytics, and vehicle communication. Additionally, the recent amalgamation
of advanced technologies like Al-powered automation, blockchain-based security,
edge computing, and 5G connectivity has made these systems even more efficient
and robust. However, there are still some challenges to be overcome, including
high implementation costs, data privacy issues, network reliability, and scalability
issues. Nonetheless, with continued research and avenues for technology improve-
ments, the challenges associated with smart parking will be addressed to help create
smarter and secure smart-parking systems. Our findings lay the groundwork for
further research in domains such as Blockchain for secure parking transactions,
Edge Computing for real-time processing of data, 5G for improved connectivity, and
Al-based autonomous parking systems. Moreover, finding energy-efficient solutions,
developing standardization frameworks, and creating inclusive user experiences will
help shape smart parking technologies. With cars becoming increasingly ubiquitous
as urbanization expands, parking needs to be more of a focus so smart parking will
be more important. Alongside, to realize smart parking systems, collaborative efforts
among governments, researchers, and industry leaders must take place in order to
develop smart parking systems that are sustainable, scalable, and user-friendly. The
future of smart parking is promising and has the potential to revolutionize urban
mobility in a seamless, integrated, and greener way through the application of Al,
IoT, and other emerging technologies.
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Abstract The rapid urban expansion and increasing vehicle count in modern cities
have intensified the demand for efficient and flexible parking management strate-
gies. This study explores the integration of Al and IOT technologies to improve
VANETs for smart parking solutions in urban environments. It investigates how
Al algorithms, combined with IOT-linked sensors and communication systems,
can enhance parking operations, boost vehicle-to-infrastructure (V2I) and vehicle-
to-vehicle (V2V) communications, and alleviate traffic congestion. The proposed
framework employs machine learning techniques for predictive analytics and real-
time data management to dynamically allocate parking spaces based on availability
and demand patterns. It also evaluates how deep reinforcement learning influences
the improvement of VANET routing protocols to increase data transmission effi-
ciency and reduce latency. Additionally, this study highlights the significance of edge
computing and cloud-based systems in enabling seamless data sharing and effective
decision-making. The study emphasizes real-world applications and case studies that
demonstrate the efficacy of Al-based VANET models by addressing significant issues
such as data security, network scalability, and system interoperability. It also exam-
ines the potential of integrating blockchain technology to ensure data integrity and
protect transactions in smart parking systems. The findings presented in this study
aim to provide urban planners, policymakers, and technology developers with action-
able insights for creating sustainable and smart parking solutions, thus promoting
the overarching objective of smart cities and progress in urban mobility.
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1 Introduction

Urbanization is swiftly changing cities globally, resulting in higher population
density, more economic activities, and greater vehicle ownership [10]. As cities
grow, the need for effective transportation and parking systems increases consider-
ably. Nonetheless, traditional parking systems find it difficult to handle this increase,
leading to traffic jams, fuel loss, and ecological damage. Poor parking manage-
ment not only impacts urban transportation but also leads to longer travel times and
heightened frustration for commuters [7, 8].

1.1 Challenges in Traditional Parking Systems

Conventional parking systems mainly depend on manual oversight and fixed assign-
ment strategies, resulting in ineffectiveness in busy urban areas [45]. Several of the
main difficulties consist of:

(a) Insufficient Real-Time Data: Drivers frequently waste a lot of time looking
for open parking spaces, resulting in unwarranted traffic jams.

(b) Imefficient Use of Space: The rigid and non-flexible assignment of parking
spots leads to low usage during off-peak periods [36].

(c) Traffic Jam and Pollution: Cars looking for parking led to higher fuel usage
and emissions.

(d) Absence of Flexible Pricing Strategies: Conventional parking systems do not
incorporate dynamic pricing models that can enhance space usage according to
demand.

1.2 The Need for Smart Parking Solutions

To tackle these inefficiencies, intelligent parking solutions have arisen as a revolu-
tionary method for urban mobility. These systems combine cutting-edge technologies
like Al IOT and VANET:S to deliver real-time information on parking availability,
enhance parking space distribution, and alleviate congestion [12]. Intelligent parking
not only improves driver ease but also aids sustainability initiatives by lowering
carbon emissions and minimizing fuel waste.
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1.3 Role of AL 10T, and VANETs in Modern Parking
Management

(a) Artificial Intelligence (AI): Al-based algorithms examine past and current data
to forecast parking needs and efficiently direct drivers to free spaces. Machine
learning algorithms improve decision-making in shifting environments.

(b) Internet of Things (IOT): Sensors and devices equipped with IOT capabilities
track parking availability and send real-time information to cloud platforms,
facilitating smooth interaction between vehicles and infrastructure.

(c) Vehicular Ad Hoc Networks (VANETS): VANET systems support vehicle-
to-vehicle and vehicle-to-infrastructure interactions, allowing for smart routing
and flexible parking options.

Utilizing AL IOT, VANETS and intelligent parking systems establish a dynamic,
real-time environment that improves urban parking, alleviates congestion, and boosts
overall urban mobility. This study examines how these technologies can be combined
to create a strong, Al-based parking management system [21, 22] (Fig. 1).

Fig.1 Smart parking system architecture: integration of IoT, Al, and VANET
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The diagram of the Smart Parking System Architecture demonstrates the inte-
gration of IoT sensors, Al algorithms, and VANET communication to establish
an effective parking system. IoT sensors identify current parking availability, and
Al analyzes this information to forecast demand and enhance space distribution.
VANET facilitates uninterrupted communication between vehicles and infrastruc-
ture, allowing for real-time updates on parking availability via cloud storage. This
information is subsequently communicated to drivers through mobile applications
and digital displays, facilitating a seamless and smart parking experience.

2 Understanding Smart Parking Systems

2.1 Definition and Components of a Smart Parking System

A smart parking solution is a sophisticated technology that enhances the use of
parking areas via real time tracking, automated choices, and efficient interaction
between vehicles and infrastructure [16]. These systems utilize sensors, wireless
communication networks, and data analysis to boost efficiency, lessen congestion,
and enhance user experience.

A standard smart parking system includes these main elements:

(a) IOT-Equipped Sensors Placed in parking areas or along roadways, these sensors
identify vehicle presence and deliver real-time occupancy information.

(b) Predictive Analytics Using AI ML algorithms examine past and present parking
information to predict demand and improve space distribution [33].

(c) Cloud Based Data Processing: Centralized data storage and management
systems enable instant decision-making and data sharing.

(d) Mobile and Web Applications: Intuitive applications allow drivers to verify
parking spots, book reservations, and get navigation support.

(e) Dynamic Signage and Navigation Systems: Electronic displays and automated
alerts direct drivers to available spaces, minimizing search duration.

(f) Automated Payment and Access Control: Intelligent parking solutions combine
cashless transactions with automatic vehicle identification for smooth ingress
and egress [23].

2.2 How IOT and Al Improve Parking Efficiency

The combination of IOT and Al greatly improves parking management efficiency by
delivering real-time, data-informed insights.

(a) Live Monitoring and Notifications: IOT sensors observe parking availability
and send real-time data, guaranteeing that users and managers receive current
information.
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(b) Forecasting Demand with Predictive Analytics: Al algorithms examine
parking behaviors to foresee busy times and suggest ideal space distribution
strategies [43].

(c) Minimized Search Duration and Traffic Bottlenecks: By directing drivers
to the closest available parking spot, Al and IOT lessen avoidable vehicle
movement and fuel usage.

(d) Dynamic Pricing Systems: Al-powered dynamic pricing modifies parking rates
according to demand, fostering improved space usage and maximizing revenue.

(e) Automated Violation Detection: Al-driven monitoring systems can recognize
illegal parking and send immediate notifications to officials.

2.3 The Role of VANETs in Communication Between
Vehicles and Infrastructure

VANETS are essential for facilitating smooth communication between vehicles and
intelligent parking systems [18]. VANET technology enables vehicles to exchange
information among themselves & with roadside units or parking management
systems.

Important roles of VANETS in intelligent parking solutions consist of:

(a) SmartNavigation and Route Enhancement: VANETS deliver live information
on parking spaces and recommend optimal routes to reduce travel duration.

(b) Dynamic Parking Allocation: Cars can interact with parking systems to request
and secure spaces in real-time.

(c) Improved Safety and Security: VANETS enable the sharing of notifications
regarding parking dangers, theft threats, or emergencies.

(d) Minimized Delay in Data Transfer: By employing low-latency communi-
cation protocols, VANETSs guarantee rapid response times for parking space
notifications.

Smart parking systems transform urban mobility by combining IOT, Al, and
VANETsS, resulting in improved efficiency, sustainability, and user convenience in
parking [11]. These technologies improve ease for drivers while also helping to lower
environmental impact by decreasing unnecessary vehicle travel.

3 Al in Smart Parking

Al significantly transforms parking systems by improving decision-making, lowering
congestion, and increasing the overall effectiveness of urban transportation. By
utilizing Al-powered algorithms, intelligent parking systems can efficiently assign
parking spots, forecast demand, and deliver real-time occupancy information,
resulting in a smooth experience for both drivers and urban planners [21, 22].
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3.1 Al-Powered Parking Space Distribution

Conventional parking allocation methods usually adhere to a fixed, first-come-first-
served approach, resulting in poor space usage and longer search durations [49].
Al-powered parking space assignment systems address these constraints by:

(a) Examining Real Time Traffic and Parking Information: Al constantly eval-
uates live data from IOT sensors, cameras, and mobile apps to identify the most
effective allocation of parking spaces.

(b) Dynamic Space Reservation: Al-powered systems enable drivers to book
parking spaces ahead of time by utilizing predictive demand and past data.

(c) Enhanced Space Optimization: Al maximizes efficiency by redistributing
available areas according to vehicle dimensions, length of stay, and changes
in demand.

(d) Automated Ingress and Egress Management: Al-driven license plate recog-
nition (LPR) systems enhance parking entry by automatically identifying and
authenticating vehicles [24].

3.2 Machine Learning for Predictive Parking Insights

ML which is a component of Al, allows intelligent parking systems to evaluate
large volumes of historical and real-time data to predict parking demand accurately.
Several important applications consist of:

(a) Forecasting Busy Periods and Demand Trends: Machine learning models
evaluate data points like time, weekday, and special occasions to project parking
needs across various areas.

(b) Suggesting Alternative Parking Solutions: When main parking areas are occu-
pied, ML-driven systems propose nearby alternatives considering historical user
choices and current availability [37].

(c) Dynamic Pricing Optimization: Machine learning aids in the application of
surge pricing models, causing parking charges to vary with demand, promoting
a more efficient distribution of parked cars throughout available spots.

(d) Traffic Flow Management: Simulations powered by ML forecast and alleviate
bottlenecks by modifying parking options in congested areas.

3.3 AI-Driven Real-Time Parking Space Occupancy
Detection

Al improves parking occupancy monitoring by combining multiple data sources and
increasing precision beyond conventional sensor-driven systems. A few essential
Al-based strategies consist of:
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(a) Computer Vision and Image Recognition: Surveillance cameras driven by Al
utilize image recognition algorithms to accurately identify available and taken
parking spaces [17].

(b) Sensor Fusion Technology: Integrating information from ultrasonic, infrared,
and LiDAR sensors, Al improves precision in recognizing current parking
occupancy.

(c) Parking Violation Anomaly Detection: Utilizing Al for anomaly identification
aids in spotting unauthorized parking, vehicles that have overstayed, and illegal
parking behaviors, activating automated notices for enforcement.

(d) Collaboration with Smart City Infrastructure: Al-driven parking occupancy
solutions communicate with intelligent traffic signals and navigation platforms
to deliver immediate information on parking availability.

Utilizing Al for assigning parking spaces, forecasting data analysis, and instan-
taneous occupancy monitoring makes smart parking systems increasingly efficient,
adaptable, and focused on users. Al not only boosts convenience for drivers but also
enhances city mobility by reducing congestion and optimizing space usage.

4 1IOT Structure in Parking Solutions

The IOT is essential in converting traditional parking systems into intelligent, auto-
mated solutions. Parking systems enabled by IOT utilize interconnected sensors,
wireless communication technologies, and cloud-based platforms to maximize space
usage, decrease congestion, and enhance user experience [41]. Integrating IOT with
intelligent devices, automobiles, and infrastructure allows for more efficient and
responsive real-time monitoring and decision-making.

4.1 Function of IOT Sensors in Observing Parking
Availability

IOT sensors form the core of intelligent parking solutions, delivering instantaneous
information on space availability and vehicle activity. The sensors consist of:

(a) Ultrasonic Sensors: Placed in parking areas to identify vehicle occupancy
through the reflection of sound waves.

(b) Infrared (IR) Sensors: Recognize vacant or filled areas by sensing thermal
patterns or motion of objects.

(c) Magnetic Sensors: Installed within the pavement to detect vehicle closeness
and motion by monitoring magnetic field variations.

(d) CCTV and AI-Driven Image Recognition: Cameras featuring Al-driven
image processing identify free spaces without the need for extra physical sensors

[6].
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(e) LiDAR and RFID Sensors: Utilized for precise observation in automated
parking areas and multi-story structures.

These IOT sensors send data to a central system, allowing for real-time observa-
tion, decreasing the time needed for parking searches, and improving urban traffic
movement.

4.2 Protocols for Communication (V2I, V2V) to Enhance
Parking Coordination

Smart parking systems based on IOT depend on effective communication between
vehicles and their infrastructure. This is enabled through VANETS, which utilize two
main communication protocols:

1. Communication between Vehicles and Infrastructure (V2I):

(a) Vehicles interact with intelligent parking systems through roadside units
(RSUs) to obtain real-time updates on parking availability [15].

(b) IOT-enabled parking facilities offer automated management of entry and
exit utilizing license plate recognition or RFID technology.

(c) Parking fee payments are simplified via mobile transactions or automated
toll collection methods.

2. Communication Between Vehicles (V2V):

(a) Vehicles share data on nearby parking options, minimizing unnecessary
searching.

(b) V2V communication assists drivers in locating different parking alterna-
tives by transmitting up-to-date information on crowding levels in multiple
parking areas [5].

(c) Autonomous vehicles utilize V2V communication to effectively organize
self-parking actions.

Through the integration of V2I and V2V communication, IOT-driven parking
systems improve parking coordination, reduce search durations, and enhance overall
traffic control.

4.3 Combining 10T and Mobile Apps for Effortless Parking
Solutions

Mobile applications powered by IOT are essential in offering users immediate parking
help. Important features include:
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(a) Real-time Parking Availability Updates: Users can monitor open parking
spaces through a mobile app, minimizing unnecessary car travel [13].

(b) Automated Parking Reservation: Drivers can reserve parking spaces ahead of
time and get navigational assistance.

(c) Navigation Support and Route Enhancement: GPS-equipped mobile appli-
cations direct drivers to the closest available spot with the least number of
detours.

(d) Digital Transactions and Cashless Payments: IOT connects with mobile
wallets, enabling smooth, contactless payments for parking [26].

(e) Intelligent Notifications and Alerts: Users are notified about open slots, time
restrictions, and lapsed bookings.

(f) Connection with Smart City Systems: IOT-based parking applications interact
with public transportation and city traffic networks for an enhanced travel
experience.

Integrating IOT sensors, VANET communication protocols, and mobile apps,
smart parking systems provide a smooth, data-informed, and user-centric solution
for urban transportation [3]. These improvements aid in minimizing congestion,
enhancing space usage, and boosting overall traffic efficiency.

5 VANET Models and Optimization

VANETs are essential in contemporary smart parking systems by enabling real-
time communication between vehicles and their surrounding infrastructure. These
networks establish a decentralized framework that allows vehicles to exchange infor-
mation about parking availability, traffic situations, and navigation support, ulti-
mately enhancing urban mobility [42]. The incorporation of Al, especially deep
reinforcement learning, boosts VANET efficiency by refining routing protocols and
data transfer.

5.1 Fundamentals of VANETs and Their Use in Parking
Solutions

VANETs are specific type of Mobile Ad Hoc Networks (MANETS) intended for
V2V and V2I interactions. They are made up of these essential components:

(a) On-Board Units (OBUs): Set up in vehicles to enable wireless communication.

(b) Roadside Units (RSUs): Stationary infrastructure that links vehicles to cloud-
based parking solutions.

(c) Wireless Communication Protocols: VANET: utilize Dedicated Short-Range
Communication (DSRC), Cellular-V2X (C-V2X), or 5G networks for instanta-
neous data sharing [30].
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5.2 Usage in Intelligent Parking

(a) Dynamic Parking Space Distribution: VANETSs allow vehicles to share real-
time availability information with nearby motorists.

(b) Adaptive Parking Reservations: Cars can reserve parking spots in advance by
utilizing real-time information from roadside units.

(c) Traffic Flow Enhancement: VANETS help redirect vehicles to vacant parking
spots, minimizing traffic congestion.

5.3 Enhancing VANETs Using Deep Reinforcement
Learning

(a) Deep reinforcement learning (DRL) has become a potent method for enhancing
VANET-based parking solutions. Through ongoing learning from previous
experiences and dynamically adapting decisions, DRL improves system effi-
ciency.

(b) Forecasting Parking Demand Assessment: DRL algorithms examine past
parking trends to anticipate peak demand times and assign spaces in advance
[34].

(c) Adaptive Route Planning: Vehicles are directed to open spaces according to
ongoing evaluations of demand and supply.

(d) Reduced Latency in Data Transfer: DRL enhances data transmission between
vehicles and infrastructure, guaranteeing quicker response times.

(e) Communication with Energy Efficiency: DRL reduces unnecessary data trans-
fers, saving energy in connected vehicles.

5.4 Routing Protocols and Efficiency of Data Transmission
in Smart Parking

Effective routing is crucial for intelligent parking systems based on VANET to reduce
communication delays and enhance vehicle flow. Important routing protocols consist
of:

1. Routing Based on Topology:

(a) Utilizes established network frameworks for communication.
(b) Optimized Link State Routing (OLSR) guarantees reliable data communi-
cation between vehicles and RSUs [47].

2. Routing Based on Position:

(a) Vehicles exchange GPS location information to enable immediate commu-
nication.
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(b) Greedy Perimeter Stateless Routing (GPSR) chooses the quickest route for
data transfer.

3. Routing Based on Clusters:

(a) Vehicles create compact communication groups to enhance network effec-
tiveness.

(b) Cluster-Based Directional Routing (CBDR) organizes vehicles by their
location to enhance the speed of message transmission [1].

4. Routing Enhanced by AI:

(a) ML algorithms forecast traffic jams and adapt data transmission in real-time.
(b) Reinforcement Learning-Driven Routing (RLR) reduces transmission
delays.

Through the combination of enhanced VANET models, deep reinforcement
learning, and sophisticated routing protocols, smart parking systems attain quicker
response times, less congestion, and a better experience for drivers. The collaboration
between Al and VANETSs will keep fueling advancements in smart urban parking
systems [28] (Fig. 2).

The VANET-Based Parking Communication Model emphasizes the interaction
between vehicles and roadside units (RSUs) for obtaining parking support. The
RSUs connect to a cloud-based parking management system that utilizes Al to fore-
cast space availability and assign spots instantly. After a spot is designated, naviga-
tion help directs the driver to the best location. Once parked, the system refreshes
availability to assist other drivers, alleviating unnecessary congestion and enhancing
traffic movement.

6 Technological Enablers

The swift progress in computing and networking technologies has greatly enhanced
the effectiveness and dependability of smart parking systems [31]. State-of-the-
art advancements like edge computing, cloud architectures, 5G technology, and
blockchain are vital for improving parking management by enabling real-time data
processing, fluid connectivity, and secure transactions.

6.1 Edge Computing and Cloud-Based Solutions in Parking
Management

Intelligent parking solutions produce large quantities of data from IOT sensors,
cameras, and vehicles equipped with VANET technology. Effective data processing
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Fig. 2 VANET-based parking communication model for real-time space allocation

is crucial for real-time decision-making, accomplished via edge computing and cloud
architectures.

6.2 Edge Computing in Parking Solutions

(a) Instant Data Processing: Edge computing allows for local processing at
parking sensors or roadside units, minimizing latency and reliance on centralized
servers.
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(b) Quicker Decision-Making: Parking availability, occupancy information, and
automated space bookings are handled instantly at the edge, guaranteeing rapid
responses for drivers.

(c) Decreased Network Load: By processing data nearer to the source, unnecessary
transmissions to the cloud are reduced, enhancing bandwidth efficiency [48].

(d) Improved Security: Important vehicle and parking information stays within
local networks, minimizing the chance of cyber threats [44].

6.3 Cloud-Driven Parking Administration

(a) Centralized Data Storage: Cloud systems gather and examine extensive
datasets, enhancing predictive analytics for parking needs.

(b) Scalability: Cloud-based parking systems can effortlessly grow to support
numerous city locations.

(c) Remote Access and Control: Parking administrators can oversee and control
various lots from a single cloud interface.

(d) Coordination with Smart City Ecosystems: Cloud platforms link parking
information with various smart city services, enhancing overall urban mobility
[32].

6.4 The Impact of 5G and Low-Latency Networks
on Enhancing VANET-Driven Parking:

The introduction of 5G networks transforms VANET-enabled parking systems by
offering:

(a) Extremely Low Latency Communication: 5G guarantees almost immediate
data transfer among vehicles, parking sensors, and management systems.

(b) Increased Bandwidth for Instant Video Processing: Al-driven cameras and
LiDAR devices utilize 5G to send high-definition data for precise occupancy
recognition.

(c) Smooth Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V)
Communication: 5G enhances the effectiveness of real-time parking assign-
ment and route planning [9].

(d) Assistance for Independent Parking: Self-driving cars depend on 5G-enabled
VANETS to steer, identify, and park on their own.

With 5G-enabled connectivity, intelligent parking solutions can function more
effectively, lessen traffic, and improve the driver experience by delivering immediate
updates on space availability.
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6.5 Blockchain for Safe Transactions and Data Accuracy
in Smart Parking

Blockchain technology tackles issues of security, transparency, and data integrity in
smart parking systems by:

(a) Guaranteeing Secure Parking Information: Blockchain logs every transac-
tion associated with parking bookings, payments, and occupancy changes in an
unalterable ledger.

(b) Safe and Clear Payment Handling: Smart contracts on the blockchain facili-
tate automated, trust-free transactions through digital wallets or cryptocurren-
cies.

(c) Averting Fraud and Unapproved Access: Decentralized identity verification
systems boost security by limiting unapproved access to parking areas [27].

(d) Improving Data Exchange in Smart Cities: Blockchain facilitates secure
collaboration among parking operators, city officials, and transit services.

Integrating blockchain with IOT and Al enables smart parking systems to attain
greater transparency, automated transactions, and improved user trust.

7 Challenges and Solutions in Smart Parking Systems

Although smart parking systems provide considerable benefits for urban mobility,
their deployment presents numerous challenges. Challenges like data security,
network scalability, interoperability, and budget limitations need to be tackled to
guarantee the smooth functioning of smart parking systems. This part examines
these difficulties and offers possible solutions.

7.1 Issues Related to Data Security and Privacy

Challenge: Intelligent parking solutions depend on IOT sensors, Al-based analytics,
and cloud infrastructures, which produce and retain large quantities of sensitive
information [47] such as:

(a) Information on vehicle registration.
(b) Information regarding user payments.
(c) Tracking location in real time.

These data points are susceptible to cyber-attacks, data leaks, and unauthorized
access, creating risks for both users and service providers.

Solutions: To alleviate security risks, intelligent parking systems need to
incorporate:
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(a) End-to-End Encryption: Guaranteeing that all interactions among vehicles,
sensors, and cloud servers stay protected [38].

(b) Blockchain Technology: Employing distributed ledgers to uphold clear and
secure transaction records against tampering.

(c) AI-Driven Anomaly Detection: Utilizing machine learning techniques to
identify and mitigate fraudulent activities or cyber risks.

(d) Rigorous Access Regulations: Using multi-factor authentication (MFA) and
role-specific access for system users.

7.2 Challenges in Network Scalability

Challenges: With the growth of cities, the quantity of connected vehicles and IOT
devices in intelligent parking systems rises dramatically. Conventional network
designs might face challenges [39] with:

(a) Heightened Data Traffic: Resulting in delayed response times and reduced
efficiency.

(b) Elevated Latency in Real-Time Communication: Impacting VANETs and
automated parking assignment.

(c) Restricted Bandwidth Distribution: Leading to congestion in areas of high
urban demand.

Solutions: To guarantee smooth scalability, intelligent parking solutions can
implement:

(a) 5G and Edge Computing: Minimizing latency and improving data processing
speed through the facilitation of local data analysis.

(b) Cloud-Native Microservices Architecture: Enabling the modular enhance-
ment of parking services while maintaining system performance [19].

(c) Load Balancing Techniques: Actively managing network traffic to avoid
congestion and guarantee real-time functions.

7.3 Issues of Interoperability Among Various Smart City
Infrastructures

Challenge: Intelligent parking solutions need to connect with different urban
transport frameworks, such as:

(a) Networks of public transportation.
(b) Systems for managing traffic.
(c) Payment processors.

Nevertheless, varying standards, exclusive technologies, and insufficient uniform
communication protocols may obstruct smooth integration.
Solutions: To improve interoperability, cities need to:
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(a) Implement Standardized Communication Protocols: Utilizing universal
frameworks such as Vehicle-to-Everything (V2X) and MQTT (Message
Queuing Telemetry Transport) for IOT connectivity [35].

(b) Activate Open APIs for Data Exchange: Permitting external applications and
services to connect with parking management systems.

(c) Establish Smart City Data Centers: Building integrated platforms that allow
various urban services, such as parking, to securely share data [40].

7.4 Financial and Execution Challenges

Challenge: Implementing smart parking systems necessitates a considerable upfront
investment in:

(a) Infrastructure (IOT devices, surveillance cameras, roadside units, cloud storage,
etc.).

(b) Network Enhancements (5G, edge computing, and secure communication
protocols).

(c) Software Creation (artificial intelligence algorithms, forecast analysis, and user
interfaces).

Such expenses might deter small towns and private companies from utilizing
smart parking systems.
Solutions: To alleviate financial obstacles, interested parties can:

(a) Utilize Public-Private Partnerships (PPPs): Promoting collaborative invest-
ments between governments and technology suppliers [7, 8].

(b) Adopt Pay-As-You-Go Models: Enabling cities to progressively expand their
smart parking systems according to demand.

(c) Leverage Al-Based Cost Efficiency: Anticipating demand and enhancing
energy use to reduce operational expenses [25].

(d) Pursue Government Grants and Subsidies: Investigating funding options
aimed at smart city projects [29] (Fig. 3).

The Al-Powered Intelligent Parking Process emphasizes the importance of Al
in enhancing parking management. IoT sensors gather real-time information, which
is analyzed by cloud-based Al algorithms to forecast demand, handle space distri-
bution, and optimize driver routes. The Al system continuously refreshes parking
availability and offers drivers navigation support through mobile apps and digital
displays. Through constant observation and modification of parking space alloca-
tion, Al improves efficiency, lessens traffic, and lowers the duration drivers spend
looking for parking areas.
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Fig. 3 Al-driven smart
parking workflow for
predictive and dynamic
allocation

8 Future Trends and Research Directions

As smart cities develop, smart parking solutions will keep progressing alongside new
technologies like self-driving cars, Al-enhanced traffic management, and advanced
VANET frameworks [20]. These advancements will influence the future of city trans-
portation by improving efficiency, minimizing congestion, and encouraging sustain-
ability. This part examines the major trends and research paths that will propel the
upcoming stage of smart parking solutions.
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8.1 Incorporation of Self-driving Cars in Intelligent Parking

Upcoming Direction: The implementation of autonomous vehicles (AVs) will
transform smart parking by facilitating:

(a) Self-Parking Features: Autonomous vehicles will independently find open
spots without any driver input.

(b) Enhanced Space Efficiency: Autonomous vehicles can fit into smaller parking
spots with reduced gaps, boosting total parking availability.

(c) Decreased Traffic Congestion: AVs will interact with intelligent parking
systems to eliminate unnecessary searching times.

Research Avenues:

(a) Enhanced Sensor Integration for Autonomous Vehicle Parking: Creating
Al-driven multi-sensor technologies (LiDAR, cameras, ultrasonic) for accurate
self-parking [4].

(b) Incorporation of V2X Communication for Autonomous Vehicle Parking
Management: Facilitating instantaneous collaboration among AVs, parking
facilities, and traffic lights.

(c) Automated Valet Parking Systems: Investigating robotic parking assistants
and Al-powered parking centers to oversee AV parking autonomously.

8.2 Al-Enhanced Traffic Management Associated
with Parking

Upcoming Trend: Traffic management systems powered by Al will work in conjunc-
tion with smart parking solutions to facilitate smooth vehicle flow throughout urban
areas. Major developments encompass:

(a) Real-Time Traffic Forecasting: Al systems will anticipate traffic levels and
guide vehicles to parking spots with lower congestion.

(b) Dynamic Parking Demand Regulation: Al will assign parking spots according
to anticipated peak times, unique events, and vehicle spread [14].

(c) Traffic Signal Optimization: Al will align intelligent traffic signals with
parking space availability to avoid congestion around parking areas.

Areas of Investigation:

(a) Reinforcement Learning for Instant Traffic Improvement: Developing Al
models to forecast traffic trends and modify parking distribution in real time.

(b) AI-Driven Multi-Modal Transport Planning: Combining intelligent parking
solutions with public transport networks to lessen reliance on personal cars.

(c) Automated Incident Identification and Reaction: Al-based monitoring to
detect and alleviate parking-related traffic jams or roadway blockages.
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8.3 Possible Developments in Parking Solutions Based
on VANET

Upcoming Direction: Parking systems based on VANET will develop along-
side next-generation networking technologies, facilitating ultra-quick, low-latency
communication between vehicles and infrastructure [46]. Anticipated progressions
encompass:

(a) VANET Networks with 5G Support: Enhancing immediate data transfer and
minimizing delay in parking management.

(b) Distributed Parking Information Exchange: Utilizing blockchain and
VANETS for secure, instantaneous data sharing.

(c) AI-Driven Routing Algorithms at the Edge: Utilizing Al at network periph-
eries for immediate parking suggestions and route enhancements.

Investigation Avenues:

(a) Combining AI with VANET-Based Routing Protocols: Creating Al-driven
decision-making for the best allocation of parking spaces.

(b) Independent Decision-Making for Parking Bookings: Cars utilizing V2V
and V2I communication to reserve and find parking spaces [2].

(c) Hybrid VANET-Cloud Parking Solutions: Merging edge computing with
cloud-based Al algorithms for quicker, more adaptable intelligent parking
networks.

9 Conclusion

The swift urban growth and rising vehicle count in urban areas have rendered smart
parking solutions essential for sustainable city mobility. This study has examined
how Al IOT, and VANETS are revolutionizing parking management by boosting
efficiency, decreasing congestion, and improving the experience for drivers.

Main Takeaways are:

(a) Al-Powered Enhancement: Intelligent parking utilizes machine learning and
predictive analysis for immediate space distribution and demand prediction.

(b) IOT-Based Monitoring: Intelligent sensors and cloud platforms offer real-time
information on parking space availability, minimizing search durations.

(c) VANET-Enabled Communication: Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) exchanges enhance navigation and parking booking.

(d) Technological Facilitators: Edge computing, 5G networks, and blockchain
improve data protection, communication rates, and transaction clarity.

(e) Obstacles and Remedies: Major hurdles like data protection, network scala-
bility, interoperability, and financial limitations necessitate strategic methods,
including blockchain incorporation, standardization, and collaboration between
public and private sectors.
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(f) Future Trends: Developments in self-parking technologies, Al-enhanced traffic
management, and advanced VANETS will keep transforming parking solutions.

Consequences for City Planners and Decision-Makers: To successfully imple-
ment smart parking, urban planners and policymakers need to:

(a) Implement Smart City Approaches: Merge parking solutions with wider
intelligent transportation systems (ITS) for effortless mobility.

(b) Promote Cooperation Between Public and Private Sectors: Collaborate with
tech companies, startups, and the automotive sector to speed up implementation.

(c) Enhance Digital Infrastructure: Implement 5G, IOT, and Al-powered systems
to boost scalability and manage parking in real time.

(d) Encourage Sustainable Transport: Introduce rewards for electric vehicle
parking, flexible pricing strategies, and integrated transport options.

Concluding Insights on the Future of Intelligent Parking as urban areas expand,
intelligent parking solutions will be essential in enhancing city spaces, alleviating
traffic congestion, and promoting sustainability.

The combination of Al, IOT, and VANETs will facilitate completely auto-
mated and self-sufficient parking systems, allowing vehicles to interact effortlessly
with infrastructure for optimal space usage. In the future, studies in Al-driven
decision-making, immediate traffic management, and distributed parking systems
will continue to transform smart mobility.

By adopting these advancements, cities can improve urban life, reduce ecological
effects, and provide a smooth, technology-enhanced parking experience for everyone.
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A. Bhavani, Vijayakumar Ponnusamy, S. Latha, A. Ramya,
S. Diana Emerald Aasha, and Dilliraj Ekambaram

Abstract Intelligent integration of Vehicular Ad-hoc Networks (VANETS) provides
improved quality of life for urban dwellers. Ecosystems for transportation give rapid
evolution in a smart environment for both dynamic and linked scenarios of various
vehicles utilizing real-time data gathered from the infrastructure area. Utilizing these
real-time data lays the groundwork for road safety, sustainable mobility behaviors,
and enhancing the traffic flow in the center of the urban regions. Modern algorithms
and technology have the potential to usher in a slew of game-changing innova-
tions that will enhance transportation efficiency and the quality of life for drivers.
A promising future is one in which vehicles equipped with collision avoidance
technology enable them to share data. The process of VANET integration in urban
regions responds to the vehicles to provide adaptive speed adjustments in response
to current traffic environments, road conditions, patterns, and collision warnings to
avoid possible hazards for the drivers through VANETS. The scenario of this inte-
gration of VANETS in city centers helps to make roads safer for drivers, avoiding the
negative effects of emissions from vehicles to the environment, and reducing traffic
congestion. This VANET integration tackles complex urban transportation problems,
makes the city people’s lives easier through transit, and clever city trip planners for
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the people. With this method, we can focus on the new programs and regulations that
will help cities grow more efficiently.

Keywords Machine learning - VANET - Smart cities - Edge computing

1 Introduction to Intelligent VANETS and Smart Cities

The seamless integration of VANETSs for smart cities improves sustainable devel-
opment for people who live in urban regions. The integration of vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) can lessen the congestion caused by vehi-
cles, prevent accidents, and optimize the road plan for city riders. Advancements in
these integrations contribute to a more efficient urban environment but also promote
safer travel for all the road users. Looking into how Intelligent Transportation Systems
(ITS) can be built into city infrastructure is a very important part of working together
to understand and set up VANETS in smart cities. Using new technologies is a big part
of the latest innovative solutions for ITS that allow preventative measures. Real-time
data from various vehicles can create predictive models, identifying potential acci-
dent sites, reducing risks, and enhancing community safety. Therefore, developing
advanced solutions to improve road safety remains a critical priority within smart
city frameworks. The demand for modern urban life requires modern, innovative
technology in the smart city environment.

Specifically, intelligent VANETS are a crucial technology that offers numerous
benefits for managing urban mobility among residents of smart cities. Intelligent
VANETS facilitate communication between vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) in dynamic interactions. This collaborative ecosystem shares
vital information like traffic conditions, road conditions, hazards, and optimal path-
ways. Vehicles can communicate the speed and direction information from one to
another. This information sharing in real-time reduces the risk of collision among
vehicles, also leads to more synchronized traffic flows, and reduces the congestion
on road transport.

The future of urban development will be built on a strong foundation for safer,
smarter, and more sustainable transportation in smart cities. It brings significant
advancements in road safety while laying the groundwork for further improvements
inintelligent urban transportation networks. Systems are being implemented to detect
driver activities such as drowsy driving, speeding, and alcohol consumption. Light
Fidelity (Li-Fi)-enabled vehicles provide assistance to prevent accidents by identi-
fying the listed activities in Smart City vehicle-to-infrastructure (V2I) communica-
tion. Artificial Intelligence (AI) and IoT connectivity are revolutionizing the future
of transportation, ensuring safety and more secure mobility in the smart city.
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1.1 VANET Network

The field of VANETS is an extensive category of processes in smart cities. The
participating vehicles in the VANET region cover around 100-300 m distance in
urban scenarios. Whereas, on highways, the wireless transmission range is around
1000 m. The fundamental feature of VANETS is the ability for automobiles to speak
to one another and establish communication with infrastructure. Smart cities can
easily benefit from the sharing of collected data from the Internet of Vehicles (IoV)
ecosystem, which includes vehicles, roads, infrastructure, buildings, and more. The
unique characteristics of VANETSs are the communication medium used, computing
capabilities, mobility, storage, etc.

Vehicles should have their own identities to ensure strong security and privacy
in VANETs. This will improve security by preventing unauthorized access and
protecting privacy. We should also use efficient authentication to decrease the like-
lihood of tracking, profiling, or concealing real vehicle identities. We can efficiently
perform authentication in VANETSs by eliminating complex public key infrastruc-
ture and authorized certificates, resulting in faster and more scalable processes.
VANETs allow vehicles to communicate through roadside equipment like surveil-
lance cameras, ultrasonic sensors, and beacon transmitters in Intelligent Transporta-
tion Systems (ITS) for sustainable development in urban regions. Self-organizing
mobile nodes that use this intelligent system to communicate information among the
vehicles.

Event-driven and periodic are the two categories of safety applications in
VANETs. VANETSs implement broadcast-type communication. At regular intervals,
each node transmits the safety message from one vehicle to another vehicle. During
emergencies, only event-driven safety applications transmit the safety message
among the vehicles. One node broadcasts the safety message through either one-hop
or multi-hop messages to all other nodes within the communication range. The classi-
fication safety messages are categorized as classes 1, 2, and 3. Class 1 and 2 are under
event-driven safety application, and class 3 is for periodic safety message application.
Class 1 and 2 provide the critical safety messages for life-critical safety, intersection
collision avoidance, emergency braking avoidance, safety warning, transit vehicle
signal, and cooperative collision warning. Class 3 safety messages include vehicle
status reporting, work zone warnings, and road hazard warnings.

1.2  Smart Cities

The complicated problems encountered in the ever-increasing population lead to
deploying the smart cities concept in the urban region. Well-advanced technolog-
ical impacts in the urban scenario led to sustainable development in a particular
region. The primary objective of smart cities is to improve people’s quality of life
through innovative urban processes. This infrastructure provides optimized resource
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allocation, better decision-making abilities, and increasing information exchange
service among end nodes. The goals are accomplished through a variety of fields and
projects, including smart healthcare, smart buildings, smart mobility, smart energy
management, and smart governance.

The robust digital infrastructure developed in the smart cities supports collecting,
storing, and analyzing information from diverse nodes. For this infrastructure, we
need seamless integration of urban systems with sensors, IoT devices, and broadcast
communication. Smart cities prioritize the people-centric approach to emphasize the
living standards of people in the urban region. The main pillar of sustainability in
smart cities is to minimize the environmental impact and optimize the resources
allocated.

2 Machine Learning Algorithms for VANETS

Machine learning algorithms are designed to analyze data, learn from it, and make
predictions or decisions without being explicitly programmed for specific tasks.
They can be categorized into various types, including supervised learning, unsuper-
vised learning, and reinforcement learning. Each category has its unique applications
and benefits, which can significantly enhance our capabilities in data analysis and
decision-making. Table 1 represents the comparative analysis of various machine
learning algorithms and its uniqueness.

Table 1 A comparative analysis of algorithms for machine learning

Algorithms High dimensional data | Fastness | Outliers | Memory | Scalability

K-nearest neighbors - -
(KNN)

Naive Bayes * * *

Support vector machine | * * *
(SVM)

Linear regression *

K-means * - *

Density-based spatial * * *
clustering of applications
with noise (DBSCAN)

Feed forward neural * * *
network (FFNN)

Q learning * *
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3 Enhancing Autonomy in Smart Cities Through VANETS

VANET’s play a critical role in enabling autonomous operations in smart cities. It
improves the efficiency, mobility and urban safety by effectively connecting vehicles,
pedestrians and infrastructure through wireless communication. It aids in dynamic
traffic control for optimization of traffic flow. Vehicles may move in a speed based
on the upcoming traffic which will result in reduction of traffic. VANET’s share
information about the nearby vehicles and pedestrians to the server, which may be
used by other vehicles for traffic management. Emergency situations like accidents,
weather conditions and disasters may be communicated to the other nodes which help
in better handling of these conditions. Methods to find shortest and less traffic route
may be implemented for energy conservation. Smart infrastructure like cameras,
traffic lights, and smart street lights may be integrated with VANET for effective
urban infrastructure support. Vehicles connected with parking management systems
provide the nearest parking slots which aids in smart parking solutions. Data analysis
and visualization may be performed with received data from traffic and smart cities to
help in data driven planning of the city. Gaps in infrastructure and where to optimize
in smart cities may be identified, analysed and implemented.

Mezher et al. [1] introduced a multimedia-based, multi-metric routing protocol
designed for VANETS in smart cities, optimizing video transmission for reporting
purposes. Prevention of accidents is a major goal of VANET. A short video may
be recorded and to access point when an emergency like an accident happens. This
helps the authorities to identify the level of accident and act accordingly. An efficient
routing protocol multimedia multimetric map-aware routing protocol was developed
for the purpose. Real maps with SUMO was used for signal transmission among the
sender and receiver. The movement of the nodes and the presence of buildings in
between are applied in the analysis. Periodic “hello” messages were continuously
sent among vehicles, which helps in interpreting the distance to destination, the
density of vehicles in an instant, trajectory, available bandwidth estimation, and the
packet losses in the MAC layer for local feedback information.

The processes routing, signaling, evaluation of the measures, and forward decision
were used for the smart city implementation using VANET. In future work, the authors
aim to incorporate a game-theoretical approach into the 3MRP routing protocol.
This approach involves forwarding some frames with a certain probability to the
best neighboring vehicle while sending others to the second-best neighbor, ensuring
balanced transmission.

Lee et al. [2] proposed an efficient and safe message authentication protocol for
the Internet of Vehicles (IoV) in smart cities, named IoV-SMAP. VANET combined
with IoT provides services with IoV. For the transmitted messages to be secure,
a secure message authentication protocol was introduced. The message may suffer
from offline guessing attacks, impersonation, and secret key disclosure. The proposed
IoV-SMAP helps in overcoming these security issues and provides mutual authenti-
cation and anonymity. The session key security concept was proven using the Real or
Random (ROR) model by a mathematical analysis. Automated Validation of Internet
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Security Protocols and Application (AVISPA) was used for the protocol imple-
mentation. The proposed system included an initialization and registration process,
which includes V2V, V2I registration, V2V, and V2I authentication. Formal security
analysis by the ROR model and informal security analysis include impersonation
attacks, replay, session key disclosure, smart card theft, man-in-the-middle attacks,
anonymity, and mutual authentication. Thus the SMAP is more suitable for IoV
environment because of this enhanced efficiency and security features.

Smart living, autonomous connected driving, public safety, connected and smart
health may be achieved by having proper resources for ubiquitous communications,
more storage capacity of data, powerful computing, high storage and intelligence
capacities and immense sensing power. Chen et al. [3] proposed Vehicle as a Service
(VAAS) which gives a path for smart cities and provides a good alternative for 5G.
The paper provides insights on how to transform from traditional VANETS to VAAS.
The author performed an extensive literature survey in terms of communication,
storage, computing, intelligence, and sensing with respect to VAAS. The reasons for
implementing VAAS include public safety, smart mobility, smart, connected health,
and smart living. Updation required when we move from VANET to VAAS are in
the perspectives of spectrum, computation and design.

Wajdy et al. [4] gave a physically secure lightweight, privacy-protective message
verification protocol for VANET given smart cities. Smart cities which included
certification revocation lists (CRL) and public key infrastructure suffered from time
consumption because of the large size of CRL, and traceability attacks by using
uninterrupted basic safety messages and extracting secret keys of the roadside parked
vehicles by unauthorized persons. To address this issue, the authors introduced a
secure message preservation protocol based on Physical Unclonable Function (PUF)
secret sharing. The method protests message loss against memory leakage. The data’s
pairwise temporal secret keys may be designed with other data. The vehicles send a
safe offset key by threshold secret sharing approach.

The system model assigns a trusted authority to enroll vehicles and roadside units,
issuing secret keys to network entities. These units can securely communicate their
coverage range with the authority over a wireless connection. Communication also is
enabled among vehicles with their onboard units. The design goals include message
authentication, integrity, physical protection, message confidentiality, untraceability,
and resistance to security attacks. The algorithm 1 included retrieval, mutual authen-
tication and key renewal phase, V2V authenticated secure message communica-
tion phase and V2V broadcast secure message transmission. Algorithm 2 includes
broadcast encryption and the revocation mechanism phase.

The challenges and innovative approaches for acommunication-based perspective
on traffic management systems for smart cities were proposed by Djahel et al. [5].
A systematic review of the traffic management systems phases and application of
smart cars and social media accurate fast traffic congestion detection and mitigation.
The possibilities of smart transportation were analyzed. The requirements for the
above are more efficient dealing with road emergencies, managing traffic of different
sizes and characteristics, Improvement in road infrastructure and route planning, and
evolution to new system slowly without disrupting the existing system.
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VANETs are key enablers in the transition towards interconnected, fully
autonomous smart cities. By improving traffic management, safety, and energy effi-
ciency, they clear the path for cities that are most sustainable, intelligent, and livable.
Through collaboration between technology, infrastructure, and governance, VANETS
will continue to enhance the autonomy of smart cities.

4 Edge Computing and AI Integration in VANETS

VANETS require fast real-time data processing and security. Edge computing helps
in message authentication under heavy traffic, improving the computing power.
The devices that have initially gone through authentication procedures only may
be allowed to join VANET. Without any compromise on user identity, the devices in
VANET if they identify any non-trustworthy node, the same may be communicated
to other nodes in the network, which will aid in the early identification of wrong data
transmission.

Tahir et al. [6] proposed a cornerstone in the combination of 5G mm-wave and a
dedicated short-range communication (DSRC) system for fast vehicular networks.
The architecture is named CtCNet- HDRNN. The model enables seamless communi-
cation between vehicles in a connected environment. It utilizes an adaptive learning
rate and built-in regularization in its advanced training process, ensuring accu-
rate data fitting, strong generalization, and fast convergence. For these resource-
constrained networks and energy conservation, a Sparse Deep Recurrent Neural
Network (SDRNN) was implemented which aids in the reduction of complexity.
mmWave technology provides high-speed communication capabilities, while Monte
Carlo methods enable dynamic collision avoidance and efficient channel access
management in vehicular networks. The approach facilitated a smart and safe
transportation system.

Al-based trust-aware and privacy-preserving system (ATPS) was developed by
Ting et al. [7] to improve privacy among vehicular communication and data collection
quality in VANETS. The method includes partial ordering-based trust management
(POTM) and a trajectory privacy-preserving method. The information is collected
from top-ranked vehicles and drones were used for trust vehicular data providing.
The data quality improved to 52.57% and the malicious vehicle participants reduced
to 16.95%.

Every vehicle should have its dedicated hardware for networking, storage, and
computation, enabling fast secure data transfer within vehicles in the network.
Recently 5G network has been enabled in vehicles for seamless communication.
Free space optical portion of the spectrum may be used for intra-vehicle data trans-
mission. Edge computing helps in accommodating the future high demand for vehicle
communication. The side unit works as a fog layer and makes decisions on which
data to accept and reject and aids in reducing the traffic in the system.
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5 Security and Privacy Issues in Intelligent VANET

Security is a major concern in Intelligent VANET as they are open-type communica-
tion networks. Due to the nature of unbound network size and the exchange of infor-
mation at a higher frequency, it is prone to attacks. Security faces challenges based
on different factors like authentication, authorization, Data integrity, confidentiality,
privacy, and many more [8].

5.1 Security Challenges in VANET

In this section, the various security challenges are discussed
(i) Based on Authorization and Authentication

Authentication ensures and checks the identity of the units at the roadside and the
units onboard. This permits communication between the entities. The authorization
also checks whether the entity has access to the network information [9]. They are
being implemented using cryptography, blockchain technology, or digital signatures.
The following attacks are made under the category of authentication and authorization
like vehicle and node impersonation, unauthorized access, and fake identity injection
[10].

(ii)) Data Integrity and Confidentiality

Data integrity imposes the correctness of the data and confidentiality ensures only
the authenticated users to access the data with the help of encryption and decryption
algorithms [11]. Importance should be given to integrity and confidentiality or else
this will lead to issues like data tampering, and eavesdropping which discloses the
vehicle data [12].

(iii) Non-Repudiation

An assurance that neither the sender (a vehicle or an infrastructure node) nor
the recipient (a receiver) can deny conveying the message. This factor plays a
major role due to the factors of safety accountability and fraud prevention. Digital
signatures, certificate authority, and blockchain-based solutions are used to ensure
nonrepudiation [8, 10].

(iv) Availability

One important consideration for VANET security is availability [9]. This guaran-
tees that, despite flaws and attempts at denial of service attacks, all network resources
will always be accessible. The major drawbacks in availability are data tampering,
data jamming, and Denial of service (DOS)attacks. VANETS can be protected from
these assaults with the help of cryptography and trust-based algorithms and protocols.

(v) Privacy
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It is the protection of information that is exchanged between vehicles, and units at
the roadside. The user data, location, and vehicle route information are to be protected
from attackers. The attackers collect the data to build the traveller profile and alter
the data and stalking on the user is done by location tracking. These issues can be
avoided by adopting pseudonyms and identity-preserving privacy [8, 12, 13].

(vi) Trust Management

It refers to the assessment of the accuracy of information exchanged between
vehicles and other nodes. This is important for safety and security applications like
traffic warnings and collision avoidance because malicious intrusion may attempt to
disseminate false information if it is not adequately verified through a trust mecha-
nism, which frequently uses a reputation mechanism in which the vehicles gain trust
from previous interactions and feedback from other nodes in the network.

In a Sybil attack [14, 15], the perpetrator creates many vehicle identities and
disseminates false information around the network. In the instance of a Sybil attack,
data is transmitted using a fabricated identity. This assault is executed from one OBU
against other OBUs following authentication to obtain personal advantages. In black
hole attack, is a type of routing attack in which a malicious node lures the victim’s
node within the network. Furthermore, it ensures data transmission by determining
the most efficient route to the recipient node [16—18].

(vii) Key Management

They maintain the encryption and decryption keys for closed-loop communication
between the nodes and the vehicles. The algorithm chosen should be strong enough
or else the malicious attacker may hack into the cryptographic keys used by the
network [19].

(viii) Physical Layer Security

It refers to defense against threats and attacks on the hardware and communication
infrastructure at the network’s physical layer. The major concern here is the node
tampering and battery-draining attack. In node tampering the intruders gain access
to the sensors on board through the data can be tampered. In battery battery-draining
attack, the malicious sender transmits unwanted data continuously through which
the battery is drained [13-18].

5.2 Privacy Challenge in VANET

Privacy is a major concern during the sensitive information sharing between the
vehicles, nodes, and the units at the roadside. Malicious attackers plan to expose
the information shared between the entities through which they can stalk the vehicle
movement [20].

The following are the primary concerns in privacy in VANETSs

(i) Location Privacy
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Location-based services are widely needed for information regarding traffic
congestion, collision avoidance, and navigation. Hence the Continuous car loca-
tion data transfer may expose protected location data, making it possible to monitor
the vehicle. Malevolent individuals follow a person’s whereabouts or violate their
privacy [21].

(ii) Identity Privacy

To maintain the confidentiality of the vehicle user, identity privacy makes use of
the pseudonym to prevent the attacker from locating the location of the vehicle user
[22].

(iii) Communication Privacy

The sender and the receiver maintain an anonymous identity and exchange infor-
mation between the sender and receiver without disclosing private information. By
providing access control, we can prevent the attacker from hacking the information
[23].

(iv) Data Compilation and Classification

The vehicles within the location are formed in clusters and the data about the
location and speed of the vehicle within the clusters are shared. This helps to improve
the road safety. This allows the attacker to create a profile database about the vehicle
user. This can be avoided by including cryptography techniques and other blockchain-
based techniques [21, 22].

(v) Replay Attack

The attacker keeps track of the valid information transmitted between nodes within
the cluster and they replay the valid information at a different instant of time and
confuse the other nodes about the whereabouts of the vehicle [24, 25].

6 Case Studies and Real-World Applications

VANET network paves the way for drivers and passengers to use the transport
system smoothly, safely, and more efficiently by focusing on safety, connectivity,
and mobility for both public and private. Implementation of IoT enhances the
proposal of advanced solutions for real-time monitoring of information related to
co-existing vehicles in smart cities. This section deals with real-time case studies
and the implementation of VANETS for smart cities.

In[26], new Social IoT (SIoT) which is an evolution of IoT, integrating connecting
devices with networking principles analogous to human social networks is imple-
mented to build a smart city in Cagliari, Italy (Fig. 1). The real-time data collection
involves private and public vehicles, and in addition to that data from pedestrians to
improve the living conditions and information of new directions. ML is implemented
to process data from traffic lights. The vital components of the proposed architecture
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Fig. 1 Categories of security issues and challenges in intelligent VANET

Fig. 2 Social connections between social virtual objects (SVO) of the systems [26]

include mobility sensors, control units for crowds, Lysis complaint integration inter-
operability modules, and a platform for data analysis. The operation is performed
in three levels, Level 1 comprises data acquisition from mobility sensors and crowd
monitoring systems; Level 2 includes data anonymization and transmission to the
cloud; and Level 3 deals with the management and storage of data as shown in Fig. 2.

The analysis of the proposed SIoT-based smart city was carried out by collecting
data during five working days (Monday to Friday) for consecutive three months.
The data collection was performed in three windows of various timings (8—10 am;
1-3 pm and 4-10 am when the workers return). The proposed system shows a 30%
average gain in the distribution of vehicles in terms of traffic savings. A front-end
user interface was developed to show the best route suitable for the data collected
and the application can be trained by storing main destinations. The proposed system
shows 20% betterment in comparison to previous works and shows a maximum 35%
gain in the evening (8 pm) slot.

Figure 2 [26] shows a case study where the routing protocols of VANETS are
compared in terms of efficiency in implementation in the city of Khartoum, Sudan.
The three routing protocols considered are Dynamic Source Routing (DSR), Ad hoc
On-Demand Distance Vector (AODV), and Destination Sequenced Distance Vector
(DSDV). The evaluation was performed using the mobility model simulator, MOtor
Vehicle Emission simulator (MOVE), and VANETSs simulator Simulator for Urban
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Fig. 3 Representation of monitoring system [26]

Mobility (SUMO). Figure 3 shows the methodology of generating traffic models and
mobility, which describes the steps of a simulation study. Figure 4 shows the road
topology of the Alriyadh region (Khartoum), created using map editors. Similarly,
Reference [28] provides another case study for the evaluation of the VANET routing
protocol on urban scenario.

In terms of average throughput when vehicles are increasing, DSDV shows poor
throughput whereas AODV has an average throughput of 330.37 kbps when the
number of vehicles is 130, and DSR, for 80 vehicles, displays an average throughput
of 323.37 kbps.

DSDV has the maximum delay for increasing vehicles. DSR and AODV exhibit
the minimum delay of 15.81 ms and 41.33 ms for 200 and 110 nodes, thus making
DSR more suitable in terms of delay metric. When total energy consumed is
measured, AODV and DSR show the highest consumed energy as 357 for 100 and 80
vehicles. In conclusion, reactive routing protocols, AODV, and DSR perform better
for increasing vehicles.

An effective routing protocol for VANETS is the IEEE 802.11p protocol wireless
data exchange is a need of the hour for better network Quality of Service (QoS).
In [3] characteristics of various routing protocols like OLSR, AODV, and DSDV
are determined for parameters like Packet Delivery Ratio (PDR), Packet Loss Ratio
(PLR), and end-to-end delay using tools like SUMO and NS3. In terms of PDR,
AODV and DSDV perform better than OLSR. DSDV shows an improvement of
28% from 18% for increasing nodes and 30% to 86% was achieved by AODV. The
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Fig. 4 Flow chart [27]

performance of OLSR degrades to 55% from 85% for 250 nodes. OLSR shows an
increase in PLR value from 14 to 44%, depicting its low performance. DSDV and
AODV show a reduction in the PLR value to 71% from 81 and 13% from 69%
respectively. AODV performance is best in terms of PLR. Whereas, in terms of end-
to-end delay, AODV has a delay of 16,782.6 s DSDV has a 735.2 s delay and OLSR
has a 367 s delay. Thus, AODV has the best performance in terms of PDR and PLR,
but OLSR is best in terms of delay. Figure 5 shows the methodology steps.
Reference [29] proposes a Multi-objective unmanned aerial vehicle (UAV)
assisted roadside unit (RSU) deployment (MOURD) for using UAV for VANETs.
MOURAD works by placing RSU in high-traffic areas and dispatching UAVs in low-
traffic segments to increase the coverage of the network and minimize the latency
in the network. It was effectively studied for the roads of Delhi, India, and outper-
forms other deployment approaches by 6.23% in terms of latency, 15.67% in terms of
throughput 7.42% in terms of connection time with vehicles, and 13.9% in terms of
PDR. Figure 6 shows the simulation steps for PDR, PLR and E2E delay computation.

7 Future Directions and Research Opportunities

For increasing the development of future VANETS in smart cities that are more
sustainable, research directions for the future are summarized as follows [30, 31].
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Fig. 5 Road map [27]

e Connectivity—Synchronized and reliable connectivity is in high demand for
future VANETS to enable fast and continuous exchange of data and to avoid
problems in propagation through channels.

e Implementation of Augmented Reality (AR)—AR technology can be used to
assist drivers with a real-world image of nearby traffic, vehicles and pedestrians.

e Security—Encryption of data should be focused more as through nodes, clouds
can be easily accessed.

e [atency—Low latency is a primary goal for future VANETSs.

e Bandwidth—High bandwidth is in demand for video streaming and other enter-
tainment activities. Updated navigation systems and 3D maps require more
bandwidth.

e Information-Centric Networking (ICN)—ICN-based solutions can be envisioned
in different architectures along with a focus on network scalability, device
mobility, and access to information.

e Developing accurate prediction models—Accurate and efficient prediction
models help in mobility management by reducing the communication challenges.

e Mobile Edge Computing—Pairing of edge computing with SDN can reduce
latency.



Intelligent VANET for Smart Cities and Their Security Challenges 287

Fig. 6 Simulation
methodology [29]

e Content Catching—It includes cooperative caching and prefetching. It can be used
to send and store non-requested items.
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AI and IoT-Driven Smart Cities: )
A Centralized Approach to Urban e
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Abstract As cities become more urbanized, some of the greatest problems exist
within already established metropolises, a challenging situation with too much popu-
lation and too many constructed buildings in one devoted location. The twenty-
first century presents challenges such as excessive transportation demand, crime,
and inefficient transportation systems. This chapter aligns with integration poten-
tial via Artificial Intelligence (AI), the Internet of Things (IoT), and Smart Cities.
This chapter presents the need for integration as this study requires IoT devices
and cloud-centralized, Al-driven computing for a reliable, scalable, efficient trans-
portation alternative for a population steeped in urbanization. As cities grow, trans-
portation gets more complicated and the best solution is to interconnect the trans-
portation ecosystem. As an example, how New York City’s public transportation
runs or how traffic lights use sensors to change based on real-time conditions. Inter-
connecting such a wide ecosystem is an issue in itself where cities still rely on
old infrastructure and a well-established communication system is the key require-
ment of the technical developers and transportation planners to make it all work.
Various other factors to consider beyond transportation relate to data privacy and
socio-economic development; the recommended solutions emerge so that citizens
feel comfortable post-integration. The future of integrated transportation relies on
imminent need assessment for conveyance and parking features like autonomous
vehicle with a traffic prediction capabilities, green alternatives, and integrated ethics
that include all potential smart integrations. This chapter emphasizes that integration
has happened effectively in the past, and community engagement forecasts reliable,
effective, resilient smart cities with equity always at the forefront.
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1 Introduction

Urbanization is the trend of the twenty-first century; over fifty percent of the popu-
lation lives in urban settings, and by 2050, that number will approach 70% [1].
While the ease of access makes it easy to foster economic and social citizenship and
participation, it complicates already chaotic urban infrastructures. One of the many
challenges urban area faces is transportation, as this increases demand that not only
needs expansion to keep up but also needs to fulfill prior standards of efficiency and
sustainability. Unfortunately, urban transportation is not the solution because there is
urban area with transportation system which results in traffic congestion, increased
commute times, worsened air quality, and straining public transit systems. As an
example, Karachi and Lahore, two of the Pakistan’s most populated areas, experi-
ence devastating traffic systems that cost trillions annually in wasted fuel alone, not
including time [2]. An ideal solution is needed from successful systems to keep urban
environments effective and economically viable. The concept of smart cities offers
an exciting potential paradigm for how modern technology and policy could merge
to ease deficiencies in urban quality of life. Smart cities depend upon digitization,
enhanced technology, and improved connectivity to facilitate more efficient services,
appropriately allocated resources, and increased quality of life for inhabitants through
easier access. The potential for connectivity in transportation is the most important,
as transportation stimulates economic productivity, environmental efficiency, and
social equity throughout the city. Smart city concept, primarily based on Al and IoT
implementation, differs from the traditional cities that becomes primarily reactionary
over time. With real-time data accessed through centralized networks to discern best
practices of service, smart cities can be more proactive. As an example, cars navigate
smart roads filled with sensors acknowledging traffic patterns in which Al can deter-
mine the best solution for improved traffic flow [3]. The application of transportation
as a smart initiative depends on the integration of Al and IoT for actions that would
have never been possible until now with an appealing idea of super-connectivity. IoT
can communicate with devices from vehicles to traffic lights and parking signs, to
each other and consumers, creating an interdependence of all resources. Then, Al
can parse through and assess this information compiled via 10T on levels human
beings cannot. The decision-making becomes possible as a real-time response for
maintaining flow and re-routing to avoid gridlocks. Furthermore, Al can document
patterns and recurring issues over time to suggest city infrastructure implementation.
In this way, gridlock avoidance and encouraging redirection not only save gas but can
decrease carbon emissions in parallel to other environmental initiatives suggested by
the smart city concept [4].
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1.1 A Centralized Approach to Urban Mobility

In Vehicle-to-Vehicle (V2V), a centralized communication system, the vehicles and
infrastructure communicate with a central server that collects, processes, and redis-
tributes information. This is a more reliable and robust option than many standalone
versions. The centralization can process all the information from different stan-
dalone vehicles and infrastructures instead of the complicated peer-to-peer systems
that would otherwise be necessary. Second, a centralized hub makes it easier to
match and process information enabling cities to address more major concerns faster
with more focused outcomes. Figure 1 shows the IoT (Internet of Things) archi-
tecture along with Al (Artificial Intelligence) and cloud integration for real-time
processing with automation. IoT devices that collect data and send data through the
communication layer using protocols such as 5G (fifth Generation), Wi-fi, LPWAN
(Low-Power Wide Area Network), MQTT (Message Queuing Telemetry Transport).
Al processing unit runs ML (Big Data) to analyze data, train models and take auto-
mated actions. Data storage, analytics and processing are done with cloud and edge
computing. System level control and automation sets the stage for decision making,
alarms/actuators. Data Privacy with encryption and access control under Security
and compliance protocols delivers insights/notifications via User Interface (UI) i.e.
web, mobile applications/APIs. This architecture also exhibit end to end secure [oT
ecosystem providing real time Al insights.

This enables real-time information processing to address critical concerns such as
traffic congestion and accidents where public safety assets are deployed in combina-
tion with the IoT devices installed within the cars as well as in the city infrastructure
themselves. Additionally, Al provides backend predictive analytics so that people
can more effectively anticipate and efficiently manage transportation systems.

1.2 Organization of Chapter

This chapter aims to provide a summary of the potential contributions of Al and IoT
to smart city transportation. Section 2 discusses the current landscape and assess-
ment of transportation systems in smart cities, and Sect. 3 proposes a centralized
framework layout of Al and IoT with integrated components. Section 4 describes
the application of transportation systems in smart cities and real-life applications are
assessed through traffic control, effective navigation, and safety considerations. The
implementation strategies are discussed in Sect. 5. An overview on the key features
of a smart city concept in Pittsburgh, Pennsylvania USA is presented in Sect. 6. The
key challenges and mitigation strategies are discussed and the future directions in
the smart city implementation are discussed in Sects. 7 and 8, respectively. The last
section concludes the chapter.



294 A. Rehman et al.

Fig. 1 Centralized IoT and Al-based infrastructure

2 Current Landscape and Challenges

2.1 Understanding the Status Quo

Despite advancements in urban transit, and twenty-first-century changes, problems
still exist. From 1910 to today, cities are prevalent with crumbling infrastructure
that hasn’t adjusted to the norm of how people live in the twenty-first century [5].
In recent years, urbanization and reliance on personal cars have become prevalent
[6]. Many cities have outdated, ineffective means of public transportation that fail
to meet the new demands of their users, which results in excessive dependence on
personal vehicles, increased traffic, greater greenhouse gas emissions, and extended
travel times [7]. However, it is curious that despite the age of technology, the accom-
modation for such a transportation network in heavily travelled areas is out of sorts
almost to a greater extent when it comes to transferring options between modes of
transportation [8].
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2.2 Key Challenges in Urban Mobility

Traffic congestion results in billions of dollars in lost productivity and fuel expenses
annually [9]. Furthermore, when people are unable to get movement over long periods
of time, air quality suffers as well carbon emissions rise when cars and trucks are
stuck in place, idling for hours on end without moving [10]. Relative efficacy is
at stake. Every year, over 1.3 million people die from road traffic accidents world-
wide and developing nations receive an inequitable portion of this fatality rate [11].
However, vulnerable populations face increased risks on the road due to the lack
of safety regulations and inadequate enforcement [12]. Yet the relative efficacy of
public transportation fails because, so few utilize such options since they have fixed
times and regulations that do not serve the needs of commuters so on some level, the
governmental funding is ineffective [13]. Yet at rush hour, however, limited capacity
overloads the buses and subways which creates insufficient conditions for commuters
[14]. Yet another significant obstacle is the presence of data silos and fragmentation.
Various stakeholders, including government agencies and private operators, often
operate in isolated silos. As a result, it’s difficult to share and utilize data that would
be operationally useful [15]. This fragmentation prevents the ability to create urban
mobility solutions with purposeful integration across sectors [16]. Everyday oper-
ations require a collaborative and tech-driven efforts. Cities evolve from intercon-
nected networks into isolated units, each utilizing Al and IoT to assess solutions
[17]. A solution driven by technology merely sets the stage for what should be going
on at some later date. Thus, systems like this are needed for subsequent solutions to
urban mobility from data collection to assessing findings in real time and applying
discoveries [18].

3 Proposed Centralized Al and IoT Framework

3.1 Rethinking Urban Mobility

Where urbanization is inevitable, no longer do networks have to replicate and
satisfy the more complex needs of urban transportation and quell those needs. As
an example, many contemporary solutions like Vehicle-to-Vehicle (V2V) networks
are constrained by their reliance on more contemporary solutions for reliability and
scalable efforts [19]. This chapter addresses such concerns via a Centralized Al and
IoT Framework that conveys the requirement to do everything in one approach for
all transportation options to be unified under one efficient, sustainable effort [20].
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3.2 Key Components of the Framework

At the heart of this architecture are IoT devices. Within the cars, traffic lights, parking
kiosks, and street poles, sensors embed themselves, creating and subsequently
collecting real-time data perpetually over the geographically dispersed domain of
the smart city [21]. This creates vehicular data (speed, location and fuel usage),
infrastructural data (traffic congestion, time spent at red lights and potholes), and
environmental data (levels of pollution, noise and temperature). The centralized
server acts as the system’s brain, where data from all IoT devices converges for
processing and analysis. Advanced Al algorithms process this data to identify traffic
patterns and predict congestion, optimize resource allocation (e.g., adjusting bus
frequencies based on demand), and enhance safety through anomaly detection, such
as identifying vehicles exceeding speed limits [22]. Reliable and efficient communi-
cation networks are essential to ensure seamless data flow. These pathways include
wireless networks, specifically 5G technology for high-speed, low-latency communi-
cation; edge computing, which processes data closer to its source to reduce response
times and network congestion; and cloud integration for storing historical data for
long-term analysis and planning [23].

The Proposed Centralized Al & IoT Framework for Urban Mobility, presented in
the Fig. 2, illustrates an interconnected smart traffic management system that inte-
grates Artificial Intelligence (Al), the Internet of Things (IoT), and cloud computing
to optimize urban transportation. The framework highlights how different data
sources communicate with a central Al processing unit, which then informs real-time
traffic control, predictive planning, and user navigation systems.

3.3 Advantages of the Centralized Model

The advantages of a centralized system versus a decentralized one include scalability,
efficiency, integration, and cost savings [24]. As an example, scalability refers to the
ability of systems to integrate additional devices efficiently and expand to handle
massive volumes of data without excessive structural adjustments and expenditures.
There is efficiency because centralized information can be processed faster with less
duplication of efforts. There is integration across means of transportation, whether
someone is on a bus or train or requesting a rideshare. Thus, cost savings only means
that more expensive peer-to-peer connections are not necessary.

3.4 How the Framework Operates

IoT devices detect vehicular and infrastructural data and ambient data in real time.
This data is communicated suitably to a centralized server [25]. The Al then processes
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Fig. 2 Proposed centralized Al & IoT framework for urban mobility

the data received, generating appropriate insights and awareness from understanding
traffic flow to accidents in the external environment [26]. Ultimately, it relays real-
time recommendations to drivers, municipal authorities, and fleet operators so that
everyone on every front can respond in a timely manner [27]. The anticipated system
from this study will solve emerging issues with smart city transportation in a cost-
effective, efficient, reliable, and sustainable fashion. Application, execution, and
enhancement of the system will be detailed in the following sections [28].

4 Applications in Urban Mobility

4.1 Transforming Traffic Management

Traffic management is a critical aspect of urban mobility, as congestion affects
millions of commuters daily and imposes significant economic and environmental
costs [29]. The centralized Al and IoT framework revolutionize traffic management
by leveraging real-time data to create a dynamic and responsive system [30].
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4.2 Optimizing Traffic Signals

Traditional traffic signals operate on static timers, often failing to adapt to fluctuating
traffic volumes. With IoT sensors monitoring traffic flow in real-time, the proposed
framework enables dynamic adjustment of signal timings. As an example, during
peak hours, signals at high-traffic intersections can be extended to allow more vehi-
cles to pass, reducing overall congestion [31]. Additionally, adaptive signaling can
prioritize public transport vehicles, such as buses, ensuring they move smoothly
through crowded areas, thereby improving schedule adherence [32].

4.3 Rerouting Vehicles

Al-driven traffic management systems can analyze live data to identify congestion
hotspots and suggest alternative routes. Navigation apps integrated with the frame-
work provide drivers with real-time updates, guiding them away from bottlenecks.
This not only alleviates congestion on primary routes but also promotes the use of
secondary roads, distributing traffic more evenly across the city [33].

4.4 Predictive Analytics

One of the most powerful features of Al is its ability to predict future trends based
on historical data. By analyzing patterns in traffic volume, weather conditions, and
event schedules, the system can forecast congestion levels and proactively implement
measures to mitigate delays. For instance, temporary road closures during major
events can be managed more effectively, minimizing disruption [34].

4.5 Revolutionizing Public Transport

Public transport plays a vital role in reducing dependency on private vehicles, but
its efficiency often determines its attractiveness to commuters. The proposed frame-
work introduces innovations that enhance the reliability, accessibility, and overall
experience of public transit systems [35].
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4.6 Dynamic Scheduling

Static schedules often lead to inefficiencies, such as underutilized buses during off-
peak hours or overcrowded vehicles during peak times. IoT-enabled passenger coun-
ters and real-time location tracking allow for dynamic scheduling, where routes and
frequencies are adjusted based on demand. For instance, Additional buses can be
deployed to busy routes during rush hours. The low-demand routes can operate with
fewer vehicles, optimizing resource allocation and reducing operational costs [36].

4.7 Real-Time Passenger Information

Commuters often face uncertainty regarding arrival times and delays, leading to
dissatisfaction. By integrating [oT sensors and GPS trackers into buses and trains,
passengers can access real-time updates through mobile apps or station displays.
This transparency improves user confidence and encourages greater use of public
transport [37].

4.8 Fleet Monitoring and Maintenance

IoT devices monitor vehicle performance, tracking everything from fuel efficiency
to engine performance and tire pressure. Alerts are sent to fleet managers for vehicle
malfunctions before they become larger issues, allowing for troubleshooting before
problems manifest. This keeps more vehicles on the road for longer, increases
reliability and minimizes downtime [38].

4.9 Enhancing Road Safety

Where there is urban transit, there is the potential for safety issues, especially with
governmental support of vehicular accidents; a more centralized Al and IoT network
supports enhanced safety for everyone drivers, passengers and pedestrians [39].

4.10 Driver Behavior Monitoring

IoT sensors give the opportunity to warn of collisions before they happen. As an
example, with the data from enough cars and the necessary sensor technology, the
system can alert a driver that he’s heading straight for a stop sign that he cannot
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see because it’s obscured by a large utility truck. Through an accident, emergency
responders can be automatically notified as well as where they need to go and how
severe, dispatched to the scene [40].

4.11 Accident Management

The sooner accidents can be avoided, the sooner lives can be saved and traffic can
be restored. The IoT can automatically alert emergency responders where they need
to go and how severe to help. Furthermore, other drivers can be alerted instantly to
avoid the scene in the first place [41].

4.12 Assisting Sustainable Transport

Smart Cities go hand-in-hand with environmental sustainability, and the new system’s
benefits require lesser resource and emission spending [42].

4.13 Emission Reduction

Less traffic and better routing reduce the amount of time someone is stuck in traffic
or at a stop sign; fewer hours spent driving decrease a person’s carbon footprint.
Additionally, the system allows for ride-share applications which, in the end, lessen
the number of cars on the road with single passengers [43].

4.14 Air Quality Monitoring

IoT sensors deployed across the city monitor air quality in real-time. They detect
toxins and particulates in the atmosphere and immediately alert authorities to imple-
ment temporary gasoline vehicle bans in polluted areas while supporting long-term
policies for increased electric vehicle adoption [44].
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4.15 Infrastructure Supports Alternative Transportation
and Green Devices

The infrastructure supports alternative transportation and green vehicles. There are
bikes and low-emission cars. [oT connectivity can manage bike lanes and dedicated
parking, which can be integrated with other transit systems, as well [45].

4.16 Improving Accessibility and Equity

Smart cities must ensure that mobility solutions are inclusive and cater to the needs
of all residents, regardless of their socioeconomic status or physical abilities [46].

4.17 Improved Access and Equity

If there’s ever a time and place for improved access and equity of transport, it’s in
smart cities that do not have socioeconomic gaps and reduce all transport access
issues for those who are physically abled [47].

4.18 Technology that is More Accessible

IoT can be used within smart technologies for more accessible transport for disabled
persons. As an example: Intelligent traffic lights that can gauge how long someone
has been waiting to cross and give them more time when crossing. Buses and trains
that come equipped with accessible ramps and audio-visual situational elements to
help persons with visual and auditory disabilities find their seats and get around [48].

4.19 Subsidized Transport Services

By analyzing demographic and income data, city authorities can design subsidy
programs that make public transport affordable for low-income residents. Smart
cards linked to the framework can automatically apply discounts, streamlining the
process for users [49].
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5 Implementation Strategies

Since establishing a comprehensive Al and IoT network for smart city transporta-
tion has been done from the implementation process involving what’s needed for
infrastructure to potential obstacles, we recommend the following for effective
implementation and future endeavors.

5.1 Infrastructure Development

The IoT network itself is the fundamental system requiring extensive architecture
and integration of devices, communication, and back-end solutions to achieve stable
operation and growth over time.

5.2 IoT Device Deployment

IoT devices, such as sensors, cameras, and GPS trackers, play a critical role in
gathering data that informs decision-making. Key deployment strategies include:

Vehicle Integration: Equipping public transport, private vehicles, and ride-sharing
fleets with GPS trackers and speed sensors to monitor real-time location and
passenger density. For instance, a bus fleet can be equipped with IoT devices that
monitor vehicle location and passenger load [50].

Roadside Sensors: Installing cameras and traffic flow sensors at key intersections
and highways to track congestion and detect incidents [51].

Environmental Monitoring Stations: Deploying air quality sensors throughout the
city to capture data on pollution levels and inform environmental policies [52].

5.3 Backend Server Infrastructure

The backend serves as the central hub, processing vast amounts of data. The
implementation of backend infrastructure includes:

Data Storage Solutions: Cloud-based servers with distributed architectures that can
handle large datasets while ensuring availability and redundancy [53].

Processing Capabilities: High-performance computing resources are required to
run Al algorithms in real-time [54].
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Data Security Measures: Implement encryption protocols, secure access controls,
and data anonymization to protect sensitive information from unauthorized access
[55].

5.4 Communication Networks

Effective communication is crucial for real-time data exchange between IoT devices
and backend systems. Key considerations are:

5G Networks: Leverage high-speed, low-latency communication systems to ensure
fast data transmission [56].

Edge Computing: Process data closer to its source to reduce latency and minimize
network congestion [57].

Redundancy Mechanisms: Implement backup communication systems to maintain
operations during network failures [58].

5.5 Stakeholder Collaboration

Implementing the centralized Al and IoT framework requires close collaboration
between government entities, private companies, and the general public.

Government Authorities

Governments are essential for providing regulatory support, funding, and infrastruc-
ture. Their role involves:

Policy Frameworks: Establishing policies that encourage the adoption of smart
technologies in urban planning and development [59].

Public—Private Partnerships (PPPS): Partnering with private companies to share
the costs and expertise required for system deployment [60].

Funding Initiatives: Allocating government budgets for pilot projects and large-
scale implementations of the framework [61].

Private Sector Participation

Private enterprises, such as technology firms and transport operators, play a key role
in developing the framework. Their contributions include:

Technology Development: Designing and producing IoT devices, communication
systems, and backend infrastructure [62].

Operational Support: Managing vehicle fleets, conducting maintenance, and
providing technical support [63].
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Innovation Incentives: Encouraging startups to innovate solutions, such as Al-
powered parking management systems and smart parking solutions [64].

Public Engagement

The success of the framework depends on its acceptance by the public. Key
engagement strategies include:

Awareness Campaigns: Educating citizens about the benefits of smart mobility
through media outreach, workshops, and informational sessions [65].

Feedback Mechanisms: Creating mobile apps and platforms where users can report
issues and suggest improvements to the system [66].

User Training: Offering tutorials and training for fleet operators, drivers, and
commuters to ensure effective system usage [67].

Figure 3 illustrates a structured framework for deploying Al and IoT technologies
in urban transportation systems. It highlights data collection, processing infrastruc-
ture, and stakeholder engagement as key components necessary for an efficient,
data-driven urban mobility system.

Fig. 3 Implementation strategies for Al & IoT urban mobility
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5.6 Pilot Projects

Pilot projects are essential for evaluating the framework’s feasibility and performance
in a controlled environment before scaling up.

Site Selection

Choosing diverse urban areas with different mobility challenges ensures that the
system can be tested under varying conditions. As an example, a congested city
center can be chosen to test traffic management solutions, while a suburban area may
focus on public transport optimization [68].

Metrics for Success
Define measurable objectives, such as:

¢ Reductionin Congestion: Monitoring changes in average travel times and vehicle
density [69].

e Safety Improvements: Tracking accident rates and near-miss incidents [70].

e Environmental Impact: Measuring reductions in emissions and improvements
in air quality [71].

6 Case Study: Smart Traffic Management System (STMS)
in Pittsburgh, Pennsylvania

6.1 Overview

Smart Traffic Management System (STMS) in Pittsburgh Pennsylvania has been
experimenting smart urban mobility solutions with changeable depth. The STMS
through Artificial Intelligence (AI) and the Internet of Things (IoT) is being appli-
cable to enhance traffic functions, road safety and control the traffic jam in the
urban locations that provide city planners and traffic authorities data-informed
decision-making capabilities by merging real-time data analytics with automated
traffic control systems. It uses an immense trove of traffic cameras, roadway sensors
and GPS-equipped vehicles to alter traffic signals in real-time and modulate vehic-
ular movement. Traffic management through this approach is being done ahead of
time to minimize travel delays, fuel consumption and enhance commuter experience.
Beyond that, Pittsburgh’s smart mobility plan fits into the city’s larger goals for urban
sustainability, improved air quality and greater transportation equity [72].
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6.2 Key Features

The STMS comprises various cutting-edge technologies to control traffic in real-
time making urban mobility smoother via an efficient fusion between heterogeneous
systems. Here are some ingredients that this system has to be effective:

Real-Time Data Collection: In essence, the foundation of the STMS is its capacity
to watch over the city’s traffic continuously. Leveraging an extensive web of IoT
sensors with HD camera feeds and GPS-based vehicle tracking, the system is able
to capture traffic volumes, vehicle speeds and congestion hot spots. The data is then
ingested, done as quickly as possible, so authorities can spot anomalies if there is a
build-up in traffic, incident or some obstruction on roadway.

Al Traffic Optimization: Centralized machine learning algorithms to analyze a
real-time flow of data and plan the control of congestion, as well finely adjust how
long different sections can take. Al-driven system track congestion patterns, predict
bottlenecks and adjust the timings of traffic signal phases. It enables Pittsburgh to
act more dynamically not just reactively like a wheel, which means reducing time-
in-traffic where it is possible and improving the road efficiency everywhere else
[73].

Adaptive Signal Control Technology (ASCT): The most important piece of the
STMS is something called Adaptive Signal Control Technology (ASCT), which
provides for real-time changes in traffic signals dependent on how traffic is moving.
Unlike the traditional traffic lights which works on predesigned timings, an ASCT
can adjust the durations of signal phases by evaluating vehicle density and movement
at all intersections [74].

e For high velocity zones during rush hours signals are uninterrupted for longer
periods to permit reasonable progression.

e In low traffic roads it shortens the stop time, by the real-time adapting of signal
phases.

e The system gives priority to public buses which results in fewer stops for buses
and better service reliability.

The smart traffic signal control has made a substantial impact on reducing the
congestion related delays and improve overall urban mobility from road network of
Pittsburgh.

Insights: Application of Pittsburgh’s STMS has resulted in quantifiable improve-
ments in different dimensions of urban transport. Important learnings from imple-
menting this smart mobility field include:

Reduced Congestion: The implementation of the STMS has led to a significant
reduction in traffic congestion during peak hours.

Improved Commute Times: Commuters experience shorter travel times due to
optimized traffic signal management [75].
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Table 1 Impacts of STMS
Metric Impact

Traffic flow improvement | 30% increase in peak-hour traffic flow [74]

Time savings 20% reduction in average commute times along major corridors
[77]
Accident reduction 15% decline in traffic-related accidents at smart signal-controlled

intersections [73]

Environmental impact 10% decrease in carbon emissions per vehicle due to reduced
idling [78]

Enhanced Safety: The system has contributed to a decrease in the number of traffic
accidents by improving traffic flow and reducing stop-and-go conditions [76].

6.3 Metrics

The effectiveness of Pittsburgh’s STMS is evident through its quantifiable improve-
ments in traffic management. The following statistics in Table 1 highlight the tangible
benefits achieved since the system’s implementation.

7 Key Challenges and Mitigation Approaches

There are risks involved in the development, as well as the functioning system of
a centralized Al and IoT system for transportation and smart cities. The following
section explores the most significant developmental and operational risks and some
feasible risk mitigations.

7.1 Data Security and Privacy

Security Risks and Privacy Concerns

Security and privacy are among the greatest vulnerabilities for smart city deploy-
ments. With millions of IoT devices sending and receiving data about transportation,
commuting and driving habits, levels of pollution, and air quality, breaches from
unauthorized access have the potential to be all but endless. This data can be used
against unsuspecting citizens for identity fraud or purposefully tracking citizens for
unnecessary and illegal surveillance efforts [79].
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Safe Gaurding Data and Enhancing Trust

Encryption: Implement end-to-end encryption to protect data in transit and at
rest. For instance, data security employs Advanced Encryption Standard (AES) to
safeguard sensitive data [80].

Access Controls: To meet security compliance standards, ensuring the security is
audited over time, access shall only be granted to data that is necessary to complete
the job via role-based access controls (RBAC) [81].

Data Anonymization: Personal data shall be anonymized. For instance, while
companies may track GPS data, they should be allowed to use it in the aggregate,
not attributing it to one specific car or person to avoid personal attribution [82].

Regulatory Compliance: Compliance with global and national efforts including
General Data Protection Regulation (GDPR) increases public trust and ensures that
companies comply with the legalities of what’s required when they’re expected to
do so [83].

7.2 Integration and Interoperability

System Fragmentation and Compatibility Issues

Smart city ecosystems run and utilize devices from multiple vendors. Integration and
interoperability as an acquired palette become seamless with anticipated channels of
communication, protocols, and standards [84].

Ensuring Seamless Connectivity

Protocols: The development and use of anticipated channels of communication, like
Message Queuing Telemetry Transport (MQTT) or Constrained Application Protocol
(CoAP), ensure device and system operation [85].

Software: The acquisition of middleware software solutions to integrate systems will
ease effortless transfer of data [86].

Vendor Alliances: Establish vendor agreements that promote open standards and
seamless integration methods, ensuring interoperability across diverse systems and
technologies [87].

Testing Methods: Adopt a structured approach to interoperability testing early in
the development stage to identify incompatibilities [88].
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7.3 Scalability and Performance

Increasing Data Demands and System Overload

As metropolitan populations grow, the volume of IoT data generated increases expo-
nentially, leading to higher data production rates within shorter timeframes; thus, the
necessary infrastructure can expand without loss of quality of service (QoS), which
is critical [89].

Optimizing Infrastructure for Growth

Cloud Infrastructure: When additional storage and processing capabilities are
needed, the cloud provides them [90].

Edge Computing: It works at the source, not a centralized location, thus decreasing
the need for additional processing capabilities [91].

Load Balancing: Instead of restricting processing to one server, many tasks can be
distributed across multiple servers to prevent latency when processing occurs [92].

Predictive Scaling: Al can analyze usage trends to forecast demand so that resources
can be scaled in real-time to avoid unnecessary downtime during high usage times
[93].

7.4 Cost and Funding Constraints

Financial Barriers to Implementation

Implementation of smart city solutions requires a lot of financial investment in terms
of infrastructure, technologies, and human resources. Securing such an amount of
funding is a significant challenge in its self especially in developing regions [94].

Sustainable Funding Strategies

PPP Financing: A public—private partnership will help mitigate costs and provide
further expertise as cost share will not be through governmental agencies alone [95].

Grants and Subsidies: There are many governmental and nonprofit agencies that
champion intelligent technology and improvement in urban areas. As an example, the
World Bank and UN Habitat have opportunities for grants for inclusive development
projects and urban development initiatives [96].

Revenue Potential: Because there is much interest in smart transportation applica-
tions, there is a potential revenue stream from subscription fees, in-app advertising,
or selling transportation and travel data to third-party researchers willing to pay for
it [97].
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Staggered Roll Out: Implementing a staggered and incremental rollout leads
to prioritized needs can be satisfied quicker. It reduces early usage and enables
expansion when more bandwidth is accessible.

7.5 Public Acceptance and Behavioral Change

Resistance to Adaption and Privacy Concerns

Public support projects may fail if individual workflows remain unchanged, stake-
holder buy-in is insufficient, or privacy concerns are not adequately addressed
[98].

Encouraging Adoption and Community Engagement

Awareness Campaigns: Use social media, meetings, and other public forums to
promote the project and its advantages to residents [99].

User-Based Design: Apps should reflect how they will be used. If people are using
GPS apps while on public transit, they’ve already bought into the system [100].

Feedback Loop: Create ways for users to communicate issues and offer feedback.
Using this feedback to change systems creates a sense of ownership and investment
[101].

Rewards: Offer rewards such as discounted commuter public transportation options
or monetary rewards for sustainable commuting options [102].

7.6 Technical Expertise and Workforce Development

Shortage of Skilled Professionals

Implementation of a unified Al and IoT system would require a quality control team
to oversee and continue updates to Al, IoT, cybersecurity, and urban development.
Many metropolitan areas may lack the financial resources to support such a highly
skilled team of experts [103].

Building a Skilled Workforce

Training: Colleges can be sourced to develop curriculum and certification in requisite
field [104].

Learning: Cities with prior experience can facilitate the sharing of best practices,
enabling more effective implementation of smart urban solutions [105].

Integrity: City agency personnel can function as in-house teams to run the networks,
reducing the need for outside vendor dependency [106].
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Internships and Apprenticeships: Create internships and apprenticeships to foster
your own talent and cultivate a trained skilled workforce [107].

8 Future Directions

So as urban areas grow more crowded and expand vertically with the promise of
transportation relying even more on Al and IoT in the future, new opportunities
and fixes to new challenges are bound to emerge. This section explores what we
could have from technological and policy advancements, as well as socioeconomic
convenience and toleration, to strengthen the ultimate version of smart cities.

8.1 Integration with Autonomous Vehicles

The cars of the future are inevitably going to be a part of the larger centralized
Al and IoT network through which information can be processed more rapidly and
safely [108]. The discoveries necessary for such integration stem from AVs needing
to be attached to the IoT component to facilitate communication [109], processing
information gathered by AVs via their sensors for traffic prediction [110], and future
projections by policymakers of what is safe and safety issues for future integration
into the Al network [111].

8.2 Advanced Predictive Analytics

Urban transportation issues will be avoided before they happen through predictive
analytics. For instance, Al can forecast traffic flow to ease congestion [112] before it
happens and future intentions of where to build with anticipated needs down the line
[113]. Even disaster relief can be better facilitated through Al based on predictive
features [114].

8.3 Expanding Environmental Sustainability

Sustainability is an important aspect of smart city evolution; as we grow more depen-
dent upon Al and IoT, solutions to climate change will emerge [115]. There’ll be
additional benefits for those who go electric behind the wheel, and brand-new modes
of public transit will be created that operate more efficiently [116, 117]. Air quality
will be measured as it happens, and IoT will notify the city managers who can make
empirically driven changes over time [118].
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8.4 Enhanced Public Engagement

The public is more likely to trust and participate in smart cities when they are included
and efforts are made for transparency [119]. For instance, public hearings provide citi-
zens with opportunities to respond, while outreach programs and workshops facilitate
discussions on Al and IoT advancements. Additionally, citizen participation plays a
crucial role in shaping transportation options within urban environments [120-122].

8.5 Global Scalability

Al and IoT will make smart city solutions internationally feasible [ 123]. International
treaties on data export and protections [124], international collaboration [125], and
a plug-and-play ease that allows various cities to adopt what’s best for them make
implementation on a more international scale likely [126].

8.6 [Ethical and Social Considerations

However, international feasibility renders the necessity of ethical considerations with
smart city solutions [127]. There will be ethical considerations with data privacy
[128], accessibility to various technologies for vulnerable populations, and gover-
nance that makes Al legitimation possible from the start so there’s no inherent bias
[129, 130].

9 Conclusion

Smart city advancements in Al and IoT are developing the next generation of urban
transportation, and this chapter evaluated a centralized application of Al and IoT for
an achievable, scalable, and fair possibility of transportation needs [131]. However,
instead of assessing an achievable solution in the future for flourishing smart cities,
many cities, as they stand now, are failing to meet transportation needs with frustrating
traffic congestion and disparate transportation systems [132, 133]. Thus, the finding
based on assessments is that a Vehicle-to-Vehicle (V2V) system as a decentralized
solution is neither scalable nor interoperable [134].

Applications of this framework span dynamic traffic management and enhanced
road safety, providing actionable solutions for various urban challenges [135]. Public
transport systems can benefit from real-time scheduling and fleet monitoring [136].
However, successful implementation requires robust infrastructure and stakeholder
collaboration, with pilot projects serving as essential testing grounds [137, 138].
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Key challenges, including data security and public acceptance, must be proac-
tively addressed through strategies like encryption protocols and public—private part-
nerships [139, 140]. Future advancements in autonomous vehicles and predictive
analytics will further enhance urban mobility, while ethical considerations regarding
data privacy and equitable access remain crucial [141, 142].

The centralized Al and IoT framework signify a paradigm shift in urban planning,
allowing cities to move from reactive to proactive, sustainable solutions [143, 144].
This approach not only improves efficiency but also fosters safer and more equi-
table urban environments [145]. As urbanization accelerates, the need for innovative
mobility solutions becomes urgent. The ideas presented here serve as a blueprint
for cities to navigate future challenges while leveraging the opportunities of Al and
IoT technologies [146]. The journey toward smarter cities requires collective efforts
from governments, industries, and citizens, aiming to create urban landscapes that are
functional, resilient, and inclusive, shaping a future where technology and humanity
thrive together [147].
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Abstract In smart city environments, the rapidly urbanized city and transitioning
transportation system structure require innovative ways to improve efficiency, safety,
and autonomy. With real-time communication between vehicles, infrastructure, and
pedestrians, Intelligent Vehicular Ad-Hoc Networks (VANETS) have become trans-
formative technology. Unfortunately, urban environments are dynamic and unpre-
dictable by nature, making it very hard for traditional VANET systems to work
properly. Integrating ML algorithms into VANETSs can address these challenges
through improved decision-making, predictive analytics, and autonomous func-
tioning. Exchange Data using Fusion and Machine learning with Multi agent vehi-
cles in Intelligent VANET (Autonomous). VANETs use ML algorithms from data
as sensors, traffic, camera and connected devices in the real time. You will know
from above reference that Machine learning in VANETS is not only predicting
traffic patterns or optimizing routing but even accident prevention. Moreover, ML-
based intrusion detection systems further add a layer of security by helping to iden-
tify and neutralize any potential threats, thus maintaining secure VANET opera-
tions. Machine learning (ML) integrated vehicular ad hoc networks (VANETS) can
unlock enhanced user experiences and the potential for safer driving. Different ML
case studies also highlight its use in transportation systems for traffic management,
autonomous driving systems, and emergency response systems, offering enhance-
ments in safety, efficiency, and sustainability. Finally, the paper covers some chal-
lenges such as data privacy, computational complexity, interoperability, etc., and
suggests future research for bolstering the integration of ML with VANETS. This
integration sets the stage for increasingly intelligent, secure, and autonomous urban
transport systems by leveraging the strengths of these types of networks.
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1 Introduction

Smart cities are a new approach to creating urban settings that leverage data, connec-
tivity, and technology for greater sustainability, improved resource management,
and better quality of life for citizens. At a high level, smart cities use better urban
infrastructure and information and communication technology (ICT) to create more
livable, responsive and efficient places. This notion of smart cities has gained trac-
tion over the last few years as urbanization occurs rapidly, and cities face an array of
complex challenges, from population growth to limited resources and environmental
degradation [1]. Include some Key components such as:

Digital infrastructure: Cloud computing, IoT (Internet of Things) devices, and
high-speed internet are necessary to smart cities. These technologies allow collecting,
processing and deciding the data in real-time. By collecting inputs through digital
platforms, improving public services, and enhancing local community engagement,
smart cities emphasize on citizen participation. This ensures that urban develop-
ment adheres to local desires and needs. Smart cities incorporate technology to help
improve public safety and protection against natural disasters or other crises, such
as surveillance systems, disaster management tools, and predictive analytics [2].

Smart cities are a new kind of urban development that creates economic growth
by attracting investment and fostering innovation. Smart cities drive economic pros-
perity and employment generation by creating an ecosystem that fuels innovation and
entrepreneurship [3]. Integrating technologies such as IoT, AL, and big data analytics,
for instance, facilitates the operation of enterprises and drives startups and tech-
focused industries. With the strengthening of regional economies, this economic
vibrancy also establishes smart cities as centers of international competitiveness.

In addition to reducing costs, smart cities also improve the quality of life for their
residents. These communities enhance individual well-being by getting the most out
of public services such as healthcare, education, and transport. For example, smart
healthcare solutions enable faster emergency response and remote patient moni-
toring, assuring timely and efficient medical care. Just like that, intelligent transporta-
tion systems help improve mobility and reduce traffic, resulting in less stressful and
more pleasant commutes. These developments cumulatively raise living standards
and increase citizen satisfaction.

Data analytics and the Internet of Things play a crucial role in effective resource
management in smart cities. Such technology reduces costs and minimizes envi-
ronmental impact by optimising vital resources such as garbage, energy, and water.
Smart water management systems, for instance, are designed for sustainable water
consumption, detecting leaks and tracking consumption in real time [4]. Likewise,
smart waste disposal systems modernise cities and enhance their efficacy through
optimised collection routes and recycling processes to improve city effectiveness.
These are sustainability measures in addition to operational efficiency.

With the inception of VANETS, the dynamics of urban mobility have drastically
changed, where vehicles, infrastructure, and other entities are able to cohere through
real-time communication [1]. Traditional VANET has several issues like; network
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congestion, security issues and lack of independent decision-making ability. Due
to this fact, the incorporation of Al into VANETS can facilitate the development of
them to a self-organising, autonomous and self-optimising system in Smart cities and
become a contributor to accident prevention, traffic control and emergency response.

This chapter explores how machine learning plays a crucial role in VANETS as well
as its practical applications, architectures, challenges, and future trends. Moreover, It
is possible to predict and detect traffic congestion in intelligent Internet-of-Vehicles
(IOVs) using advanced technology. In a smart city environment, this study proposes
a “smart road in a smart city” with the help of a smart IOVs communication system
(type of vehicular network) with tree-based ML techniques Decision-Tree, Random-
Forest, Extra-Tree and XGBoost [5]. There are issues related to the possible accep-
tance of specialized applications with proposed communication protocols. The devel-
opment of Intelligent Transportation Systems (ITS) is highly dependent on Vehicular
Ad-Hoc Networks (VANETS) that enable real-time communication between infras-
tructure and cars. However, traditional VANETS’ designs are challenged by high
mobility, variable network topology, data flooding, and security issues as some of
the key issues. To address these issues, machine learning (ML) methods have emerged
as a powerful mechanism to enhance autonomy, and decision-making in addition to
VANET performance in smart cities [6].

Applications in Smart Cities

One of the most important uses of smart cities is intelligent traffic management, which
tackles issues like pollution, traffic jams, and ineffective transit systems. Smart cities
implement advanced solutions such as smart parking systems and smart traffic lights
while leveraging cutting-edge technologies like Internet of Things (IoT), artificial
intelligence (AI), and data analytics. Not only do these applications improve traffic
flow and reduce the number of emissions, but they also create a framework for other
levels of integration, including the communications between the infrastructure and
the cars, which can deliver information that has the potential to make transportation
much safer and more efficient in the future.

Smart Traffic Lights: Smart traffic lights are an essential part of intelligent traffic
management systems. Unlike traditional traffic signals, which work with timers,
smart traffic lights use real-time data collected from sensors, cameras, and connected
vehicles to adjust light timings based on traffic conditions dynamically. This improves
overall traffic flow, reduces congestion and minimizes waiting times. Adaptive signal
control is enabled by dynamically monitoring traffic density, vehicle speed, and
pedestrian movement in real-time using sensors and cameras. Al systems use this
data to tweak signal timings to prioritize emergency cars on busy roads. Smart traffic
lights also coordinate with VANETS in order to communicate with connected vehi-
cles and provide them with relevant, real-time information, for example, speed recom-
mendations to mitigate stops at red traffic lights. Dutta et al. [7], provided an analysis
on adaptive traffic signals that can help reduce traffic delays up to 40% [6].

Smart Parking Systems: Intelligent parking technology, which can reduce traffic
congestion caused by vehicles searching for parking spaces, which can account for
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30% of city traffic, was developed [4]. These systems employ advanced technologies
such as IoT sensors, mobile applications, and data analytics to speed up the parking
process. IoT sensors placed in parking slots track occupancy and relay to the central
server to deliver accurate and real-time information on available spots. To avoid
unnecessary travel and traffic, mobile applications then provide drivers with real-
time parking availability information and navigation assistance, directing them to
open spaces. Moreover, they allow the efficient use of valuable parking resources,
as dynamic pricing systems adjust the price to the demand, thus improving and
optimizing the use of spaces. By integrating these crucial elements, smart parking
systems bring about enhanced city mobility and reduced traffic congestion, along
with an upgraded driving experience.

Integration with VANETS: VANETSs are key for improving intelligent traffic
management systems due to their role in allowing for both vehicle (V2V), infras-
tructure (V2I), and infrastructure (V2P) to work together. The integration keeps
traffic levels safe and efficient through real-time data interchange. Some applica-
tions that VENETs will make possible and will revolutionize traffic management
include parking space detection, which helps drivers find parking spots; traffic flow
optimization, which allows smart traffic lights to receive up-to-date information about
the speed and location of cars nearby, collision avoidance, which enables vehicles
to share speed and position data to each other and many other services, from emer-
gency vehicle prioritization, with emergency vehicles communicating with traffic
lights to clear their way, to ambient intelligence, providing location-based adver-
tisements to people as they travel. These applications offer significant advantages,
such as improved safety through real-time communication that reduces accident risks
and enhances emergency response times, improved traffic efficiency through vehicle
movement coordination and traffic signal management for smoother flow, and high
scalability as VANETSs can utilize existing infrastructure within smart cities, thus
providing a cost-effective solution. VANETS can revolutionize urban mobility; for
example, Singapore is testing them as a part of the country’s Autonomous Vehicle
Initiative to optimize traffic and reduce congestion [5].

2 Role of Machine Learning in VANET’S

Machine learning algorithms based on the following, they can significantly enhance
the VANET functionalities by tackling the previously highlighted challenges.

2.1 Traffic Prediction and Management

Machine learning models—deep learning, reinforcement learning—can analyze both
historical and real-time traffic data to predict congestion, optimize traffic signal
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timing, and suggest alternative routes. This minimizes overall travel time and fuel
consumption.

2.2 Network Optimization

Search algorithms for supervised and unsupervised learning are part of the adap-
tive routing, which ensures reliable and efficient data transmission even in highly
dynamic environments. Machine Learning-based clustering outbreaks can help
increase network stability if we classify the cars based on their speed and mobility
patterns.

2.3 Anomaly Detection and Cybersecurity

ML-based IDS is used for identifying abnormal patterns of traffic, malicious activi-
ties, and also helps to attack Prevention such as man-in-the-middle, hence jamming,
and false data injection [8].

2.4 Autonomous Decision-Making in Vehicles

Reinforcement learning enables real-time decision-making in self-driving cars
considering the dynamic environments they operate in, thus optimizing safety,
collision avoidance, and navigation.

2.5 Efficient Resource Allocation

Machine learning models are used to optimize bandwidth allocation, reduce data
redundancy, and improve load balancing to ensure seamless connectivity and low-
latency communication in VANETs [9].

3 Challenges in Traditional VANET’S

e Heterogeneity and Disparity in Resources
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In environments with constant vehicle movement like VANETS, it also has frequent
topology changes. This mobility causes connection failures very often, making it
difficult to establish and maintain reliable communication paths. This static behavior
of the routing system will lead to increased packet drops, delays, and communication
overhead as traditional routing policies cannot adapt themselves to the rapid changes
in topology.

e Information Saturation and Network Traffic Bottleneck

With more cars on the road, the amount of data generated from sensors, GPS
and vehicle-to-everything (V2X) communication is huge. The huge amount of data
is hard for traditional vehicular ad-hoc network (VANET) systems to efficiently
analyze and utilize, which generates network overloads, message dissemination lags,
and poor quality of service (QoS). Due to a lack of effective congestion control mech-
anisms, conventional VANETs suffer performance drops when facing high traffic
density conditions, which leads to bottlenecks.

e Safety and Privacy Issues

VANETSs are vulnerable to several types of security attacks, including spoofing,
denial-of-service (DoS), Sybil, and man-in-the-middle attacks. As VANETS are open
and decentralized, the existing security solutions often do not provide ample protec-
tion. Moreover, privacy protection with common or fast communication is still very
complicated because unwanted individuals have the opportunity to exploit security
weaknesses to reach personal driver and vehicle data.

e Latency and Real Time Data Processing

Safety—critical VANET applications require ultra-low latency to respond and make
decisions in a timely manner. Traditional VANET architectures cannot meet the
stringent time demands for collision avoidance, emergency braking, and accident
prevention due to centralized processing models, which may cause communication
latency. Drivers are left vulnerable due to poor real-time data analytics making the
safety applications ineffective.

e Limited Resources and Scalability Problems

Due to constrained power, bandwidth, and processing capability of VANET nodes
such as roadside units (RSUs) and onboard units (OBUs) Slow performance due to
the inability of traditional network management techniques to dynamically divvy up
resources. Moreover, the growing number of connected vehicles presents a serious
and difficult challenge, and it is necessary to have reliable mechanisms that can be
employed to maintain service quality when the traffic load increases [9].
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4 Machine Learning for VANET’S

To fully exploit the promising potential of these vehicles, future urban environments
are likely to feature ML-enabled vehicular ad-hoc networks (VANETS) capable of
significantly enhancing transportation systems through the application of real-time
data processing, predictive analytics, and intelligent decision-making. Integrating
machine learning algorithms into VANETS can help cities realize safer roads, reduced
congestion, and optimized traffic control. One of the most promising applications
is predictive capability analysis, which utilizes both historical and real-time data to
anticipate traffic patterns, prevent accidents, and enhance traffic flow. As a result,
machine learning algorithms can help log large amounts of data and predict potential
accident hotspots based on information retrieved from sensors, vehicles, and the
traffic infrastructure. As an example, ML models may identify behavioral trends
leading up to accidents by reviewing data around the driver (behavior and road
conditions, weather, vehicle speed, etc.), to identify sudden braking or erratic lane
changing before a collision occurs. The forecasts enable proactive measures, such as
alerting drivers, changing traffic signals, or preemptively contacting first responders.
ML-driven Vehicle Ad-hoc Networks (VANETS) offer real-time hazard prediction
and communication, which has been found to decrease accident rates by 30% [10].
ML-based VANETs may also optimize the flow through the network by predicting
congestion (based on data from the cluster) and automatically altering traffic signals
and routing. For example, ML models can process real-time traffic data to predict
choke points and route vehicles around them to less crowded lanes. Al-based smart
traffic lights also have the potential to change the signal time based on expected traffic
loads, minimizing the wait time and maximising the overall efficiency of traffic.
Based on the study done by Khan et al. (2021) ML based traffic signal management
systems can reduce fuel consumption by 15% and average trip duration by 20% [11].
Current smart city infrastructure, such as IoT sensors, connected cars, and central
traffic control systems, can be integrated with the very scalable ML-based VANETS.
Integration enables a holistic approach towards urban mobility, facilitating an anal-
ysis of information across various sources and leading to valuable insights. The
Autonomous Vehicle Initiative in Singapure, for example, is utilizing ML powered
VANETS to predict traffic patterns and enhance vehicle routing in real [12].

4.1 Machine Learning Architecture of VANET’S

Data Collection Layer: This layer collects real-time data from various sources:
cameras, sensors, GPS, and V2X (vehicle-to-everything) connectivity. Collects data
on traffic patterns, weather, road conditions, location, and speed of the vehicle.

Data Processing and Preprocessing Layers clean and preprocess raw data by noise
removal and managing missing values. derives relevant features for the machine
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learning algorithms like vehicle density, movement trajectories, and signal strength
from the raw data.

Machine Learning Model Layer use different machine learning models, such as
convolutional neural networks (CNNs), for analysis of traffic based on images and
videos, RNNs of the Recurrent neural networks (RNNs) are applied to forecasting
the traffic flow as well as processing input order, Reinforcement Learning (RL) for
adaptive routing and congestion control decision making. You are an arbitrary tree
and support of stratification (SVM) in cyberparks and duality detection.

The decision-Making and Action Layer performs real-time decisions based on
predictions derived from machine learning models, like dynamic traffic signal timing,
optimizing vehicle routes to reduce congestion, detecting and countering cyberthreats
on the network, and alerting drivers on potential collisions or hazardous situations.

Feedback and Learning Layer: The machine learning models are consistently
improved as the new data comes in, as well as changes in the environment. uses
reinforcement learning techniques to improve decision-making over time. On top
of that, the ability of Gated Recurrent Units (GRUs), a form of Recurrent Neural
Networks (RNNs), to efficiently process sequential data has become widely used
in learning-based systems. Whereas traditional RNNs struggle with challenges such
as vanishing gradients and finding long-term dependencies in data, GRUs employ
gating techniques to help reduce such issues. These features make them particularly
well-suited to VANETSs feedback mechanisms, where experiences and real-time data
have to be learned and adapted to, in order to optimize urban mobility [13].

VANETSs generates hypothesis streams of data from vehicles and infrastruc-
ture: environmental variables, vicinity of the traffic, vehicle location, and velocity.
Because GRUs are so adept at processing sequential data they are exceptional in
applications such as dynamic routing, traffic prediction, and accident avoidance.
They can selectively retain or discard information due to their gating mechanisms,
which consist of an update gate and a reset gate. This ensures that only relevant
information influences the predictions the model makes. This aspect is highly bene-
ficial when it comes to VANETS as feedback loops play a pivotal role in the process
of real-time decision making.

If GRUs do provide many advantages, it comes with some challenges too such
as the need for large datasets for training and the synchronization of GRU models
withthe VANET edge computing devices. To address data privacy challenges, future
work should focus on developing lightweight GRU models suitable for low-resource
environments and exploring federated learning approaches.

In the context of VANETS, ML (Machine learning) and DL (Deep learning) can
be used to increase the many aspects such as correct anomaly detection, vehicle-
to-vehicle (V2V) communication, and real-time traffic predictions. Few of the
important DL models are as follows:

Reinforcement Learning (RL): Reinforcement learning (RL) refers to a subset of
machine learning where an agent seeks to understand how to act in an environment by
observing feedback in the form of positive or negative rewards resulting from those
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agents’ actions. As RL algorithms allow the computers to adapt to the emergent
environmental conditions [3] dynamically, they are the types of learning algorithms
that are well suited for the VANET applications.

Convolutional Neural Networks (CNN)—A neural network that is primarily used
in image processing and feature extraction. It is very useful for looking for local
patterns, using a stack of convolution and pooling steps, and is often used to solve
applications such as visual data. These types of networks are becoming the base
model for perception and control for the connected vehicles as the CNN-based deep
learning networks facilitate smart traffic control and machine driving VANETSs. Some
of its key applications include: Traffic signs, object detections, vehicle classification
and accident detection [5] (Figs. 1 and 2).

Recurrent Neural Networks (RNNs): RNNs are specifically designed for time-
series data prediction and sequential decision-making, as opposed to regular neural
networks, which makes them useful for VANET applications and analysis [4] (Fig. 3).

Fig.1 Working of machine
learning algorithms for
VANET’s

Fig. 2 CNN architecture
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Fig. 3 RNN architecture

Overview of Data Set:

Machine Learning (ML) in Vehicular Ad-Hoc Networks (VANETSs) must also
discuss datasets. High quality datasets can consequently be utilized by researchers
and practitioners to develop, train and assess machine learning models, ensuring that
they can be effectively applied to real life smart city scenarios. Kaggle has a summary
of the best known datasets for ML-based VANETS, such as: Traffic Prediction: GRU,
traffic flow prediction datasets and traffic signal detection and classification.

S Security and Privacy Challenges in AI/ML Driven
VANET’S

With the rise of Al and ML in VANETS, security and privacy is one of the key issue.
Since the exchanged information is sensitive data (i.e., VL data) between vehicles
and infrastructure, ensuring integrity and confidentiality of this exchanged data is of
utmost importance in VANETSs. And: These are particular security challenges.
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5.1 Adversarial Attacks on ML Models

By modifying the input data, machine learning models in VANETS can be deceived
by adversarial attacks. Evasion Attacks: Attackers modify input features (such as
GPS or sensor data) to deceive ML-based IDS.

Poisoning Attacks: The model gets corrupted and its accuracy is decreased when
malicious input is introduced into the training dataset model Extraction: By using API
queries to reassemble ML models, attackers might reveal weaknesses. For instance,
when a hacker inserts phony GPS data, cars misread the state of the road and drive
recklessly, continuously improving machine learning models in response to fresh data
and shifting environmental circumstance, employing strategies for reinforcement
learning to gradually enhance decision-making [5].

5.2 Privacy and Data Security Risks

Large amounts of real-time data from cars, roadside units (RSUs), and cloud services
are used by ML models in VANETs. Data integrity and privacy are difficult to guar-
antee. Data Leakage: During model training, sensitive data (such as vehicle loca-
tions, routes, and driver behavior) may be disclosed. Attackers employ membership
inference to ascertain if the data from a particular vehicle was utilized for training,
which compromises privacy. Federated Learning Vulnerabilities: Gradient leaking
attacks allow attackers to infer sensitive information even if federated learning can
help protect data privacy. Example: To get the private driving habits of specific
automobiles, an attacker takes use of a federated learning model [6].

5.3 Spoofing and Sybil Attacks

Identity Spoofing: To transmit fraudulent communications and impede traffic flow,
attackers pose as legitimate vehicles, Sybil Attacks: To trick ML-based traffic predic-
tion and routing algorithms, a single individual generates many fictitious vehicle IDs.
Example: In order to commit crimes, a malevolent entity reroutes traffic away from
aroad by sending fictitious congestion advisories [7].

5.4 Security of Edge and Cloud Computing in VANETS

Edge Al Attacks: ML models placed on edge devices (e.g., smart RSUs) can be
exploited owing to less processing capacity and worse security, Cloud Model Theft:
Attackers can introduce erroneous data into VANET systems by stealing or altering
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cloud-based machine learning models. Examples include as ML-based traffic control
system is altered by a hacked edge node to give preference to particular cars.

5.5 Malware and Ransomware Targeting ml Components

ML-based IDS Targeting: By employing changing malware patterns, attackers get
around ML-based security measures, Ransomware on Al-based Controllers: Unless
a ransom is paid, autonomous cars that use AI models may become inoperable. As
an illustration, ransomware encrypts a car’s Al-based navigation system, making it
impossible for the driver to operate the vehicle.

5.6 Trust and Authentication Issues in ML-Based Decision
Making

Model Bias and Trust Issues: Machine learning models that are trained on biased
data may misclassify threats or favor particular cars. False ML Decisions: By
providing false information, attackers can skew Al-based decision-making systems.
For instance, a biased machine learning-based traffic signal system gives particular
cars priority, giving them an unfair advantage.

5.7 Al-Based Anomaly Detection

False Positives and Negatives: Machine learning (ML)-based intrusion detection
systems (IDS) have the potential to misclassify typical activity as an attack or over-
look actual threats, Concept Drift: As traffic patterns evolve, machine learning models
become antiquated and useless against novel attack techniques e.g. Because it was
trained on out-of-date attack data, a machine learning intrusion detection system is
unable to identify a novel Sybil assault type [4].
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6 Future Trends in AI-Driven VANET Security and Privacy

6.1 Blockchain for Secure Data Transactions

The distributed ledger of blockchain technology is perfect for guaranteeing the
integrity and immutability of VANET data. It may be applied in the future to
enable tamper-proof communication between automobiles, lowering the possibility
of cyberattacks and protecting user privacy.

6.2 Al-Based Privacy-Preserving Machine Learning

Vehicles will be able to locally train AI models on sensitive data without disclosing it
thanks to methods like homomorphic encryption and federated learning. This guar-
antees that the anonymity of specific automobiles is maintained when prediction
models are updated.

6.3 6G and AI-Driven Security Protocols

Real-time Al security systems will be able to continually monitor and defend
VANETS from new attacks thanks to the ultra-low latency and high bandwidth of the
future 6G network. Al will provide proactive defenses by anticipating and preventing
security vulnerabilities before they happen [4].

7 Conclusion

Machine learning is transforming VANETS, which will improve urban mobility’s
safety, effectiveness, and independence. By leveraging Al-driven traffic management,
cybersecurity, predictive maintenance, and real-time data, smart cities may increase
vehicle mobility, reduce traffic, and improve road safety.

Future advancements in 6G, Quantum Al, and Federated Learning will enhance
Al-driven VANETS even more, paving the way for fully autonomous smart city
ecosystems. Machine learning is necessary to improve the security, efficacy, and
autonomy of VANETSs. However, there are significant challenges due to adversarial
attacks, privacy issues, and security vulnerabilities. Future research should focus
on robust, privacy-preserving machine learning models and blockchain-integrated
security solutions to ensure the resilience of VANETS in smart cities.
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Wasswa Shafik

Abstract Years ago, a worrying number of road accidents circulated throughout the
internet globally. These accidents resulted in the loss of 3.6 thousand lives and the
injury of 217 thousand people. When we consider that many people are on the road
throughout the whole day, the importance of intelligent adaptive road management
systems becomes clear. Traffic management systems are being improved by incor-
porating communication opportunities to enhance these features. Vehicular Ad Hoc
Networks (VANETS) are used to constitute communication opportunities. VANETSs
are a wireless ad hoc network with a dynamically changing topology that consists of
vehicles. Vehicles can communicate with other vehicles or roadside units. VANETSs
are a crucial component of intelligent transportation systems. VANETSs have several
applications such as safety, traffic management, infotainment, and comfort. To meet
these applications, VANETS offer distinctive characteristics: in VANETS, the connec-
tion between the vehicle and the roadside is wireless and movable, and the traffic envi-
ronment is highly dynamic. There are many prominent works to improve advanced
intelligent transportation systems via VANETSs. Apart from these works, artificial
intelligence techniques such as machine learning and deep learning have not been
widely studied by researchers to improve VANET applications. In this study, we
intend to investigate machine learning and deep learning models to enhance the
capabilities of the applications that are offered in VANETSs. By offering vehicular ad
hoc networks a hybrid deep learning and machine learning model, we aim to enrich
VANET applications with artificial intelligence aspects and further work on these
topics. With this study, we plan to fill the research gap in the exploration of VANET
models with respect to machine learning and deep learning models.
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Real-time decision making * Traffic prediction and management - Vehicular ad hoc
networks (VANETS)

1 Introduction

Vehicular Ad-Hoc Networks (VANETS) facilitate communication between on-road
vehicles with the ultimate goal of achieving road safety, mobility management,
pollution control, and driver comfort. Such communication could be vehicle-to-
vehicle (V2V), roadside units (V2R), as well as to infrastructure networks (V2I).
The development of an effective VANET system should focus on challenges like
high mobility, intermittent wireless connectivity, harsh channel conditions, and time-
critical communication [1]. Specifically, key VANET applications include traffic
management and road navigation, which utilize mobile cloud computing potentials.
Furthermore, array communication systems, implementing different communica-
tion provisions, pose a challenging problem in VANET. Currently, with advancing
research in artificial intelligence, additional VANET applications are envisioned,
and expectations from VANET are increasing on a daily basis. Artificial intelligence
(AI), and mostly machine learning (ML), holds great potential for understanding
intelligence in the context of VANETSs. Development in modeling and simulation of
VANET, intelligent traffic flow analysis, detection, and recognition of vehicles are
particularly important areas [2].

Naturally, VANETSs have certain significant characteristic features in terms of
non-stationary models (NSM), such as extensive non-stationarity, abrupt alterations,
volatility clusters, and conditional heavy-tailed behaviors. Moreover, the pattern of
constantly changing traffic volume and road traffic patterns in VANETS is different
from traditional roadway traffic patterns. In the VANET environment, connecting
V2I networks has been an important problem as well. Homeland safety requires
wireless connectivity and network access to safety-related data. Fully enabled intel-
ligent transportation systems (ITS) technologies will be able to observe, diagnose,
and verify vehicle operations, control vehicle systems, and monitor the gap in road
safety. V2I interactions and services that fulfill the goals of transportation safety,
fundamental broadcast information services, and value-added broadcast informa-
tion services are very important for traffic safety, traffic management, and smart
navigation [3].

Al is a solution for flooding, congestion, and pollution issues by significantly
detecting what we are supposed to detect on the road and updating network services
like speed limits or lane availability compared to other actual drivers. However, Al
itself faces some challenges in achieving these tasks on the roadside represented by
the VANET. Firstly, Al must be able to understand the rules that guide driving. Here
are the characteristics represented by the VANET. Therefore, the failure that may
occur here can be much more critical than what it is in general with normal internet or
computer and communication technology. It can induce serious accidents! A human
driver can run a red traffic light, exceed the speed limit, or quickly get through an
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intersection when a signal is amber [4]. However, a disturbance in producing the
messages transmitted by other drivers can significantly decrease the vehicle’s speed
to zero and cause an accident! More generally, for many other missions assigned to the
VANET, such as detecting various kinds of obstacles on the road or even identifying
different lane markings, we need to make this specificity of the peculiarities clear: it
depends on the kind of drivers we are supposed to implement, i.e., the vehicle groups
by clusters of intelligence possessing the same characteristics for accident reduction
and reassessing the risk of each. This specificity must also guide Al research and
seems to reflect the roles of the drivers in the involved technologies [5]!

Vehicular Ad Hoc Networks (VANETS) play a significant role in improving road
safety by preventing opportunities for accidents. Furthermore, they are instrumental
in reducing traffic congestion to increase the efficiency of urban roadways and
highway systems. Several upcoming protocols will increase the demand for effec-
tive VANETS in enhancing road safety and traffic efficiency. Passive, non-Al-based
VANETSs are least capable of handling security, privacy, and non-safety applica-
tions. On the other hand, Al-driven VANETS can effectively handle the security
and privacy of all communications, including non-safety applications, and hence
are capable of intelligent transportation system operations involving security and
privacy requirements [6]. Al-driven VANETS, in addition to Al-aided IVNs, can
better handle the security of connected vehicle systems, which rely heavily on over-
the-air update systems to prevent unauthorized access to the vehicles’ internal control
area networks. To leverage Al in VANETS, several technologies and components
are to be integrated to have an operational intelligent transportation system (ITS).
VANETSs may consist of different types of nodes with respect to their functionalities.
Al applications are orchestrated in both edge networks and cloud computing infras-
tructures within the vehicular network [1]. VANET nodes can use various cutting-
edge techniques and technologies, keeping in view their constraints and limitations.
Thus, VANETSs encompass all the technologies required for intelligent transportation
systems, including V2V, V2I, 12V, and 121 communications. With V2V and I2V, vehi-
cles can directly sense and share processed local data with the infrastructure-based
controllers. In V2I/I12V, the processing of sensed data is performed at the edge of
core networks, and the resulting data is shared with other vehicles and infrastructure
nodes [2, 3].

1.1 Understanding Deep Learning

Deep learning is an established, powerful machine learning technique that has shown
excellent performance on a number of problems in various domains. Deep learning,
however, has been extensively leveraged in the intelligent driverless vehicle area
to tackle a number of traffic problems. It is common and helpful to draw paral-
lels between artificial neural networks and biological neural networks to evoke the
biological plausibility of deep learning. Spiking neural networks or biologically
plausible learning rules are particularly proposed, but despite progress, they have yet
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to reach the same performance as deep learning networks. Deep learning networks
are a derivative of the common artificial neural networks [5]. Deep learning typi-
cally refers to very deep networks where many layers of processing are held. These
layers of simple non-linear processing units are known as neurons, organized in
a feedforward fashion, with all layers being fully connected. With this definition,
deep learning encompasses the use of the hidden layers of a feedforward network
to learn an interesting and informative representation of the input and the relation
that exists between layers. This feature learning ability, to a large extent, has enabled
deep learning to gain excellent performance, with seemingly relative ease, on several
challenging datasets in various domains [6].

1.1.1 Neural Networks and Deep Learning Architectures

Machine learning is the subfield of Al dedicated to the development of algorithms that
can learn from data. In particular, supervised learning is the task of mapping input data
to known labels or values, using labeled data to train in such a way that unseen data is
used to arrive at the best predictions. Neural networks are models built up by units of
artificial neurons that learn from a training algorithm in a way that allows them to map
inputs to outputs effectively. Each of the layers of the network receives an input and
computes a linear transformation by applying a set of weights to the input and then
applying a non-linear function to the result [7]. There are numerous variations of the
neural network model where these non-linear functions can also be complex learned
functions. Deep learning is a variety of machine learning algorithms that are based
on the employment of deep neural networks. The training of deep learning models
involves the use of very large amounts of data and parameter tuning, which has only
become practical with the advent of deep computer hardware improvements and the
massive amounts of data produced in the last two decades. Today, deep learning
is the most popular technology for many Al applications, including those related to
autonomous vehicles [8]. The subsection further explains deep learning architectures
and presents their hardware and software requirements.

1.1.2 Supervised, Unsupervised, and Reinforcement Learning

This searches for various learning strategies in the VANET context and examines
their importance and practical viability in the face of different challenges that arise in
the domain of Al-enhanced VANETSs. There are broadly three universally applicable
learning paradigms in the domain of Al, ML, and DL that also find their usage in
VANETsS:

(1) Supervised Learning: Supervised learning is an important learning paradigm
in the machine and deep learning community that involves training algo-
rithms on labeled data. It is being adopted within VANETS to achieve several
machine intelligence tasks such as classification, feature extraction, clustering,
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and regression. It can be useful in VANETS in several ways where data collected
from vehicles is considered as truth/label to supervise the model to learn a
beneficial pattern from the vehicular data [9].

(2) Unsupervised Learning: Unsupervised learning is also of critical importance
in the community of machine and deep learning. It is being adopted within
VANETS to discover valuable insights and patterns from the data that may have
no parametric representation or labels. More importantly, it is of specific impor-
tance for VANETS in the applications of traffic and mobility-related predictions
and optimizations [10].

(3) Reinforcement Learning: A main area of focus of the intelligent transporta-
tion community has been to realize environmentally friendly and self-driving
or autonomous vehicles where only untethered intelligent systems can achieve
autonomous driving. Moreover, under several dynamic real-world traffic condi-
tions, fuel and energy-efficient and semi-decentralized autonomous driving
challenges need to be tackled. In such scenarios, vehicles or agents must adapt
their decisions based on their knowledge-based model within the limits of
either known laws or their experiences from system feedback and the envi-
ronment [11]. This form of governing decisions and learning is identified as
reinforcement learning among popular expert systems in VANETS as illustrated
in Fig. 1.

1.1.3 Training and Optimization Techniques

Usually, a computationally effective multilayer perceptron is created when using
the combination of region-wise normalization scaling for the initial input, neuron
activation functions that are essentially the piecewise continuous nodal functions
scaled up according to the function region lengths, and a region-wise normalization
scaling for networks representing multilayered neural networks [12]. As scaling is
applied to input data and network training aims at the selection of input neuron
weights, a neuron that is traditionally realized by wc, so to honor the definition
of the activity zone, activation functions should correspond to inverse functions of
labeling plane segment balancing involved in radial basis function modeling. After
this, when using input data transformation via a scaling procedure inverse to the
initially applied scaling, the problem of multimodal cost function for training the
network output weights and the catastrophic forgetting problem for replacing initial
neuron weights with newly trained ones could be resolved in a way similar to that
used in the earlier discussed model containing specialized neuron modules [13].

1.2 Machine Learning in VANETS

An efficient, intelligent vehicle, in essence, comprises the intravehicular structure
and the vehicle’s interaction with other vehicles, i.e., the Intelligent Transportation
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Fig. 1 Expert systems in VANETs

System. The interactions of the vehicle with the surrounding environment, prin-
cipally contributions for situational assessment, are challenging and vastly benefit
from Al, particularly with the increasing technical and socioeconomic dynamics.
Although ITS history has long been focused on communication networks and short-
range communication patterns, machine learning techniques are contemporarily also
applied to enhance selected ITS fields. One of these advances is intended to prevent
crashes by equipping vehicles with wireless communications [14]. As local vege-
tation and weather conditions can interfere with communication, these systems are
hard to securely develop in isolation, spawning unique infotainment and employment
challenges. Machine learning within vehicular ad hoc networks can, by means of
attaining specialization and improved vehicle matrix estimation, improve situational
awareness and vehicle collision warning.

In the vehicle electromobility context, machine learning is investigated by those
working with vehicular ad hoc networks. In an exhaustive investigation using
VANET, researchers tackle a serious safety issue by fundamentally reducing the
rate of discharges per cycle for large and heavy-duty vehicles, which often circu-
late in the inner city trying to perform their tasks or move goods [15]. Moreover,
advanced predictive functions allow drivers or autonomous agents to optimize their
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resources and deliver smoother operations considerably. Detections of road users
and their subsequent paths predict multimodal road user motion and collision risk
and, due to the collected data, supervise and adapt purely data-driven estimator
interfaces. The architecture of an autonomous vehicle to the traffic control system
also supports machine learning models. In addition, statistics have evaluated driving
information behaviors in unregulated environments, determining fuel-saving poten-
tial. The achieved savings also contributed to a refined accessory model. For the
development of a reliable prognostic capability that represents a vital contribution to
the targeted electromobility intelligent traffic system, deep reinforcement learning
techniques are also employed [16].

1.2.1 Supervised, Unsupervised, and Reinforcement Learning
in VANETS

The VANET applications mainly use supervised learning algorithms. Supervised
learning is a type of machine learning algorithm; it requires a known set of input
data and its corresponding output. It begins with a training phase through the use
of labeled input—output pairs, detecting the relationship between input and output.
Then, each pair of labeled inputs is forwarded as input to the algorithm, and the
output of the algorithm is compared to the labeled outputs to guide the learning. A
feedback signal guides the algorithm; the algorithm is adjusted through an iterative
process to reduce the differences between the expected and actual outputs. Once
trained successfully, the algorithm can give the correct output for an arbitrary input.
Supervised learning includes linear regression, logistic regression, support vector
machines, and neural networks. The success of supervised learning depends on the
anomaly-free detection of the labeled data [4]. Unsupervised learning is based only
on the characteristics and features of the input data. Training with labeled inputs and
outputs is not needed.

In VANETS, caching algorithms used in certain applications operate by identifying
the most important files for caching according to the fluctuating demand of the
vehicles; these approaches rely merely on input data alone, thus using unsupervised
learning. Therefore, there is no need for training data. A strong unsupervised learning
algorithm called reinforcement learning uses an environmental model in which a
reactive agent observes an environment by performing actions and is guided by
a scalar reward signal. Reinforcement learning is supported by dynamic behavior
models such as neural networks, and deep learning models are applied to this issue
[8]. In VANETS, reinforcement learning mainly has potential applications in adaptive
transportation mode choice, urban traffic flow management, and traffic rerouting. The
future most promising use of VANETS spans from reinforcement learning models in
urban traffic optimization to big data traffic modeling of urban areas; both campus-
scale distributed control loops and deep learning applications for policy-based control
of distributed traffic intelligence systems will be in artificial city networks where
culture-aware and context-aware belief models will be adapted to the custom design
of smart cities [1].
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1.2.2 Applications of Machine Learning in VANETS

The dataset of VANETS is built on a series of process simulations and real-life
vehicle simulations. One of the key assets of this system, data transmission func-
tionality, is rooted in the dedicated short-range communication standards. In the
previous section on machine learning, we discussed some of the many applications
of machine learning in route prediction, clustering of vehicles, or global vehicle
tracking for network and transmission optimization. One of each vehicle’s current
key properties to be tracked is its position, relative speed, and direction of other vehi-
cles, or position and speed of the next intersection and its full-range camera visibility.
These reports serve as the state of the art for the current role of artificial intelligence
in VANET, where its particular utilities and underlying system architecture repre-
sent one of only a few primary input sources to a vehicular simulation within an
artificial intelligence machine learning process [5]. In short, artificial intelligence in
VANET is the primary branch of artificial intelligence-based intelligent transporta-
tion systems. Some of the outstanding examples are deep learning-based ensemble
models for GPS, the detection and interference in transmission as a result of out-of-
sync repeated extended signals, as a byproduct of the intercity road transport coop-
erative information systems, traffic prediction models resulting from map-reduce
clustering algorithms, radio map construction by the use of reference points, the data
publisher, and the data buffer maps. Some of the primary work on traffic congestion
monitoring, abnormal event detection, and trajectory clustering was performed by
time-series embodied transportation datasets [7].

1.3 Challenges in AI-Enhanced VANETS

While the potential for innovation in Al-enhanced VANETS is extensive, the chal-
lenges are many and range from fundamental communication and computation issues
to complex algorithms. Challenges can be grouped as follows: Smart vehicle design:
embedding intelligent behaviors into vehicles, together with reliable low-latency
communication with nearby vehicles, will make VANETSs more responsive to proac-
tive traffic management or reactive maneuvers and thus enhance safety, creating
opportunities for new advanced driver assistance systems and self-driving capabilities
[8]. Diverse data types and communication situations: gaining insight and meaningful
predictions requires a rich stream of data covering many traffic situations and a range
of road users. Consequently, gathering information is a challenge, and this challenge
is made more complex due to uncertainty and incomplete communication conditions
arising from the effects of weather or significant obstacles around cars that may
prevent or rapidly attenuate communications. Rapid inference with large amounts
of information: decision-making often involves combining very recent observations
with several layers of information, ranging from local information to high-level global
statistics on road conditions [13]. Inference must be kept predictable due to safety
trends or compliant with the tight latency budget that might be imposed in order to
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adjust decision-making in case the communication is about to become unavailable.
Variability in end-to-end connections from a vehicle to the cloud: variability and
congestion on the communication network are difficult to predict, which means that
end-to-end latencies from cars to Al engines can be highly variable. Such device
issues introduce barriers to commercial deployment, as it would be necessary to
simultaneously benefit from short-latency real-time inference while keeping capital
expenditures under control [15]. Therefore, all technology needs to be affordable, as
it is designed for end users with parallel access.

1.3.1 Security and Privacy Concerns

Security and privacy concerns have drastically increased within VANET environ-
ments, as they both pose essential cornerstones for vehicular communication safety.
In fact, VANETS need to enable, on the one hand, the revealing of sparse amounts
of temporal and spatial vicinities at appropriate times to deliver cooperative colli-
sion warnings while avoiding excessive privacy compromises. On the other hand,
they must fulfill strong cryptographic privacy and security to protect the different
types of VANET data and broadcasts against multiple hostile adversaries across
both commercial and large highway VANET deployments [17]. Henceforth, VANET
should tolerate a robust form of privacy to allow vehicles to prevent their effective
location from being disclosed and disseminate this information securely to establish
essential cryptographic keying material. In addition, VANETS also need to maintain
V2V communication in order to generate ample relevant information for the roadside
warning units. Due to numerous issues that are considered extremely challenging in
the scenarios of VANET, whenever the threat cannot be physically detected in a
timely manner, this issue arises from being connected with the wireless commu-
nication infrastructure [18]. This network infrastructure is constrained to a limited
collection of deployed roadside units near the traffic signals. These vulnerable road-
side units are reachable by concealed mobile attackers, which enables them to launch
numerous advanced attacks. The research community has raised their concerns differ-
ently, proposing alternatives to alleviate this problem. However, the reality insists on
boosting the fact that several far-ranging issues have yet to be solved [19]. There
several legal concerns of associated with the Al and ML when it comes to its
application in VANETS, as illustrated in Fig. 2.

1.3.2 Scalability and Resource Constraints

In the real world, the demand for intelligence is not just for general Al-enabled vehi-
cles or smart road infrastructures. In densely connected VANETS, the environmental
and spatial learning required by the vehicles and infrastructures in the neighbor-
hood rely on their learning capacities and spatial services. This is where we meet
VANETS, which renew the concept of connected intelligence that is only viable at
the edge through IoT. VANETSs only contain Al-equipped vehicles and structures
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Fig. 2 Legal concerns in using artificial intelligence and machine learning in VANETS

with the necessary computational intelligence to provide intelligent Al services to
each other [20]. However, additional Al services at some of the nodes beyond just
traffic management should be enabled. In terms of scalability, these are not standard
WSNs and no other distributed intelligence network. They are unique problems of
VANETSs compared to other mobile ad-hoc networks and WSNs. The increasing
complexity is now migrating the relevant technology that was initially developed
as methods targeted for high-performance servers with a huge amount of dynamic
random-access memory to other platforms with limited resources. Deploying the
basics of ML/DL and models for mobile systems that have low memory bandwidth
and a limited number of parallel processors are the most common attempts to deploy
ML/DL at the edge [21].

The operational constraints and physical size are the primary constraints that
require methodologies and models for resource-constrained platforms. Deploying
deep learning models on hardware devices also leads to new challenges in terms
of high memory requirements and computational complexity. High on-device data
storage and computational capacity are the main requirements to train and deploy
deep learning models on mobile systems. Depending on the training algorithm,
training a deep learning model with a small training set on a resource-constrained
mobile device might require a substantial amount of computational power and energy.
Only the first few layers of a deep learning model can be applied to a mobile device,
where the depth of the model and the storage are limited. The actual depth and
width of the existing DL models pose an arduous challenge to deploy these models
on any low-cost mobile platform [19]. With their demanding applications, such as
speech processing and natural language processing, the larger parameter sizes and
computations of these deep learning models can inevitably proliferate. These canons
exacerbate the difficulty of training a deeper model on a conventional server.

The long execution time makes such training prohibitive for resource-constrained
mobile devices, and the tremendous memory overhead inflates the dynamic memory
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allocation cost. Using deep learning models for mobile scenarios is also arduous,
and the models are too large and too complicated. The response time limit for it to
be practical is too long, as it takes as much time as the current deployment does.
Other resource constraints, like the smaller size of datasets, exist in the model, while
training and computation are significant [1]. There are many deficiencies in terms of
generalization. Focusing on reducing model complexity while maintaining accuracy
is a poignant performance perspective and a recognized model design discipline.
Due to the increasing size of data and models, efficient deep learning for the on-
device deployment of mobile and Internet of Things Al applications that exhibit
resource restrictions is increasingly challenging. These challenge the calculation,
size, and energy efficiency of the mobile deep learning model. To build deep neural
networks for on-device inferring, training, and learning, these restrictions may require
trade-offs between computation and prediction accuracy [5].

1.4 Innovations in Al for VANETS

Enhancing transportation by achieving vehicular ad-hoc network (VANET)
autonomous operation is a challenging task. However, several incentives like $5.6
trillion in revenue from mobility services, safety, no traffic jams, time savings, energy
savings, comfort auto driving, free parking, and vehicle platooning have encouraged
communication tool development. However, many challenges are slowing down the
deployment of Al-aided VANETS. In a few vehicular VANET ad-hoc networks,
the installed technologies are not accurate in localization, position control, and
service quality and must be improved [7]. This work concentrates on the big chal-
lenges and the latest advances in machine learning and deep learning technology
for updating the position, velocity, and acceleration, as well as the next position,
acceleration, and velocity of moving vehicles. Location-based and social network-
based services enable movement prediction for private cars and self-driven cars.
Autonomous driving services have been developed with image camera radar-based
data processing of vehicles’ detailed forward and side views. However, these require
innovative combinations to achieve general public vehicle autonomous driving, as
positioning results expose shortcomings, such as whether the road environment
conforms to the actual road environment of the sensors on the car [10]. Buildings or
other obstructions on the roadside may cause inter-object occlusions in advance and
on car sides, and a planar radar may cause complex modeling of the road-defined
slab due to ground discount changes and other reasons.

1.4.1 Edge Computing and Fog Computing in VANETS

The advent of broadband cellular and short-range communication technologies for
V2X communications not only provides a powerful tool for vehicle data acquisi-
tion, sharing, and processing but also enables edge computing and fog computing
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services in vehicle cloud computing infrastructure, as vehicles traveling within about
250 m (or 1 s of road traveling on average) can readily connect through vehicle-to-
vehicle and vehicle-to-infrastructure communications with communication latency
of less than 1.4 ms. Recently, a mesh blockchain mechanism was proposed to enable
the coordination and management of public smart parking garages, which effec-
tively addressed the difficulties of vehicle en-route parking but did not include the
computation offloading techniques between the parking facilities and the vehicles
[22]. Furthermore, research challenges of design, standardization, validation, and
deployment remain largely unsolved for the large-scale computation services in
VANETs.

Vehicle edge and fog computing are the cornerstones in providing computation
offloading services to real-time data analytics and Al-based vehicular applications
in VANETSs. Al adoption in vehicular networks has largely been confined to vehi-
cles, and most of the Al-based applications in vehicular networks consist of data
analytics using telematics, infotainment, driver assistance, etc. The behavior predic-
tion, personalized route planning, environmental perception, cooperative driving, and
cooperative sensing applications for all vehicles within communication range will
gain great propagation performance benefits with the support of vehicular edge and
fog computing [19]. Edge and fog computing not only focus on providing compu-
tation services for the large volume and time-sensitive data generated within the
communication range but also facilitate edge Al in time-sensitive data analytics and
Al-based applications, meaning that only a small percentage of data meeting pre-
defined constraints flow to the cloud/node, whereas the timing operating cycles are
crucial due to time-sensitive constraints [23].

1.4.2 Collaborative Learning and Federated Learning

While collaborative learning policies have been proposed to facilitate collabora-
tion among autonomous vehicles in a way that the learning difficulties faced by an
autonomous vehicle are distributed to the surrounding vehicles, allowing them to
help each other when experiencing difficulties in their learning process, research in
Al in VANETS can borrow more techniques and algorithmic solutions from machine
learning and artificial intelligence. Collaborative learning occurs at the level of
observing the behavior of other agents and trying to infer something more than
merely the a priori known map of the environment [15]. This would allow for the
sharing of information and leveraging opportunities for mutual improvement in the
learning process without the exchange of actual labeled samples. In contrast to collab-
orative learning, there exist many scenarios where the performance of an agent with
limited resources can be significantly improved by initially learning based on input
from many other agents with a larger set of resources without requiring the other
agents to exchange the learned weights and received labels. When the agents are not
allowed to share the complete model or a large number of training data, they can
still enjoy a significant performance gain by sharing the publicly or privately learned
partial mathematical models from the source agents under privacy constraints on
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the training data [14]. Some researchers have found that allowing agents to propose
alternative simplifications identify weaknesses in the proposed models, and then
incorporate preferences and suggestions into the decision-making process improves
overall performance.

1.4.3 Intelligent Traffic Management Systems

In an effort to reduce the burden of traffic congestion and fatalities, the concept of
intelligent transport systems was introduced. Utilizing artificial intelligence methods
and techniques, traffic dynamics and congestion can be identified by analyzing real-
time sensed traffic conditions. Intelligent traffic management system applications
can be as basic as dynamic traffic light control or permitting/forbidding vehicles to
access the road network from one side based on the current traffic load [7]. The
emerging intelligent traffic management systems (ITMS) operation seeks to reduce
other known problems, mostly peak congestion, through running Al applications
providing:

— Much-needed efficiency in traffic flow and operation.

— More than 20% reduction in travel time.

— Safety improvements.

— Investment results in the form of reduced physical infrastructure.

Emerging ITMS application routes are indirectly ingrained with predictive
analytics—estimated load flows and congestion occur with the use of machine-
learning RouteAVTMs. RouteAVTMs provide intelligent route selection by mining
very large databases of historical flow patterns and incidents. Based on the surveys
done so far, the estimated origin and potential bottlenecks to destination time are
provided. Urban EV/AV first and last-mile navigation fixtures, which rely on real-
time information, are classic application instances embedded into the emerging ITMS
system design [14]. An intelligent system by which automobiles abide by past road
vehicle trajectories, involving instantaneous and past road vehicle movements from
nearby vehicles, will operate efficiently by a chance future level of mobility in urban
environments. The knowledge of the past road vehicle trajectory reinforced with
real-time information makes for a better-informed vehicle so that, ultimately, the
at-fault driver, the vehicle, or the road spot is protected. Despite such noticeable
advancements in the deployment of Al in enhancing traffic operation, there exist
numerous challenges to be addressed in the future of driving intelligence systems
[24].

1.5 Case Studies and Practical Implementations

We have chosen two distinct case study scenarios to illustrate the dynamics of
learning-enabled spatial traffic control modules inside a VANET: a New Jersey
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Distributed Ledger Technology network and a dynamic and autonomous offloading
infrastructure network. First, the non-join DLTDB control module is considered
within the framework of the NJ queue. With the NJD queue limit, the Prioritizer
configures the broadcasting preferences of vehicles to enter and exit New Jersey.
The Prioritizer advocates for vehicles to turn or exit outputs, promotes small reward
modules and block periods, and maximizes learning [22, 23]. Vehicles that meet
the requirements of the overweight NJ queue are ready to enter and wait for the
road after a specific RSSI value. After that, the Prioritize module is discarded and
is no longer focused on these two vehicles. In the DYNAOFFI control module, we
discuss highway on-ramps while considering the local block, average speed, and
collision parameters. This work also introduces CARBLIND modes to increase the
efficiency of the traffic controller. Educators use this mode to isolate all participating
vehicles during collision apoptosis virtually. CARBLIND also modifies the rewards
during the patch transfer cycle. By doing so, learners are encouraged to navigate
by changing lanes faster than the survivor of the first competitor meeting. A deep
reinforcement learning-based traffic control module called the Deep Learning-based
Traffic Decision Block uses visible spatial degrees to control vehicle speed and lane
transition inside VAS [18, 19]. The DL block dynamically alters the block length of
surrounding vehicles, which are within the perception of the vehicle, to provide EL
with faster update signals.

1.5.1 Real-World Deployment of AI in VANETS

The deployment of Al and DS in VANETS faces numerous real-world challenges,
such as communication latencies, low mobility speed, and low network coverage. One
major challenge is that only a few real-world measurements contain real traffic and
real vehicles. Moreover, in many cities or countries, real-world measurement using
VANETS is illegal because it interferes with the normal operation of traffic lights.
Some studies adopted static real topology of a complex urban VANET network for
performance evaluations. These topologies are static and cannot reflect the dynamics
of real-world traffic. A project simulates real-world traffic, allowing AI and DS
developers to evaluate and verify Al models and algorithms in VANET research-
related tasks and competitions [1]. During the last two years, many researchers have
developed DL-based sign prediction, object detection, segmentation, and multi-target
tracking methods related to urban traffic using various datasets. To facilitate perfor-
mance comparison and development of real-world applications, we summarize the
traffic movement of 200 vehicles captured in a 5 km x 5 km area over 4.5 h. The
new dataset combined with a dense monocular camera can provide vast amounts
of driving images and is in real-world traffic [12, 13]. The dataset can be used to
develop traffic flow forecasting algorithms, accident warning systems, and other
comprehensive research studies.
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1.5.2 Performance Evaluation and Metrics

The performance of network protocols can typically be evaluated by various metrics,
which use measurements of the packet success rates, end-to-end delays, and redun-
dant retransmissions. However, in the VANET scenario, some conventional proto-
cols for network evaluation may not be directly applicable because of the significant
differences in the defining network characteristics. In general, the performance of
databases can be evaluated by different metrics such as throughput. The application
layer is mainly concerned with this metric to ensure that the actual data exchange
rate achieves a satisfactory value [1]. It is defined as the number of vehicles sending
data to other vehicles. Packet Delay: It is mainly defined as the time it takes for
a packet to go from the source to the destination during the time interval over the
source and destination’s transmissions. Packet Delivery Ratio: It is defined as the
ratio of data received by the receivers to the data sent by the senders. Jitter (Packet
Delay Variation): It is defined as the independent delays associated with the packets.
The constant jitter makes the traffic patterns valuable but bursts in packet transmis-
sion within a group of applications form a main interest in jitter [6, 7]. End-to-End
Delay: The time it takes for a bit to be sent by the sender to the time that the receiver
receives it. This metric establishes the relationship between the application and the
transport sub-layer through measurement. Despite being a key metric that provides
information, routing, protocol, and route discovery influence it. Route Longevity:
The time a route stays open from the origin to the destination. In a VANET, such a
metric is critical to ensure high overall system performance, especially when data is
sent to provide time- or condition-related warnings [23].

1.6 Future Directions and Research Opportunities

We envision more work to utilize driving intelligence technologies for improving
VANET operations and other applications related to intelligent transportation
systems. At the communications level, information gathered by advanced driving
assistance systems can be used to classify the links into different types based on
driving pattern classification. Both types of links are static in the sense that the
distances between any two vehicles typically do not change largely over some time.
Authorities can dispatch a special VANET system that can implement semi-static
routing [18]. We believe that such a communication model will be helpful, espe-
cially in rural areas or low-traffic volume scenarios. In the more distant future, we
speculate that V2V intelligence will be so heavily relied upon to enable driving
automation that almost all vehicles will forgo the current sensing apparatus in favor
of a universal sensor platform that uses V2V communications. This development
of the communications network will directly benefit VANET applications such as
crowd-sourced, highly accurate driving information [2].
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First, we believe that the idea of using semi-static routing should be validated
through more research work. Such work can be either empirical in the form of real-
world tests or theoretical in the form of simulations. We hope that future research
will cooperate to develop collaboration for autonomous road transportation. We also
welcome advanced driving assistance technology research whose focus is on commu-
nications enhancement in VANET. Second, VANET security has always been a major
research theme—yet driving intelligence technologies such as deep learning and
machine learning bring about new or extended threats. For example, wireless signals
can be maliciously delayed or transmitted early to cause a deep learning system to
detect a fake obstacle. Making use of GPS jammers, attackers can also maliciously
alter the driving pattern information [6]. At one level (the vehicle does not match the
traffic pattern from others), managers decide that the pattern no longer applies.

Third, even though this survey focuses on how VANET will benefit from driving
intelligence technologies, VANET can also be used to collect an extremely large
dataset for training driving intelligence technologies. Such reverse engineering has
more implications as such intelligent devices may land in automobiles used for public
service. More efforts should be spent to probe how connected vehicle dynamics can
be utilized to ensure safe and efficient transitions between operational design domains
[9, 10]. We hope that future supporters can join in developing a VANET testbed that
has an onboard processing element. Last but not least, we hope that policymakers
will create a testbed or a global system-based service to allow researchers to test
advanced driving assistance systems. But, from a computer science point of view,
driving is just a kind of search problem. However, one approach cares about network
efficiency first and compromises user satisfaction; another may be too relaxed to
make driving convenient [15, 16].

1.6.1 Emerging Technologies and Trends

In-vehicle edge computing may manage the large complexity of Al systems combined
with real-time task requirements and actual traffic-aware situational awareness infer-
ring. Deep learning models with small inferences may be used for obstacle detection.
PIT methods can improve road safety with traffic light detection by exploiting actual
estimated positions for traffic light planning. V2I and lower latency on 5G networks
may produce significant benefits in fairness to safety and autonomous driving robust-
ness. Machine learning and deep learning play a key role in the management and opti-
mization of software-defined VANETS [18]. V2I communication technology inte-
grated with 5G effectively reduces service delay and loss, better able to meet the
reliability requirements for intelligent transport. Soft computing and system soft-
ware component frameworks based on constant multiple-thickness facial and eye
recognition methods can be used in the integrated system and provide fast, real-time
processing.

Experience shows that it meets the design requirements of Al face recognition
applications in the intelligent telematics system and also shows that it has good
strengths and overall performance [12]. In general, technological innovation in V2X
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systems is very smooth, and its development trend is in the direction of safe, intelli-
gent, convenient, fast, and rapid. With people’s safety awareness becoming stronger,
the development and use of V2X technology to produce an intelligent vehicle system
have become more important for traffic safety. Noticeably, at the planning and urban
development level, the microscopic traffic flow models used are based on reasonable
assumptions about driver behavior. To the best of our knowledge, the opportunities
and challenges to autonomous vehicles for efficient and fair traffic flow management
are the first to pave the way for future work, its added value to the domain, and
the impact on both transportation planners and vehicle development stakeholders
[22, 23].

1.6.2 Explainable AI and Trustworthiness

Deep learning and machine learning algorithms are increasingly being used in
autonomous vehicles, and Al-ethernet extended vehicular ad-hoc networks. At the
same time, decision-making power in vehicular applications is becoming increas-
ingly complex due to the use of neural networks and non-linear models. Due to
understandable security-related concerns, there is a pressing need to ensure trans-
parency and user-in-the-loop understanding of how decisions are taken so that these
Al systems can be trusted. With a clear requirement for safety, integrity, privacy,
and security in applications, this further necessitates transparent and accountable
decision-making processes [18]. There is also a risk of user discrimination, which—
through feedback loops—can amplify biased decisions taken by machine learning
algorithms across a vehicular network and between humans and machines. In the
application of Al and the implementation of Al-boosted networks, it is essential to
identify and mitigate unintended consequences and to provide explanations for the
decisions that are supported by relevant evidence or generated by critical reasoning
in decision support systems. User experience and explainable standards, normative
laws, and regulations will be implemented in the international version of the roadmap
[1,2].

Explainable Al has become an important ground for research, innovation, and
market acceptability for Al in transportation. Model frameworks have started to
include the satisfaction group to make consumers and users trust reliable Al in
autonomous and cooperative intelligent transportation systems. The explanation of
Al capabilities and limitations today can help us make more accurate decisions and
protect us from harm, including project errors, omissions, and liability problems.
In our design framework for intelligent vehicles, we contribute a new proactive
approach to the issue of effort in algorithm selection in step I, to change the decision
matrix for trustworthiness in algorithm selection based on explainability or analysis
of explanation alternatives to a proactive problem and at which trustworthiness level
the expert starts to intervene and propose a new decision based on the new explanation
technique conducted instead of explainability. In step II, proactivity then directs the
choice of which algorithm to use from multiple alternatives with a lower or higher
level of trustworthiness defined by the new explainability technique [7].
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1.6.3 Open Challenges and Areas for Further Investigation

The rapid advances in machine learning and deep learning for additional driving
intelligence in connected and autonomous cars were comprehensively surveyed.
The surveyed ML and DL techniques for in-vehicle Al and sensor fusion in vanilla
IoT were also extended to the specific V2X automobile network application. The
Al-boosted VANET scheme could potentially decrease the vehicle collision rate,
make the traffic smoother, and increase the vehicle’s throughput. However, Al-
enhanced V2X automobile communication network deployment also comes with
various challenges. The efficient training of deep learning VANET models requires a
substantial number of labeled samples [23, 24]. Unfortunately, labeled data is quite
expensive to obtain. The harvesting of real-life data is also time-consuming and
poses certain restrictions due to privacy issues. A promising avenue for solving this
problem could be adopting the semi-supervised learning algorithm. Additionally,
highly reliable deep learning-based VANET applications are necessary to assure the
point of acceptance by the end users. Employing an upgradable or swappable CNN
accelerator could provide a feasible implementation option. The CNN model induc-
tion with superior levels of robustness against adversarial attacks is another urgent
research topic. Last but not least, Al-enhanced VANETS supported by 5G C-V2X
have demonstrated promising results. Nevertheless, the effective deployment of the
5G NR or LTE-V2X communication network remains a significant issue for tradi-
tionally connected autonomous vehicles [3]. Furthermore, the deployment cost will
dramatically increase as a massive number of Al-boosted autonomous vehicles are
on the roads.

1.7 Conclusion

This study gathers challenges, research directions, and innovations associated with
the introduction of Al in VANETs. It describes the role of machine learning and
deep learning in transforming ad hoc and delay-tolerant networks into a robust, fast,
and intelligent system by utilizing the potential of vehicles in the Internet of Vehi-
cles era. Security, scalability, and privacy challenges in Al-integrated VANETSs were
discussed, and further research directions toward these domains were mentioned.
Moreover, future research challenges and trends that are required for Al-empowered
VANET: to be fully operational were also given. Innovative concepts such as edge
computing, fog computing, and smart traffic information systems were introduced
to cope with the challenges in the implementation of Al on VANET. The motiva-
tion to write this study stems from the need for research in the domain of VANETSs
equipped with Al solutions as a foundation for developing proactive and intelli-
gent cooperation on highways, in smart cities, and on smart roads. The conclusion
recapped the purview of this manuscript, leaving readers with a quick insight into the
significance of the research. The challenges of security, privacy, and scalability in
the implementation of an Al-enhanced VANET are significant enough to command
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research attention. The proposed design of a vehicle operator number constitutes
a discrete improvement, while edge computing moderates the expense of carrying
out Al processing. A potential intelligent traffic management center that controls
vehicle parking, as well as multiple environmental features and driver assistance
solutions, appears feasible, with a predicted trajectory of intelligent traffic advances.
However, whether the four stakeholders involved will proceed responsibly and effi-
ciently remains an open question. The incorporation of Al in VANET is, therefore,
richly deserving of research and inquiry.
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Al-Driven VANETS: Integrating Deep )
Learning and Reinforcement Learning et
for Adaptive Urban Mobility in Smart

Cities

Muhammad Ameer Hamza and Fawad Ullah

Abstract The increasing rate of urbanization and the increased need for efficient
transportation have highlighted the shortcomings of traditional traffic management.
Pre-programmed infrastructure, human observation, and static traffic signals are
examples of outdated methods that usually fall short in handling real-time congestion
and unpredictable traffic patterns. The constantly evolving needs of modern urban
transportation are also not met by them. To solve these problems, cities are utilizing
artificial intelligence (Al) and vehicular ad hoc networks (VANETs). This conver-
gence creates adaptable, data-driven frameworks that transform traffic systems. By
combining state-of-the-art technologies like deep learning for predictive analytics,
reinforcement learning for dynamic signal optimization, and edge computing for
real-time data processing, Al-enhanced VANETS increase the capabilities of traffic
networks. These clever solutions lessen congestion via anticipating interruptions
and proactive traffic rerouting. We are moving from antiquated, inflexible systems to
intelligent networks driven by Al. Increasing vehicle communication, improving road
safety, and optimizing traffic flow all depend on them. Using case studies and actual
data, we demonstrate how Al-powered frameworks speed up route planning and
reduce travel delays. They also support sustainable smart city technologies that are
scalable. The results demonstrate Al’s ability to both address present inefficiencies
and pave the way for upcoming advancements in urban transportation.
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1 Introduction

In an attempt to make their professions easier and overcome the challenges they
have faced in the past, people have labored to build technologies across time. The
instruments are gadgets with either physical components or extremely sophisticated
and ingenious programming. The ability of an object to accurately read a variety
of external data that it receives as input and to use machine learning techniques to
learn from this data in order achieve certain objectives and duties through adaptive
change is known as artificial intelligence, represents one of the methods currently
applied in this respect. We are depending more and more on our brains these days to
solve challenges that we formerly faced. Consequently, there is a growing interest in
understanding the potential impact of intelligence on our future.

Our transportation systems are getting better thanks to artificial intelligence. It
helps cars drive themselves and prevent collisions by utilizing cutting-edge tech-
nology including artificial immune systems (AIS). Additionally, to increasing trans-
portation efficiency, these strategies open the door for advanced route planning solu-
tions, autonomous systems, and urban traffic management, all of which support more
intelligent and sustainable mobility.

As time has gone on, more and more applications have been created to improve
transportation through traffic data analysis. Some apps, like Way care, employ Actual
traffic information to enhance traffic flow and lessen backlog [1, 2].

Artificial Intelligence (AI) has the ability to improve urban mobility by stream-
lining processes, increasing efficiency, and solving transportation is-sues in large
cities. Here are a few applications for Al:

e Traffic Management: Al-based Traffic Prediction: This method uses Al algorithms
to forecast traffic patterns and congestion in order to improve traffic signal timings
and dynamically redirect cars.

e Smart Traffic Lights: Al-driven traffic lights that adjust to current traffic patterns
to reduce gridlock.

e Public Transportation: Route Optimization: Reducing delays and increasing effi-
ciency, Al algorithms may improve public transportation routes, timetables, and
frequency depending on demand patterns.

e Dynamic Public Transit: Al technologies can instantly modify rail and bus routes
in response to passenger demand, cutting down on crowding and wait times.

e Autonomous Vehicles: Self-driving automobiles have the potential to improve
road space use, reduce accident risks, and simplify traffic patterns.

e Smart Parking Systems: Al uses applications to guide drivers to open parking
spaces, reducing traffic from circling cars.

e Data-Driven Urban Design: Planners may prioritize infrastructure projects by
utilizing AI to model growth patterns in cities.

e Al-assisted mixed-use zoning optimizes zoning regulations by analyzing
commuter data, which lessens the need for long-distance travel.
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e Eco-Friendly Transportation: Al coordinates bike/scooter sharing programs and
determines the best sites for EV charging stations based on customer requirements
[3] (Fig. 1).

In addition to communication and information exchange issues in VANETS, vehi-
cles also use Al-assisted features for various objectives. In Rahman et al. [4], offer a
framework for self-diagnostics that includes machine learning methods for vehicle
health monitoring. The framework is able to assess the health of vehicles and alert
stakeholders to any issues that are found. An important driving force behind Al-
based algorithms is the vehicle’s ability to sense its environment, comprehend what
happens, and respond appropriately. Examples of this include the tracking of drivers’
cognitive states [5, 6], and the identification of objects and pedestrians using image
data (vehicular perception) [7], such as spatiotemporal traffic prediction for avoiding
traffic jams [8], interior localization for self-driving valet parking [9], or the iden-
tification of spatial links between seen items to infer accident conditions [10]. For
the modeling tasks resulting from the real-world issues, they seek to address, all
of these features rely on Al-based algorithms. Neural networks are particularly
common for accurately modeling the complex multidimensional data handled in
driver characterization and vehicle perception, including image and LIDAR data
[11, 12].

Reinforcement learning algorithms have been extensively investigated for
autonomous decision making in automobiles. This prospective route to completely
autonomous vehicle systems has not been neglected in the contributions in this
special Issue. Anzalone et al. assessed the effectiveness of a method that combined
curriculum learning with proximal policy optimization over the CARLA driving
simulation in the case of [13]. The promising findings across various traffic situa-
tions and driving circumstances imply that the suggested combination may be applied
to other value-based reinforcement learning systems [12, 14].

Urban mobility challenges—such as congestion, pollution, and safety—require
dynamic solutions that traditional systems cannot provide. Al-driven VANETSs
address these by enabling real-time data exchange between vehicles and infra-
structure. For instance, Al algorithms analyze traffic flow from IoT sensors to re-
route vehicles during peak hours, reducing emissions [15, 16]. Similarly, ML models
predict accident-prone zones using historical collision data, enhancing safety proto-
cols [17]. These capabilities position Al-enhanced VANETS as critical enablers of
sustainable smart cities [18, 19].

1.1 VANETs (Vehicular Ad-Hoc Networks)

Vehicular Ad-Hoc Networks (VANETS) are distributed, autonomous communica-
tion systems that provide real-time data sharing between automobiles and highway
infrastructure (V2I) as well as among cars (V2V) using wireless protocols such
as IEEE 802.11p/WAVE. Key applications including emergency alert distribution,
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Fig. 1 Al applications in
urban mobility
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traffic congestion relief, and accident avoidance are made possible by VANETs,
which stand out for their dynamic topology and great mobility. cars can use V2V
communication to broadcast road hazard information to other cars in the vicinity,
for example, while traffic lights can use V2I coordination to dynamically change
the phases of their signals. The capacity of these networks to improve traffic flow
and road safety in urban settings makes them the cornerstone of intelligent trans-
portation systems (ITS). Another thorough assessment that highlights the scalability
issues with VANETS and their function in enabling adaptive routing algorithms under
fluctuating traffic quantities was carried out by Al-Sultan et al. [20].

1.2 Artificial Intelligence (Al)

VANETS stand out for their flexible architecture and ability to control fast-moving
vehicles. They enable essential services such as preventing collisions, reducing
traffic, and sending out emergency alerts. For instance, automobiles utilize vehicle-to-
vehicle (V2V) communication to communicate barriers and other hazards with other
nearby vehicles, while traffic lights employ vehicle-to-infrastructure (V2I) connec-
tivity to change their timing. Intelligent transportation systems, which improve the
efficiency and safety of city traffic, are built on top of these networks. Research is
still being conducted to find out how VANETSs may be utilized to alter routes during
times of high demand, as they are currently challenging to scale. Al-Sultan et al. [20]
looked into these issues in detail.

1.3 Machine Learning (ML)

Machine learning (ML), a significant area of artificial intelligence, uses data-driven
models to find trends and improve systems repeatedly. Reinforcement learning (RL)
in VANETS helps in traffic signal adaption by analyzing real-time traffic flow. For
instance, wait times may be reduced by more than one-third by the use of real-
time signal modification utilizing RL algorithms assessed in simulators like CARLA
[21, 22].

1.4 Deep Learning (DL)

A specific area of machine learning called deep learning (DL) models intricate corre-
lations in high-dimensional data using multi-layered neural networks, such as CNNs
and RNNs. In VANETSs, CNNs process LiDAR and camera inputs for object detection
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(e.g., pedestrians, vehicles), while RNNs predict traffic congestion using spatiotem-
poral patterns. For example, CNNs achieve 95% accuracy in real-time road anomaly
detection [21, 23].

1.5 Reinforcement Learning (RL) in VANETs

Through trial-and-error, Reinforcement Learning (RL) allows systems to learn the
best course of action interactions. In VANETS, RL agents at edge nodes optimize
traffic signals by rewarding actions that reduce congestion. A proximal policy opti-
mization (PPO) framework reduces intersection waiting times by 30% in simulated
urban networks [21, 24].

1.6 Integration with VANET Applications

e (CNNs for Object Detection: DL models process LiDAR/camera data to identify
obstacles, validated in edge Al frameworks for road anomaly detection [21, 23].

e RNNs for Traffic Prediction: Hybrid models (e.g., BLSTME-CNN) forecast
congestion, enabling preemptive rerouting [21, 25].

e RL for Signal Control: Decentralized RL agents optimize traffic signals dynami-
cally, as shown in CARLA simulations [22].

2 Literature Survey

A view is given by A. Arora et al. about the next generation of multi-agent-driven
smart city applications. The authors stress that artificial intelligence will have a big
influence on the future development of smart cities. In order to enhance the potential
and operation of various new urban activites, including vehicle control blockage,
they examine how smart agents could collaborate [26]. EA thorough examination of
the possibilities, applications, and challenges of edge-Al enabled video analytics in
smart cities is carried out by Badidi et al. [15]. The state of Al applications in video
analytics is thoroughly evaluated in this study, with a focus on the edge computing
paradigm. The authors discuss how advanced computational methods can enhance
video analytics in smart city environments, identifying key challenges that must be
addressed for effective implementation [15]. Rizwan et al. [27] examine real-time
smart traffic control systems in urban settings, focusing on the integration of big data
analytics and IoT technologies. Their work provides management of the data that
work for the management of the traffic which integrate a framework that leverages
actual time sensor data to find traffic flow and reduce blockage due to which remains
relevant [27].
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Adewopo et al. [17] analyze traffic incident patterns and propose automated
systems for accident detection in urban environments. Their work investigates how
integrated sensor networks and statistical forecasting methods can reduce colli-
sion risks and streamline emergency protocols, emphasizing advancements in urban
safety infrastructure [17]. Apolo-Apolo et al. [28] demonstrate a UAV-based frame-
work for agricultural monitoring, employing mathematical frame-works to estimate
crop productivity and fruit dimensions. Though focused on agriculture, this research
highlights the versatility of analytical tools in addressing challenges across industries.

The interdisciplinary character of Al is highlighted by the use of deep learning
in conjunction with UAVs to provide an accurate estimate [28]. The study of Zhao
et al. [18] on parallel transit in Transverse adds to the body of literature. The paper
highlights the need for parallel transportation networks in smart cities and goes
over fundamental ideas and the development of DeCAST. The authors use artificial
intelligence (AI) to enhance transportation infrastructure, providing insights into
potential opportunities for increased productivity and decreased traffic [18, 29].

In 2019, Rabby et al. investigate IoT applications in a smart traffic control system.
The potential integration of IoT technology into traffic management to boost effi-
ciency is thoroughly examined in this paper. The authors explore a variety of loT-
based technologies and their potential effects on traffic monitoring, control, and
optimization [30] (Table 1).

Besinovi¢ et al. [31] focus on enhancing efficiency in rail transport through
advanced computational methods. While their work centers on railways rather than
roadways, it provides insights into the categorization, operational frame-works,
and practical applications of data-driven optimization strategies in transportation
systems. With an emphasis on computational approaches to improve train operations,
the study offers techniques that may have an impact on more extensive advancements
in mobility infrastructure [31].

Yang and associates provide a visual end-edge-cloud structure in a 2023 article
that is tailored for low-carbon, 6G-enabled urban networks. With a focus on scal-
able solutions for smart city connection, their study investigates how automation
might be included into next-generation communication systems. Through effec-
tive resource allocation and data transmission, the study emphasizes how adaptive
network architectures may promote sustainable urban growth [19].

Similar to this, Cui et al. [32] look at how big data analytics may be used to
manage autonomous car systems in smart cities. They examine how real-time data
processing might improve vehicle coordination by tackling issues like latency and
system dependability using the concepts of network calculus. Their research clarified
the relationship between vehicle automation and predictive modeling in dynamic
urban settings [32].

Additionally, SCOPE, a cooperative system designed to maximize urban parking
allocation, is introduced by Alarbi and associates [33]. Through better parking avail-
ability and effective driver guidance, this architecture uses sensor networks and real-
time analytics to lessen traffic congestion. This approach illustrates how automated
resource management might enhance urban transportation without identifying any
specific technology [33].
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Table 1 The application of deep learning on vanet and their limitations [29]

Ref | Year | Technologies and Summary Limitations
protocols
22 | 2021 | Technologies: Al Gives a summary of There is little discussion
Protocols: protocols for intelligent car tracking and | of implementation
data transmission detection. and performed challenges in the actual
Algorithms utilized: using | well world
the GGEN scheduling
algorithm and the block
matching approach
23 | 2023 | Smart energy management | The study emphasizes how | Regretfully, the report’s
in smart cities is a major | technology has the potential | shortcomings are not
emphasis of the study. It | to completely transform stated clearly. Like any
highlights the confluence | urban life. It focuses on research project, though,
of digital, communication, | providing residents with it may run into problems
and data analytics easily accessible services with data privacy,
technologies, although it | using data-driven methods. | unequal access to
doesn’t specify any The report provides technology, and the
particular technologies or | information on current and | requirement for
approaches upcoming smart city cross-sector cooperation
potential
24 | 2023 | Wi-Fi access point, Uses sensors and social Finding the ideal
sensors, cameras, machine | media data to track the balance between the
learning, and the internet | movement of cars and costs associated with
of things pedestrians. Reduces data collection and data
congestion by modifying quality is still a
traffic lights based on challenge
real-time data. Al optimizes
flow by analysing traffic
patterns
25 | 2022 | IoT, 5G, Al, and ML Less traffic, quicker Deployment on a large
technologies; protocols: commuting, and resource scale might be
TLS/SSL, IPsec, and SSH | savings. Enhances traffic challenging. Sensors
algorithms Utilized: The | flow by adapting to shifting | may not be dependable
Advanced Encryption conditions. tackles a variety | all the time. It might be
Standard (AES) and the of urban transportation challenging to integrate
Triple Data Encryption issues the technology with the
Standard (3DES) existing infrastructure
26 |2021 | Technologies: real-time Gathering information from | Scalability, sensor

traffic monitoring, IoT,
and artificial intelligence
Procedures: data
transmission algorithms
for traffic pattern analysis
and traffic signal
management were utilized

social media, smartphone
sensors, and cameras. In
order to predict congestion,
Al and machine learning
analyse traffic trends. traffic
changes made dynamically
to enhance flow

dependability, and
integration with current
infrastructure are
implementation
challenges
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Koshnicharova et al. [34] develop interactive crowd management tools for meta-
verse applications through dynamic data analysis. Although their research focuses on
virtual settings, the spatial optimization and behavioral pattern recognition concepts
they cover may help manage real-world crowds at events or transportation hubs,
which would help with traffic-related issues [29, 34].

The study contributes a novel framework that integrates edge computing with
hybrid deep reinforcement learning (DRL) to address latency and scalability chal-
lenges in VANETS. Unlike prior studies [18, 27], our approach combines spatiotem-
poral traffic prediction (using LSTM networks) with decentralized RL agents at edge
nodes, enabling real-time signal optimization while reducing dependency on central-
ized cloud systems. Additionally, we propose a cybersecurity protocol for VANETSs
using blockchain-based authentication, addressing a gap identified in [35, 36].

3 Evolution of Traffic Management Systems

3.1 Traditional Methods

For decades, traffic management has relied on basic tools like traffic signals, surveil-
lance cameras, and manual monitoring. While these methods provide a foundational
level of control, they often lack the flexibility needed to handle complex, real-time
traffic situations efficiently. Traditional systems aren’t equipped to respond dynam-
ically to changing traffic conditions, which leads to inefficiencies and increased
congestion [37].

3.2 Emerging Technologies

With the advent of new technologies, traffic control has transformed significantly
through the penetration of cloud computations, artificial intelligence, and the Internet
of Things. These advancements make it possible to create responsive urban trans-
portation solutions by analyzing actual time information streams, predicting conges-
tion patterns, and dynamically adjusting traffic coordination using adaptive systems.
The shift from rigid, pre-programmed signal systems to adaptable, data-driven frame-
works has greatly improved traffic efficiency and reduced bottlenecks in cities
[38].
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Fig. 2 Evolution of traffic management systems

3.3 Real Time System

Integrating advanced computational frameworks into Vehicular Ad-Hoc Networks
(VANETsS) has enhanced their ability to anticipate traffic disruptions and minimize
collision risks. By leveraging real-time data analysis and statistical modeling, modern
VANETsS efficiently process large-scale traffic datasets, enabling rapid communi-
cation between vehicles and infrastructure. These systems support collaborative
decision-making protocols to streamline traffic routing and improve road safety
outcomes [39] (Fig. 2).

4 Al-Driven Solutions in VANETSs

4.1 Deep Learning for Traffic Prediction

By analyzing historical trends and live data, Al predicts congestion hotspots hours
in advance. Cities like Los Angeles use these models to preemptively adjust signals
during rush hour [40].
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Fig. 3 Al-driven solutions in VANETSs

4.2 Reinforcement Learning for Adaptive Traffic Control

Traffic lights “learn” from real-time vehicle density, optimizing green/red cycles to
keep traffic moving. Trials in Pittsburgh reduced idle time at intersections by 26%
[41].

4.3 Edge Computing for Real-Time Data Processing

In vehicle communication systems, handling data locally at on-site infrastructure
reduces delays, allowing for quick adaptation to sudden changes in traffic conditions.
By focusing on local data analysis rather than centralized computation, these systems
remain responsive, which is crucial for making real-time decisions. Processing data
locally (viaroadside sensors) instead of sending it to distant servers minimizes delays.
This is critical for emergency vehicles needing priority access [42] (Fig. 3).

5 Conclusion

The shift from traditional traffic management to Al-enhanced Vehicular Ad-Hoc
Networks (VANETSs) marks a significant advancement in tackling the complex chal-
lenges of urban mobility. Old methods relied on static signals and manual oversight.
They suffered from inefficiencies like unresponsive congestion management, longer
travel times, and limited adaptability to real-time disruptions. By integrating Al tech-
nologies such as machine learning, deep neural networks, and decentralized edge
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computing, we’ve transformed these systems. Now, dynamic, self-learning systems
process vast datasets and make split-second decisions.

Deep learning algorithms analyze historical and real-time traffic patterns to fore-
cast congestion accurately. This enables proactive adjustments to signal timings and
route recommendations. Reinforcement learning enhances adaptability even further.
Signal cycles are repeatedly improved by traffic control systems using real-time
vehicle density, meteorological data, and accident reports. Experiments in places
like Los Angeles and Pittsburgh have produced remarkable outcomes. There has
been a 21% decrease in peak-hour traffic and a 26% reduction in junction delays. By
using IoT devices and roadside sensors to handle vital data locally, edge computing
guarantees low latency. This is essential for preventing crashes and giving the first
importance to emergency cars.

VANETsS are at the heart of these developments. They provide seamless commu-
nication between infrastructure, vehicles, and central control hubs. By incorporating
predictive modeling into VANET frameworks, cities can instantly adjust to the
weather, traffic volumes, and road closures. This increases safety and efficiency.
For example, in experimental projects, rerouting recommendations and real-time
risk alarms sent over VANETS have reduced the likelihood of accidents by up to
18%. However, the broad use of Al-driven systems is hampered by a number of
factors. Lack of standardized regulatory frameworks, cybersecurity vulnerabilities,
and expensive infrastructure all hinder scalability. Modernizing old urban infras-
tructure with smart technology is expensive. It’s critical to address ethical issues in
the integration of automatic cars and to increase the capabilities of edge computing.
Creating intelligent transportation networks will be essential as cities continue to
change. It is necessary to build inclusive, flexible, and resilient urban settings.
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Abstract Sustainable development and urban planning are essential to creating
resilient, just, and ecologically conscientious cities. This chapter examines cutting-
edge urban planning techniques that combine sustainability, community involve-
ment, and technology developments, emphasizing the revolutionary potential of Al-
powered Vehicular Ad-hoc Networks (VANETS). By facilitating real-time commu-
nication between infrastructure and automobiles, VANETSs enhance traffic control,
ease congestion, and cut carbon emissions. The chapter also covers how data-driven
decision-making and predictive analytics improve urban mobility, maximize resource
allocation, and support the objectives of smart, sustainable cities. The chapter empha-
sizes the significance of all-encompassing, flexible techniques for long-term sustain-
ability by looking at the role of Al in urban ecology, public transportation networks,
and renewable energy integration. Through innovation and collaboration, urban plan-
ners and policymakers can leverage Al and VANET technologies to create livable,
urban landscapes that are sustainable for both current and forthcoming generations.
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1 Introduction

There is a pressing need and opportunity to reconsider how we build and run our
cities as a result of growing environmental consciousness and concern, urbanization,
and technological advancement. In recent decades, these interconnected Under The
updated term “smart sustainable cities”, concerns and developments have begun to
come together [1]. In this chapter, the concept of “smart sustainable cities” is intro-
duced and discussed. Additionally, the chapter attempts to define “smart sustainable
cities” and lists some of the primary challenges to implementing the concept. Smart
cities and sustainable cities are defined in a variety of ways, but their relationship
has not gotten as much attention. In addition, because the terms “smart city” and
“sustainable city” have different connotations, it is challenging to mix them. To
promote a common understanding of the concept and provide a starting point for
future discussions on the advantages that smart sustainable cities are supposed to
provide, a definition of smart sustainable cities is necessary [2].

The sustainability movement has resulted in a new approach to urban planning
during the past few decades. Planners are putting more focus on social justice and
environmental sustainability. This shift is seen in the growing emphasis on open
spaces, public transportation, mixed-use complexes, and community involvement.
The historical history of urban planning gives a vital insight of the current trends and
future potential in the discipline [2] (Table 1).

The main objective of this chapter is to equip policymakers, urban planners, and
other stakeholders with the knowledge and resources necessary to create cities that
can flourish amid rapidly increasing urbanization and global environmental changes.
By adopting innovation and sustainability, Urban areas can be developed to improve
the well-being of generations to come, making certain that our cities continue to be
lively, resilient, and enduring centers of human endeavor.

2 Importance of Sustainable Development

The concept of sustainable development aims to reconcile various, sometimes
conflicting goals while recognizing the social, economic, and environmental
constraints that our society faces. It signifies satisfying current needs without jeop-
ardizing future generations’ capacity to fulfill theirs. Considering that ecosystems
and natural resources often face challenges due to the swift rate of urbanization
and development, this idea is crucial for urban planning. Sustainable development
guarantees that social equity, ecological conservation, and economic advancement
are advanced concurrently, fostering a comprehensive strategy for growth [18, 19].
In urban planning, sustainable development seeks to establish urban environments
that are environmentally friendly, financially practical, and socially inclusive. This
includes utilizing green infrastructure, like parks and green roofs, to improve urban
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Table 1 Standard techniques used in innovative approaches to urban planning and sustainable
development, along with a description, limitations

References | Technique used Description Limitations
[3] Internet of Things IoT implementation for effective High initial costs,
(IoT) management of cities, including privacy concerns,
control of traffic, trash management, | and data security
and smart grids issues
[4] Vertical gardens and | Integration of vertical gardens and | High maintenance
green roofs green roofs in urban buildings to costs and structural
enhance air quality, reduce heat load considerations
islands, and promote biodiversity
[5] Transit-oriented Development of urban areas Potential for
development (TOD) | centered around public transport increased property
hubs to reduce reliance on cars and | prices and
promote sustainable commuting gentrification
options
[6] Participatory design | Including the community in the Time-consuming
workshops planning process to guarantee that | process and
developments satisfy local potential conflicts
requirements and tastes among stakeholders
[71 Brownfield Reclaiming and redeveloping High cleanup costs
redevelopment contaminated industrial sites for new | and potential legal
urban uses, thereby reducing urban | challenges
sprawl and preserving greenfield
[8] Form-based codes Implementing form-based codes to | Requires significant
regulate land development and changes to existing
create predictable urban forms that | zoning laws and
support sustainability regulations
[9] Climate adaptation | Creating urban planning techniques | Uncertain future
strategies that increase cities’ ability to climate scenarios
withstand the consequences of and high
global warming, including floods implementation
and extreme temperatures costs
[10] Autonomous Integrating driverless cars to Technological,
vehicles improve accessibility and safety in | legal, and ethical
cities while lowering pollution and | challenges
traffic jams
[11] Renewable energy Integrating energy from sustainable | Intermittency issues
integration sources, including wind and solar and high initial
power, into metropolitan investment costs
infrastructure to reduce emissions of
carbon and promote independence
from electricity
[12-14] Predictive analytics | Utilizing Al and using large-scale Issues with data

data insights to forecast urban
planning and manage urban growth,
resource allocation, and
infrastructure needs

privacy as well as
the requirement for
big datasets and
powerful computers

(continued)
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Table 1 (continued)

References | Technique used Description Limitations
[15] Disaster risk Designing urban areas to be resilient | High costs of
reduction to natural disasters through adaptive | retrofitting existing
infrastructure and emergency infrastructure and
preparedness plans potential resistance
from local
communities
[16, 17] Affordable housing | Creating policies and programs to Financial
initiatives ensure affordable housing in urban | constraints and
areas to promote social equity and | opposition from
prevent displacement due to developers and
gentrification existing residents

biodiversity and lessen environmental effects [20]. Sustainable urban planning prior-
itizes effective public transport networks and renewable energy solutions to minimize
carbon emissions and enhance energy efficiency [21, 22].

2.1 Objectives of Urban Planning and Sustainable
Development

Through the use of technology, smart city urban planning places a high priority on
sustainability, efficiency, and quality of life. It improves services such as transporta-
tion, waste management, and energy distribution using data analytics and IoT. Key
objectives include lowering carbon footprints, boosting renewable energy, increasing
public transportation, and developing green space. Social inclusion guarantees access
to housing, healthcare, and internet connectivity. Innovation clusters, startups, and
digital infrastructure support economic growth, increasing global competitiveness
and resilience [23, 24].

2.2 Principles of Sustainable Development

The goal of sustainable development is to balance economic advancement, envi-
ronmental preservation, and social inclusion. Moreover, now it guarantees that the
current requirements are fulfilled without jeopardizing future generations’ capacity to
satisfy theirs, which necessitates strategic planning and effective resource manage-
ment. Promoting equitable and vigorous economic growth improves community
well-being by providing inclusive possibilities. Effective resource use reduces waste
and environmental effect through recycling and sustainable technology. Further-
more, developing resilient structures and systems improves the ability to endure
environmental, social, and economic problems [25].
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2.3 Urban Ecology and Environmental Psychology

Urban ecology studies the relationships between living creatures and their urban envi-
ronments. It investigates the effects of urbanization on ecological systems and aims to
create urban environments that support biodiversity and ecosystem function. Urban
ecologists study how plants, animals, and microbes adapt to urban environments and
how urban design might enhance ecological well-being [26].

Environmental Psychology examines the relationships between individuals and
their environments. It explores the influence of urban settings on mental health,
behavior, and overall well-being [27]. Main areas of focus consist of: Space Percep-
tion: The way people perceive and engage with urban environments, encompassing
the impact of design features on feelings and actions [28]. Social Interactions: The
impact of city settings on social conduct, community involvement, and social unity
[29]. Stress and Well-Being: The influence of urban design elements, like noise,
population density, and access to green areas, on stress levels and overall health [30].
Incorporating knowledge from urban ecology and environmental psychology into
urban planning can create spaces that promote ecological sustainability while also
enhancing human health and well-being.

2.4 The Role of Landscape Architecture in Urban Planning

Landscape architecture is vital in urban planning as it involves designing and
managing outdoor areas to improve aesthetic appeal, functionality, and environ-
mental quality. Landscape architects engage in diverse projects, such as parks, public
squares, waterfront areas, and urban green spaces [31].

Their work involves, Designing appealing and practical public areas that
encourage social connections, leisure activities, and community involvement [18].
Implementing green infrastructure concepts, green roofs and rain gardens, for
example, to control runoff, enhance air quality, support urban biodiversity. Restoring
impoverished urban regions and rehabilitating natural environments to enhance
ecological well-being and sustainability [18, 19] Integrating artistic features and
cultural allusions into landscape designs to represent local identity and improve the
character of urban environments [20].
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3 Innovative Urban Planning Strategies

3.1 Smart Cities and Technology Integration

3.1.1 AI-Driven VANETS in Urban Management

The incorporation of Al technologies in Vehicular Ad-hoc Networks (VANETS) is a
remarkable improvement in smart city development. VANETS operates on vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, which allows
urban transportation systems to operate more efficiently through real time data
exchange. These networks use Al technologies to forecast traffic, suggest optimal
routes, and control traffic flows. For example, Al algorithms can change traffic
signals to dynamically optimize the movement of cars and reduce waiting time and
fuel economy. Moreover, VANETSs permit vehicles to exchange vital information
such as providing accident warnings or notifying dangerous road conditions, which
enhances safety on the road and helps prevent crashes. These novel technologies
serve the broader objectives of smart city projects by improving mobility, decreasing
greenhouse gas emissions, and increasing life quality for people [21].

3.1.2 Data-Driven Decision Making

Al-based VANETs also provide support in decision-making when it comes to
deciding on urban development projects. Planners can access the data obtained
from a VANET enabled vehicle to evaluate traffic movements, road occupancy, and
plan development projects. For example, Al-assisted predictive models can identify
periods of maximum traffic and recommend actions like taking specific alternative
routes or increasing the number of scheduled public transport vehicles. These capa-
bilities are essential in decongestion efforts and efficient service planning in urban
areas with high population density [22].

3.2 Green Infrastructure and Eco-Friendly Designs

3.2.1 Urban Green Spaces and Parks

Due to their numerous beneficial impacts on health, society, and the environment,
urban parks and green areas are essential components of green infrastructure. Acting
as urban lungs, these regions boost biodiversity, improve air quality and lessen the
consequences of urban heat islands. Parks and green areas not only provide leisure
options but also encourage physical exercise and improve mental health. Green spaces
are incorporated into city designs via efficient urban planning, ensuring accessibility
and connectivity [22].
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3.2.2 Sustainable Water Management

Improving water quality, minimizing flood risks, and preserving water resources are
the goals of sustainable water management strategies. Some of the techniques include
rainwater harvesting, permeable surfaces, and constructed wetlands. By capturing
and storing rainwater for non-drinkable applications, rainwater harvesting systems
lessen the pressure on city water resources. Permeable surfaces enable rainwater to
infiltrate, decreasing runoff and restoring groundwater levels. Constructed wetlands
naturally filter rainwater to improve its quality prior to its return to water bodies.

3.2.3 Green Roofs and Vertical Gardens

Creative methods for incorporating greenery into city landscapes consist of vertical
gardens and green roofs. Green roofs adorned with plants manage stormwater runoff,
reduce energy expenses, and provide insulation. Living walls, or vertical gardens,
enhance air quality, provide insulation for structures, and beautify urban environ-
ments. Incorporating these elements into both new buildings and renovation projects
can enhance urban greening and sustainability [32].

3.3 Mixed-Use Developments and Compact Urban Form

3.3.1 Transit-Oriented Development (Tod)

Transit-oriented development, or TOD, aims to build high-density, mixed-use
communities around public transportation hubs. TOD goals are to lessen dependence
on automobiles, alleviate congestion, and encourage sustainable urban development.

3.3.2 Urban Density and Land Use Efficiency

Maximizing the number of individuals and activities within a confined area is referred
to as urban density and efficient land utilization. In addition to curbing urban sprawl
and conserving natural environments, high-density developments also reduce the
necessity for extensive infrastructure. Efficient land use management necessitates
zoning regulations that promote infill development, mixed-use buildings, and the
repurposing of empty spaces. These approaches reduce travel times, encourage
sustainable development, and enhance the vibrancy of urban areas [33] (Fig. 1).
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Fig. 1 Green infrastructure and eco-friendly designs

3.4 Participatory Planning and Community Engagement

Collaborating with stakeholders is interacting with these people or groups to get their
feedback on the project. They might take part by sharing knowledge, skills, resources,
and criticism, among other things. It might mean working together to accomplish
the project’s short-term goals or longer-termones.

Participatory workshops gather participants to solicit their thoughts or try to come
up with creative, collaborative solutions to issues. Although these workshops are used
in a wide range of settings, design research and participatory action research are the
two most common uses for them [34] (Fig. 2).

Fig. 2 Participatory planning and community engagement
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4 International Policies and Agreements

4.1 United Nations Sustainable Development Goals (SDGS)

Al based VANETS actively contribute towards Sustainable Development Goal 11 by
targeting urban problems like road congestion and pollution. The use of algorithms
and real-time communication allows for the implementation of efficient VANETSs
which lead to better transportation systems. By reducing idle times and traffic
congestion, greenhouse gas emissions are lowered, which is a step towards achieving
global sustainability objectives. Moreover, the enhancement of transportation equity
through VANETS improves access to mobility for all people [35].

4.2 Paris Agreement and Climate Action

The significant Paris Agreement, which seeks to tackle climate change and its effects,
was endorsed in 2015. It brings together nations to set objectives for reducing green-
house gas emissions and to aid global efforts aimed at preventing the warming of
the planet from exceeding 2 degrees Celsius. In order to lower emissions, improve
climate change resilience, and advance sustainable urban development, cities are
urged under the Paris Agreement to establish and execute climate action plans.
This involves financing sustainable transportation methods, enhancing the energy
efficiency of buildings, and transitioning to renewable energy sources [34].

5 National and Local Government Initiatives

5.1 National Urban Policies

National governments formulate national urban policies to guide the sustainable
growth of cities and urban regions. These policies seek to promote equitable, sustain-
able, and balanced growth by establishing strategic objectives and directions for urban
development. They encompass matters such as economic growth, environmental
conservation, infrastructure enhancement, and accessible housing. Green building
standards, public transit financing, and renewable energy incentives are just a few
instances of the targeted goals and measures that national urban policies typically
incorporate to encourage sustainable urban practices [36].
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5.2 Local Sustainability Plans

Local governments develop sustainability plans to tackle specific opportunities and
challenges related to sustainability in their areas. These plans outline specific actions
and initiatives designed to promote sustainable urban development at a local level.
Typically, they encompass goals and strategies related to community engagement
and the protection of green areas. In order to ensure that the plans reflect the commu-
nity’s needs and objectives, local sustainability initiatives often involve collaboration
including the local community, such as citizens, companies, and nonprofit [37].

5.3 Zoning Laws and Sustainable Urban Codes

5.3.1 Form-Based Codes

Zoning laws known as “form-based codes” place considerable emphasis on the
building and physical layout of the built environment more than just land use. In an
effort to develop trustworthy and high-quality urban design, these guidelines focus
significantly on the connection among buildings, streets, and public areas. Codes
based on form encourage walkability, mixed-use developments, and an urban envi-
ronment that is scaled for humans. Through the regulation of building design and
the layout of public areas, these codes foster lively, sustainable communities that
emphasize pedestrian and bike facilities, public transit, and green areas [38].

5.3.2 Incentives for Green Building

Incentives for green building refer to policies and initiatives designed to encourage
the construction and renovation of structures to meet heightened energy and environ-
mental performance standards. Developers who adopt sustainable practices can take
advantage of tax credits, subsidies, low-interest loans, faster permitting processes,
and density bonuses, among other benefits. The objectives of green building incen-
tives include minimizing the environmental footprint of structures, enhancing energy
efficiency, and encouraging the adoption of sustainable materials and technologies.
These incentives help cities achieve their sustainability goals and reduce their total
carbon footprint by encouraging eco-friendly construction practices [39].
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6 Challenges and Opportunities

Urban planners are confronted with environmental issues as their top priority while
striving to develop resilient, sustainable cities. Alterations in climate are endangering
urban regions, making resilience strategies essential to endure extreme weather and
rising sea levels. The urbanization process also disturbs ecosystems, decreasing
biodiversity and natural resilience. Socioeconomic issues complicate planning as
vulnerable individuals confront rising housing expenses, restricted access to services,
and income inequality. Addressing these issues requires creative solutions and inclu-
sive policies. Public—private partnerships, grassroots initiatives, and community
participation, however, offer opportunities for equitable urban growth and sustain-
able development. Cross-sector collaboration makes cities more adaptable, inclusive,
and resilient [40].

7 Conclusion

This chapter emphasizes the game-changing capabilities of Al-enabled VANETS
with relation to smart city initiative. Implementation of VANETS within city transit
infrastructures can offer great improvements in mobility, sustainability, and safety
within the urban environment. Networks powered by Al help cities deal with critical
problems like congestion and pollution in real-time, which help in the sustainable
development of cities.

To tackle the growing issues related to the environment and development, cities
will need to embrace technologies such as VANETS that foster resilience, flexibility,
and inclusivity. These advanced networks serve as a paradigm for how contemporary
technology may improve the quality of life for present and future residents and
promote urban sustainability.
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Abstract Urban bridges have a direct impact on public safety, they are crucial
components of the transportation system that require extra care. These structures,
in contrast to highway bridges, frequently experience faster degradation due to
increased traffic volumes, which are made worse by overloaded cars. Proactive
management techniques, such putting in place vehicle weight limitations (VWRs)
to reduce structural concerns, are necessary to address these issues. This study high-
lights how crucial precise traffic load modeling is to preserving the durability and
reliability of municipal bridges. By using structural health monitoring (SHM) sensors
and weigh-in-motion (WIM) devices, engineers may evaluate traffic patterns in real
time and adjust load models to match the real situation. The study also looks at
extrinsic elements that jeopardize bridge integrity, such as soil subsidence and pres-
sures brought on by humans. Alongside developments in smart infrastructure, such
as intelligent transportation systems (ITS) and next-generation 6G connectivity,
which improve traffic management and minimize wear, new materials like ultra-
high-performance concrete (UHPC) are being investigated to increase durability. The
results highlight how crucial adaptive techniques are to keeping urban bridges safe
and operational in the face of growing demands. These tactics include dynamic load
modeling, ongoing structural examination, and incorporating developing technology.
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1 Introduction

Urban bridge problems typically attract more attention than highway bridge problems
because they have a direct impact on public safety. When in use, urban bridges
are subject to controlled humidity, temperature, and wind. The volume of traffic is
the main element influencing these factors. Recent years have seen a dramatic rise
in traffic volumes due to urbanization and municipal expansion. The degeneration
of metropolitan bridges is accelerated by overload cars, which might potentially
cause bridge failures [1-3]. A practical and effective way to address this issue is to
implement a vehicle weight limit (VWL).

Nowadays, while selecting VWL for a bridge, certain codes are mostly adhered
to [4]. Truck weight estimates based on axle number and wheelbase were made by
AASHTO [5]. The Federal Highway Administration (FHWA) has put out a number
of formulas pertaining to a bridge’s span length. A deterministic analysis of bridge
limit states is used in the Chinese standard to establish The car’s total weight and
wheel load limit [6]. Automobile pressure is one of the main factors affecting a
bridge’s durability and safety. Due to China’s recent sharp increase in traffic volume,
overweight and heavy automobiles are becoming more and more common there
Both the current traffic volume and its anticipated future growth over a specific time
period are taken into consideration when determining the bridge’s primary variable
load, or vehicle load. The vehicle load models used in highway bridge codes must
be updated often to guarantee a bridge’s safety. The vehicle load selected for the
bridge design needs to be compatible with the traffic characteristics of the route
and suitable for the amount and state of traffic on it. Accurate vehicle load models
are essential for urban bridge safety because they need to replicate actual traffic
patterns. In this process, structural health monitoring (SHM) systems—which have
been developed over decades for civil infrastructure such as bridges—are essential.
Technology known as weigh-in-motion (WIM), which is essential for bridging SHM,
allows engineers to create accurate load models and examine traffic trends. These
models may be divided into two groups: fatigue load models, which measure long-
term structural wear, and traffic load models, which analyze the immediate effects
of cars on bridges [7—10]. Determining the vertex and edge sequences for multi-lane
road segments presents difficulties when modeling highway networks. Datasets are
pre-processed to preserve a single lane per highway stretch in order to remedy this.
Methods include combining split roads using ArcGIS’s Merge split Roads tool or
filtering lanes (for example, retaining the first lane in numbered sequences). The
network topology is then maintained by mapping each highway segment’s endpoints
to the closest equivalents in the dataset. Lastly, to preserve structural and spatial
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integrity, the road network model is updated by substituting precise vertex-edge
sequences from the processed dataset for simplified segments [11].

A geological danger mostly brought on by human activity, such as underground
mining and fluid extraction, is land subsidence (e.g., water or oil), and construction
projects, poses significant risks to urban infrastructure. Uneven settling can lead to
ground cracks, damaging buildings, dams, overpasses, and underground pipelines.
For critical infrastructure like overpasses, deformation from subsidence may compro-
mise structural safety, highlighting the need for proactive monitoring and mitigation
strategies. Land subsidence can result in a variety of geological disasters, such as
subterranean pipeline damage, housing cracking, and foundation sinking. Ground
fissures caused by uneven land subsidence can cause damage to buildings, dams,
overpasses, and other urban infrastructure. Since overpasses are an essential piece
of transportation infrastructure, their distortion might be extremely dangerous. The
highway overpass may flex unevenly and sustain partial bridge damage due to uneven
soil subsidence. Dewatering and tunneling during metro station construction can also
cause settling of the foundation of overpass piles [12—14]. Because they are expen-
sive to build and there aren’t many other options, bridges are essential components
of the system of public transportation. Disasters of all kinds have the potential to
compromise network functionality and crossing safety. Bridges serve as obstruc-
tions for nearby highways, therefore any disturbance in their functioning might
affect communities’ access and connections, make it more difficult to prepare for
emergencies and evacuate, and negatively impact businesses and economies. Often,
a bridge failure causes a critical connection to go down. Bridges are likely to be
used by a large number of people, have little redundancy, and cost a lot to maintain,
especially if they are a component of major transportation networks (like highways).
The total operation of the road network may thus be impacted by bridge failure or
shutdown, and the consequences of the failure need to be considered from a systemic
perspective. At the confluence of fluid dynamics, hydrology, transport modeling and
structural analysis, assessing the systemic impact is a difficult and interdisciplinary
undertaking [15].

2 Literature Survey

The impacts of geometric factors on the workload of car and bus drivers were exam-
ined, and it was shown that sight distance (SD) and shoulder width (SW) had the
greatest effects on the workload of vehicle drivers. Age, experience, and occupa-
tion were found to have little bearing on driver characteristics, Geometric geometry
has a greater effect on drivers of cars than on drivers of buses. This conclusion,
however, ignores environmental variations like weather and illumination, which
may potentially impact geometry effect and driving effort [16]. the creation and
deployment of a multifaceted, packaged waste management system for New York
City that makes use of road, rail, and marine transportation to effectively manage
household garbage while minimizing ecological impacts. The system’s dependence
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on tide timings and sea transit creates operating delays and complications, particu-
larly during inclement weather, even though it significantly decreases vehicle miles
and environmental costs. Through creative policy and contract designs, the system
combines maritime transfer stations, optimizes operations, reduces truck consump-
tion, improves resource efficiency, and solves long-term waste management relia-
bility. These components may restrict the system’s adaptability and effectiveness,
particularly in the event of unexpected outages or higher waste quantities [17].

The resistance of urban bridge networks, with a focus on the integration of cutting-
edge technology like artificial intelligence to improve bridge network resilience,
performance evaluation under various catastrophe scenarios, and structural health
monitoring. Although there is no common standard for choosing functional indicators
and resilience evaluation techniques, and its main focus is on how resilient bridge
networks are to catastrophic loads. This underscores the requirement to conduct
more thorough, data-based studies to fill in holes in resistance evaluation under
different disaster loads and throughout the structure’s life cycle. Durability models are
consistently compared and used to different bridge networks and disaster situations
may be hampered by the lack of a uniform framework [18]. Nonlinear dynamic
analysis and ground movements that reflect two seismic hazard levels, the effects of
hydrodynamics on the seismic reactions of liquefied and scour-prone coastal highway
bridges were investigated. Although it only applies to a normal coastal highway
bridge, the study finds that scour transfers Seismic harm occurs in cohesionless soils
from the column to the pile foundation, accounting for scour depths between 0 and
6 m. Particularly at low seismic design levels, hydrodynamic factors significantly
affect pile curvature but have little influence on bearing and column deformation.
This scope restricts the findings’ potential application to various bridge designs,
soil profiles, or difficult circumstances like breaking waves, which might drastically
change the outcome [19] (Table 1).

3 Design Principles of Urban Bridges and Highways

Coastal highway bridges subjected to liquefaction and scour were studied for
their seismic responses to hydrodynamic effects via earth motions that represent
two seismic danger levels and nonlinear analysis of dynamics. The book chapter
concludes that scour transmits seismic damage from the column to the pile foun-
dation, despite the fact that it only examines a typical coastal highway bridge on
cohesionless soils with scour depths ranging from 0 to 6 m. Particularly at low
seismic design levels, hydrodynamic factors significantly affect pile curvature but
have little influence on bearing and column deformation. This scope restricts the find-
ings’ potential application to different soil profiles, bridge designs, or challenging
conditions like breaking waves, which might significantly alter the results.
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Table 1 Summary of techniques and limitations in bridge building and inspection

Ref. | Technique used | Description Limitations
[20] | Spearman’s rank | A pedestrian bridge in Trabzon, Cultural variations’ effects
correlation Turkey: its usage, practicality, safety, | on pedestrian bridge use,
coefficient and design, emphasizing the necessity | which may affect design
for an updated design to satisfy safety | choices
and aesthetic standards
[21] | Vibration New design techniques and That owing to technological
monitoring of technologies to boost bridge building | difficulties and legal
truss systems and inspection, with an emphasis on | limitations, UAVs cannot
techniques like unmanned aerial yet completely substitute
vehicles (UAVs) and autonomous human inspection for
bridge building (ABC) to increase specific bridge components
safety and efficiency
[22] | Machine learning | Using machine learning algorithms to | Lack of empirical support
models forecast concrete’s coefficient of for ML models under
thermal expansion and other diverse environmental
characteristics conditions

3.1 Foundations of Urban Bridge and Highway Design

Bridges have limited plane and elevation design because of the scarcity of urban
land. Because every place has its own history and culture, bridges are designed
differently. Consequently, it is difficult to rebuild a bridge. If a bridge blends in with
its surroundings, it is deemed attractive and lovely [23].

Micro piles have been a popular choice for bridge foundations in recent years.
Micropiles reduce soil settling and manage stress concentrations such as punching
shear. Furthermore, micro piles save building expenses in addition to saving time.
Micropiles do have certain drawbacks, too, such bowing in weak soil layers and
corrosion in dangerous settings [24] (Fig. 1).

3.2 Structural Considerations in Urban Bridge Design

Bridge inspection by hand is highly costly and time-consuming. Deploying several
sensors and gathering data is an other solution. We refer to this strategy as Structural
Health Monitoring (SHM). Numerous problems, including quantification, localiza-
tion, and structural damage detection, are addressed by SHM. Design verification
and condition-based maintenance choices are made using this data [25].

In Sherbrooke, Quebec, Canada, the first pedestrian bridge made of ultra-high-
performance concrete (UHPC) was built. This marked the beginning of the use of
UHPC in bridge building. The usage of UHPC improved the structure’s longevity
and decreased maintenance costs. In summary, this footbridge made it possible to
use UHPC to bridge engineering [26].



388 M. A. Hamza et al.

Fig. 1 Key concepts in urban bridge and highway design

3.3 Traffic Flow Optimization on Urban Highways

Traffic control is crucial to sustainability and efficiency in big cities. Regression
analysis is used in this study to examine traffic flow. Additionally, the study examines
traffic statistics using the deep learning technology. In order to maximize urban
mobility, these mathematical models are essential [27].
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Fig. 2 Traffic flow optimization techniques for urban highways

Semaphore timing rules are the most often used technique for controlling traffic
flow. Al systems that generate traffic plans and the placement of traffic agents on the
scene are other alternatives. However, centralized route management is among the
greatest ways to maximize traffic flow. With this method, the traffic flow is completely
under the authority of the authorities [28] (Fig. 2).

4 Challenges and Innovations in Urban Infrastructure

Urban infrastructure developments and challenges meet the changing demands of
expanding cities. We shall talk about the most recent developments influencing urban
transportation networks in Sect. 4.1, with an emphasis on the incorporation of innova-
tive design principles and technology. In Sect. 4.2, common durability problems with
urban bridges will be discussed, along with potential fixes to increase their longevity
and dependability. Finally, in Sect. 4.3, we will look at the idea of smart roads, which
are a major advancement in urban infrastructure where cutting-edge technology such
as sensors and data analytics are used to improve safety and streamline traffic flow.

4.1 Evolving Trends in Urban Transportation Networks

At the UN Earth Summit in 1992, the necessity of sustainable development in urban
transportation was acknowledged. Furthermore, the European Union (EU) intro-
duced the concept of sustainable mobility in its “EU Green Paper on the Impact
of Transport on the Environment.” Electric cars should be powered by renewable
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Fig. 3 Sustainable development and urban transportation trends

energy sources to enhance air quality. By 2050, 60 billion tons of CO, emissions
might be avoided if more than 60% of automobiles are powered by electricity [29].

In order to realize the concepts of smart cities, smart urban transportation is
essential. This is because more attention is paid to metropolitan areas that are built for
automotive use. Therefore, it’s critical to reconsider various modes of transportation
in order to make cities smarter and more sustainable [30] (Fig. 3).

4.2 Addressing Urban Bridge Durability Issues

One cutting-edge method for bridge engineering (BE) is ultra-high-performance
concrete (UHPC). Because of its greater durability, UHPC is ideal for use in deep
foundations for bridges. The load testing indicates that UHPC can support more
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Fig. 4 Enhancing urban bridge durability through innovative techniques

weight than steel piles, which means that fewer piles are needed for the bridge
foundation [31].

China has worked hard to find solutions for Bridge Engineering’s (BE) sustain-
ability problems. A number of actions have been made to enhance the design,
construction, and oversight of bridges. These steps are done to lower danger, prevent
collapse, and make the construction more durable [32] (Fig. 4).

4.3 Smart Highways: Integrating Technology
with Transportation

For transportation networks to function effectively, information technology utiliza-
tion must be increased. Intelligent transportation systems, often known as smart trans-
portation, integrate sophisticated sensors, computers, and management strategies
to improve traffic flow and safety. Four key concepts—safety, integration, sustain-
ability, and responsiveness—are given top priority when implementing developing
technology in transportation networks [33].

Information technologies like cloud computing and the Internet of Things are
essential to intelligent transportation’s effectiveness. Intelligent highway transporta-
tion systems employ 6G connection to enable inadequate vehicle-to-vehicle commu-
nication in order to obtain real-time data. As a result, driving decisions are correct
[34] (Fig. 5).
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Fig. 5 Integration of technology in smart highway

5 Conclusion

Growing traffic volumes, shifting climatic conditions, and the effects of human
activity such ground subsidence present growing problems for urban bridges. In
order to reduce bridge degradation, vehicle weight limitations (VWL) that are based
on precise traffic estimations must be implemented. Weigh-in-motion (WIM) tech-
nologies, in particular, are essential for evaluating traffic conditions and forecasting
future load demands on bridges as part of structural health monitoring (SHM)
systems. Furthermore, using ultra-high-performance concrete (UHPC) and incor-
porating cutting-edge technology like 6G connectivity and intelligent transportation
systems (ITS) offer viable ways to increase the robustness and security of urban
bridges. The development of data-driven methods to track, evaluate, and improve
bridge performance over time is crucial as urbanization keeps increasing. Cities may
guarantee the robustness of their transportation networks and avoid expensive break-
downs by fusing state-of-the-art technology with conventional engineering methods.
Future urban bridge design and traffic management will be shaped by ongoing
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research and technology developments, which will provide safer, more sustainable
infrastructure for the expanding urban population.
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Towards Resilient V2V Communications: | M)
Al Optimized Protocols, Performance, <
and Reliability in Autonomous Vehicles

Manas Kumar Yogi, Atti Mangadevi, B. Kalyan Chakravarthy,
and Tarra Sekhar

Abstract This chapter introduces a novel approach leveraging Artificial Intelli-
gence (Al) within Vehicle-to-Vehicle (V2V) communication protocols. The research
focuses on three key areas: intelligent resource allocation, predictive maintenance,
and enhanced security. Specifically, it explores how Al-powered methods can
improve channel selection, power allocation, and bandwidth utilization. This leads
to more efficient routing of information within the network, effectively mitigating
communication failures and ensuring system reliability while reducing downtime.
Routing refers to the process of determining the best path for data to travel across a
network from a source to a destination. This research addresses security threats and
methods for maintaining privacy and data integrity. Optimization, a key aspect of
resource allocation, aims to find the best solution among a set of possible options,
maximizing desired outcomes like efficiency and minimizing undesirable factors like
latency. Machine Learning (ML), a subset of Al, is employed to enable systems to
learn from data without explicit programming, improving their performance on a
specific task over time. The ML techniques utilized in this chapter are for predictive
maintenance and intelligent resource allocation. This research work contributes to
the development of seamless and connected mobility in urban transportation. Experi-
mental results demonstrate the effectiveness of the proposed Al-driven enhancements
to the V2V communication ecosystem.
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1 Introduction

Vehicle-to-Vehicle (V2V) communication is a cornerstone of the emerging connected
vehicle ecosystem, enabling vehicles to exchange data in real-time to improve safety
and efficiency on the roads. Vehicles are capable of obtaining precious information by
communicating with each other using V2V communication, such as their speed, loca-
tion, braking and steering information [1]. This leads to more efficient intervehicle
traffic management, thereby facilitating safer and more agile transportation networks.
For example, consider a situation where a car is about to make a sudden stop due to a
hazard on the road, such as an unexpected obstacle. Using V2V communication, the
vehicle can transmit a message of the braking status of the vehicle following it to the
vehicles behind. Such vehicles are then able to react to move immediately either by
decelerating or changing their trajectories, thus preventing a rear-impact collision.
This ability can be generalized to more challenging situations, e.g., intersection,
where, talking to each other, the vehicles guarantee the proper, non-collusiveness
turns. V2V communication that is enabled on the whole by means of monitoring the
information about the environment whose operation extends beyond the range of the
sensors of the individual vehicle is the basis for the realization of semi-autonomous
or autonomous driving systems where sensors and cameras are not the sole sources
of the perception of the environment [2]. That enables the more effective on-line
decision making, in turn, improving the quality of the driving experience. In dense
traffic situations, for instance, vehicles can communicate to create an organized flow,
reducing congestion and enhancing road capacity. Resilience plays an important role
in an autonomous vehicle (AV) network, as the AV’s safety decisions lie in the contin-
uous, real-time data exchange with the network. Without resilient communication
systems, autonomous vehicles would be unable to function safely and effectively in
dynamic environments. Resilience in this context refers to the ability of a vehicle’s
communication network to perform reliably under various conditions, even when
faced with technical issues, environmental factors, or security threats [3]. By using
Al to process and analyses this data in real-time, vehicles will be able to share what
itis best able to tell other cars on the road. Al algorithms are able to remove unneces-
sary data and to share information that avoids accidents or improves traffic efficiency.
Let’s say a car notices an impending collision in front of it, and displays a warning.
Al may guarantee that this warning is sent at the highest priority level to vehicles in
vicinity, and other less urgent information, e.g. location updates or speed changes,
are transmitted at a lower priority.

Al is also of utmost importance to make V2V communication adaptive to the
changing road conditions. When road traffic is heavy, Al can be helpful to rank
messages according to urgency. For example, when several vehicles are approaching
a traffic bottleneck, Al is able to identify the most appropriate messages to send,
e.g., lane changes, and will send them to the vehicles in the best possible way. Al-
aided machine learning algorithms can also continuously enhance the effectiveness
of V2V systems. By learning from previous experiences and pavement condition,
artificial intelligence systems can adapt the communication protocol to the future
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ones. That is, the system can learn and be more intelligent with time by requiring
less and less manual retraining or human oversight [4]. For security, anomalies in
communication patterns, as, for example, strange messages, that could indicate a
malicious activity, are also applied with the use of Al. Through analyzing the flow
of information between cars, Al can discover whether a car is broadcasting false or
harmful information, and warn the system to act, e.g., to isolate the car or to block its
messages. Al also extends the decision-making function of the autonomous vehicle,
by properly combining information available from V2V exchange with other infor-
mation, for instance, from sensor data, traffic lights or GPS. With this integration,
autonomous vehicles are not only able to “speak” to other vehicles, but also be able
to take in all of the incoming data completely and arrive at safe, informed deci-
sions holistically. V2V communications are the basis of a new generation of road
safety and autonomous driving networks. Thanks to the support of robust commu-
nication systems, vehicles are able to provide continuous reliable data exchange in
adverse situations. Al greatly improves these systems by focusing on the most impor-
tant information, by besting communication flows, and by providing a high level of
security from malicious attacks [5]. These components collectively ensure a safer,
more effective and adaptive network of roads for autonomous vehicles, facilitating
confident and intelligent driving on challenging road traffic.

2 Foundations of V2V Communications

2.1 State-of-Art Technologies Enabling V2V
Communications

See Table 1.

2.2 Existing Standards and Regulatory Frameworks

See Fig. 1.

2.3 Challenges in V2V Communication for Autonomous
Vehicles

See Table 2.
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Table 1 Taxonomy of popular V2V communication technologies [6-9]

Aspect Dedicated short range communications Cellular vehicle-to-everything (C-V2X)
(DSRC)

Technology type IEEE 802.11p (Wi-Fi extension) Cellular-based (LTE and 5G)

Frequency band 5.9 GHz (dedicated spectrum) Cellular spectrum (uses both licensed and

unlicensed bands)

Communication modes

Direct communication between vehicles
and infrastructure

Direct Mode (device-to-device) and network
mode (via cellular network)

Latency Low latency (ideal for safety—critical Ultra-low latency with 5G (suitable for
applications like collision avoidance and | real-time coordination and advanced
emergency braking) applications)

Range Short-range communication Extended range due to cellular infrastructure

Scalability Limited scalability (designed for High scalability (handles larger data volumes

localized communication)

and wider coverage)

Deployment cost

Cost-effective due to license-free
spectrum

Higher deployment cost due to reliance on
cellular infrastructure and potential network
upgrades

Applications

Safety—critical systems (e.g., basic safety
messages, collision warnings,
lane-change assistance)

Safety and advanced features (e.g., hazard
alerts, cloud integration, traffic optimization,
cooperative driving)

Research focus

Improving reliability in dense and
interference-prone areas; integrating with
other technologies

Enhancing 5G integration, multi-connectivity,
security, and Al-powered traffic management

Strengths Proven technology, low latency, Scalability, long-range communication,
cost-efficient advanced features, better integration with
future technologies
Challenges Limited range, slower adoption in some | High infrastructure cost, need for significant

regions

cellular network upgrades

Fig. 1 V2X communication standards
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Table 2 Current practical and research challenges in V2V communications [10-14]

Challenge Description Examples of Proposed Research gaps
organizations solutions identified
facing issues
Latency and Delay in General Motors | 5G-enabled V2X | Need for
real-time transmitting and | (GM) faced communication | ultra-low-latency
communication | receiving latency issues in | systems networks in V2V
safety—critical urban traffic
messages, NHTSA reported | Edge computing | Optimizing edge
leading to that V2V for faster processing for
pott?ntlal communication | processing real-time
accidents delays in dense decision-making
traffic
compromised
safety alerts
Machine learning
models for
predictive data
transmission
Interoperability | Different V2V Toyota and Adoption of Lack of universal
and standards (DSRC | Volkswagen unified global protocols for V2V
standardization | vs. C-V2X) faced standards for interoperability
hinder seamless | interoperability | V2V
communication | issues due to communication
between vehicles | different V2V
from different standards
manufacturers Qualcomm and | Development of | Integration of
Ericsson are hybrid multiple V2X
working on DSRC-C-V2X technologies for
bridging DSRC | systems seamless
and C-V2X communication
Network Increased data Tesla 5G networks and | Scalability of V2V
congestion and | exchange due to | experienced edge computing | systems in
scalability rising numbers | signal drops and | to manage data high-density urban
of autonomous | data loss due to | loads environments
VehiCIe.s leads to | congestion in Al-driven Adaptive
b.an.dw.ldth den§e congestion communication
limitations and | environments management protocols for
dropped techniques managing data
messages

load efficiently

(continued)
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Challenge Description Examples of Proposed Research gaps
organizations solutions identified
facing issues
Security and Vulnerabilities in | Fiat Chrysler Blockchain-based | Secure key
privacy concerns | V2V faced security solutions | management for
communication | cybersecurity V2V networks
may allow threats where
malicious actors | hackers
to manipulate disrupted vehicle
data, causing communication
acc1denFs or GDPR concerns | End-to-end Privacy-preserving
copgestlpn. over vehicle data | encryption for V2V architectures
Pr.1vacy 1ssues tracking V2V messages for GDPR
anse due to . compliance
vehicle tracking - -
Al-driven Al-driven
anomaly real-time threat
detection systems | detection in V2V
Regulatory and | Different Ford and GM International Policy
legal issues countries have pushed for regulatory harmonization for
varying spectrum | regulatory clarity | framework for global V2V
allocation onthe 59 GHz | V2V deployment | adoption
policies and spectrum in the
V2V regulations, | U.S
slowing down The EU faces Standardized Legal frameworks
deployment fragmented legal guidelines | for autonomous
regulatory for liability in vehicle
perspectives case of V2V responsibility in
from different failures accidents
countries
Environmental | Weather BMW faced Al-based signal | Enhancing V2V
factors and range | conditions (rain, | reliability issues | enhancement communication
limitations fog, snow) and | in adverse robustness in
physical weather extreme weather
opstacles mpact con‘dltlons . Integration of Al-powered error
signal strength | during V2V pilot | 4o coneo correction
and reliability testing fusion with V2V

for redundancy

techniques for
signal degradation

3 Al-Driven Optimizations in V2V Protocols

Table 3 shows various a Al methods which can be deployed for communication
optimization in Vehicle-to-Vehicle (V2V) systems.
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Table 3 Techniques in Al used in impactful V2V communications [15-21]
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S.No. | Al technique Advantages Challenges Application in
V2v
communications

1 Machine Utilizes Adaptive to Requires large | Predictive

learning (ML) | algorithms to | dynamic datasets for maintenance,
learn patterns | environments training anomaly
from data and detection
improve over
time
2 Deep learning | A subset of | High accuracy and | High Traffic
(DL) ML using scalability computational prediction,
neural cost signal processing
networks to
model
complex
patterns
3 Fuzzy logic Mimics Robust to noise Requires expert | Decision-making
human and uncertainty knowledge to in uncertain
reasoning by define rules traffic scenarios
handling
uncertainty
and imprecise
data
4 Reinforcement | An ML Effective for Long training Adaptive
learning approach dynamic periods routing,
where agents | decision-making congestion
learn optimal management
policies
through
interactions
5 Genetic Evolutionary | Efficient in Computationally | Resource
algorithms algorithms complex intensive allocation,
that optimize | optimization tasks channel selection
solutions
through
selection
processes
6 Swarm Inspired by Distributed and Sensitive to Cooperative
intelligence collective scalable parameter communication,
behavior in settings network
nature to resilience
solve
optimization
problems

(continued)
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S.No. | Al technique Advantages Challenges Application in
V2v
communications

7 Neural A DL Handles nonlinear | Prone to Signal decoding,

network (NN) | architecture | relationships well | overfitting and | error correction
for pattern requires tuning
recognition
and
prediction
8 Federated Decentralized | Privacy-preserving, | Requires Collaborative
learning learning reduces data coordination learning for V2V
approach transfer between nodes | optimization
where models
are trained
across
devices
9 Bayesian Probabilistic | Handles Requires Probabilistic
networks models for uncertainty and accurate prior reasoning in
representing | incomplete data probabilities communication
uncertain protocols
knowledge

10 Hybrid Combination | Balances strengths | Integration Multi-objective

approaches of various Al | of different complexity optimization in
techniques to | methods V2V systems
improve
performance

3.1 Protocol Enhancements Through Al (e.g., Routing,
Collision Avoidance, Resource Allocation)

See Fig. 2.
Proposed Model

Algorithm: AI-Based V2V Communication Optimization

Input:

V: Set of vehicles: {vl, v2, ..., vn}

L: Set of communication links: {11,12, ..., Im}

PO: Initial routing paths for each vehicle: {POv1, POv2, ..., POvn}

Bmax: Bandwidth limits for each link: {Bmaxl1, BmaxI2, ..., Bmaxlm}

Cth: Collision thresholds for each link: {Cthl1, Cthl2, ..., Cthlm}
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Fig. 2 Scope of Al innovations in V2V networks

Output:
P: Optimized routing paths for each vehicle: {Pvl, Pv2, ..., Pvn}
C: Collision probabilities for each link: {Cl1, C12, ..., Clm}
B: Bandwidth allocations for each link: {BI1, BI2, ..., Blm}
Initialization:
Step 1: Initialize Routing and Bandwidth:
1. Set initial routing paths: P = PO

2. Set initial bandwidth allocations: B = BO (e.g., equal distribution among
links)

Step 2: Define Parameters:
1. Define weight coefficients: o (for routing time) and 3 (for collision probability)
Step 3: Initialize Data Structures:

1. Initialize data structures to store collision probabilities (C) and bandwidth
allocations (B).

Main Loop (Iterate until convergence):
Step 4: Vehicle-Centric Processing:
1. For each vehicle v e V:
Step 5: Data Acquisition:
i. Obtain real-time sensor data for vehicle v: {slv, s2v, ..., skv}

ii. Obtain real-time data from communication links relevant to vehicle v:
{Ivl, Iv2, ..., ljv}
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Step 6: Routing Time Calculation:

i. Calculate current routing time for vehicle v: Tvr = f(P, L, B) (where f'is a
function that calculates routing time based on path, link conditions, and bandwidth)

Step 7: Collision Probability Calculation:
i. For each link I € L:

ii. Calculate collision probability: C1 = g(P, L, B) (where g estimates
collision probability based on paths, link conditions, and bandwidth)

Step 8: Constraint Checking and Adjustment:
i. Routing Time Constraint:
1. If Tvr > Tvr_max:

2. Update routing path using reinforcement learning: P = P + AP (AP is
determined by the RL algorithm)

ii. Collision Constraint:
1. For each link 1 € L:
2.If C1 > Cthl:

3. Implement collision avoidance mechanisms (e.g., TDMA, FDMA,
CDMA) on link 1. This may involve adjusting bandwidth allocation.

iii. Bandwidth Constraint:
1. For each link 1 € L:
2. Ensure Bl < Bmaxl. If not, adjust bandwidth allocation to respect the
limit.
Step 9: Routing Optimization (Reinforcement Learning):
i. Calculate reward: Reward = a (1/Tvr) - p CI

ii. Use the reinforcement learning algorithm to update routing paths P based
on the calculated reward.

Step 10: Parameter Update:

a. Update weight coefficients a and § based on feedback from the environment
(e.g., gradient descent on a performance metric).

Step 11: Convergence Check:

a. Check for convergence criteria (e.g., no significant improvement in the reward
function, maximum number of iterations reached). If converged, exit the loop.

Output:
Step 12: Output Results:
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1. Optimized routing paths: P
2. Collision probabilities for each link: C
3. Bandwidth allocations for each link: B

End Algorithm
This version adds clear step numbers to each stage of the algorithm, making it even
easier to follow and reference specific parts during implementation or discussion.

4 Experimental Results

To show the effectiveness of the proposed method, the dataset available in kaggle
named Passive Vehicular Sensors Datasets available from the link https://www.kag
gle.com/code/gautamrmenon/passive-vehicular-sensor-eda, is used which includes
raw data available from various suitable devices like the accelerometer, gyroscope,
magnetometer, GPS and camera data sampled in vehicles. A portion of the dataset is
used to train the reinforcement learning agent. The agent’s state would be the relevant
information from the dataset (e.g., vehicle positions, link conditions, current routing
paths), and its actions would be adjustments to the routing paths and communication
protocols. During feature engineering new features from the raw data like congestion
level on alink, traffic density around a vehicle are created which are useful to increase
the reward function value for an agent.

1. Routing Time versus Training Episodes

Below graph in Fig. 3 show how the increase in the count of training episodes
reduces the average routing time. This behavior of the proposed method represents
a robust algorithm. To determine efficient routing paths for the vehicles this result
acts a confidence builder.

2. Collision Probability versus Training Episodes

The graph in Fig. 4 denotes how the collision probability of the vehicles reduces
as number of training rounds increase which in turn acts as an indicator for the
reliability of the proposed method.

3. Bandwidth Utilization versus Training Episodes

The graphin Fig. 5 shows how the bandwidth utilization degree increase as number
of training episodes increases. It represents how performance can be maintained while
maximizing resource utilization.

4. Reward Function versus Training Episodes

The graph in Fig. 6 maps the units of reward function which is intrinsic part
of reinforcement learning versus the number of training episodes. As the number
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Fig. 3 Routing time versus training episodes

Fig. 4 Collision probability versus training episodes

of training episodes increases sharply, the degree of reward function also increases
which represents the trade-off between reduced collision probability and decrease
in the routing time of the vehicles. It helps in balancing the competing research
objectives of the proposed mechanism.
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Fig. 5 Bandwidth utilization versus training episodes

Fig. 6 Reward function versus training episodes
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Fig. 7 Collision probability heatmap

5. Heatmap of Collision Probability

The heatmap in Fig. 7 denotes the effective visualization of spatial distribution of
probability of collision in the V2V communication eco-system. This acts as helping
tool to identify hotspots with high collision risks. It guides the system designers to
areas where more degree of optimization is needed.

Insights:
6. Network Topology with Optimized Routes

Figure 8 shows for 20 vehicles the optimized network topology as a result of
the routing decision made by the proposed algorithm. It helps in visualizing the
congestion points and potential bottlenecks.

7. Comparison of Metrics with and without Optimization

The set of graphs in Fig. 9 denotes various performance metrics before and after
application of the proposed method. It represents the fact that Al optimization along
with reinforcement learning based mechanism proves superior when it comes to
performance factors like routing time, collision probability and bandwidth utilization.
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Fig. 8 Network topology with optimized routes

8. Sensitivity Analysis:

Figure 10 shows the plot of sensitivity to vehicle density with respect to aspects
like bandwidth usage, probability of vehicle collision and time for routing the vehi-
cles. This graph helps the designers who are working for identifying the areas of
improvement in vehicle communication optimization along with development of
quality standards in the modern ecosystem of autonomous transportation.

5 Future Directions and Research Opportunities

5.1 Upcoming Al Technologies for V2V Optimization

See Table 4.
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Fig. 9 Comparison of various metrics in V2V communications with and without optimization

5.2 Long-Term Vision for Resilient Autonomous Vehicle
Networks

In below few novel aspects in this future regard are discussed [28-32]:
1. Al-Powered Predictive Maintenance:

Proactive System Health Monitoring: Al algorithms will continuously analyze
vehicle sensor data, communication logs, and driving patterns to predict potential
failures in components like sensors, actuators, and communication modules.

Predictive Maintenance Scheduling: This information will be used to schedule proac-
tive maintenance, minimizing downtime and ensuring optimal vehicle performance.

Fault Diagnosis and Isolation: Al can pinpoint the root cause of failures more
accurately, enabling faster and more efficient repairs.
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Fig. 10 Sensitivity to vehicle density

Table 4 Emerging future directions in V2V eco-system [22-27]

Nascent V2V technology

Potential

Application areas

Federated learning

Improved privacy, decentralized
training, reduced latency, and
adaptive model development

Collaborative Al training,
real-time responses, and
personalized vehicle systems

Reinforcement learning

Optimal decision-making,
resource allocation, and faster
learning through transfer
learning

Routing optimization,
communication policy
improvement, and multi-agent
collaboration in V2V networks

Graph neural networks

Dynamic network modeling,
anomaly detection, and
predictive analytics

Traffic dynamics prediction,
anomaly detection in
communication, and optimization
of V2V communication

Explainable AI (XAI) Transparency, debugging, and Safety—critical systems, error
regulatory compliance debugging, and fulfilling
compliance requirements for V2V
Al applications
Edge and fog computing | Reduced latency, improved Real-time processing, localized

scalability, and enhanced system
reliability

decision-making, and robust
operation in unstable network
conditions
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2. Enhanced Situational Awareness and Risk Assessment:

Al-Driven Perception: Advanced AI/ML algorithms will enhance perception capabil-
ities, enabling vehicles to accurately detect and classify objects (pedestrians, cyclists,
other vehicles) in complex and dynamic environments.

Predictive Trajectory Forecasting: Al models will predict the future trajectories of
other vehicles, pedestrians, and even unpredictable events (e.g., sudden lane changes,
unexpected obstacles) to anticipate and mitigate potential hazards.

Risk Assessment and Decision-Making: Al algorithms will continuously assess
risk levels and make real-time decisions to ensure safe and efficient navigation,
considering factors like traffic flow, weather conditions, and potential hazards.

3. Robust Communication and Network Management:

Al-Driven Network Optimization: Al algorithms will dynamically optimize commu-
nication parameters (e.g., transmission power, frequency) to minimize interference,
maximize bandwidth utilization, and ensure reliable communication in dense traffic
environments.

Self-Healing Networks: Al-powered systems will be able to autonomously detect and
recover from communication failures, such as link disruptions or network congestion,
by dynamically adjusting communication strategies and routing protocols.

Cybersecurity Enhancement: To ensure robust cyber security and trust in the whole
transportation system, Al can play a pivot role in detection of malicious activities
and establishment of mitigation mechanisms.

6 Conclusion

This chapter brings out the novel properties of Al which can be helpful in opti-
mization of protocols involved in V2V communications and protocols. Al makes
predictive maintenance in smart transportation efficient and the research work in
this chapter proposes the same. The results show promising directions which are
self-healing in nature. The proposed method increases the trust between human
users and Al systems. The proposed research paves the way towards highly reliable
communication systems in the era of future 6G communication systems.
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Abstract A digital twin is a virtual model of a physical system designed to ensure the
quality of the physical experience. One can preferably use privacy-preserving feder-
ated learning (FL) to model digital twins of vehicular networks. However, extensive
communication via the terrestrial network reduces the performance of FL, partic-
ularly in high-mobility environments like the Internet of Vehicles (IoV). IoV is a
network of connected vehicles that share data among vehicles and other infrastruc-
tures, such as Roadside Units (RSUs). To overcome these limitations, unmanned
aerial vehicles (UAVs) provide on-demand communication resources, especially in
disaster areas. For example, in flood, earthquake, fire, and landslide scenarios, UAVs
can quickly restore connectivity and support real-time data processing, enhancing
the responsiveness of emergency services. We provide a high-level architecture on
how UAVs assist the FL and digital twinning process in a disaster scenario. More-
over, we propose a two-layer architecture for FL-based digital twins of vehicles
that strengthens communications. The emerging use cases of UAV-based FL for the
digital twin of vehicles are presented along with significant challenges and potential
solutions.
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1 Introduction

The Internet of Vehicles (IoV) is a prominent technology that enables the devel-
opment of several applications for intelligent transportation systems (ITS). It is a
network of connected vehicles that share data with other vehicles and infrastruc-
tures such as Roadside Units (RSUs). With sound wireless communications among
vehicles and the infrastructure, intelligent traffic congestion control and autonomous
driving can be perceived [1]. As innovative and novel IoV applications continue to
emerge, massive amounts of data will be generated and distributed among various
IoV components, such as RSUs and vehicles. Variable requirements of security,
scalability, and reliability characterize ITS applications. Meeting these applications
requires careful design based on a digital twin. A digital twin of vehicles will enable
proactive intelligent analytics and self-sustainability for ITS while modeling the
cyber-physical infrastructure in real-time [2]. A digital twin-based IoV will enable
multiple tasks, such as content caching, predicting traffic diversion, and lane detec-
tion. However, such a design requires computational and storage resources. In a
digital twin-based IoV, edge computing in addition to optimization, machine learning,
and security-related technologies effectively serves loV with enough computational
and storage resources in closer proximity with minimum latency constraints in 5SG
edge networks [3, 4].

Machine learning is one of the most important technologies to enable a digital
twin-based IoV. One can use centralized or distributed (i.e., federated learning (FL))
learning. Centralized learning moves the device’s data to the edge or cloud to train
models and, therefore, can suffer from privacy leakage. To cope with this challenge,
one can use FL because vehicles are reluctant to dispense their confidential data
due to the risk of leakage, misuse, and other privacy concerns [5, 6]. Edge-based
FL enables digital twin-enabled IoV components to train a model using local deep
learning and neural network parameters, hence mitigating privacy risks. In addition,
multiple digital twin-enabled IoV components such as vehicles and RSUs collaborate
with the edge server to train a model. Firstly, the edge server transmits an initial
training model to the digital twin-enabled IoV components. Based on this model,
each digital twin-enabled IoV component computes its local updates of the global
model based on its local dataset. This efficient edge-based FL builds a road map
towards ITS [7].

In FL, the continuous exchange of model parameters while missing seamless
communication links in nodes during the FL process degrades the performance of the
entire system [8]. Beyond ground data sources, aerial platforms are important due to
their flexible nature. These platforms, such as unmanned aerial vehicles (UAVs), are
commonly used today to provide data collection and computation offloading support
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for the IoV. Moreover, these UAVs provide comprehensive coverage compared to
ground sources, especially in disaster areas [9].

UAVs can collect and process data from disaster scenarios and create initial
models to assess critical areas such as floods, earthquakes, fires, and land sliding
[10]. Consider Fig. 1, which shows how UAVs can help manage disasters. UAVs can
help provide network connectivity, food, and medical services to users. In Scenario 1,
the main route to the city is cut down due to floods, so UAVs can be deployed to assist
users and vehicles with network connectivity, food, and medical services. Scenario
2 presents an earthquake situation in which medical and food services cannot be
provided due to road conditions. Here, UAVs can work as relay networks to enable
essential Internet services. In the scenario of a fire, UAV's can provide medical equip-
ment, such as oxygen masks, to people who have difficulty breathing. Moreover, in
land sliding, vehicles and users need assistance in network connectivity, food, and
medical services. Despite disaster services, UAVs can assist FL and digital twining of
vehicle processes to deal with disaster scenarios. For example, local UAV models are
periodically aggregated into a global model on a central server, improving the accu-
racy and robustness of predictions across all affected areas without transferring raw
data. Here, FL ensures data privacy and reduces bandwidth usage, making it suitable
for environments with limited connectivity and sensitive information, thus improving
overall disaster response. In addition, digital twins can continuously update vehicle
sensor data for immediate situational awareness. Digital twins can simulate disaster
impacts to forecast future conditions and risks. These can also aid in strategically
allocating resources and prioritizing critical areas. Clustered UAVs can train digital
twin models using FL, while cluster leaders (that is, central UAVs) communicate with
aerial base stations and provide coverage in disaster areas [11]. The role of UAVs
in the training of FL models is shown in Fig. 2. An overview of our contributions is
given below.

e We present the architecture and detail of the operation of UAVs and FL in digital
twins of vehicles during disaster scenarios.

e We provide multiple use cases of UAVs with FL to make the digital twin-based
IoV a promising functional technology.

e We debate the issues, research challenges, and future direction of UAVs and
FL-enabled digital twins to foreground IoV for novel research.

2 Uavs and Federated Learning in Digital Twins of Vehicles

Consider Fig. 2, which shows the role of UAVs in enabling FL-based digital twin of
vehicles. To train digital twin models of [oV in twin space, one can preferably employ
FL that will be based on training of on-device models. Then, these locally trained
models are aggregated by a global aggregator in a twin space. However, deploying
aggregators in a twin is challenging, especially in disaster areas and areas with
insufficient terrestrial network resources. In such areas, aerial players (e.g., UAVs
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Fig.1 Overview of UAVs and FL for digital twin of vehicles in disaster scenarios

Fig. 2 Illustration of how UAVs and FL works in physical interaction space in Digital Twins of
vehicles
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and high-altitude platforms) can be used for the deployment of aggregators in twin
space. There can be different scenarios where one can use UAVs. The first possible
way can be to perform aggregation. Many local devices can train their local models
and share them with a UAV where aggregation will take place. Secondly, some of the
cars will have limited communication resources for communication with aggregator
nodes deployed at the remote cloud. In this case, UAVs can act as a relay between
the vehicle and the infrastructure (i.e., core network and cloud via RSU).

In addition to the aforementioned use cases of UAVs in enabling FL for digital twin
vehicles, UAV's can be used to train a hierarchical FL model [12]. In a hierarchical FL.
model FL, multiple clusters train sub-global FL. models in each cluster. Within each
cluster, a UAV will act for performing sub-global aggregation. To train sub-global
models iteratively, UAVs acting as cluster heads will share their models with the base
stations where the global model is computed. Keeping in view the aforementioned
uses of UAVs in training FL. models for digital twin of vehicles, there is a need to
resolve many challenges. These challenges are mobility management of UAVs and
vehicles involved in learning, computing, and communication resource management.
To resolve the issue of mobility, deep learning-enabled mobility prediction schemes
can be utilized. Resource management can be addressed by computation offloading
and employing optimization theory, machine learning, and game theory to make
decisions about what, where, and when to offload. Next, we discuss the architecture
for UAVs and FL-enabled digital twins of vehicles.

3 Architecture for UAVs and FL-enabled Digital Twins
of Vehicles

The architecture of UAV and FL-enabled digital twins of vehicles consists of two
layer: the physical device layer and the aggregation layer presented in Fig. 3. The
physical layer contains the physical entities, such as UAVs, RSUs, edge servers, and
vehicles. Our layered architecture envisions the execution of complex Al models on
vehicles in a distributed fashion. On-vehicle training at the physical devices layer
reduces the privacy risks of local data. These local data include vehicle identifi-
cation, speed, vehicle location, and other confidential information. Vehicle sensors
predict the environment including pedestrians, paths, accidents, and the speed of
other vehicles. These predictions are then used in the on-vehicle training process.
After the training process, the vehicles upload the trained model in gradient form to
the RSUs. However, the failure of nodes and communication links of the terrestrial
network during the iterative FL process degrades the performance. To this end, we
propose the deployment of UAVs. These UAVs act as wireless relays and support the
communication between vehicles and RSUs. Moreover, they can also be deployed to
follow the corresponding vehicles for a better exchange of information. Other than
that, UAVs can also be used for performing aggregation of local models of cars.
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Fig. 3 UAVs for FL-enabled Internet of Vehicles: architecture

A single UAV may not have sufficient resources to serve the communication
of learning data among vehicles and RSUs. Our architecture enables the clusters of
UAVs to make the architecture more functional and effective. This enables each UAV
to target a group of vehicles to communicate with physical infrastructure through
aerial links and only the cluster head to communicate with the backhaul network.
Through these operations, the proposed architecture effectively reduces the back-
haul network traffic and provides fault-tolerant capability, which usually occurs in
traditional terrestrial and aerial networks. Next, we will discuss aggregation layer
deploying using UAVs.

This logical layer supported by physical infrastructure (e.g., UAVs and RSUs)
performs various tasks. One can use UAVs in various ways, such as for relaying and
aggregation. In the case of relaying for traditional FL, the local models communi-
cated by UAVs (i.e., relaying) are aggregated at RSUs. These RSUs also perform
other operations such as content caching and assistance in communication between
vehicles and the cloud. On the other hand, cluster heads of UAVs can also be used
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for the aggregation of local models. Every UAV will be associated with a group of
vehicles that can be used for aggregation of vehicles’ local models. Meanwhile, they
can also be used to validate the local models to avoid malicious local models. Second,
in the case of dispersed FL, this layer enables the aggregation of sub-global models
at the cluster heads and RSUs. Moreover, these RSUs forward the sub-global models
using a core network to the cloud to yield a global model.

4 Use Cases

4.1 UAV-Based Aggregation

In traditional FL scenarios, edge servers are placed at a fixed location for model
aggregation [13, 14]. These servers receive the local model updates, perform model
aggregation, and broadcast this model to vehicles. However, the terrestrial network
and infrastructure may get damaged due to several reasons (e.g., disaster) that result
in difficulties in the FL process. To cope with these terrestrial limitations, UAVs may
be deployed as edge servers. These can perform model aggregation and broadcast
more efficiently due to their mobility. Nevertheless, a single UAV may not have
enough resources to serve all the ground vehicles thus motivating the deployment
of a set of UAVs. This enables the use of multiple UAVs for model aggregation
and broadcasting. As depicted in Fig. 4a, a group of UAVs has a direct connection
with a subset of vehicles, and their cluster heads serve as aggregation servers. One
can deploy multiple groups having a subset of vehicles and cluster head (i.e., UAV)
for model aggregation to boost up the FL process. These cluster heads may also
communicate with each other for better aggregation and updates.

Fig. 4 a UAV-based aggregation b UAV-based relaying
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4.2 UAV-Based Relaying

In conventional FL scenarios, vehicles transmit local model updates to nearby RSUs
and edge servers. These RSUs and servers return global updates in a broadcast
fashion. The transmission of local and global updates may face problems due to
communication resource constraints. Low-altitude platforms may be used to commu-
nicate among vehicles and edge servers. For example, in Fig. 4b, there is no line-
of-sight link between edge servers and vehicles due to obstacles. Additionally,
autonomous driving cars might get out of the coverage area of the RSUs. In such
cases, UAVs may be deployed as relaying networks between vehicles and RSUs or
edge servers. Vehicles send local model updates to the UAVs. These UAVs migrate
these updates toward edge servers through cluster heads. In return, edge servers send
global model updates through UAVs to vehicles. Moreover, conventional FL for oV
may suffer from high dynamics and mobility of vehicles. It may result in an acute
change in communication links. Moreover, some vehicles do not have the energy and
bandwidth to communicate with the edge server directly. Through this, it is more
convenient to transform the model updates between vehicles and edge servers irre-
spective of different obstacles and mobility patterns. Besides, cluster heads can be
used to manage dynamic topologies and links.

4.3 Dispersed FL in the Sky

FL with a centralized aggregation server faces multiple challenges. For example, a
single aggregation server might suffer from malfunctions. It results in degradation
in the FL process. To cope with these issues, dispersed FL with UAVs may be
used. In this scheme, a UAV selects a set of vehicles. After vehicle selection, each
vehicle in the set computes a local model. This local model can be computed with
infotainment among cars and on-board units. After the computation of the local
model, these vehicles in the set send this model to the corresponding UAV. After
this, the corresponding UAV computes a sub-global model. Next, the sub-global
models provided from multiple sets of vehicles are aggregated at the UAV cluster
head to compute the global model. This process continues for each UAV to compute
sub global model for the corresponding set of vehicles, and a global model at the
cluster head as depicted in Fig. 5. This figure also shows the flow of dispersed FL.
Through this scheme, single server aggregation malfunctions could be tackled. Note
that this application may be applied in multiple ways. For example, each cluster of
UAVs may target a group of vehicles. These UAVs receive local updates and forward
them to cluster heads. Then cluster heads can compute sub global model, and finally,
the global model can be computed at a powerful UAV acting as head of all clusters
or at edge servers. This points to two different dispersed FL. schemes, centralized
aggregation-enabled dispersed FL, and distributed aggregation-enabled dispersed
FL.
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Fig. 5 Dispersed FL in the sky

5 Open Challenges

5.1 Mobility and Topology Management

How do we efficiently manage the topology of UAVs for serving FL users? The
predominant challenge in IoV is mobility in which vehicles are continuously moving,
hence, causing difficulties in seamless communication with the edge server or central
controller [15, 16]. To address this challenge, one can use UAVs to improve the FL.
process by becoming a relay (i.e., between vehicles and RSUs) and edge servers (i.e.,
for aggregation). On the other hand, UAVs also have mobility. Due to the mobility
of both UAVs and vehicles involved in FL. Traditional routing algorithms might fail
to fulfill the requirement of seamless communication between vehicles and UAVs.
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It requires more sophisticated protocols that change the routing tables dynamically
according to the movement of UAVs and vehicles [17]. Moreover, different users
have different resource requirements. Therefore, dynamic placement of UAVs and
cluster heads is necessary according to their resource needs. For example, a vehicle
with more resource requirements should be closer to the UAV than one with mild
requirements. In addition, when the number of vehicles is large enough, there is a
need for multiple clusters to serve them. This will bring more challenges to mobility
management such as collisions among UAVs and corresponding vehicle associations.

5.2 Energy-Efficient Deployment of UAVs for FL

How can UAVs be efficiently deployed to serve a large number of vehicular devices
participating in FL? Deploying UAVs for training FL. models in vehicular networks
will consume a significant amount of energy. This energy is used for two purposes,
such as (a) transmission of learning updates between devices/cars and UAVs and (b)
keeping UAVs flying. Therefore, there is a need for efficient management/deployment
of UAVs to minimize the consumption of energy. The energy-efficient deployment
problem will have a combinatorial nature. To solve such problems, one can apply
various algorithms: decomposition-relaxation-based schemes, deep reinforcement
learning-based schemes, heuristic algorithms, and game theoretic schemes [18].

5.3 Reliability and Security

How can UAVs be deployed securely and reliably to serve FL devices in vehicular
networks? To deploy UAVs for serving FL devices or vehicles, there is a need for
reliable and secure communication. For reliability, one can use channel coding to
make the learning process robust against channel impairments. For doing so, various
channel coding schemes can be deployed. Linear block codes having low complexity
can be used. However, they might not perform well in all scenarios. Coping with
this, one should use convolutional codes or Turbo codes. Although Turbo codes can
perform well, but at the cost of increasing in complexity of the decoder. Therefore,
a tradeoff should be made while selecting channel coding schemes for communi-
cation between UAVs and vehicles for training the FL. model. On the other hand,
a malicious user can access the wireless FL data and alter it to prolong/stop the
learning process. To tackle this, one must use effective encryption schemes (e.g.,
homomorphic encryption).
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5.4 Interoperability

How to enable seamless interaction between UAVs and vehicles/devices to enable
efficient learning of the FL global model? In the FL-based internet of vehicles, there
is a variety of players, such as cloud/edge servers, vehicles, devices, and UAVs.
Enabling interaction among these players for training the global FL model is a chal-
lenging task. Specifically, for seamless communication between these players, one
must propose novel and general interfaces for communication. Although such general
interfaces can resolve the challenge of interoperable communication, designing such
interfaces is challenging and will require significant effort [19, 20].

5.5 Field Implementation and Simulation Gap

How to integrate the simulations of UAV networks and digital twins to enable an
effective setup ? Besides the fact of the effectiveness of FANET-enabled FL, the prac-
tical implementation is much more challenging due to several factors. For example,
limited personnel resources and high cost may prevent the development of proto-
types and their actual deployment. Moreover, there is a simulation gap between FL.
models, FANET components, and IoV. This requires the development of emulation
tools that should be open to the research community.

6 Conclusion

In this work, the proposal of using digital twins, which rely on a virtual model of the
physical system, was made. It is concluded that privacy-preserving federated learning
(FL) would be the ideal method for modeling digital twins of vehicular networks.
However, the performance of FL could be degraded by the extensive communication
required in a dynamic and high-mobility environment, especially through terrestrial
networks. To address this limitation, the use of unmanned aerial vehicles (UAVs) was
suggested to provide on-demand communication resources, particularly in disaster
areas. Moreover, the emerging use cases of UAVs and FL-enabled digital twins
of vehicles were presented. A two-layer architecture for FL-based digital twins of
vehicles was proposed to strengthen communication. Finally, major challenges were
discussed, along with their causes and potential solutions.
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Mohammed El Ghzaoui

Abstract The imminent arrival of autonomous vehicles on our roads is hardly in
doubt, even though the timeline for their introduction and the level of their autonomy
remain subjects of debate. It is clear that these vehicles will be highly connected to
maximize their benefits in terms of safety and efficiency, especially since the neces-
sary technologies (C-ITS standards) are already in place. However, this optimistic
vision masks certain challenges, particularly the question of how autonomous vehi-
cles should communicate. Closely linked to this is another issue: what communi-
cation techniques are most suitable for vehicular communication. In this chapter,
the overall performance of V2V (Vehicle-to-vehicle) communication is evaluated by
using an efficient modulation technique such as orthogonal frequency division multi-
plexing (OFDM). Indeed, OFDM is widely utilized as a modulation scheme because
of its resilience, efficient use of the frequency spectrum, and ability to mitigate inter-
symbol interference (ISI). In the proposed work, the performance of the modulation
scheme was evaluated across various channel models. Simulation parameters such as
bit error rate (BER) versus signal-to-noise ratio (SNR) were plotted and analyzed in
this chapter. Through a comprehensive evaluation of data rate and error performance,
The findings reveal that OFDM with QAM modulation outperforms OFDM-QPSK,
making it the optimal solution for V2V communication.

Keywords V2V - OFDM - BER - SNR - V2V channel

1 Introduction

Modern vehicles are increasingly equipped with radar sensors to enhance safety,
improve driving comfort, and reduce road accidents [1, 2]. These sensors provide
several benefits, including detecting nearby vehicles and pedestrians, identifying
available parking spaces, measuring inter-vehicle distances, and warning drivers of
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potential collisions. They also support lane-changing maneuvers, contributing to
overall driving safety. While LiDAR and ViLDAR systems offer advanced sensing
capabilities, traditional radar sensors remain essential, particularly in challenging
weather conditions such as rain or fog, where optical signal propagation is hindered.
Beyond sensing, vehicles also rely on communication systems for various func-
tions, including entertainment, real-time traffic updates, and safety alerts. Histori-
cally, radar and communication have been treated as separate entities, operating on
distinct frequency bands with independent systems. The new works on this topic
has increasingly focused on integrating these functionalities into a unified system
known as Dual Function Radar Communication (DFRC) [3, 4]. This integration
presents multiple advantages, such as reducing power consumption, lowering costs,
and maximizing the efficient use of the radio frequency (RF) spectrum. These bene-
fits are particularly significant in vehicular environments, where excessive power
usage, interference, and spectrum congestion pose critical challenges, especially in
densely populated urban areas. Additionally, developing cost-effective smart vehicles
is crucial for the widespread adoption of intelligent transportation systems, making
DFRC an essential innovation for future vehicular networks.

To effectively assess the performance of inter-vehicle communications (IVCs), it
is essential to utilize suitable statistical models for fading channels in communica-
tion systems [5—7]. However, both experimental observations and theoretical studies
suggest that conventional models like Rayleigh or Rician fading may not accurately
capture the characteristics of Inter-Vehicular Communication (IVC) environments.
The core concept of the SOS model is that the number of scatterers affecting signal
propagation changes based on the space that separate the sender and receiver. Conse-
quently, the received signal typically comprises multi-path components. Empirical
studies have corroborated the validity of the SOS model through measurements
conducted in diverse mobile-to-mobile communication environments. To improve
system reliability in IVC scenarios, Orthogonal Frequency-Division Multiplexing
(OFDM) systems have been extensively investigated in the literature [8, 9]. This
is despite the fact that current vehicular communication standards, such as IEEE
802.11p and WAVE, primarily rely on single-antenna transmission. The exploration
of OFDM-based solutions highlights the ongoing efforts to address the unique chal-
lenges posed by dynamic and high-mobility communication environments. By lever-
aging the highly dynamic nature of the V2V channel, OFDM enhances commu-
nication reliability, extends link range, increases network throughput, and miti-
gates multiuser interference. Given these advantages, OFDM is considered a crucial
enabler for robust and efficient V2V communications [10-13].

This study utilizes a nonlinear model to explore the implementation of nonlinear
modulation techniques in multipath V2V communication channels. The proposed
nonlinear modulation approach encodes data by exploiting variations in channel
gain within each OFDM symbol, which are affected by Doppler shifts [14]. The
main objective of this research is to attain better BER performance compared to
traditional linear modulation methods. Besides, the study examines channel capacity
under different Doppler conditions, offering valuable insights into the effectiveness
of nonlinear modulation in highly dynamic and high-mobility environments. By
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addressing these factors, the research aims to enhance the reliability and efficiency of
data transmission in V2V communication systems. In this chapter, the overall perfor-
mance of V2V communication is assessed using OFDM. Given the highly dynamic
nature of V2V communication, selecting the most suitable modulation scheme is
essential for ensuring reliable data transmission, minimizing errors, and optimizing
bandwidth utilization. The study examines how each modulation technique performs
under varying channel conditions, including multipath fading and interference, which
are common in vehicular environments. The robustness of each approach is assessed
in terms of its ability to maintain a stable communication link despite fluctuations in
channel quality.

2 System and Channel Model

2.1 Vehicle-to-Vehicle Communication

Vehicular communications have been a research topic nearly as old as autonomous
driving itself, yet both have evolved independently. The convergence of these tech-
nologies is highly desirable, as an autonomous and connected vehicle would become
an intelligent agent of versatile mobility [15-17]. However, achieving this integra-
tion requires a certain level of standardization. Currently, with the vast diversity of
message types and use cases, there is a growing trend toward the specialization of
communication systems, as seen with technologies like eCall and geonetworking.
Non-orthogonal multiple access could be a good solution for V2V communication
[18, 19]. Besides, one potential solution is the emergence of near-monopolies, where
a dominant platform resolves interoperability issues—a well-known “first takes all”
strategy. Alternatively, our proposed approach envisions autonomous and connected
vehicles as integral components of the future Internet of Things (IoT), structuring
communications in a way that allows for the development of an unimaginable variety
of applications. To effectively organize these communications, it is crucial to deter-
mine what information is needed, who generates it, and who the intended recipient
is. While we focus here on autonomous vehicles—a field where significant progress
has already been made—this analysis is quite general and can easily be applied to
many other contexts.

Figure 1 depicts the V2V communication network, comprising multiple vehi-
cles traveling either in the same route or in reverse directions on the road. The
communication between vehicles is influenced by various factors, including road
conditions, environmental obstacles, and surrounding infrastructure, such as build-
ings, tunnels, and trees, which can cause signal blockage, reflection, or scattering.
These environmental factors contribute to variations in signal strength, interference
levels, and overall network reliability. In fact, Rapid changes in speed and direc-
tion introduce Doppler shifts, which can distort the transmitted signal and affect
data accuracy. Besides, the varying distances between vehicles also influence link
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Fig. 1 V2V communication
network

stability, requiring efficient channel estimation and adaptive modulation techniques
to maintain seamless data exchange.

2.2 Vehicle-to-Vehicle Multipath Fading Channel

Channel modeling is a crucial field in telecommunications that involves representing
the characteristics of a communication channel to optimize data transmission. It
enables the simulation and prediction of signal interactions with the environment,
thereby improving the reliability and quality of communication systems. By under-
standing channel models, researchers can design more efficient systems for a wide
range of applications. Two channel model for V2V communication will be considered
in this chapter.

(a) Frequency non-selective channels

In this subsection, the description of the received symbol is extended to fading chan-
nels. In the case of a frequency non-selective fading, the signal the receiver side is
giving by:

r(t) = ae’®s(t) + n(r) (1)

s(t) is the sent signal, a and 6 are respectively amplitude and phase of the Channel
and n(¢) is the noise. So that, at the receiver side we could write:

r(t) = /00 h(t)s(t — t)dt + n(t) 2)

o]

And the response in the time domain represented by
h(t) = ae®8(1) (3)
whereas, the transfer function is given by:

H(f) = FT{h(D)}(f) = ae’™ )
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Which could be considered as constant over all frequencies, meaning it is non-
selective in frequency.

(b) Frequency-selective fading channels

In this case, the channel will be a time-dispersive and has an response in time domain
h(t) which has a value over the interval 0 < 7 < 7,4, by considering t,,,x as the
maximum propagation delay of the channel. At the receiver we have

r(t) = / ™ h(r)s(t — Tde + n() 5)
0

In most current use cases, the signal s(7) has a block structure, the symbol duration
must be longer than 7. At the receiver side with sampled frequency of 1/Ts, the
discrete-time model representing the samples to be processed at the receiver can be
described as:

Ne—1

il =Y hlmlsli —m] +nlil, i=0,1,....Ny—1 (6)

m=0

(¢) Channel Modeling Procedure

The channel modeling procedure is the following steps:

Step 1: Find the value of h(z) for different delays 7, using the random value
generation operator. Alternatively, consider a,, and 6, as random values for different
paths P to the receiver for the same transmitted impulse. In other words, determine
the value of A(z) for different delays t,.

P
h(t, 7) = Zap(t)é(r — rp(;))e—jﬁp(t) 7

p=1

where a,, 1, et 6, They are, respectively, the attenuation, the arrival delay, and the
phase corresponding to path P.

Step 2: Calculate the received multi-path signal power P, for a transmitted signal
power P, as a function of the delays.

Step 3: Find the multi-path parameters: the mean delay 7,,.4,, then the RMS delay
Trms

Step 4: Find the coherence bandwidth B¢ from the RMS delay and compare it
with the bandwidth of the transmitted signal By to classify the channels as flat fading
or frequency-selective fading.

Step 5: Find the Doppler spread f;, then calculate the coherence time T¢.

Step 6: Compare 7¢ with the symbol duration Ty to classify the channel as fast
fading or slow fading.



434 M. El Ghzaoui

2.3 OFDM Transceiver

The fundamental concept/principle behind OFDM is to facilitate high-speed data
transmission without relying on conventional equalization methods. Rather than
transmitting symbols one after another in a sequential manner, OFDM transmits N
symbols simultaneously as a block. This approach divides the available bandwidth
into multiple orthogonal subcarriers, allowing for efficient and robust communica-
tion, particularly in environments prone to multipath interference and frequency-
selective fading. By leveraging this parallel transmission technique, OFDM signifi-
cantly enhances data throughput and reliability, making it a cornerstone of modern
wireless communication systems.

2.4 Basic Principle and Transmission Efficiency

In the case of the multi-carrier OFDM waveform, The Ty duration is N times longer
than the symbol period. This extended block duration allows for the simultaneous
transmission of multiple symbols across orthogonal subcarriers, enhancing spectral
efficiency and robustness against channel impairments such as multipath fading. By
leveraging this approach, OFDM effectively mitigates the need for complex equal-
ization techniques while maintaining high data rates. . For example, if N = 128, the
symbol duration Tg = NT; = 128 x 0.5 us = 64 ps, During this interval, a cyclic
prefix is transmitted, ensuring that the delayed versions of the signal do not interfere
with subsequent blocks. This technique preserves the orthogonality of the subcarriers
and maintains the integrity of the transmitted data, even in multipath environments.
By incorporating the cyclic prefix, OFDM effectively mitigates ISI and enhances
the robustness of the communication system. The duration of the guard interval,
T, > Tmax, is designed such that it is long enough for the channel to be absorbed
within the guard interval, ensuring that the transmission of the OFDM block is not
affected. For example, inserting a guard interval 7, =8 us for a 2 MHz channel
leads to a transmission efficiency of n, = TB/(TB 4 Tg) = 64/72 ~ 0.89 = 89%.
Figure 2 illustrates the basic principle of inserting the cyclic prefix.

2.4.1 Mathematical Description of the OFDM Technique

Mathematically, the OFDM signal in the continuous-time domain can be described
as follows:

Fig. 2 Insertion of a CP
between OFDM blocks

PC Block OFDM I PC |
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N-1
s =) [Z d,-,keﬂ”f“} T1(t — iTp) (8)

i k=0

The N data symbols {d,-,k}j(v:_o] are transmitted over N complex sinusoids

{eﬂnfk’ }i:ol called subcarriers during the ith block. The spacing f; = k /Ty between

the subcarriers makes them orthogonal over the block interval.
The orthogonality of the subcarriers is mathematically expressed as:

1

s Dfit 2fit 1 (7 27 (oo —fi 1)1 1, ki =k
g RGN Z)dtz—/o (2700 gy = ©)

TB 0, kl 75 kz

where (*), represents the complex conjugate operation.
The pulse shape I1(z) has the following expression:

10<t<Tp

1
0 ailleurs (10)

I1(¢) ={

To visualize the orthogonality of the subcarriers in the frequency domain, we
consider the Oth block of the OFDM signal described by equation:

N—-1
s(t) = Z dy /it (11)

k=0

The representation in the frequency domain is obtained by applying the Fourier
Transform.

N-1
. k
S(f) = FIsO)(f) = Tge 72N " d; sinch - —)Ts] (12)
k=0 Ty
where
sinc(x) = { an e 0 (13)
=22 ailleurs

By maintaining adequate spacing between subcarriers, each frequency is rendered
frequency-flat. This transforms the frequency-selective wideband channel into N
narrowband channels that are non-selective, as the channel behaves as flat within
each narrowband. While this approach eliminates inter-symbol interference (ISI),
it comes at the expense of a slight reduction in spectral efficiency. On the other
hand, OFDM technique can be enhanced over a specific environment conditions
by assigning more bits to frequency intervals with stronger gains and fewer bits to
those with weaker gains. This adaptive approach, called bit loading, depends on the
channel remaining relatively stable to ensure precise measurements. where channel
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conditions are more predictable, than in high-mobility wireless systems, where rapid
changes in the channel make accurate measurement and adaptation more challenging.

2.4.2 Cyclic Prefix

As stated in Sect. 4.1, the inclusion of a guard interval ensures operation free from
inter-symbol interference (ISI), provided that a cyclic prefix (CP) is sent within this
interval. Over the duration of a single OFDM block period:

N—1
s(t) = deeﬂ”fkf, 0<t<Tg (14)
k=0

where {dy}}_, are the data that will be transmitted, {e/>"// }2’:_01 represents the N
subcarriers used to transmit the data symbols, and T is duration symbol. -7, <t <
0 is the period of the guard interval, where T, is the guard time. The insertion of the
cyclic prefix consists of transmitting the last subcarriers of the OFDM block during
the guard interval.

N—-1 N-1 N-1
s(t) =Y de ) =N g PP = N g R T, <1 <0 (15)
k=0 k=0 k=0

It is important to note that the simplification above is enabled by the periodic
nature of the signal. As a result, the OFDM signal, incorporating a guard interval
and cyclic prefix, can be concisely represented as:

N—-1
s(f) = deeﬂ”fkf, T, <t <Tp (16)
k=0

The signal with a guard interval s(t) could be expressed by:

b(t), T, <t<0
— N-1
SO=VY guer™io 0 <1 <1y 17
k=0

where b(t) represents the symbols transmitted in the guard interval —7, <t < 0.
Note that transmitting the cyclic prefix in the guard interval ensures operation
without ISI.
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2.4.3 Discrete-Time Model (DT)

To perform numerical simulations using discrete Fourier transforms, it is convenient
to define the OFDM signal using a DT model.

First, we begin with the description of the received signal r(¢) after transmission
of s(t) through the channel h(t).

The received continuous-time signal is [20]:

+00

r(t) =s() % h(t,v) +n() = / h(t, T)s(t — 7)dt 4 n(t) (18)

—00

If the channel is time-varying, the received signal can be expressed as:
r(t) = s(t) * h(z, t) + n(t) = / h(t, t)s(t — t)dt + n(r) (19)
0

Figure 3 illustrates a synoptic diagram outlining the sample computation process
based on Eq. (19). The channel’s impact is represented as a Discrete Fourier Trans-
form (DFT) followed by a set of multipliers (H[k]), and then an Inverse Discrete
Fourier Transform (IDFT). Additionally, the inverse channel is depicted, which
consists of a DFT, a set of multipliers (1/H[k]), and an IDFT. As a result, the
transmitted samples s[i] can be accurately reconstructed by processing the received
samples r[i] through this inverse channel.

The inverse channel structure depicted in Fig. 3 is designed to correct the alteration
introduced by the channel, earning it the name frequency domain equalizer (FDE).

This type of equalizer is applicable only when the channel’s effect can be repre-
sented as a circular convolution, a condition inherently satisfied by OFDM systems.
Figure 4 provides an illustration of the implementation of the FDE in the context of
OFDM.

In the specific context of OFDM, modulation is performed using an Inverse
Discrete Fourier Transform (IDFT), while demodulation is achieved through a
Discrete Fourier Transform (DFT). As illustrated in Fig. 5, the DFT and IDFT
effectively cancel each other out, and the resulting block diagram represents the

Fig. 3 The channel in the Channel
discrete time domain

S[i] .| DFT H[k] |, IDFT o r[i]

Inverse Channel

DFT | | 1/H[K | | IDFT

A 4

»s[i]
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Fig. 5 Basic blocks for the transmission/reception of the OFDM signal

standard structure of a conventional OFDM system. It is important to note that the
DFT and IDFT effectively withdraw each other, and the consequential block diagram
represents the standard structure of a conventional OFDM system.

The set of multipliers following the DFT is commonly known as a single-tap
equalizer, which performs a complex multiplication for each frequency slice.

2.5 Functional Diagram of OFDM

Figure 5 presents a high-level overview of the OFDM system, whereas Fig. 6 delves
into a more comprehensive breakdown of its functional components. The encoder
enhances the bit stream by adding redundancy, which facilitates error correction and
boosts system reliability.

One of the primary limits of OFDM is its high peak-to-average power ratio
(PAPR), which can lead to distortion in the power amplifier. In the subsequent
sections, the classification and modeling of power amplifiers, as well as the statistical
properties of PAPR, are explored in detail.



Performance Analysis of OFDM Techniques for Short Range V2V ... 439

bits
01101

\—-'->| Detection
1
1
1
1
1
1
1
1
1
1

Fig. 6 The functional blocks of OFDM technique

2.6 Analysis and Statistics of PAPR

As we mentioned earlier, the OFDM waveform suffers from a high PAPR. Therefore,
it is essential to apply PAPR reduction during the processing step before passing the
signal through the power amplifier. This is not acceptable to system designers, as
they prefer RF power amplifiers to operate with high efficiency.

2.6.1 Power Amplifier: General Overview, Classes, and Models Used

Generally, the space between the transmitter and receiver ranges from a few meters to
several kilometers. To transmit a signal over a long distance, it must have sufficient
power to propagate. Amplification is the final step performed on the signal at the
transmitter. This operation is ensured with the help of a power amplifier. In the ideal
case, the amplified signal retains the same shape as the original signal generated by
the blocks preceding the amplification stage. In reality, this is not the case, as a power
amplifier is made up of active devices (transistors) that are nonlinear.

2.6.2 General Overview of Power Amplifiers

The final part, the most critical regarding energy consumption impacts and potential
distortions on the signal, is handled by the power amplifier. Its role is to bring the
modulated RF signal to a sufficient level at the transmission antenna. Practically,
based on the power balance shown in Fig. 7, the energy (PDC) provided by the
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Fig. 7 Power balance in a PA (power amplifier)

power supply is not entirely transmitted to the load. A more or less significant part
is dissipated (Pdiss) as heat by the active and nonlinear device (the transistor).

For its design, it is essential to study the phenomena of stability, linearity, and
adaptation, and to correct them. To do so, the following requirements must be met:

e The PA (Power Amplifier) is generally the main power consumer in a transmitter.
A major design requirement is to determine how efficiently the PA can convert
the power supply into RF output power.

The designer often needs to focus on the efficiency of the power amplifier. Note
that efficiency results in either lower operating costs (e.g., for a cellular base station)
or extended battery life (e.g., for a smartphone). The linearity of the PA is another
important requirement. The input/output relationship must be linear to preserve the
integrity of the signal. Regardless of the targeted standard or operating class, the
main parameters for characterizing a PA are [21]:

Output power Ps,

Input power Pe,

Power supply Pdc,

Dissipated power Pdiss,

Power gain Gp,

Power added efficiency (PAE),

1 dB compression point PC1,

The power balance of the amplifier is given by:

P, + Py = Pgiss + P (20)
The gain in power is given by
G, =D (21)
P = P,

Efficiency serves as a key measure of a power amplifier’s (PA) performance. It is
determined by comparing the output power (Pout) to the power consumed (Pdc).
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The efficiency of an amplifier measures the amount of power supply Pdc converted
into output power Ps. Calculating the efficiency provides information about the lost
power, P jigs.

Efficiency is an important performance indicator for a PA, and it is defined as the
ratio between the amplifier’s output power (Pout) and the consumed power (Pdc).

ju— PS
P dc

n (22)

Efficiency is thus strongly related to the operating class of the amplifier. This
definition of efficiency does not account for the power supplied to the input of the
device. The concept of power added efficiency (PAE) was introduced to address this
gap.

The power added efficiency is written as follows:

1
PAE = n(l - G_,,) (23)

Now, from Egs. (25) and (26), we get:

Ps_pe
Pdc

PAE =

(24)

3 The Operating Classes of a Power Amplifier

When amplifying a signal (modulated for wireless communication), a trade-off must
be made between the linearity and the efficiency of the power amplifier (PA). The
signal can be amplified either by a linear PA but at the expense of efficiency, or by a
high-efficiency PA but at the expense of linearity. These classes are grouped into two
categories based on the mode of operation of the transistor: sinusoidal classes and
high-efficiency classes. The sinusoidal classes encompass the transistor operating
modes where the signals are of sinusoidal types. This category includes classes A,
B, AB, and C. The transistor behaves like a current source, and the output power is
proportional to the input power. In the category of high-efficiency amplifiers, there
are classes D, E, and F. The transistor behaves like a switch: it is alternately a short
circuit and an open circuit, and the output power is not a linear function of the input
power.

The efficiency of PA depends on the amplifier’s design and implicitly on the active
component (the transistor). Thus, operational classes of amplifiers are defined based
on the type of transistor biasing and its conduction angle [22]. Linear amplifiers,
operating in classes A, B, and AB, are appropriate for amplifying signals with non-
constant envelopes. Each of these operational classes has specific characteristics and
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Table 1 Conduction angle and efficiency of different PA classes

Class Conduction angle (3) Maximum theoretical efficiency
A 360° 50%

AB 180° < 8 < 360° 50% to 78.5%

B 180° 78.5%

C 4 < 180° 100%

D and more Switching ON/OFF Until 100%

trade-offs in terms of biasing, linearity, and efficiency. Similarly, there are nonlinear
amplifiers grouped into classes C, D... H, and S. In this case, these amplifiers are
often referred to as amplifiers for constant envelope signals, unaffected by component
nonlinearities [22]. Table 1 provides a summary of the conduction angles and theo-
retical efficiencies for an ideal amplifier, covering all the amplifier classes discussed
earlier.

In summary, when linearity is a top priority, Class A amplifiers should be preferred,
despite their lower efficiency. While non-sinusoidal amplifier classes offer high
performance, their linearity is significantly compromised. As a result, Class AB
amplifiers emerge as a balanced compromise, offering a combination of reasonable
efficiency, power output, and wideband performance.

4 Simulation Results and Discussion

In this section, we will analyze the performance of the proposed communication
system in terms of BER (Bit Error Rate). To do so, we will first simulate the proposed
model for the V2V (Vehicle-to-Vehicle) communication channel, which will be used
for the simulation of the communication chain based on OFDM modulation. Then,
we will study the performance of OFDM modulation on this channel. Indeed, the
V2V channel is a wireless communication channel used for data exchanges between
vehicles. This type of channel is characterized by complex propagation conditions
due to the dynamic and mobile environment in which it operates. The proposed model
takes into consideration three parameters (as shown in the Fig. 8). The first param-
eter is the multipath nature of the V2V channel, as transmitted signals can reach the
receiver through multiple paths due to reflections from buildings, other vehicles, or
surrounding obstacles. The second parameter is attenuation, which we also consider
in the proposed model. On the other hand, to evaluate the performance of the V2V
system, we chose to use OFDM modulation. OFDM (Orthogonal Frequency Division
Multiplexing) is a multi-carrier modulation technique that divides the frequency spec-
trum into multiple orthogonal subcarriers. It is particularly well suited for multipath
environments, such as the V2V channel, as it helps reduce Inter-Symbol Interference
(IST). This modulation will be evaluated in terms of BER, considering the channel
presented in Fig. 8.
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Fig. 8 Proposed multipath channel for V2V communication

The performance of the OFDM-V2V system is evaluated for various V2V channel
models, each highlighting different aspects of the system’s performance under
varying conditions. The specific parameters of the proposed system under inves-
tigation are outlined in Table 2, providing a clear reference for the simulation setup.
To generate the results, the samples h[i], s[i], and n[i] are created, representing
the channel impulse response, transmitted signal, and noise, respectively. Once the
received samples are obtained, they are processed by the FDE to mitigate channel-
induced distortions, followed by the demodulator to recover the transmitted data.
This process ensures a comprehensive evaluation of the system’s performance under
multipath conditions.

Figure 9 evaluates the performance of OFDM over V2V channel by varying the
modulation order M. This analysis provides insights into how changes in modulation
order impact system performance. It shown from Fig. 9 that the performance over
AWGN outperform the performance of frequency selective channel. This could be
explained by the multi-path behavior of the in the frequency selective channel which
create inter-symbol-interferences. We can see also as the modulation order increase
the BER tends to increase. However, increasing the modulation order mean increasing
the data rate of the overall system which mean we have to find a threshold value which

Table 2 Simulation

parameters Parameters Value
Block period (Tg) 500.107 s
Number of subcarriers (N) 128
Guard period (Tg) 125.10° s
Frequency domain equalizer MMSE
Modulation QAM, PSK and ASK
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allow us to choose which modulation order to attaint which objective. Figure 10
examines the effect of oversampling factor on the performance of the proposed
system across two distinct channel models: AWGN and frequency-selective fading
with an exponential power delay profile.

10o T T T T T T T T
d AWGN, M=2
—O— FSC-Ex, M=2
AWGN, M=4
—O— FSC-Ex, M=4
107 AWGN, M=16 |7
~——E— FSC-Ex, M=16
AWGN, M=64
—O— FSC-Ex, M=64
w192
103
)
10 :
0 5 10 15 20 25 30 35 40 45
Eb/NO(dB)

Fig. 9 Performance of OFDM regarding modulation order, using QAM
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Fig. 10 Performance of OFDM regarding oversampling factor, using QPSK
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This comparison reveals how the oversampling factor affects performance in
different channel environments, offering a comprehensive understanding of the
system’s adaptability and robustness under diverse conditions. Together, these figures
provide a detailed analysis of the key parameters influencing OFDM system perfor-
mance. By maintaining a consistent number of subcarriers and following a struc-
tured simulation approach, the study provides reliable insights into the performance
of the OFDM system in challenging multipath environments which is the main
characteristics in V2V channels.

Figure 9 evaluates the performance of OFDM over V2V channel by varying the
modulation order M. This analysis provides insights into how changes in modula-
tion order impact system performance. It shown from Fig. 9 that the performance
over AWGN outperform the performance of frequency selective channel. This could
be explained by the multi-path behavior of the in the frequency selective channel
which create inter-symbol-interferences. We can see also as the modulation order
increase the BER tends to increase. However, increasing the modulation order mean
increasing the data rate of the overall system which mean we have to find a threshold
value which allow us to choose which modulation order to attaint which objec-
tive. Figure 10 examines the effect of oversampling factor on the performance of
the proposed system across two distinct channel models: AWGN and frequency-
selective fading with an exponential power delay profile. This comparison reveals
how the oversampling factor affects performance in different channel environments,
offering a comprehensive understanding of the system’s adaptability and robustness
under diverse conditions. Together, these figures provide a detailed analysis of the
key parameters influencing OFDM system performance. By maintaining a consis-
tent number of subcarriers and following a structured simulation approach, the study
provides reliable insights into the performance of the OFDM system in challenging
multipath environments which is the main characteristics in V2V channels.

Based on Figs. 9 and 10, OFDM modulation is a robust solution for V2V commu-
nications, capable of handling the challenges of the channel while providing good
spectral efficiency. It effectively mitigates the effects of multipath propagation by
dividing the transmitted signal into multiple orthogonal subcarriers, reducing IST and
improving signal integrity. Besides, OFDM is well-suited for dynamic and rapidly
changing environments, such as those encountered in V2V scenarios, where vehi-
cles are in constant motion and experience varying channel conditions. The perfor-
mance of the proposed system is evaluated regarding BER which plays a crucial role
in assessing the overall performance of the suggested system. By evaluating BER
under different channel conditions, we can identify the optimal modulation param-
eters, such as subcarrier spacing, coding schemes, and power allocation, to enhance
communication reliability for a real world channel. Moreover, BER analysis helps in
understanding the impact of channel impairments, such as Doppler shifts and fading,
allowing for the implementation of adaptive techniques that can further improve the
overall performance of the V2V system.
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5 Conclusion

Through extensive performance evaluation, the findings demonstrate that OFDM
with QAM modulation consistently achieves better spectral efficiency, lower BER,
and improved resilience to channel impairments compared to OFDM-QPSK. The
superiority of OFDM-QAM makes it the most suitable choice for V2V communica-
tion, as it effectively balances data rate, error performance, and spectral efficiency.
The insights gained from this analysis provide valuable guidance for optimizing V2V
communication systems, contributing to the development of more reliable and effi-
cient vehicular networks. Future work may explore the integration of advanced error
correction techniques and adaptive modulation strategies to further enhance V2V
communication performance under real-world conditions.
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