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1.1	 Background
Mathematics is an important part of human culture. With the rapid
growth of information and digitization around the world, mathematical
literacy has become increasingly important to every citizen and an
essential competency that every citizen should possess in modern
society. Mathematical problem-solving ability is an important part of
mathematical literacy. Mathematics education worldwide has given
much attention to student problem-solving ability in the past few
decades. In the 1980s, the U.S. programmatic document for school
mathematics education, An	Agenda for Action, explicitly stated that “the
mathematics curriculum should be built around problem solving.” In
September 2011, the Obama administration reauthorized the
Elementary and Secondary Education Act (ESEA), which focuses on
improving student learning and problem-solving skills (U.S.
Department of Education, 1965). Japanese mathematics education has
also attached great importance to “problem solving.” In 1994, Japanese
mathematics education started to implement the new mathematics
curriculum in an all-round way and added “teaching with the subject”
to the syllabus. The process of “teaching with the subject” is based on
the characteristics of “solving problems” in math classes (Zhang & Tang,
2005). The well-known Cockcroft Report (1982) emphasized, “Problem
solving should be regarded as an important part of curriculum theory.”

https://doi.org/10.1007/978-981-95-1405-2_1
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In China, according to The Compulsory Education Mathematics
Curriculum Standards (2011 edition), “mathematics courses should
enable everyone to receive a good math education and to improve every
student’s ability further on the premise of admitting the individual
differences between students. Students’ capacity to discover and ask
questions is the foundation of innovation (Ministry of Education of the
People’s Republic of China, 2012).” In addition, the 2022 edition
(Ministry of Education of the People’s Republic of China, 2022)
highlights that the compulsory education mathematics curriculum
should enable students to develop the key competences needed for
social and personal development through the study of mathematics.
The cultivation of students’ ability to solve problems is an essential
educational function of mathematical thinking.

Improving students’ problem-solving skills is an effective way to
reduce their academic burden. The appropriate design of mathematics
questions and practical problem-solving strategies can support student
thinking processes and knowledge development to enhance their
conceptual understanding. Flexibility in mathematical thinking and
application is the ultimate goal of problem solving.

1.2	 Focus	of	Study
The cultivation of mathematical problem-solving ability should be
based on the study of mathematical cognition. The 2011 and 2022
editions of The	Compulsory	Education	Mathematics	Curriculum
Standards (Ministry of Education of the People’s Republic of China,
2022) noted that “the content of the curriculum should respect the
rules of students’ cognitive development, including not only the results
of mathematics but also how the results are formed as well as the
mathematical thinking and methods entailed.” Furthermore, “teachers
should design instruction based on students’ cognitive level and
previous knowledge.” Finally, they emphasize: “The main purpose of the
evaluation should not only focus on the learning results but also attach
importance to the learning process.”

Early research revealed that teachers lacked an understanding of
students’ cognitive process of mathematics problem solving at the
primary school level. The teaching of mathematics is commonly based



on teachers’ personal experience, which often results in an incorrect
diagnosis of the problems experienced by struggling students.
Classroom interventions for struggling students have focused primarily
on asking students to correct errors by using the same instructional
direction that was originally used. This method fails to provide targeted
and meaningful interventions, and students have dif�iculty recognizing
and understanding their mistakes.

In recent years, the development of the learning sciences, especially
brain science, cognitive psychology, cognitive neuroscience and related
�ields, has provided a broader basis for expanded research into the
cognitive process of solving mathematics problems. The learning
sciences involve interdisciplinary research into teaching and learning.
The primary objective of this �ield is to understand the cognitive and
socialization processes that result in the most effective learning. The
secondary objective is to design effective and innovative learning
environments, including school classrooms and informal settings
(Sawyer, 2005).

The teaching process depends on the learning process. Problem
solving is the core component of mathematical learning. Research on
the cognitive process of problem solving and analysis of student
mathematical learning can inform the cognitive rules of student
mathematical thinking. The aim of this study is to develop a
methodology that facilitates the analysis and description of the
cognitive process of mathematical problem solving in primary school
students.



1.3	 Book	Structure
Based on the achievements of previous scholarship, this book proposes
a method for problem solving via cognitive simulation. The
mathematics problem is used as an example to conduct empirical
research. In this book we discuss the application of cognitive analysis
and simulation in classroom mathematics teaching (such as the
cognitive process of elementary mathematics inquiry question design, a
“one-on-one” cognitive diagnosis mode and application, cognition
simulation of the interaction process in a mathematics classroom, etc.).
The book's organizational structure is as follows.

In this chapter: The research background is analyzed, and the
problem to be solved by the research is articulated.

Chapter 2: The core concepts of the research are de�ined. A
literature review of the process models of general problem solving,
mathematical problem solving, and the cognitive process analysis of
mathematical problem solving is presented.

Chapter 3: The key issues to be solved in this study, the research
methods adopted, the framework, the theoretical basis and the
signi�icance of the research are described to ensure the authenticity of
the research questions, the scienti�icity of the method and the
operability of the research process.

Chapter 4: The process of solving typical problems is analyzed in
the sections “Numbers and Algebra,” “Graphics and Geometry” and
“Statistics and Probability.” The Polya mathematical problem-solving
model is further re�ined within the framework and construction of a
cognitive model for solving primary school mathematical problems.
The characteristics and application scope of the model are analyzed,
and its educational signi�icance is presented.

Chapter 5: The problem-solving cognitive model established in
Chapter Four is constructed to enable an analysis of the problem-
solving process with respect to two typical problems of “different
denominator addition” and “mode.” The tools of the Adaptive Control of
Thought-Rational (ACT-R) framework are used to perform a cognitive
simulation. The analysis is conducted using six students from the �ifth
and sixth grades of a primary school. The students are selected to
participate in an empirical study on the cognitive simulation results of



the two types of questions using the oral report method. The results of
this empirical study demonstrated that the results of the cognitive
simulation are consistent with those of the oral report.

Chapter 6: Based on Chapters Four and Five, the cognitive process of
mathematical problem solving is analyzed and simulated. The analysis
proposes the design basis and principle of the mathematical classroom
inquiry problem. It then takes the example of knowledge points such as
“mode” and “cylinder side area” to design typical inquiry problems,
apply them in classroom teaching, and analyze the effects of teaching
applications.

Chapter 7: The cognitive process based on mathematical problem
solving is analyzed and simulated. This chapter intensively captures a
series of cognitive operations and cognitive components in the process
of problem solving and explores the “one-on-one” cognitive diagnosis
process based on the cognitive model. It examines and identi�ies
students’ problem-solving cognitive processes, especially for students
with learning dif�iculties. It provides more detailed and targeted
guidance and advice on teaching practices to support and enhance the
individual development of students.

Chapter 8: On the basis of the introduction of “one-on-one”
cognitive diagnosis in Chapter Seven, Chapter Eight takes the typical
understanding of procedural knowledge and declarative knowledge as
an example to analyze the basis and process of typical problem design.
The oral report method, student questionnaires, teacher interviews,
and other methods are used to conduct an in-depth analysis of the
cognitive diagnosis process and its results and discuss the implications
for teaching mathematics.

Chapter 9: Based on research in the learning sciences, Chapter Nine
proposes a method to analyze classroom interaction from the
perspective of the cognitive process. It takes the “seventh-grade”
mathematics classroom “Looking from Different Directions” as the
research object to determine the typical classroom interaction and uses
the thinking model to analyze the question-answering process. It then
implements the cognitive simulation with the ACT-R framework. Based
on an analysis of the learning process, three suggestions for classroom
teaching are proposed to help teachers design more effective teaching
strategies.



Conclusion: The study’s main research results are summarized, the
process innovation is identi�ied and assessed, and the shortcomings of
the study are discussed.
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2.1	 Core	Concepts
The precise de�initions of the core concepts used in this study must be
established to clarify the study’s relevance, effectiveness, and
objectives. The core concepts used in the study are problem, problem
solving, cognition, cognitive model, cognitive simulation, ACT-R model,
and cognitive diagnosis.

2.1.1	 Problem
The �irst step in problem solving is to de�ine the problem, its nature and
its characteristics. For this purpose, Gestalt psychology’s de�inition of
the problem is widely cited: “When an organism has a goal but does not
know how to achieve the goal there is a problem” (Gilhooly, 1988).This
de�inition consists of the following four points:

Knowledge and abilities determine whether a problem exists. For
example, performing subtraction or addition involving three carries
may be a problem of signi�icant dif�iculty for a �irst-grade student but
not for a high school student.
A problem no longer exists as a problem if the goal has changed or if
there is no longer a desire to solve the problem.

https://doi.org/10.1007/978-981-95-1405-2_2
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Problems exist only when there is an awareness of differences
between the goal and the current situation.
Problems are goal oriented. They are conceived in relation to a
speci�ic goal and thus end when the goal is achieved.

Newel and Simon classi�ied problems into three types according to
their characteristics: well-structured problems, moderate-structured
problems and ill-structured problems (Newell, 1972). Anderson
categorized questions that students often encounter as well-structured
problems and ill-structured problems (Anderson, 2000). The problems
examined in this study are well-structured mathematical problems,
such as monism equation problems, arithmetic problems, and
cylindrical side area problems; these problems require the application
of mathematical knowledge.

2.1.2	 Problem	Solving
Cognitive psychologists commonly de�ine problem solving as follows:
“Problem solving is de�ined as a series of cognitive processes that
points to the goal.” This de�inition consists of three parts:
(1)

Problem solving is goal oriented. It starts with an aim to achieve a
speci�ic goal and ends when the goal is reached.

 
(2)

Problem solving consists of a series of operations. The
performance of operations typically requires a logical and
thoughtful approach.

 

(3)
Problem solving comprises a series of cognitive operations. It is
essentially a thinking activity. Problems in this study refer to
problems to be solved through a series of cognitive operations
and the application of mathematical knowledge.

 

2.1.3	 Cognition
Cognition refers to an individual’s ability to acquire knowledge and
solve problems, that is, the process and ability of information
processing. The de�inition of cognition consists of two parts:
(1)

Cognition includes operations and abilities.  



(2) Cognition comprises a series of thinking activities that occur from
the point in time when an individual reads a problem to the point
in time when the individual answers the problem.

 

2.1.4	 Cognitive	Model
The term cognitive model originated in the �ield of computer science
and refers to the simulation of the mental process of humans during
problem solving and psychological task processing. In many cognitive
psychology studies (Anderson et al., 2003; Baddeley & Logie, 1999;
Ericsson and Simon, 1993; Healy, 2005; Kalchman et al., 2001; Newell &
Simon, 1972; Siegler, 2005), this term has been used to simplify the
problem-solving process of human beings and is often likened to a
computational model that re�lects the human cognitive process.
Research shows that cognitive models have effectively predicted and
explained the information processing procedures for many problem-
solving behaviors (Ericsson & Simon, 1993). The de�initions of a
cognitive model can be summarized as follows:
(1)

A cognitive model is an abstraction and generalization of the
cognitive process that actually occurs.

 
(2)

A cognitive model can effectively predict and explain problem-
solving behaviors. In this book, the term cognitive model refers to
the cognitive analysis framework.

 

2.1.5	 Cognitive	Simulation
Many researchers have applied a computational simulation approach to
understand the mental process of human problem solving. Based on the
cognitive model, problem-solving cognitive simulation �irst analyzes the
cognitive process of problem solving and then programs the cognitive
process sequences. It then simulates the process with computer
software to make the process of problem solving visible. Problem-
solving cognitive simulation assists in the understanding of complex
cognitive processes. A limitation of cognitive simulation is that student
motivation, feelings, emotions, attitudes and other factors are not
considered.



Although there are still many shortcomings of current computer
simulations of problem solving, the computer programs are logical,
consistent, and reliable. Computer simulation makes a signi�icant and
essential contribution to the articulation of the problem-solving
process that is not possible through other methods. Computer
simulation combines some factors in the problem-solving process,
reconstructs this process, improves on the previous analysis of
experimental psychology, and opens up a path for understanding the
problem-solving process as a whole (Wang & Wang, 1992). With the
continuous development of arti�icial intelligence and brain science,
computer simulation will play a greater role in the study of problem-
solving cognitive processes. The visualization of simulation results will
provide reliable solutions for problem design, classroom interaction
and problem diagnosis.

2.1.6	 ACT-R	Model
The ACT-R model consists of the declarative knowledge and procedural
knowledge required for problem solving, the goal and a series of
cognitive operations to achieve the goal. The model uses the Lisp
language. In this book, ACT-R refers to the sequences of primary school
students’ problem solving and the ACT-R program (or sequence).

2.1.7	 Cognitive	Diagnosis
Cognitive diagnosis, also called cognitive assessment, is the diagnosis of
one’s knowledge structure, cognitive development, and cognitive
process (Leighton & Gierl, 2007). The de�inition of cognitive diagnosis
includes the following points:
(1)

Cognitive diagnosis is based on cognitive processes.  
(2)

Cognitive diagnosis considers only cognitive factors. It does not
consider other factors, such as motivation, emotions, and beliefs.

 

2.2	 Process	Model	of	General	Problem	Solving
2.2.1	 Literature	Review



I. Newell and Simon’s problem-solving process model 
The human and computer problem-solving model proposed by

Newell and Simon in their book “Human Problem Solving” can be
described as a model of problem-solving models (Newell & Simon,
1972). It can be used to explain a wider range of research on thinking
(Ericsson & Hastie, 1994). This problem-solving model is comparable
with the memory model (Atkinson & Shiffrin, 1968). Speci�ically, it
conceptualizes problem solving as a process of narrowing the gap
between the initial state and the target state through effective methods.
This model contains two phases, “forming the internal representation
of the problem” and “narrowing the gap between [the] current [state]
and [the] target state.” It proposes a “General Problem Solver, GPS”
computer program.

The process of problem solving considers two states, the initial state
and the goal state, and the combination of these states is the “problem
space.” Under the premise of the problem space and information
processing theory, the general process of problem solving can be
divided into the following two stages:
(1)

Understand the problem: The problem solver transforms (or
translates) the problem into psychological representations that
are to be placed in working memory in the form of propositions,
images, etc. The representations are stored in the brain in an
internal form or represented externally.

 

(2)
Find a solution: The information stored in working memory starts
to activate the knowledge stored in long-term memory to enable
the extraction of relevant knowledge and the selection of
strategies and methods applicable to the problem. When an
effective solution to the problem cannot be found, it becomes
necessary to revise the original problem representation. If the
problem can be successfully solved, then the internal problem
representation is suf�icient to represent the problem. In this case,
the problem representation is further embedded in long-term
memory and becomes new knowledge.

 



II. Dewey’s problem-solving process model 
In his book How	We	Think, Dewey (1859–1952) detailed the

thinking process of problem solving and proposed a �ive-step solution
to a problem (Dewey, 1910): (i) a felt dif�iculty; (ii) the location and
de�inition of the problem; (iii) the suggestion of a possible solution; (iv)
development through the reasoning of the bearings of the suggestion;
and (v) further observation and experimentation leading to the
acceptance or rejection of the proposed solution. Dewey suggested
teaching math through a problem-solving approach across all grades
and all courses. Ausubel (1978) noted that in the general description of
the stage of the cognitive process of problem solving, no signi�icant
improvements to Dewey’s description have been made for more than
60 years.
III.

Gick’s problem-solving process model 
Gick et al. proposed that the universal problem-solving process

consists of four stages: problem understanding and characterization,
seeking answers, solving the problem and evaluating the solution. The
speci�ic process is shown in Fig. 2.1 (Chen, 2005).

Fig.	2.1 Gick’s problem-solving process model

(1)
Problem Understanding and Characterization 

Gick et al. argued that the �irst step of problem solving is to
determine what the problem is. This step articulates the problem to be
solved and the existing given conditions; the problem space is created
based on this information. This process includes identifying relevant
information, forming a semantic understanding, developing an overall
characterization, and problem classi�ication.



(2) Seeking Answers 
If, after the problem is understood and characterized, the problem

solver fails to activate a particular schema, then the problem solver will
start looking for a solution. Some commonly used problem-solving
strategies are algorithmic strategies, means-purpose analysis, hill
climbing, and reverse reasoning.
(3)

Solving the Problem 
An attempt to develop a solution to the problem corresponds to the

process of implementing the solution plan. This step occurs after the
problem has been characterized and a problem-solving strategy has
been formulated. This process is relatively simple, but it is often
overlooked, which leads to errors.
(4)

Evaluation 
Once a problem answer has been developed, it needs to be

evaluated. The evaluation process looks for evidence to con�irm or
refute the utility and accuracy of the answer. If the answer is proven to
be correct, the problem is resolved. If the answer is not correct, the
problem-solving process returns to phase 2 or another phase as
appropriate and is performed again from that point.
IV.

Anderson’s ACT-R Model 
The ACT-R model was developed and established by John R.

Anderson and his colleagues, a group of arti�icial intelligence educators
and psychologists from Carnegie Mellon University. It is a framework to
simulate and help explain theories of human cognition. ACT-R
researchers have invested substantial effort in understanding how
people organize knowledge and produce intelligent behavior. Since
1976 the ACT-R theory has been, evolving from the initial ACT-E model
to the current ACT-R model. “R” stands for rationality, which represents
“the best way to achieve human goals (Anderson, 1990).” As research
has progressed, the ACT-R model has been used to perform a large



number of human cognitive tasks through detailed analysis of human
perceptions, re�lections, and responses to the external environment.

ACT-R is called “a simple theory of learning and cognition.” This
theory holds that complex cognition consists of knowledge units that
are obtained through simple principles. Human cognition is highly
complex. This complexity is manifested in the complex combination of
basic elements and principles, similar to how computers perform
complex tasks through simple operations. To accomplish complex tasks,
ACT-R requires that each element of the task must be mastered. The
basic knowledge required to utilize ACT-R is a prerequisite. Anderson et
al. noted that ACT-R theory provides “important new insights” into
human cognitive activity, including the following (Anderson, 2000):
(1)

ACT-R is based on the cognitive theory of production systems,
which can construct all the features of cognitive behavior from a
simple psychological system.

 

(2)
ACT-R can predict human behavior through information
processing, which itself can produce intellectual behavior.

 
(3)

ACT-R has successfully been used to establish models for high-
level cognitive activities, including scienti�ic reasoning, skills
acquisition, and human‒computer interaction.

 

ACT-R theory categorizes knowledge into declarative knowledge
and procedural knowledge. Declarative knowledge is “the knowledge of
what it is” and refers to the type of knowledge that people know and
can express (e.g., China’s capital is Beijing, and 1 + 2 = 3). In ACT-R,
declarative knowledge is characterized as small units of primitive
knowledge that are called knowledge chunks. Procedural knowledge is
“the knowledge of how to do it” and refers to the regular units used to
extract declarative knowledge chunks, also known as productions.
Squire et al. provide neurological evidence that distinguishes between
declarative and procedural knowledge (Squire et al., 1993). Ongoing
research into cognitive neuroscience is providing the most up-to-date
evidence on more neuronal mechanisms. For example, Graybell found
that the basal ganglia are involved in the process of encoding
information in the cerebral cortex and are responsible for automating



the sequence of actions (Graybell, 1998). One of the consequences of
this process is that the sequences that are conscious and slow become
automatic and faster.

The ACT-R model is shown in Fig. 2.2. The structure of the model
re�lects the assumptions of human cognition that are developed based
on empirical evidence from psychology experiments. It includes
modules, buffers, and pattern matches.

Fig.	2.2 ACT-R cognitive module

There are two types of modules in ACT-R: perceptual-motor
modules and memory modules. The perceptual-motor modules are the
interfaces with the real world. The best perceptual movement modules
in ACT-R are the visual module and the movement module. ACT-R also
includes two memory modules: declarative memory, which contains
facts (e.g., Washington is the capital of the United States, 1 + 3 = 4); and
procedural memory, which comprises productions that represent the
knowledge of how we do what we do (e.g., how to drive, how to
perform addition).

The interaction between the modules in ACT-R (with the exception
of the perceptual-motor modules) is performed through buffers. Each
module has a dedicated buffer that serves as the module’s interface.
The contents of the buffer at a particular moment characterize the state
of the ACT-R model at that moment.

The pattern matcher looks for productions that match the current
state in the buffer. Multiple productions can be matched at a given time,
but only one production run is executed. The contents of the buffer are
modi�ied during production, changing the state of the system. Hence,
cognition in ACT-R is represented as a series of activations of
productions.

Many scholars in China have performed a large amount of
theoretical and practical research on the cognitive process of problem



solving. Wen Gao et al. argued that the general process of problem
solving can be attributed to the following �ive stages: (1) identi�ication
and de�inition of the problem; (2) selection and application of
strategies to solve the problem; (3) characterization of the problem; (4)
resource distribution; and (5) monitoring and evaluation. Jiang and
Yang (2002) divided the problem-solving process into two parts: task
understanding and implementation of the operation. Figures 2.3 and
2.4 show the models for task understanding and execution, respectively.
The problem-solving information processing mechanism is driven by
concepts, with psychological resources �lowing in an orderly manner
between the processing and automation of partial processing.

Fig.	2.3 Modular diagram of understanding problem-solving tasks

Fig.	2.4 Problem solving in the operation of all modules

2.2.2	 Summary
According to Simon, the process of human information processing is a
single-linear system that performs a series of activities because a
human can only think of and do one thing at a time. People are a single-
linear system (Simon, 1978). The proposed problem-solving
engineering model provides a precise prediction for certain types of
problem-solving behaviors and thinking tests. Hence, human thinking
no longer appears mysterious (Newell & Simon, 1961). It is a functional
description, is abstract, and is unrelated to the structure. The general
problem-solving process and general problem-solving strategy do not
consider subject knowledge.



Anderson’s ACT-R model provides an abstract cognitive structure
that describes the cognitive model from a functional point of view only.
ACT-R has been applied in many �ields and has achieved some
promising results. However, the ACT-R model and problem-solving
process are not the same, and many problems still need to be studied.
(1)

ACT-R is a serial process of implementing a solution to a problem
after the problem has been identi�ied. It does not indicate how the
problem is to be determined. The problem is conceived when a
goal is identi�ied and ends when the goal is achieved. The
determination of the goal is a crucial step in the problem-solving
process.

 

(2)
ACT-R lacks advanced thinking or tactical options. Solving a
problem involves applying a strategy, and the selection of the
appropriate strategy is the key to successful problem solving.
When people solve problems, they usually extract strategies that
have previously successfully solved similar problems from their
long-term memories and form a new strategy to solve the
problem. Formulating the strategy is an essential part of problem
solving.

 

(3)
ACT-R introduces only the general cognitive process, without
highlighting a speci�ic process. For example, the model mentions
the comparison of relevant information in long-term memory but
does not provide any further explanation. It is therefore dif�icult
to design an ACT-R program using this limited guidance.

 

(4)
ACT-R is a common cognitive model that does not consider the
characteristics of the subjects. Due to the differences in subject
content, the process of problem solving will differ. The
construction of a cognitive model should consider the
characteristics of the subject content to ensure that it is closely
related to the subjects.

 

To summarize, ACT-R analysis is a linear and symbolized process,
whereas the real-world problem-solving process is nonlinear. Many
other events may occur concurrently with the process of problem



solving, such as re�lection on the selection of strategies, calculations,
and a determination of whether the problem-solving process is
complete.

2.3	 The	Process	Model	of	Mathematical
Problem	Solving
2.3.1	 Literature	Review
I.

Polya’s “table of how to solve the problem” 
A famous mathematician and mathematics educator, George Polya

(1887–1985) is a landmark �igure in the �ield of mathematical problem-
solving research. In his book How	to	Solve	It, Polya (2012) proposed
four steps of problem solving as shown in Table 2.1.

Table	2.1 Polya’s four-step approach to problem solving

(1)
Understand
the	topic

Understand the problem:
What are the unknowns? What are the known data? What are the conditions? Is it
possible to meet the conditions? Are the conditions suf�icient to determine the
unknowns? Or are they not enough? Or redundant? Or contradictory?
Draw a picture and insert an appropriate symbol
Please separate the different parts of the condition

(2)	Identify
the
relationship
between
known	data
and
unknown
data
If	you
cannot	�ind
a	direct	link,
you	may
need	to
consider
secondary
topics
In	the	end,
you	should

Proposed solution:
Have you seen it before? Or have you seen the same topic appear in a slightly
different form?
Do you know a related topic? Do you know a theorem that may be useful?
Observe the unknowns! Moreover, try to come up with a topic you are familiar
with the same or similar unknowns
Once you have identi�ied a topic related to your question that has been solved
before, answer the following questions: Can you use it? Can you take advantage of
its results? Can you take advantage of its methods? To apply it, do you need to
introduce any auxiliary elements?
Can you recount this topic? Can you describe it in a different way?
Revisit the de�inition
If you cannot solve the problem, try to solve a related topic. Can you think of a
topic that is easier to solve? A more general topic? A more speci�ic topic? A
similar topic? Can you solve part of the problem? Keep only a portion of the
conditions, and set the other conditions aside: to what extent can the unknown



be	able	to
�ind	a
solution	to
the	problem

be known (or de�ined)? How does it change? Can you derive useful information
from the known data? Can you think of other suitable known data to determine
the unknowns? Can you change the unknowns or the known data or change both
if necessary so that the new unknowns and the new known data are closer to
each other? Have you used all the known data? Have you used all the conditions?
Did you consider all the key concepts in the title?

(3)	Execute
your	plan

Execute the plan:
Run your solution and check every step. Can you con�irm that each step is
correct? Can you prove that the solution is correct?

(4)	Check
the
obtained
answers

Review:
Can you test the result? Can you test the argument?
Can you deduce the result in different ways? Can you see it at a glance?
Can you apply the result or the method to other topics?

The four steps of Polya’s problem-solving approach have far-
reaching implications for mathematics education. The works of today’s
well-known problem-solving experts in mathematics education, such as
Kilpatrick and Schoenfeld, are all based on Polya’s work.
II.

Schoenfeld’s mathematical problem-solving approach 
Schoenfeld stressed that four factors should be considered in

mathematical problem solving: the knowledge base, problem-solving
strategies, self-control, and belief systems (Schoenfeld, 1985). His
research revealed that cognitive factors play a key role. According to the
metacognitive point of view, he divided the problem-solving process
into six stages: reading, analyzing, exploring, planning, implementing
and testing. Figure 2.5 shows a �lowchart of the stages of problem
solving.

Fig.	2.5 Schoenfeld’s problem-solving �low chart



The explanation of the �ive stages is as follows:
The �irst stage is analysis. This stage includes analyzing what the

problem means, what the known conditions are, what is required,
whether the target appears to be compatible, which major principle or
system is relevant or must be observed, and which part of the problem
relates to mathematical content, among other considerations.

The second stage is planning. In a sense, planning is a “master
control mechanism.” Planning is not an independent step; it underlies
the whole problem-solving process. Its purpose is to ensure that the
activities carried out are bene�icial.

The third stage is exploration. Exploration is the heart of problem
solving since the main activities of problem solving are carried out at
this stage.

The fourth stage is implementation. It entails the process of
implementing a solution to the problem and is the �inal stage of actually
solving the problem.

The �ifth stage is testing, a step that should receive more attention.
Students seldom check their results; however, checking the results is
valuable and important.

To summarize, Schoenfeld’s mathematical problem-solving model is
based on the work of Polya. His model has been widely recognized in
mathematics education.

Regarding the cognitive process of mathematical problem solving,
cognitive and mathematical psychologists Lewis & Mayer and Kintsch &
Greeno proposed distinct theoretical models along with detailed
explanations, which are described below.
III.

Lewis and Mayer’s mathematical problem-solving model 
Lewis and Mayer (1987) noted two important components of

mathematical problem solving: problem characterization and solution
implementation. Solving mathematical application questions involves
characterizing the problem and then applying mathematical or
algebraic rules to formulate a solution to the problem. Previous studies
(Anand et al. 1987) have shown that the primary dif�iculty faced by
children in solving problems is problem representation rather than



calculation. There are two subcomponents of problem characterization
(Xin, 2005):
(1)

Translation of the question sentences, especially to understand
the sentences that indicate the causal relationships. Previous
studies noted that it is very dif�icult to characterize the sentences
of causal relationships, and children often ignore or
misunderstand causal relationships.

 

(2)
Identi�ication of the type of problem. A child learns to classify
problems into various types, that is, to identify a variety of
problem-type schemas. If students want to grasp a schema, it is
necessary to identify the semantic relations contained in the
question. Greeno analyzed the problem-solving process of
geometry and math problems and described the knowledge and
tactics used to understand and solve a problem. Rily and Heller
(1983) noted that as long as children grow, their ability to
understand the problem gradually strengthens. These researchers
categorized arithmetic application questions into three types
according to semantic relations based on conceptual terms such
as additions, subtractions, mergers, and comparisons:

 

(1)
Cause-change problem. Cause-change problems describe an
increase or decrease in the number of things as a result of
additions and subtractions (e.g., “If John has three apples and Jane
gives him two apples, how many apples does John have now?”).

 

(2)
Combination problem. A combination problem contains a �ixed
number, and the problem solver needs to perform merging or
factoring operations (e.g., “John has three apples, and Jane has two
apples. How many apples do they have in total?”).

 

(3)
Comparison problem. A comparison problem compares the sizes
of two invariable quantities (e.g., “Jane has two apples, and John
has three apples more than her. How many apples does John
have?”).

 

(3) Green found that students experienced the greatest dif�iculties in



characterizing and solving comparative problems. Lewis et al.
(1987) and Verschaffel et al. (1992) found that students
encountered more dif�iculties when the relational words in the
comparison were not consistent with the required arithmetic
operations.

 

(4)
To explain this dif�iculty, Lewis and Mayer (1987) constructed a
model to compare problem understanding processes. The model
focuses mainly on the comparison problem that requires a one-
step calculation. These types of problems often begin with an
assignment sentence that states the value of a variable (e.g., “John
has three apples.”). This sentence is usually followed by a causal
relation sentence that de�ines a variable about another variable
(e.g., “He has two more apples than Jane does.”). Finally, a question
about the value of an unknown quantity is posed (e.g., “How many
apples does Jane have?”).

 

Lewis and Meyer proposed the hypothesis of consistency, which
claims that students show a preference for a speci�ic sentence order.
Speci�ically, students prefer that the sentences be stated in the order
consistent with the question. The model shows that when the order in a
causal relation sentence does not match the order of students’
preferences, more misunderstandings will occur.
IV.

According to the model, there is also a particular preference for the
presentation forms of comparison problems. When the form of a
given causal relation sentence in the question is not consistent
with the student’s schema, students must rearrange the existing
information, and errors may occur during this process. Verschaffel
et al. (1992) conducted eye-tracking experiments and revealed
that the model is reasonable only when the task performed by the
participants has certain cognitive requirements.

 

The main components of Kintsch and Greeno’s mathematical
problem-solving model are a set of knowledge structures and a set of
strategies for using these knowledge structures in constructing
problem representations and performing problem solving (Kintsch &
Greeno, 1985). Characterization is twofold: on the one hand, it is a



textual frame that characterizes textual input; on the other hand, it is an
abstract question representation or problem model that contains
question-related information derived from the textual framework.

The model includes two sets of knowledge structures used to
characterize and solve problems: (1) a set of propositional frameworks
for converting sentences into propositions and (2) a set of schemas that
characterize the relationships between features and collections in a
general form, which are used to construct macrostructures and
problem patterns. After characterization is completed, the problem-
solving stage begins.

Other researchers have also investigated the mathematical
problem-solving process. Ausubel and Robinson (1969) took geometric
problems as prototypes and proposed a problem-solving model. They
noted that problem solving generally involves four stages: presenting
the problem situation proposition, identifying the problem’s objectives
and the known conditions, �illing the gap, and testing the proposed
solution to the question. Mayer argues that the cognitive process of
solving an application question can be divided into four phases:
characterizing the questions, synthesizing the questions, formulating
and adjusting the solution, and implementing the solution (Mayer,
1984).

Starting from the cognitive processing of problem solving, Yu
(2008) matched the phases of problem solving with cognitive
processing, resulting in the cognitive model of mathematical problem
solving shown in Fig. 2.6. He asserted that mathematical problem
solving is the process of extracting a problem-solving schema from
long-term memory to apply in a new problem situation. He divided
mathematical problem solving into four stages: understanding the
problem, choosing the operators, applying the operators and evaluating
the results. The cognitive processes corresponding to these four stages
are problem representation, pattern recognition, problem-solving
migration, and problem-solving monitoring.



Fig.	2.6 Pin Yu’s mathematical problem-solving cognitive model

Zhang and Guan (1997) divided the cognitive process of elementary
mathematics application into three phases: characterization, problem
solving and thinking summary. Zhu (1999) proposed a “four-step
feedback” program for solving mathematical problems. He argued that
the psychological process of solving mathematical problems can be
divided into four stages: awareness of the existence of the problem,
characterization of the problem, determination of the problem-solving
strategy, evaluation, and re�lection (He, 2004).

2.3.2	 Summary
Lester noted that a serious consequence of the inadequacies of the
Polya model is that meta-cognition is largely ignored by research
conducted on the basis of this model. Speci�ically, this approach focuses
only on heuristics. However, the application of algorithms and
heuristics depends on complex thinking activities, most of which may
be explained by the use of meta-cognition. Many efforts to improve
student problem-solving abilities are therefore not successful. The
reason is that teaching education overemphasizes the development of
heuristic abilities and neglects the regulatory power necessary for
adjusting individual behaviors. Although the details of the Lewis model
and the Kintsch model are different, both consider that the problem-
solving process consists of two main components: problem
understanding (or problem characterization) and problem solving (Xin,
2005). In problem understanding, students convert the question text
into a semantic representation. Essentially, students reconstruct the
problem to solve it. In problem solving, students implement a strategy
to solve the problem.

Signi�icant research has focused on the mathematics problem-
solving process of elementary school students and has made great



strides toward improving their skills and problem-solving abilities.
However, many problems still need to be further explored:
(1)

Psychology divides the process of problem solving into different
stages, and the division is relatively approximate. Although some
models (such as Gick’s and Yuping’s models) analyze the
corresponding cognitive processing stages in the process of
problem solving, these models do not consider the cognitive
characteristics of elementary school students. The analysis and
research on each stage of the cognitive process lack suf�icient
depth.

 

(2)
Psychology has researched parts of the problem-solving process,
such as problem characterization and problem patterns. However,
it does not address the entire cognitive process of problem
solving. Therefore, researchers need to conduct comprehensive
analyses and research on the complete process of problem
solving.

 

(3)
The analysis of the cognitive process of problem solving is
conducted only for the purpose of “analysis”; it does not apply the
analysis to teaching.

 

2.4	 Analysis	of	the	Cognitive	Process	of
Mathematical	Problem	Solving
2.4.1	 Representation	in	the	Process	of	Problem	Solving
Representation is a central aspect of problem solving. If a problem is
correctly represented, it can be said that half of it has been solved
(Simon, 1986). Wertheimer (1985) noted that the typical approach to
problem solving involves generating a reasonable problem
representation; that is, the problem should be properly organized.
Representation is a critical step of problem solving. An appropriate
characterization should satisfy the following three conditions: (1) the
representation corresponds to the real structure of the problem; (2) the
problem components in the representation are properly combined; and



(3) the representation involves the application of problem solvers’
other knowledge. The results of Kaplan and Simon (1990)’s research
show that the insight of problem solving is the result of appropriate
problem representation and that suitable representations can be
obtained by identifying strong constraints to guide the search and thus
make the search highly effective. The characteristics and knowledge of
the �ields are the main sources of strong constraints, and they can guide
the subjects to generate speci�ic and effective problem representations.

Kintsch and Greeno (1985) suggested that the key to solving a
mathematics problem is the representation of the problem. The
representation of a problem is twofold. On the one hand, it represents
the textual input and the proposition of the textual frame
(propositional text base). In arithmetic problems, the basic
propositional text frame is the relationship between sets. Problem
solvers must translate linguistic inputs into such a text framework. On
the other hand, it is an abstract problem representation or problem
model (problem model) that contains text frames, questions,
information, and letters from problem solvers in the �ield of arithmetic
problems. The problem model includes three sets of knowledge
structures used to characterize and solve the problem: (一) is used in
the problem model to translate a sentence into a set of propositional
frames (propositional frames); (二) is used as a general set of schemata
(schemata) of the relation between the formal characterization and the
set; and (三) is used as the general form to represent a set of action
diagrams (action diagrams) of computational and arithmetic
operations. The problem solver should infer the information needed in
the text but not in the text frame when they construct problem models
and should exclude any unnecessary information for solving the
problem within the framework. After the problem is correctly
characterized, the problem solver can start solving the problem. At this
stage, they may need to apply problem-solving programs (or
sequences).

Ashcraft (1992, 1995), Campbell (1995), Thevenot et al. (2007)
found that people directly extract answers from long-term memory
when solving simple arithmetical problems. Campbell (2001) and
Seyler et al. (2003) found that people adjust their calculation methods
according to the operation type and tend to use extraction to perform



addition and multiplication operations but deduction for subtraction
and division operations.

The results of Qinsikaya’s experiment proved that the processes of
answering application questions and other questions are the same.
Namely, they entail analysis and synthesis (Qinsikaya, 1962). The
results of experiments by Zhu and Bai (1964) revealed that students
could not answer application questions simply via the process analysis
method or the comprehensive method, which is considerably more
complex than the application of these two methods. The cognitive
process of students’ answers to compound applications can be divided
into three stages: grasping the subject directly in relation to the things,
revealing hidden things, and testing hidden things. Among them,
revealing hidden things is the basic stage of solving application
questions, and four types of intelligence operation are explored by
abstracting words, replacing images, demonstrating activities, changing
conditions and performing practical operations.

Zhu (1983) studied the function and performance of pattern
recognition in solving students’ geometry problems. The results
indicate that when working on geometric problems, students need to
�irst identify and classify the problem and then recognize the geometric
patterns, with the goal of solving the problem effectively from the given
problem situation. Tieru analyzed the verbal outputs of subjects while
they were solving problems and found that in solving algebraic
equations, these outputs were used mainly for the identi�ication of
types of pattern recognition problems. The participants could identify
the types of questions that they could quickly and accurately answer
and the type of application questions. Moreover, they could distinguish
these questions from the need to determine the structural relationship
between the semantic context of the speci�ic topic and the general
topic, which depends not only on participants’ understanding of the
current problems of information processing but also on the relevant
information stored in the memory search (Shi, 1985). Xie constructed a
cognitive process model of the abacus (Xie, 2009). Fu and He used
intelligent mathematics questions for experimental homework. They
analyzed the results of question representation and problem solving
among 34 university students and explored the information processing
process during question representation. The results suggest that the



information processing process of problem representation can be
divided into three stages: searching for and extracting problem
information, understanding and internalizing problem information, and
discovering metaphorical constraints (Fu & He, 1995).

2.4.2	 Representation	in	the	Process	of	Problem	Solving
Studies of the problem-solving process of math application problems
show that problem representation can be divided into two stages:
sentence representation and structural representation.

Many studies from China and abroad have focused on sentence
representation. Zhang (1997) divides the sentences of the application
problems into sentences that describe the context, sentences that
assign values, question sentences, sentences that describe relations,
and compound sentences. The �irst three sentences are easier to
understand, while the other two sentences are the most dif�icult parts
to understand and are key to problem representation. Mayer’s research
found that the representation of sentences that describe relations is
particularly dif�icult. When the content of the topic is retold by the
problem solver, the problem solver often misses the sentences that
describe relations or incorrectly describes the relationship feature and
even confuses the sentences that describe relations with the sentences
that assign values (Mayer, 1987). Lewis and Mayer (1987) noted that
sentences that describe relations de�ine a variable based on another
variable, and the problem is �inding the value of another variable. Their
studies on the representation of relation sentences in an experimental
setting revealed that it is more dif�icult to make representations “when
the required arithmetic operation is different from the words
mentioned in [the] relation sentence.” Lewis and Mayer (1987) studied
the factors in�luencing the representation of sentences and found that
the overall representation directly affected sentence representation and
that students’ representation of sentences improved signi�icantly when
they received training on representation sentences and overall
representation (Leiwis, 1989).

Some scholars have studied comparative sentence representations
in depth. Riley and others asked students to listen to application
questions and then asked the students to repeat them. Bernardo and
others examined the role of symbolic knowledge and the problem-



information context (PIC) in the process of transforming relation
sentences into mathematical equations through four experiments and
showed that relation sentences are the most dif�icult parts for a student
to comprehend in performing problem representation. The researchers
advocated specialized training on the representation of relation
sentences (Bernardo & Okagaki, 1994).

Among studies of sentence representation factors, Loftus and
Suppes (1972) found through eye movement experiments that schema
knowledge and linguistic competencies are closely related to sentence
representation. Gooney and Swanson (1990) argued that the problem
schema is closely related to the representation of the relation and
problem sentences. The students with a smaller memory capacity could
barely recall relation sentences, and the number of relation sentences
that students with a larger memory capacity could recall was even
lower.

2.4.3	 The	Role	of	Schemas	in	the	Process	of	Problem
Solving
In the process of problem solving, the perception of the problem
situation, the understanding of the problem, and the formulation of the
problem-solving method are affected by the schema. Bernardo asserted
that the problem schema is a combination of principles, concepts,
relationships, procedures, rules, operations, and others that are related
to the type of problem (Bernardo, 1994).It consists of many aspects: (i)
it is an organized knowledge block related to problem solving; (ii) it is a
summary and abstraction of successful examples of problem solving;
(iii) it can be activated by certain cues in the current problem scenario
to predict some unknown cues, which contributes to the formation of
problem representation; and (iv) it combines strategies, methods, and
procedures of problem solving and even automated operating
procedures. Hence, it guides the entire problem-solving process.

Regarding the in�luence of schemas on the perception of problem
situations, Gilhooly argued that correct problem perception is similar to
suggesting a problem schema, which implies a direct, prototype-like
problem-solving approach (Gilhooly, 1988), and that problem
perception is closely related to the schema.



The schema is closely related to problem understanding. Knowledge
is a semantic network organized by a number of interconnected nodes.
The information provided by the problem activates a node in the
semantic network, which in turn activates the relevant network, that is,
the relevant schema. The schema can provide information and
knowledge to problem solvers and help them understand the problem.
Best noted that once the schema knowledge is activated, it guides the
problem solver to search the problem space in a speci�ic way and to
seek the relevant features of the problem, thus helping to improve the
ef�iciency of problem solving (Best, 2000).

To address different types of mathematical problems, we need to
choose an appropriate schema to guide the problem-solving process.
Meyer’s research on solving geometric application problems shows that
the key to solving geometric application problems is �inding suitable
schemas (Mayer, 1981).

The schema not only has an impact on problem solving but also
provides an important basis for students to obtain the solution.
Students can use existing schemas when solving familiar math
problems. When solving new math problems, students can apply an
existing schema to guide the process, modifying the schema
continuously during the process to ultimately form a new schema.
Therefore, problems and problem solving are mutually in�luential.
Simon noted that once a person or a computer program determines the
schema required for the problem and the data required for each
schema, these schemas are combined to form a new schema—the
problem schema—that indicates each part’s relationship (Simon,
1986). Forming a problem schema comprises three processes:
excluding surface problems, generalizing, and constructing, while
moving the focus from the surface level to a deeper level. First, the
process of exclusion entails excluding unimportant details from the
surface description, which reduces the amount of information stored.
Second, the process of summarization also reduces the stored
information while simultaneously transforming it. Third, in the process
of construction, there is no longer a reduction but rather an increase in
information, including the inference of information that is not directly
expressed (Li & Wang, 2000), which is also called information beyond
actual presentation. The schema is formed through the active cognitive



construction of the subject. The process of forming a schema based on
understanding is not easy to forget and facilitates migration.

2.4.4	 Problem	Representation	and	Problem-Solving	Effects
Regarding the relationship between problem representation and
problem-solving effects, Anderson found that different representations
of problems can produce different problem-solving effects (Anderson,
1993). Anand (1987) revealed that students’ incorrect answers to
application questions are caused mainly by incorrect representations of
the problem structure rather than by computational factors. Yu (2003)
proposed the concept-�ield, concept-system, proposition-�ield and
proposition-system (CPFS) structural theory of mathematics learning.
It is believed that students with excellent CPFS structures can more
effectively and correctly represent problems and can solve problems
and that students who can reasonably represent problems have better
CPFS structures. Li et al. (2002) and analyzed the differences between
eugenics and students with learning dif�iculties among 40 third-grade
primary school students. The results revealed the following: (1) The
differences between high- and low-problem-solving ability students are
signi�icant. The differences are related to the representation strategies
that students apply in problem solving. (2) The main error that
students make in solving the comparative problem is a conversion error
and that their error in the inconsistency problem is greater than that in
the consensus problem. (3) There are signi�icant differences between
the two groups of students’ metacognitive knowledge and monitoring
skills. Metacognitive monitoring skills have a signi�icant predictive
effect on the ability to solve comparative problems (Li et al., 2002).

2.4.5	 Review
Based on the discussion above, problem representation plays an
important role in the ability to solve application problems. Although
this topic has been deeply studied in the �ield of psychology, some
issues remain to be studied:
(i)

Studies on problem representation reveal only the characteristics
of the representations of problems made by students and rarely
explain the reasons for these characteristics.

 

Problem representation is one part of the process of problem



(ii)
Problem representation is one part of the process of problem
solving. It does not re�lect the entire cognitive process of problem
solving. It is therefore necessary to conduct a comprehensive
analysis to understand the entire problem-solving process.

 

2.5	 Summary
To improve the relevance and effectiveness of this study, this chapter
�irst de�ines the core concepts in the study to clarify its signi�icance.
The core concepts include problems, problem solving, cognition,
cognitive model, cognitive simulation, ACT-R model, and cognitive
diagnosis.

Then, the process model of general problem solving, process model
of mathematical problem solving, mathematical problem-solving
cognitive process analysis and other aspects of the status of research in
China and abroad are analyzed. Through this analysis, we found that a
large body of research has focused on the process model of
mathematical problem solving and cognitive analysis and has made
great contributions. However, many problems remain unknown and
need to be further explored.
(1)

Psychology has conducted in-depth research on certain aspects of
problem solving, such as problem representation and problem
schema. It has not revealed the cognitive process of the entire
problem-solving process. Thus, more comprehensive analysis and
research on the entire process are needed.

 

(2)
Although great progress has been made in the �ield of computer
simulation of mathematical problems, it has been achieved from a
machine or computer perspective, which is very different from
solving a math problem in a classroom setting. Research has not
considered the process of students’ problem solving. The methods
used to solve these problems are often beyond the scope of
knowledge available to students; hence, they are unable to
provide help and guidance for teaching.

 

(3) A research team led by Professor Anderson at Carnegie Mellon
University studied the cognitive process of math problem solving.
ACT R theory was proposed to guide the simulation and

 



ACT-R theory was proposed to guide the simulation and
understanding of human cognition, but it does not provide
solutions for analyzing the cognitive process of elementary school
students’ ability to solve math problems.

(4)
The existing research provides an analysis of math problem
solving from its own perspective. It fails to synthesize the
research results of related disciplines and to conduct
interdisciplinary studies.

 

A review of related works provides insights into some remaining
questions and serves as the basis for this study.
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3.1	 Research	Questions
A review of the literature reveals that a large amount of research on
problem solving has been conducted, especially in the �ield of
mathematical problems. However, many research questions require
further study:
(1)

In the �ield of psychology, the analysis of mathematical problem
solving has conducted only a certain part of the process of
problem solving in depth but has not considered the entire
process.

 

(2)
The existing process model of mathematical problem solving is a
general model for all mathematical problems and does not
consider the cognitive characteristics and mathematical
characteristics of students in different stages.

 

(3)
The research team led by Anderson, a professor at Carnegie
Mellon University in the United States, conducted an in-depth and
meticulous study on the cognitive process of mathematical
problem solving and developed the ACT-R model. However, they
did not provide any suggestions on how to formulate a
mathematical solution with the ACT-R model.
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Therefore, the key questions addressed in this book are as follows:
how can the cognitive process of solving mathematical problems in
elementary schools be analyzed, and how can an ACT-R model for
solving mathematical problems in elementary schools be constructed?
The research problem can be decomposed into the following three
subproblems:
(1)

How can a cognitive model for solving mathematical problems in
elementary schools be constructed?

 
(2)

How can the problem-solving process be analyzed based on the
cognitive model to build an ACT-R model of mathematical
problem solving for elementary school and conduct cognitive
simulation?

 

(3)
What is the role of cognitive process analysis in math education?  

This book analyzes the solutions of mathematical problems in terms
of the cognitive process. The impact of noncognitive factors such as
attitudes, emotions, motivation, and beliefs on problem solving is
beyond the scope of this study.

3.2	 Research	Framework
The research framework contains three parts, which are shown in
Fig. 3.1.



Fig.	3.1 Research framework

3.2.1	 Construction	of	the	Cognitive	Model	of	Elementary
School	Mathematics	Problem	Solving
A cognitive model is constructed to analyze the elementary
mathematics problem-solving process. Elementary school students
employ different problem-solving methods than adults do because of
differences in the characteristics of their thinking and memory
development. The typical problems of elementary school mathematics
are taken as the analysis object. Considering the psychological
characteristics of elementary school students, combined with cognitive
psychology, cognitive neuroscience, brain science, and other research, a
cognitive model of elementary school mathematics problem solving is
constructed.

3.2.2	 Elementary	Mathematics	Problem-Solving	ACT-R
Model	Construction	and	Cognitive	Simulation
The cognitive model is the basis of cognitive simulation. Cognitive
simulation refers to selecting typical problems, using the cognitive
model to analyze the cognitive process of problem solving, and using
the Lisp programming language to write a cognitive program and
simulate it with respect to ACT-R. To verify the validity of the
simulation, we selected some students for an oral report experiment
and then compared the simulation results with oral report
experimental data to determine whether they were consistent. With
respect to the problem-solving error, the cognitive model can be used to
analyze the cause. The simulation of the problem-solving cognitive
process can visualize the “internal process,” which helps to identify the
characteristics of the problem-solving process.

3.2.3	 Application	of	“One-On-One”	Cognitive	Diagnosis	and
Intervention	Based	on	a	Cognitive	Model	in	Teaching
The problem-solving cognitive process is analyzed with respect to
solving the practical problems of mathematics teaching. This analysis
covers the design of elementary school mathematics problems that are
based on cognitive process analysis and “one-on-one” cognitive



diagnosis and intervention for students with mathematics learning
dif�iculties.

The design of the elementary school mathematics problem is based
on the psychological characteristics and mathematics curriculum
analysis of elementary school students and the design basis and
principles of the cognitive process. The typical knowledge areas of
elementary school mathematics are selected for analysis and design.
The typical inquiry of design is applied in elementary school
mathematics classroom teaching, and the application effect is analyzed.
The analysis of typical inquiry problems of elementary mathematics
based on the cognitive process can provide a reference for instructional
design, classroom interaction and learning environment design.

This chapter proposes a “one-on-one” cognitive diagnosis and
intervention process and method based on cognitive analysis and
simulation and then conducts empirical research on students with
mathematics learning dif�iculties. The “one-on-one” method can be
used for cognitive diagnosis and intervention for students, especially
for students with learning disabilities. This method can assist with
mathematics teaching by analyzing changes in both different stages and
the same stage of students’ problem-solving cognitive process.

3.3	 Research	Method
Mathematical problem solving is a highly complex activity involving
numerous interactive behaviors. This book uses the following research
methods.

3.3.1	 Verbal	Report
Speaking aloud can help many individuals solve problems. It is possible
that the auditory memory of what they say helps reduce the burden on
working memory. Many problems can be solved in this way, which
provides a new method for psychologists to explore to determine how
people solve problems.

Verbal reporting is an important method in problem-solving
research. It refers to “thinking out loud” thoughts while solving a
problem. The researchers recorded the verbal thoughts and analyzed
them to reveal the basis of cognitive behavior. Verbal thinking merely



expresses the information that already exists in working memory, and it
does not affect the process or the outcome of problem solving.

The basic procedure for using the verbal report method is as
follows: (1) Before the verbal report is used with the participants, the
participants must be trained so that they can solve the problem more
smoothly. (2) During the process of verbal reporting, recording
equipment is used to record all of the participants’ dictations. If there is
a pause, the participant should be asked what they are thinking. Unless
there is a clear purpose, questions should not be asked because they
would interfere with the “think out loud” process. A retrospective
verbal reporting approach can be used to ask participants to report
speci�ic things. (3) After the verbal report, the researcher classi�ies and
compiles the literary materials verbatim according to the verbal reports
and sequences captured by the recording devices. (4) A problem
behavior diagram is drawn based on the data analysis, using
visualization to present how the student solves the problem.

This book uses the simultaneous verbal report method, which can
be divided into four basic steps:
(1)

Problem design. 
Designing a typical problem based on the purpose of the study is a

prerequisite for conducting an oral report experiment. In the study, a
typical problem was designed to capture knowledge about concepts
such as “mode,” “adding fractions with unlike denominators,” and
“surface area of cylinder,” which are used for the verbal report
experiment.
(2)

Verbal report record. 
The pilot’s guidelines are highly important. The following is a

common example of simultaneous verbal reporting: “Please answer this
question. During this process, please speak out loud your thoughts and
thinking steps but be mindful not to explain the steps.”
(3)

Verbal report translation and coding (Liu, 2014). 



Eriksson and Simon (1993) noted in “Protocol	Analysis:	Verbal
Reports	as	Data” that the design of the verbal report coding scheme
should consider two factors. On the one hand, it must re�lect the
theoretical idea of the research and meet the theoretical requirements;
on the other hand, it must be suitable for the characteristics of the
experimental task. Moreover, it should explain the behavior of the
subjects during the completion of the experimental task. The
corresponding behavioral codes should then be formulated for each
statement in the verbal report.
(4)

Data statistics and analysis. 
By analyzing these verbal protocols, we can infer the process of

problem solving. Robertson noted that since verbal reports present the
natural situation of solving problems, they can serve as a basis for
computer models of problem solving (Robertson, 2004).

During the study, the materials of the verbal report were analyzed
according to certain principles, and the information processing was
inferred. Simon and Kaplan (1989) noted that the intuitive information
usually provided by verbal records concerns the knowledge and
information needed to solve the problem rather than the actual
processing. Therefore, it is necessary to infer the processing from the
information recorded in the verbal protocols instead of trying to
directly encode the processing.

3.3.2	 Computer	Simulation
The computer simulation of problem solving involves writing a
computer program based on certain psychological theories to simulate
the internal cognitive process of problem solving. This approach
enables the computer to solve the problem as human beings would and
achieve similar results (Wang & Wang, 1992).

Newell and Simon developed the �irst computer program to
simulate human problem solving, Logic Theorist (LT), and successfully
simulated the cognitive process of the human proof of the symbolic
theorem. LT proved all 52 theorems in Whitehead’s “Theory	of
Mathematics,” which simulates the problem-solving process of human
heuristic search. Computer simulation introduced a unique research



method to cognitive psychology; since then, computer simulation has
become a common method for problem-solving research.

In this book, we used the constructed cognitive model to analyze the
cognitive process of solving elementary school mathematics problems.
We used the Lisp language to write the cognitive program and
implement the simulation in relation to ACT-R. The simulation results
were compared with the experimental data of verbal reports to validate
the simulation.

3.3.3	 Case	Study
A case study is a method of research in which detailed consideration is
given to the psychological or behavioral development of an individual
or a group investigated continuously over a period of time.

During the implementation of the “one-on-one” cognitive diagnosis
intervention, we selected the students as representative subjects. We
used the verbal report to record the students’ knowledge test, preclass
exploration, postclass exploration, and �irst and second cognitive
diagnosis interventions. We translated and encoded the verbal report
data of different stages for each student and compared and analyzed
the changes in students’ cognitive processes in different stages.

3.3.4	 Interview
An interview is a research method in which the researcher collects the
subject’s psychological characteristics and behavioral data by
conducting verbal conversations with the research subject (Qi, 2004).

For the “one-on-one” cognitive diagnosis intervention research, we
designed an interview outline in advance and then interviewed
mathematics teachers in the �ifth and sixth grades from the target
schools to understand the current situation of students’ mathematics
learning and the common problems that arise in this context. We
focused the interviews on the classroom performance and academic
grades of students with learning and problem-solving dif�iculties. The
math teacher reported that students with learning and problem-solving
dif�iculties generally have poor grades. Based on this report, we
interviewed some Chinese teachers to provide strong evidence for a
diagnostic intervention. The entire interview process was recorded and
analyzed in a timely manner.



3.3.5	 Observation
Observation is a method in which the researcher observes and
describes experimental objects and collects research data in a targeted
and planned manner through a sensory organ or through the use of
certain scienti�ic instruments. The broad de�inition of observation
includes natural observation and experimental observation methods.
The narrow de�inition of observation refers mainly to the natural
observation method, which involves examining the observation object
under natural conditions. The observation applied in this book is
narrow observation. According to different standards, observations can
be divided into different categories: direct and indirect; participatory
and nonparticipatory; structured and unstructured; and narrative,
sampling and evaluation.

We used structural observation in this study. The main test involved
designing the content and items for observation in advance and
developing the observation form, then strictly following the design and
using the form to record observational data. During student activities,
the process of students’ problem solving was observed with respect to
the following questions: Does the student come up with an answer
quickly? Does the student take notes? Is the student concentrating
during the problem-solving process?

The students’ performance during the problem-solving process was
recorded via a predesigned “cognitive diagnosis” form. In the follow-up
study, the recorded data were coded to obtain quantitative data for
further analysis. Structured observation can effectively compensate for
the shortcomings of the verbal report method in terms of students’
problem-solving behaviors and make the research conclusions more
convincing.

3.3.6	 Questionnaire
A questionnaire is a research instrument consisting of a series of
questions for the purpose of collecting the psychological characteristics
and behavioral data of the respondents. The questionnaire method is
based on a predesigned survey as the tool, so it has a clear purpose. It
can be used to effectively study the various psychological
characteristics and behaviors of participants. In this research, to fully
understand the status quo of elementary school mathematics problem



solving, we developed the “Questionnaire on Elementary School
Mathematics Problem Solving for the Current Situation” and the
“Outline of Interview on Elementary School Teachers Mathematical
Problem Solving for the Current Situation.” The reliability and validity
of the questionnaire were tested with SPSS 22.0 to ensure its
scienti�icity and objectivity.

3.4	 Research	Assumptions
This study is based on the following assumptions:
(1)

Teaching involves arranging a series of external events and
promoting the development of students’ internal cognitive
processes. The arrangement of teaching activities should be based
on the analysis of students’ cognitive processes.

 

(2)
Well-structured mathematical problem solving is the main form of
elementary school mathematics learning. The analysis and
research of the cognitive process of problem solving can help
researchers scienti�ically understand students’ cognitive
processes and correctly assess students’ cognitive rules.

 

(3)
Due to individual differences, each student employs a different
way of solving problems. This research focused on the common
parts of the problem-solving process.

 

(4)
When the cognitive process of a student while completing a
particular task cannot be directly observed and measured, the
cognitive process can be indirectly determined by the student’s
performance upon the completion of the task. A correct answer
indicates that the student followed a speci�ic and correct
sequence of thinking to determine the answer. This assumption
provides a basis for future predictions.

 

(5)
Diagnosis and intervention in the problem-solving cognitive
process can help students answer questions correctly and achieve
the expected learning outcomes.

 



3.5	 Theoretical	Framework
In this book we discuss and analyze problem solving and cognitive
simulation using mathematical problems as an example. The theoretical
basis includes Piaget’s theory of cognitive development, the integration
of information processing theory and constructivism.

3.5.1	 Piaget’s	Theory	of	Cognitive	Development
Jean Piaget was a Swiss psychologist and the pioneer of the
constructivist theory of knowing. Piaget’s theory of cognitive
development and epistemological view are together called “genetic
epistemology.” Piaget asserted that the core of the development of
children’s cognition is the change in the schema. He stated: “Schema
refers to the structure or organization of actions. These actions are
transferred or summarized in the same or similar environment due to
repeated repetition (Piaget, 1980).” He believed that children’s
cognition from birth to adulthood can be divided into four stages, which
are qualitatively different: the sensorimotor stage (from birth to age
two), the preoperational stage (from age two to age �ive), the concrete
operational stage (from age �ive to age eleven), and the formal
operational stage (from age eleven to sixteen and above). Each stage
has a unique schema, which is associated with different cognitive
abilities from those of the previous stage.

One of the characteristics of the concrete operational stage is that
its form is not formalized from the content. Piaget called this
phenomenon horizontal décalage. Another characteristic of the
concrete operational stage is that the resulting system is still
incomplete. Zhu and Lin (1986) suggested that the characteristics of
children’s thinking in this stage gradually transitioned from the
concrete image of thinking to abstract logical thinking as the main form,
but this kind of abstract logical thinking is still largely associated with
the perceptual experience, with a large composition of speci�ic images.
They also asserted that this transition is unbalanced in the study of
different subjects and materials.

The research subjects of this book are �ifth- and sixth-grade
elementary school students. Most of them are in the concrete
operational stage. The characteristics of children’s thinking at this stage



can be summarized as follows: (1) Children’s thinking is constantly
changing in different �ields or different materials in relation to the same
subject. (2) The construction processes are generally the same, and all
follow a common law. (3) Children’s thinking is not formalized in this
stage and is inseparable from the support of speci�ic items.

3.5.2	 The	Integration	of	Information	Processing	Theory
and	Constructivism
Information processing theory uses a computer analogy to describe the
functioning of the human brain and considers that the information
processing of the human brain is computable and serially processable.
On the one hand, computer technology and intelligence are constantly
improving, but they still cannot effectively simulate problems in daily
life, such as an “epiphany,” which is an irrational and nonlogical
problem of human cognition. On the other hand, humans do not follow
serial information processing methods to solve problems as computers
do. Zhu and Lin (1986) noted that information processing psychology
cannot explain human psychology and consciousness, which are the
products of human social practice activities, the products of the
complete interaction between a subject and an object, or the product of
dialectical unity of cognition and emotional will. Therefore, information
processing psychology cannot truly explain the social, initiative and
creative facets of human psychology (Zhu & Lin, 1986). Although, in
terms of problem solving, there are certain levels of similarity between
computers and human beings, if human beings are assumed to be
computers, that assumption will re�lect a “mechanical theory” point of
view. A human being is a subjective, initiative, wise, and complex self-
organizing system. Currently, computers are capable of handling a large
amount of information with some degree of intelligence, but they are
not yet fully intelligent.

Resnick noted that when the information processing paradigm was
applied to school education, most people accepted the constructivist
view (Resnick, 1989). Constructivism includes cognitive constructivism
and social constructivism, and cognitive constructivism is derived
mainly from the work of Piaget. Kamii and Ewing noted that the three
main reasons for the use of cognitive constructivism in education are as
follows: (1) it proposes a scienti�ic theory that explains the nature of



human knowledge; (2) it proposes a theory that explains children’s
construction of knowledge theory from birth to adolescence; and (3) it
distinguishes three types of knowledge (Kamii & Ewing, 1996). Kamii
discovered that children are able to �ind programs for four arithmetic
operations without being taught the common rules (Kamii, 1985; Kamii
& Ewing, 1996). This study veri�ied Piaget’s theory of the nature of
logical mathematics knowledge and effectively demonstrated that the
acquisition of children’s mathematical knowledge is a process of
individual construction. He (1997) noted that the constructivist
teaching model emphasizes the student-centered model, regarding the
student as the cognitive subject and the active constructor of
knowledge. Teachers simply facilitate the meaning construction of
students (He, 1997). Social constructivism is derived mainly from the
work of Vygotsky, who believed that learning is the process through
which individuals construct knowledge and understanding. Social
constructivism places greater emphasis on the role of the learner’s
social, cultural and historical background.

Constructivism is a philosophical concept that does not explain the
details of knowledge acquisition or learning, but information
processing theory can compensate for this de�iciency. In this book, we
employ the information processing framework to argue that solving
new problems entails a process of knowledge construction. Moreover,
the purpose of the application of mathematical knowledge is to better
re�lect the theoretical integration of the two paradigms of information
processing theory and constructivism. This integration does not simply
combine basic ideas and theories but rather selects those that are
closely related to the research questions as the basic theoretical basis of
our research.

3.6	 Research	Signi�icance
In this book we analyze problem solving and cognitive simulation and
conducts an empirical study using mathematical problems as an
example. We discuss the application in mathematics classroom teaching
and has important theoretical and practical value.

3.6.1	 Theoretical	Signi�icance



(1) Multidisciplinary knowledge is integrated and a problem-solving
cognitive model is constructed to better explain the cognitive
patterns of elementary school students. The design of course
content should be based on the cognitive rules of students, which
cognitive models can effectively reveal. Therefore, constructing a
cognitive model is fundamental work that provides the basis and
reference for the design of course content.

 

(2)
By examining the process of problem solving, the basis for
teaching interventions is determined. Learning outcomes result
from the learning process, and problem solving is the main form
of school learning. An analysis of the problem-solving cognitive
process helps to understand students’ learning process and then
to design effective teaching methods to achieve the expected
learning outcomes.

 

3.6.2	 Practical	Value
(1)

Understanding, researching and mastering the cognitive process
of student problem solving and then incorporating the cognition
rules of students in the teaching process can help improve
teaching quality.

 

(2)
Teachers’ understanding of the cognitive process of student
problem solving can help promote the development of students’
thinking and innovative ability.

 

(3)
Problem-solving cognitive process analysis can help identify
challenges in learning and form cognitive diagnoses for students,
especially for students with learning dif�iculties. The diagnosis
results can provide more speci�ic, detailed and targeted guidance
and advice for educational practice and individual development.

 

(4)
The study’s �indings can help teachers learn how to diagnose
students’ dif�iculties and problems to improve mathematics
classroom teaching and promote the sustainable development of
students’ mathematical thinking ability.

 



3.7	 Summary
This chapter describes the three key issues to be solved: (1) How can a
cognitive model be constructed for solving mathematical problems in
elementary schools? (2) How can the cognitive model be used to
analyze the problem-solving process, and how can the ACT-R model of
elementary mathematical problem solving be built and then used for
cognitive simulation? (3) What type of effect can problem-solving
cognitive process analysis have on elementary school mathematics
teaching?

The main research contents and methodology are determined and
analyzed and include verbal reports, computer simulation case studies,
interviews, observations, and questionnaires. Five hypotheses for the
research process are subsequently proposed. The theoretical basis
includes Piaget’s theory of children’s cognitive development and the
integration of information processing theory and constructivism.
Finally, the theoretical signi�icance and practical value of the research
are discussed.

This chapter clari�ies the logical relationship between the research
contents, formulates practical solutions, and lays the foundation of the
study.
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4.1	 Psychological	Characteristics	of	Primary
School	Children
The	Compulsory	Education	Mathematics	Curriculum	Standards (2011
edition) notes that the design of the mathematics curriculum in
compulsory education fully considers the characteristics of students in
a developmental stage, re�lecting the students’ cognitive rules and
psychological characteristics (Ministry of Education of the People’s
Republic of China, 2012a, 2012b). In addition, the 2022 edition
emphasized that the mathematics curriculum should give attention to
the teaching level, stimulate the learning interest of students with
learning dif�iculties, encourage them to think positively, cultivate good
learning habits, and adapt to the development needs of students
(Ministry of Education of the People’s Republic of China, 2022).

4.1.1	 Characteristics	of	Primary	School	Children’s
Thinking	Development
The basic characteristic of primary school children’s thinking is that its
main form transitions gradually from concrete image thinking to
abstract logical thinking. To a great extent, this abstract logical thinking
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is still directly related to sensual experience and largely still
corresponds to a speci�ic image. Piaget also suggested that 7–12-year-
old children’s thinking occurs in the speci�ic computing stage.
Throughout primary school, intuitive teaching is an important method
that draws children’s attention.

In primary school, children are transitioning from concrete image
thinking to abstract logical thinking.

This transition does not happen immediately. It is a complex
process (Zhu, 2009)with the following characteristics:
(1)

Children’s abstract logical thinking is evolving, but their thought
processes still show great speci�icity.

 
(2)

Children’s consciousness of abstract logical thinking is beginning
to develop, but they still demonstrate much unconsciousness.

 
(3)

The level of children’s abstract logic thinking is constantly
improving, and the relationship between the speci�ic image
elements and abstract logical components of children’s thinking is
constantly changing.

 

(4)
The development of children’s thinking involves a gradual
transformation from a concrete image to abstract logic. It
undergoes a clear qualitative change, signifying the critical age at
which primary school children’s thinking develops.

 

4.1.2	 The	Developmental	Characteristics	of	Elementary
Children’s	Internal	Language
Piaget was the �irst to focus on children’s self-centered discourse and
notice its theoretical signi�icance. However, he does not attach
importance to the genesis of egocentric speech or inner speech.
Vygotsky (2010) distinguishes between self-centered speech and
internal speech. He believes that self-centered speech develops before
internal speech does. Both forms of speech have similar functions and
similar structures, and self-centered speech disappears in the school-
age stage. At this time, inner speech begins to develop. Inner speech is



not only an autonomous speech function but also a distinct plane of
speech thinking.

In the late period of preschool, children demonstrate the initial
germ of inner language but have not developed it enough. Elementary
school children are similar to preschool children. In early childhood,
children’s inner speech is based on the development of language in
preschool and gradually develops in the context of school teaching.

Inner speech is not only accompanied by children’s activities but
also closely linked with children’s thinking. Mathematical problem
solving is a type of thinking activity. Vygotsky’s research on inner
speech provides a theoretical and experimental basis for examination
and re�lection in the process of problem solving. The learning sciences
have repeatedly demonstrated the importance of re�lection to obtain a
deeper understanding of learning. Additionally, the use of brain
imaging in the �ield of cognitive psychology has con�irmed the existence
of internal circuits in the brain.

4.1.3	 Primary	School	Children’s	Memory	Development
Characteristics
Experimental studies have shown that the memory ability of children
aged 7–8 years has little difference with that of preschool children
(Zhu, 2009). Conscious and abstract logical memorization begin to
develop, while unconscious and concrete image memorization
understanding still dominate. As children enter the primary stage,
conscious and abstract logical memorization and the understanding of
memorization gradually become prominent.

In the primary school stage, the task of the teacher is to equip
children with suf�icient concrete practical material. Teaching from
these speci�ic materials continue to develop children’s abstract memory
of words so that perceptual awareness increases and extends to
rational understanding.

Primary school children’s knowledge and experience are not rich.
They are good at memorizing a speci�ic image. The connection of the
�irst signaling system is most easily established, and the signaling of the
second signaling system, which is close to the �irst signaling system, is
also relatively easy to establish. However, the connection of the second
signaling system, which is not very close to the �irst signaling system, is



more dif�icult to establish. On this basis, most of the basic knowledge
stipulated in the elementary mathematics curriculum standards is
speci�ic knowledge, and some abstract knowledge is closely related to
speci�ic knowledge.

With respect to the short-term memory of primary school children,
Qian et al. (1989) found that, in terms of the breadth of digital memory,
the differences between �irst and third grades were very signi�icant, but
those between third and �ifth grades were not signi�icant. Therefore, 7–
9 years old marks the rapid development of children’s short-term
memory capacity. Chen and Wang (2005) found that in the primary
stage, the development of memory breadth increases with age.

Compared with short-term memory, working memory places more
emphasis on dynamic information storage and processing. Research by
Li Deming and others has shown that the working memories of both
numbers and language develop with age (or grade) and that the growth
rate slows down after the second year of high school (Li et al., 2003).

4.1.4	 The	Study	of	Primary	School	Children’s	Mathematical
Cognition	in	Cognitive	Neuroscience
Cognitive neuroscience emerged in the 1870s seeking to clarify the
mechanism of cognitive activity. Cognitive neuroscience studies how
the human brain mobilizes the components of each level. The
components include molecules, cells, brain tissues, and the whole brain,
all of which are involved in performing cognitive activities (Gazzaniga,
1998). Cognitive neuroscience is a new interdisciplinary subject that
combines cognitive science and neuroscience. Research on cognitive
neuroscience often uses methods such as magnetoencephalography
(MEG), positron emission tomography (PET) and functional magnetic
resonance imaging (fMRI). Poldrack (2008) notes that these
technologies can be used to perform functional brain imaging analysis
of brain activity. Poldrack provides reliable evidence about the brain
mechanism of cognitive activity to ensure that the research results are
scienti�ic.

Many researchers in the �ield of cognitive neuroscience have studied
primary school students’ mathematical cognition. Speci�ically, they have
studied the basic processing and brain mechanisms of mathematical



cognition. Researchers have attempted to reveal the patterns of brain
activity associated with effective mathematics learning.

In recent years, cognitive neuroscience has been accorded great
importance for the construction of China: the Chinese national	medium-
and	long-term	plan	for	science	and	technology	development (2006–
2020) identi�ies “brain science and cognitive science” as one of the
eight leading frontiers of science and technology in the development of
science and technology. Great achievements have been made in this
�ield in recent years. With respect to the brain activation mode of
addition and multiplication, Zhou et al. (2007) found that the addition
operation may rely more on visual–spatial processing, whereas
multiplication may be related to language processing. Zhou et al. (2009)
compared the electroencephalogram of subjects when they performed
multiplication and addition problems. They found that multiplication
involves more language processing and that addition involves more
activities related to visual imagery processing.

With respect to issues arising with numerical representation in
children, Zhou et al. administered the digital Stroop task and found that
Chinese kindergarten children (5.85 years old) have a digital automatic
processing ability (Zhou et al., 2008). To examine differences in brain
function among 8- to 18-year-old children and adolescents on different
arithmetic cognition tasks and to address problems in early learning
experience and brain plasticity, Zhou et al. (2007) found through an
ERP experiment that Continental children presented more negative
waves in multiplication problems than did children from Hong Kong.
The reason is that children in Hong Kong and Macao perform
multiplication differently from Continental children (Zhou et al., 2007).

Qin et al. (2004) investigated the process of solving equations in 11-
to 14-year-old children who were learning to solve equations by
combining information processing analysis and cognitive neuroscience
technology. In this research, the letter coupon and the working model
are established. The model includes imaging equation transformation,
extracting arithmetical and algebraic knowledge, and arranging the
action response. The fMRI method is used to record the course of
understanding the equation, which includes the corresponding data on
blood oxygen levels (BOLD, blood oxygen level-dependent response) in
the frontal, parietal, and motor areas of the brain.



The results of cognitive neuroscience research have shown that the
human parietal cortex, especially the area surrounding the bilateral
intraparietal sulcus, has a very close relationship with mathematical
cognition. Pinel et al. (2001) found that the region was signi�icantly
activated when the subjects were comparing the sizes of numbers, and
the trend of monotonicity decreased with increasing distance between
the numbers. Eger et al. (2003) found that the area was activated after
subjects saw the numbers even if they did not perform any digital
operations. Zhang et al. (2004) studied the digital processing of Chinese
subjects. The study revealed that the functions of this population were
not in�luenced by cultural differences because the brain region was
used in the same way.

Some studies have shown that the parietal lobe is not the only area
that supports mathematical cognition. The results of an fMRI study by
Dehaene et al. showed that digital consciousness depended mainly on
the bilateral internal trenches. For example, the bilateral top trench will
appear to be activated when a number and size comparison is
performed. Mathematical knowledge is related to the language system
and is stored in the form of words. Moreover, the researchers found that
precise calculations increased the activation of the left frontal lobe and
the angular gyrus region and are related to language functions. The
estimated results revealed activation of the bilateral parietal cortex
(Dehaene et al., 1999). Dehaene et al. (2003) found that arithmetic fact
extraction in arithmetic operations activated the left temporal and
parietal joint cortex. Kaufmann et al. (2008) found that children
activate brain areas involving grip and �inger movements, which are the
left supramarginal gyrus and postcentral gyrus, respectively, during
comparison tasks involving numbers. These �indings suggested that
children rely on counting on �ingers to compare the sizes of numbers.

Based on the current research results, Dehaene et al. (2004) noted
that digital processing is supported by a large network including the
prefrontal cortex, parietal lobe, and temporal lobe. The bilateral
parietal region, especially the area surrounding the intraparietal region,
is related mainly to semantic representation. The frontal lobe,
especially the left inferior frontal gyrus, has great overlap with the
related brain regions responsible for verbal working memory. It is
evident that there is a relationship between digital processing and



language functions. The bilateral temporal lobes, especially the bilateral
spindle gyrus, is related mainly to the processing of digital forms.
According to the view of the multimeter sign, the above brain region is
concerned with processing words, sounds, meanings and other
impressions as well as different calculation tasks. For example, the
estimation task is concentrated in the bilateral parietal region. The
storage of mathematical facts in rehearsal is concentrated in the
prefrontal area. Some digital manipulation tasks, for example,
understanding complex numbers (including negative numbers and
fractions), which require the processing of digital forms, are
concentrated in the temporal lobe, especially with close fusiform
contact (Dong et al., 2005). There are many related studies in the �ield
of cognitive neuroscience that are not detailed here.

Additionally, Newell and Simon (1972) proposed the use of human
and computer problems to solve a model called the problem-solving
model. Baddeley’s working memory model provides the basis for this
research (Baddeley, 1986).

4.1.5	 Explanation:	The	Theoretical	Basis	of	Building	a
Cognitive	Model
In conclusion, primary school children’s thinking is based on speci�ic
image thinking. The lower grades of primary school prioritize material
objects in the real learning concept and the basic operation process and
speci�ic image content in long-term declarative memory. The
development of the internal language of children provides a theoretical
basis for inspection and re�lection in the process of solving problems.
Cognitive neuroscience uses relevant technology to perform functional
brain imaging analysis of brain activity and obtain reliable evidence
about the brain mechanism of mathematical cognition activity, which
has improved the scienti�ic validity of related research. However,
cognitive neuroscience and information processing analysis examine
the cognitive process of solving problems at different levels. These two
levels can be used to promote each other: the neuroscience data can
provide a reliable basis for the cognitive model, while the cognitive
model can provide a reasonable explanation for the neuroscience data.



4.2	 Analysis	of	the	Solving	Process	of	Various
Types	of	Primary	School	Mathematics
Problems
The	Compulsory	Education	Mathematics	Curriculum	Standards (2011
edition) divides the curriculum contents of compulsory education into
four parts: “numbers and algebra,” “statistics and probability,” “graphs
and geometry,” and “synthesis and practice.” In addition, the 2022
edition underscores the importance of “encouraging students to
identify and formulate problems within practical contexts, and to
employ a variety of strategies such as observation, conjecture,
experimentation, computation, logical deduction, validation, statistical
analysis, and spatial visualization to dissect and resolve these issues”
(Ministry of Education of the People’s Republic of China, 2022). Among
the four parts, “synthesis and practice” comprehensively uses
knowledge and methods from the other parts, “numbers and algebra,”
“graphics and geometry,” and “statistics and probability,” to solve
problems.

According to the above classi�ication of mathematical content, the
study focuses on three main parts, namely, “statistics and probability,”
“�igures and algebra” and “graphics and geometry,” and selects typical
problems for analysis. The “numbers and algebra” part concerns
problems such as “numbers,” “addition with different denominators”
and “unary linear equations.” The “�igure and geometry” part concerns
the problem of “mode.”

4.2.1	 “Numbers	and	Algebra”	Questions
(一)

“Counting” problem 
“Counting” is one of the basic abilities that children must develop to
learn mathematics. Many researchers have studied the “counting”
problem. In research on the formation and development of primary
school children’s numerical concepts, Lin (1981) divided the general
ability of primary school children into �ive grades. The �irst grade
corresponds to the level of intuitionistic generalization and relies on



the material object, teaching aids or holding one’s �ingers to master the
concepts of numbers up to ten. In this grade, if children do not have a
concrete image, the mathematical operation will be interrupted or be
dif�icult. The development of several elementary school children’s
mathematical concepts follows a certain order. Regarding integers, the
order of grasping the concepts of numbers within a hundred is
recognition → sequence and series, composition →  sapplication.
1.

Analysis of the “counting” problem-solving process 
“Counting” is the �irst concept taught in the primary school �irst-

grade mathematics textbook (Course Textbook Institute, 2006). To
solve the question of “counting” correctly, the following knowledge is
required:
(1)

Recognizing numbers. Recognizing numbers is the premise of
“counting,” and only by mastering it can one distinguish the
beginning and end of the counting process. For �irst-grade
children, their main mode of thinking is speci�ic image thinking,
so material objects are often used to teach students the methods.

 

(2)
Number sequence. The sequence is the order relationship of
numbers, such that the number after 2 is 3, the number after 3 is
4 and so on. This understanding may be simple for adults, but it is
not easy for adults to teach it to children. Because adults have
automated the process of counting, they need to expand the
results of the automation; then, they can teach children this
concept well.

 

Now, the problem of “count from 3 to 5” is taken as an example to
analyze the problem-solving cognitive process of “counting.”
(1)

Understand the problem. determine that the starting point is 3
and that the end point is 5.

 
(2)

Develop a plan. Determine the number after 3, and compare the
count results with �ive at every turn. If the number is not 5, then
continue; if it is 5, then stop.

 



(3)

Implement the plan. Start counting from 3, activate and extract
“the number after 3 is 4” in long-term declarative memory. Realize
that 4 is not the end point, and keep counting. Activate and extract
“the number after 4 is 5” in long-term declarative memory. Realize
that 5 is the end point, after which the goal is achieved.

 

(4)
Review. Reviewing the process can determine whether there are
any problems in each link. This step can also reinforce children’s
awareness of numbers and sequences. The relevant links in
children’s long-term declarative memory can thus be connected
more closely, strengthening their memory.

 

2.
The cognitive processes of “counting.” 
A team led by Anderson, a professor of arti�icial intelligence and a

psychologist at Carnegie Mellon University, studied the problem “count
from 2 to 4” and wrote a corresponding ACT-R program (shown in
Table 4.1). The cognitive process analysis of the problem “count” in this
program is basically the same as that in this book.

Table	4.1. Anderson “count from 2 to 4” cognitive process



The above table shows the general cognitive process of analyzing a
“counting” problem, which is based on �irst-grade children’s thinking
characteristics, knowledge base, and other factors. In terms of grade
level, the numeral generalization level of elementary school children is
a spiraling process and an “internalized” thinking process. It proceeds
as follows: in the �irst grade (7–8 years old), it is developed on the basis
of preschool thinking and entails the generalization of speci�ic images;
in the second and third grades (8–10 years old), it transitions from the
generalization of speci�ic images to abstract images; and in the fourth
and �ifth grades (10–12 years old), most children are beginning to
demonstrate preliminary essential abstraction generalization (Zhu,
2009).
（二）

“linear equation with one unknown” problem. 
A linear equation with one unknown is a typical algebraic problem,

which appears for the �irst time in the “simple equation” unit of �ifth
grade mathematics teaching materials (People’s Education Press).
Fifth-grade children have mastered basic arithmetic operations and
have previous knowledge of solving linear equations with one unknown
problem.

The process of solving the equation Ax + B = C can be described as
follows:
(1) Understand the problem. This question involves solving an

equation. The goal is to determine the numerical value of the
variable x.

 



(2)
Develop a plan. Put the expression Ax with the variable x on one
side of the equation, move the other constants to the other side,
and then solve for the value of x.

 

(3)
Implement the plan. The process of solving equations can be
divided into the following steps:
①

Identify the equation: Ax + B is on the left, and C is on the
right.

 
②

Place the expression Ax with the variable x on one side of the
equation, and move the other constants to the other side of
the equation. The original equation has a variant of Ax = C-B.

 

③
Extract D, the value of C-B, from long-term declarative
memory.

 
④

Note that a variation of the original equation is Ax = D, and
the numerical value of x is D/A.

 
⑤

Extract E, which is the numerical value of D/A from long-
term declarative memory.

 
⑥

Determine the value of x to be E.  

 

(4)
Review. First, reviewing the process can help to determine
whether there are any problems in each link. In addition, this step
deepens the knowledge of basic arithmetic results in long-term
declarative memory and further consolidates the steps of solving
equations in long-term procedural memory.

 

The above steps describe the process that children follow the �irst
time they solve the equation Ax + B = C. After a period of practice, their
problem-solving process and steps are gradually automated and
continuously simpli�ied.

Anderson studied the solution of a two-step equation and compared
the solutions of the Equation 7 × x + 3 = 38 on Day 1 and Day 5. The



results showed that on Day 5, the problem-solving process was simpler
than that on Day 1; on the �irst day, it needed 6.1 s, and on the �ifth day,
it needed only 4.1 s. By comparing the changes in the equation process
between the �irst day and the �ifth day, we can see that the step-by-step
solution to the problem in the learning process is gradually automated
(Anderson, 2005).

4.2.2	 “Graphics	and	Geometry”	Questions
Determining the “cylindrical �lank area” is a typical area of knowledge
included under “graphics and geometry.” It corresponds to the content
of the “cylinder” unit in sixth grade mathematics teaching material
(People’s Education Press).

Although the abstract logical thinking of sixth-grade children has
reached only a certain level of development, it still has great speci�icity.
For example, the problem of “the �lank area of the cylinder” is easier to
teach through the method of object teaching.

To solve this problem, the prerequisite knowledge that students
need includes the following:
(1)

the concept of a �lank;  
(2)

rectangular area formula: 
(3)

circumference formula.  
The “cylindrical �lank area” problem-solving process can be

described as follows:
(1)

Understand the problem. Determine which part of the area needs
to be calculated. The prerequisite is the ability to understand the
concept of the �lank, that is, to activate the related content of
“�lank” in long-term declarative memory.

 

(2)
Develop a plan. Transform the problem of the “�lank area of the
cylinder” into the problem of the area of the rectangle.

 
(3)

Implement the plan.  



①
A cylindrical �lank can be cut into a rectangle, which transforms
the problem into one of calculating the area of a rectangle.

 
②

According to the known conditions, �ind the length and width of
the rectangle.
a.

If the radius of the bottom surface of the cylinder is r, then the
length of the rectangle is equal to the surface circumference of
the bottom of the cylinder, that is, 2πr.

 

b.
If the height of the cylinder is h, then the width of the
rectangle is the height of the cylinder h.

 

 

③
The area of a rectangle is length × width, that is, the bottom
surface of the cylinder is length × height.

 
④

The area of the rectangle is the area of the cylinder �lank.  
(4)

Review. Reviewing the process can help to determine whether is
there any problems in each link. In addition, the review connects
the rectangular area formula and the circumference formula in
long-term memory more closely and further consolidates
knowledge of the cylinder side expansion operation in long-term
program memory.

 

The above analysis of the process of solving the problem of “the area
of the cylinder �lank” demonstrates that students may not be able to
answer the questions correctly even if they possess the prerequisite
knowledge. The key is how students think independently to �ind
strategies for transforming the side of a cylinder into a rectangle. If the
students had some similar experiences, such as paper cutting, parcels,
etc., these experiences can help them think about the strategy of
unfolding the cylinder. Moreover, teachers can help students develop
these strategies consciously.

4.2.3	 “Statistics	and	Probability”	Questions



The “mode” is a typical topic in the “statistics and probability” section.
It is covered in �ifth grade PEP textbooks during the second semester.
Ding Zuyin conducted an experimental study on children’s processing
of concept mastery. The results revealed that the concept mastery of
primary school children presented stage features. Children in the lower
grades of primary school often use “concrete examples” and “visual
features” to master concepts. Students in the upper grades in
elementary schools are gradually able to grasp concepts based on
nonintuitive “important attributes,” “practical functions” and “genus
relations.” Solving for the “mode” can train students to �ind nonintuitive
“important attributes” from the data, and the “mode” is the number
that occurs most frequently.

The “mode” is an abstract concept. Although �ifth-grade children
have some abstract thinking skills, they still need speci�ic materials to
help them understand abstract concepts. Moreover, psychological
research shows that the process by which children master the
conceptual system is also the process by which children apply the
richness of past conceptual material to assimilate (or comprehend)
profound and systematic knowledge (Zhu, 2009).

The process of solving the problem of “mode” in relation to data {a1,
a2, a3, …, an} can be described as follows:

(1)
Understand the problem. Find the “mode” of the given data.  

(2)
Develop a plan. Find the most frequently occurring number in the
data {a1, a2, a3, …, an}.

 
(3) Implement a plan.

①
Activate the operation of counting in long-term program
memory, count the number of times that a1, a2, a3, …, an
appear in the data {a1, a2, a3, …, an}.

 

②
Determine that the number of times that a1, a2, a3, ..., an
appear, as M1, M2, M3, ..., Mn, respectively.

 
③ Activate the comparison operation in long-term procedural

memory and compare the sizes of M1, M2, M3, …, Mn to

 



y p 1, 2, 3, , n
determine the maximum Mmax.  

④
Mmax corresponds to the number ai, and ai is the mode of the
data {a1, a2, a3, …, an}.

 

(4)
Review and check the solution. Reviewing the process can
determine whether there are any problems in each link. It can also
further consolidate the concept of “mode” in long-term
declarative memory and the operations involving in calculating
the “mode,” the count and comparison ability in long-term
procedural memory.

 

By analyzing the process of solving the “mode” problem, we �ind
that the key is to determine the problem-solving strategy, that is, “the
number that occurs most frequently in the data.” Then, operations such
as “counting,” “compare,” and “correspond” are all performed according
to previously acquired knowledge.

Children’s acquisition of concepts is a gradual process that shifts
from concrete to abstract. When children begin to grasp a concept,
many concepts are often isolated and have not been added to a certain
conceptual system due to a lack of empirical knowledge and
experience. Only by grasping a concept in the conceptual system can it
be mastered better. For example, the concept of “mode” can be better
mastered and its connection with other concepts, established, only if
children have mastered the concepts of median and average.

4.2.4	 Implications:	Building	an	Instance	Foundation	for
Cognitive	Models
According to 2011 and 2022 editions of The	Compulsory	Education
Mathematics	Curriculum	Standards, which classify mathematics course
content in the compulsory education stage, the researcher selected
typical problems such as “number and algebra,” “graphics and
geometry” and “statistics and probability.” In accordance with the
thinking features of primary school children, this book analyzes the
problem-solving process for different types of mathematical problems



and lays the foundation for constructing a cognitive model for solving
mathematical problems in primary schools.

4.3	 Cognitive	Model	for	Solving	Primary
School	Mathematical	Problems
4.3.1	 Cognitive	Model
(一)

The process of building a cognitive model 
To build a cognitive model for solving mathematical problems in

primary school, we consider the following points:
(1)

Inheriting the four stages of Polya’s mathematical problem-
solving process: understanding the subject, developing a plan,
implementing a plan, reviewing the problem-solving process, and
re�ining each stage.

 

(2)
Considering the basic characteristics of primary school children’s
thinking. These children’s main form of thinking gradually
transitions from concrete image-based thinking to abstract logical
thinking. Even though abstract logical thinking is still, to a large
extent, directly related to sensual experience, the speci�ic image is
an important component. Piaget also suggested that 7–12-year-
old children’s thinking occurs in the speci�ic computing stage.
Throughout primary school, intuitive teaching is an important
method for capturing children’s attention. The step of “�inger
counting” in the process of solving the “counting” problem
highlights the role of “object perception” in primary school
children’s problem-solving process.

 

(3) Considering the characteristics of primary school children’s
memory. Primary school children have a strong ability to
remember speci�ic, distinctive features. It is based on a speci�ic
image of memory. The physical display of the “cylindrical �lank
area” in the problem-solving process shows that primary school
children’s memory is based on a “concrete object.” In addition,
children’s working memory develops rapidly in primary school

 



and increases with increasing grade level. After the second grade,
the pace of development basically slows down (Li et al., 2003).

(4)
Considering the development of primary school children’s
internal language. The internal language of primary school
children develops gradually in school. Vygotsky’s research on
internal speech provides theoretical and experimental evidence
for examination and re�lection in the problem-solving process.
Currently, the use of brain imaging in the �ield of cognitive
psychology also con�irms the existence of internal circuits in the
brain. Internal language is considered a critical path for thinking
(Torey, 2009). Wilson et al. used functional magnetic resonance
imaging (fMRI) data from cognitive neuroscience to demonstrate
the inner speech loop activation region (Wilson et al., 2004). In
the process of solving this problem, the review is actually
supported by internal language.

 

(5)
Emphasizing the consolidation of memory or knowledge in
problem solving. The content of working memory is consolidated
over a period of time into long memory (Glickman, 1961;
McGaugh, 1966). The content of the active state of the new,
reactivated memory is consolidated into a stable, inactive state
after a period of time (Naderl & Hardt, 2009).

 

(6)
The problem solution starts from the goal and ends with the goal.
Moreover, it emphasizes the role of the problem situation in
problem solving.

 

(二)
Cognitive model introduction 

Based on the above analysis, a cognitive model for solving
mathematical problems in primary schools is constructed, as shown in
Fig. 4.1.



Fig.	4.1 Cognitive model of primary school mathematical problem solving

1.
Information process 
Problem solving can be seen as a process, and the �low of

information is described below.
(1)

From object perception to short-term memory 
Learners see or hear a problem to accept stimulation through the

perception of the object code as nerve information. This object
perception component must become the object of attention for a longer
period of time, after which the object of attention enters short-term
memory.
(2)

From short-term memory to working memory 
Short-term memory capacity is limited for adults, with an average of

7 ± 2 items (Miller, 1956). The short-term memory capacity of primary
school children is lower than that of adults. It undergoes rapid
development over time, becoming stable in the second grade of high
school. A new object will be placed directly in working memory.
(3)

From short-term memory to long-term declarative memory 
If the perception is not a new object, it activates the related contents

of long-term declarative memory in working memory.
(4)

Long-term declarative memory 



Long-term declarative memory is knowledge that the students have
learned earlier. It is stored as meaningful propositions (Anderson &
Bower, 1973), or complex forms of coding involving conceptual
hierarchies (Quillian, 1968). The coded material in long-term memory
is semantic, that is, organized according to meaning. The content stored
in long, declarative memory is permanent and is retained over time
(Adams, 1967). Sometimes, the extraction of information is hampered
by interference between old and new content. Speci�ic image memory
is the primary form of long-term declarative memory for primary
school children.
(5)

Long-term procedural memory 
Long-term procedural memory is a series of rules previously

learned by students to produce rules for the form of storage. It includes
simple rules (such as “number” rules) and complex rules (such as
“dollar equation” problem-solving rules).
(6)

Extraction 
Extraction includes long-term declarative memory extraction and

long-term procedural memory extraction. The extraction process
requires clues. In the reading process, familiar words activate long-term
declarative memory-related objects. Related objects are extracted to
working memory. Speci�ically, during the problem-solving process, it
will extract rules from long-term procedural memory. For example, for
the two-digit addition operation, rules such as one-digit addition rules
and carry rules will be extracted.
(7)

Working memory 
The content of working memory is the current active object, existing

in the form of verbal information and image information. It contains the
learner’s existing knowledge and experience with new materials.
Working memory may combine a learner’s existing knowledge with
new material to learn. For example, in explaining the concept of “the
plural,” “the number that occurs most often” is already in the student’s



working memory, but the name of the number is not yet known. The
teacher then describes the concept of “the plural” to students. At this
point, “the plural” and “the number that occurs most often” are
combined to produce new rules, and learning takes place.
(8)

Working memory of the target 
The information about the problem in working memory is related to

the existing schema used to represent the problem. The goal of problem
representation is to understand the information contained in the
problem and to determine the target.
(9)

From the target to long-term procedural memory 
Goals guide the problem-solving process. The target determines the

goals and will activate long-term procedural memory during
production.
(10)

From solution to production rules 
There may be more than one generative rule activated in the

problem-solving process, so one of the rules is chosen to be executed
under the guidance of the problem-solving strategy.
(11)

Problem situation 
Problem situations help students identify problem goals and choose

problem-solving strategies. Similar problem situations can help
learners recall special rules from previous learning and �ind a suitable
rule for the present situation. For example, in introducing the concept
of “modalities,” the introduction of familiar situations such as
“birthday” and the special role of “head teacher” helped students recall
the rule of “taking the birthday of the largest number of months.” When
faced with new problem situations, students need to perform a more
complex and extensive search process than when solving similar
problem situations. New problem situations require a transfer of
learning.



(12) From production rules to operations 
The execution of production rules and production of activity

patterns can be observed externally, such as writing problem-solving
processes on paper or explaining ways to solve problems.
(13)

Re�lection 
This situation occurs when the problem is solved; as the problem-

solving process intensi�ies, it will be constantly revised. Even after the
problem is complete, the process of solving the problem will be
reviewed. These aspects are the external manifestations of the
re�lection.
(14)

Knowledge consolidation 
The higher the number of activated objects is, the greater the

likelihood of being consolidated or strengthened is. The knowledge
consolidation process re�lects Hebb’s law: “Activated and linked at the
same time. Moreover, the more activated, the stronger the link.” The
result of knowledge consolidation enhances the connection of relevant
objects in long-term memory, making learning useful over the long
term.
(15)

Automation 
After completing the problem-solving process, students learn the

new “chunks” formed by the rules of prior production. This “chunk” can
solve new problems. For example, when students �irst learn different
denominators, the following production rules are activated: ①
different denominators add pass points, ② pass points for the least
common multiple, ③ �ind the least common multiple, two for each
prime multiply two numbers. After a period of study, the above three
production rules will be combined into a new production rule: with
different denominators, the denominators for the prime number and
the least common multiple are calculated by taking the product of two



numbers. This process is automated. The result is the emergence of
“advanced rules” and other problems that can solve similar types.
(16)

Summary of information �low 
Figure 4.2 illustrates the structure of the cognitive problem-solving

model vertically, and the right-hand column shows the machine process
associated with each structure. Learners see or hear the problem to
accept stimulation through the perception of the object code as nerve
information. This object perception component must become the object
of attention for a long time, after which it enters short-term memory. If
it is a new object, it is placed directly into working memory. If the
perceived object is not a new object, then the relevant content in long-
term declarative memory is activated into working memory. The
content of working memory comprises objects that are currently
activated. It exists in the form of speech information and image
information, including the knowledge and experience of learners and
new materials for learning. Working memory may combine a learner’s
existing knowledge with new material to learn. The information about
the problem in working memory is related to the existing schema used
to represent the problem. The goal of problem representation is to
understand the information contained in the problem and determine
the target. Goals guide the process of problem solving, and the
production of long-term procedural memory is activated after the goal
is established. More than one production rule may be activated, and one
of the rules is chosen to be executed according to the solution strategy.
Production rules are implemented to generate patterns of activity that
can be observed externally, for example, writing down the problem-
solving process on paper or explaining a solution to the problem.
Problem solving is such a situation; with the deepening of the problem-
solving process, it continues to be modi�ied and corrected. Even after
the problem is solved, the entire problem-solving process is reviewed.
All of these actions are external manifestations of re�lection. When a
new problem is solved, a high-level rule is produced.



Fig.	4.2 Problem-solving process based on cognitive model

4.3.2	 Modular	Representation	of	the	Cognitive	Model
To intuitively describe the cognitive process of problem solving, CMMPS
can be simpli�ied into the following six modules:
(1)

Visual module: This module retains the presentation of the
problem, including the object perception and coding, such as the
presentation question “1/3 + 2/5 = ?”.

 

(2)
Production module: The problem representation activates the
rules in memory, including short-term memory, and the
production rule.

 

(3)
Retrieval module: This module extracts relevant information from
long-term memory, including long-term declarative memory and
long-term program memory. An example is the long-term
declarative memory of the following facts: 5 + 6 = 11, 1 × 5 = 5, and
2 × 3 = 6.

 

(4)
Goal module (or control module): This module records or tracks
the current purpose or intent of the problem-solving process,
including the problem situation, goals, and problem-solving part
of the strategy. An example is the common denominator
summation problem in the strategy.

 

(5) Problem state module (or imaginal module): This module
presents the current psychological representation of the problem,
including the operation and calculation parts. For example, the

 



c ud g t e ope at o a d ca cu at o pa ts o e a p e, t e
problem of the original state 1/3 + 2/5 is converted to 5/15 + 
6/15.

(6)

Manual module: This module outputs the results, including the
answer, for example, 1/3 + 2/5 = 11/15.

 

CMMPS is represented in modular form, as shown in Fig. 4.3.

Fig.	4.3 Modular representation of CMMPS

The six modules are listed in Fig. 4.3. The problem-solving process
does not involve all the modules in sequence, and the �low of
information between the modules is nonlinear. The contents of the
module are stored in the buffer, and the current contents of the buffer
make up the working memory.

The cognitive models can be expressed in the form of N × 6 cognitive
matrices, as shown in Table  4.2. In the table, the numbers on the left
represent the line numbers; each line represents a cognitive logic step,
not an actual execution step; and the last line indicates the end of
cognition. Each column corresponds to the six modules in Fig. 4.3, and
the contents of each column represent the contents of a module during
problem solving.

Table	4.2 Cognitive matrix

 Visual Production Retrieval Goal Imaginal Manual

1       

2       

N       

3.
Description of the various stages of problem solving 
The process of solving mathematical problems in primary school is

divided into four stages: understanding the problem, developing a plan,



executing the plan and reviewing. The cognitive process of each stage is
analyzed as follows:
(1)

Understanding the problem. After students see, perceive and code
the problem, they activate their long-term declarative memory of
knowledge. Children’s thinking in primary school is based mainly
on speci�ic image thinking. Long-term declarative memory is
based on concrete objects, especially for children in the lower
grades. According to the situation and existing knowledge, the
brain forms a certain schema to understand the problem. The
result of understanding the problem is to determine what the
unknown is in the problem. What are the known data? What are
the conditions? What is the goal?

 

(2)
Developing a plan. The process from understanding the topic to
formulating a plan is complex and arduous. Long-term declarative
memory is activated with reference to the target to �ind the
relationship between the known and the unknown, recall similar
problems solved before, and �inally obtain a solution to the
problem. If there is little knowledge of the problem in long-term
declarative memory, it is dif�icult to produce a good idea. Without
knowledge, it is impossible to generate ideas. Good ideas come
from children’s experience and previously acquired knowledge.

 

(3)
Executing the plan. According to the proposed solution, the
objects in working memory activate the production rules in long-
term procedural memory. There may be multiple activation rules,
but only one production rule can be executed at the same time.
The result of the production rule execution is the operation or
calculation, which constitutes the answer to the problem.

 

(4) Reviewing. This step helps consolidate content in working
memory into long-term declarative memory. Multiple production
rules are automatically generated as production rules and
consolidated into long-term procedural memory. This step
involves re�lecting on the process of solving the problem, checking
whether the result is correct, understanding the approach to
solving the problem, and cultivating the ability to solve the
problem

 



problem.

4.3.3	 Cognitive	Model	Characteristics
CMMPS is based on the thinking characteristics of primary school
children, taking into account the rules of primary mathematics. It has
the following features:
(1)

Highlights the importance of the problem situation.
Pupils have less abstract knowledge. It is important to

understand the problem situation to solve the problem. Problem
situations can help students understand problems and translate
applied problems into computational problems. The calculation of
the problem is relatively simple for students. Moreover, it is easy
to correct the answer. The problem situation should be related to
the actual life of the student.

 

(2)
The content of long-term declarative memory is limited, and
knowledge-based and concrete-based knowledge is dominant. As
students progress through grade levels their abstract knowledge
increases gradually.

 

(3)
There is very little content regarding strategies and steps for
solving problems in junior middle school in long-term procedural
memory. However, it increases with problem solving.

 

(4)
In terms of the production rule set, the math problems in the
lower grades of primary school involve mainly simple production
rules. In later grades and with greater knowledge, some simple
production rules form “chunks,” producing a new production rule
that is preserved in long-term procedural memory.

 

(5)
Cognitive process re�inement for problem solving can be used for
both diagnostics and automation.

 
4.3.4	 A	Few	Notes	on	the	Cognitive	Model
(1)

The cognitive model describes the problem-solving process in
terms of thinking and memory.

 



Although the model describes the thinking process of problem
solving, it is constructed at the cognitive level. This design allows for a
more detailed explanation of the thinking process from the memory
level. This study provides more speci�ic and operational methodological
guidance for teaching.
(2)

Problem solving is a nonlinear process. 
Events such as the following may occur during the problem-solving

process: students may come up with a very good solution and skip all
the preparatory steps to obtain the answer to the question directly
without going through the stages of the cognitive model. However, if a
student ignores a certain phase of problem resolution and does not
generate a good idea, it will be dif�icult to answer the question
correctly. If students do not understand the problem and begin to solve
it, they will not answer the question correctly. In the process of
implementing the plan, if students check each step, they can avoid
many mistakes. If students do not re-examine or consider the solution
again, some of the best results may be lost. Problem solving may involve
different processes depending on students’ knowledge and the
problems.
(3)

The cognitive model does not consider the student’s “will,”
“willpower” or other emotional factors in the process of solving
problems.

 

In the process of solving a problem, it is insuf�icient to understand
only the subject. Students need to have the will to solve the problem. If
students do not have a strong desire to solve problems, they may give
up when they encounter dif�iculties in the process of solving problems.
Moreover, it will be impossible to solve a dif�icult problem. Only with
such a desire will it be possible to answer the question correctly.
However, emotional factors in the problem-solving process are very
complex and are not the focus of this study.

4.3.5	 Educational	Signi�icance	of	the	Cognitive	Model



The cognitive model of primary school mathematical problem solving
has a great in�luence on the design and diagnosis of problems in the
teaching process.
(1)

The model shows that the problem solution consists of several
stages. Moreover, each stage contains several internal processing
processes. To produce a certain learning result, the design process
should be based on internal processing. For example, design
issues, the problem context and student life are linked according
to the cognitive characteristics of primary school students.

 

(2)
Diagnose issues that arise during problem solving and provide
interventions to ensure that learning occurs. The result of
problem solving cannot be judged by a simple “right” or “wrong.”
The cognitive model is used to analyze the internal process that
leads to problem solving and to propose questions that stimulate
the memory of the relevant rules to guide students to answer the
questions correctly. For example, in the study of the “plural”
concept, “birthday” situations and “teacher in class” roles are
provided to guide students in determining “the month with the
largest number of birthdays” rule.

 

(3)
Explain the problem-solving behavior and expecting learning
results. The cognitive model can analyze the internal processing
involved in generating problem solutions. This model infers the
activation of long-term declarative and procedural memories
based on internal processes, explains problem-solving behavior,
and anticipates learning outcomes.

 

4.4	 Summary
The 2011 and 2022 editions of The	Compulsory	Education	Mathematics
Curriculum	Standards note that the design of a math curriculum in
compulsory education should fully consider the characteristics of
students’ math learning at this stage and meet students’ cognitive and
psychological characteristics. To implement the concept and intention
of curriculum standards in teaching practice, this chapter focuses on
the construction of a cognitive model of mathematical problem solving



in primary schools (Ministry of Education of the People’s Republic of
China, 2012a, 2012b, 2022).

The cognitive model is the basis of problem-solving cognitive
process analysis. This approach considers not only the cognitive rules
and characteristics of primary school students but also the
mathematics curriculum content characteristics of the primary school.
This chapter �irst analyzes the psychological characteristics of primary
school children, including the characteristics of the development of
thinking, the development of internal language features, memory
development characteristics, and cognitive neuroscience in their
mathematical cognition. This analysis lays the theoretical foundation
for constructing the cognitive model.

On this basis, we analyze the typical problem-solving processes in
number and algebra (such as the number problem and one dollar
equation problem), graphics and geometry (such as the cylindrical side
area problem), and statistics and probability (such as the mode
problem) problems. We further re�ine Polya’s mathematical problem-
solving model and construct a cognitive model of elementary
mathematical problem solving. We subsequently analyze the
characteristics of the cognitive models, de�ine the scope of application
of cognitive models and discuss the value and signi�icance of cognitive
models for mathematical classroom teaching.

A cognitive model of primary mathematical problem solving
provides a scienti�ic basis and reference for achieving cognitive
problem-solving simulation and discussing the application of cognitive
analysis and simulation in math classroom teaching.
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5.1	 Cognitive	Simulation	Basis
There are many successful cases in which computer simulation
methods are used to study the internal process of problem solving.
These cases provide a fundamental basis for the use of these methods
to study the cognitive process of students’ mathematical problem
solving.

Newell and Simon wrote the �irst computer program to simulate the
human problem-logic theorist (LT). It successfully mimicked the human
cognitive process of proving the symbolic logic theorem (Newell &
Simon, 1956). LT proved all 52 theorems in Whitehead’s Mathematical
Theory, which simulates the problem-solving process of human
heuristic search.

Newell and Simon developed the General Problem Solver (GPS)
program (Newell et al., 1959). The program is based on the “means–
purpose analysis” method of preparation. The program successfully
simulated many different types of problems, such as theorem proofs,
the tower of Hanoi and missionaries, and the savages’ problem of
crossing the river. The GPS system contains long-term memory as a
knowledge base that stores various problems related to solving
knowledge and different operators. It also features short-term memory
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in a serial manner for a variety of information operations. A production
system characterizes the internal knowledge of GPS. The program uses
the search of the problem space and the “means–purpose analysis”
method to reduce the current state and the target state differences And
eventually reach the target state.

Gelernter et al. (1960) developed a computer program that
simulated the human geometry theorem—Geometry Machine. Hiller
and Isaacson (1959) developed a computer program that simulated the
creation of musical compositions. Newell et al. (1958) developed a
simulated human chess program. Newell et al. (1957) developed
computer programs that modify many aspects of themselves based on
experience and thus achieve “learning.”

Simon (1986) conducted computer simulations of thinking and
problem-solving behaviors, such as insight and understanding. He
believes that computer simulation is a powerful tool to predict and
explain a large number of thinking phenomena.

Anderson et al. (2008) used ACT-R to simulate the solving process
of the algebraic equation “7x + 3 = 38.”

Wu Wen jun, a Chinese scholar, put forward a mathematical
algorithm for proving the geometry theorem, which is called the “Wu
method” (Wu, 1984). Academician Zhang et al. (1955) improved on this
method, creating a new algorithm to automatically solve the problem of
nearly any geometric proof. However, both scholars studied automatic
problem solving from the perspective of mathematics and did not
consider students’ cognitive process of problem solving.

The cognitive simulation of mathematical problem solving is based
on a certain cognitive model to write computer programs to simulate
the students’ cognitive process of solving mathematical problems. This
design enables the computer to achieve similar results as the students
do. The internal process of student problem solving cannot be obtained
directly. Computer simulation can visualize the internal process and has
become a common method in this �ield.

5.2	 Cognitive	Simulation	Tools
5.2.1	 ACT-R	Tools



Adaptive control of rational thinking (ACT-R) has been a well-known
cognitive simulation tool for many years in the Cognitive Science
Laboratory under the leadership of Professor Anderson, a famous
cognitive psychologist at Carnegie Mellon University. It embeds ACT-R
theory, and the programming language is Common Lisp. The current
version is ACT-R 7, version 7.27.9. Its internal structure and parameter
setting are based on a large amount of psychological experimental data.
Many ACT-R data have been veri�ied by NMR experiments. Like a
programming language, ACT-R is a framework. For different tasks,
researchers can combine the cognitive view of ACT-R to strengthen
their assumptions concerning speci�ic tasks and establish models with
ACT-R. Assumptions can be veri�ied by comparing the results of the
model with the results of people completing the same task. ACT-R has
been widely used to simulate different aspects of human cognitive
behavior, such as the Hanoi tower problem, language understanding,
pattern recognition, memory, and simple geometric proofs (Wei et al.,
2011).

5.2.2	 ACT-R	Application	Field
ACT-R has facilitated the creation of models in areas such as learning
and memory, problem solving and decision-making, language and
communication, perception and attention, cognitive development, and
individual differences. In addition to its application in the �ield of
cognitive psychology, ACT-R has been successfully applied in other
�ields, as shown in Fig. 5.1.
(1)

Human‒computer interaction: to produce user models that can
assess different computer interfaces;

 
(2)

Cognitive tutoring systems: to “guess” the dif�iculties that
students may have and provide focused assistance;

 
(3)

Neuropsychology: to interpret FMRI data.  



Fig.	5.1 Application �ield of ACT-R

ACT-R has been successfully applied in mathematical problem-
solving simulations. By studying the ACT-R model of algebraic
equations, Anderson preliminarily mapped the structural components
of ACT-R theory to a corresponding brain area (Anderson, 2005). ACT-R
emphasizes the measurement of behavior levels, such as keystroke time
and eye movement mode. Anderson et al. used brain imaging
technology to verify the relationship between the ACT-R model and
brain areas in the process of solving equation tasks.

5.2.3	 ACT-R	Cognitive	Neurology	Basis
ACT-R studies have a certain cognitive neurology basis. Qin et al. (2003)
and Anderson et al. (2004) found that although parietal and prefrontal
activities are highly correlated, the activities of these two regions are
still distinct. They also con�irmed that the prefrontal lobe is more
strongly associated with knowledge extraction and that the parietal
lobe is more strongly correlated with characterization (problem status)
changes. Sohn et al. also found that the prefrontal, rather than the
parietal, cortex is associated with personal knowledge extraction (Sohn
et al., 2005).

Regarding procedural memory in ACT-R, Ashby and Waldron (2000)
studied the neuropsychological basis of sample learning. Hikosaka et al.
(1999) studied the neural network basis of learning sequence
programs, and the results revealed that the basal ganglia are associated
with procedural memory. In addition, D’Esposito et al. (1995)
demonstrated that the anterior cingulate cortex (ACC) is consistent
with the central executive system in the Baddeley working memory
model (Baddeley, 1986).

5.3	 Cognitive	Simulation



Anderson studied the process of solving algebraic equations. Cognitive
processes occur through interactions with �ive independent modules
(Anderson, 2005). These �ive modules are as follows:
(1)

Visual module: This module retains the problem characterization,
such as 1/3 + 2/5.

 
(2)

Problem state module or problem state module (sometimes called
the imaginal module): This module presents the current
psychological representation of a problem, such as converting the
original state of the question, e.g., 1/3 + 3/5, to another state, such
as 5/15 + 6/15.

 

(3)
Control module, also known as the goal module: This module
records or tracks the current purpose or intent of the problem-
solving process, such as through the denominator summing
problem in the passing strategy.

 

(4)
Declarative module: This module extracts key information from
declarative memory, such as 5 + 6 = 11, 1 × 5 = 5, and 2 × 3 = 6.

 
(5)

Manual module: This module outputs the result.  
Owing to the bottleneck of the sequence module, only a portion of

the information in each module can be entered into the buffer
connected to the module, such as a perceived object, a representation of
the problem state, and the state of control. Each buffer has only one so-
called “knowledge block” in ACT-R. The knowledge block contains
question status information and control status information. Only one
production rule can be activated at a time in ACT-R.

Elementary mathematics can be divided into two types of
knowledge: procedural knowledge (referred to as PK) and declarative
knowledge (referred to as DK). According to the classi�ication of
knowledge, “addition with different denominators” is an example of
typical procedural knowledge, and “mode” is an example of typical
declarative knowledge. In this study, two points of knowledge were
selected: typical problems were designed, the cognitive process of
problem solving was analyzed, and a simulation was performed.



5.3.1	 Cognitive	Simulation	of	the	Procedural	Knowledge
Problem	Solving
(一)

A typical topic 
The content of our analysis is the knowledge point of “different

denominators” in the fourth unit of the �ifth grade of elementary school,
“meaning and nature of the scores.” The textbooks used are compulsory
education curriculum standard experimental textbooks published by
the People’s Education Press (2nd edition, Oct. 2006). The teaching goal
for the knowledge “addition with different denominators” is to learn
how to perform addition with two different denominators. This
problem is a typical problem involving primary school mathematics
procedural knowledge.

Before learning “addition with different denominators,” students
already know the features of natural numbers n 2, 3, and 5 to be able to
determine the common multiple and the least common multiple. With a
natural number of 1 to 100, students can �ind all multiples of natural
numbers within 10 and the common multiple and the least common
multiple of two natural numbers within 10.

According to the “addition with different denominators” knowledge
points and the characteristics of the students, we designed the
following questions:

Please color the rectangular paper (as shown in Fig. 5.2). One-
third of the paper should be colored yellow, and 2/5 of the paper
should be colored black. The same color cannot be used for
another area (the yellow area cannot be colored black, and the
black area cannot be colored yellow). What percentage of the
paper is yellow and black?

Fig.	5.2 Rectangular paper

(一)
Cognitive process analysis 



The problem of “addition with different denominators” is analyzed
by CMMPS. The cognitive process of problem solving can be described
as follows:
(1)

Students visualize the problem and then activate the relevant
objects in long-term declarative memory. They achieve the
intended understanding and identify the goal as the addition of
different denominators, that is, “1/3 + 2/5 = ?”, thus completing
the conversion from an application problem to a calculation
problem.

 

(2)
To solve the problem “1/3 + 2/5 = ?”, activate the production
“addition with different denominators, �ind the least common
multiple.” The target is determined to be the least common
multiple of 3 and 5.

 

(3)
Require the least common multiple of 3 and 5 to activate the least
common multiple of productions “3 and 5?  3 × 5” to extract the
fact “3 × 5 = 15” in long-term declarative memory;

 

(4)
After the least common multiple is obtained, convert the different
denominators into the same denominator, that is, the pass points,
and divide “1/3” and “2/5” into “5/15” and “6/15,” respectively.

 

(5)
After the pass, transform the problem of addition with different
denominators into addition with the same denominator to
activate the production of the rule “Add the numerators after
calculating the same denominator”;

 

(6)
Extract the long-term declarative memory “5 + 6 = 11,” and
determine the result is “11/15.” The cognitive process is complete.

 
To vividly represent the problem of “adding different denominators”

to solve the cognitive process, the analyzed results are expressed in
modular form in Table 5.1.

Table	5.1 Analysis of the “addition with different denominators” cognitive problem-solving
process



 Visual Production Retrieval Goal Imaginal Manual Visual Production Retrieval Goal Imaginal Manual

1 Visual
coding

     

2   Relevant semantic
knowledge in long-
term declarative
memory

   

3    1/3 + 2/5 = ? 1/3 + 
2/5 = ?

 

4 Coding
1/3 + 
2/5 = ?

     

5  Addition  with
different
denominat-ors
Find the least
common multiple

    

6    Find the least
common
multiple

  

7 Coding
3 and
5

     

8  The least common
multiple of 3 and 5
 is 3 × 5

    

9   3 × 5 = 15    

10      The least
common
multiple
is 15

11    Reduce
fractions to a
common
denominator

  

12  1/3 5/15
2/5  6/15

    

13   3 × 5 = 15
1 × 5 = 5
5 × 3 = 15
2 × 3 = 6

   



 Visual Production Retrieval Goal Imaginal Manual

14      5/15
6/15

15     5/15 + 
6/15 = ?

 

16    Addition with
the same
denominator

  

17 5/15 
+ 
6/15 
= ?

     

18  Add with the same
denominator
Given a common
denominator, sum
the numerators

    

19   5 + 6 = 11    

20     5/15 + 
6\15 = 
11/15

 

21      Sum the
fractions
(5/15 + 
6/15) = 
11/15

22      End

In Table 5.1, in addition to the abovementioned �ive modules of the
ACT-R (retrieval corresponding declarative module), an additional
production module is added. This strategy is used in problem-solving
process. In this module, the content is the production rule activated in
the problem-solving process. Each column represents the content of a
module in the problem-solving process. The leftmost column of
numbers in Table 5.1 indicates the row number, and each line
represents the cognitive logical step, which is not the same as the actual
solution step. The last line indicates that the cognitive process is
complete; that is, the problem-solving process is complete. Each
column shows the content of each module at different times.



（二） Cognitive simulation 
The chunk used to encode the propositional information is the same

as the knowledge block in ACT-R. The problem is understood in the
form of a chunk, which contains multiple slots. The title “addition with
different denominators” can be expressed as follows:

Is a mathematical problem,
The object paper has two color areas.
Known 1: yellow area value is 1/3 of the paper
Known 2: black area value is 2/5 of the paper
Goal: a sum, addend 1 yellow area and addend 2 black area

The �irst line indicates that the problem is a mathematical problem.
The second line indicates that the object is paper, and there are two
color areas. The third line shows the known condition 1: one-third of
the paper is yellow. The fourth line shows the known condition 2: two-
�ifths of the paper are black. The last line indicates that the goal is to
seek two sums of the numbers: addend 1 is the yellow area, and addend
2 is the black area.

The Lisp program was written (see Appendix 1) based on the
analysis of the cognitive solving process of the above problem of
“addition with different denominators.” It was simulated in ACT-R, and
the minimum time interval was 0.05 s (default). The problem-solving
cognitive process simulation of this problem is shown in Fig. 5.3.

Fig.	5.3 “Addition with different denominators” cognitive problem-solving process simulation



Figure 5.3 shows that setting goals in the problem-solving process is
a crucial step. It begins with a de�inite goal. The intermediate process is
the constant conversion of the problem state and �inally ends with the
goal. “Procedural” refers to procedural knowledge, that is, production.
The extraction of procedural knowledge involves activating the
production of only one rule at a time. “Declarative” refers to declarative
knowledge, expressed in the form of a knowledge chunk. The extraction
of declarative knowledge is the operation of the knowledge chunk.

The cognitive trace can be visualized via ACT-R. Figure 5.4 shows
the cognitive trace used to solve the problem of “addition with different
denominators.” In Fig. 5.4, the leftmost column is the module in ACT-R.
For example, there is a retrieval module, an imaginal module, a visual
module, a production module, and a goal module, among others. On the
right, the contents of each module are displayed according to the time
sequence (the basic event unit is the default value of 0.55 s). The red
area shows the contents of the extraction module, that is, the
declarative knowledge extracted when solving the problem. The yellow
area shows the contents of the production module, which is the
production activated in the problem-solving process. These
visualizations are consistent with the analysis of the cognitive problem-
solving process of “1/3 + 2/5 = ?” presented in Table 5.1.

Fig.	5.4 Cognitive trace to solve the problem of “addition with different denominators”

（三）
Activated brain areas 

The components of ACT-R map to brain regions that can use functional
magnetic resonance imaging (fMRI) to record the brain’s blood oxygen
level-dependent (BOLD) data for the “alias addition” problem.

Figure 5.5 shows the BOLD data changes in the “production” buffer
after the “addition with different denominators” of the ACT-R model.



The left column shows all buffers in the problem model. One of the
buffers is selected, and the blood oxygen level-dependent data in that
buffer are displayed on the right. The horizontal axis represents the
time, and the default time interval is 1.5 s. The vertical axis represents
the variation range, and the minimum value is “0.0,” which means no
activation; the higher the value is, the higher the activation is, and the
maximum is “1.0.” The �igure clearly shows that the activation of the
content in the “production” buffer over time was most prominent
between 5 and 6 s and then slowly decreased until 13.5 s, when it
reactivated.

Fig.	5.5 Activation of the “production” buffer during the “addition with different denominators”
problem-solving process

The brain activation areas for the “addition with different
denominators” problem-solving process is shown in Fig. 5.6. The left
column is marked with a different color buffer. The right image shows
the brain activation area at a given time in the process. The color of the
box corresponds to the color of the buffer on the left. The brightness of
the area indicates the degree of activation. The brighter the area is, the
more it is activated.

Fig.	5.6 Brain activation areas for the “addition with different denominators” problem-solving
process



As shown in Fig. 5.6, the extraction of the contents of the image
buffer is closely related to the activation of the parietal cortex. This
�inding is consistent with the �indings of the studies by Pinel et al.
(2001), Eger et al. (2003) and Zhang et al. (2004) In those studies, the
parietal cortex of the subjects was signi�icantly activated when they
saw the numbers or performed digital processing. The default time for
an image in ACT-R is 200 ms.

The retrieval buffer is responsible for extracting declarative
memory. It is associated with the activation of the prefrontal cortex.
This �inding is consistent with the �indings of Qin et al. (2003),
Anderson et al. (2004), and Sohn et al. (2003, 2005). The prefrontal,
rather than the parietal, cortex correlates with the extraction of
personal knowledge. The extraction time in ACT-R is a free variable.

The procedural buffer is responsible for the extraction of procedural
knowledge and is closely linked to the activation of the basal ganglia.
This �inding is consistent with that of Hikosaka et al. (1999).

Figure 5.7 shows the solution to the problem of “addition with
different denominators” in the brain model in the form of a three-
dimensional map of the brain activation areas. In Fig. 5.7, “0. 0–1.0”
represents the brightness value. A value of “0” means that it has not
been activated and that the area is black; the more active it is, the closer
the value is to “1,” and the brighter the area is. The left side of the graph
shows the buffer in a different color, and the number to the right of the
buffer is the activation level. The right side of the graph is the brain
activation area, shown in the same color as the left module.

Fig.	5.7 Three-dimensional display of the brain activation areas for the “addition with different
denominators” problem-solving process

As shown in Fig. 5.7, the target, extraction and production buffers
are all activated to different extents in the process of solving the



“addition with different denominators” problem, in which the target
buffer is activated at a maximum of 0.981, which is close to the
maximum value. The corresponding relationship between the buffer
zone and the brain area is the same as the result shown in Fig. 5.6 and
is supported by existing research, so it is not repeated here.

5.3.2	 Cognitive	Problem-Solving	Knowledge	Simulation
(一)

A typical problem 
The content of our analysis is the “mode” knowledge point in

“statistics,” the sixth unit of the �ifth grade in elementary school. The
materials used for the People’s Education Press compulsory education
curriculum standard experimental textbooks (2nd edition, October
2006). The teaching goal of the “mode” knowledge point is to enable
students to understand and master the concept of “mode,” which is a
typical problem that requires declarative knowledge.

According to the “mode” concept and the characteristics of the
students, we designed the following problem:

“The school agreed to set aside �ive (six) classes next year for a
birthday celebration, but only the birthdays of students born in a
certain month can be celebrated. Imagine you are the class teacher:
(1)

How would you choose the month?  
(2)

Which month do you think should be chosen?” 
（二）

Cognitive Process Analysis 
The “mode” content is declarative knowledge. In the process of

seeking the answer, we need statistical knowledge, numerical
procedures and other knowledge. This knowledge can be extracted
from students’ long-term procedural memory. To visualize the cognitive
process of solving for the “mode,” the analytical process is expressed in
the form of a cognitive matrix, as shown in Table 5.2.

In Table 5.2, DM represents declarative memory, that is, what
students have learned; P1, P2 and P3 indicate the name of the



production rule. In addition to the �ive modules (retrieval
corresponding declarative memory module), a production module was
also added in ACT-R. The content of the module production rules is
activated during problem solving. Each column represents the content
of a module in the problem-solving process. The leftmost column of
numbers in Table 5.2 shows the line numbers, with each line
representing the cognitive logic step, which is not the same as the
actual solution step. The last line indicates that the cognitive process is
complete; that is, the problem-solving process is complete.
（三）

Cognitive simulation 
Table	5.2 “Mode” cognitive problem-solving process analysis

 Visual Production Retrieval Goal Imaginal Manual

1 Text
encoding

     

2   Relevant
semantic
knowledge
in DM

   

3    Choose
which
month
should be
chosen

  

4  Choose a month when
students can celebrate their
birthdays, class teacher
role Select the birthday to
celebrate that month (in
line with common sense,
P1)

    

5    Select the
month for
which to
celebrate
birthdays
(target
conversion)

  



 Visual Production Retrieval Goal Imaginal Manual

6     The
month
with the
highest
number
of
students
with
birthdays

 

7      The month
with the
highest
number of
students with
birthdays,
and then
choose that
month

8    Statistics on
the number
of students
with a
birthday in
each month

  

9   Statistics,
Count (P2)

   

10     Compare
the
number
of
birthdays
each
month

 

11   The
comparison
of the sizes
of the
numbers
(P3)

   



 Visual Production Retrieval Goal Imaginal Manual

12    Choose the
month in
which with
the largest
number of
students
have
birthdays

  

13      The month in
which the
largest
number of
students have
birthdays

14      End

ACT-R provides an abstract cognitive structure that is performed
cognitively from a functional point of view. Based on the above analysis
of the cognitive process of solving the “mode” problem, the Lisp
program (in Appendix 2) was compiled. It was simulated in ACT-R with
a minimum time interval of 0.05 s (default). The simulation of the
“mode” cognitive problem-solving process is shown in Fig. 5.8.

Fig.	5.8 “Mode” cognitive problem-solving process simulation

The simulation in Fig. 5.8 shows that setting goals in the problem-
solving process is a key step. It begins with a de�inite goal. The
continuous conversion of the problem state is carried out in the middle
phase, and �inally, the process ends with the goal. Procedural
represents procedural knowledge, that is, production rules. The
extraction of procedural knowledge aims to activate production, and
only one production rule can be executed at a time. Declarative
represents declarative knowledge and is expressed as a chunk. The
extraction of declarative knowledge occurs in the knowledge block.



The problem-solving cognitive trace can be visualized in ACT-R, and
the cognitive trace of “mode” problem solving is shown in Fig. 5.9. In
Fig. 5.9, the leftmost column is a buffer in ACT-R, such as a retrieval
buffer, an imaginal buffer, a visual buffer, a production buffer, and a goal
buffer. The right column is based on the time series (the basic event
unit is the default value of 0.05 s) and offers a visual display of the
contents of the buffer. The red area shows the contents of the extraction
buffer, that is, the problem-solving process used to extract declarative
knowledge. The yellow area shows the contents of the production
buffer, which corresponds to the production of activation during
problem resolution. These �indings are consistent with the analysis in
Table 5.2 on the cognitive process of solving the “mode” problem.

Fig.	5.9 “Mode” problem-solving cognitive traces

（四）
Activated brain areas 

The components of ACT-R map to brain regions, and this mapping can
be used to record blood oxygen-dependent (BOLD) data for the “mode”
problem using functional magnetic resonance imaging (fMRI) level-
dependent responses.

Figure 5.10 shows the “extract buffer” after the “mode” model in
ACT-R is run with BOLD data changes. The left column shows all the
buffers in the “mode” problem model. If one of the buffers is selected,
the blood in that buffer is displayed in the right area, and the oxygen
levels depend on the data. The horizontal axis represents the time, and
the default interval is 1.5 s; the vertical axis represents the range of
variation, with a minimum of “0. 0” and a maximum of “1.0.” Different
buffers clearly correspond to different buffer zone activations.



Fig.	5.10 BOLD “BOLD BUFFER” variations in the “mode” problem-solving process

Figure 5.11 shows the activation areas of the brain in the “mode”
problem-solving process. The left column does not use the same color
marked with a different buffer; the right column represents the brain
activation area. The color of the area box is the same as that of the
corresponding buffer on the left. The brightness of the area indicates
the degree of activation. If the brightness of the area increases, the
activation of the brain also increases.

Fig.	5.11 Activation of brain areas in the “mode of ” problem-solving process

Figure 5.11 clearly shows that the extraction of knowledge (mainly
numbers) from the imaginal cortex is closely related to the activation of
the parietal cortex. This �inding is consistent with the �indings of the
studies by Pinel et al. (2001), Eger et al. (2003), and Zhang et al. (2004).
The parietal cortex of the subjects in those studies were signi�icantly
activated when the subjects saw the numbers or performed digital
processing. The default time for an image in ACT-R is 200 ms.

The retrieval buffer is responsible for extracting declarative
memory and is associated with the activation of the prefrontal cortex.
This �inding is consistent with the �indings of Qin et al. (2003),
Anderson et al. (2004), and Sohn et al. (2003, 2005). The prefrontal,
rather than the parietal, cortex correlates with the extraction of
personal knowledge.



The procedural module is responsible for the extraction of
procedural knowledge and is closely linked to the activation of the basal
ganglia. This conclusion is consistent with that of Hikosaka et al.
(1999).

Figure 5.12 shows the brain activation zones during the “mode”
problem-solving process as a three-dimensional map. The �igure “0.0–
1.0” indicates the brightness value. A value of “0” means that an area
has not been activated, and that area is black; the more active an area is,
the closer the value is to “1,” and the brighter the area is. The left side of
the graph shows the buffer in a different color, and the number to the
right of the buffer is the activation level. The right side of the graph is
the brain activation area, shown in a color that is consistent with the
color of the left module.

Fig.	5.12 Three-dimensional visualization of the brain activation areas during the “mode”
problem-solving process

As shown in Fig. 5.12, in the “mode” problem-solving process, the
contents of the target, extraction, and production buffers are activated.
The three-dimensional visualization shows the brain activation regions
corresponding to different buffers in this process. The results are the
same as those in Fig. 5.11 and are supported by the existing research,
which is not described here.

5.4	 Empirical	Study	on	the	Cognitive
Simulation	of	Procedural	Knowledge	Problem
Solving
5.4.1	 Purpose



The purpose of this experiment is to compare the consistency among
procedural knowledge problem solving, cognitive process simulation
and students’ actual problem-solving process to verify the validity of
the cognitive simulation.

5.4.2	 Method
（一）

The participants 
A total of six students from class �ive, grade �ive at a primary school

in Shijingshan District, Beijing, were selected as participants, with three
boys and three girls. Two students each had excellent, middle and poor
comprehensive mathematics results, with an average age of
133 months and an age range of 128–138 months.
(二)

Material 
The experimental materials were a few of the questions that were

designed according to the purpose of this book.
(1)

In grade �ive, class two, the skipping test was carried out. The 1-
min rope skipping results for the �irst group of seven students are
as follows:

 

172  145  135  142  139  140  138

What number do you think would indicate the average level of
jumping rope for this group of students?
(2) Please color the rectangular paper (as shown in Fig. 5.13). Color

1/3 of the paper yellow and 2/5 of the paper black, and do not use
the same color for another region (the yellow area cannot be
colored black, and the black area cannot be colored yellow). How
much of the whole piece of paper is yellow and black?

Fig.	5.13 Rectangular paper with squares

 



The �irst question aimed to train students to think aloud when
solving a problem, and the second question tested students’ knowledge
of “addition with different denominators.”
（三）

Program 
(1)

Design the experimental scheme 
According to the task and purpose of the research, the subjects,

materials and instructions were determined, and the oral report
records were analyzed. Then, the records were compared with the
cognitive simulation results.
(2)

Experimental equipment 
A Sony’s recording pen, Sony’s digital video camera and tripod were

used to record the oral reports during the experiment.
(3)

Oral reporting and recording 
The oral reporting method was applied to collect information. In

accordance with the think aloud research program developed by
Erickson and Simon, the subjects were trained to think aloud in the
process of solving the problem. The instructions were as follows:
“Please read the questions aloud, think about the process of solving the
problem, and speak what you think. In other words, speak while
completing the questions; speak your thinking process aloud, so you
know how you perform it.” Before students began answering the
question, the main tester (the researcher himself) brie�ly explained the
instructions. Then, taking question (1) as an example, the main tester
demonstrated and explained how to think aloud in the process of
solving the questions. After the subjects understood the instruction to
think aloud, they began to answer the question. A camera was used to
record the students’ problem-solving process.
(4)

Data translation and coding 



The data collected included the two parts of the oral report and
problem-solving operations. The oral report was �irst translated into
text by the experts, and then the students’ problem-solving
assignments were encoded and analyzed to diagnose their answers.
Two experts were responsible for coding, and agreement was reached
after a discussion of a small number of coding inconsistencies.

Simon et al. note that the intuitive information provided in oral
reports concerns the knowledge and information needed to solve a
problem, not the actual process used (Simon and Newell 1989).
Therefore, it is necessary to deduce the process from the oral reports
rather than trying to encode the process directly.

5.4.3	 Results	Analysis
Newell and Simon implemented computer simulations of human
thinking and inferred the validity of the simulations by comparing them
with spoken language reports (Newell & Simon, 1961). Based on the
research foundation, this experiment compares the simulation process
with the students’ oral report records to determine the validity of the
simulation.
（一）

Oral report analysis 
Table 5.3 provides a detailed description of the process of solving

the problem of addition with different denominators.

Table	5.3 Oral report and cognitive process analysis of “addition with different denominators”

The
subjects

Oral	report Cognitive	process	analysis

	 [Read the question]
Please color the rectangular
paper. Color 1/3 of the paper
yellow and 2/5 of the paper
black. The same color cannot
be used for another area (the
yellow area cannot be colored
black, and the black area
cannot be colored yellow).
How much of the whole piece
of paper is yellow and black?

Input text information by reading the title, and form
the propositional text frame and the problem
pattern after visual coding



The
subjects

Oral	report Cognitive	process	analysis

(Student
WangZY)

[Analysis]
The denominators of the
fractions (two fractions 1/3,
2/5) are 3 and 5, both of which
are coprime, with a least
common multiple of 3 × 5 = 15.
Then, 1 × 5 = 5, 2 × 3 = 6, that is,
5/15, 6/15, 5/15 + 6/15 = 
11/15

Activation of long-term declarative memory related
to the concept of “mutual prime”; activation of
production rule P1: prime multiples of the least
common multiple → Multiply two numbers
together, 3 × 5 = 15;
Activate production rule P2: Determine the LCM → 
the numerator and denominator of 1/3 are
multiplied by the same number 5, and the
numerator and denominator of 2/5 are multiplied
by 3
Activation of production rule P3: Add with the
common denominator → The denominator does not
change, and the numerators are summed

(Student
ChenHY)

[Read the question]
Please color the rectangular
paper. Color 1/3 of the paper
yellow and 2/5 of the paper
black. The same color cannot
be used for another area (the
yellow area cannot be colored
black, the black area cannot be
colored yellow). How much of
the whole piece of paper is
yellow and black?

Input text information by reading the title, and form
the propositional text frame and the problem
pattern after visual coding



The
subjects

Oral	report Cognitive	process	analysis

[Analysis]
Reduction of fractions to a
common denominator. The
least common multiple of 3 and
5 is 15, 1/3 × 5 = 5 / 15, 2/5 × 3 
= 6/15
The numerators add up to 11

Activation of production rule P1: Addition of
denominator fractions → reduction of fractions to a
common denominator; activate “reduction of
fractions to a common denominator.” Production
rule P2: reduction of fractions to a common
denominator → calculate the least common
multiple of the denominator; Production rule P3: 3
and 5 are prime numbers, �ind the least common
multiple → the least common multiple is 3 × 5 = 15;
Production rule P4: the least common multiple of
1/3 and 2/5 is 15, translate into the same
denominator → the denominator is converted to the
least common multiple of 15. The denominator and
the numerator are multiplied by the same number;
the numerator and denominator of 1/3 are
multiplied by the same number, 5, resulting in 5/15;
the numerator and denominator of 2/5 are
multiplied by 3, resulting in 6/15
Activation of production rule P4: Add fractions
with the common denominator → The denominator
does not change, and the numerators are summed

	 [Read the question]
Please color the rectangular
paper. Color 1/3 of the paper
yellow and 2/5 of the paper
black. The same color cannot
be used for another area (the
yellow area cannot be colored
black, the black area cannot be
colored yellow). How much of
the whole piece of paper is
yellow and black?

Input text information by reading the title, and form
the propositional text frame and the problem
pattern after visual coding



The
subjects

Oral	report Cognitive	process	analysis

(Student
XingYR)

[Analysis]
Determination of the
percentage of yellow and black
to the whole piece of paper,
reduction of fractions to a
common denominator,
conversion of fractions to the
same denominator of 15
Convert 1/3 into 5/15, and turn
2/5 into 6/15; 6/15 + 5/15 = 
11/15. This method feels a little
messy. This paper can be
divided into 15 parts
[Ask: why is it divided into 15
parts?]
Because the denominator is 15,
and the yellow and black
together accounted for the
whole piece of paper. The
denominator is 15 after the
reduction of fractions to a
common denominator. The
whole paper is divided into 15
parts, 11 parts are selected
from it, and yellow and black
together accounted for 11/15
of the sheet of paper

（1）Determine the target
Activation of production rule P1: Addition of
denominator fractions → reduction of fractions to a
common denominator; activate “reduction of
fractions to a common denominator.” Production
rule P2: reduction of fractions to a common
denominator → calculate the least common
multiple of the denominators; Production rule P3: 3
and 5 are prime numbers, �ind the least common
multiple → the least common multiple is 3 × 5 = 15;
Production rule P4: the least common multiple of
1/3 and 2/5 is 15, translate the denominators into
the same denominator → the denominator is
converted to the least common multiple of 15. The
denominators and the numerators are multiplied by
the same number; the numerator and denominator
of 1/3 multiplied by the same number, 5, resulting
in 5/15; the numerator and denominator of 2/5 are
multiplied by 3, resulting in 6/15. Activation of
production rule P5: Add fractions with the common
denominator → The denominator does not change,
and the numerators are summed
(2) Re�lect the problem-solving process

	 [Read the question]
Please color the rectangular
paper. Color 1/3 of the paper
yellow, 2/5 of the paper black,
and the same color cannot be
used for another area (the
yellow area cannot be colored
black, the black area cannot be
colored yellow). How much of
the whole piece of paper is
yellow and black?

Input text information by reading the title, and form
the propositional text frame and the problem
pattern after visual coding



The
subjects

Oral	report Cognitive	process	analysis

(Student
LiL)

[Analysis]
The denominator should be 15,
(divide the rectangle into three
in the �igure, and paint one of
them). The approach is to
divide the remaining paper into
5 parts and take 2 of them (2/5
of the whole paper). Yellow
and black together accounted
for a fraction of the entire piece
of paper, that is, 1/3 + 2/5; the
denominator is 15, and the
numerator is 2, resulting in
2/15
[Ask: 2 how did you �igure it
out?] 2 is the numerator: 1 × 2,
following the least common
multiple (referring to 15), the
operation is 3 × 5, and the
denominator is calculated
accordingly

The student understands that 2/5 of the whole
piece of paper is wrong, and he understands that
2/5 represents the remainder
Activation of the wrong production rule P1:
Addition with different denominators → 
Denominator and numerator multiplied by
respective numbers
Further con�irmed the activation of production rule
P1: addition with different denominators → 
denominator and numerator are multiplied

The content of (·) is omitted in the oral reports of students. To
indicate completion, it is added, along with a (·) mark.

An analysis of the “addition with different denominators” oral
reports reveals that WangZY, ChenHY and XingYR and other students
solved the problem of addition with different denominators, including
the reduction of fractions to a common denominator, the least common
multiple, and other steps. However, in the least common multiple step,
WangZY mentioned that “3 and 5 are coprime, and the least common
multiple is 3 × 5 = 15,” and ChenHY and XingYR directly stated that “the
least common multiple is 3 × 5 = 15.” LiL incorrectly solved this problem
because of the use of the incorrect production rule.
（二）

Cognitive simulation and oral report comparison. 
Figure 5.14 shows a comparison of “addition with different

denominators” problem-solving cognitive simulation and oral reports.
The left panel is the result of the simulation, and the right panel is the



content of the oral report. The comparison shows agreement between
the two.

Fig.	5.14 Cognitive simulation and oral report comparison for “Addition with different
denominators”

5.4.4	 Discussion
（一）

On the same question, different students used different
methods for solving the same problem.

 
With respect to the problem of “addition with different

denominators,” WangZY, ChenHY and XingYR all solved the problem
correctly, but the details of their approaches were different. In seeking
the least common multiple, WangZY mentioned the concept that “3 and
5 were coprime, and the least common multiple was 3 × 5 = 15,” which
activated the concept of “coprime” in long-term declarative memory.
Speci�ically, to �ind the least common multiple, according to the
qualities of the mutual prime, the least common multiple is multiplied
by two; this reasoning was activated in long-term program memory. In
contrast, ChenHY and XingYR directly stated that “the least common
multiple is 3 × 5 = 15,” which activated long-term programmatic
memory.
（二）

In the process of solving the problem, students showed
different degrees of “automation.”

 
In the “addition with different denominators” problem, to solve “the

least common multiple of 3 and 5,” WangZY’s approach was “3 and 5
are coprime, and the LCM is 3 × 5 = 15.” ChenHY’s step was the direct
determination of the “least common multiple of 3 and 5 is 15,” which
provided the result. This example shows that in the process of solving
problems, the internal operation can be compressed, and after a long
period of training, a few simple internal operations may be compressed



into one “chunk.” For example, the two production rules P1: A → B and
P2:B → C are often activated at the same time, which generates a new
production rule P3:A → C. Additionally, the phenomenon of “speeding
up” occurred when this student studied algebraic equations. He
believed that after training, the solution of the equation could be
simpli�ied into a series of visual coding and output operations
(Anderson, 2005). The study by Schoenfeld shows that becoming an
expert in a �ield generally requires approximately 50,000 knowledge
blocks in long-term memory, which are concrete objects of thinking in
the �ield; moreover, in many cases, the use of strategy is, in fact, the use
of such a well-established knowledge block (Schoenfeld, 1985). The
above conclusions are in line with the analysis of this study, which also
explains, to some extent, the difference between experts and novices in
solving complex problems. Experts have more knowledge of
“automation,” whereas few beginners have this knowledge.
(三)

Incorrect production is an important reason for the problem-
solving error

 
In the problem of “addition with different denominators,” when LiL

solves “1/3 + 2/5,” the incorrect production Equation P1 is activated:
denominator addition, denominator multiplication and numerator
multiplication, resulting in a problem-solving error. There are two
reasons for this error. First, LiL does not understand the meaning of the
fraction. There is a problem with semantic models of fractions in long-
term declarative memory. Second, he does not understand the tactics of
reducing fractions to a common denominator through the divisions
mentioned earlier. In addition, the reason for the reduction of fractions
to a common denominator and how to do so are not known. Anderson
studied the cognitive process of students learning solutions to algebraic
equations and suggested that learning occurs at the symbolic level and
creates (or generates) new production rules (Anderson, 2005).
Therefore, helping students form the correct production rules is an
important part of procedural knowledge learning.
（四）

Cognitive analysis of problem-solving process helps diagnose
and intervene in problems

 



LiL makes a typical error in calculating the “addition of
denominators,” as indicated by the oral report: (1) LiL successfully
extracted the declarative knowledge 3 × 5 = 15 and 1 × 2 = 2, which
indicated that there was no problem in multiplying two numbers. (2)
Although the numerator and denominator were multiplied, the report
showed that he could correctly identify the numerator and the
denominator of the fraction. (3) The error in solving the problem stems
from the use of incorrect production rules: “the addition of
denominators → the numerator and the denominator are multiplied
separately, and the numerators are summed. To help LiL correct his
mistakes, we must consider how to help him form the correct
production rule of “addition with different denominators → �ind the
least common multiple” and the basic operation needed to achieve this
production rule.
（五）

Determine whether cognitive simulation is consistent with the
student’s problem-solving process

 
Whether a computer can completely simulate the human problem-

solving process has always been disputed. The task of thinking aloud,
which was proposed by Newell and Simon (1961), effectively answered
this question and promoted the development of cognitive psychology. It
provided a new perspective on the study of human thinking and later
developed into an important method in psychology research—the oral
report method.

Because of existing knowledge, learning styles, cognitive
characteristics, the family environment, and other factors, students will
not be consistent in their answers to the same questions, but there will
always be similarities. As Newell and Simon demonstrated in computer
simulations through a verbal reporting approach, not all individuals
adopt the same problem-solving process, but many similarities and
commonalities exist. In this book, we consider mainly the
commonalities.

5.5	 Declarative	Knowledge	Problem-Solving
Cognitive	Simulation	Empirical	Research



5.5.1	 Purpose
The purpose of the experiment is to verify the validity of the cognitive
simulations by comparing the cognitive simulation of the declarative
knowledge problem-solving process with the students’ practical
problem-solving process.

5.5.2	 Method
(一)

The subjects 
A total of six students from grade �ive, class three at a primary

school in Shijingshan District, Beijing, were selected as subjects,
comprising three males and three females. Two students each had
excellent, middle and poor students’ comprehensive mathematics
results, with an average age of 133 months and an age range of 131–
135 months.
(二)

Material 
The experimental materials are a few of the questions that were

designed according to the purpose of this book.
(1)

In grade 5, class two, the rope skipping test was carried out. The
results for the �irst group of seven students for 1 min of rope
skipping are as follows:

 

172  145  135  142  139  140  138

What number do you think is suitable for indicating the average
level of rope skipping for this group of students?
(2) The school has agreed to hold a birthday celebration next year for

grade �ive, class three. However, only the birthdays of students
born in a certain month can be celebrated. If you are the class
teacher:
①

How would you choose the month?  

 



② Which month do you think should be chosen? 
The �irst question was used to train students in think aloud

exercises, and the second question was designed to test students’
knowledge of “the mode” topic.
（三）

Program 
(1)

Design experiment scheme 
According to the task and purpose of the research, the subjects,
materials, and instructions were determined, the oral report records
were analyzed, and the results were compared with the cognitive
simulation results.
(2)

Experimental equipment 
A Sony’s recording pen, Sony’s digital video camera and tripod were

used to record the oral reports during the experiment.
(3)

Oral reporting and recording 
The oral reporting method was used to collect information. In

accordance with the think aloud research program developed by
Erickson and Simon (1981), the subjects were trained to think aloud
while solving a problem. The instructions were as follows: “Please read
the questions aloud, think about the process of solving the problem,
and say what you think. In other words, in the process of problem-
solving, speak your thinking process aloud so that you know how you
perform it.” Before the students began answering the question, the
main tester (the researcher himself) �irst brie�ly explained the
instructions. Then, taking question (1) as an example, the main tester
demonstrated and explained how to think aloud in the process of
completing the questions. After the subjects understood how to think
aloud, they began to answer the question, and the students’ problem-
solving process was recorded.



(4)
Data translation and coding 

The data collected included two parts: oral reports and problem-
solving operations. The oral report was �irst translated by professionals
into text, and then the students’ problem-solving assignments were
encoded and analyzed to diagnose issues in the problem-solving
process. Two experts were responsible for coding work, and agreement
was reached after a discussion of a small number of coding
inconsistencies.

Simon et al. note that the intuitive information usually provided in
oral reports is about the knowledge and information needed to solve a
problem, not the actual process used (Simon & Kaplan, 1989).
Therefore, it is necessary to deduce the process from the oral reports
rather than trying to encode the process directly.

5.5.3	 Results	Analysis
Newell and Simon (1961) implemented computer simulations of
human thinking and inferred the validity of the simulations by
comparing them with oral reports. Based on this research foundation,
this experiment compared the simulation process with students’ oral
report records to verify the validity of the simulation.
（一）

Oral report analysis 
Table 5.4 provides a detailed description of the process of solving

the “mode” problem.

Table	5.4 Oral report and cognitive process analysis of the “mode”

The
subjects

Oral	report Cognitive	process	analysis



The
subjects

Oral	report Cognitive	process	analysis

	 [Read the question]
The school agrees to hold a birthday celebration
next year for class
three, grade �ive. However, it can be celebrated only
for students born in a certain month. If you are the
class teacher:
① How would you choose the month?
② Which month do you think should be chosen?

Input text information by
reading the title, and form the
propositional text frame and
the problem pattern after visual
coding

(Student
QiuDL)

[Analysis]
(Thinking in 49 s) I do not know the birthday of
everyone in our class. We choose the month in
which most students have birthdays. This is the
question, speci�ically, which month? First, I think
the month of every student should be listed, and
then which month has the most birthdays should be
found and then chosen. Most students’ birthdays
can be taken care of

Identify the problem: the goal is
to �ind the month in which the
most students have a birthday
Statistics on the dates of
students’ birthdays
Choose the month with the
largest number of birthdays
The month in which the most
students have birthdays should
be selected
Understand the problem
situation, taking into account
the role of the head teacher

	 [Read the question]
The school agrees to hold a birthday celebration
next year for class
three, grade �ive. However, it can be celebrated only
for students born in a certain month. If you are the
class teacher:
① How would you choose the month?
② Which month do you think should be chosen?

Inputting text information by
reading the title, and form the
propositional text frame and
the problem pattern after visual
coding



The
subjects

Oral	report Cognitive	process	analysis

(Student
LiC)

[Analysis]
The month in which most students have a birthday
should be selected. There should be statistics on the
month in which students have birthdays
Choose the month with the largest number of
birthdays
[Asked: How can the statistics be generated?] Draw
a table of January to December, (then) count the
number of January classmates who stand up, then
repeat the process for students who are born in
February. Finally, make sure the correct month is
selected

Identify the problem. The goal
is the month in which students
have birthdays
Choose a solution strategy
Activate procedural memory
“statistics” production
Activate “comparative”
production in procedural
memory

	 [Read the question]
The school agrees to hold a birthday celebration
next year for class
three, grade �ive. However, it can be celebrated only
for students born in a certain month. If you are the
class teacher:
① How would you choose the month?
② Which month do you think should be chosen?

Input text information by
reading the title, and form the
propositional text frame and
the problem pattern after the
visual coding

(Student
ChenYL)

[Analysis]
I choose May
[Asked: How did you choose May?] There were
more May birthdays
[Asked: How do you know that the most students
celebrate their birthday in May?]
Ask classmates. Most students have their birthday in
May. Each year the school restaurant gave birth
birthday cake hair, and then you can know the
students in which month birthday

Extract long-term declarative
memories for “the largest
number of birthdays is May.”
(The implicit assumption is that
the goal is to select the month
with the largest number of
birthdates.)
Choose a problem-solving
strategy
Activate the long-term
declarative memory of “school
birthday” scene
The birthday cake will be sent
to the student → The month of
sending a cake is the month
with the largest number of
birthdays



The
subjects

Oral	report Cognitive	process	analysis

	 [Read the question]
The school agrees to hold a birthday celebration
next year for class
three, grade �ive. However, it can be celebrated only
for students born in a certain month. If you are the
class teacher:
① How would you choose the month?
② Which month do you think should be chosen?

Input text information by
reading the title, and form the
propositional text frame and
the problem pattern after visual
coding

(Student
PangB)

[Analysis]
I think the months of January, March, May, July,
August, October and December are most
appropriate because they all have 31 days in a
month. More classmates will have birthdays in these
months
January is the winter vacation, and July and August
are the summer vacation, so choose between March
and May. Choose May
There are more activities in October because there
are 7 national days, and the time of one’s birthday is
particularly tense
Choose between March and May. I feel that March is
the best because in the middle of the semester, there
is not too much pressure, so the celebration will not
waste time for learning. I feel the March is best and
most suitable month

Activate production rule P1:
Which month has more days → 
There are more people who
have a birthday, and the
assumptions are: Everyone’s
birthday is evenly distributed
on a daily basis, so the more
days in a month, the more
people that have birthdays
Errors are produced, which
lead to solving the incorrect
problem

The content of (·) is omitted in the oral reports of students. To
indicate completion, it is added, along with a (·) mark.
（二）

Comparison of cognitive simulation and oral report 
Figure 5.15 shows a comparison of the cognitive simulation for the

“mode” problem-solving process and the oral reports. The left panel
shows the results of the simulation, and the right panel shows the
content of the oral report. The comparison shows that the two are the
same.



Fig.	5.15 Comparison of the “mode” cognitive simulation and oral report

5.5.4	 Discussion
（一）

For the same question, different students provide different
details concerning the problem, but they all have
commonalities.

 

With respect to the “mode” problem, students QiuDL and LiC solved
the problem correctly. By analyzing the oral reports of the two students,
we found that in counting how many students had a birthday each
month, the two students adopted different methods. QiuDL �irst listed
the month of each person’s birthday and then determined which month
had the most birthdays. LiC drew a table from January to December and
then counted the number of January classmates who stood up; then, the
process was repeated for students who were born in the remaining
months. Finally, the correct month was selected. QiuDL and LiC went
through the process of identifying the problem (�inding the month with
the highest number of birthdays), counting the number of birthdays in
each month, comparing the number of birthdays each month, and
determining the number of months with the highest number of
birthdays, all of which were common to both students’ processes. As
Newell and Simon showed through colloquial reporting to validate
computer simulations, not everyone’s problem-solving process is the
same, but there are many similarities and commonalities (Newell &
Simon, 1961). In this book, we consider mainly the commonalities.
（二）

Determining a goal is a key aspect of successful problem
solving

 
An analysis of the “mode” oral report revealed that in the problem-

solving processes adopted by QiuDL and LiC, the �irst step was correctly
determining the target and then adopting a strategy to solve the
problem successfully. Although ChenYL decided that the goal was to



select the months in which the most students who had birthdays, he did
not consider the whole class, which led to a problem-solving error.
（三）

Understanding the problem situation an important step in
successfully solving the problem

 
“Mode” is a typical type of declarative knowledge, and the process of

obtaining the concept of “mode” depends largely on students’
experiences. The phrase “if you are the class teacher” gives students the
“class teacher” role; students moreover must consider a “birthday”
situation and, to gain a deeper understanding of the “class teacher”
role, will take into account the fairness of accounting for the most
students and then select the month with the most birthdays. Students
QiuDL and LiC have a good understanding of this situation and set the
problem goal accordingly. When ChenYL answered the question, he
activated the situation of “birthday cake for the student at school” and
quickly determined the month when there were the most cakes, that is,
the month with the most birthdays. The teacher con�irmed that ChenYL
is a student at school and personally experienced a cake scene.
However, ChenYL only considered the birthday of a student at school
and did not consider the birthday of the whole class. That is, he did not
understand the role of the “teacher in class” thoroughly, resulting in
problem-solving errors.
（四）

In the process of solving the problem, there are different
degrees of “automation.”

 
ChenYL directly answers the question when solving the “mode”

problem. An analysis of the oral report revealed that although there are
some errors in the process of solving problems and the determination
of goals and other stages, the activation of long-term declarative
memory of students regarding the months with the most birthdays is
May. By directly stating the answer is May, a few simple operations are
combined into a “chunk,” resulting in “automation.” Anderson studied
the phenomenon of “speeding up” in his study of algebraic equations.
He believed that after enough training, the solution equation could be
simpli�ied into a series of visual coding and output operations
(Anderson, 2005). This view is consistent with the analysis of this book.



（五）
Incorrect production is an important reason for the problem-
solving error

 
In the process of solving the “mode” problem, Pang B activated the

wrong production “which month has more days → there are more
people who have a birthday” when he selected the month with the most
birthdays, leading to problem-solving errors. With respect to the role of
production in learning, Anderson studied the cognitive process of
students learning solutions to algebraic equations and suggested that
learning occurs at the symbolic level, creating (or generating) new
production rules (Anderson, 2005). Therefore, helping students form
the correct production rules is an important part of procedural
knowledge learning.

5.6	 Cognitive	Simulation	Contributions	and
Limitations
The computer simulation of problem solving has an important
in�luence on the development of arti�icial intelligence. It has promoted
the in-depth study of the psychology of problem solving and increased
people’s understanding of certain aspects of problem solving.
(一)

Computer simulation helps solve the problem of visualizing
internal cognitive processes. Psychological studies of problem
solving give more attention to one of the links, such as problem
characterization, strategy selection, etc. Thus, the entire process
cannot be visualized. In recent years, cognitive neuroscience
research on problem solving has made many achievements and
provided some evidence. However, these results are more
concentrated at the nervous system level but cannot be used to
characterize the internal process explicitly. Computer simulation
involves the entire process of problem solving and visually
displays this internal cognitive process, clearly showing the
procedural and declarative knowledge required for problem
solving.

 

(二) Computer simulations have promoted the organization of
research into knowledge bases. Computer simulation of problem
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solving requires a knowledge base as a support. The more
knowledge in a knowledge base, the easier the information
processing is and the more easily a problem can be solved.
Common knowledge in the knowledge base will form a large
chunk in long-term memory, which provides ideas for the
decomposition and combination of knowledge in mathematics
teaching.

 

(三)
Computer simulation presents the concept of a production
system. Production systems formalize the cognitive activities of
problem solving. The rules of “if (conditions) then (action)”
apply to different content, and different kinds of problems
become the general mechanism of problem solving. The
productive formula emphasizes the importance of correct
identi�ication in problem as well as the correct application of the
premise. Therefore, the problem-solving process becomes the
process of obtaining and applying the production system
correctly. The production system supplies new ideas for solving
mathematical problems.

 

Although some achievements have been made in computer
simulations of problem solving, some problems still need further study.
(一)

Problem-solving computer simulation programs are performed
in a serial fashion, yet individuals’ thinking processes when
solving problems may not be serialized. This issue is also very
controversial in psychology.

 

(二)
When a problem is solved, individuals provide a quick response
according to the situation at that time, which has a certain
degree of randomness. However, computer simulations cannot
take into account the situation.

 

(三) Computer simulations of problem solving do not consider
motivations, emotions, attitudes or other factors in the problem-
solving process. These factors have a signi�icant impact on
problem solving and can play a role in selecting, guiding and
controlling cognitive processes.

 



Although many problems remain in the problem-solving computer
simulation, computer programs operate according to strict logic and
certainty. The cognitive process of problem solving cannot be
accomplished by other means. Computer simulation combines some of
the factors in the process of problem solving to reconstruct this process
and overcomes the formerly analytical approach of experimental
psychology. This advancement opens a path for understanding the
cognitive process of problem solving as a whole (Wang & Wang, 1992).
Therefore, it is a special research method of cognitive psychology and is
highly important for computer simulation.

5.7	 Summary
This chapter �irst describes the basis of problem-solving cognitive
simulation and then introduces the cognitive model used as a tool,
namely, adaptive control of thought-rational (ACT-R), along with the
internal structure, application areas and cognitive neurology. We
subsequently selected procedural knowledge problems (“addition with
different denominators”) and declarative knowledge problems
(“mode”), analyzed the cognitive process of problem solving, and used
Lisp to write cognitive programs. In ACT-R, cognitive simulation was
performed, the results were visualized, and the brain regions activated
during problem solving were analyzed. To verify the validity of the
cognitive simulation, a group of students from two classes in a primary
school were tested via oral English reports. The results showed that the
cognitive simulations were consistent with the oral reports.

The computer simulation of problem solving has an important
in�luence on the development of arti�icial intelligence. It promotes the
in-depth study of psychology in problem solving and improves
individuals’ understanding of certain aspects of problem solving.
However, many problems remain in the current computer simulation
problem-solving process. Cognitive simulation reveals that the
cognitive process of problem solving is irreplaceable by other means.
This insight opens the way for understanding the cognitive process of
problem solving as a whole.



The problem-solving cognitive process is analyzed and simulated to
visualize the implicit process of problem solving. This approach not
only helps to deepen the understanding of cognitive processes but also
helps diagnose students with learning disabilities. It provides targeted
counseling to help improve academic performance.
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Countries worldwide attach great importance to exploring the role of
mathematics learning and teaching. In recent years, the U.S.
government has placed particular emphasis on the importance of
involving students in real science inquiry (Loucks-Horsley et al., 2000;
Schweingruber et al., 2012). In Europe, Australia, Israel, and other
countries, classroom teaching places particular emphasis on inquiry.
The National Medium and Long-Term	Education	Reform	and
Development	Plan (2010–2020) indicates that school learning provided
students with an understanding of society, in-depth thinking skills, and
hands-on engagement. Inquiry teaching is an instructional method
advocated by the new curriculum reform.

The problem is the basis of mathematical innovation, the starting
point of mathematical inquiry learning. In particular, inquiry learning
emphasizes the importance of questions in learning activities (Yu,
2004). A proper exploration of questions can stimulate students’
curiosity, guide them to think actively, cultivate their ability to think and
apply logic, and improve the pertinence and effectiveness of teaching
activities. The	Compulsory	Education	Mathematics	Curriculum	Standards
(2022 edition) also emphasizes that teachers should become
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organizers, guides, and collaborators in students’ learning activities and
provide a good environment and conditions for student development. A
typical problem is a necessary condition for inquiry learning. The
design of inquiry questions fully re�lects the teacher’s role as the
organizer and guide of student learning activities. When designing the
teaching process, teachers need to have a clear direction of inquiry.
Primary school research has found that frontline teachers expect to
carry out inquiry teaching in the classroom. However, there is a lack of
analysis of inquiry problems, and teachers cannot grasp effective
methods and means to design inquiry problems. Hence, a common
phenomenon occurs in which the form of inquiry is more important
than content in classroom teaching. How to create inquiry questions is
one of the most common concerns of primary and secondary school
mathematics teachers, which is the key to effectively carrying out
inquiry teaching and an effective way to improve students’ creative
thinking ability.

6.1	 Research	on	Problem	Design
In mathematics teaching, the training of students’ thinking skills should
be incorporated into teaching activities. Teachers cannot take for
granted that they can think as students and expect students to answer.
Teachers should try to reduce the direct interpretation of teaching
materials, which can lead to responses such as “I do not know what to
do,” so students can experience hands-on application. Teachers should
create conditions for students to think independently to gain an
understanding of knowledge and truly experience the process of
generating knowledge (such as concepts). During this process, teachers
should be patient and provide appropriate prompts at the right time.

The learner’s learning process is the process of problem solving.
Dewey outlines the sequence of events as follows: (1) the presentation
of the problem; (2) learners clarify the problem or distinguish the
essential characteristics of the problem situation; (3) learners form
hypotheses that can be used to solve problems; and (4) learners try to
verify the hypothesis until the learner �inds the answer to the question
(Dewey, 1910). An analysis of the sequence of events solved by the
problem shows that only the �irst step is an external event, and the



remainder are internal events; the �irst step in the external event is the
question that is presented to the students. Therefore, in the inquiry
learning process, the design of inquiry questions is crucial. The �ifth
chapter analyzed and simulated the problem-solving cognitive process,
that is, the internal events, and provides the basis and reference for the
design of inquiry questions. The following sections address the inquiry
teaching mode and strategy. To explore the type and design of a
problem, information technology can be used to support mathematical
inquiry learning.

6.1.1	 Exploring	Teaching	Methods	and	Strategies
With respect to the inquiry teaching model, Poon proposed a
framework for the inquiry teaching of primary school teachers and
conducted inquiry teaching practices in four primary schools.
Conceptual knowledge and procedural knowledge are very important
in exploratory activities (Poon et al., 2012). Wang Jingying used text
analysis to compare the inquiry teaching modes of four science
teachers in China and the United States. She found that American
teachers regard the question as the core and allow students to study
implicitly and re�lect on the problem through questions. Identifying
problems, forming assumptions, making plans, exploring experiments,
analyzing data, verifying assumptions, interpreting results, and
reviewing and re�lecting on practical applications are all aspects of
problem-centered circular and open systems. Chinese teachers have
focused mostly on the goal of exploring the dimensions of knowledge
and skills in teaching (Wang, 2010).

Stafylidou and Vosniadou (2004) reported that students often use
invalid or even incorrect strategies when exploring the meaning and
size of scores. If the teacher tells the student the answer, inquiry
learning becomes a simple knowledge transfer. Teachers need to
master the inquiry learning process to provide proper guidance when
students explore problems through inquiry.

Fernandez and Yoshida (2012) reported that in Japanese
elementary school mathematics inquiry teaching, the inquiry question
posed by the teachers is one of the four key elements of classical
inquiry teaching. Polygamy argued that mathematics teaching should
present students with thought-provoking and controversial questions



and that students should try their best to discover as many insights as
they can under the given conditions.

6.1.2	 Type	and	Design	of	Inquiry	Questions
Researchers such as Chin and Kayalvizhi (2002), Gott and Duggan
(2002), and Watson et al. (1999), and have studied the types of
students’ inquiry questions and training methods of inquiry learning.
Owing to the different research situations, the types of problems
examined are quite different. Koufetta-Menicou and Scaife (2000)
provided training to improve students’ inquiry questions, such as group
discussions, brainstorming, and creating interesting situations. Chin
and Kayalvizhi (2002) calls noninquiry questions low-level questions
and inquiry questions high-level questions. Luo (2010) presents three
stages of asking questions: generating question awareness, expressing
the problem, and expressing the problem in scienti�ic language.

To explore the issue of inquiry design, Ding et al. (2009) conducted
student interviews to eliminate the in�luence of the viewpoints of
physics experts and gain insight on the issue and improve the
effectiveness of problem design. Li (2013) analyzed the theoretical
framework of designing audience response systems in interactive
inquiry teaching. Li (2007) describes the design of the teaching
response system in terms of the design steps.

With respect to the educational implications of inquiry questions,
Lock (1990)found that many of the questions raised by students were
poorly researched and not even educationally valuable. Jong’s study of
Dutch middle school students revealed that students in inquiry learning
classes score high on conceptual knowledge and that students in
traditional teaching classes score high on procedural knowledge (De
Jong et al., 2010).

6.1.3	 Information	Technology	Support	for	Mathematical
Inquiry	Learning
With respect to information technology support for mathematical
inquiry teaching, Baki et al. (2011) reported that, compared with
traditional teaching, the use of dynamic geometry software improved
the spatial recognition skills of �irst-year normal school students
majoring in math. Falcade et al. (2007) used tracking tools in dynamic



geometry software to help students explore the concept and trajectory
of functions. Eysink et al. (2009)compared the effectiveness of different
learning methods supported by technical environments and reported
that inquiry learning is most effective in deepening conceptual
knowledge. Web-based problem-solving training and assessment
systems in IMMEX also emphasize the importance of scienti�ic inquiry
and describe the inquiry process (Stevens et al., 2004).

6.1.4	 Comments
The above literature analysis indicates that the study of mathematical
inquiry has attracted the attention of researchers. Inquiry-based
teaching in the United States tends to be more content oriented,
whereas inquiry-based teaching in China is more oriented toward
teaching methods and teaching strategies. At present, the design of
inquiry questions tends to re�lect the personal experience of teachers,
which is subjective and lacks systematic analysis and scienti�ic design.

6.2	 Exploring	the	Basis	and	Principles	of
Problem	Design
In June 2001, a basic education curriculum reform in China was
announced. The reform introduced changes in the curriculum to
emphasize receptive learning, rote learning, and mechanical training
status; promote the active participation of students willing to explore
and practice; and cultivate the ability to acquire new knowledge to
collect and process information, analyze and solve problems and
exchange and cooperate. The outline of the national medium- and long-
term educational reform and development plan (2010–2020) noted
that “the school left students with the practice of understanding society,
thinking deeply and practising hands-on.” The problem that is used to
support the student’s cognitive understanding, problem representation
and cognitive level should be made consistent to the extent possible
with the use of graphical and tabular forms, thus establishing speci�ic
procedures and abstract concepts to help students understand the
meaning of the problem.

6.2.1	 Design	Basis	of	the	Inquiry	Problem



The design process of primary school mathematics inquiry problems
should consider not only primary school children’s psychological
characteristics and life experiences but also their previous knowledge
and problem-solving learning process analysis.

The basic characteristic of primary school children’s thinking is that
its main form transitions gradually from concrete image thinking to
abstract logical thinking. To a great extent, this type of abstract logical
thinking is still directly related to sensual experience and still presents
as a speci�ic image (Zhu, 2009). Piaget (1952) suggested that pupils are
in the transitional stage of the development of concrete thinking to
abstract thinking. However, in the information age, in which children
are considered “digital natives” (digital natives), there are individual
differences in the cognitive development of each child. However, the
stage of cognitive development does not change. Throughout primary
school, intuitive teaching is an important condition for drawing
children’s attention. The use of “�inger counting” in the process of
solving the “counting” problem highlights the role of “object
perception” in solving problems among primary school children.

An experimental study revealed that the memory ability of 7- and 8-
year-old children is not very different from that of preschool children
(Zhu, 2009). With the preliminary development of the unconscious
mind and logical memory, the unconscious mind and speci�ic images
still occupy a major position. As children enter primary school,
awareness, memorization, and abstract logic gradually become
dominant cognitive functions.

The cognitive process analysis is based on the mathematical
problem-solving cognitive model for primary school. It analyzes and
clari�ies the cognitive process, providing a clear description. The results
of the analysis constitute an important basis for the design of the
problem.

6.2.2	 Principles	of	Designing	the	Inquiry	Problem
1.

The expression of the problem should conform to the cognitive
level of primary school students

 
An analysis of mathematics textbooks from Grades 1 to 6 revealed

that the primary school mathematics curriculum content ranges from



concrete to abstract. With increasing grade levels, the degree of
abstraction of the course content increases, and the content of the math
textbooks in Grades 1 and 2 is composed of speci�ic materials. The
design process of inquiry questions should conform to the principles of
physical and mental development and the cognitive laws of pupils,
re�lecting the characteristics of pupils’ mathematics learning in primary
school. The problem formulation should be consistent with the
cognitive level of students and avoid, to the extent possible, an “adult”
and “academic” presentation of graphics and forms to help students
understand the meaning of the problem and establish speci�ic insights
and abstract concepts.
2.

The relationship between the problem situation and the real lives
of students

 
Considering the characteristics of pupils’ cognitive development, we

must teach knowledge in a way that considers students’ real-life
problems. Students in primary schools, especially those in lower
grades, do not understand abstract concepts and do not grasp the
regularity of operation rules well. Even in the high school years, we
should consider the physical background to which mathematics
concepts and rules are attached to enable students to experience and
understand them rather than acquiring them through rote learning.
Cheung (2008) noted that the inquiry problems that are posed are not
related to students’ lives, so teachers encounter challenges in �inding
appropriate research materials. Therefore, the inquiry problem should
be designed through an organic combination of knowledge and
students’ real lives so that it is relatable. Teachers can obtain teaching
material from real life to inspire and guide students to enable them to
gradually realize that the concepts and laws of mathematics are
abstracted from real life. The closer to real life a problem is, the greater
the ability of students to understand and apply knowledge and thus
achieve more comprehensive, holistic and integrated knowledge, and
students’ basic knowledge base will also be more robust (Liu, 2002).
The knowledge that the students construct in the process of solving
practical problems will be �lexible. Through solving practical problems,
we can help students to experience the value and signi�icance of



learning to stimulate their learning motivation and the importance of
solving problems in real life (Schliemann, 1985; Schliemann & Nunes,
1990). They reported that solving problems in the context of the real
world by constructing a strategy and problem-solving method was
more meaningful.
3.

Implying knowledge in the process of solving problems 
At present, most inquiry questions are often tied directly to the

knowledge that students need to learn, but the mere teaching and
application of knowledge do not involve “problem inquiry” and
“knowledge discovery.” Therefore, the knowledge gained is dif�icult to
transfer �lexibly into complex practical problems. Students solve
inquiry problems to re�lect on and abstract professional knowledge and
problem-solving strategies. The design of inquiry problems should
allow students to “unwittingly” acquire knowledge in the process of
solving the inquiry problem.
4.

Let the students experience the process of knowledge production 
Students need to personally collect data, analyze data, and then

discover knowledge to solve a problem. A problem is solved not by
“knowing the answer at once” but rather by “thinking hard.” Resnick
(1987) designates hard and nonalgorithmic thinking an important
component of high-level thinking skills. By personally experiencing the
knowledge application, students learn how knowledge is used.
Knowledge acquired in this way belongs to the students themselves and
can be transferred �lexibly.
5.

Integrating the model mind into the process of problem design 
A mathematical model is a common method for solving practical

problems in mathematics. Pupils gradually master mathematical
models of addition, subtraction, multiplication, division, and equations
in mathematics learning. When solving practical problems in real life,
we can abstract practical problems into mathematical problems and
use mathematical models to solve them. Model thinking provides a



basic way for students to understand the relationship between
mathematics and the external world, and it is a bridge between basic
mathematics knowledge and the application of mathematics. The
process of establishing and solving the model should abstract
mathematical problems from real life or speci�ic situations. By solving
typical problems with model thinking, we can help students initially
develop model thinking and improve their interest and application
awareness in mathematics learning. When designing a problem, a
teacher should fully consider the idea of the model. When students face
similar problems in the future, they can abstract them into
mathematical problems and use mathematical models to solve them
effectively.

6.3	 Typical	Inquiry	Problem	Design
Anderson, a modern cognitive psychologist, divides the book
Knowledge	of	Students’	Learning into “declarative knowledge” and
“procedural knowledge” from the perspective of the psychological
nature of knowledge. This division has philosophical roots, and
Andersen elaborates on his psychological mechanism. The notions of
“declarative knowledge” and “procedural knowledge” are common and
widely accepted categories of knowledge, and this classi�ication of
knowledge is thus also used in this book.

An analysis of the content of the teaching materials revealed that
the division between “declarative knowledge” and “procedural
knowledge” is not absolute. Research by Rittle-Johnson, Siegler, and
Alibali also revealed that the development of declarative knowledge
and procedural knowledge are entangled and that there are complex
mutual promotions (Rittle-Johnson et al., 2011). According to the
different priorities in determining which type belongs, knowledge
points can often include both “declarative knowledge” and “procedural
knowledge.” On the basis of the above analysis, two typical knowledge
points, “mode” and “cylindrical �lank area,” are selected from the
mathematics textbooks of Grades 5 and 6. The “mode” in Grade 5 is
mainly “declarative knowledge,” whereas the “�lank area of a cylinder”
in Grade 6 is mainly “procedural knowledge.”



In the following, the “mode” and “cylindrical �lank area” knowledge
points are used as examples to discuss the problem design.

6.3.1	 “Mode”	Precourse	Inquiry	Question	Design
The “mode” is an important concept taught in �ifth grade in primary
school. Students have previously learned the concepts of “average” and
“median.”
(一)

Theoretical basis 
Conceptual learning is not merely the sum of a connection formed

by memory or a psychological habit. It is a complex and real thinking
activity. Practical experience shows that the direct teaching of concepts
is not effective. Although students can remember to explain concepts
and imitate conceptual knowledge, their ability to apply concepts to
solve real problems is poor. Through experiments, Ach showed that
concept formation is not a passive mechanical process but a creative
process; a concept is generated and formed during a complex
operation, and the purpose of this complex operation is to solve a
problem. The external conditions that suggest the mechanical
connection of words and objects are insuf�icient to produce a concept.
According to Ach’s schema, concept formation is a goal-oriented
process. It is a series of operations that serve the various steps leading
to the ultimate goal. To ensure that the process of concept formation
can proceed, an unsolvable problem must be presented and cannot be
solved unless new concepts are formed (Vygotsky, 2010).

Designing and presenting a problem that leads to the formation of a
concept does not mean that the problem should be viewed as the
reason for the concept formation process. Notably, the goal must be to
understand the intrinsic linkages between external tasks and
developmental motivation and the formation of concepts as a function
of social development and cultural growth. This framing affects not only
the content of young people’s thinking but also their way of thinking.

The concept of the “mode” is based on data analysis. The
Compulsory	Education	Mathematics	Curriculum	Standards (2011
edition) emphasizes that in mathematics courses, students should give
attention to learning the concept of data analysis (Ministry of Education



of the People’s Republic of China, 2012). Additionally, the 2022 edition
stresses that the mathematics curriculum must deliver the appropriate
level of instruction, aiming to ignite the interest of students who face
challenges in learning, foster their proactive thinking, nurture
bene�icial study habits, and meet the evolving developmental
requirements of the students (Ministry of Education of the People’s
Republic of China, 2022). Understanding many problems in real life
involves performing research, collecting data, making judgments
through analysis and interpreting the information contained in the
data.

The “mode” is a concept taught in Grade 5. It is directly explained to
students. Such teaching is simple and easy, and students can remember
the content. However, this teaching method ignores the motivation and
development of the concept formation process and ignores the
students’ experiences in this process. Therefore, in this study, we did
not tell the students directly. Instead, we presented the well-designed
questions to the students and let them explore the problem-solving
process to completion, that is, the process of forming the concept of the
“mode” through problem solving.
（二）

Design process 
1.

Textbook title analysis 
To teach the concept of “mode” through the teaching materials, a topic
is presented before the concept of “mode” is introduced. The purpose of
this approach is to enable students to learn the concept of “mode” by
solving questions, as shown in Fig. 6.1 (Course Textbook Institute,
2006).

Fig.	6.1 “Mode” problem in teaching materials



Ten students from Class 2 in Grade 5 were selected to participate in
group dance competitions.

The heights of the 20 candidates (unit: m) are as follows:
1.32   1.33   1.44   1.45   1.46   1.46   1.47
1.47   1.48   1.48   1.49   1.50   1.51   1.52
1.52   1.52   1.52   1.52   1.52   1.52
According to the above data, which height do you think is most

appropriate?
Then, the following information is presented: “In this set of data,

1.52 occurs most frequently. To analyze this set of data, the mode is
used. The mode re�lects the concentration of values in a set of data.”

Analysis of the data in the title and the goal yields the following
results:
(1)

There is no suitable height;  
(2)

A single height is not suf�icient for choosing 10 students;  
(3)

The data are given directly, thus eliminating the step of data
collection. The actual problem is that the data will not be
automatically provided.

 

(4)
The topic of “choosing a dance partner” indicated in the title is not
familiar to pupils. It may be familiar to urban pupils, but for rural
pupils, this problem situation is highly unusual. It is therefore not
conducive to the discovery and mastery of knowledge.

 

Through the above analysis, we �ind that the topics presented in the
textbooks are not typical examples of the “mode” problem.
2.

“Mode” problem-solving cognitive process analysis 
The “mode” is a typical part of the “statistics and probability”

section and is a concept presented in the second semester of �ifth grade
in PEP textbooks. Zuyin Ding conducted an experimental study on the
process of mastering children’s concepts. The results revealed that the
concept mastery of primary school children presented stage features.



Children in lower grades of primary school tend to use “concrete
examples” and “intuitive features” to grasp these concepts. In contrast,
children in higher grades of primary school gradually grasp concepts
according to nonintuitive “important attributes,” “practical functions,”
and “genus relations.” The concept of “mode” trains students to identify
nonintuitive “important attributes” of the data, in this case, the most
frequent occurrence.

The “mode” is an abstract concept. Although Grade 5 children have
some abstract thinking skills, speci�ic materials are still needed to help
children understand these concepts. Psychological research also holds
that the process of children’s mastery of the conceptual system is the
process by which children apply various conceptual materials they
learned to assimilate (or comprehend) profound and systematic
knowledge (Zhu, 2009).

The “mode” cognitive problem-solving process is based on a
cognitive model of mathematical problem solving (CMMPS) (Wei & Cui,
2012). Solving for the “mode” in data {a1, a2, a3, …, an} can be described
as follows:
(1)

Understanding the question. Find the “mode” in the given data.  
(2)

Developing a program. Find the most frequently occurring
number in the data {a1, a2, a3, …, an}.

 
(3)

Implementing the program.  
①

Activating the operation of counting in long-term procedural
memory. Count the number of a1, a2, a3, …, an in data {a1, a2, a3, …,
an}.

 

②
Determining that the occurrence times of a1, a2, a3, …, an as M1, M2,
M3, …, Mn, respectively.

 
③ Activating the comparison operation in long-term program

memory, comparing the sizes of M1, M2, M3, …, Mn to determine
the maximum value Mmax.

 



④
The number corresponding to Mmax is the mode of the data {a1, a2,
a3, …, an}.

 

(4)
Review and check. Check for any errors in each step. The concept
of “mode” is added to long-term declarative memory, and the
operation for �inding the “mode” is added to long-term procedural
memory, while the understanding of counting numbers and
comparisons are further strengthened.

 

By analyzing the process of solving the “mode” problem, the key is to
determine the problem-solving strategy, that is, “the most frequent
number in the data.” Performing operations, such as “counting
numbers,” “comparison,” and “corresponding,” consists of drawing on
previously learned knowledge.

Children’s acquisition of concepts is a concrete and gradual abstract
process. When children begin to grasp a concept, many concepts are
isolated and have not been added to a certain conceptual system due to
a lack of knowledge and experience. Only in the conceptual system can
the effect improve. For example, within such a system, the concept of
“plural” can be mastered more effectively, and the connection between
the concepts of median and average can be established only if children
have mastered these concepts.
3.

Model of the “mode” problem concept 
The newly promulgated Compulsory	Education	Mathematics

Curriculum	Standards (2022 edition) proposed that the mathematics
curriculum should emphasize the development of students’ model
thinking. The process of establishing and solving the model includes the
abstraction of mathematical problems from real-life or concrete
situations (Ministry of Education of the People’s Republic of China,
2022). Reported that asking students to construct a conceptual model
of problem solving is a crucial step in problem transformation. Through
the analysis of the “mode” solution process, a conceptual model of the
“mode” problem is obtained, as shown in Fig. 6.2. Through the analysis



of the model, the key to solving the “mode” problem is to choose a
strategy for problem solving, that is, how to convert a “birthday”
situation into a mathematical problem. After converting to a math
problem, students can use their existing knowledge and skills to solve
the problem. Therefore, the design of inquiry questions should help
students convert application questions into mathematical problems.

Fig.	6.2 Conceptual model of “Mode”

4.
Inquiry problem of “mode” 
In his treatise on “lectures” in How	We	Think, Dewey states,

“Preparation is to ask questions and inspire students to think of
familiar personal experiences, which is helpful in understanding new
issues. As soon as a student associates these insights with actual
activities, the process of recognizing something new becomes easier.”
This statement is applicable to the above considerations and the
analysis of the model of solving the “mode” problem. To design the
inquiry problem of “mode,” the following problem uses a situation
familiar to students, such as “birthday.”

The school agrees that �ive (one) classes can have a birthday
celebration next year. However, only the birthdays of students born in a
certain month can be celebrated. Imagine you are the head teacher:
①

How do you choose the month?  
②

Which month do you think should be chosen? 
(1)

The concept of design 



①
This topic is a real application problem, and the “birthday”
situation is closely related to students’ actual lives.

 
②

Students analyze problems, build a model of the problem, and
choose problem-solving strategies independently;

 
③

Students collect data and obtain the number of people who have a
birthday each month independently;

 
④

Students calculate statistics and the number of people with a
birthday each month independently;

 
⑤

When the number of students who have birthdays in the same
month is compared, the month with the most birthdays is the
solution to the problem.

 

(2)
The goal of design 

①
Enable students to not only understand the concept itself but also
experience the meaning of the concept.

 
②

Enable students to experience the “mode” concept through the
application of the problem situation. Moreover, by building several
strategies and methods for problem solving, knowledge transfer
can be deepened.

 

③
Train students on converting the application model into a
mathematical modeling problem.

 
By solving the “mode” inquiry question, teachers do not convey the

concept of the majority directly; rather, they allow students to calculate
their own statistics for students’ birthday months in the class.
Moreover, the number of birthdays for each month is compared.
Students not only understand the concept itself but also experience the
meaning of the concept; experience the application of the concept of
“mode” by building relevant strategies and methods, thereby deepening
their knowledge transfer; and learn how to convert the application



model into a mathematical modeling problem. The design of the
“mode” inquiry questions embodies the “problem context–model
building–solution veri�ication” mathematical activities process and
re�lects the basic requirements of the model. It is conducive to helping
students understand the process of problem solving, grasp knowledge
of the “mode” concept and accumulate experience in math activities.
Solving the inquiry problem is conducive to helping students take the
initiative to �ind, analyze and solve problems to train their innovative
awareness.

6.3.2	 “Cylinder	Flank	Area”	Before	the	Inquiry	Questions
are	Designed
(一)

Theoretical basis 
Procedural knowledge refers to behavior performed under certain

conditions and usually refers to the ability to operate. The “cylindrical
�lank area” is a typical form of procedural knowledge. Procedural
knowledge is obtained through practice. In many theories about
problem solving and skill acquisition, declarative knowledge is often
used as procedural knowledge of preparatory knowledge and existence
(Anderson, 1983; Byrnes, 1992).

When learners encounter new problem situations, the process of
problem solving is the process of obtaining advanced rules. Gagne’s
research on problem solving shows that when a learner succeeds in
solving a problem, a high-level rule is obtained. This rule can be quickly
generalized to similar problems. The direct presentation of the answer
to the learner is ineffective for learning. The reason is that such a
presentation does not require the acquisition of advanced rules, and
the answer can be effectively learned as a simple chain. The most
reliable teaching method is to use examples to stimulate learners to
discover rules by themselves (Gagné, 1999). High-quality pretest
questions are designed, allowing students to explore and experience
the process of knowledge discovery, that is, the process of obtaining
high-level rules.

The “�lank area of the cylinder” is a new knowledge point taught in
sixth grade. Before students learn about the area of a rectangle, the



circumference of a circle, the degree of a circle, and related concepts,
they acquire the prerequisite knowledge needed to solve the “cylinder
�lank area.” Thus, this study designed typical problems and allowed the
students to determine how to calculate the �lank area of the cylinder.
（二）

Design process 
The “cylinder side area” is procedural knowledge taught in the sixth

grade of elementary school. Before students learned “the circumference
of a circle” and “the area of a rectangle,” other calculations are
performed.
1.

Textbook title analysis 
Teaching materials for the “cylinder �lank area” (as shown in

Figs. 6.3 and 6.4) allows students to learn the cylinder, given the
“bottom” “�lank” “height” and other concepts. Moreover, after
expanding the cylindrical side to be a rectangle, the calculation of the
�lank area of the cylinder is converted into that of the area of a
rectangle.

Fig.	6.3 “Cylinder �lank area” Problem 1 in the textbook

Fig.	6.4 “Cylinder �lank area” Problem 2

This design of teaching materials is logically in line with students’
cognitive rules. A careful analysis of the details reveals the following:
(1) The strategy of unfolding the side of a cylinder is presented

directly to the student, and the student does not experience in-
depth thinking on “why.”

 



(2)
The title should present a situation and allow students to develop
a method for calculating the �lank area of the cylinder.

 
2.

Problem-solving model 
The “cylindrical side area” problem-solving model is shown in

Fig. 6.5.

Fig.	6.5 Model for solving the “Cylindrical side area” problem

An analysis of the “cylinder �lank area” reveals that the key to
solving the problem of the cylinder side area is converting it to a
rectangular area. Designing problems and creating situations from the
perspective of students’ lives so that students can generate an idea for
converting a cylinder �lank area into a rectangular area in the process of
solving the problem.
3.

Inquiry questions 
On the basis of the inquiry problem design principles and the

“cylinder �lank area” problem-solving model, a series of questions were
posed: A potato chip factory produces a batch of potato chips that need
to be packaged on the side of the potato chip box (as shown in Fig. 6.6).
Can you help the factory calculate how many wrappers are needed for
each box?



Fig.	6.6 Chip box

(1)
The concept of design 

①
“Af�ixing wrapping paper” is closely related to the actual life
situation of students.

 
②

Students analyze the problem, build a model of the problem, and
select a problem-solving strategy.

 
③

Students cut paper and pack chip boxes.  
④

Students measure the amount of wrapping paper required.  
⑤

Students calculate the area of the wrapping paper, that is, length × 
width;

 
⑥

The area of the cylinder side is calculated. The calculation method
is summarized below.

 
(2)

The goal of the design 
①

The students not only understand the cylinder side area
calculation formula but also experience the process and
signi�icance of the formula.

 

②
The students experience the application of the formula “cylinder
side area” and determine the “side area of the cylinder”
independently to solve the problem, building strategies and
methods to deepen their knowledge of the relevant mathematical
concepts.

 



6.4	 The	Teaching	Application	of	the	Inquiry
Problem
Training students’ logical reasoning ability is advocated by The
Compulsory	Education	Mathematics	Curriculum	Standards (2022
edition) and is also one of the goals of primary mathematics inquiry
teaching. The training method uses typical problems in classroom
inquiry teaching so that students can improve their logical reasoning
skills in solving typical inquiry questions.

To validate the teaching effectiveness of inquiry questions, on the
basis of the method of the inquiry problem design method described in
the book, typical inquiry questions are designed for all knowledge
points covered in fourth-grade mathematics and used in inquiry
teaching in the mathematics classroom. For this study, we selected two
fourth-grade primary schools in Beijing, one for the experimental class
and one for the comparison class, as shown in Table 6.1. We used
typical inquiry questions in the experimental class. There were 34
students in the experimental class, including 21 boys and 13 girls. Their
ages ranged from 10–11 years; 32 students were in the contrast class,
including 17 boys and 15 girls, and their ages were between 10 and
11 years.

Table	6.1 Student situation statistics (Unit: person)

 Boys Girls Age	(10–11	years	old) Total

Experimental	class 21 13 34 34

Contrast	class 17 15 32 32

During the experiment, the Raven Standard Progressive Matrices
Test was used to test the students’ logical reasoning ability. The pretest
was conducted in January 2013, and the posttest was conducted in July
2013. The experiment lasted one semester. The earliest Raven Standard
Progressive Matrices Test scale was the nontext intelligence test
designed by the British psychologist Raven (J.C. Raven) in 1938. The
scale consists of a total of �ive modules, A–E, of 60 pictures. The
dif�iculty of the modules increase; thus, the A module is the simplest,



and the E module is the most dif�icult. Pre- and posttests were used to
test the students’ progress, and SPSS 19 was used for data analysis.

6.4.1	 Comparison	of	Reasoning	Ability	Between	the
Experimental	Class	and	Comparison	Class
The pretest and posttest data of the Raven scale are shown in Table 6.2.

Table	6.2 Pretest and posttest Raven scores

  Mean
value

Standard
deviation

Standard
error

Minimum
value

Maximum

Pretest	Raven
scores

Comparison
class

40.05 7.93 1.82 23 53

Experimental
class

40.85 6.54 1.12 31 55

Posttest
Raven	scores

Comparison
class

42.84 6.64 1.52 24 52

Experimental
class

48.24 5.03 0.86 36 58

As shown in Table 6.2, the means of the Raven scores in the pretest,
experimental and control classes are very close (the difference is only
0.8), whereas mean for the experimental group in the posttest phase is
5.4 higher than that of the comparison class.

The typical inquiry question in the teaching process was used as the
independent variable, and factor analysis of single variance was used to
compare the pretest and posttest Raven scores in the experimental
class and the comparative class. The results are shown in Table 6.3.

Table	6.3 Variance analysis

 Quadratic	sum df Mean	square F Signi�icance

Pretest	Raven	scores 7.807 1 7.807 0.16 0.69

Posttest	Raven	scores 354.526 1 354.526 11.09 0.00

Table 6.3 shows that in the pretest stage, F = 0.156, the signi�icance
level is p = 0.69 > 0.05, and there is no signi�icant difference between
the experimental class and the comparison class. In the posttest phase,



F = 11.09, the signi�icance level is p = 0.00 < 0.05, and the Raven results
of the experimental class and comparison class were signi�icantly
different. These �indings indicate that the use of typical inquiry
questions effectively improves the inference ability of experimental
students.

6.4.2	 Comparative	Analysis	of	Mathematical	Reasoning
Ability	in	the	Experimental	Class
Considering that age has an effect on grades, the score in the sample
was compared with the norm for age to exclude the impact of aging.
Consequently, the score could be categorized into eight levels, namely,
the Raven grade. The pretest and posttest Raven scores and Raven
grades of the experimental class are shown in Table 6.4.

Table	6.4 Experimental class Raven score and Raven grade pretest and posttest means

 Mean
value

N Standard
deviation

Standard	error	of	mean
value

Pretest	Raven	scores
Posttest	Raven
scores

40.85 34 6.54 1.12

48.24 34 5.03 0.86

Pretest	Raven	scores
Posttest	Raven
scores

4.29 34 1.19 0.21

5.41 34 1.26 0.22

Paired samples t tests were performed on the pretest and posttest
data of the experimental class, as shown in Table 6.5.

Table	6.5 T tests of paired samples in the experimental class

 Paired	difference t df Sig
(Bilateral)Mean

value
Standard
deviation

Standard	error	of
mean	value

Pretest	Raven	scores—
Posttest	Raven	scores

−7.39 4.78 0.82 −9.01 33 0.00

Pretest	Raven	scores—
Posttest	Raven	scores

−1.12 2.20 0.21 −5.43 33 0.00

Pretest	A	module—
Posttest	A	module

−0.38 0.74 0.13 −3.02 33 0.01



 Paired	difference t df Sig
(Bilateral)Mean

value
Standard
deviation

Standard	error	of
mean	value

Pretest	B	module—
Posttest	B	module

−0.71 1.51 0.26 −2.73 33 0.01

Pretest	C	module—
Posttest	C	module

−1.32 1.61 0.28 −4.80 33 0.00

Pretest	D	module—
Posttest	D	module

−1.74 2.09 0.36 −4.83 33 0.00

Pretest	E	module—
Posttest	E	module

−3.24 2.16 0.37 −8.73 33 0.00

The data in Tables 6.4 and 6.5 reveal that the experimental class
reasoning ability paired t test sample number was 34, the average
pretest Raven score was 40.85, the average posttest Raven score was
48.24, and the average Raven score increased by 7.39 from pretest to
posttest. The signi�icance level p = 0.00 < 0.001 reached a very
signi�icant level. In other words, when typical inquiry questions were
used to teach, students signi�icantly improved their mathematical
reasoning ability. The standard deviation of the posttest data was less
than the standard deviation of the pretest data; that is, the degree of
dispersion decreased, and the average value increased, indicating that
the scores of the low-scoring students in the pretest improved. In other
words, using typical inquiry questions improves the learning
performance of students with poor mathematical reasoning ability.

An analysis of the Raven grade pretest and posttest data revealed
that the average pretest Raven grade was 4.29, and the average posttest
Raven grade was 5.41. In other words, the average levels of the pretest
and posttest middle school students’ Raven grades were in the upper
middle range. The average posttest level was 1.12 higher than the
average pretest level, which is a difference higher than one level, and
the signi�icance level p = 0.00 < 0.001 indicated extreme signi�icance. In
other words, the use of typical inquiry questions before and after
teaching signi�icantly improved students’ mathematical reasoning
ability.

Further analysis of the pretest and posttest data of the �ive modules
of A-E in the Raven scale revealed that the promotion of the three
modules of C, D, and E was more signi�icant, with a signi�icance level of



p = 0.00 < 0.001, indicating a very signi�icant level. Part E, the most
dif�icult part, showed the most signi�icant improvement. These �indings
indicate that the use of typical inquiry questions in primary school
mathematics classroom teaching plays an important role in improving
students’ advanced mathematical reasoning ability.

6.5	 Summary
Mathematics teaching advocates inquiry learning, and the inquiry
problem is the key to effectively implementing inquiry learning. How to
design a typical inquiry problem is a common concern for the majority
of primary and secondary school mathematics teachers and is an
important part of inquiry teaching. Teachers carry out effective
interactions in the process of student inquiry and conduct targeted
guidance according to the characteristics of the inquiry problem. In the
process of inquiry teaching, the design of typical inquiry questions
needs to fully promote students’ enthusiasm, relate to their real lives,
and correspond to students’ physical and mental development and the
characteristics of the mathematics curriculum.

This chapter discusses research on inquiry problem design from the
aspects of the inquiry teaching mode and strategy, the type and design
of inquiry questions, and mathematical inquiry learning supported by
information technology. The basis and principles of primary school
mathematics inquiry question design are proposed as follows: (1) The
problem statement is in line with the cognitive level of primary school
students. (2) The problem situation is related to students’ real lives. (3)
Knowledge is implied in the process of solving problems. (4) Students
experience the process of knowledge generation. (5) The model idea is
integrated into the problem design process. This chapter is based on
these design principles, given the preclass exploration question design
process of the “mode” and “cylindrical side area.” Accordingly, the
typical inquiry questions are designed for all knowledge points of
fourth-grade mathematics, an experimental teaching method is
explored in the mathematics classroom, and the experimental results
are analyzed.

The reasonable use of inquiry questions in the elementary school
mathematics classroom arouses students’ interest in mathematics



learning, attaches importance to students’ experience in exploring
mathematics, promotes and improves students’ mathematical thinking
ability, encourages students’ creative thinking ability, proactively
cultivates good mathematical study habits, improves their ability to use
mathematical knowledge to solve practical problems, provides a basis
and reference for the application of technology in mathematics inquiry
teaching, and provides a basis for conducting “one-on-one” cognitive
diagnosis.
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Cognitive diagnosis is the application of cognitive analysis in teaching.
On the basis of the problem-solving cognitive process analysis and
cognitive simulation discussed in Chaps. 4 and 5, we propose the
following to deepen the understanding cognitive operations and
cognitive components in the process of problem solving and to explore
the cognitive process of “one-on-one” cognitive diagnosis on the basis
of a cognitive model. Speci�ically, more detailed and more targeted
guidance and advice for educational practice and individual
development can be provided to students, especially those with
learning dif�iculties.

Many countries stress the importance of improving student
achievement. In January 2001, the Bush Administration passed the No
Child Left Behind Act (NCLB) (U. S Department of Education, 2001) in
the United States. This act listed “improving the academic performance
of underprivileged students” as the �irst area of seven priorities. It
proposed that public education evaluation should provide descriptive
and diagnostic reports to each student, parent, and teacher. To better
meet the speci�ic requirements of the bill, the Obama administration
later approved the Elementary and Secondary Education Act (ESEA)
(U.S Department of Education, 1965) in September 2011 to better focus
on improving students’ learning and teaching quality.
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Compulsory education in China also greatly emphasizes the
development of all students and highlights the purpose of learning
evaluations. For example, The	Compulsory	Education	Mathematics
Curriculum	Standards (2022 edition) (Ministry of Education of the
People’s Republic of China, 2022) highlights how the mathematics
curriculum should provide every student with good math education
and allow different people to distinguish mathematical development.
The main purpose of a learning evaluation is to fully understand the
process and results of student learning, encourage student learning and
improve teachers’ instructional methods. The past form of study
evaluation, which focused on the results and ignored the learning
process, has been changed.

An essential element of education is evaluation. Learning
evaluations focus on the learning process, and problem solving is an
important part of learning. The theories and methods of cognitive
diagnosis (CD) are inseparable components when measuring and
evaluating the cognitive process of students’ problem solving. Cognitive
diagnosis emphasizes the learning process and identi�ies de�iciencies in
the process. The diagnostic results are provided to students, parents,
and teachers to help students improve their learning and to improve
teachers’ teaching quality.

7.1	 Cognitive	Diagnosis	of	Primary	School
Mathematical	Problems
Solving mathematical problems has always been the focus of research
in psychology and mathematics education in China and abroad (Chen et
al., 2004). Montague studied students in Grade 6 with learning
dif�iculties and the role of cognitive and metacognitive strategies and
subsequently proposed cognitive and metacognitive teaching models to
solve applied problems (Montague, 1992).In this model, Montague
broke down the cognitive process of solving problems into seven
stages: reading, analyzing, visualizing, presuming, estimating,
calculating, and checking. Jitendra applied schema teaching to study
children with poor learning performance and conducted systematic
research. She used pictorial instruction to develop effective
interventions for students with poor performance on application



problems in math. With the exception of a few individual cases, most
students’ problem-solving strategies improved.

Tatsuoka employed diagnostic tests to compare the math scores of
eighth graders from 20 countries and analyzed the data via the Third
International Math and Science Study-Revised. Tu et al. (2010) applied
cognitive diagnostics to study the process by which primary school
children solve mathematical problems and explored the characteristics
of children’s cognitive development with respect to their mathematical
problem-solving ability and shortcomings to promote children’s
cognitive development and knowledge acquisition. These studies
provide an important theoretical basis for studying the cognitive
diagnosis of primary school mathematics problem solving.

7.1.1	 Cognitive	Diagnosis	Analysis	of	Students	Answering
the	Application	Questions
Many scholars have analyzed errors in problem solving with respect to
mathematical problem statements. Hayes et al. reported that if students
were able to correctly judge the overall sentence structure of math
application problems, then they could correctly identify the necessary
information amid redundancy or irrelevance in a long text description.
However, students had dif�iculty identifying necessary information if
they misjudged the type of problem, and students could be easily led to
make mistakes in problem solving. Meyer’s study revealed that, overall,
students are more likely to correctly conclude that relevant information
is necessary (accuracy rate of 89%) but have dif�iculty understanding
that irrelevant information is unnecessary (accuracy rate of 54%)
(Mayer, 1987). He and Fu (1995) analyzed the question representation
and problem-solving results of 34 college students and reported the
relationship between the problem statement and problem-solving
errors. Anand and Ross (1987) reported that the major reason for
students’ errors in solving application problems was their
misinterpretation of the problem statement rather than any calculating
dif�iculties. Shi Tieru collected and analyzed the data collected from
oral problem-solving reports and found that a crucial reason for
incorrect problem solving is the inability to correctly identify the
model, which often caused students to blindly try to solve the problem
and repetitively search for solutions (Shi, 1985). Kotovsky et al. (1985)



studied the different characteristics of problem isomorphs and
systematically analyzed the reasons for the different dif�iculty levels of
the problems. The experimental results showed that the problem
structure cannot explain the dif�iculty of the problem from the
perspective of the problem structure. The difference in the ways in
which problems are imagined, constructed or considered is the key to
determining their dif�iculty.

The studies above analyzed the relationship between problem
presentation and problem-solving errors and identi�ied the causes of
problem-solving errors, but they did not provide pertinent measures to
help students correct mistakes.

7.1.2	 Mathematical	Cognitive	Diagnosis	Through	Cognitive
Neuroscience
Cognitive neuroscience employs brain imaging and other methods to
explore the core of mathematical cognition and to make new
interpretations of the physiological processes and environments that
address the barriers of mathematical problems. According to Rotzer et
al., brain regions associated with processing the size of numbers in
children with impaired computing ability present structural
abnormalities in the brain. De Smedt et al. (2009) reported that human
chromosome 22q11 deletion syndrome was associated with
maladjustment. Kaufmann et al. (2009) reported that brain regions
associated with processing the number sizes in children whose brains
had impaired computing ability presented structural abnormalities.

With increasing research on mathematical cognition in cognitive
neuroscience, cognitive neuroscience and math education are being
effectively combined. Cognitive neuroscience methods are used to
provide a reliable basis for the assessment of mathematical cognitive
impairment and effective interventions for diagnosing the reasons for
mathematical cognitive impairment, thereby helping students with
cognitive impairment improve their math learning performance.

Nearly all domestic researchers use the latest or several recent
math scores of students as indices to measure students’ mathematical
ability. However, examinations are usually given periodically; they
generally correspond to the knowledge students learned during a
certain period of time, which is related to the degree of dif�iculty of the



questions. However, it is unclear whether mathematics scores can
re�lect students’ authentic mathematical ability. The diagnosis of
mathematical impairment should be established on the basis of a
comprehensive and accurate assessment of students’ mathematical
ability.

Therefore, when diagnosing mathematical impairment, the
student’s cognitive process of problem solving should be focused on
rather than just the result of problem solving. Through the analysis of
the problem-solving cognitive process, we can objectively identify
problem-solving dif�iculties and perform targeted diagnosis and
intervention.

7.2	 The	Purpose	and	Characteristics	of	“One-
on-One”	Cognitive	Diagnosis
Most traditional tests are paper and pencil tests. Traditional tests often
adopt the form of “one test for all” or “one question for all,” and
researchers’ attention often focuses on the test results. As tests
measure only test scores or ability scores, the information is simple.
With a single score, teachers and researchers cannot identify the
knowledge that students have mastered and that which they have not,
and researchers cannot analyze the reasons for students’ problem-
solving errors. For students with the same test score, it is impossible to
determine the differences in knowledge mastery and cognitive
processing that may exist between them. The exam is not designed to
evaluate students’ abilities but rather to identify the problem more
accurately.

The purpose of cognitive diagnosis is to diagnose students’
advantages and disadvantages, especially their shortcomings and
dif�iculties in solving mathematical problems, and 25 provides a
reliable basis for teaching interventions.

Although the results of cognitive diagnosis provide a reliable basis
for teaching interventions, they do not provide an implementation plan
for how to use these interventions in student learning and teaching.
However, dif�iculties are often encountered when diagnostic �indings
are used in teaching to motivate students to learn and improve their
learning performance. Roussos et al. (2007) researched the validity of



cognitive diagnosis through investigations and interviews and reported
that teachers and students had a dif�icult time integrating diagnostic
results into learning and teaching. Polia believed that diagnosis is a
more detailed assessment of a student’s learning. To improve students’
academic performance, teachers need to assess students’ strengths and
weaknesses in detail (Tu et al., 2007). According to Vygotsky’s “recent
development zone” theory, different children (or the same children) can
have different areas of recent development zones in different cognitive
domains and bene�it from teaching in different contexts. Geert P. V.
(1998) advocates that diagnosis and teaching should be based on
children’s current and future levels of development. DiBello and Stout
(2007) emphasizes that the purpose of an exam is to provide students
with the information they need to understand the problem and to
provide information to be used directly for instructional and student
learning. Lane S. (2004), Leighton (2004) reported that few large-scale
tests generate diagnostic information on a candidate’s thought process.
Few large-scale tests have clear inference goals. Therefore, the
diagnosis of different levels of student intervention is necessary.

The	Compulsory	Education	Mathematics	Curriculum	Standards (2011
edition) emphasizes that the main purpose of evaluation is to fully
understand the process and results of student learning and to
encourage students to learn and teachers to improve teaching.
Moreover, the 2022 edition underscores	the	importance	of	guiding
students	to	discover	and	articulate	problems	within	real-world	scenarios.
Evaluations should give attention to the results of student learning and
the learning process(Ministry of Education of the People’s Republic of
China, 2022). “One-on-one” cognitive diagnosis is a dynamic
assessment method that combines teaching and diagnosis to meet the
different levels of children’s current and future development. It is
characterized by an emphasis on a “one-on-one” orientation, a balance
between the assessment of learning outcomes and the analysis of the
learning process, and a combination of identi�ication and classi�ication,
diagnosis and prescription. The aim is to assess each student’s
strengths and weaknesses in an in-depth manner and to provide timely
and appropriate feedback on the student’s problem-solving
performance to guide them through the process, help them achieve
their goals and facilitate learning.



The	Compulsory	Education	Mathematics	Curriculum	Standards (2022
edition) also emphasizes that teaching activities should strive to help
all students to meet the basic requirements of the curriculum objectives
while focusing on the individual differences of students and promoting
the development of each student on an individual basis. For students
with learning dif�iculties, teachers should give timely attention and
assistance to encourage them to take the initiative to participate in
mathematical learning activities, try to solve the problem on their own,
and express their views. Teachers must promptly acknowledge
students’ progress, patiently guide them to analyze the causes of their
dif�iculties or mistakes, and encourage them to correct their mistakes
to increase their interest and con�idence in learning mathematics
(Ministry of Education of the People’s Republic of China, 2022). “One-
on-one” cognitive diagnosis focuses extra attention to the learning
process of students with learning dif�iculties and records and analyzes
the cognitive changes of students during different stages of problem
solving.

7.3	 “One-on-One”	Diagnosis	Based	on	the
Cognitive	Model
7.3.1	 Diagnostic	Process
To study children’s cognitive development, Piaget adopted multiple
research methods, such as observation and clinical methods. Campbell
and Carlson stated that using these methods to study cognitive
diagnosis has great signi�icance (Campbell & Carlson, 1995).

Researchers (Kane, 1992; Messick, 1989 have argued that the
cognitive model of learning is an important component of describing
test structures, designing test questions, and generating diagnostic
inferences on the basis of test scores. In the process of “one-on-one”
cognitive diagnosis, we design typical problems on the target
knowledge points, analyze the correct problem-solving cognitive
process and students’ actual cognitive process in problem solving on
the basis of CMMPS, compare the similarities and differences between
the two processes, and use the results to determine students’ problems.



The cognitive model-based “one-on-one” cognitive diagnosis is shown
in Fig. 7.1.

Fig.	7.1 Model-based “one-on-one” cognitive diagnosis

(1)
Cognitive process analysis of problem solving via CMMPS 

Yang et al. suggested that cognitive diagnosis tests in education or
psychology should measure at least three aspects of cognitive
characteristics: (1) The more important knowledge or skills in a
particular cognitive �ield, which are the foundation for higher level
ability construction; (2) the knowledge structure, which indicates not
only the quantity of knowledge and skills but also how people organize
these types of knowledge and skills; and (3) the cognitive process Yang
& Embretson, (2007). The “one-on-one” cognitive diagnosis fully
considers these three aspects of cognitive characteristics: the analysis
of the primary school mathematics problem-solving cognitive process
is the foundation, the mastery of the knowledge and skills needed to
solve elementary school mathematics problems is the key, and the
knowledge of elementary school mathematics problem-solving
knowledge or skills is the guarantee. These bases of the CMMPS
analysis of typical problems can help researchers obtain the correct
problem-solving cognitive process.
(2)

Data collection via oral reports 
Leighton & Gierl, (2007) applied the oral reporting method to

collect data to use as the basis of cognitive diagnosis. In “one-on-one”
cognitive diagnosis research, oral reports are used to collect data from



students during the process of problem solving. Then, on the basis of
the CMMPS analysis of the oral report data, the actual problem-solving
cognitive process is obtained.
(3)

Formulation of a diagnostic scheme 
By comparing and analyzing the results of (1) and (2), we identi�ied

the cognitive process that led to the incorrect solution of the problem
and formulated a diagnostic scheme accordingly.
(4)

Intervention with students 
The intervention process draws on the famous mathematician and

mathematics educator Polya’s idea of the four stages of mathematical
problem solving.

First, understand the problem. It is important to understand the
problem statement and clearly know what the problem is asking.

Second, arrange a plan. It is important to understand how each item
is related, including the relationship between the unknown variables
and the collected data, to obtain ideas for problem solving and develop
a plan.

Third, implement the plan. The plan created in the second step is
implemented.

Fourth, review, examine, and discuss the answers.
(5)

Impact assessment 
Considering differences in students’ problem-solving ability, we

select appropriate questions from the question database to evaluate the
effect of cognitive diagnosis. If the effect is not satisfactory, we need to
design another typical problem to conduct cognitive diagnosis and
intervention for students.

7.3.2	 Role	of	the	Cognitive	Model
Through surveying teachers, we found that primary mathematics
teachers’ diagnosis of the causes of students’ problem-solving errors
depends on their personal experience and intuition. These diagnoses



lack objectivity and scienti�ic support. The cognitive model can assist
with cognitive diagnosis.
(1)

Provide a reliable basis for cognitive diagnosis 
Given that medical diagnosis requires standard data, the diagnosis

in educational contexts also requires such data. The problem-solving
cognitive model CMMPS can analyze the cognitive process of problem
solving and provide a reference for cognitive diagnosis.
(2)

Clearly identify the cause of the problem-solving errors 
By analyzing the problem-solving process through CMMPS, we

aimed to capture the cognitive process of correctly answering questions
and used the process as a stepping stone. To obtain the cognitive
process of making problem-solving errors, we identi�ied the internal
process that led to the errors, clearly identi�ied the causes of the errors,
and then provided target intervention.

7.4	 Improvement	of	Mathematics	Teaching
7.4.1	 Paying	Attention	to	Individual	Differences	in
Students’	Abilities
“One-on-one” cognitive diagnosis can identify the de�iciencies of the
ability to solve mathematical problems for each student and can use
students’ incorrect performance in the process of solving problems to
identify problems of different dif�iculty levels for students with
different ability levels. When students encounter dif�iculties in the
problem-solving process, teachers ask leading questions, gradually
guide the students to provide correct solutions to the problem, respond
to students’ various requests and promote the sustainable development
of students’ mathematical abilities.

7.4.2	 Early	Identi�ication	of	and	Intervention	in
Mathematical	Cognitive	Impairment
Through “one-on-one” cognitive diagnosis, it is proposed to identify
learning dif�iculties in advance and reduce or eliminate them through



corresponding remedial measures. By analyzing students with learning
dif�iculties, we aimed to identify the cognitive barriers that lead to
learning dif�iculties for different types of questions and various grades
and analyze the causes of cognitive impairment. As the famous saying
goes, “Rome wasn’t built in a day”; the cognitive obstacles of students in
higher grades may gradually accumulate from learning in the lower
grades. Therefore, cognitive impairment should be prevented and
interventions should be implemented in the lower grades, thus
generating a positive impact on learning. For example, consider a
student who has a problem with two-digit multiplication. A careful
analysis of the student’s calculation process could enable the teacher to
know that the student has mastered the simple rules of multiplication
but makes mistakes in “carrying the addition,” which is to say, the
student has formed a certain cognitive model in his or her brain. To
solve this problem, when teachers teach �irst graders the calculation
method for the �irst time, they should guide students to pay extra
attention to carrying the addition, apply an instructional method that is
suitable for students’ cognitive characteristics and be patient when
providing explanations. By doing so, teachers can effectively prevent
potential learning problems that may arise in future learning with
minimal effort.

7.4.3	 Speci�ic	Guidance	for	Students	with	Cognitive
Impairment	in	Mathematics	Learning
An analysis of the cognitive impairment of students with learning
dif�iculties revealed that similar or identical cognitive impairments
exist within the same grade. To conduct an in-depth analysis of the
typical characteristics of cognitive impairment, we identi�ied the
reasons for the latter and formulated effective interventions to provide
targeted guidance for students with typical cognitive impairment. To
change the current situation of “one set of instructions for all students,”
targeted guidance, on the one hand, can save students’ time and
increase their interest in learning mathematics, and, on the other hand,
can target speci�ic mathematical problems with in-depth explanations
and thus apply methods depending on the situation. It is a good choice
to conduct “one-on-one” cognitive diagnosis in schools with good
teaching conditions.



7.4.4	 Making	Good	Use	of	Students’	Zone	of	Proximal
Development	to	Promote	Cognitive	Development
Teachers can learn from the diagnosis of students’ cognitive level, use
education goals and objectives as a reference, formulate a series of
intervention strategies, present them to students in the appropriate
sequences, and consciously participate and intervene in the learning
process. In this process, students acquire knowledge, skills and
problem-solving strategies, internalize them into their original
cognitive structure, form new cognitive structures, and further promote
their cognitive development. Feuerstein noted that the experience of
intermediary learning accompanies the process of growing up. The
quality of intermediary learning directly affects the cognitive
development of individuals.

7.5	 Summary
This chapter discusses the application of problem-solving cognitive
process analysis in teaching, i.e., “one-on-one” cognitive diagnosis and
intervention. This chapter �irst de�ines the concept and theoretical
basis of cognitive diagnosis. It then analyzes the cognitive diagnosis
that was conducted on teaching primary school math problems and
proposes “one-on-one cognitive diagnosis.” This chapter explains the
purpose and characteristics of this diagnostic method, emphasizes the
pertinence and timeliness of intervention, proposes a method and
process of diagnosis, and �inally discusses the implications of cognitive
diagnosis for mathematics education.

Studies abroad have been actively examining cognitive diagnosis.
Many theoretical and applied studies have been carried out and have
achieved satisfactory results. In China, research on cognitive diagnosis
is in contrast relatively limited, and the majority of such studies are
introductory and theoretical, which can hardly be used to guide
practical teaching. Even fewer empirical studies examine the cognitive
diagnosis of mathematical problems, especially in primary schools,
which should be further studied.
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8.1	 Experimental	Design
The “one-on-one” cognitive diagnosis and intervention experiments
include the following sections.

(一) Preknowledge test

This test is used to judge students’ mastery of the prerequisite
knowledge required for learning new knowledge points. Preknowledge
testing also tests some of the new knowledge points. An additional test
is given to students who answer the questions correctly to determine
whether the student has already mastered the new knowledge to
ensure that learning occurred in the experimental process.

(二) Typical problem design

Typical problems are designed to test representative knowledge
points according to the daily lives of students. These problems include
preclass inquiry and after-class inquiry.

(三) Preclass inquiry

Preclass inquiry questions are assigned to students to be completed
independently one day before the new class is taught. The oral

https://doi.org/10.1007/978-981-95-1405-2_8
mailto:xuefengwei99@163.com


reporting method is employed to record students’ problem-solving
process. Data received from oral reports are translated and used for
analyzing the cognitive process of students’ problem solving and
mistakes made in the process and for formulating an appropriate
intervention plan.

(四) After-class study

After class, all planned problems are taught, and students’ mastery
of new knowledge is examined through inquiry. The oral reporting
method is used to record students’ process of analyzing and solving
problems.

(五) “One-on-one” cognitive diagnosis intervention

Some students who incorrectly solve problems are selected for a
“one-on-one” diagnosis and intervention. For students whose cognitive
diagnosis intervention is unsuccessful, a second cognitive diagnosis
intervention is implemented.

The “one-on-one” cognitive diagnosis and intervention process is
shown in Fig. 8.1.

Fig.	8.1 “One-on-one” cognitive test procedure

8.2	 Empirical	Study	of	“One-on-One”	Cognitive
Diagnosis	of	Declarative	Knowledge
8.2.1	 Purpose



The concept of “mode” is a knowledge point in the sixth unit,
“statistics”, of the math textbook for �ifth graders (Course Textbook
Institute, 2006). It is a typical example of declarative knowledge. The
purpose of the experiment is to carry out “one-on-one” cognitive
diagnosis and intervention for students who have dif�iculties with
declarative knowledge problem solving and then analyze and compare
the changes in students’ problem-solving abilities before and after the
intervention.

8.2.2	 Methods
(一) Subjects

A total of 28 students in the �ifth grade of Yongliang Primary School
in Gaoyang County, Hebei Province, were selected as subjects. Of the
students, 10 were boys and 18 were girls, with an average age of
134 months and an age range of 129–143 months.

(二) Materials

“Mode” application questions in �ifth-grade math are examples of
typical declarative knowledge and represent a new knowledge point for
students who have mastered the required prior knowledge. The
application of “mode” is presented in the form of a “birthday” situation,
in which students are closely connected with their daily life. They are
given the role of “the classroom teacher”. Through solving the actual
problem, students are expected to summarize the method of
determining the “mode” (students do not know that they are being
asked to provide the “mode”). The researchers then diagnose any
problems that students exhibit in determining the mode.

The test materials are designed for the purpose of this study and are
as follows:
1. Preclass knowledge test

(1) China has a profound history and culture of surnames, and
each surname has a unique and rich cultural connotation.
Imagine that you want to rank the surnames in our class:

① How would you collect students’ surnames?
② Count the number of occurrences of each surname.

 
 



③ Arrange the surnames in descending character stroke
order.

(2)
Find the average and the median of the numbers listed below
and show your calculation process.

 
3.6, 2.4, 2.8, 2.9, 3.2, 2.1, 2.2

(3)
Please �ill in the blanks according to the 25 numbers given. 

1.32 1.33 1.33 1.33 1.33 1.33 1.33 1.44  

1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49  

1.50 1.51 1.51 1.52 1.52 1.53 1.54 1.55 1.55

1.32	is	(minimum)         

1.55	is	()         

1.47	is	(median)         

1.33	is	()         

2.
Pretest additional questions 
Think about the “mode” problems in everyday life and provide

reasons.
3.

Oral report training questions 
The oral report training questions are shown in Fig. 8.2.

Fig.	8.2 Oral report training questions

4.
Preclass inquiry 



Please brainstorm and come up with a good idea to help your head
teacher with the following question:

Our class is going to have a birthday celebration next year, but we
can only celebrate students who were born in a certain month. Imagine
you are the head teacher:
(1)

What factors would you consider?  
(2)

How are you going to choose the month? 
(3)

Which month should be chosen? Why?  
5.

After-class inquiry  
A shoe factory plans to promote a batch of new sports shoes, and

the factory intends to provide shoe samples of a certain size for free
trial to our students. If you are the student representative, how would
you choose the shoe size?
6.

The �irst diagnostic intervention topics
(1)

Data collection topics 
 

The visual acuity of the left eye of Grade 5, Class 1 students is as
follows:

5.0 4.9 5.3 5.2 4.7 5.2 4.8 5.1 5.3 5.2

4.8 5.0 4.5 5.1 4.9 5.1 4.7 5.0 4.8 5.1

5.0 4.8 4.9 5.1 4.5 5.1 4.6 5.1 4.7 5.1

5.0 5.1 5.1 4.9 5.0 5.1 5.2 5.1 4.6 5.0

What is the mode of this set of data?
(2)

Strategy topics 



The entire school needs to choose one place for a spring tour, and
the available options are as follows:

A. Beijing Tiananmen Square B. Baiyangdian C. Taishan Mountain
If you were the principal, how would you choose?

7.
Second diagnostic intervention topics
(1)

Data collection topics 
 

A shooting team needs to select one of two athletes to participate in
a competition. They each play 10 rounds of ammunition. The results are
as follows:

A: 9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5

B: 10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9

① What is the average and mode of each athlete’s scores?
② Who do you think should participate in the competition? Why?
(2)

Strategy topics 
The school plans to hold a New Year’s party. Each class can perform

only one show, but our class has three candidate programs:
① The solo song “Where is spring” by Xiao Ming
② The solo dance “We are the �lower buds” by Xiao Hong
③ A poetry recitation of “Facing the Ocean, Spring and Blossom” by
Xiao Lan

For the sake of fairness, if you were the classroom teacher, what
would you do?

(三) Procedures

1.
Design an experimental program 



According to the purpose of the experiment, the experimental
subjects, materials and instructions are �inalized, the overall
experimental process is determined, and the experimental results are
obtained.
2.

Experimental equipment 
A single recording pen, a Sony video camera, and a tripod were used

to record the data generated from the oral reports.
3.

Pretest 
After the prerequisite knowledge required to solve the “mode”

problem was analyzed, suitable questions were designed and applied to
test students’ understanding of the prerequisite knowledge. Students
who correctly answered questions in the pretest were asked to answer
the extra set of questions to determine whether they had mastered the
“mode” concept.
4.

Verbal reports and records 
The verbal reporting method was applied to collect the data. In

accordance with the think aloud protocol developed by Erickson and
Simon, the participants were trained to verbally convey their thinking
process through the problem-solving process. Before starting the
question, the researcher �irst brie�ly explained the guidelines and then
used an example to demonstrate how to thoroughly re�lect the thinking
process during the problem-solving process. After the participants
con�irmed their understanding, they started to answer the questions,
and a video camera was used for recording the process.
5.

Data translation and coding 
The data collection included two parts: a verbal report and video

recording of the problem-solving process. For the verbal report data,
the translator �irst dictated the audio �iles into the texts and then
combined the students’ problem-solving assignments to conduct coding



analysis to diagnose learning dif�iculties. The coding work was
undertaken by two professionals, and disagreements during the coding
process were resolved through discussions.
6.

Preparation of intervention programs 
According to the collected verbal reports and problem-solving

videos, we analyzed the students’ thinking and obstacles in the process
of solving problems and formulated speci�ic intervention plans, such as
tips to help students solve problems and obtain better performance.
7.

Interview 
An interview was conducted with the teachers in the course of the

students’ problem-solving process to understand the typical
performance of the students and to re�ine the intervention programs.
8.

Intervention 
An intervention program was used to address students’ dif�iculties

in the problem-solving process. The participants were given suf�icient
time to work on the questions, and their responses were observed.
9.

Effect evaluation 
The evaluation of students’ knowledge mastery was conducted

through a questionable design.
(IV) Experimental duration

The dates of the experiment were December 12–15, 2011.

8.2.3	 Results	Analysis
Throughout the experiment, 28 students in 5th grade participated in
the preclass inquiry question verbal report experiment. All the students
participated in the after-class inquiry question verbal report
experiment, 18 students participated in the �irst cognitive diagnosis
intervention, and 13 students participated in a second cognitive



diagnosis intervention. Over the course of two cognitive diagnosis
interventions, each student was provided two categories of questions:
data statistics and strategic solutions. A total of 118 verbal reports
were obtained during the experiments.

(一) “One-on-one” cognitive diagnosis of the overall effect analysis

Table 8.1 shows the statistics of the pretest results for the “model”

Table	8.1 “Mode” prerequisite knowledge test results

 1	(1) 1(2) 1(3) 2(1) 2(2) 3 4

The	correct	number	of	people 8 23 20 25 26 9 2

Correct	rate	(%) 28.6 82.1 71.4 89.3 92.9 32.1 7.1

In the table, 1 (1) represents the �irst question in the pretest, 1 (2)
represents the second question in the pretest, and so on. The statistical
results revealed that, for the �irst question, 1 (1), which examined how
the students collected data, 8 students adopted the method of writing
the last name on paper �irst and then calculating the statistics, and the
strategy was clear. However, the other students used direct counting. 1
(2) shows the results of the surname statistics; �ive students missed a
few surnames and made a statistical mistake. 1 (3) tested the surname
arrangement; 8 students incorrectly arranged the surnames and
therefore made some mistakes. The analysis revealed that the choice of
statistical strategy was more dif�icult than the speci�ic statistical
process. For question 2, 3 students made mistakes on question 2 (1)
“average” and 2 students made mistakes on question 2 (2) “the median
question”. The median was easier to compute than the average was
because the latter involved summation and division calculations, and
both calculation processes were prone to errors. Question 3 examined
students’ understanding of the learned concepts; the accuracy rate was
lower than one-third. Nine students �illed in “the number appeared
most” (not knowing that “the number appeared most” is the “mode”).
Question 4 is an additional test that was given to the students who
answered the previous questions correctly. It examines whether
students understand the concept of “mode”. Only two students provide
situational examples; for example, the �irst digit of a phone number in



China is a “mode”, which is 1, and the number of students who
answered correctly is 7.1%. The above results indicate that the
prerequisite knowledge required to learn the mode was mastered by
the majority of the students, whereas the concept of the mode was new
knowledge for 92.9% of the students.

A total of 28 participants participated in the preclass exploration
phase. Among them, MaYY, DuanYM, and WangYF answered the
questions correctly, accounting for 10.7% of all participants. WangWY
and DuanJN understood the meaning of the questions but lacked a
comparative strategy. Speci�ically, they did not know how to compare
the numbers of people who had a birthday in each month and
accounted for 7.2% of the participants. MaYP, ZhangN, DuanYC,
DuanZX, DuanHJ and CuiW did not understand the meaning of the
“classroom teacher”, accounting for 21.4% of the participants. LiuZ,
LiuML, DuanQ, XingQL, ChengYN, WangC, and 14 other students
obtained no solution to the problem, accounting for approximately 50%
of the participants. Verbal report analysis revealed that most students
did not solve the problem with only one strategy. In the course of
problem solving, the strategy of solving the problem changed.

An analysis of the verbal reports of the preclass experiments
revealed that the main dif�iculty exhibited by the students was a lack of
solutions to the questions (50%), followed by a failure to understand
the questions (21.4%). Students who understood the problem and
knew the problem-solving strategy but still made mistakes constitute
the third category (17.9%). Students who do not understand the
problem certainly lack problem-solving strategies. During the lecture or
teaching process, to help students understand the instructions,
teachers should draw on daily life situations, emphasizing the
“birthday” situation and the role of the “classroom teacher”. To address
the statistical errors, teachers should invite the students who make
mistakes to count “birthdays” in class. After clarifying the instructions,
the research proceeded to the inquiry stage.

A total of 27 students participated in the after-class inquiry phase,
among whom 17 students (LiuZ, DuanYD, DuanZX, Du-anJN, ZhangN,
WangWY, DuanXY, WangSY, XingQL, DuanQ, Du-anXT, LiuJ, MaJW,
ChengY, DuanYM, MaYY) correctly answered the question, accounting
for 63% of the sample; WangC, LiuML, MaHR, DuanXN made statistical



errors, accounting for 14.8% of the sample; DuanYC, ChengYN did not
present a clear problem-solving strategy, accounting for 7.4% of the
sample; and MaYP, DuanHJ, WangYF, and LiuYR did not understand the
meaning of the question, accounting for 14.8% of the sample. Table 8.2
shows the results of the survey and after-school research.

Table	8.2 “Mode” knowledge question, preclass and after-school survey results

 Correctly
answered	the
question

Did	not
understand	the
problem

Problem	solving
strategy	was	not
clear

Statistical
error

Preclass	study
(%)

10.7 21.4 50 17.9

After-school
exploration
(%)

63 14.8 7.4 14.8

As shown in Table 8.2, after the classroom intervention, the
students experienced different degrees of improvement in problem-
solving comprehension, problem-solving strategies and statistics,
which shows that learning had taken place and that the intervention
was effective.

For students who did not correctly answer the questions, “one-on-
one” cognitive diagnosis and intervention were applied.

(二) Changes in the cognitive processes before and after the
diagnosis of students’ problem-solving dif�iculties

To compare the changes in students’ problem-solving performance
before and after the intervention, WangC is used as an example. We
analyzed the changes in this student’s cognitive process through the
use of verbal report data.
1.

Preclass inquiry stage 
The date of the preclass inquiry was December 12, 2011.
The CMMPS-based “mode” preclass inquiry problem-solving

cognitive process analysis is shown in Table 8.3.

Table	8.3 “Mode” preclass inquiry question problem-solving cognitive process analysis



 Visual Production Retrieval Goal Imaginal Manual

1 Text
encoding

     

2   Relevant
semantic
knowledge
in DM

   

3    Which
month
should be
chosen?

Which
month
should be
chosen?

 

4  Choose a month to
celebrate students’
birthdays, assume the class
teacher role → select the
month with the most
birthdays (in line with
common sense)

    

5    Select the
month with
the most
“birthdays”
(target
conversion)

  

6      Select the
month that
has the most
number of
students with
birthdays,
and then
choose that
month

7     Select the
month
that has
the
highest
number
of
students
with
birthdays

 



 Visual Production Retrieval Goal Imaginal Manual

8    Statistics on
the number
of student
birthdays in
a month

  

9   Statistics,
counting

   

10     Compare
the
number
of
birthdays
each
month

 

11   The
comparison
of size of
the number

   

12    Choose the
month with
the largest
number of
“birthdays”

  

13      The “month”
with the
largest
number of
birthdays

14      Finish

Each column represents the content of a module at different times
in the problem-solving process. The leftmost column of numbers
indicates the row number, and each row represents a cognitive logic
step, which is not the same as the actual problem-solving step. The last
row indicates the end of the process, that is, the completion of the
problem-solving process.

The results of the “mode” verbal inquiry analysis of WangC’s pretest
are shown in Table 8.4. The left side of the table shows the verbal
report data recorded during the experiment. The right side shows the
cognitive process for oral report data and CMMPS analysis. The
diagnosis is based on a comparison between the cognitive process



analysis and the cognitive process (as shown in Table 8.3) of the “mode”
problem solving based on CMMPS.

Table	8.4 Oral report analysis of WangC’s preclass results for the “mode” question

Oral	English	report Cognitive	process	analysis

[Reading]	Our	class	will	hold	a	birthday	celebration
next	year,	but	only	students	whose	birthdays	are	in
a	certain	month	will	be	celebrated.	If	you	are	the
classroom	teacher,	which	month	would	you	choose?
Why?
[Analysis]	I	will	celebrate	a	birthday	for	MaJW
[Q:	Why?]
Because	MaJW	is	my	best	friend
[Q:	If	you	choose	MaJW,	which	month	would	you
choose?]
March
[So,	you	think	that	March	is	a	suitable	selection?]
Suitable
[Q:	This	birthday	celebration	takes	into	account	all
your	classmates.	Why	March?	Is	it	suitable?]
Because	March	covers	the	most	birthdays
[Q:	How	do	you	know	it	is	March?]
Other	people	told	me
[Q:	Who	are	“other	people”?]
WangYF
[Q:	What	choice	do	you	think	is	more	appropriate?
The	month	of	your	best	friend’s	birthday	or	the
month	that	accounts	for	the	birthdays	of	the	most
students?]
The	most
[Q:	Why?]
Because	I	do	not	know	which	month	is	my	friend’s
(which	month	their	birthday	is	in)
[Q:	Which	month	would	you	choose	as	your
decision?]
August
[Q:	Why?]
Because	there	are	many	birthdays	in	August
[Q:	How	are	you	going	to	choose	the	month?]

Input text information by reading the
title, perform visual coding to form a
propositional text frame and question
patterns
(Give the answer directly)
The basis of the choice, which comes
from the content of the Production
module, is “select a friend’s birthday
month”
(Guide student to re�lect on whether
their answer is appropriate)
(Emphasize the problem situation)
Switched strategy, Production
module content changed to “select
the month with the largest number of
birthdays”
(Guide student to identify problem-
solving strategies)
Determine the problem-solving
strategy, that is, the contents of the
Production module become “select
the month with the largest number of
birthdays”
Highlight the contradiction
(Inconsistent with the previously
identi�ied problem-solving strategy)
(Say it to oneself )
(With computer)
(Previously used Baidu, conducted a
search)
Production module contents become
“a good friend’s birthday”
Solving the problem-solving strategy
again, the contents of the Production
module become “the month with the
largest number of birthdays”



Oral	English	report Cognitive	process	analysis
[Q:	A	lot	of	birthdays	are	in	March,	and	a	lot	of
birthdays	are	in	August.	Which	month	would	you
choose	then?]
March
[Q:	If	you	want	to	know	which	month	covers	the
most	birthdays,	how	would	you	determine	the
answer?]
Check	on	the	computer
[Q:	How	would	you	check	it?]
Baidu,	enter	what	you	want	to	check
[Q:	Do	you	think	Baidu	can	search	for	which	month
has	the	most	birthdays?]
Can’t
[Q:	What	do	you	want	to	do?]
Ask	classmates
[Q:	How	many?]
Ask	two
[Q:	Why?]
Because	if	one	does	not	know,	you	can	ask	another
[Q:	What	if	neither	of	these	two	people	knows?]
Ask	someone	else
[Q:	Who?]
MaJW
[Q:	In	addition	to	celebrating	the	month	of	your	best
friend’s	birthday,	for	which	other	month	do	you
want	to	celebrate	birthdays?]
March
[Q:	Why?]
Because	March	(the	3rd	month,	the	number	3)	is
singular
[Q:	There	are	a	lot	of	other	singular	numbers,	why
March?]
Singular	represents	boys
[Q:	Which	month	do	you	want	to	choose	then?]
March
[Q:	Why?]
Because	March	is	singular
[Q:	There	are	many	single	months?]

Problem-solving strategy, the content
of the Production module becomes
“select a friend’s birthday and the
month with the largest number of
birthdays”



Oral	English	report Cognitive	process	analysis
There	are	more	people	(with	birthdays)	in	March
[Q:	Do	you	think	this	problem	is	dif�icult?]
A	little	bit

[Diagnosis]	WangC	students	shows	strong	divergent	thinking	ability.	He	responded
quickly	and	came	up	with	a	variety	of	strategies	and	methods,	but	his	problem-solving
strategy	was	not	clear,	and	he	did	not	provide	a	correct	answer	to	the	question

Note () in the content is for description and explanation

2.
Inquiry stage after class 
The date of the after-school inquiry was December 13, 2011.
The CMMPS-based “mode” after-school inquiry problem-solving

cognitive process analysis is shown in Table 8.5.

Table	8.5 “Mode” inquiry question problem-solving cognitive process analysis

 Visual Production Retrieval Goal Imaginal Manual

1 Text
encoding

     

2   Relevant
semantic
knowledge
in DM

   

3    How would
you choose
the shoe
size?

How
would you
choose the
shoe size?

 

4  Choose a shoe size,
assume the monitor role
→ choose the shoe size
that the most students
wear (in line with
common sense)

    



 Visual Production Retrieval Goal Imaginal Manual

5    Choose the
shoe size
that the
most
students
wear
(target
conversion)

  

6      Which shoe
size do the
most
students
wear, and
then choose
that shoe size

7     Which
shoe size
do most
students
wear

 

8    Statistics
for each
student’s
shoe size

  

9   Statistics,
counting

   

10     Compare
the number
of students
in the class
with each
shoe size

 

11   Comparison
of the sizes
of the
numbers

   

12    Choose the
shoe size of
the largest
number of
students

  



 Visual Production Retrieval Goal Imaginal Manual

13      The shoe size
of the largest
number of
students

14      Finish

Each column shows the contents of a module at different times in
the problem-solving process. The leftmost column of numbers indicates
the row number. Each row represents a cognitive logic step, which is
not the same as the actual problem-solving step. The last row indicates
the end of the cognitive process, that is, the completion of the problem-
solving process.

WangC’s after-class inquiry oral report is shown in Table 8.6. The
left side of the table shows the oral report data recorded during the
experiment. The right side is the cognitive process for the oral report
data and CMMPS analysis. The diagnosis results compares the cognitive
process analysis on the right side with the “mode” after-class inquiry
based on the CMMPS problem-solving cognitive process (as shown in
Table 8.5).

Table	8.6 Oral English report after analysis of the after-class “mode” inquiry by WangC

Oral	English	report Cognitive	process	analysis

[Read]	A	shoe	factory	is	promoting	a	number	of
new	sports	shoes.	The	shoe	factory	intends	to
provide	free	trials	to	our	classmates.	If	you	are	the
classroom	teacher,	how	would	you	choose	the	shoe
size?

Input text information by reading the
title, and form a propositional text
frame and question patterns through
visual coding

[Analysis]	I	choose	size	39	because	my	shoe	size	is
39.	Choice	No.	39	is	suitable
[Q:	Look	at	the	question.	Is	this	choice
appropriate?]
Yes
[Q:	If	you	were	the	classroom	teacher,	would	this
choice	be	appropriate?]
Inappropriate,	I	should	choose	the	size	more
people	can	wear
[Q:	So	how	do	you	know	which	shoe	size	is	the	most
popular?]

Determine the problem-solving
strategy, Production module content
is “choose one’s own shoe size”
(Guide student to understand the
question)
(Question meaning is not accurate)
(Remind student of the “monitor”
role)
Goal module content for the
“monitor” role, Production module
contents become “shoe size that is
worn by the most students”



Oral	English	report Cognitive	process	analysis
By	raising	hands;	it	is	easier	to	raise	your	hand
(Teacher	gives	the	student	a	list	of	the	shoe	sizes	of
the	entire	class)
[Q:	Now	you	have	data.	What	are	you	going	to	do?]
(counting	the	number	of	students	with	each	shoe
size)
Choose	37	because	37	covers	the	most	students.
There	are	eight;	38	and	39	are	both	7,	according	to
my	counting,	and	there	are	2	people	with	size	40
[Q:	Do	you	think	your	counting	is	right	or	wrong?]
I	think	I	am	right	because	I	think	I	counted	carefully
[Q:	Did	you	count	this	quantity	correctly?]
Yes,	oh	no,	missed	one.	I	thought	there	is	no	size	36.
I	started	from	size	37.	There	are	4	in	size	36
[Q:	Which	one	is	your	choice?]
I	choose	size	37	because	37	covers	the	most	people.
The	factory	could	provide	8	pairs	of	shoes
[Q:	Do	you	think	this	question	is	dif�icult?]
A	little
[Q:	Compared	with	the	birthday	question?]
This	one
[Q:	Why	is	that?	It	didn’t	take	long	for	you	to	�igure
it	out]
I	thought	for	a	moment
[Q:	Do	you	think	math	is	dif�icult?]
Not	dif�icult,	as	long	as	you	listen	attentively
[Q:	Are	you	good	at	math?]
Some	things	good,	some	things	bad

Manual module content: Select a
method to collect data
“hands up”
Implementation strategy, Manual
module content: Number Operation
Manual module content: Select the
shoe size of the largest number of
students
(The student is reminded of the main
question tested in the problem-
solving process)
(Con�idence in problem-solving
process)
Rethinking: Found errors after
checking
Determine the answer, Manual
module content: choose the shoe size
of the most students
Retrieval module: extract long-term
memory of the relevant knowledge
(May indicate past learning
inattention)
(Results are unstable, can be found
from the process of solving
problems)

[Diagnosis]	In	the	process	of	solving	the	problem,	WangC	chose	a	strategy	from	the	two
strategies.	The	student	began	to	count	the	number	of	shoes,	made	an	error,	checked	and
reviewed	the	process,	and	then	correctly	answered	the	question.	These	results	show
that	this	student	has	not	formed	the	habit	of	reviewing	and	checking	their	work

Note () in the content of the paper indicates a description and an
explanation

3.
The �irst cognitive diagnosis and intervention 



The �irst cognitive diagnostic intervention was conducted on
December 14, 2011.

The �irst cognitive diagnosis and intervention included two parts:
data statistics and strategy selection categories. The former was used to
diagnose and intervene in problems with statistics in the problem-
solving process; the latter was used to diagnose and intervene in
dif�iculties in the process of problem solving.

Table 8.7 shows the diagnostic interventions for the data statistics.
The left side of the form Shows the oral report data recorded during the
process, and the cognitive process for the oral report data obtained via
CMMPS analysis is on the right.

Table	8.7 First cognitive diagnosis intervention for WangC’s “mode” inquiry oral report analysis
(data statistics)

Oral	English	report Cognitive	process	analysis

[Title]	All	the	students	of	Class	1	of	Grade
5	have	had	the	vision	of	their	left	eye
checked.	The	results	are	as	follows:

Input text information by reading the title, and
perform visual coding to form a propositional
text frame and question patterns

[Analysis]	(Starts	writing	on	the	paper:	“A:
The	mode	is	5.2”)
[Q:	What	do	you	understand	the	question
to	be?]
What	is	the	mode	of	this	set	of	data?
(Immediately	crosses	out	the	original
answer.	After	a	short	period	of	counting,
writes	out	on	paper:	Mode	is	5.1)
[Q:	How	many	“5.1”	are	there?]
12
[Q:	What	about	the	others?	How	do	you
know	that	5.1	is	the	most	frequently
occurring	value?]
(Writes	out	on	paper:	7	for	5.0,	4	for	4.9,	2
in	5.3,	4	in	5.2,	3	in	4.7,	4	of	4.8,	12	of	5.1,	2
of	4.5,	2	of	4.6.	12 > 7 > 4 = 4 = 4 > 3 > 2 = 2 = 
2)

(Gives the answer directly. The title is not
complete.) Incomplete characterization of
visual module information
(Hint: look at the problem)
(After looking at the problem)
Understands the question correctly. Provides
the correct answer
(Guide the student to explain the process of
solving the problem.)
Production module content:
First, the number of different visual acuity
values, and then compare the sizes of the
numbers and select the value with the most
occurrences

[Diagnosis]	WangC	did	not	read	the	entire	question	and	rushed	into	problem	solving,
which	led	to	the	�irst	incorrect	answer.	The	teacher	simply	reminded	the	student	to	read
the	question	again,	and	he	quickly	provided	the	correct	answer

Note () in the content indicates a description



WangC’s strategy selection class questions for the cognitive
diagnosis intervention oral report are shown in Table 8.8. The left side
shows the oral report data recorded during the experiment. The right
shows the cognitive process of the oral report data obtained via CMMPS
analysis.

Table	8.8 First cognitive diagnosis intervention of WangC’s “mode” inquiry oral report analysis
(strategy selection category)

Oral	English	report Cognitive	process	analysis

[Read]	The	school	has	decided	to	organize	a	group
tour	during	spring	break,	and	there	is	only	one	place
we	can	choose	from	the	following:	A	Beijing
Tiananmen	Square;	B	Baiyangdian;	C	Mountain	Tai
If	you	are	the	principal,	how	would	you	choose	the
place?

Input text information by reading
the title, and perform visual
coding to form a propositional
text frame and question patterns

[Analysis]
[Question]:	If	you	are	the	student	representative,	how
would	you	choose?
I	would	choose	Baiyangdian
[Q:	Why?]
Because	people	can	go	�ishing	at	Baiyangdian,	and	it	is
my	favorite	place
[Q:	Please	read	the	last	line	of	the	question.]
I	will	choose	the	place	most	classmates	in	our	class
want	to	go
[Q:	Which	one	would	you	choose	as	the	�inal
destination	then?]
If	I	am	the	student	representative,	I	will	listen	to	my
classmates;	for	myself,	I	will	choose	Baiyangdian
[Q:	Which	one	would	you	choose	as	the	�inal
destination	then?]
Listen	to	my	classmates
[Q:	How	did	you	start	to	think	of	Baiyangdian?]
Because	I	thought	I	was	not	a	monitor
Features:	The	student	started	to	answer	the	question
without	thoroughly	understanding	what	the	question
is	asking.	Once	the	question	was	understood,	the
student	immediately	answered	correctly

(Reads the title again)
Gives the problem-solving
strategy, and the Production
module content: “choose my
favorite place to go”
(Provides hint to student)
Understands the question,
determines the strategy, that
Production module content:
“choose where the most students
want to go”
Strategy Selection, Production
module content:
Different strategies for different
roles
Determine strategy, Production
module content: “choose the
place where most students want
to go”
(Diagnosis of the wrong reasons
due to a target set error)
Goal: incorrect role play



Oral	English	report Cognitive	process	analysis

[Diagnosis]	WangC	answered	the	question	too	quickly	and	did	not	thoroughly
understand	the	problem	situation	(role)	before	solving	the	problem.	After	rereading
the	question	and	correctly	recognize	the	assigned	role,	the	student	chose	the	correct
strategy	to	answer	the	question

Note () in the content indicates a description

4.
The second cognitive diagnosis intervention 
The second cognitive diagnosis intervention was conducted on

December 15, 2011.
The second cognitive diagnosis intervention also included two

parts: data statistics and strategy selection. The former was used to
diagnose problems in the statistical process and provide an
intervention; the latter was used to diagnose strategy selection
problems and provide an intervention.

Table 8.9 shows the diagnostic intervention experienced by WangC.
The left side of the table shows the oral report data recorded during the
experiment. The right side is the cognitive process analysis obtained
from the CMMPS analysis of the oral report data.

Table	8.9 The second cognitive diagnosis intervention for WangC’s “mode” inquiry oral report
analysis (data statistics)

Oral	English	report Cognitive	process	analysis

[Read]	A	shooting	team	plans	to	select	one	of	two
athletes	to	attend	a	competition.	The	two	athletes
each	hit	10	rounds	of	ammunition.	The	results	are
as	follows:
A:	9.5	10	9.3	9.5	9.4	9.5	9.2	9.5
B:	10	9	10	8.3	9.8	9.5	10	9.8	8.7	9.9
①	What	are	the	average	and	mode	of	the	results	of
A	and	B?
②	Who	do	you	think	is	more	suitable	to	attend	the
competition?	Why?

Input text information by reading the
title, and perform visual coding to form
a propositional text frame and question
patterns



Oral	English	report Cognitive	process	analysis

[Analysis]	Calculate	the	average,	mode
(Quickly	wrote	on	paper)	A:
(9.5 + 10 + 9.3 + 9.5 + 9.6 + 9.5 + 9.4 + 9.5 + 9.2 + 
9.5)/10
 = 95/10
 = 9.5
A:	The	average	is	9.5,	and	A:	The	mode	is	9.5
B:	(10 + 9 + 10 + 8	3 + 9	8 + 9	5 + 10 + 9	8 + 8	7 + 9
9)/10
 = 95/10
 = 9.5
A:	The	average	is	9.5,	and	A:	The	mode	is	10
A:	I	think	A	should	attend	because	(A	and	B	have
the	same	average)	shot	higher	than	9	in	each
attempt

(Correct understanding of the
problem)
(Output problem-solving process)
Manual module content
(Correct calculation)
(Output problem-solving process)
(Correct calculation)
Manual module content
(Thought through fully)

[Diagnosis]	WangC	calculated	the	answer	accurately	and	solved	the	question	quickly.
The	student	chose	the	candidate	logically	when	conducting	the	solving	process,	and	the
student’s	understanding	was	comprehensive

Note () in the content indicates a description

The oral report data of WangC’s strategy selection questions for the
cognitive diagnosis intervention are shown in Table 8.10. The left side
of the table shows the oral report data recorded during the experiment.
The right side is the cognitive process analysis obtained from the
CMMPS analysis of the oral report data.

Table	8.10 Second cognitive diagnosis interventions for WangC oral report analysis (strategy
selection category)

Oral	English	report Cognitive	process	analysis



Oral	English	report Cognitive	process	analysis

[Reading]	The	school	plans	to	hold	a	New	Year’s
Day	party.	Each	class	can	perform	only	one
program,	but	there	are	three	candidate	programs
in	our	class:
①	Xiaoming	solo	“where	is	spring?”
②	Xiaohong	solo	dance	“we	are	the	�lower	buds”
③	Xiaolan	poetry	recitation	“facing	the	sea,
spring	�lowers”
If	you	are	the	classroom	teacher,	to	ensure
fairness,	what	would	you	do?

Input text information by reading the
title, and perform visual coding to form
a propositional text frame and question
patterns

[Analysis]
I	will	choose	the	song	most	classmates	like
[Q:	How	do	you	know	which	one	your	classmates
like?]
Ask	classmates
[Q:	How	many	students?]
28
[Q:	After	you	ask,	which	one	would	you	choose?]
Which	is	the	most,	which	one	you	choose

Correct understanding of “class teacher
role”, Goal module content
Determine the problem-solving strategy,
Production module: “selected students’
favorite song”
Given statistical strategy, Production
module: “ask students”
(Hint: ask which classmates)
Production module: ask the classmates
(including myself )
(Hint: ask students, the next step how to
do)
Production module: data statistics,
selection of the choice of the most
students

[Diagnosis]	WangC	changed	his	previous	habit	of	not	reading	the	topic	before
attempting	the	problem.	The	student’s	problem-solving	ideas	are	clear,	and	the
problem-solving	method	is	appropriate

Note () in the content indicates a description

5.
Comparative analysis of different stages of the problem-solving
process

 
For the purpose of comparison, Table 8.11 presents the changes in

the solving process in the four stages of preschool inquiry, after-school
inquiry, �irst cognitive diagnosis intervention and second cognitive
diagnosis intervention.

Table	8.11 Changes in WangC’s cognitive process at different stages of the experiment



ab e 8 C a ges Wa gC s cog t ve p ocess at d e e t stages o t e e pe e t

Stage Problem-solving	process	characteristics

Before	class
(December	12)

Problem-solving strategy was not clear, the idea was not clear, and
there was no correct answer to the question

Study	after	class
(December	13)

The student chose from one of two strategies, started counting the
number of shoes when there was an error, reviewed the strategy after
the correction, and �inally, provided a correct answer. The student did
not display the habit of reviewing his work

The	�irst
intervention
(December
14)

Data
collection
question

The student did not �inish reading the question. He was so eager to
solve the question, which led to a problem-solving error. After a
simple reminder, he read the question again, quickly understood the
questions, and quickly solved the questions correctly

Strategy
selection
questions

The student answered the questions quickly without understanding
the problem-solving strategy, which led to an error. After looking at
the question again and recognizing the assigned role, he chose the
correct strategy to answer the question

The	second
intervention
(December
15)

Data
collection
question

Calculated accurately, answered questions quickly, considered the
candidates comprehensively, demonstrated comprehensive thinking,
provided correct answer to the question

Strategy
selection
questions

The student changed his previous habit of starting to solve problems
before understanding the question. After obtaining a correct
understanding, the student’s problem-solving ideas were clear, the
method was correct, and the problem was solved correctly

As seen from the comparative analysis of Table 8.11, the signi�icant
changes in WangC’s problem-solving process before and after the
interventions helped him answer the questions correctly and develop
an effective way of solving problems.

After the experiment, WangC received a score of 94 points on the
teacher-organized test. The subjects of the test questions were from
“elementary mathematics grade �ive (People’s Education Press)” and
concerned the “juvenile	intelligence	development” 16 issue. The analysis
of the papers revealed that WangC had no problem with the calculation;
the loss of points was due to carelessness. By checking and reviewing
his work, he can demonstrate clear progress.
6.

Teacher Interview 
With respect to WangC’s usual learning behavior, we interviewed

his mathematics teacher, Ms. Duan Junxiang, and she re�lected as
follows:



(1)
WangC is very smart, outgoing, con�ident and active. However,
poor language processing and reading skills affect mathematical
understanding. In the junior grades, the student did not pay much
attention to his language or reading skill development. His
understanding of some questions on the application is poor, which
leads to errors. As long as a question is discussed in class, he has
no problem understanding the question and provides a solution,
but errors may sometimes result from carelessness.

 

(2)
WangC solves questions very quickly. His solution speed might put
him in the top 2 in his class. Because he lacks a habit of checking,
his error rate is higher than average.

 

The teacher’s re�lections on WangC con�irm what we previously
reported in verbal reports.

(三) Birthday data collection and statistical strategies in the process
of problem solving

Data collection is required for solving the “mode” problem. When
solving real problems, the data are not readily available and need to be
collected and counted. Previous data analysis has shown that many
students (e.g., DuanYC, DuanZX) have problems with data statistics,
which leads to problem-solving errors. Data processing for the mode
includes collecting the number of birthdays each month and
determining the month with the highest number of birthdays after
computing the statistics. Figure 8.3 further reveals the image, data
collection, statistical methods, and preparation of the ACT-R simulation
program.

Fig.	8.3 Data collection process simulation



The �igure shows the number of people with birthdays in May
(denoted by M), that is, the number of M’s. The strategy adopted is to
count the number of M’s in the �irst row, then the number of M’s in the
second row, and �inally the number of M’s in the third row. The output
is 5, which means that “the number of students whose birthday month
is May is 5”. Figure 8.4 visualizes this data collection process, with the
red circles denoting the �inal numbers. The visualization of this strategy
helps students address the “impossible” challenge of facing the data. Of
course, students can also choose a strategy according to their
preference, with just one of the options mentioned above.

Fig.	8.4 Data collection process visualization

To calculate the correct statistics of the month with the largest
number of birthdays, the required declarative knowledge is shown in
Table 8.12.

Table	8.12 Descriptive knowledge required for
the month with the highest number of birthdays

(p1	ISA	count-order	�irst	1	second	2)

(p2	ISA	count-order	�irst	2	second	3)

(p3	ISA	count-order	�irst	3	second	4)

(p4	ISA	count-order	�irst	4	second	5)

(p5	ISA	count-order	�irst	5	second	6)

(p6	ISA	count-order	�irst	6	second	7)

(p7	ISA	count-order	�irst	8	second	9)

(p8	ISA	count-order	�irst	9	second	10)

(p9	ISA	count-order	�irst	10	second	11)

(p10	ISA	count-order	�irst	11	second	12)



Table 8.12 presents 10 ordinal pairs in total, where p1 indicates a
pair of ordinal numbers (1, 2), p2 indicates the ordinal pair (2, 3), and
so on. These ordinal pairs are used to compare the sizes of two
numbers. For adults, the size of the number of comparisons has become
automated. If students do not understand these pairs, they will make
mistakes in comparing the numbers; that is, they will not be able to
correctly select the month with the largest number of birthdays.

The number of birthdays in each month is 3 in January, 2 in
February, 4 in March, 3 in April, 3 in April, 6 in May, 4 in June, 2 in July, 3
in August, 2 in September, 4 in October, 4 in November and 5 in
December. Figure 8.5 shows the statistical simulation of the month with
the largest number of birthdays. The result is May.

Fig.	8.5 Cognitive simulation of the month with the largest number of birthdays (part)

8.2.4	 Discussion
(一) Students’ problem-solving stage is not clear

In the process of teaching, teachers focus only on the content,
enabling students to accept, understand, and master the content, but do
not thoroughly consider the problem-solving process and stage. Good
students in the process of solving problems may be identi�ied in terms
of problem-solving steps. Students who have a general or a poor grade
only accept the knowledge provided by the teacher. When new
problems are solved, these students tend to recall old problems instead
of analyzing new ones, often resulting in “no help at all”. Helping
students form a good approach to solving problems is the key to
resolving their dif�iculties.

(二) Students’ understanding of a question is incomplete, which is
the most common problem in the process of solving problems.



The above data analysis revealed that 21.4% of the students
participated in the after-school research phase, and 14.8% of the
students did not understand the meaning. An analysis of the results of
Question 18 (Table 8.13) revealed that 15 (53.6%) students made
errors because their understanding of the problem was unclear.
Speci�ically, 5, 8, and 2 middle and poor students understood the
problem. In Table 8.13, “1” means “do not understand the problem”; “2”
means “understand the problem but do not know which method to use
to solve the problem”; “3” means “prone to make a calculation error”;
and “4” means “no habit of checking the result”.

Table	8.13 Average results * dif�iculties
encountered in solving mathematical problems

 Question	17 Total

1 2 3 4

Usual	grades 1 5 2 6 1 14

2 8 3 11 3 25

3 2 4 5 0 11

Total 15 9 22 4 50

Interviews with the teacher also highlighted that the failure to
understand the problem is a common problem in the process of solving
problems. De Smedt’s experiments involving 4th and 5th grade
students found that the level of children’s speech representation
affected their extraction of arithmetic knowledge. In addition, the more
signi�icant the characterization was, the faster the extraction rate was
(De Smedt et al., 2006). This study demonstrated that speech
understanding plays a role in problem solving. After receiving simple
tips for completing the main test, most students can understand the
questions and correctly answer them.

(三) Students’ lack of concentration is an important factor leading to
an incomplete understanding of the topic.

In oral reporting experiments, researchers have reported that most
students who have misinterpreted problems behave unfocusedly.
Students demonstrate several problems in the process of solving



problems. This phenomenon was detected later in the process of
observing the experimental video. In interviews with the instructor, the
teachers noted that these students, who are not attentive in problem
solving, also look around and are constantly moving in class. This
behavior is observed not only in math but also in Chinese and science
classes. These students have developed inattentive habits, and teachers
should design activities to help them develop a habit of focusing on
learning.

(四) Poor language performance is an important factors leading to
incomplete understanding.

Interviews with some Chinese teachers indicated that some
students who did not solve the problem after the successful diagnosis
also had poor Chinese scores (with a few exceptions). Poor results in
Chinese can lead to an unclear understanding of the questions. It is
dif�icult to form the correct representation of questions in the thinking
process. Thus, an incorrect representation of the question is the main
reason for the incorrect answers. Anand and Ross (1987) also reported
that the main reason for the incorrect answer to a question was the
misrepresentation of the question’s structure, not the computational
dif�iculty. Fu and He (1995) and Shi (1985) have also illustrated this
point.

(五) Personal experience, family life and other background
knowledge in problem solving

In the topic design part, the topic of “selecting dance partners” of
the knowledge point of the PEP was analyzed. This topic was easy to
understand for the students who had dancing experience. However,
according to the instructor, most rural students have no dancing
experience. The “selection of dance partner” problem was thus not easy
to understand. In contrast, the vast majority of the students had
“birthday” experience, with “birthday” situation knowledge conducive
to understanding the subject. Verschaffel and De Corte (1997) also
emphasized the importance of background knowledge to the
application of solutions. They reported that when students solve an
application problem, ignoring the real situation was not only common
but also quite serious.



(六) Students solved the problem in a “nonlinear” way

There are different divisions of the stages of problem solving, but
most of them describe a “linear” process that is highly rational and
ideal. However, during the experiment, we found that the students did
not go through all the stages of problem solving when actually solving
the problem. A feedback loop is created, which is related to the
development of personal habits for solving problems. In the process of
solving a problem, some students look at the topic and then read the
question, while others read the question �irst. Then, some students
(including students with good academic performance, such as DuanYC
and WangC) have no problem with the checking stage. On the one hand,
this �inding revealed the differences among the students in terms of
problem-solving methods and strategies; on the other hand, it also
provided a basis for the analysis of problem-solving errors.

8.3	 Empirical	Study	on	the	“One-on-One”
Cognitive	Diagnosis	of	Programmatic
Knowledge
8.3.1	 Purpose
The “cylindrical �lank area” is a part of the “cylinder and cone”
knowledge taught in elementary school in the sixth grade (two
volumes) textbook, Unit 2. It is an example of typical procedural
knowledge in elementary school mathematics. The purpose of the
experiment is to carry out “one-on-one” cognitive diagnosis and
intervention for students whose procedural knowledge problem
solving is dif�icult and analyze and compare changes before and after
the intervention.

8.3.2	 Methods
(一) The subjects

Fifty students from grade six of the Yong Liang Primary School in
Gaoyang County, Hebei Province, were selected as subjects. Among
them, 26 students were boys and 24 students were girls, with an



average age of 145 months, and their ages ranged between 135 and
187 months. The proportions of males and females were basically
balanced.

(二) Materials

The sixth-grade “cylindrical side area” application question is
selected. This question represents typical procedural knowledge. This
knowledge point is new for students, but the prior knowledge they
need has already been learned. The “cylindrical �lank area” application
questions address the situation of “wrapping paper”. The students are
asked to perform hands-on operations and �ind the solution to the
problem. For example, the “�lank” can be expanded to convert the
problem into a rectangular area and diagnose the problem such that the
student appears in the process of solving the problem.

The test material is a test subject specially designed on the basis of
the purpose of this study. The speci�ic materials used are as follows:
1.

Preknowledge test questions
(1)

The length of the basketball court is 28 m, and the width is
15 m. How many square meters is the court? How many
square meters constitute the area of half the basketball court?

 

(2)
A rectangular vegetable garden has a long side by the wall; it
is 20 m long, and 40 m are needed to fence the garden. What
is the area of this vegetable garden?

 

(3)
A round �ish pond has a diameter of 4 m. What is its area in
square meters?

 
(4)

There is a sheep tied to a pile of wood on the grass. The length
of the rope is 4 m. How many square meters of grass can
sheep eat at most?

 

 

2.
Oral report training problem  
The oral report training exercises are shown in Fig. 8.6.



Fig.	8.6 Oral report training problem

3.
Inquiry questions before class 
A potato chip factory produces a batch of potato chips that need to

be packaged on the side of the potato chip box (as shown in Fig. 8.7).
Can you help the factory calculate at least how many wrappers are
needed for each chip box?

Fig.	8.7 Chip box

4. After-school knowledge test questions
(1)

Which of the graphics in Fig. 8.8 is a cylinder? Please mark it.

Fig.	8.8 After-school knowledge test question 1

 

(2)
The bottom, �lank, and height of the cylinder are shown in
Fig. 8.9.

Fig.	8.9 After-school knowledge test question 2

 

(3) A cylindrical tea box with a diameter of 5 cm and a height of
10 cm was used. Please calculate the side area of the tea box.  

 



(4)
A roller brush (shown in Fig. 8.10) is used to paint the wall;
the roller brush has a radius of 6 cm and a length of 30 cm. If
you dip the paint once, the roller can roll 4 turns. How many
square centimeters of the wall can be brushed?

Fig.	8.10 Roller brush

 

5.
After-school inquiry questions 
A cylinder is created after cutting a piece (as shown in Fig. 8.11).

Can you calculate its side area? Note that h = 10 cm and r = 4 cm.

Fig.	8.11 Cylinder

(三) Program

1.
Design the experimental program 
Determine the purpose, experimental subjects, materials, and

instructions. Make overall arrangements regarding the aspects of the
experiment and the predicted results.
2.

Experimental equipment 
A single recording pen, a Sony camera, and a tripod were used to

record the oral reports of the subject during the experiment.



3. Oral reporting and recording 
The oral reporting method was used to collect information. In

accordance with the research methods developed by Erickson and
Simon, the subjects were trained to think aloud in the process of solving
the problem. Before the main question was presented, the main tester
(the researcher himself) explained the requirements of the instruction.
Then, the main tester used oral training questions as an example and
demonstrated and explained how to think aloud in the process of
answering the questions. After the subjects learned how to think aloud,
they began to solve the question and were recorded via video during
the process.
4.

Data translation and coding 
The data collected include the two parts of the oral report and

problem-solving operations. The oral report is �irst translated into the
text by the experts, and then the students’ problem-solving
assignments are encoded and analyzed to diagnose learning dif�iculties.
Two experts were responsible for coding work, and agreement was
reached after discussion of a small number of coding inconsistencies.
5.

Development of an intervention program 
The oral report data and videos collected during problem solving

can be used to analyze students’ ideas and obstacles in the process of
problem solving and to develop speci�ic intervention programs, such as
which tips can help students solve problems and improve the learning
effect.
6.

Interview 
The interviews with the teacher focused on the obstacles that arose

in the students’ problem-solving process. In addition, the students’
usual performance could be fully understood, and the intervention
program could be re�ined.



7. Intervention 
In the process of problem solving, timely feedback should be

provided according to the student’s oral report. To observe and record
students’ reactions, students should be given enough time.
8.

Effect test 
Through the design of the topic, we evaluated the students’ mastery

of the knowledge.
(四) Experiment duration

The experiment was conducted from December 17, 2011, to
December 22, 2011.

8.3.3	 Results	Analysis
During the experiment, the knowledge of 50 students in Grade 6
regarding the cylinder side area was tested. Forty-eight students
participated in the oral report experiment of the preclass inquiry
questions, and 47 students participated in the oral report experiment
of the after-class inquiry questions. Forty-six students participated in
the �irst cognitive diagnostic intervention, and 5 students participated
in the second cognitive diagnostic intervention. A total of 146 students
participated in the oral report experiments.

(一) The overall effect of “one-on-one” cognitive diagnosis
Preknowledge test results analysis

The statistics of the “cylindrical �lank area” preknowledge test
results are shown in Table 8.14.

Table	8.14 “Cylindrical side area” preknowledge test results

 The	�irst
question

The	second
question

The	third
question

The	fourth
question

The	number	of	students	who
solved	the	problem	correctly

47 44 44 40

Accuracy	rate 94 88 88 80



An analysis of the students’ papers revealed that the �irst objective
was to directly examine the calculation of the rectangular area. Three
students provided the incorrect answer, one student forgot to complete
the second question, one person used the incorrect unit for the area,
and one student made a calculation error. Question 2 was an indirect
question on the area of a rectangle. Six students provided the incorrect
answer because they did not understand the problem. Question 3
examined the area of the circle. Six students answered the question
incorrectly, �ive of them did not understand the problem, and one
person calculated the diameter as the radius. The six students who
made a mistake on the second question also made an error when they
answered the third question. Question 4 was related to the actual
problems of life. Ten students answered it incorrectly. Six of them did
not understand the problem, three performed the calculation
incorrectly, and one of them calculated the radius as the diameter. Two
students incorrectly answered all four pretest questions, accounting for
4% of the sample. The test results indicate that students have mastered
the preknowledge for calculating the “cylindrical �lank area” of. The
preknowledge test error conditions are shown in Table 8.15.

Table	8.15 Preknowledge test error condition analysis

 The	�irst
question

The	second
question

The	third
question

The	fourth
question

Do	not	understand	the
problem

 6 students
(100%)

5 students
(83.3%)

6 students
(60%)

Mathematical	formula
mastery	is	not	strong

1 student
(33.3%)

 1 student
(16.7%)

1 student
(10%)

Calculation	error 1 student
(33.3%)

  3 students
(30%)

Carelessness 1 student
(33.3%)

   

Total 3 students 6 students 6 students 10 students

With respect to students’ usual grades, even though two students
usually received good grades, they made mistakes on Question 4, in
which 1 did not understand the meaning of the question and 1
miscalculated the answer. Only one student who typically receives



medium grades made an error in solving Question 4 due to a
miscalculation. Most of the students who had poor results usually
represented the majority of students who demonstrated dif�iculties
solving the problem. According to the statistical results of previous
knowledge testing, the students who were in the middle of the class in
terms of grades performed slightly better than the top students did.
2.

Analysis of the results of the preclass exploration stage 
An analysis of the preclass research stage of 48 students’ oral report

data revealed that 16 students correctly answered questions,
accounting for 33.3% of the sample; 13 students had clear problem-
solving ideas, but their operation was incorrect, accounting for 27.1%
of the sample; 4 students could not answer the question at �irst, but
after a physical operation, they sought to calculate the area of a
rectangle, accounting for 8.3% of the sample; 14 students did not know
the meaning of the question, accounting for 29.2% of the sample; and 1
student did not have strategies after reading the question, accounting
for 2.1% of the sample. The results are shown in Table 8.16.

Table	8.16 “Mode of measurement area” preclass research results

The	results	of	preclass	research Number	of
students

Proportion	of
sample

Correct	answer 16 33.3

Clear	thinking,	mistakes	in	operation 13 27.1

Cannot	answer	the	question	at	�irst,	able	to	do	after	the
physical	operation

4 8.3

Misunderstand	the	meaning	of	the	question 14 29.2

No	problem-solving	strategy 1 2.1

Total 48 100

The classi�ication of errors shows that unclear understanding was
the main reason leading to problem-solving errors, followed by
problem-solving operations and the lack of a problem-solving strategy,
which accounted for only a small proportion of the errors. Moreover,
the physical operation helped the students solve the problem. The



above statistical results can provide targeted help for the design of
classroom teaching.
3.

Analysis of the results of after-school research 
The after-school inquiry questions were more dif�icult than the

preclass inquiry questions were, as they examine students’
understanding of the side area of a cylinder. A total of 47 students
participated in the after-hour inquiry oral test report, and the statistical
results are shown in Table 8.17. Three students answered the question
correctly, accounting for 6.4% of the sample. Three of them adopted the
remaining length of the circumference × height, the area of the side of
the cylinder—the area of the side of the cylinder × 1/6 + two
rectangular areas, and the three methods of bisecting the cylinder.
Three students demonstrated a correct understanding of the concepts
but incorrect calculations, accounting for 6.4% of the sample; 10
students demonstrated correct problem-solving ideas but were not able
to calculate the cutoff area, accounting for 21.3% of the sample; 30 did
not understand the meaning of the side area, accounting for 63.8% of
the sample; and 1 student did not have a strategy after reading the
question, accounting for 2.1% of the sample.

Table	8.17 “Cylindrical side area” statistics of the study results

 Correct
answer

Clear
thinking,
mistakes	in
operation

Cannot	answer	the
question	at	�irst,	able	to
do	after	the	physical
operation

Misunderstand
the	meaning	of
the	question

No
problem-
solving
idea

Excellent 2 2 4 9  

Middle 1 1 2 13  

Poor   4 8 1

Total 3 3 10 30 1

Proportion 6.4 6.4  63.8 2.1

From the statistical results, the main reason leading to mistakes in
solving problems was “do not understand which part of the side area is
included”; that is, the concept of the side area was not thoroughly
understood. The number of excellent, middle, and poor students each



accounted for approximately one-third of the sample. For effective
interventions, these students’ oral reports were analyzed in depth, and
the types of errors were classi�ied, as shown in Table 8.18.

Table	8.18 “Do not understand side” wrong type classi�ication

 Missing	two
rectangles

Miss	the	cutoff
part

Calculate	the
entire	side

Calculate	the
cutoff	part

Excellent 7 2   

Middle 10 2 1  

Poor 15  2 1

Total 22 4 3 1

Proportion 73.3 13.3 10 3.4

As shown in the data analysis in Table 8.18, the main reason for
mistakes was “missing two rectangles”, accounting for 73.3% of the
sample, and the middle students accounted for nearly half. The reason
why students “miss two rectangles” was that they did not understand
the side area of the irregular graph. The use of a physical display during
the intervention phase and the students’ hands-on methods allowed the
students to intuitively feel how to transform the irregular graph into a
regular graph. Then, the learned side area knowledge can be used to
solve the problem.
4.

Analysis of the �irst intervention results 
An analysis of the after-class inquiry oral report information

revealed that the main reason for mistakes was “missing two
rectangles”. In combination with examples of preclass research, such as
“paper wrapping”, which provides students with irregular patterns to
explore, teachers provide a few tips and recall the students’ problem-
solving process. A total of 46 students’ intervention results are shown
in Table 8.19.

Table	8.19 “Cylindrical side area” results of the �irst intervention



 Correct
answer

The	idea	is	correct,	but
there	is	a	calculation
error

Do	not	understand
which	part	of	the	side	is
covered

No	problem-
solving
strategy

 Correct
answer

The	idea	is	correct,	but
there	is	a	calculation
error

Do	not	understand
which	part	of	the	side	is
covered

No	problem-
solving
strategy

Excellent 17  2  

Middle 12 1 1  

Poor 5 2 5 2

Total 34 3 8 2

proportion 73.9 6.5 17.4 2.2

The intervention results revealed that 73.9% of the students
correctly answered the question, with excellent and middle students
accounting for the vast majority. Eight students, including two top
students, did not understand the concept of the side area. This �inding
shows that the two top students applied their knowledge to solve
simple problems better but did not perform well when faced with
complicated issues or when they were required to transfer their
knowledge. Students who did not have a solution to the problem in
after-class study had no solution to the problem after the intervention,
and the effect was not signi�icant.

For the 34 people who answered the question correctly, different
approaches were used. The results are shown in Table 8.20.

Table	8.20 Different strategies to obtain the correct answer to the
“cylindrical side area” in the �irst intervention

 Strategy	A Strategy	B Strategy	B + Strategy	C Strategy	C

Excellent 9 3 3 2

Middle 10 1 1  

Poor 5    

Total 24 4 4 2

Proportion 70.6 11.8 11.8 5.8

Strategy A: cylinder side area × 5/6 + 2 rectangular area; strategy B:
expansion is rectangular, long × wide; strategy C: the circumference of
the underside of the residual circle is × high + 2 rectangular areas;
strategy A + strategy B represents two approaches. The statistical
results revealed that the majority of students adopted strategy A,



accounting for 70.6% of the sample; among the students who used
strategy B and strategy C, the top students had advantages, which
meant that their mathematical thinking was more �lexible when solving
the problem.
5.

Analysis of the results of the second intervention 
The �ive students who did not understand the concept of the side

after the �irst intervention were selected on the basis of the oral report
data to diagnose the problem-solving process and perform the second
intervention. Of the 5 students, 2 were excellent, 1 was in the middle,
and 2 were poor. All the answers were correct. Table 8.21 lists the
strategies used to generate the solution.

Table	8.21 Different strategies to obtain the
correct answer to the “cylindrical side area” in
the second intervention

 Strategy	A Strategy	B

Excellent 1 1

Middle 1  

Poor 2  

Total 4 1

Proportion 80 20

Strategy A: Cylindrical side area × 5/6 + 2 rectangular areas;
strategy B: Circumference of remaining round bottom × height + 2
rectangular areas. The results revealed that 4 of the 5 students used the
general method, strategy A; only 1 student used the problem-solving
strategy of converting irregular graphics into regular graphics.

The above analysis revealed that the side area of the regular graph
is easy for students to understand, which makes it dif�icult for students
to understand the side area of the irregular graph. The key to an
effective intervention is how to help students understand this concept.

With respect to the side area of the regular graphics, practice
showed that the use of a physical display method and the
transformation of irregular graphics into regular graphics was a good



strategy after the conversion was completed, and the calculation was
not dif�icult for the students.

(二) Changes in the cognitive process before and after the
intervention are used to analyze changes in the student RanA as an
example in various stages of problem solving and the cognitive
process.

1.
Knowledge of test question analysis 
RanA been revised and correctly answered all four questions on the

knowledge test, indicating that this student mastered the concepts of
the area of the rectangle and the area calculation method.
2.

Preclass exploration stage 
The study was conducted on December 17, 2011.
The CMMPS-based “cylindrical side area” was used to obtain the

cognitive process, as shown in Table 8.22.

Table	8.22 CMMPS-based analysis of the “cylindrical side area”

 Visual Production Retrieval Goal Imagine Manual

1 Visual
coding

     

2   Relevant
semantic
knowledge in
long-term
declarative
memory

   

3    At least
how
much
wrapping
paper is
needed?

At least
how much
wrapping
paper is
needed?

 



 Visual Production Retrieval Goal Imagine Manual

4 Coding at
least how
much
wrapping
paper is
needed?

     

5  At least how much
wrapping paper do
you need? → look
for the side area of
the cylinder

    

6     Seek the
cylindrical
side area

 

7 Code
“cylindrical
side area”

     

8  Calculate the area
of the cylindrical
side → calculate
the area of the
rectangle

    

9     Calculate
the area of
the
rectangle

 

10   Area of the
rectangle

   

11  Seek the area of
the rectangle → 
2πr × h

    

12     The length
of the
rectangle

 

13  Seek the length of
the rectangle → 
measure the length
of the ruler

    

14      Measure the length
of the rectangle



 Visual Production Retrieval Goal Imagine Manual

15     The width
of the
rectangle

 

16  Find the width of
the rectangle → 
use a ruler to
widen it

    

17      Measure the width
of the rectangle

18  Seek the area of
the rectangle → 
length × width

    

19      The area of the
rectangle is length*
wide

20      The area of the
packing paper is the
area of a rectangle,
that is, the length
and width of the
paper

21      End

In the process of solving the problem, two strategies are used to �ind
the length and width of the rectangle: (1) the �lank is directly expanded
into a rectangle, and the length and width of the ruler are measured; (2)
according to the formula of the circumference, the length of the
rectangle is the circumference of the bottom circle, the width is the
height of the cylinder, and the area is the circumference of the bottom
circle, x, is high, that is, 2mrxh. Each column in Table 8.22 represent the
content of a module at different times in the problem-solving process,
and the leftmost column number represents the line number. Each line
represents a cognitive logic step, which is not completely consistent
with the actual problem-solving step, and the last line represents the
end of the cognitive process, that is, the end of the problem-solving
process. RanA’s preclass oral report information on the “cylindrical
�lank area” is shown in Table 8.23. The left side is the oral report data
recorded during the experiment, and the right side is the cognitive
process, which is based on the CMMPS analysis of the oral report data.



The diagnosis result is the analysis of the cognitive process based on
the CMMPS analysis (as shown in Table 8.22), and a comparison is
made with the oral report data.

Table	8.23 Analysis of the preclass oral report data of RanA on the “cylindrical �lank area”

Oral	report Cognitive	process	analysis

[Read	the	title]	A	factory	intends	to	manufacture	a
batch	of	chips	(Fig.	8.7)	that	need	to	be	packaged	in
the	box	on	the	side	of	the	potato	chip	box.	Can	you
help	the	factory	calculate	the	number	of	wrapping
papers	needed	for	each	box?

The text information is input through
the reading list, and the propositional
text frame and the question pattern
are formed through visual coding

[Analysis]	Use	a	piece	of	paper.	Measure	the	paper
to	�ind	the	length	and	width	and	calculate	the	area
by	length	×	width
(The	primary	test	gives	the	student	a	chip	can,	an
A4	sheet,	ruler	and	scissors)
(Student	performs	a	hands-on	operation)
Take	a	paper	box,	and	mark	the	position	just	on	the
perimeter.	Use	a	straight	line	to	cut	off	the	extra
part	of	the	length;	calculate	the	length	and	width	of
the	paper
(written	on	paper)
21 × 21.5	m	441.5	(square	centimeter)
Answer:	441.5	square	centimeters	are	needed
[Q:	Can	the	wrapper	wrap	the	chip	box?]	(Students
performs	hands-on	operation)
Paper	wraps	the	box,	�inds	that	the	paper	is	higher
than	the	height.	Marks	the	box	height	with	a	ruler
line	to	indicate	what	will	be	part	of	the	packaging
paper	and	to	cut	off	the	excess	height.	The	length
and	width	of	the	paper	are	calculated:
(written	on	paper)
21.5 × 14.2 = 305.3	(square	centimeter)
Answer:	441.5	square	centimeters	are	needed
The	same:	Say	what	you’re	thinking
The	�irst	step	is	obtaining	the	paper	packaging	box.
The	second	step	is	determining	the	box	length	and
width.	The	third	step	is	calculating	the	length	×
width	to	�ind	the	area	for	this	piece	of	paper

(Inspired to understand, explains the
problem-solving strategy,
demonstrates clear thinking)
(in accordance with the hands-on
problem-solving strategies)
(box length to meet the requirements,
forgets that the paper height should be
consistent and column side)
Production rules: P1 Seeking
cylindrical side area → Seeking the
area of a rectangle, P2 Seek the area of
a rectangle → length*width, P3
length*width, measure the length and
width
Manual: length, forgets the habit of
examination and re�lection in the
process of solving the problem
(after a simple prompt, encounters a
dif�iculty with solving the problem)
(Hands-on operation, student corrects
the mistake by themselves)
Manual: does not measure the length
and width, writes the answer
Correct calculation
Retrieval: to change the length in
program memory, the production type
is automated to calculate the sum
(Student’s own summary)



Oral	report Cognitive	process	analysis

[Diagnosis]	RanA	demonstrated	clear	problem-solving	ideas	and	skilled	operation	but
did	not	have	the	habit	of	checking	the	answer	after	the	problem-solving	process.	The
�irst	time,	she	forgot	the	height	of	the	chip	can,	and	after	being	prompted	to	check	after
the	discovery	of	the	error,	she	corrected	the	problem-solving	process

Note the content of () is a part of the description

3.
After-school exploration stage 
The after-school study was conducted on December 20, 2011.
The process of solving the “cylindrical side area” after-school

inquiry problem based on CMMPS is shown in Table 8.24.

Table	8.24 Analysis of the cognitive process of the “cylindrical side area” after class

 Visual Production Retrieval Goal Imagine Manual

1 Visual
coding

     

2   Related semantic
knowledge in
long-term
declarative
memory

   

3    The
side
area
of it?

The side area of
it?

 

4 Code “the
side area of
it?”

     

5  What is the side area
of it? → which parts
are included in the
side area?

    

6     Which parts are
included in the
side area?

 



 Visual Production Retrieval Goal Imagine Manual

7 Code “cut
one piece of
cylinder
side area”

     

8  Side area → cylinder
side area—cut area + 
two rectangular
areas

    

9     Cylinder side
area—cut area 
+ two
rectangular
areas

 

10     Find the side
area of the
cylinder

 

11   The side area of
the cylinder

   

12  Find the side area of
the cylinder → 2πr*h

    

13      The side
area of the
cylinder is
2πrh

14     Cut area  

15   Cut area    

16  How much to cut the
area → cylindrical
side area × 1/6

    

17      The area
cut is
2πrh × 1/6

18     2 rectangular
areas

 

19  Rectangular area → 
h × r

    

20      The area
of two
rectangles
is 2 × h × r



 Visual Production Retrieval Goal Imagine Manual

21  Side area → 
cylindrical side area
—cut area + two
rectangular areas

    

22      2πrh—
2πrh × 
1/6 + 2 × 
h × r

23      End

Table 8.24 presents a solution strategy in which each column
represents the content of a module at different times in the problem-
solving process. The leftmost column number represents the line
number, and each row represents the cognitive logic step, which is not
the same as the actual problem-solving process. The last line indicates
the end of the cognitive process, that is, the end of the problem-solving
process. RanA participated in the after-class oral report, as shown in
Table 8.25. The left side of the table is the oral report data recorded
during the experiment, and the right side is the cognitive process
analysis of the oral report data, which was obtained via CMMPS
analysis. The goal of the diagnosis is to divide the cognitive process on
the right side of the analysis and compare it with the CMMPS-based
problem-solving cognitive process (as shown in Table 8.24).

Table	8.25 Analysis of after-class oral english report data of RanA classmate for “cylindrical side
area”

Oral	report Cognitive	process	analysis

[Read]	There	is	a	cylinder,	after	cutting	a
piece,	as	shown	in	Fig.	8.11.	Can	you	�ind	its
side	area?	Note	that	h = 10	cm,	r = 4	cm

Enter the text information by reading the title,
and perform visual coding to form a
propositional text frame and question patterns



Oral	report Cognitive	process	analysis

[Analysis]	Use	the	area	of	the	entire
cylinder	minus	the	area	of	the	missing
piece
(Written	on	paper	in	3	min	and	7	s)
3.14 × 4 × 2 × 10–4 × 10
 = 6.28 × 2 × 10–40
 = 12.56 × 10–40
 = 125.6–40
 = 85.6	(square	centimeters)
A:	The	area	is	85.6	square	centimeters

Problem-solving strategy
Goal: area of rectangle
(Think: the missing part is rectangular, the
area is h × r)
Manual: Think of “4” as “2” when performing
the calculation
(Solving steps are complete)

[Diagnosis]	RanA	made	an	error	at	the	beginning	of	the	problem-solving	process.
Namely,	the	cutoff	part	was	mistaken	for	a	rectangle	and	missed	due	to	cutting	off	the
addition	of	two	rectangular	areas.	She	did	not	understand	the	side	with	irregular
graphics.	The	other	error	was	due	to	a	careless	calculation	process,	which	eventually
led	to	an	error	in	the	solution

Note () is a description

4.
The �irst cognitive diagnosis intervention 
The �irst cognitive diagnosis intervention was conducted December

21, 2011. RanA’s �irst cognitive diagnostic intervention oral report
analysis is shown in Table 8.26. The oral report data recorded during
the experiment are shown on the left. On the right is the cognitive
process analysis of the oral report data that was obtained via CMMPS
analysis. The diagnostic result is based on the CMMPS-based problem-
solving cognitive process (as shown in Table 8.24).

Table	8.26 Analysis of the �irst cognitive diagnosis of the “cylindrical side area” of RanA

Oral	report Cognitive	process	analysis

[Reading]	There	is	a
cylinder.	After	cutting
one	piece,	as	Tutu	Fig.
8.11	shows,	can	you	�ind
its	side	area?	H = 10	cm,
r = 4	cm

The text information is input by reading the problem, and the
propositional text frame and the problem pattern are formed
through visual coding

Analysis	(see	their	last
topic,	think	for	1	min

Retrieval: activates declarative knowledge and procedural
knowledge related to the side of the cylinder



Oral	report Cognitive	process	analysis
and	20	s)
Q:	How	to	solve	the
problem?
The	side	area	of	the
cylinder	for	this	part,
minus	the	missing	part
Question:	Which	side
includes	several	parts?
(by	hand	on	the	map	to
the	surface	[not
included]	to	A)
Ask:	Think	carefully
Including	the	two
parallelograms	and	the
outside	the	area	(left
side	cylindrical	cut)
Q:	Why	these	two
graphics?
Because	when	you	cut
them	out,	it	displays	two
faces.	It	includes	two
parallelograms,	and
outside	the	area	(left
side	cylindrical	cut)
[Ask:	Why	there	are	two
more	graphics?
Because	of	the	cut	piece,
and	the	exposed
surfaces	becomes	two
pieces
Question:	What	is	the
shape	of	these	two
graphics?
Parallelogram
[Q:	How	about	you	think
for	a	minute?]
Q:	These	two	edges	in
the	graph	(mark	the
radius	and	height)	form
a	vertical	angle.	What	is
their	relationship?
Vertical,	right	angle
Q:	What	shape	is	it?

Goal: rectangular area. (In the previous problem-solving strategy,
missed two sides of the rectangular area, does not understand the
irregular graphics) Goal: two parallelograms + cut the remainder of
the cylindrical side. (Thinks of the problem, thinks correctly, but
mistakes the rectangle for a parallel quadrilateral, which looks like
a parallelogram.)
Retrieval: activates the related knowledge Retrieval: parallel
quadrilateral knowledge (looks at a parallel quadrilateral)
(a simple hint)
Retrieval: activates the concept of right angles Production:
Rectangular in the right angle and parallel quadrilateral
Manual: calculates the whole side area of the cylinder
Manual: calculates the area of two rectangles
Manual: The area of the side of the cylinder plus the area of two
rectangles. (Cuts off part of the area, mistakes for a rectangle minus
the cutoff area)



Oral	report Cognitive	process	analysis
Rectangle
Q:	Will	you	calculate	the
side	area	now?
Yes
(writes	down	the
process	of	solving	the
problem	in	3	min	and
35	s)
3.14 * 2	*	4	*	12.56	*	2	*
10
 = 12.56	*	2*	10
 = 25.12	*	10
 = 251.2	(cm)
4*10	*	2
 = 40	*	2

 = 80	(cm2)

251.2 + 80 = 331.2	(cm2)

4*10 = 40	(cm2)

331.2	−	40 = 291.2	(cm2)

A:	The	area	is	291.2	cm2

[Diagnosis]	Under	gradually	guidance,	RanA	came	up	with	the	correct	problem-solving
ideas	but	made	some	mistakes	in	cutting	off	the	rectangular	areas,	leading	to	an	error
in	problem	solving

Note () is a description

5.
The second cognitive diagnosis intervention 
The second cognitive intervention was conducted on December 22,

2011. The second cognitive diagnosis intervention oral report data for
RanA is shown in Table 8.27. The left side of the form shows the oral
report data recorded during the experiment; the right side shows the
CMMPS analysis of the cognitive process. The diagnosis is obtained
from the cognitive process analysis on the basis of the CMMPS problem-
solving cognitive process (as shown in Table 8.24).



Table	8.27 Analysis of the second cognitive diagnosis of the “cylindrical side area” of RanA

Oral	report Cognitive	process	analysis

[Read	the	question]	There	is	a	cylinder.	After	cutting
a	piece,	as	shown	in	Fig.	8.11,	can	you	�ind	the	side
area	of	it?	h = 10	cm,	r = 4	cm

Read the text information of the
problem, and form the propositional
text frame and the problem pattern
after visual coding

[Analysis]	Look	at	the	question.	What	do	you	need	to
do?
(Thinking	for	10	s)
[Q:	How	to	cut	the	area	of	this	face?]
Multiply	the	radius	by	the	height
[Q:	What	is	the	surface	cut	off?]
(Thinking	for	15	s)
[Q:	Like	this,	what	is	the	shape	of	the	cut?]
(Physical	display	side	of	the	paper-packed
cylinders)
Round
[Q:	How	to	answer	this	question?]
(Thinking	for	30	s)
Radius	multiplied	by	high
[Q:	Is	this	rectangle	cut	off	from	a	rectangular	area?]
No,	it’s	round
[Q:	how	to	ask?]
(Thinking	for	48	s)
[Q:	What	part	is	the	cut	area	to	the	entire	side?]
The	whole	circle	is	360	degrees,	the	cut	off	the	part
is	60	degrees,	accounting	for	60%
[Q:	how	to	�igure	out	60%?]
(Thinking	for	39	s)
Accounting	for	one-sixth	of	the	entire	circle	(side)
3.14 × 4 × 2 × 10	and	then	divide	by	6
(Written	on	paper	in	3	min	and	30	s)
3.14 × 4 × 2 × 10
 = 12.56 × 2 × 10
 = 25.12 × 10

 = 251.2	(cm2)

251.2 ÷ 6	≈	41.9	(cm2)

Retrieval: Knowledge of the side
area of a cylinder
Goal: The part that is cut is a
rectangle. (The key reason for
mistakes)
(Guide the student to think about the
shape of the cut surface)
Visual: physical
(Easy to answer correctly)
Retrieval: fan area formula
(Calculation error)
Visual: cut shape
(Shape to determine the correct
answer)
Retrieval: Activates the area
calculation formula
Retrieval: The degree of the circle
and the known conditions
(Correct understanding, but makes a
calculation error, score knowledge is
not strong)
Rethinking
(Self-re�lection, obtains the correct
answer)
Manual: The area of the entire side
of the cylinder
Manual: Cut off part of the side area
Manual: The area of the entire side
minus the area of the side of the
cutout
Manual: The area of two rectangles
are added by cutting
Manual: Required side area
(Summary of problem-solving ideas,
clear thinking, correct calculation)



Oral	report Cognitive	process	analysis

251.2–41.9 = 209.3	(cm2)

4 × 10 × 2 = 40 × 2 = 80	(cm2)

209.3 + 80 = 289.3	(cm2)

A:	Its	side	area	is	289.3	(cm2)
[Q:	Does	this	process	tell	you	something	about
solving	problems?]
The	side	of	the	cylinder	minus	the	missing	piece,
plus	the	inside	of	these	two	small	rectangular	areas;
the	missing	piece	of	the	entire	cylinder	side	area	is
one-sixth	of	the	whole

[Diagnosis]	Summary:	Through	the	physical	display	method,	the	student	easily	found
that	the	cut	surface	was	a	cylindrical	side,	the	side	of	the	cut	area	accounted	for	one-
sixth	of	the	entire	side,	the	problem-solving	strategy	was	clear	and	de�inite,	and	the
answer	was	calculated	correctly

Note () is a description

6.
Comparative analysis of solving problems in different stages 
The characteristics of the problem-solving process of RanA at

different stages are shown in Table 8.28.

Table	8.28 RanA’s cognitive process changes in different stages

Stage The	characteristics	of	the	problem-solving	process

Preclass
inquiry
(December
17th)

The topic is relatively simple, the idea of solving the problem is clear, and the
operation is smooth. However, there is no habit of checking the process of solving
the problem, The height of the potato chip can was forgotten in the �irst
operation. After examination, it was calculated, and the �inal problem was solved

After-class
inquiry
(December
20th)

It is dif�icult to explore the questions after class. In the beginning, the problem of
solving the problem is wrong, and part of the cut is mistaken for a rectangle.
However, the student missed two rectangular areas due to the new cut area. The
side of the irregular �igure is not understood. In addition, an error was made in
the calculation process due to carelessness and ultimately led to a failure to solve
the problem

First
intervention
(December
21st)

Pilot step-by-step guidance. Generate the right idea for solving the problem. The
error that the cut part is rectangular led to a problem-solving error



Stage The	characteristics	of	the	problem-solving	process

Second
intervention
(December
22nd)

By showing the material object. The student easily �inds that cut off surface is a
cylindrical surface. The student �igured out the side that had been cut off is the
one-sixth of the whole side. Demonstrates clear thinking and correct calculation

As shown in the comparative analysis of Table 8.28, with a
minimum number of prompts, RanA showed obvious changes in her
problem-solving process, which helped her to answer the question
correctly and form a good method for solving the problem.
7.

Teacher interviews 
With respect to the usual learning situation of RanA, her

mathematics teacher, Han, re�lected the following:
(1)

RanA is a careful and hard-working student. After the completion
of the task assigned by the teacher, she will read, preview, and �ind
the previous topic to work on, but the result is not guaranteed to
be correct.

 

(2)
Of 90% of the questions that the teacher says can be solved,
approximately half of the questions will be solved. The
transformation of the question type will be prone to errors, and
her ability to understand the problem independently is poor.

 

In the course of solving problems, RanA performed calculations
carefully, and her ability to transfer side concepts was poor in the after-
class inquiry question. After the intervention, the student could
generate solution strategies and answer the questions correctly, and
her performance was in line with that described by the classroom
teacher.

8.3.4	 Discussion
(一) Role of physical display or operations in problem solving

The “cylindrical �lank area” tests the ability of students to apply
what they have learned to solve practical problems. The area of the



rectangle is 94% of the union, but many students do not calculate the
area of the cylindrical side wrapping paper. The reason is that the
cylindrical side wrapping paper is converted into a rectangular shape,
increasing the dif�iculty. This dif�iculty also occurs in after-school
inquiry question. The thinking of students in the stage of concrete
operation is not formalized; thus, they require speci�ic support. The
physical display or operation can help the students perform this
transformation smoothly. Thus, a complex problem can be transformed
into a simple problem, which is helpful for solving the problem.

(二) Reviewing during the process of problem solving

With respect to the problem of solving the “cylindrical side area”,
some students correctly solved the problem, but because of
carelessness, their calculation was incorrect. After inspection, they
were able to quickly and accurately correct their error. Both Polya’s and
He�ield’s mathematical problem-solving models underscore the
importance of inspection and checking. Hunt�ield noted that inspection
is a valuable activity. In a narrow sense, some trivial mistakes can be
identi�ied through inspection; in a broad sense, we can often �ind other
ways to solve the problem, �ind connections with other problems, and
sometimes from the process of solving problems, we can extract useful
information for other situations and then become a better problem
solver.

(三) Motivation and beliefs in the process of problem solving are
highly important.

In solving the “trademark paper area” experiment, some students
give up on thinking to answer the question in a very short period of
time. However, the teacher prompted them to think carefully several
times, and they eventually answered the question correctly. Jonathan’s
research shows that motivation and beliefs also play important roles in
problem solving. ① Polygam additionally argues that “the extent to
which you get involved in the question will depend on how ardent you
are in solving it. Unless you have a very strong desire to do so, the
possibility of solving a real problem is very small” (Georgia, 1987). The
role of motivation and beliefs in the problem-solving process is a



distinct area of study. However, it is not the focus of this study and so is
only brie�ly discussed here.

8.4	 Explanation	of	the	Experimental	Results
for	Mathematics	Teaching
8.4.1	 Starting	from	the	Real	Life,	Creating	a	Problem
Situation	and	Designing	a	Typical	Problem
Many studies (Verschaffel, 2002) have shown that providing more
opportunities for students to solve math problems in real-life situations
helps them transform real problems into mathematical models and
improves their mathematical problem-solving ability. With respect to
the background of or problem situation, Jonathan reported that the
problem situation generally needs to meet the following conditions: (1)
include background knowledge of the story; (2) be from a specialized
�ield; (3) have a time limit; (4) all the elements are interrelated; (5)
have a generally acceptable solution; and (6) stimulate the willingness
to solve the problem (Jonassen, 2000). In the process of mathematics
teaching, teachers should create situations based on reality, avoid
pseudo situations and pseudo applications, and avoid mathematical
modelling activities at low levels and artisan operations. This study
focused on the “mode” and “cylindrical �lank area” and other areas of
knowledge and presented a problem situation according to the reality
of students’ lives, the typical design problem, and the basis and
principles of design.

8.4.2	 The	Problem-Solving	Stage	Is	Integrated	into
Classroom	Teaching	to	Help	Students	Form	Good	Ideas	for
Solving	Problems
Polya’s division of mathematical problem-solving stages provided a
basis for cultivating students’ problem-solving ideas. This �inding
suggests that teachers should not directly present the problem-solving
process to students while they are lecturing but should adopt the
method of “lecturing by doing” and integrate the problem-solving
stages implicitly into the problem-solving process. For example,
consider the unknown quantity �irst. What are the known data? What



are the conditions? After a period of time, the students will also form a
habit of solving the problem in this way and then form good ideas of
how to solve the problem.

8.4.3	 When	a	Student	Has	Dif�iculty	Solving	a	Problem,	the
Teacher	Provides	an	Appropriate	Hint
Students will inevitably encounter dif�iculties in the process of solving
problems, and they should be given enough time to think. Students
should be trained to solve the problem and when encountering
dif�iculties, to �irst think of the habit of problem solving. If students fail
to make progress after a period of thinking, teachers should provide as
few hints as possible and gradually guide students to �ind solutions to
the problems and answer the questions correctly.

8.4.4	 Pay	Attention	to	the	Cultivation	of	Students’
Interests,	Attitudes,	and	Willpower
The Schoenfeld survey revealed that students’ incorrect attitudes and
beliefs about mathematics are important factors in�luencing their
problem-solving performance and that these incorrect attitudes and
beliefs are formed through students’ school experiences (Schoenfeld,
1985). Polya also stressed that education will teach students problem
solving when students solve problems that are not too easy for them,
when they learn that defeat is not hungry, when they learn to
appreciate a little progress, when they wait for the main idea, and when
they leave out what is not the main idea. If students have no chance to
strive to solve a problem, then their mathematics education will fail
(Polya, 1982). In school education, teachers should consciously
cultivate these factors through a daily teaching plan, correctly apply
these rules in class and ask questions. Through lectures, teachers
should perform observations and practices for many years so that
students gradually develop good problem-solving skills.

8.5	 Summary
This chapter selects the typical knowledge points of declarative
knowledge and procedural knowledge to apply the “one-on-one”



cognitive diagnosis method to the practice of primary school
mathematics teaching.

In terms of the “mode” knowledge diagnosis and intervention, 28
students participated in the oral report experiment, 18 students
participated in the �irst cognitive diagnosis intervention, and 13
students participated in the second cognitive diagnostic intervention.
Two cognitive diagnoses during the intervention for each student
provided statistical data and strategy choices for two questions,
resulting in a total of 118 passenger oral report experiments. We
encoded and analyzed the oral report and combined all the statistics
with the case in-depth analysis. The results show that the changes in
the cognitive process during different stages of the “one-on-one”
cognitive diagnosis intervention are signi�icant and help student to
solve the problem correctly.

In a sixth-grade class of 50 students, the topic of “the cylindrical
lateral area of the knowledge point of diagnosis and intervention was
the cylindrical side area” was used to construct a knowledge test. Forty-
eight students participated in the preclass oral report experiment, 47
students participated in the after-class oral report experiment, 46
students participated in the �irst cognitive diagnosis intervention, and 5
students participated in the second cognitive diagnosis intervention. A
total of 146 participants were in the oral report experiment. We
encoded and analyzed the oral report and combined all the statistics
with in-depth analysis. The results show that the changes in the
cognitive process during different stages of the “one-on-one” cognitive
diagnosis intervention are signi�icant and helped students solve the
problem correctly.

The prospect of “one-on-one” cognitive diagnosis is favored by
many educators, and the diagnostic effect is remarkable. However, this
method is not suitable for large portions of daily mathematics
classroom teaching.
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More than 2000 years ago, the “heuristic” of Confucius (551–47 BC)
and the “maternity witchcraft” of Socrates (470–39 BC) were major
questioning methods in education. By asking questions, educators
guide students to think and ultimately achieve their learning goals.
According to the interaction between teachers and students by
Confucius and Socrates, the content of questions should be arranged in
an orderly, logical and cognitive manner.

Currently, classroom instruction is still the major format of school
education. Classroom interaction is important in classroom teaching.
Classroom instruction is a practicum of cognitive activities (Zhong,
2012). Recent studies have shown that interactions between teachers
and students in classrooms essentially involve a series of social
cognitive processes (Schwarz et al., 2009; Wedin, 2010). This book
studies existing methods for analyzing classroom interactions from the
perspectives of the behavioral system and the information system.
Furthermore, this book analyzes classroom interactions as learning
processes on the basis of brain science, cognitive neuroscience,
psychology, and arti�icial intelligence. Finally, this book simulates the
interactions in ACT-Rim to better understand the cognitive processes
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and to help teachers understand the learning process thoroughly and
thus design effective teaching methods to assist students in learning.

9.1	 Existing	Classroom	Interaction	Analysis
Method
9.1.1	 Behavioral	System	Perspective
From the perspective of the behavior system, studies of teaching focus
on two aspects. The �irst is the teaching value of studying speci�ic
behaviors.

Studies that have focused on the relationship between learning
persistence and the teaching interaction of adult learners have shown
that 26% of learners agree that asynchronous discussion is positively
related to persistent learning. Wai King Tsang’s study examined the
interaction between teachers’ feedback in nonnative English classes
and students’ hand-raised oral reports. The results revealed the
following: (1) Redoing may trigger other forms of feedback. (2)
Although redoing and explicit modi�ication help correct spelling
mistakes, discussion, and consultations are more conducive to the
correction of grammatical errors (Tsang, 2004). Researchers such as
Judith Kleine have examined the relationships between different
formats of interaction (such as face-to-face communication without
using a computer, computer-based collaborative asynchronous
communication, and computer-assisted face-to-face communication).
Research has shown that computer-mediated interactions are more
regulated; however, there is more learning in face-to-face interactions
than in computer-mediated interactions.

Another emphasis of research on pedagogical analysis conducted
from the behavioral system perspective is a detailed hermeneutic
analysis of interactions. The topics include an effective and reliable
method for de�ining the structure and characteristics of the dialog, the
role of dialog as understood through interactive dialog analysis, and the
computing model of dialog in the intelligent educational system
(Pilkington, 2001). Better interactive quality results in a higher level of
interaction (Moore & Marra, 2008).



Typical classroom interaction analysis methods include the
Flanders interaction analysis system (FIAS) and student–teacher
analysis. The Flanders interaction analysis system is a classroom
behavior analysis technology proposed by Flanders while at the
University of Minnesota in the 1960s. It is used to record and analyze
the processes and impact of classroom lingual interactions between
teachers and students. The system consists of three main parts: (1) a
set of coding systems for describing interactive behaviors in
classrooms; (2) a set of standards for observing and recording coding
standards; and (3) a matrix for displaying data for analysis. Ning Hong
et al. used the Flanders interaction analysis system to analyze a middle
school physics class and ameliorate the shortcomings of FIAS (Ning &
Wu, 2003). S-T analysis is used mainly for quantitative analysis of
classroom interactions. S-T analysis of teaching behaviors is divided
into S (student) behaviors and T (teacher) behaviors. It moreover
divides teaching into four different teaching modes: the practice mode,
the lecture mode, the conversational mode, and the mixed mode (Fu &
Zhang, 2001). The S-T analysis results can be represented with S-T
charts. Shan Yingjie from Shaanxi Normal University used S-T analysis
of educational technology to analyze education processes in the
Educational Technology Research Methods course, the TV Principles
course, and six other specialized courses (Shan, 2008).

9.1.2	 Information	System	Perspective
In the �ield of teaching analysis, some scholars regard teaching as a
process of information �low. Professor Li Kedong carried out
information �low analysis on the cognitive learning process in the
teaching system and adopted functional simulation, a method of
systematic scienti�ic research, to analyze the teaching system (Li,
1990). A. Dean Hauenstein introduced the concept of systems into
instruction and made it clear that all systems are cyclic processes of
input, process, output, and feedback. He suggested that the instruction
system was an information system (Malan & Sheng, 2005).

Professor Yang Kaicheng also considers the instruction system
essentially an information system. The analysis of the teaching system
is actually an analysis operation, which uses another coding system to
characterize the natural language representation of the teaching



system, builds a teaching analysis from the perspective of information
systems, starts from the overall functional mechanism of the teaching
system, and introduces the teaching analysis from the perspective of
the information system into the actual analysis of the operation (Yang,
2007). He proposed IIS (instructional information set) graph analysis.
Finally, Lin et al.’s empirical research proved that the activation of
target knowledge and learning outcomes are positively related (Lin,
2009).

9.1.3	 Comments	on	Existing	Analytical	Methods
(1)

The Flanders interaction analysis system (FIAS) mostly uses �ixed
time units (such as every 3 s) to collect data, which can easily lead
to “meaning unit” segmentation. Additionally, the observation
scale quanti�ies only the language behaviors of teachers and
students, which is too approximate to capture the whole-class
interaction process and thus cannot re�lect all the interactions in a
class. It pays more attention to teachers’ (or students’) language
behaviors, such as the proportions of teachers’ and students’
speech, the number of teachers’ questions, and the number of
students’ answers. The analysis is moreover limited to the level of
explicit behavior.

 

(2)
In S–T analysis, the behavior de�initions of S and T are inexplicit.
Through the S–T analysis chart, we can determine the amount,
proportion and time of the teachers’ and students’ behaviors, but
we cannot identify how they have behaved. Additionally, we can
identify the teaching mode, but the evaluation of the teaching
process is vague.

 

(3) IIS graph analysis is an improvement of the former methods that
is based on the analysis of behavioral systems. It pays more
attention to the content of teaching and predicts teaching
effectiveness by analyzing the activation of knowledge in the
process of classroom interaction. However, IIS graph analysis
focuses on the input and output of teachers and students,
considering that internal information processing is transparent
and invisible; that is, it does not consider the internal information
processing of the students.
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9.2	 Classroom	Interaction	Cognition	Analysis
and	Simulation
9.2.1	 The	Boom	of	the	Learning	Sciences
Currently, many countries strongly support research in brain science
and the learning sciences. Arden Bement, a chief executive at the
National Science Foundation, asserted: “Fundamental research on
learning is important. In today’s complex and rapidly changing
environment, a basic understanding of the learning process is to help
us to develop a knowledge base that is necessary for the prosperity of a
world that is forever in �lux.” Beijing Normal University Cognitive
Neuroscience and Learning State Key Laboratory and Southeast
University Learning Science Research Center are conducting research in
this area.

The development of the learning sciences provides a new
perspective for effective research and study. The learning sciences
constitute an interdisciplinary �ield, as the following quotes
demonstrate: “It incorporates a variety of theoretical perspectives and
research paradigms about human science in order to understand the
nature and conditions of learning, cognition, and development.” “The
goal of learning science is primarily to better understand cognitive
processes and social processes to produce the most effective learning
and, secondly, to redesign our classrooms and other learning
environments with the knowledge of science so that Learners can learn
more effectively and deeply (Sawyer, 2006).” The learning sciences
advocate that learning be placed in a broad perspective of
multidisciplinary research, which covers many �ields of research, such
as information science, brain science, cognitive science, psychology, and
education, and applies the latest developments in brain science to the
learning and education process by building bridges between the mind,
the brain, and education.

The U.S. Department of Education’s Of�ice of Educational
Technology released the National Educational Technology Plan 2010
(“Plan”) on March 5, 2010, entitled “Changing American Education:
Technology to Make Learn More Powerful.” The term “learning science”



appears many times in the plan. The latest research in the learning
sciences reveals the process of how people learn, which provides an
important theoretical basis for the application of educational
technology. The plan also acknowledges that current education systems
focus little attention to students’ thinking processes, place too much
emphasis on the mastery of factual knowledge when assessing
students, and do not focus on students’ feedback and improvement of
immediate learning during the learning process. This situation is also
common in the Chinese education system. The continuous development
of the learning sciences provides an important foundation to study
classroom interactions from the perspective of the learning process.

9.2.2	 Classroom	Interaction	Cognitive	Analysis	Framework
According to the current psychology and cognitive neuroscience
research results (Banks, 2009; Nader & Hardt, 2009; Torey, 2009;
Wilson et al., 2004), the classroom interaction cognitive analysis
framework—CAUT (cognitive architecture of human thinking) (Cui et
al., 2011)—is shown in Fig. 9.1.

Fig.	9.1 CAUT

CAUT pays close attention to students’ thinking processes and
particularly to the understanding of the learning process. The model
includes the following parts: sensory organs, sensory controllers, object
perception, long-term declarative memory, long-term procedural
memory, active objects (working memory), control and decision-
making, situation-goal-anticipation, motor control, device effects, the
outer loop, and the inner loop. To further describe CAUT, it can be
divided into the following eight modules: (1) External loop/Internal



loop: internal loop or external loop; (2) IO (internal object): internal
object; MC (declarative memory retrieval check): declarative memory
extraction to determine whether the perception of the object reveals a
new object or the old object; (4) LTDMO (long-term declarative
memory operation): long-term declarative memory cognitive
operation; (5) AO (active object buffer): activation of the collection of
objects, including seeing and hearing the object, is a part of working
memory (working memory); (6) AADM (active action buffer and
decision-making): activation of action, decision-making and related
parts; (7) CGE (context, goal, expectation): context, target, and
expectation related to current task; and (8) Action: action module,
including motion control and effectors. The sequence of modules in
CAUT is shown as in Fig. 9.2.

Fig.	9.2 Modular representation

When we perceive (see or hear) an external object, we consider it
an internal object by visual or auditory channel coding and then
determine if the internal object is stored in the object and activate the
corresponding object if it has already been stored in long-term
declarative memory; otherwise, it will be repeated and directly enter
into the active object (part of the working memory) (for example, in
real life, we remember that a strange phone number needs to be
repeated). The objects in working memory activate corresponding
actions in long-term programmatic memory. There may be more than
one active action, and one action is selected through decision-making.

Compared with other cognitive structures such as ACT-R (Anderson
et al., 2004), SOAR (Laird et al., 1987), and CLARION (Naveh & Sun,
2004), the model has the following features:
(1)

An internal speech loop is added between the effector and the
sensory organs, and the existence of the loop has been
demonstrated in cognitive neuroscience (Pulvermüller & Fadiga,
2010; Wiley, 2006).

 

(2) Long-term memory is further divided into declarative memory
and procedural memory and corresponds to the knowledge and



and procedural memory and corresponds to the knowledge and
skills in the learning process.  

(3)
Emphasize the consolidation of memory. Recent studies have
shown that the use of long-term memory in learning or other
cognitive processes is separate from the consolidation of memory
and that the consolidation of memory occurs after cognitive
processes (Born & Diekelmann, 2010; Maquet, 2001).

 

9.2.3	 Cognitive	Analysis	and	Simulation	of	Classroom
Interaction

(一) Research subjects

We selected a math class from the seventh grade (second semester).
The content is from Chapter I, “Rich graphics world,” Section 4,
“Looking from different directions.” The textbook is a compulsory
education curriculum standards experimental textbook published by
the Beijing Normal University Publishing Group for grade seven
mathematics (May 2005 fourth edition). The instructor is Tang Lujun
from Jinan Yuying Middle School.

(二) Typical classroom interactive sequence

For research purposes, the class video was converted into text.
While watching the video, we found that teachers often used in-kind (or
teaching aids) and multimedia courseware to help students understand
why they were in a middle school mathematics class. Therefore, not
only did the teacher’s classroom discourse need to be converted into
text during the conversion process, but the entity displayed and the
contents on the big screen were also recorded using annotation and the
addition of remarks.

In this study, the “teaching goal-teaching subgoal” approach
classi�ied class interactive text. The teaching objectives were
established based on Bloom’s educational taxonomy of objectives
(revised version) (Aderson, 2009) in terms of knowledge and cognitive
process analysis. We classi�ied the teaching activities in the interactive
texts of “Looking from Different Directions” and obtained 9 types of



teaching activities in time sequences. We chose an interactive sequence
to explain the concept, as shown in Fig. 9.3.

Fig.	9.3 Explaining the concept of the “main view” in the classroom interaction sequence

(三) Interactive sequence cognitive process simulation

ACT-R has been a well-known cognitive simulation tool for many
years at the Cognitive Science Laboratory led by Anderson, a famous
cognitive psychologist at Carnegie Mellon University in the United
States. Its internal structure and parameter settings are based on a
large amount of cognitive psychology experimental data. Most of the
data have been veri�ied by NMR experiments. The extrinsic format is a
programming language. The programs written in this programming
language correspond to the cognitive preconditions of the ACT-R, which
is consistent with the cognitive process of real-life experiments and can
achieve simulation results. It has been widely used to simulate different
aspects of human cognitive behavior, such as the hornet problem,
language comprehension, pattern recognition, memory, and simple
geometric proofs.

The simulation of the learning process is very complicated and
needs to be analyzed in a particular context for each sentence.
Figure 9.3 shows a typical classroom interaction sequence. Owing to
space limitations, this section selects only the classroom interaction
sequence of “teacher question–student answer” for simulation analysis
to provide a method for classroom interaction analysis. The interaction
sequence is shown in Fig. 9.3, where T is the teacher and S is the
student.

T: “Well, what I see from the front is called…?”
S: “Main view.”



The CAUT model is used to analyze the interactive sequence of the
selected class. The results of the analysis are transformed into a
program (Lisp programming language) that can be executed in ACT-R to
simulate the learning process.

Before asking questions, the teacher has already discussed the
concept of “the main view,” which assumes that the student’s long-term
declarative memory stores “the front view as the main view.” The
following describes the teacher questioning and the cognitive process
of student responses:

(1) Students hear the teacher’s words: “Well, what I see from the
front is called…?”. The words enter the auditory pathway in the brain
(such as the vestibular pathway) and undergo neural coding; (2) the
encoded word activation-related objects are triggered in the mental
lexicon of LTDMO and into the active object set (AO); (3) the content of
the set of active objects (part of the working memory) is semantically
understood, and the target of the sentence is set to search for the
problem of searching for triples (seen from the front as?); (4) the active
object activates a production rule in long-term procedural memory and
generates the corresponding action; (5) there may be more than one
active action, and one of the actions is selected through the “decision”;
(6) the form (viewed from the front as?) is searched in long-term
procedural memory; (7) there is only one with the answer “main view,”
and the search ends; and (8) the students say the answer.

To visualize what students hear, “So, now I see from the front is
called?”, answer the “main view” of the cognitive process, with M rows
and eight columns of the cognitive matrix to represent, as shown in
Fig. 9.4. The numbers on the left indicate the line numbers, each line
represents the cognitive logic step, not the actual step, and the last line
indicates the end of cognition. The eight columns correspond to the
eight modules in Fig. 9.2. As shown in Fig. 9.4, the target is set in line 7
until the student understands the teacher in line 9. Line 12 gives the
answer, that is, the student reaches their goal, and the cognitive task
ends.



Fig.	9.4 Cognitive matrix description of the student answer to the “main view” problem

ACT-R provides an abstract cognitive structure that describes the
cognitive model from a functional point of view only. In this study, we
need to write a program that can be simulated in ACT-R according to
the analysis process of the cognitive matrix. The program is written in
the Lisp programming language. The simulation results are shown in
Fig. 9.5. The minimum time interval is 0.55 s.

Fig.	9.5 Simulation of cognitive processes

Through the simulation, we �ind that, in answering the questions,
students must �irst determine the goal and highlight its importance.
This sequence is in line with the teaching task of “informing learners’
goals” in the “Nine Teaching Events” proposed by Gagne. Based on the
objects in the activity set, match generation is activated (i.e., production
begins), and extraction is started in long-term declarative memory
(start retrieval); when multiple productions are activated at the same
time, con�lict resolution is adopted, and one of the productions is
executed. Speci�ically, at 0.5 s, one of the productions is activated to
search for long-term declarative memory to �ind the matching content.
The goal is achieved, and the cognitive process is complete.



(四) Analysis of the simulation results

Through the simulation mentioned above, the internal cognitive
process of students’ answering questions is deeply examined. This
internal cognitive process is demonstrated by ACT-R. The declarative
knowledge and procedural knowledge involved in this learning activity
are extracted. Depending on the type of knowledge, teachers use
different teaching methods, such as the main view, left view,
proposition and other declarative knowledge, mainly provided by the
teacher, to explain memory. For example, arithmetic computing, solving
equations, and geometric proofs of procedural knowledge require
students to engage in the actual training process.

The model can also analyze whether teacher‒student interactions
can effectively promote students’ cognition and meet students’
cognitive rules. For example, two different ways of asking questions,
“Do you see from the front?” and “Do you see the front view from the
front?”, fall into two different categories: the former is a search
problem, and the latter is a judgment problem. The cognitive processes
of answering these two types of questions in ACT-R differ, and students
exhibit different levels of procedural knowledge in answering these two
types of questions.

9.3	 Explanation	of	Cognitive	Process	Analysis
of	Classroom	Instruction
Through the analysis above, we �ind that different classroom
interactions produce different learning processes, which will lead to
different learning outcomes. Therefore, teachers should pay attention
to the following three aspects of classroom teaching:
(1)

Carefully designed classroom questions promote students’ deep
understanding

 
In primary and secondary school classrooms, asking questions is

still a common method of classroom interaction. However, from actual
classroom observations, teachers ask simple, casual, or even repeated
questions to enliven the classroom, some questions lack a scienti�ic
basis and scienti�ic design, low-level questions are posed, and there is



excessive inhibition of pure memory problems in the development of
students’ thinking, none of which is conducive to a deep understanding
of the teaching content. Teachers should carefully design effective
classroom questions based on the characteristics of students’ cognition
and content so that students can automatically establish connections
between old and new knowledge and deepen their understanding of
the learning content when answering questions. As seen from the
simulation process above, different questions were asked about the
“main view,” such as “What is seen as a positive?” and “Is the main view
seen from the front?”, resulting in different cognitive processes. Hong
and Lu (2010) raised the standard of effective classroom questioning
and provided a reference for teachers to design effective classroom
questions.
(2)

Providing reasonable feedback enables students to actively
participate in the learning process

 
In classroom teaching, teachers often apply simple evaluations such

as “good,” “right,” and “wrong” to students’ responses. Providing a
single feedback method, especially for students who answer incorrectly
or incompletely, lacks further inspiration and induction. It is impossible
for all students to answer teachers’ questions correctly. Thus,
reasonable inspiration and feedback are essential; even if students
provide the correct answer, teachers can ask students about the process
of �inding the answer, such as “How did you get to this answer?” and
“Why do you answer like this?”. Such questions can help students pay
more attention to the learning process, establish connections between
old and new knowledge, and develop the habit of knowing what they
are doing.
(3)

Scienti�ic design of the teaching process helps students develop
good thinking habits

 
In primary and secondary education, it is more important to help

students develop good thinking habits than help them simply acquire
knowledge. Good habits of thinking can help students engage in smooth
knowledge transfer when they encounter similar problems or new
problems and even creative problem solving. Thinking habits are an



important part of tacit knowledge and an important part of procedural
memory. Their development is a long-term process. The development
of thinking habits should be related to the teaching of speci�ic subject
knowledge, which requires teachers to explain the typical problems of
knowledge point design during instruction. Each step of the
explanation process should consciously train students’ thinking ability
and place a greater emphasis on the problem-solving process so that
students continue to develop good thinking habits when problem
solving. For example, when the concept of “modalities” in the �ifth grade
textbook (second volume) is explained, it is common practice to
provide questions and data and then tell the students that “the most
frequent occurrence of a set of data is the mode of the set of data.”
Another method is to state the reality, such as “The school has agreed to
hold a birthday celebration next year for grade �ive, class three.
However, only the birthdays of students born in a certain month can be
celebrated. If you were the class teacher, how would you choose the
month? Which month do you think should be chosen?”. This example is
close to the students’ lives; students can therefore collect data and
select the month in which the most students who have a birthday
according to the statistical results and thereby grasp the concept of the
“mode.” Although two different teaching processes allow students to
learn the “plural” concept, there is a difference in the degree of
conceptual understanding and ability to use the “plural” concept to
solve practical problems. During classroom teaching, teachers should
help students develop thinking habits to use mathematical knowledge
to solve practical problems.

9.4	 Summary
This chapter analyzes the existing methods of classroom interaction
analysis from the perspectives of the behavior system and information
system and, on this basis, proposes analyzing classroom interaction
from the perspective of the cognitive process. In accordance with the
research results of brain science, cognitive psychology and cognitive
neuroscience, this chapter proposes a classroom cognitive framework
—i.e., CAUT. The typical classroom interaction sequence of “Reading
from Different Directions” in a middle school (Grade 7) mathematics



classroom was subsequently analyzed by using CAUT, and a cognitive
simulation was implemented with ACT-R. According to the analysis and
simulation results of classroom interaction cognition, three suggestions
for classroom teaching are proposed to help teachers design more
effective teaching methods.

However, during the process of conducting classroom interaction
analysis based on the learning process, this chapter performs only a
brief analysis. The preparation of a cognitive program requires a
speci�ic and profound understanding of the learning process. How to
use the CAUT model to automatically generate cognitive programs and
ACT-R to achieve whole-class simulation needs to be further studied.
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The	Compulsory	Education	Mathematics	Curriculum	Standards (2022
edition) emphasizes that the mathematics curriculum should pay
attention to the teaching level, stimulate the learning interest of
students with learning dif�iculties, encourage them to think positively,
cultivate good learning habits, and adapt to the developmental needs of
students (Ministry of Education of the People’s Republic of China,
2022). Students with learning disabilities constitute a particular group
to which frontline teachers give attention. This book proposes a
cognitive simulation of problem-solving strategies based on existing
research. Taking the problem of “plurality” in primary school
mathematics as an example, this book, which is based on the cognitive
problem-solving model in primary school mathematics, analyses the
cognitive process of problem-solving strategies, writes a cognitive
process, and performs a cognitive simulation. Afterward, students with
learning disabilities were selected and interviewed by their teachers to
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understand their usual learning situation. The cognitive simulation of
problem-solving strategies for students with learning disabilities
helped visualize the internal problem-solving process, helped teachers
develop personalized intervention schemes, helped students overcome
bad problem-solving habits and develop good problem-solving
strategies. Problem-solving strategies and cognitive simulation are
essential for designing and developing intelligent tutoring systems,
building innovative learning environments, and providing targeted
cognitive diagnosis and intervention.

10.1	 Introduction
10.1.1	 Analysis	of	Students	with	Learning	Disabilities
Learning disabilities (LDs) were �irst proposed by American scholar S.
Kirk in 1962 and mainly refer to students with average intelligence
whose academic performance is lagging (Bateman & Kirk, 1962). Kirk
and Chalfant (1984) classi�ied learning disabilities as developmental
learning disabilities. Tournaki (2003) discussed the importance of
strategy instruction and teaching on mathematical ability (MD) and the
importance of direct tactics in addition to instruction for mathematical
ability (MD). In recent years, many studies have focused on the
characteristics of problem-solving strategies and the development of
dif�iculties in primary school mathematics (addition and subtraction
over 20 years) (Geary et al., 1999).

Research on learning dif�iculties of students with learning
disabilities has been conducted using different methods. Bai et al.
(2020) compared and explored the strategies used by students with
learning dif�iculties and ordinary students in the process of solving
subtraction problems and noted that students with learning dif�iculties
chose borrowing strategies more often, whereas ordinary students
chose decomposition strategies more often. Additionally, students with
numerical dif�iculties demonstrated poor strategy implementation
effectiveness and relatively rigid choices. Liu and Mao (2021) adopted a
meta-analysis method to explore the effectiveness of interventions in
improving the mathematics performance of students with mathematics
learning dif�iculties and its regulatory factors. Yang et al. adopted a
three-factor mixed experimental design and considered the cognitive



processing of students with learning dif�iculties to analyze the in�luence
of different levels of central executive load on the use of estimation
strategies by students with math learning dif�iculties and ordinary
students. Wang et al. explored the in�luence mechanism of working
memory components on word problem solving in children with math
learning dif�iculties and analyzed groups of students with learning
dif�iculties, ordinary students, and excellent students from the aspects
of the central executive system, visual template, and speech loop. Liu
(2018) tested the word problem-solving ability of students in the
fourth grade of primary school. The results revealed that students with
math learning dif�iculties were able to identify information less
effectively than ordinary students were and that the use of schema
representation strategies could better help students with learning
dif�iculties solve word problems. Zhang et al. used eye movement
technology to investigate the in�luence of picture information on the
ability of students to solve different subtypes of math problems and
showed that picture information can promote the schematic
representation of problems by students with math learning dif�iculties,
thereby improving their problem-solving performance. Liu et al.
adopted an experimental research method to investigate the types of
visual representations of students with math learning dif�iculties in the
third grade of primary school in solving word problems and their
impact on word problem solving and further explored the role of
examples in promoting the bene�icial effect of visual representations in
solving word problems on students with math learning dif�iculties.

10.1.2	 Mathematical	Problem-Solving	Cognitive
Simulation
The cognitive simulation of problem solving is a topic of interest to
researchers in the learning sciences. To perform a cognitive simulation
of problem solving in junior high school mathematics, Professor
Anderson et al. (2008) of the School of Psychology, Carnegie Mellon
University in the U.S., used ACT-R (adaptive control of thought-rational)
to implement a cognitive simulation of the process of solving the
algebraic equation “7x + 3 = 38.” This simulation was performed using
ACT-R (adaptive control of thought-rational Anderson et al., 2008). Cui
et al. used the ACT-R 7.0 software developed by Anderson’s team and



the Pyactr package developed by Adrian Brasoveanu et al., which
improved language compatibility, and applied the cognitive simulation
method to explore the cognitive processes and differences between the
pro�it and loss model and the absolute value model of rational number
addition. In terms of the cognitive simulation of problem solving in
primary school mathematics, Wei et al. implemented a cognitive
simulation of problem solving in primary school mathematics to map
the brain areas activated at a particular moment of problem solving and
the brain’s blood oxygen-level dependent response (blood oxygen
level). The corresponding data of the brain’s blood oxygen level-
dependent response (BOLD) are presented (Cui & Wei, 2013; Wei et al.,
2012). Based on the cognitive process analysis method, Zhang et al.
conducted cognitive process analysis and cognitive simulation for the
process of solving the third-grade mathematics “comparison” problem
and compared the cognitive output and extraction path of teachers and
students in the cognitive process. Regarding cognitive simulation of
geometry proof problems, Gelernter et al. (1960) developed a computer
program, Geometry Machine, to simulate the human proof of geometric
theorems. Wu (1984) proposed a mathematical algorithm named “Wu’s
method” for the proof of geometry theorems from the point of view of
computers. Zhang et al. subsequently improved “Wu’s method” to
enable automatic problem solving for nearly all geometry proof
problems. Although these algorithms achieve automatic problem
solving of geometry proofs, they analyze computer problem solving
automatically without considering the actual problem-solving process
of students. Li et al. analyzed the cognitive process of problem solving
based on the cognitive model, used ACT-R to perform cognitive
simulation of parallel proof geometry problems, and used the oral
report method to compare and analyze the students’ geometry proof
process with the results of the cognitive simulation and found that the
problem-solving cognitive simulation better approximated the natural
process.

10.2	 Cognitive	Simulation	of	Problem-Solving
Strategies



10.2.1	 Methodology
The cognitive model is the basis for analyzing problem-solving
strategies. The problem-solving cognitive model is constructed based
on students’ cognitive characteristics and subject content
characteristics. The problem-solving strategy is subsequently analyzed,
and the process of selecting and implementing the problem-solving
strategy is described in the form of a cognitive matrix. The cognitive
rigor matrix can display problem-solving strategies graphically and
visually. Then, according to the content of the cognitive matrix, the
cognitive process is written using a programming language (e.g., Lisp)
to perform a cognitive simulation.

10.2.2	 Birthday	Data	Collection	and	Statistical	Strategy	in
the	Problem-Solving	Process
The	Compulsory	Education	Mathematics	Curriculum	Standards (2022
edition) emphasizes the following principles: “Guide students to �ind
and propose problems in real situations, analyze and solve problems by
using observation, speculation, experiment, calculation, reasoning,
veri�ication, data analysis, intuitive imagination and other methods
(Ministry of Education of the People’s Republic of China, 2022).”
Research has shown that the choice of problem-solving strategies is
signi�icant for students with learning disabilities in primary school
mathematics when they are solving mathematical problems. Taking the
application questions that primary students with learning disabilities
generally re�lect as examples, the dif�iculty lies in the choice of
problem-solving strategies, i.e., how to convert the application
questions into arithmetic equations (e.g., simple arithmetic equations,
quadratic equations, and binary equations). After converting the
questions into arithmetic equations, the students can use the
arithmetic operations that they have learned to answer arithmetic
questions, and the process of doing so is not complicated for the
majority of students.

“Plurality” is a typical example of declarative knowledge in Unit 6,
“Statistics,” in the second textbook for the �ifth grade. Analyzing the
process of problem solving, we �ind that data collection is the
prerequisite for solving the problem of plurality. The	Compulsory
Education	Mathematics	Curriculum	Standards (2022 edition) stresses:



“Through the language of mathematics, we can simply and precisely
describe the quantitative relations and spatial forms of natural
phenomena, scienti�ic situations and daily life” (Ministry of Education
of the People’s Republic of China, 2022). However, when solving real-
life problems, data collection is not readily available and needs to be
collected and counted. Therefore, mastering data collection and
statistical strategies is crucial for students to solve real-life problems.

Research on learning dif�iculties in students with learning
disabilities in the �ifth grade of primary school was selected as the
research object. The analysis of the experimental data revealed that
many students (e.g., DuanYC, DuanZX, etc.) had problems such as
leakage and error multiplication of the statistical strategy, which led to
problem-solving errors. Data processing of the “plurality” problem
involves collecting the number of people who have birthdays each
month and determining the month with the highest number of
birthdays after counting. To reveal the data collection and statistical
strategy in a more in-depth and visual way, a cognitive process was
written based on the primary mathematics problem-solving cognitive
model (Cui & Wei, 2012) to perform a cognitive simulation.

Figure 10.1 is a simulation used to collect the number of people who
had a birthday in May (denoted by M), i.e., the number of M’s. The
strategist �irst counts the number of M in Row 1, then the number of M
in Row 2, and �inally the number of M in Row 3. The program output is
5, i.e., “the number of students whose birthday month is May is 5.”
Figure 10.2 shows a visualization of this data collection process, with
the red circle indicating the last M. This visualization of problem-
solving strategies can help primary school students address the issue of
not being able to start processing the data. Of course, students can
choose a speci�ic problem-solving strategy according to their
preferences or problem-solving habits, and the methods mentioned
above are only a few of the options. Teachers can select effective
teaching strategies according to the simulation results and students’
actual situation in the classroom, which will help students solve
problems more effectively.



Fig.	10.1 Cognitive simulation of the data collection process

Fig.	10.2 Visualization of the data collection process

According to the analysis, the declarative knowledge required for
primary school students to correctly count the months with the highest
number of birthdays is shown Table 10.1.

Table	10.1 Declarative knowledge required to
count the months with the highest number of
birthday celebrations

(p1	ISA	count-order	�irst	1	second	2)

(p2	ISA	count-order	�irst	2		second	3)

(p3	ISA	count-order	�irst	3		second	4)

(p4	ISA	count-order	�irst	4		second	5)

(p5	ISA	count-order	�irst	5		second	6)

(p6	ISA	count-order	�irst	6		second	7)

(p7	ISA	count-order	�irst	8		second	9)

(p8	ISA	count-order	�irst	9		second	10)

(p9	ISA	count-order	�irst	10		second	11)

(p10	ISA	count-order	�irst	11		second	12)

Table 10.1 shows ten ordered pairs, where p1 represents the
ordered pair (1, 2), p2 represents the ordered pair (2, 3), and so on.



These ordered pairs are used to compare the sizes of two numbers.
Comparing the sizes of numbers has become automated for adults. If
primary school children do not master these ordered pairs, they will
make mistakes when comparing the sizes of numbers; i.e., they will not
be able to choose the month with the highest number of birthdays.

The number of birthdays in each month is now known to be 3 in
January, 2 in February, 4 in March, 3 in April, 6 in May, 4 in June, 2 in
July, 3 in August, 2 in September, 4 in October, 4 in November, and 5 in
December. Figure 10.3 shows a cognitive simulation of the month with
the highest number of birthdays, i.e., May.

Fig.	10.3 Cognitive simulation of the month with the highest number of birthdays (partial)

10.2.3	 Interviews	with	Teachers
WangC’s math teacher was interviewed during the study to understand
WangC’s usual math learning performance. The teacher’s feedback is as
follows.
(1)

WangC is intelligent, outgoing, con�ident, and active. However, he
needs to improve in language learning, which affects his
understanding of math problems. When he was in the lower
grades, he received less attention from teachers, and his language
comprehension was poor. Some topical meanings of application
questions are not suf�iciently understood, resulting in mistakes.
WangC has no problem understanding what has been taught in
class. As long as he can understand the meaning of the topic, he
has no problem expressing the equations, but carelessness can
sometimes lead to calculation errors.

 

(2) WangC solves problems very quickly and is among the top two
students in terms of problem-solving speed. He does not have a  



habit of checking his work after �inishing and thus sometimes has
a higher error rate than other students do.

The above re�lections from the student’s teacher are generally
consistent with the conclusions drawn from analyzing WangC’s oral
report data on the problem-solving process.

10.3	 Implications	for	Teaching	Mathematics
10.3.1	 Helping	Students	Develop	Good	Problem-Solving
Strategies
Good problem-solving strategies are essential to ensure students can
answer math problems correctly. There are often multiple problem-
solving strategies for the same math problem, and they often have
commonalities. Teachers should encourage students to adopt multiple
strategies and methods rather than “standardized” and “single”
problem-solving methods to solve a problem. Good problem-solving
strategies not only help students, especially students with learning
disabilities, successfully solve problems but also constitute meaningful
ways to develop students’ thinking skills in mathematics.

10.3.2	 Attention	to	Differences	in	Students’	Abilities
The “one-on-one” cognitive diagnosis can determine each student’s
mathematical problem-solving de�iciencies and, in response to the
students’ problem-solving errors, recommend different levels of
problems for students who exhibit different levels of ability. When
students encounter dif�iculties in problem solving, teachers can provide
targeted questions to gradually guide students to correctly answer the
questions independently, meet the needs of students with different
levels of ability, and promote the sustainable development of students’
mathematical ability.

10.3.3	 Early	Identi�ication	of	and	Intervention	in	Cognitive
Disorders	in	Mathematics
Dif�iculties are identi�ied in advance through “one-on-one” cognitive
diagnosis, and remedial measures are taken to reduce or eliminate



them. By analyzing the situations of students with learning disabilities
in mathematics, we can identify the cognitive barriers that lead to
learning dif�iculties and analyze the causes of these barriers according
to different types of problems and grade levels. As the saying goes,
“Rome was not built in a day.” Moreover, cognitive obstacles in the
higher grades may have gradually developed in the lower grades.
Therefore, prevention and intervention in the lower grades to address
the causes of cognitive obstacles will positively impact learning in the
higher grades. For example, students often make mistakes when
multiplying two-digit numbers. A careful analysis of the calculation
process reveals that students have already mastered the rules of simple
multiplication. However, they make “digital carry” mistakes when
adding two numbers; i.e., a particular cognitive pattern has been
formed in the brain. When �irst-grade students �irst encounter addition,
“numerical arithmetic” calculation, and problem solving, it is necessary
for teachers to focus on the use of students’ cognitive characteristics to
explain the problem-solving process in detail, which can effectively
prevent problems that may occur later in learning and effectively
“obtain twice the result with half the effort.”

10.3.4	 Targeted	Implementation	of	Special	Counseling	for
Students	with	Cognitive	Impairment	in	Mathematics
An analysis of the cognitive disabilities of students with learning
disabilities reveals that the same or similar cognitive disabilities exist at
the same grade level. An in-depth analysis of a typical cognitive
impairment will be carried out to determine the reasons for its
existence and formulate effective intervention measures to provide
targeted counseling to students with that impairment. Changing the
status quo according to which teachers explain all problems to all
students in the class can save students’ learning time and increase their
interest in math. On the one hand, this change can provide in-depth
explanations for speci�ic math problems. On the other hand, it can truly
offer an “antidote against the disease.” For example, “one-on-one”
cognitive diagnosis is a good choice in schools with students with
learning disabilities.



10.3.5	 Rational	Use	of	Students’	“Nearest	Development
Area”	to	Promote	Cognitive	Development
Teachers can be informed of students’ cognitive level through diagnosis,
develop a series of intervention measures according to the
requirements of educational objectives, present them to students in a
particular order and with speci�ic requirements, and consciously
participate in and intervene in students’ learning process. Students
acquire knowledge, skills, and problem-solving strategies, which are
internalized in their original cognitive structure and contribute to
forming a new structure, thus promoting children’s cognitive
development. Feuerstein noted that the acquisition of intermediary
experience is accompanied by the process of growth in each individual
and directly affects the individual’s cognitive development.

10.3.6	 Taking	Advantage	of	New	Technologies	to	Improve
the	Intelligence	of	Diagnosis	and	Intervention
Students with learning disabilities are a “vulnerable group” in the
classroom. To promote these students’ learning performance, teachers
must spend more time and energy, which is currently one of the
problems faced by primary and secondary school teachers. The existing
computer adaptive diagnosis systems cannot meet these students’ need
for personalized learning. At present, the continuous emergence of
technologies such as learning analytics, gesture-based technology, and
virtual reality technology is gradually being applied to the �ield of
education, which gives full play to the advantages of emerging
technologies from the actual starting point of students. Combined with
subject content knowledge, design, and development to meet the
personalized learning needs of students’ teaching robots or intelligent
cognitive diagnosis and intervention systems, the automatic diagnosis
of learning barriers and effective intervention measures can stimulate
the automatic diagnosis of learning disabilities and provide effective
interventions to stimulate students’ interest in learning, improve
diagnostic effects and enrich the classroom teaching environment.
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Conclusion
This book is based on the research results of mathematical pedagogy
and the learning sciences with respect to the process of problem
solving. It takes primary school mathematics problems as the research
objects to explore methods for problem solving via cognitive
simulation. The research process used problem-solving cognitive
process analysis, simulation and application as the main foci and
included the following three parts:
(1)

A cognitive model of primary school mathematics problem solving
was constructed, and a method for establishing an ACT-R model of
elementary mathematics problem solving was proposed. With the
Polya mathematical problem-solving model, each stage of
problem solving was described. Based on the thinking
characteristics of primary school children, typical problems in
primary school mathematics were analyzed. Based on research
from cognitive psychology, brain science and cognitive
neuroscience, a cognitive model of primary school mathematics
problem solving is constructed. The characteristics, application
scope and educational signi�icance of CMMPS lay the foundation
for analyzing the problem-solving cognitive process.

 

(2) Based on the cognitive model, an ACT-R model of typical
mathematical problems in primary school was constructed, and a
cognitive simulation of mathematical problem solving in primary
school was implemented. The problem-solving cognitive
simulation was conducted via the oral reporting method.
According to the constructed cognitive model CMMPS, the
problem-solving cognitive process of two kinds of typical
problems of elementary mathematics were analyzed, namely, the
“mode” and “addition with different denominators,” and used the
Lisp programming language to write the cognitive program to
perform the ACT-R simulation. Six students in the �ifth and sixth
grades of a primary school were tested by the oral reporting
method. Coding and analysis of the oral report data and
comparisons with cognitive simulations revealed that the two
were consistent.

 



(3)

The application of cognitive analysis and simulation in
mathematics teaching is introduced. First, the design basis and
principles of the mathematical inquiry problem are proposed
based on the cognitive process, and the design process and
method are presented. On this basis, a typical inquiry question is
designed for all knowledge points of fourth-grade mathematics.
The empirical research results for classroom inquiry teaching
showed that students’ mathematical reasoning ability, especially
those with poor mathematical reasoning ability, improved
signi�icantly after the use of typical inquiry questions.

 

The method and process of “one-on-one” cognitive diagnosis of the
ACT-R model, which is based on an elementary school mathematics
problem, were subsequently proposed, and the interaction between
students who had dif�iculty in mathematics learning and mathematics
classrooms was analyzed. The “one-on-one” method is a teaching and
diagnostic method that emphasizes the process of learning; meets the
different ability levels of children and their future levels of
development; is combined with a dynamic assessment; considers the
assessment of learning outcomes and learning process analysis;
combines the evaluation functions of comprehensive identi�ication and
classi�ication, diagnosis and prescription; and provides timely and
appropriate feedback to the students in the performance of the process.
Students are guided to gradually solve the problem to achieve the goal.
During the experiment, the typical problems of “mode” and “cylindrical
�lank area” were designed, and 118 typical oral test questions for 28
students in the �ifth grade and 146 oral test reports for 50 students in
the sixth grade were recorded. The characteristics of the cognitive
process at each stage of problem solving and the typical student’s
cognitive process at different stages of problem solving were recorded
and analyzed. The results revealed that the effects of diagnosis and
intervention were signi�icant and then their signi�icance for
mathematics teaching were expounded.

Finally, based on an analysis of the existing methods of classroom
interaction analysis, in this book we proposed a framework for



classroom cognitive interaction analysis and selected the typical
classroom interaction sequence in “from the perspective of different
directions” in middle school (seventh grade) mathematics textbook for
cognitive simulation. According to the analysis and simulation results of
classroom interaction cognition, three suggestions for classroom
teaching were proposed to help teachers design more effective teaching
methods.

In summary, the core of this book focuses on the construction of a
cognitive model for solving mathematical problems in primary school.
The main contribution is to prove the effectiveness of cognitive models
using computer simulation and oral report experiments. Using “one-on-
one” diagnosis and intervention teaching practices, a cognitive model
was applied in mathematics teaching. The analysis of the problem-
solving cognitive process helps reveal the learning process and ensures
effective learning.

A comprehensive analysis of the work presented in this book and
the main innovations are as follows:
(1)

Using the Polya mathematical problem-solving model, we re�ine
the problem-solving phase, construct a cognitive model of
elementary school mathematics problem solving, and propose an
analytical method for solving the ACT-R model in the context of
elementary mathematics.

 

Polya presented a stage model for mathematical problem solving,
which is suitable for all mathematical problems, but the internal
processes of each stage were not discussed. To address this
shortcoming, this research comprehensively used the research results
of cognitive psychology, brain science and cognitive neuroscience to
further re�ine Polya’s mathematical problem-solving model and
constructed a cognitive model of problem solving for primary school
mathematics to analyze problem-solving process. This model involves
mapping the cognitive process, writing a cognitive program and
performing the simulation in ACT-R. The results of the simulation were
consistent with the results of the oral report data.
(2) Based on the ACT-R model of typical problems in primary school

mathematics, the “one-on-one” approach was used to diagnose  



and conduct interventions for math problem-solving students,
resulting in accurate diagnoses and signi�icant intervention
effects.

Given that learning evaluations emphasize results and ignore the
learning process, this research studied a cognitive model, which is
based on an analysis of the cognitive process of mathematical problem
solving in primary school. The research designed typical problems,
recorded students’ problem-solving process, solved dif�icult internal
processes, provided targeted hints to intervene and allowed students to
correctly answer the questions themselves. The diagnoses were correct.
The intervention effects were signi�icant. To a certain extent, this
approach could help students with learning dif�iculties develop good
math thinking and problem-solving habits and cultivate their interest in
math learning.

In this book, the cognitive process of problem solving was explored.
Despite its achievements, this research has the following limitations:
(1)

In the cognitive simulation, although the knowledge points are
representative, the number of knowledge points used is limited,
and the number of oral reports is likewise limited.

 

(2)
In the “one-on-one” cognitive diagnosis and intervention
experiment, only the typical “mode” and “cylindrical �lank area”
problems were examined. Although the knowledge points were
representative, the research scope needs to be expanded.

 

(3)
In the “one-on-one” cognitive diagnosis and intervention
experiment, the changes in the cognitive process of students’
problem solving in different stages were analyzed.

 

The analysis of the cognitive process of primary school mathematics
problem solving is a systematic, long-term work. This book focused on
the cognitive model construction, simulation and experiment and
teaching application of exploratory work. The next step will be to
expand the coverage of knowledge points to increase the number of
oral reports captured over a longer period to examine changes in
students’ cognitive processes.
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