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About the Book

Machine Learning in Healthcare: Advances and Future
Prospects is an in-depth exploration of the adoption of
machine learning techniques in healthcare. The book
comprises several chapters, each focusing on a distinct area
of implementing machine learning to enhance disease
diagnosis, treatment, and health management.

Chapter 1 introduces machine learning paradigms, including
supervised, unsupervised, and reinforcement learning,
emphasizing their critical role in healthcare decision-support
systems. Key algorithms such as Naive Bayes, Decision
Trees, and Convolutional Neural Networks are examined for
their effectiveness in diagnosing diseases such as breast
cancer, diabetes, and Alzheimer’s disease.

Chapter 2 explores machine Ilearning-based cancer
detection and therapy, while Chapter 3 focuses on machine
learning methods for the detection and treatment of
cardiovascular diseases, highlighting the use of Random
Forest, Naive Bayes, and Decision Trees algorithms.

Chapter 4 describes an architecture for monitoring thyroid
patient health status using machine learning techniques,
including data-gathering methods, proposed feature models,
and classifier approaches. Chapter 5 examines machine
learning applications in smart wearable devices, covering
use cases such as sleep health, seizure detection, stress



detection, hydration monitoring, diabetic monitoring, and
arrhythmia detection.

For predicting and treating diabetes, Chapter 6 reviews
machine learning algorithms such as K-Nearest Neighbors
(KNN), Support Vector Machines (SVM), and Logistic
Regression. Chapter 7 delves into the application of
machine learning and deep learning approaches to mental
health conditions, including depression, schizophrenia,
anxiety, and bipolar disorder, using EEG characteristics,
cognitive testing, and structural neuroimaging. Finally,
Chapter 8 discusses machine learning algorithms for
electronic health record (EHR) phenotyping, addressing
challenges such as temporality, label absence, and multi-
modality in EHR data.

Machine Learning in Healthcare: Advances and Future
Prospects serves as a comprehensive resource for
researchers, practitioners, and industry experts working at
the intersection of machine learning and healthcare.



Foreword

The simultaneous emergence of machine learning and
healthcare is reshaping the industry. The book Machine
Learning in Healthcare: Advances and Future Prospects by
Dr. Rishabha Malviya explores the possibilities of machine
learning across various healthcare sectors. It aims to bridge
the gap between data science and medical practice,
focusing on disease detection, personalized therapy, and
holistic patient care. The book’s visionary curation
underscores the transformative potential of machine
intelligence in shaping the future of healthcare delivery.

The potential applications of machine learning algorithms
in healthcare are vast, ranging from analyzing electronic
health records to enabling predictive analytics for disease
prevention and management. The book addresses ethical
considerations, challenges, and the crucial collaboration
between healthcare professionals and data scientists,
emphasizing the need for responsible innovation in
healthcare.






This book stands as a testament to the collective
expertise and dedication of researchers in the field, serving
as a beacon of knowledge for professionals navigating the
evolving landscape of healthcare technology. It invites
readers to immerse themselves in the profound implications
of this technology and to contemplate the immense
potential of machine learning in healthcare.

Dr. Malviya’s leadership in compiling this invaluable
resource is commendable. It is hoped that the insights
within this book will inform and inspire future endeavors,
catalyzing a new era in which machine learning becomes an
indispensable ally in achieving healthier societies.

—Dr. Dhruv Galgotia
CEO, Galgotias University, Greater Noida, Uttar Pradesh



Preface

The integration of machine learning into healthcare has
transformed technology for disease diagnosis, treatment,
and management. This book explores the intricate
relationship between data science and medical science,
highlighting the significant impact of machine learning
algorithms on various areas of healthcare. The convergence
of traditional and deep learning paradigms offers a glimpse
into a future where predictive analytics and decision support
systems will revolutionize healthcare delivery, showcasing
the promise of machine learning in the medical industry.

Each chapter exemplifies the vast possibilities enabled by
computational technologies. These applications range from
analyzing electronic health information to detecting and
treating cancer, cardiovascular diseases, thyroid disorders,
and diabetes.

Additionally, the exploration extends beyond conventional
domains. Specific chapters focus on wearable devices and
mental health management, illustrating how machine
learning enhances mental health care and health
monitoring.

While celebrating these achievements, this book also
highlights the challenges that lie ahead. It acknowledges the
complexity of data, the necessity of ethical considerations
and interpretability, and the importance of collaboration



between healthcare practitioners and data scientists to
address these issues.

The book serves not only as a comprehensive guide for
practitioners, scholars, and students but also as an
invitation—an invitation to delve deeper, explore novel
possibilities, and contribute to a future where machine
learning becomes an invaluable partner in building healthier
communities worldwide.

This book aspires to be a guiding light in this collaborative
journey between technology and healthcare, inspiring
creativity, fostering innovation, and catalyzing a paradigm
shift in how we envision and practice healthcare.

Welcome to the convergence of machine learning and
healthcare—a transformative union with the potential to
reshape the future of human well-being.



CHAPTER 1

Machine Learning
Algorithms In Disease
Diagnosis and
Management

ABSTRACT

Machine-learning algorithms have shown considerable
promise in detecting many diseases due to their ability to
analyze large data sets and establish conclusions. These
algorithms use statistical models to learn from Ilabeled
examples and then apply that knowledge to new, unlabeled
data. One major benefit of machine learning algorithms in
disease diagnosis is their potential to increase accuracy and
efficiency in detecting and diagnosing diseases. For
example, they can analyze medical images, such as MRIs or
CT scans, and identify abnormalities that may be difficult for
human clinicians to detect. However, there are also
challenges associated with using machine learning
algorithms in healthcare. One challenge is the need for large
amounts of high-quality data to train the algorithms.
Another challenge is the potential for bias in the data, which
can lead to inaccurate or unfair predictions. Despite these
challenges, machine learning algorithms have the potential



to revolutionize disease diagnosis and improve patient
outcomes. They can help healthcare providers make faster
and more accurate diagnoses, which can lead to earlier
treatment and better outcomes for patients. They can also
assist with personalized treatment plans by analyzing
patient data and identifying the most effective treatments
for everyone. Some potential applications of machine
learning algorithms for disease diagnosis include predicting
the likelihood of a patient developing a particular disease,
identifying the best treatment plan for a patient, and
predicting the efficacy of a particular treatment. Although
there are obstacles that must be overcome, the benefits of
increased accuracy, efficiency, and personalized treatment
plans make the investment in this technology worthwhile.
Modern strategies for using machine learning in medical
diagnostics consider an algorithm, disease categories, data
types, applications, and evaluation methods. This chapter
explores the use of machine learning to improve early
disease detection and discusses remarkable discoveries and
machine learning-based disease diagnosis trends and
prospects.

Machine Learning in Healthcare: Advances and Future Prospects. Rishabha
Malviya, Niranjan Kaushik, Tamanna Rai, M. P. Saraswathy, and Rajendra Awasthi
(Authors)

© 2026 Apple Academic Press, Inc. Co-published with CRC Press (Taylor &
Francis)



1.1 INTRODUCTION

The term “machine learning,” a subfield of artificial
intelligence (Al), refers to a set of cutting-edge
computational technologies that have found applications in
a diverse range of fields, including the healthcare sector.
There is a growing trend among individuals to utilize
machine learning tools for disease diagnosis and forecasting
associated healthcare  costs. Numerous  empirical
investigations and real-world applications have
demonstrated that machine learning-based disease
diagnostics (MLBDD) exhibit significant promise as an
economically viable and efficient approach for the
identification of diseases [1]. The commonly employed
conventional diagnostic techniques are characterized by
their demanding nature in terms of labor, time consumption,
and cost. Robotic systems possess the advantage of
perpetual operation without experiencing fatigue, in
contrast to machine learning-based systems that are not
constrained by the user’'s proficiency level, as well as
human doctors. Consequently, it is possible to design a
therapeutic approach for managing diseases in regions
characterized by a limited number of patients. Medical
records, encompassing both visual representations such as
MRI and X-ray images, as well as structured data in the form
of tables containing information about patients’ diseases,
age, and gender, are utilized in the development of MLBDD
systems [2]. Machine learning requires massive amounts of
historical data to function properly [3].



Data scientists frequently employ specialized
mathematical functions to accomplish complex objectives.
Machine learning has the potential to enhance the efficiency
of cancer cell detection in microscopic images. A deep
learning (DL) study has demonstrated that the accuracy of
MLBDD may exceed 90% [1l]. Machine learning has been
associated with the diagnosis and treatment of breast
cancer, as well as its impact on kidney, liver, and heart
diseases. The recent widespread adoption of predictive
algorithms in the domain of disease detection serves as
evidence of the potential advantages that this technology
might offer in the healthcare sector. Some of the current
challenges in the field of machine learning include
addressing unbalanced data, interpreting machine learning
models, and addressing ethical concerns in its application in
medical domains. This chapter provides a comprehensive
overview of machine learning and DL techniques and
architectures that are utilized for the identification and
classification of diseases. The aim is to enhance our
understanding of the present trends, approaches, and
limitations in the field of machine learning [4].

1.2 BACKGROUND

Machine learning, being a multidimensional subject that
encompasses various disciplines such as statistics,
mathematics, data management, and knowledge analytics,
presents a formidable task in providing a single term [5].
Machine learning refers to the branch of Al that enables
systems to acquire knowledge and improve performance by



analyzing and interpreting real-world data. Figure 1.1
illustrates a range of subfields within the discipline of
machine learning [6].

Reinforcement Supervised
Learning Learning

]

Deep Learning «——| Machine Learning |— Semi-Supervised

Learning

Evolutionary Unsupervised
Learning Learning

FIGURE 1.1 Types of machine learning techniques.

1.2.1 SUPERVISED MACHINE LEARNING

The utilization of data occurs throughout the training
process, wherein an algorithm generates queries together
with their corresponding answers, considering the available
information. The utilization of supervised Ilearning to
accomplish classification problems has become a prevalent
and widely accepted approach in various domains [7].

1.2.2 SEMI-SUPERVISED LEARNING

The technique involves the identification of unlabeled data
that will yield the most advantages in enhancing the
training process of a classifier. By using uncategorized data,
it demonstrates a superior ability in classification. To ensure
the effectiveness of this strategy, it is imperative to



consider some underlying assumptions that have not been
explicitly expressed.

1.2.3 UNSUPERVISED MACHINE LEARNING

During the initial stages of the unsupervised learning
procedure, the learner lacks access to any form of labeled
data. Unsupervised learning comprises a diverse array of
approaches, such as hierarchical clustering, fuzzy clustering,
K-means clustering, and association rule mining [8]. This
classification is derived from the unlabeled training dataset.
Structures can be constructed through the utilization of
algorithms and representative data.

1.2.4 REINFORCEMENT LEARNING (RL)

In reinforcement learning (RL), computer software is utilized
in this educational modality, providing Ilearners the
opportunity to engage with the interactive elements of the
environment and facilitating the achievement of the
intended outcome. The software is provided with
reinforcement in the form of rewards and punishments for
its progress toward overcoming the challenge [9].

1.2.5 EVOLUTIONARY LEARNING

The phenomenon of Dbiological evolution may be
conceptualized as a type of cognitive acquisition, as it
enhances an organism’s prospects for survival and
procreation. The implementation of this model on a
computer can be achieved by utilizing the concept of fitness
to assess the accuracy of the response [10].



1.2.6 DEEP LEARNING (DL)

This subfield of machine learning is constructed on the
fundamental principles of algorithms. The data manipulated
by these learning algorithms is designed to mimic high-level
abstraction to the greatest extent possible. The utilization of
diverse linear and nonlinear transformations is a key aspect
of the deep graph processing employed by the system.

The utilization of machine learning methods facilitated the
analysis of medical database systems. In recent years, there
has been a notable increase in the utilization of digital
technology, resulting in reduced expenses and streamlined
procedures for data gathering and storage. Machine
learning has proposed several data analysis systems that
exhibit enhanced efficiency. The utilization of data collection
and processing devices, which is prevalent in modern
healthcare institutions, enables the seamless exchange of
patient information across extensive databases. The
application of machine learning in medical data processing
has proven advantageous for diagnostics. In modern
healthcare facilities, there exist specialized sections
dedicated to data management that are entrusted with the
task of meticulously compiling precise diagnostic
information inside patient records. Accurate input from
diagnostic patient records is crucial for the optimal
functioning of algorithms. The results of previous events can
be determined in an automated manner. This classifier can
be utilized by clinicians to expedite accurate diagnoses
when encountering new patients. According to the cited



source, individuals who are not experts, including students,
can effectively identify issues with the assistance of these
classifiers. Machine learning encompasses several
applications such as voice identification, self-driving
automobiles, web search, and generational perception. Due
to its widespread presence in modern society, individuals
may inadvertently employ machine learning techniques
without conscious awareness. Machine learning is a field of
study that investigates electronic health information to
identify complex patterns and analyze different data sets.
Pattern recognition plays a crucial role in the field of
machine learning and technology (MLT) by facilitating
assistance in both the prediction and planning phases of
diagnosis and therapy [12]. Machine learning algorithms
possess the capacity to effectively handle large volumes of
data, integrate data from diverse sources, and incorporate
prior knowledge into research activities.

1.3 THE HEALTHCARE INDUSTRY REQUIRES A
DECISION SUPPORT SYSTEM

Medical errors are responsible for a considerable number of
fatalities annually in the United States, with a substantial
number of individuals also sustaining injuries because of
these errors. The health information technology framework
proposes a range of techniques, including incorporating
consumer comprehension into the physician and
organization selection process, fostering collaboration, and
facilitating the adoption of IT [13].



1.3.1 DECISION SUPPORT

The optimal performance of machine Ilearning-based
medical security systems is achieved through a
collaborative partnership between healthcare professionals
and computational technology. The goal of this process is to
attain the utmost level of productivity. Simultaneous
monitoring of heart rates for all patients and diagnosing all
disorders is unattainable for both machines and physicians.
Both the machine and the physician are actively searching
for a common denominator, although neither has been
successful in locating it. Upon completion of data processing
by the machine, the outcomes of the analysis will be
presented to the physician for examination.

1.3.2 DECISION SUPPORT SYSTEM IN
HEALTHCARE

The implementation of a decision support tool will provide
more visibility on financial information to the staff of a clinic
regarding patient invoicing, payments, and related
expenditures. This strategy, in addition to supporting the
patient in preserving insurance coverage, offers several
possibilities for repayment. It provides numerous decision
support system modules for use in the healthcare industry
[14]. Examples of how decision support systems aid in the
study of diseases include the compilation of medical
experts’ opinions on various health-related topics and the
disclosure of medical records for patients. This web-based
system is linked to electronic health data, which enables it



to serve as a medication scheduler in addition to assisting in
patient diagnosis.

1.4 MACHINE LEARNING ALGORITHMS

The most popular and widely used machine learning
algorithm-based clinical diagnosis techniques are described
in subsections.

1.4.1 NAIVE BAYES (NB)

Naive bayes (NB) is a Bayesian probabilistic classifier that is
a relatively new method. Upon obtaining a single record or
fragment of data, the computer software will proceed to
engage in a process that evaluates the probability that such
a record or component will be assigned to each respective
category. Based on the calculations, it may be inferred that
the outcome with the greatest potential score is the most
probable. The NB classifier does not offer predictions;
instead, it generates probabilistic forecasts [15].

1.4.2 SUPPORT VECTOR MACHINE (SVM)

Support vector machines (SVMs) are frequently employed in
machine learning for various purposes, such as classification
and regression tasks. Vapnik invented SVM in the second
half of the 20t century [16]. In addition to its applications in
the medical field, SVM has been utilized in many domains,
such as speech recognition, facial expression identification,
protein folding, identification of distant homologies, and text
categorization. The performance of a supervised machine
learning algorithm is likely to be suboptimal when applied to



unlabeled data. SVM employs a hyperplane to identify
patterns and groupings within unlabeled data, thereby
facilitating the classification process. Currently, it is not
possible to do nonlinear partitioning of the results obtained
from an SVM analysis. Before utilizihng an SVM
implementation for data analysis, it is imperative to
meticulously choose an appropriate kernel and a
corresponding set of parameters [15].

1.4.3 K-NEAREST NEIGHBOR (KNN)

In 1951, Evelyn Fix and Joseph Hodges introduced a
nonparametric classification method known as k-nearest
neighbor (KNN). The KNN algorithm is capable of performing
both classification and regression tasks. The KNN algorithm
is utilized to classify class membership. The voting method
classifies the item. Techniques grounded in Euclidean
distance can be employed to ascertain the gap between two
datasets. The anticipated value in a regression analysis is
determined by calculating the average of the KNN values
[17].

1.4.4 ADABOOST

Yoav Freund and Robert Schapiro constructed the AdaBoost
algorithm. AdaBoost is a classification algorithm that
combines the most effective features from multiple
classifiers to create a consolidated and more precise model.
AdaBoost prioritizes samples that are more challenging to
categorize and less prioritizes those that are simpler. The
program can be utilized for both categorization and



statistical analysis with the implementation of regression
[18].

1.4.5 DECISION TREE (DT)

The decision tree (DT) algorithm is based on the principle of
“divide and conquer.” In DT models, the representation of
“classification trees” entails the depiction of categories as
terminal nodes, commonly referred to as leaves, while the
elements that contributed to their determination are
represented as branches. Regression trees, on the other
hand, are a type of continuous variable that can be used
with DT. The C4.5 and EC4.5 algorithms have gained
significant recognition and are commonly employed in the
field of DT algorithms [19, 20, 21, 22 and 23].

1.4.6 FUZZY LOGIC

The concept of fuzzy sets served as the foundation for the
development of fuzzy logic. These numbers are hypothetical
and fall between the ranges of zero and one. This
methodology is commonly employed in the field of
engineering [24].

1.4.7 CLASSIFICATION AND REGRESSION TREE

Classification and regression trees (CART) use categorical or
continuous objective variables. The prediction of values in
the tree can be done by considering these factors [25].

1.4.8 LOGISTIC REGRESSION (LR)

The logistic regression (LR) technique is employed to
address classification problems. The LR model is based on



the concept of probability, where the predicted values are
confined within the range of 0 to 1. LR-based machine
learning has a wide range of applications, including the
detection of spam emails, the identification of fraudulent
online transactions, and the diagnosis of malignant tumors.
The cost function utilized in LR is represented by a sigmoid
function. The sigmoid function is a mathematical
transformation that maps all real values within the range of
0 and 1 [26].

1.4.9 CONVOLUTIONAL NEURAL NETWORK
(CNN)

The utilization of convolutional neural networks (CNNs) is
increasingly prevalent in the field of image processing. The
CNN exhibits a wide range of applications, including
biological image detection and recognition, face recognition,
text analysis, and organ localization [27]. Since its inception
in 1989, CNN has witnessed the development of a novel
variation that has demonstrated remarkable efficacy in the
field of disease diagnosis. A conventional CNN architecture
typically comprises three distinct layers, namely the input
layer, the hidden layer, and the output layer. The hidden
layers within a feedforward network serve as intermediary
layers. The number of hidden layers present within a given
structure can exhibit variability. In the process of hidden
layer convolution, the dot products between the convolution
kernel and the input matrix are preserved. Following the
convolutional layers, the output of the previous layer is used
as the input for the subsequent layer. Upon successfully



finishing the first stage, additional layers are shown for
completion. Two examples that might be mentioned in this
context are the pooling layer and a fully connected layer
[28]. A variety of CNN models have been reported. Figure
1.2 provides a visual representation of CNN models, which
have gained significant popularity and widespread
acceptance within the research community.

2012 2074 2016 2017
Alex Net VGG-16 Squeeze Net Dense Net
Inception ENet Shuffle Net
Google Net
VGG-19

FIGURE 1.2 Convolutional neural network models
and their development timeline.

1.5 DEEP LEARNING (DL)

Deep learning (DL) uses hierarchical structures to acquire
knowledge from numerical significance, occurrences, and
categorization. CNNs are widely utilized in contemporary DL
structures, showcasing their versatility in being seamlessly
included in generative models, deep neural networks



(DNNs), and Boltzmann machines. Three major categories of
DL methodologies are supervised, semi-supervised, and
unsupervised approaches. DNNs, RLs, and recurrent neural
networks (RNNs) are widely used DL structures [28]. To
facilitate the advancement of progressive layers in DL, each
subsequent layer needs to ascertain the means to transform
its input data into the specific format mandated by the layer
positioned above it. In the context of image recognition
applications, it is common for the initial layer of a neural
network to be responsible for detecting edges inside a given
pixel matrix. The subsequent layer will construct and
encode the ocular and nasal features, and assuming
successful execution, the next layer will identify the facial
structure by incorporating data from both preceding levels
[29]. The potential for DL to improve healthcare is
significant. DL has been widely employed in the fields of
radiology and pathology to facilitate disease diagnosis [30].
Further investigation is required to examine the practical
applications of DL in human research. This includes the
collection of molecular state data and the monitoring of
illness progression or treatment sensitivity [31].

1.6 PERFORMANCE EVALUATIONS

This section explores some popular ways to measure
performance. Disease diagnosis often makes use of metrics
including precision, recall, accuracy, and the Fl-score. For
example, correct lung cancer diagnoses are true positive
(Tp) or true negative (Ty), while faulty diagnoses are false



positive (Fp) or false negative (Fy). Some of the most
common measurements are outlined in subsections [32].

1.6.1 ACCURACY

Accuracy represents the proportion of cases in which the
identification is correct. Accuracy is determined using the
following formula:

Tp—l-TN
T, + Tn + F, + Fyx

Accuracy =

1.6.2 PRECISION

Precision is quantified as the ratio of accurately anticipated
events to the total number of successfully predicted events.

Ty

Precision = —————
T, + Fp

1.6.3 RECALL

Recall measures how many relevant results the algorithm
gets right.

1.6.4 F-MEASURE

The F-score, also known as the F-measure, is calculated as
the harmonic mean of the accuracy and recall scores.



Assuming perfect accuracy and recall, an F score of 1 is the
best that can be obtained.

Precisi 11
F_ Measure — 2 x recision X Reca

Precision + Recall

1.6.7 AREA UNDER CURVE

The calculation of the area under the curve provides insight
into the performance of models across different situations.
The area under the curve can be computed using following
formula:

D Ri(1) - L (T +1)/2)
I, + I,

Area under curve =

1.6.8 SPECIFICITY
Specificity identifies how many true negatives (Ty) are
appropriately identified. Specificity is calculated as follows:

TN
Tn+ Fp

1.7 PREDICTION OF DISEASE OUTCOMES USING
MACHINE LEARNING

1.7.1 MACHINE LEARNING IN THE DETECTION
OF BREAST CANCER

Breast cancer is a common form of cancer among women
and ranks as the second leading cause of death in the
United States and Asian nations. Several machine learning

Speci ficity =



algorithms have demonstrated the ability to accurately
predict a breast cancer diagnosis. The University of
California, Irvine (UCIl) ML library provided the Wisconsin
data. In their study, Williams et al. employed a J48 DT using
a NB model to assess the risk factors associated with breast
cancer across the United States. WEKA is used to conduct
experiments. According to a study, the J48 algorithm has
been identified as the breast cancer prediction algorithm
with the highest accuracy rate of 94.2%, surpassing the NB
algorithm, which had an accuracy rate of 82.6% [33]. To
detect breast cancer at an early stage, Senturk et al.
employed machine learning algorithms including NB, SVM,
KNN, and DT. SVM had an accuracy of 96.4%, whereas KNN
had 95.15% [34]. Amaryeen et al. used DTs and data mining
trends to predict breast cancer. DTs exhibit a high accuracy
rate of 94% [35].

1.7.2 MACHINE LEARNING IN THE DETECTION
OF DIABETES

lyer et al. predicted diabetes using DTs and NB. Insulin
deficiencies or improper use can result in the progression of
diabetes. The Pima Indian Diabetes Data Set was utilized in
the research conducted in this particular field. A range of
experiments was conducted on the data mining tool WEKA
to ascertain its reliability and efficacy. It has been observed
that the utilization of a 70:30 percentage split yields
superior performance compared to cross-validation when
applied to this specific data set. The accuracy of the )48
classifier was found to be 74.8698% when evaluated using



cross-validation and 76.9565% when utilizing a percentage
split. The accuracy of the NB classifier demonstrates an
increase to 79.5652% when incorporating the use of the
percentage split technique. The degrees of accuracy
achieved by algorithms are typically measured and
presented in a split test, denoted as a percentage (%). This
metric provides insights into the maximal performance
capabilities of the algorithms under evaluation [36].

Sen and Dash address the use of meta-learning algorithms
in the diagnosis of diabetes. The dataset pertaining to
diabetes among Pima Indians was collected from the UCI
Machine Learning Laboratory. The analysis is conducted
using the WEKA software. The prediction of a patient’s
diabetes state is conducted by the utilization of several
machine learning algorithms, including CART, AdaBoost,
Logiboost, and grading learning methods. Experimental
findings are compared using both accurate and inaccurate
classifications. The classification accuracy achieved by the
CART algorithm is 78.64% [37]. The AdaBoost algorithm
achieved a degree of accuracy of 77.864%. The Logiboost
algorithm yielded an accuracy rate of 77.479%. The grading
method demonstrates a considerable level of accuracy, with
a categorization rate of 66.406%. The classification error
rate of the CART algorithm is observed to be 21.354%,
indicating a comparatively reduced misclassification rate
when compared to alternative approaches. CART has the
potential to achieve a maximum accuracy of 78.64%.



Sarwar and Sharma proposed the application of the NB
algorithm as a predictive model for type 2 diabetes.
Diabetes has the potential to present itself in one of three
distinct forms. Type 1 diabetes is the most commonly
observed form, followed by type 2 diabetes, and lastly,
gestational diabetes. Type 2 diabetes is characterized by an
increase in insulin resistance, leading to its development.
The dataset provided comprised 415 samples, which were
carefully selected to encompass a diverse variety of
demographic characteristics within the Indian population.
The development of the model involved the use of MATLAB
and SQL Server. The application of NB yielded a forecast
accuracy rate of 95% [38].

The integration of genetic algorithms and fuzzy logic has
been used to detect and classify diabetes. This technique
enhances the accuracy of classification and facilitates the
selection of an optimal set of features. The datasets utilized
in the trials were sourced from the UCI Machine Learning
Laboratory and comprise 769 instances, each characterized
by 8 distinct attributes. MATLAB is used to develop
applications. A genetic algorithm selects only the top three
features or attributes. A fuzzy logic classifier using these
three features yields 87% accuracy. The revised price tag
was approximately 50% of the original value.

A naive Bayes-based technique can be used to diagnhose
diabetes more accurately. In 2012, the NB algorithm
demonstrated the highest level of accuracy, reaching 95%.
The results indicate that the system exhibits a high level of



precision in its predictions, with a minimal margin of error.
Furthermore, the methodology employed is essential for the
detection of diabetes in individuals. However, the accuracy
of NB was considered suboptimal in 2015, with a precision
percentage of 79.5652%.

1.7.3 MACHINE LEARNING IN DETECTION OF
KIDNEY DISEASE

Patients with renal disease have compromised kidney
function, and if the problem is not treated promptly, it may
result in kidney failure. Based on data provided by the
National Kidney Foundation, it is estimated that around 10%
of the global population is afflicted with chronic kidney
disease, resulting in a significant number of fatalities each
year. The utilization of machine learning and DL techniques
for the detection of kidney disease holds the potential to
assist countries facing challenges in managing the diagnosis
of renal illnesses [40]. In their study, Charleonnan et al. [41]
employed publicly available datasets to assess the
performance of various classification algorithms. The KNN
classifiers achieved an accuracy rate of 98.1%, while the
SVM classifiers achieved an accuracy rate of 98.3%. LR
classifiers demonstrated an accuracy rate of 96.55%, and
DT classifiers achieved an accuracy rate of 94.8% [41].
Aljaaf et al. [42] explored similar research using various
machine learning algorithms, including RPART, SVM, LOGR,
and MLP, which were applied to the chronic kidney disease
dataset. Among these algorithms, MLP demonstrated the
highest level of effectiveness, with an accuracy rate of



98.1% [42]. Ma et al. employed a diverse range of datasets
sourced from several channels to conduct the diagnosis of
chronic renal disease [43, 44]. The researchers were able to
attain a high level of accuracy, ranging from 87% to 99%,
by employing their suggested HMANN model, which consists
of heterogeneous modified artificial neural networks (ANNSs).
Table 1.1 summarizes the studies highlighting the
application of machine learning in the diagnosis of kidney
diseases [45, 46 and 47].



TABLE 1.1 The Study Highlighted Research on Machine Lear
Based Kidney Disease Diagnostics

Algorithm Dataset Contributions Data Perform
Evaluati
CNN-SVM Privately Chronic kidney Tabular Sensitivif
owned disease 97%,
dataset Specificit
97.8%
CNN Privately Detection and Accuracy
owned data localization of 94%
kidneys in
patients with
autosomal
dominant
polycystic
LR, Chronic Classification  Tabular Precision
Feedforward kidney of chronic 97%, Re
NN, and disease kidney disease 99%, AU
Wide DL dataset 99%
ANN and Data from Kidney disease Accuracy
Kernel KMC patient detection and 99.61%
ultrasounds segmentation
NB, DT, and Chronic Analysis of Tabular Accuracy
RF kidney chronic kidney 100% (Rl
disease disease
dataset

1.7.4 MACHINE LEARNING IN DETECTION OF
LIVER DISEASE
Vijayarani and Dhayanand have successfully employed the
SVM and NB classification methods to obtain precise
prognostications pertaining to liver disease [48]. The Indian



liver patient dataset was used from the UCI database
collection. The collection consists of 560 cases and
encompasses 10 distinct attributes. The criteria of accuracy
and speed of execution are employed for the purpose of
comparison. The NB classifier achieved an accuracy rate of
61.28% with a processing time of 1670.00 milliseconds. The
SVM algorithm resulted in an accuracy rate of 79.66% within
a time frame of 3210.00 milliseconds. Actualization was
accomplished with the help of MATLAB. When conducting a
comparative analysis between NB and SVM, it was observed
that SVM exhibited superior accuracy in predicting liver
disease. The computational efficiency of NB surpasses that
of SVM.

Rajeswari and Reena used data mining methods including
NB, K-star, and FT trees to study liver disease. From that
location, 345 instances and seven attributes of the UCI
dataset were extracted. The WEKA software is used for the
execution of 10 distinct cross-validation tests. The NB
algorithm demonstrates a high level of accuracy, with a
correctness rate of 96.52% within an instantaneous time
frame. The FT Tree algorithm has the capability to achieve
an accuracy rate of 97.10% within a time frame of less than
one second. The K-star algorithm demonstrates a sorting
capability for incoming instances with an accuracy rate of
83.47%, achieving this result in no time. In comparison to
alternative data mining techniques, FT trees exhibit superior
classification accuracy when applied to the liver disease
dataset [49]. In comparison to alternative algorithms, the FT



Tree algorithm demonstrates superior performance in the
diagnosis of liver illness. The application of the FT tree
approach to the liver disease dataset leads to a reduction in
the time required to generate the model. Based on its
inherent attributes, it exhibits a higher level of efficiency.
This method demonstrates a comprehensive attribute
categorization approach, achieving a notable level of
accuracy at 97.10%. The algorithm plays a pivotal role in
determining the high classification accuracy of the dataset
based on the results.

1.7.5 MACHINE LEARNING IN DETECTION OF
HEART DISEASE

Machine learning is employed in both research and clinical
settings for diagnosing heart diseases. Ansari et al. [50]
proposed a neurofuzzy integrated-systems-based
automated coronary heart disease diagnosis system that
reaches around 89% accuracy [51, 52]. The authors fail to
address the effectiveness of their methodology in various
additional scenarios, including multiclass classification,
handling big datasets, and dealing with imbalanced class
distributions. This omission was a significant limitation of
their study. However, the discussion surrounding the validity
of the model was hardly addressed, despite the prevalent
recommendation to engage in such discussions within the
field of modern medicine. The ability to comprehend the
procedure by others outside the medical domain confers a
significant advantage, therefore rendering it of utmost
importance.



Deep CNNs developed by Rubin et al. are used to detect
abnormal heart sounds. During the training process on this
dataset, the loss function is modified to enhance its
sensitivity and specificity. This proposed model was
submitted as part of the 2016 PhysioNet computing
competition. Overall, it was ranked second due to its
specificity of 0.95 and sensitivity of 0.73 [52]. Moreover,
there has been an increasing interest in the utilization of DL-
based algorithms to diagnose cardiac diseases. An example
of a technique in the field of cardiotocographic fetal health
detection is the DL-based approach proposed by Miao and
Miao. This technique utilizes a multiclass morphologic
pattern for accurate classification. The DL-based model
proposed by Miao and Miao is employed for identifying and
classifying the physiological features of expectant females
encountering challenges. The initial computational study
yielded an accuracy rate of 88.02%, a precision rate of
85.01%, and an F-score of 0.85 [53]. The authors of the
study utilized various dropout methods to mitigate the issue
of overfitting, resulting in a decrease in training speed but
eventually leading to an enhancement in accuracy. Despite
the widespread use of machine learning applications for this
specific objective, there exists a dearth of scholarly
investigations that have specifically tackled the obstacles
associated with multiclass classification in the presence of
imbalanced data. It is expected that the model will not be
able to explain its final forecast. Table 1.2 provides a
comprehensive overview of the scholarly literature



pertaining to the use of machine learning and DL techniques
in the domain of cardiac diagnostics [32, 54, 55, 56, 57, 58,
59 and 60].

TABLE 1.2 Referenced Literature That Considered Machine-L
Based Heart Disease Diagnosis

Contributions Dataset Data Algorithms Per
Type Eve

Predicting heart Cleveland RF, CNN F1-¢
disease  Tabular 80Y%

dataset acc

78.1

pres

809

Heart disease Cleveland Tabular SVM, Acc
classification  dataset backpropagation 739
CHD prognosis Cleveland Tabular Gaussian NB, BN?
dataset Bernoulli NB, 85.1

and RF 85Y%

Heart disease Cleveland Tabular NN, LR Acc
classification dataset - 8¢
929

Intelligent Privately Tabular CNN Sen
scoring for 72- owned 629
hour cardiac pre
arrest valt
prediction neg
pre

valt

New heartbeat MIT-BIH Tabular SVM Acc
recognition 979

method free

4



1.7.6 MACHINE LEARNING IN THE DETECTION
OF ALZHEIMER'S DISEASE

Alzheimer’s disease is recognized as the primary cause of
dementia [61]. It is a progressive neurodegenerative
disorder that disproportionately affects a significant
proportion of the older population, ranging from 60% to
70%. Alzheimer’'s disease has been shown to manifest in
various cognitive and behavioral symptoms, including but
not limited to language impairment, confusion, emotional
instability, and atypical conduct. The decline in physiological
functioning exhibits a slow progression, with the median
duration of survival after diagnosis varying between 3 and 9
years. Early detection could potentially enhance the
likelihood of survival, as it allows medical professionals to
implement preventive interventions and initiate suitable
therapeutic measures. Over time, the use of machine
learning and DL techniques for diagnosing Alzheimer’s
disease has demonstrated encouraging results. Neelaveni
and Devasana utilized SVM and DT as classification
algorithms to differentiate individuals with Alzheimer’s
disease from control subjects. The SVM and DT achieved
accuracy rates of 83% and 85%, respectively [62]. In their
study, Collij, and coworkers used SVMs to predict the
occurrence of Alzheimer’s disease and moderate cognitive
impairment (MCI) in individuals. Numerous endeavors have
been made to enhance the diagnosis of Alzheimer’s disease
through the utilization of machine learning techniques, with
a wide array of algorithms being explored and evaluated



[63]. The study conducted by Vidushi and Shrivastava [64]
revealed that LR, SVM, DT, and ensembles of random
forests (RFs) exhibited accuracy rates ranging from 78.95%
to 84.21%, 81.58% to 84.21%, and 84.21% to 84.21%,
respectively. CNN has been employed in numerous studies
focused on the identification of Alzheimer’'s patients
because of its superior performance compared to alternative
image processing techniques [64]. The CNN model
suggested by Ahmed et al. aims to detect and classify the
early stages of Alzheimer’'s disease. The accuracy of the
model, which was trained on a dataset consisting of 6628
MRI images, was reported to be 99% [65]. The deep feature-
based models proposed by Nawaz et al. demonstrated a
high accuracy rate of 99.12%. This finding further supports
the effectiveness of a CNN-based technique in the diagnosis
of Alzheimer's disease [66]. Table 1.3 presents a
comprehensive overview of the several machine learning
and DL methodologies that are presently employed in the
diagnosis of Alzheimer’s disease.



TABLE 1.3 Recognized Literature on Machine Learning-Base:!
Alzheimer's Disease Diagnosis

Contributions Algorithms Data Dataset Performan

Type Evaluation
Understanding LR, ARN, DT Image 1913 Sensitivity -
the privately (82.11 %
development owned 0.36%),
of moderate cases Positive
cognitive predictive
impairment to value - (75.
Alzheimer’s + 0.86%)
disease
Automatic DNN + RF  Tabular - Accuracy -
classification 67%
of Alzheimer’s
Automatic CNN + SVM Image F-FDG Accuracy -
diagnosis of PET 74-90%
Alzheimer’s dataset:
disease and PET
mild cognitive
impairment

1.8 MEDICAL USES FOR MACHINE LEARNING

Machine learning algorithms can identify small yet crucial
patterns among extensive and diverse datasets. This
technique is expected to provide significant assistance in
therapeutic applications, particularly those that rely on high-
throughput measurements of genomes and proteomics. It is
very useful in medicine, particularly in identifying and
diagnosing conditions in certain individuals. Machine
learning algorithms have the potential to enhance the



decision-making capabilities of medical professionals and
offer insights for optimizing the functionality of the
healthcare system [6]. The utilization of this methodology
by healthcare industry managers is aimed at approximating
the duration of patients’ waiting periods within the
emergency room. These models incorporate several factors,
such as patient data, pain ratings, emergency room charts,
and the layout of the waiting area, to make estimations
regarding wait times. Healthcare facilities utilize prognostic
models to strategically plan for inpatient hospital stays.
Consequently, patients can potentially enjoy advantages
from machine learning applications through cost reduction,
enhanced precision, or the widespread availability of time-
limited opportunities.

1.8.1 PROBLEMS ASSOCIATED WITH
ALGORITHMS

The majority of machine learning models exhibited
remarkable performance when trained on labeled data,
surpassing their unsupervised counterparts. The efficacy of
such algorithms significantly decreased when confronted
with unannotated data. The efficacy of widely recognized
techniques such as K-means clustering, SVMs, and kernel-
based nearest neighbors (KNNs) experienced a decrease in
performance when employed on data with many
dimensions. CNNs present challenges due to their opaque
nature. A significant limitation of this approach lies in the
lack of transparency regarding the mechanism by which the
model adjusts its internal parameters, such as its learning



rate and weights. The widespread utilization of algorithm-
based models in healthcare necessitates the establishment
of justifications for their implementation.

1.9 CONCLUSION

Machine learning can be utilized as a powerful tool by
individuals engaged in the field of medicine, including
practitioners, scholars, and students. It appears that there is
a constant influx of fresh advancements in the field of
machine learning on a daily basis. With the advent of each
technological breakthrough, a novel machine learning
application is arising, exhibiting the capacity to address
tangible challenges within the healthcare sector. By
employing artificial intelligence (Al)-based solutions and
machine learning models, multinational corporations can
deliver enhanced healthcare services to their clientele. This
technology facilitates the efforts of organizations and
pharmaceutical manufacturers in expediting and
streamlining the process of developing treatments for
severe diseases. Machine learning models have the
capability to identify individuals at an elevated risk of
chronic diseases, such as heart disease and renal disease,
by employing a range of known algorithms specifically
designed for this purpose.
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CHAPTER 2

Machine Learning-Based
Diagnosis and Treatment
of Cancer

ABSTRACT

Machine learning employs intelligent, rational, and
bioinformatics methodologies to stimulate “discovery” from
situations in which computers are utilized and to identify
hidden patterns in unstructured or massive datasets. This
capability is beneficial for proteomic and genomic
applications that necessitate significant data analysis.
Consequently, machine learning is commonly employed in
the field of cancer diagnosis. The application of machine
learning techniques in the field of cancer prediction is
experiencing a surge in popularity. This chapter provides a
discussion of the role of machine learning in enhancing our
comprehension of the mechanisms behind cancer
development and metastasis.
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2.1 INTRODUCTION

Machine learning has the potential to significantly transform
cancer research and therapy. The use of machine learning in
the healthcare sector has been made possible by the
integration of electronic medical records and other ways of
digitizing patient data. By implementing this modification,
hitherto unattainable knowledge regarding patient care can
be extracted from vast datasets at an unprecedented rate.
When confronted with a novel clinical setting, healthcare
professionals commonly consult established practices and
recommendations within their respective specialties. By
employing machine learning techniques, this procedure
becomes more rigorous, enabling computers to generate
personalized predictions by analyzing a diverse set of
patient data [1]. The use of this data for the purpose of
policymaking can facilitate the establishment of standards
and the identification of vulnerabilities based on data-driven
approaches. The enhanced level of clarity facilitates the
provision of more precise medical treatment tailored to the
individual circumstances of each patient. As a result,
machine learning approaches have rapidly disseminated
across the medical field. This algorithm efficiently identifies
patterns and correlations within intricate datasets, enabling
the prediction of cancer outcomes [2]. This exhibits a
common requirement for the integration of data originating
from diverse sources, including medical records and DNA
sequences. Nevertheless, it was observed that a substantial
number of the studies examined in our analysis neglected to



assess the validity of their models through a rigorous
comparison with empirical data from the real world. This
implies that the use of machine learning techniques could
potentially enhance our ability to predict the likelihood of a
patient developing, encountering, or surviving cancer.
According to the findings described by Aha [3], the
implementation of machine learning techniques has resulted
in @ notable enhancement of approximately 15-20% in the
precision of cancer prediction outcomes. The evaluation
focused exclusively on the assessment of cancer diagnosis
and diagnostic studies conducted using machine learning
simulations.

2.2 MACHINE LEARNING TECHNIQUES

The field of machine learning establishes a connection
between the process of data sampling and the process of
making inferences in the context of Al [4]. The initial stage
of any learning procedure involves employing an available
dataset to generate approximations regarding the hidden
interconnections within the system. Subsequently, these
approximations are used to forecast the forthcoming
outcomes of the system [5, 6]. The application of machine
learning has demonstrated potential in the field of biological
diagnostics, namely in the identification of suitable
generalizations through the exploration of an n-dimensional
space for a specific set of biological fluids [7]. Supervised
learning, which is one of the predominant machine learning
methodologies, aims to predict an established outcome,
such as the detection of cancer, the lifespan of a patient, or



the efficacy of therapeutic interventions. Unsupervised
learning is a valuable approach for discerning patterns and
subgroups within data in situations where a definitive
conclusion cannot be readily drawn. Exploratory studies are
commonly conducted. Reinforcement learning (RL), as a
form of machine learning, is particularly suited for the
sequential decision-making process where a strategy needs
to be acquired through data analysis. This approach has
been found to be effective in determining the optimal
cancer treatments with the highest likelihood of success [8].

By utilizing the testing set to determine the model’s
predicted accuracy, one can gain insights into the extent of
generalization errors. To obtain precise and reliable insights
into the predictive capabilities of the 209 model, it is
imperative to employ large and independent training and
testing datasets, including appropriately labeled testing
data. There are several methodologies for evaluating the
effectiveness of a classifier, with four prominent approaches
being bootstrapping, the holdout technique, cross-
validation, and random sampling. During the holdout
procedure, the data samples are partitioned into two distinct
subsets: the training set and the evaluation set [9].

2.3 MACHINE LEARNING APPROACHES

Various machine learning algorithms, including artificial
neural networks (ANNs), support vector machines (SVMs),
linear models, and decision trees (DTs), can be utilized once
the data has been appropriately prepared and the specific
learning objective has been defined. This section centers on



machine learning methodologies that have been frequently
used across the scientific community with the aim of
generating predictions and prognostications for cancer. In
order to anticipate the development of cancer and evaluate
the consequences of the disease, a thorough compilation is
shown below, encompassing the frequently utilized machine
learning approaches, the integrated data types, and the
assessment procedures used to gauge the overall
effectiveness of these systems.

2.3.1 ARTIFICIAL NEURAL NETWORK (ANN)

The utilization of ANNs enables the effective resolution of a
diverse array of classification and pattern recognition
problems. Due to their rigorous training, ANNs possess the
ability to process and integrate various inputs, ultimately
generating a singular output. The utilization of several
hidden layers is employed in order to mathematically
represent the connections within the brain. Although ANNs
are widely recognized as the prevailing method for
numerous classification problems [10], they do possess
certain limitations. The typical layered structure employed
in this context is both time-consuming and potentially
characterized by inefficiency that may lead to risky
outcomes. Furthermore, the phrase “black box” is frequently
employed to characterize this kind of functioning. In certain
instances, such as when attempting to ascertain the reasons
behind the malfunctioning of an ANN, the mechanism by
which it achieves categorization can be challenging to



comprehend. An ANN, as depicted in Figure 2.1, is
comprised of a set of interconnected nodes.

Input
Layer

Hidden
Layer

Output
Layer

FIGURE 2.1 Schematic presentation of an artificial
neural network. The arrow serves to establish a
connection between the output of one node and the
input of another.

2.3.2 SUPPORT VECTOR MACHINES (SVMS)

Support vector machines (SVMs) present an innovative
strategy for utilizing machine learning techniques in the
context of predicting the probability of cancer incidence.
SVM use a hyperplane to split the input vector into two
distinct classes by projecting it into a feature space of
higher dimensionality. This objective is achieved by



optimizing the marginal distance between the selected
hyperplane and the instances located at the boundary. Once
a high level of generalizability has been attained, the
resulting classifier can be efficiently utilized for the
categorization of novel samples. It is important to note that
SVMs can provide probabilistic outputs [11]. Figure 2.2
depicts the use of a SVM in differentiating between benign
and malignant malignancies by incorporating tumor size
and patient age as distinguishing factors. The hyperplane
serves as a discriminant boundary for distinguishing
between the two groups. The identification of any incorrect
classifications produced by the technique is possible due to
the existence of a decision boundary.
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FIGURE 2.2 A simplified representation of the input
data being classified by a linear support vector
machine model. Tumors are classified based on both
the tumor size and patient age. The arrow indicates
the presence of malignant tumors that have been
erroneously labeled.

2.3.3 LINEAR MODELS

Linear models establish a relationship between an
independent variable and a dependent variable. Linear
regression is a statistical method used to estimate the
coefficients of features. Subsequently, a set of weights (By +
Bix; + ... + Bpxp) is applied, where x; to xp represent
independent factors that include the patient’s features, to
forecast an observation. The underlying assumption of
linear regression is that the features exhibit additivity,
meaning that the effect of each feature on the outcome is
independent of the other characteristics. Additionally, linear
regression requires that the relationship between the
feature values and the outcome follows a linear pattern.

Logistic regression (LR) and Cox regression, along with
other statistical models, also assume an additive
relationship between the features. However, these models
adjust the linear function based on the specific prediction
task at hand. Linear techniques are commonly used by
modelers because of their simplicity and interpretability.
These models serve as the foundation for healthcare risk
evaluations and predictive models.

However, numerous findings exhibit nonlinearity. For
example, the impact of tumor size on cancer recurrence



demonstrates varying patterns across different age groups.
The complex relationships among several factors often
elude comprehension with a linear approach. Nonlinearities
can be effectively addressed through the use of interaction
factors, such as a derived feature that incorporates both
age and tumor size, thereby explaining their combined
impact. Due to the time-consuming nature of exploring
every conceivable modification of pairs or larger groupings
of variables, this process is often conducted in an ad hoc
manner [13].

2.3.4 DECISION TREES (DTS)

Decision trees (DTs) employ a classification tree structure in
which the leaves correspond to judgments and the nodes
correspond to input elements. DTs are a widely used and
well-established machine learning categorization technique.
DTs are simple and quick to learn. The estimation of a
sample’s category can be achieved by utilizing the branches
of a classification tree. The unique architectural features of
the subject under consideration provide enough justification
to render their judgments highly attractive. Figure 2.3
illustrates the components and restrictions of the DT
system.
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FIGURE 2.3 Diagram illustrating a decision tree in a
tree-like format. The classification rule consists of
independent variables X, Y, and Z, with possible
outcomes being class A and class B. The rule also
includes thresholds T(1-3) for accurately assigning
each variable to a class label.

2.3.5 ENSEMBLE MODELS

Integration of gradient-boosted machines and random
forests (RFs) is one potential approach to optimizing the
decision-making tree structure [14]. These methodologies
include the generation of a significant number of DTs, which
are subsequently utilized for prediction purposes. RFs
generate diverse models by training each tree with a
random subset of features and data. The final forecast
combines the prognostications of the trees. Gradient-
boosted machines employ an iterative training process
wherein individual trees are trained by assigning weights to
data points based on the inaccuracies of earlier trees. Error-
correcting approaches have been found to outperform RFs.



Ensemble techniques, by aggregating several trees, do not
establish a clear linkage between input features and the
final prediction. Consequently, these models provide greater
challenges in terms of interpretability compared to linear
models with coefficients or DTs with feature partitions. The
absence of clear understanding poses a significant
challenge in situations where wusers depend on
straightforward comprehension to adopt new software [12,
13]. In such cases, Shapley frameworks offer a more
comprehensive understanding through their ability to
generate broader insights from measures of model feature
relevance. Additive explanations are commonly employed to
acquire valuable insights [15, 16].

2.4 MACHINE LEARNING APPLICATIONS IN
CANCER

The diagnosis of cancer necessitates the utilization of early
identification techniques such as gene expression analysis,
radiography, histology, or a combination thereof. Since the
early 2000s, machine learning techniques have been
utilized to identify cancer biomarkers by analyzing gene
expression profiles [17, 18, 19 and 20]. The field of
computer vision has advanced to a stage where it is now
feasible to analyze and interpret raw images to make a
diagnosis. Mammograms have consistently emerged as a
very efficacious method for cancer detection. The detection
of breast cancer is the prominent focus of study within this
domain. There have been studies in this area since 1995,
and recent improvements in mammography-based



identification are the most important ones [21, 22 and 23].
Various methodologies utilizing computed tomography (CT)
scans have been devised in similar ways to facilitate the
diagnosis of lung cancer [24]. Hu et al. conducted a
comprehensive analysis of the diagnostic imaging software
currently available [25]. The potential applications of image-
based diagnosis in the field of histology have also been
reported [26]. Convolutional neural networks (CNNs) have
been employed in several diagnostic tasks, including
pathological outcomes. Notable instances include the
identification of prostate cancer [27], bladder cancer [28],
and lymph node dissection for the diagnosis of breast
cancer [27, 29].

The ability of machine learning to identify patient
abnormalities over an extended period implies that machine
learning may have applications in the early detection of
cancer. Even though early cancer identification is vital, it is
challenging to accomplish due to the complexity and
individuality of the signs that point to the beginning of
cancer [30]. Al technologies have been utilized to make
predictions for future diagnoses of breast cancer in tissue
growth and repair through mammography [31], as well as
lung cancer through CT scans [32]. Gene expression data
has been utilized in a number of studies to determine
cancer susceptibility, and data from electronic medical
records has been used to predict the incidence of pancreatic
cancer in high-risk people [33]. These early detection
systems offer an early indication of cancer existence, which



may help guide policy and practices related to cancer
screening. Most importantly, they enable the potential for
earlier intervention, which has the potential to improve
patient outcomes [34].

2.5 CONCLUSION

The field of oncology has great expectations for the
potential of machine learning. The utilization of this tool can
contribute to the facilitation of diagnosis and early
intervention, as well as aid in the identification of high-risk
populations and the prediction of prognosis. The utilization
of data-driven methodologies has the potential to enhance
our understanding of cancer and its impact on individuals,
particularly given the substantial volume of patient data
currently available. The field of cancer treatment stands to
undergo a considerable transformation through the
integration of machine learning techniques. However, the
realization of this potential advancement is dependent upon
the successful navigation of substantial technological and
organizational challenges.
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CHAPTER 3

Machine Learning-Based
Detection and Management
of Cardiovascular Diseases

ABSTRACT

The discipline of artificial intelligence (Al) is experiencing rapid
expansion and is gaining significant attention across various
domains, including healthcare. Consequently, the integration of
Al in the healthcare sector has facilitated advancements in early
detection, prognostication, and mitigation of many ailments,
encompassing cardiovascular disorders. Heart disease is
considered one of the most fatal diseases. The prediction of
cardiovascular disease using clinical data is difficult. This
chapter explores the use of artificial neural networks (ANNSs),
support vector machines (SVMs), decision trees (DTs), random
forests (RFs), and K-nearest neighbors (KNNs) in the diagnosis of
cardiac diseases. The use of machine learning is expected to
play a pivotal role in facilitating the monitoring, diagnosis, and
prediction of cardiovascular disease and several other health
issues. This advancement would enable healthcare professionals
to make more informed decisions regarding treatment options.
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3.1 INTRODUCTION

The heart plays a crucial role as an essential organ in the human
body. The circulatory system facilitates the transportation of
blood throughout the body via a network of arteries. The
circulatory system serves a crucial role in the delivery of
nutrients to the various cells and tissues throughout the body
[1]. Malfunctions in cardiac function can have profound
implications for overall health, potentially resulting in death.
During the latter part of the 19t century, significant
advancements were made in the field of cardiovascular care
with the development of the electrocardiogram (ECG). Since its
inception, technology has played a crucial role in facilitating the
rapid evolution of this discipline [2]. In anticipation of the
integration of artificial intelligence (Al) and machine learning,
the aforementioned sector has extensively employed technology
within clinical settings and promptly embraced guideline-
directed medical practice as a means to enhance patient
outcomes. The diagnosis and management of cardiovascular
disease in clinical practice commonly involve the utilization of
many data sets [3].

Clinicians have various methods for communicating clinical
data, such as a patient’s medical record, laboratory findings,
imaging modalities, physical examination, or angiography [4].
Cardiologists are currently facing the challenge of performing
increasingly complex assessments due to an increasing number
of data-driven technologies, including mobile telemetry devices,
wearable, and implanted recording devices, statistics derived
from electronic health records (EHRs), and patient-generated
health data [5]. The process of clinical decision-making is
subject to various factors beyond the mere consideration of



factual information and personal experience [6]. In the field of
cardiovascular medicine, a comparable imperative exists, as in
other fields, to maximize patient care by concurrently reducing
costs and enhancing productivity, To administer such
personalized treatment, a substantial amount of data is
necessary. However, the dynamic nature of this data presents
challenges in its utilization without a comprehensive clinical
decision support tool. The absence of cognitive computing would
result in the continued presence of issues like overutilization and
insufficient patient care, which, in turn, would impact
readmission and death rates within our region [7].

3.2 CARDIOVASCULAR DISEASES

Cardiovascular disease comprises a wide range of diseases
affecting the heart and blood vessels. Both angina and heart
attacks are classified as cardiovascular disorders, specifically
resulting from coronary artery disease. Coronary heart disease is
attributed to the presence of plaque within the coronary
arteries. Atherosclerosis is a pathological condition characterized
by the accumulation of plagque within the arterial walls. The
accumulation of plaque occurs gradually over many years. Over
time, this plague can undergo either hardening or crumbling,
resulting in its potential breakage. The coronary arteries
undergo a process of arterial stiffening and constriction due to
the accumulation of plaque, thereby impeding the delivery of
oxygenated blood to the cardiac muscle. If the plague becomes
disrupted, a thrombus can develop on its surface. The
occurrence of a total obstruction of a coronary artery by a
substantial blood clot is relatively uncommon. The accumulation
of plaque leads to the progressive stiffening and narrowing of
arterial walls. Rapid restoration of blood flow is necessary to



prevent myocardial necrosis. If left untreated, a heart attack has
the potential to result in death. Myocardial infarctions constitute
a prominent contributor to global mortality rates. The
subsequent manifestations are indicative of a myocardial
infarction.

Chest pain is the most common symptom of a heart attack.
Clogged arteries can cause chest pain, tightness, or pressure.
Heart attacks and clogged arteries can cause tightness, chest
pain, and pressure. In addition to stroke and heart attack, there
are several other prevalent cardiovascular problems, namely
heart failure, hypertension, rheumatic heart disease,
cardiomyopathy, cardiac arrhythmia, congenital heart disease,
valvular heart disease, aortic aneurysms, peripheral artery
disease, and venous thrombosis. Smoking, inadequate dietary
habits, and a lack of physical activity are recognized as risk
factors associated with the development of cardiovascular
disease. Early detection of cardiac disease allows for the
possibility of effective treatment. The timely identification of a
phenomenon is of utmost importance. Gaining knowledge about
the underlying factors contributing to the development of heart
disease is important for implementing effective preventive
measures. In cardiac patients, the chest pain often spreads to
the arms, especially the left side.

3.3 CARDIOVASCULAR EPIDEMIOLOGY

Each vyear, 17.5 million people lose their lives due to
cardiovascular disease. Middle- and low-income countries
account for 75% of cardiovascular disease mortality. Heart
disease or stroke kills about 80% of people with cardiovascular
disease [8]. Each year, an increasing number of people in India
are diagnosed with cardiovascular disease. The number of



individuals in India who have received a diagnosis of heart
disease has exceeded 30 million. Over 2 million open-heart
surgeries are carried out in India annually. The number of
patients requiring coronary surgery has been increasing by 20-
30% annually [9].

3.4 ALGORITHMS FOR MACHINE LEARNING

Numerous data mining algorithms have been developed
because of extensive research in the field of data mining. These
strategies can be directly applied to a dataset to construct
models or extract valuable insights. In the area of data mining,
commonly employed techniques include decision trees (DTs),
naive bayes (NB), k-means, artificial neural networks (ANNSs),
and similar methodologies. The subsections will provide
additional analysis on this subject.

3.4.1 RANDOM FOREST (RF) CLASSIFICATION AND
REGRESSION

The random forest (RF) algorithm is a popular technique in
machine learning that utilizes ensemble learning to perform
both classification and regression tasks. In the training phase,
several separate DTs are formed, with each tree generating a
singular prediction regarding the target class. The final output is
the most frequently taken class in the field of forecasting. The
objective is to find a point of agreement by employing the
method of averaging to mitigate the effects of both significant
disparities and pronounced bias. Both R and Python offer
libraries that provide robust support for this methodology.



3.4.2 NAIVE BAYES (NB) CLASSIFIER (SUPERVISED
ALGORITHM)

The Bayes’ theorem-based categorization is simple. The
assumption exhibits a simplistic notion of independence. Bayes’
theorem is an algorithm used to calculate the likelihood of an
event occurring, given prior knowledge or information. There is
no discernible relationship between the predictors. The overall
success of the entity can be attributed to its various attributes.
As it does not utilize Bayesian methods, it aligns with the NB
model in terms of consistency. NB classifiers are commonly
employed in diverse practical contexts that encompass both
sophisticated and pragmatic applications [10].

P(3) ="

Within this particular framework, the notation P(X/Y)
represents the posterior probability; P(X) denotes the class prior
probability; P(Y) signifies the predictor prior probability; and
P(Y/X) corresponds to the likelihood, or probability, of the
predictor. The NB algorithm is a classification technique that is
known for its simplicity, ease of implementation, and
computational efficiency. It is particularly effective in handling
non-linear and complex datasets. However, its reliance on
assumptions and classconditional independence results in a
decrease in accuracy. The NB model demonstrated an improved
accuracy of 84.1584% when a feature selection technique
known as SVMRFE was employed to choose the top 10
predictors [11]. The study conducted on the Cleveland dataset



utilized all 13 parameters and determined that an accuracy rate
of 83.49% was deemed satisfactory [12].

3.4.3 K-NEAREST NEIGHBOR (KNN)

The K-nearest neighbors (KNNs) algorithm is commonly
employed as a method for supervised classification. This
technique utilizes a nearestneighbor classification approach for
categorizing items into separate groups. The strategy employed
in this case is known as instance-based learning (IBL). The
Euclidean distance metric is used to determine the degree of
separation between the two attributes [3]. The method uses
designated points to indicate a different point. The KNNs
algorithm can address missing data by employing a clustering
approach to identify and utilize comparable data. Once missing
values are filled, prediction methods can be applied to the data
set. The integration of multiple algorithms enhances the
precision of the results. The KNNs technique does not
necessitate the establishment of models or the application of
assumptions. This algorithm is utilized in regression,
classification, and search applications. It is important to note
that the presence of noisy and irrelevant information can
significantly affect the performance of the KNNs algorithm. In
their study, Pouriyeh et al. reported an accuracy rate of 83.16%
when using a K-value of 9 [12].

3.4.4 ARTIFICIAL NEURAL NETWORK (ANN)

An artificial neural network (ANN) is a type of computing model
that closely resembles the organization and behavior of natural
neural networks. A neural network can learn and adapt based on
the input and output it receives at each level of the network,
and the data passing through the network can modify its



structure. Nonlinear statistical data modeling is an area of data
science that makes use of ANNs. The objective of this particular
subfield is to either formulate or ascertain complex relationships
between input variables and output variables. ANNs consist of
layers that are connected. ANNs are being utilized to progress
the current state of the art in data processing. These networks
have a simple mathematical architecture.

3.4.5 DECISION TREE (DT)

Decision trees (DTs) are a type of machine learning algorithm
that can be used to categorize data, both numerical and
categorical. DTs are a type of data structure that establishes
hierarchical relationships. DTs are frequently employed in
medical datasets due to their simplicity in both design and
interpretation. Tree-shaped graphs simplify the process of data
processing. A DT analysis is conducted at three distinct nodes.
The root node serves as the central point around which all other
nodes spin. At a node within a data structure, referred to as an
“internal node,” many properties are managed. The test findings
are represented by the leaf nodes. The algorithm in question
integrates data into cohesive clusters to facilitate
comprehension and analysis. The calculation of attribute entropy
is initially performed to classify the data that possess the most
accurate predictors.
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The results provided in this study exhibit improved readability
and comprehensibility [13]. Due to the utilization of a tree-based
graphical representation to analyze the dataset, this approach
demonstrates superior precision compared to its counterparts.
However, it is important to note that judgements typically focus
on a single property, potentially leading to an over classification
of the data. The DT model developed by Chauhan et al.
demonstrates an accuracy rate of 71.43%. However, the
achieved accuracy is notably lower at 42.895% [14].

3.4.6 FUZZY LOGIC

In this form of multi-valued logic, the variables can assume truth
values that span the range of positive or negative real numbers
inside the interval of 0 to 1. Fuzzy logic has the potential to offer
valuable contributions across various disciplines, ranging from
control theory to the field of Al. The phenomenon of partial
truth, wherein the degree of truthfulness can vary from
completely true to completely false, is frequently examined
through the use of fuzzy logic. The advancement of neuro-fuzzy
systems can be facilitated using diverse hybrid methodologies
within the area of soft computing, wherein one such strategy
involves the combination of fuzzy logic with neuro-computing.

3.4.7 ASSOCIATION RULES

Association rules enable data warehouses to discover
associations between apparently unrelated data by utilizing
if/fthen statements. The statement contains an if-then clause,
namely the “then” part. The identification of recurring if/then
patterns within a dataset leads to the establishment of
association rules. The determination of the most significant
connections is dependent on support and confidence measures.



The confidence metric quantifies the dependability of the if/then
expressions, whereas the support metric quantifies their
occurrence frequency inside the database. The utilization of
association rules in data mining has the potential to forecast
customer behavior. Programmers employ association rules to
develop machine learning systems [15].

3.4.8 CLASSIFICATION AND REGRESSION TREES

Classification and regression trees are a type of DT algorithm
used for classifying categorical target variables. Regression
trees are a type of predictive model that is used to estimate and
forecast continuous target variables. The technique known as
classification and regression trees is comprised of a sequence of
questions that ascertain the subsequent questions, if applicable.
These questions constitute a hierarchical structure resembling a
tree, wherein the terminal nodes signify the lack of any further
inquiry.

3.5 DATA MINING TOOLS

The mining methods can be readily implemented using data
mining tools. To facilitate accessibility for researchers, most of
such software applications are made available as open source
without any associated costs. Their design makes them easy to
use. Various platforms and software tools, such as Waikato
Environment for Knowledge Analysis (WEKA), RapidMiner,
Tanagra, MATLAB, and so on, are extensively employed within
the domain of data mining.



3.5.1 WAIKATO ENVIRONMENT FOR KNOWLEDGE
ACQUISITION

The Waikato University-developed computer program aims to
extract useful information from unstructured data. The WEKA
software package possesses the capability to undertake many
tasks, including pre-processing, classification, clustering,
regression analysis, visualization, and feature selection. This
program uses computer software to acquire knowledge in the
field of machine learning and identify common patterns and
trends. The WEKA software, which was first implemented in the
C programming language, has undergone a rewriting process in
Java to ensure compatibility with a wide range of computer
systems. The efficient graphical user interface facilitates rapid
setup and utilization [16].

3.5.2 RAPIDMINER

RapidMiner, formerly referred to as YALE, is a software tool that
facilitates various data mining and machine learning tasks,
including ETL (extract, transform, load), data preparation and
visualization, modeling, assessment, and deployment. The
RapidMiner software utilizes the Java programming language.
Text mining, media processing, feature engineering, data stream
mining, and others are viable.

3.5.3 C PROGRAMMING LANGUAGE

The programming language C was developed by Dennis M.
Ritchie during the early 1970s at Bell Labs for the Unix operating
system. The initial objective of system software was to fulfill its
designated functions. The programming language C is well-
suited for the development of firmware and portable
applications.



3.5.4 JAVA PROGRAMMING LANGUAGE

The software was initially developed by Sun Microsystems, but it
is presently in the ownership of Oracle. It is extensively used to
create and distribute web content. Java is an object-oriented
programming language that shares many features with C** but
is simpler and less prone to programming errors. Java is an
excellent programming language for use on the internet. Java
applets can be retrieved from the web server and subsequently
executed within a web browser that is compatible with Java.

3.5.6 APACHE MAHOUT

The development of open-source implementations of scalable
machine learning algorithms is the major objective of the
Apache Mahout project, which is being supervised by the
Apache Software Foundation. These techniques can be applied
to classification, clustering, and collaborative filtering. Apache
Hadoop, an open-source platform based on Java, enables
distributed computing for the purpose of processing and storing
large volumes of data. The Apache Software Foundation
provides support for it as an integral component of the Apache
project.

3.5.7 ORANGE

This software package comprises a collection of tools designed
for the purpose of visually analyzing and examining information,
as well as for using machine learning algorithms and conducting
data mining operations. This is a Python library that has the
capability to be used in an interactive manner.



3.5.8 MATLAB

Matrix Lab is an acronym for the phrase matrix laboratory. This
software exhibits compatibility with a diverse range of numerical
computing paradigms. This is a programming language
belonging to the fourth generation of computer programming.
MATLAB facilitates the execution of matrix operations, data, and
function plotting, algorithm creation, user interface design, and
inter-program communication with languages such as Java, C*,
C#, Fortran, and Python [17].

3.5.9 TANAGRA

Tanagra data mining projects often employ it due to its low cost
and non-commercial availability. Exploratory analysis, statistical
learning, and machine learning are all recommended data
mining methodologies. Among the paradigms that Tanagra uses
are clustering, association rules, parametric, and nonparametric
statistics, factorial analysis, feature selection, and model
generation.

3.6 INVESTIGATIONS BASED ON THE USE OF
COMPUTERS TO FORECAST CARDIAC DISEASES
Gudadhe et al. introduced a decision-support system for
cardiovascular disease classification. The system mainly utilized
ANNs and support vector machine (SVM) techniques. A heart
disease diagnostic decision support system was built using a
three-layer multilayer perceptron (MP) neural network. This
layered  perceptron network was trained using the
computationally efficient back-propagation approach. The
results demonstrated the efficacy of a MP neural network trained
by back-propagation [18].



Ordonez used association rule mining and the train-test
strategy to analyze a set of data to predict heart disease. The
biggest issue with association rule mining is that it produces
many rules, the majority of which are irrelevant to the
healthcare industry. In addition, most of the time, association
rules are extracted using the entire set of data without being
tested on a subset. The author has come up with a solution to
this issue in the form of an algorithm that employs search
constraints to reduce the size of the ruleset. The system initially
analyzes the training data to identify potential association rules,
which are subsequently evaluated against an independent test
data set to assess their accuracy. Subsequently, Ordonez
conducted a thorough and optimistic evaluation of the medical
significance of the newly implemented restrictions. By
implementing search limits and test set validation, the number
of association rules is significantly diminished while
simultaneously attaining a high level of prediction accuracy.
These recommendations are an invaluable resource for
healthcare professionals [19].

Bhatt et al. (n.d.) devised a model capable of accurately
forecasting cardiovascular disorders to mitigate the mortality
associated with such conditions using a novel approach to k-
mode clustering, utilizing the Huang initialization method, which
has the potential to enhance classification accuracy. The models
employed include RF, DT classifier, MP, and XGBoost (XGB). The
GridSearchCV function was employed to optimize the
parameters of the applied model. The models were trained using
an 80:20 data split (the DT model achieved an accuracy of
86.37% with cross-validation and 86.53% without cross-
validation). The XGB model achieved an accuracy of 86.87%



with cross-validation and 87.02% without cross-validation. The
RF model achieved an accuracy of 87.05% with cross-validation
and 86.92% without cross-validation. The MP model achieved an
accuracy of 87.28% with cross-validation and 86.94% without
cross-validation. The study concluded that the MP, when
combined with cross-validation, has exhibited superior accuracy
(a peak accuracy of 87.28%) compared to all other algorithms
[20]. Apache Mahout, developed by the Apache Software
Foundation, is freely available open-source software designed to
execute machine learning algorithms in a distributed or scalable
environment. The Cleveland Heart Database is an openly
accessible online repository containing a collection of data
encompassing 13 different variables. Three methodologies,
namely a neural network, NB, and a DT, have been employed to
extract the underlying patterns. The primary goal of this system
is to enhance the precision of prediction models, risk
assessment tools, and feature extraction mechanisms
concerning a broader range of clinical hazards.

To diagnose cardiac issues, supervised machine learning
classification strategies have been explored. The Tanagra tool is
used to organize the data, which is then tested using 10-fold
cross-validation, and the findings are compared. Tanagra is
open-source software that is freely available for use in
educational and research settings. The document provides
several suggestions about data mining methodologies in the
domains of depicted database management, data analysis,
statistical learning, and machine learning. The training dataset
accounts for 80% of the data, while the testing dataset accounts
for the remaining 20%. The NB technique has the fastest
runtime and lowest error rate (Table 3.1) [21].



TABLE 3.1 Comparison of the Naive Bayes, Decision tree, and k-
Nearest Neighbors Categorization Algorithms' Accuracy and
Time Complexity

Algorithm Accuracy (%) Time Taken (min)
Decision tree 52 713

K-nearest neighbors 46 1000

Naive bayes 53 608

3.7 CONCLUSION

Heart disease may progress to an unmanageable state.
Cardiovascular diseases provide significant challenges in terms
of treatment efficacy and contribute to a substantial annual
mortality rate. Ignoring cardiac warning signs can be lethal. The
high-stress levels of the general population, along with the
prevalence of sedentary lifestyles, have only made the problem
worse. Early detection of the disease enables effective control
measures. The prioritization of exercise and good behavior
should be upheld consistently. The use of tobacco and the
consumption of an unhealthy diet are both factors that
contribute to an elevated susceptibility to stroke and heart
disease. It is recommended to consume five servings of fruits
and vegetables daily. It is recommended that those with
cardiovascular conditions restrict their consumption of salt to a
maximum of one teaspoon per day. A significant drawback lies in
the emphasis of these studies on the classification of cardiac
disease rather than the processing of data for data mining. A
dataset that has undergone the process of cleaning and
trimming exhibits greater accuracy compared to a dataset
containing missing values. The utilization of data cleaning and
classification techniques enhances the precision of predictions.
In the future, it is conceivable that an advanced intelligent
system might potentially aid individuals diagnosed with heart



disease in making informed decisions regarding optimal
treatment options. The utilization of predictive models for heart
disease has experienced a surge in popularity. After a heart
disease diagnosis, patients have numerous therapy options. The
utilization of data mining techniques on appropriate datasets
can facilitate the identification of optimal treatment strategies.
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CHAPTER 4

Monitoring the Health
Status of Thyroid Patients
Using Machine Learning

ABSTRACT

Thyroid disease exhibits a high prevalence within the
population. A precise and prompt diagnosis of this disease is
of utmost importance. Although machine learning
approaches can be used to diagnose this disease, it is
important to note that the most reliable and widely
accepted method is still a comprehensive set of laboratory
tests and imaging examinations. Feature extraction with
correlation is the most successful machine learning strategy
for the classification of two different types of thyroid disease
(hyperthyroidism and hypothyroidism). Support vector
machines (SVMs), random forests (RFs), K-nearest neighbors
(KNNs), decision trees (DTs), artificial neural networks
(ANNs), and logistic regression (LR) are commonly employed
as predictive models.
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4.1 INTRODUCTION

Thyroid disease is a frequently neglected endocrine disease
[1, 2]. According to the World Health Organization (WHO),
thyroid gland diseases, which rank second in terms of
prevalence after diabetes, represent the most common
endocrine disorder. Approximately 1% of the population is
affected by hypothyroidism, whereas hyperthyroidism is
prevalent in approximately 2% of individuals. The male
population constitutes approximately 10% of the total
population, whereas the female population accounts for
90%. Dysfunctions of the brain, pituitary gland, or thyroid
can all play a role in the development of hyperthyroidism or
hypothyroidism. There is a correlation between insufficient
dietary iodine intake and a higher prevalence of goiter and
active thyroid nodules in certain regions, with a reported
incidence rate of 15%. The thyroid gland is susceptible not
only to the development of malignant tumors but also to the
detrimental impact of autoantibodies produced by the body
[3]. It is well acknowledged among medical professionals
that the timely identification, diagnosis, and treatment of
diseases play a pivotal role in impeding the advancement of
illnesses and preserving human lives. The early detection
and differential diagnosis of several abnormalities have
been shown to enhance treatment success rates [4].

The thyroid gland, referred to as the “butterfly gland,” is a
small gland located in the front region of the neck,
exhibiting a resemblance to the shape of a butterfly. The
brain synthesizes two biologically active thyroid hormones,



namely levothyroxine (T4) and triiodothyronine (T3), which
play a vital role in regulating thermoregulation, blood
pressure, and cardiac rhythm, among various other
physiological processes. Thyroid hormones are released by
the thyroid, an endocrine gland. The thyroid hormones are
transported throughout the body via the circulatory system.
Thyroid hormones have a crucial role in facilitating the
process of digestion, regulating the equilibrium of fluids and
electrolytes, and performing various other functions within
the body. Several hormones that are released by the thyroid
gland are wused as markers for assessing thyroid
functionality. T3, T4, and TSH exemplify thyroid-stimulating
hormones (TSHs). Hypothyroidism and hyperthyroidism are
the prevailing forms of thyroid disease. The process of
identifying patterns in large databases can be semi-
automated through the utilization of data mining techniques
[5].

Machine learning algorithms have been recognized as a
very effective technique for addressing a diverse range of
complex problems [6]. To enhance understanding regarding
the role of machine learning algorithms in the categorization
of thyroid disease, a study was conducted and a
classification framework was developed. Classification, a
data analysis technique, can be employed to diagnose and
predict thyroid disease using machine learning algorithms
[7]. The utilization of machine Ilearning and artificial
intelligence (Al) in the field of medicine can be traced back
to its early stages [8]. There is a growing consensus that



underscores the significance of healthcare solutions based
on machine learning. Due to this rationale, it is anticipated
by experts that machine learning will become pervasive in
the domain of medicine [9].

4.2 THYROID FUNCTIONING

The pituitary gland exhibits diminished production of TSH
because of elevated T4 levels, thereby leading to a
deceleration of thyroid activity. Thyroxine (T4), which
consists of four iodine molecules, is the primary thyroid
hormone that the thyroid gland produces. The conversion of
T4 to T3 (trilodothyronine) occurs through the release of an
iodine particle, enabling T3 to exert its biological effects.
The synthesis of T3 occurs mostly in organs such as the liver
and brain. The release of the thyroid hormone T4 is
regulated by the TSH. The TSH hormone is produced by the
pituitary gland located in the brain. The release of TSH by
the pituitary gland is dependent upon its detection of
thyroxine (T4). The synthesis of TSH is enhanced in
response to the detection of low levels of thyroxine (T4) by
the pituitary gland. The synthesis of TSH by the pituitary
gland stops after a particular amount of thyroxine (T4) has
been produced. The thyroid and pituitary glands act as
radiators and internal regulators. When the radiator is off,
the indoor thermostat turns on the heater if the temperature
falls below a certain threshold. The thermostat turns off the
radiator when the temperature reaches an appropriate level.
The thyroid and pituitary glands function in a manner
analogous to home thermostats and light switches [10].



4.3 ARCHITECTURE OF THYROID PREDICTION
SYSTEM

Machine learning is a branch of Al that is gradually
permeating various academic disciplines. Algorithms
provide the capability to acquire knowledge from previous
errors through automatic learning techniques, which occur
in a hidden manner [11]. The proliferation of machine
learning can be attributed to the escalation in
computational capabilities and the expanding volume of
data accessible for processing. Classical epidemiology
represents an innovative integration of contemporary data
science with traditional epidemiology, enabling the
utilization of computer-generated data to its fullest
potential. These tools examine the intimate correlation
between input and outcome, which holds significant clinical
relevance. This enables the examination of extensive data
sets [12]. One may easily be deceived by objective
assessments of surgical observations, Ileading to
modifications in surgical agreements. When attempting to
resolve a surgical disagreement, it is crucial to elucidate the
role played by the patient’s acquaintance or relative in
assisting with the procedure. Machine learning enables
computers to use historical data to make accurate
predictions about future events. The sensible component of
the algorithm demonstrates a high level of accuracy in
predicting outcomes, effectively replicating the intricate
patterns observed in extensive and intricate datasets.



Furthermore, it successfully captures the essence and
characteristics of reliable data sources [13].

Machine learning can be effectively employed in the
diagnosis and treatment of thyroid disease due to its
multifactorial etiology and many treatment modalities [14].
This demonstrates the enormous potential of machine
learning models and bolsters the growing trend towards
precision medicine, in which each patient's care is
meticulously customized. It is feasible to purposely build a
large gap between supervised and unsupervised learning in
the field of Al. Supervised learning methods develop a
model that can predict new data that hasn’t been seen
before using “labeled” training data [15]. Given that
unsupervised learning exclusively operates with
unannotated data and depends on analogies and heuristics,
it can be effectively employed to analyze a substantial
corpus of unannotated genomics data. These techniques
can be employed to generate labels intended for training a
supervised model. This approach is valuable in the analysis
and comprehension of intricate data that poses challenges
in terms of human measurement [16]. Figure 4.1 illustrates
a thyroid prediction system based on machine learning.
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FIGURE 4.1 lllustration of a machine learning-based
thyroid prediction system.

The conventional programming approach requires the
systematic arrangement of data to achieve an anticipated
result based on the provided input. Machine learning
algorithms derive rules from labeled training data by
analyzing the relationship between input and output
variables. Machine learning has been demonstrated to be a
highly efficient approach for analyzing enormous amounts of
data, generating hidden information within databases, and
adjusting to dynamic surroundings [17, 18, 19 and 20]. To
minimize the difference between intended and attained
outcomes, learning algorithms employ a technique known
as feature weighting, wherein input variables (referred to as



features) are assigned priority and significance based on
their relevance in providing pertinent information. Machine
learning enables the training of systems using extensive
databases, wherein  established machine learning
techniques are employed to generate abstraction
mechanisms or construct models. Subsequently, these
mechanisms or models can be utilized to make predictions
regarding upcoming events while ensuring the
confidentiality of claimed predictions [18, 19, 20 and 21].

4.4 APPROACHES FOR THYROID PREDICTION

The objective of the proposed methodology is to ascertain
prospective approaches for the treatment of thyroid disease
by analyzing historical and contemporary patient records.

4.4.1 DATA COLLECTION

The initial dataset comprises individual-specific information
encom-passing age, date of birth, gender, medical
conditions, occupation, educational attainment, marital
status, biological sex, physical attributes such as height,
weight, and body mass index, as well as clinical data about
potential pregnancies and menstrual cycles in women. This
clinical data encom-passes observations related to the skin,
heart, neck, abdomen, extremities, thorax, and eyes. The
second source pertains to the medical record of the patient
[22]. Each patient’s file contains laboratory test results and
notes from doctor’'s appointments. The process of patient
identification involves the integration of two distinct data



sources, resulting in the creation of a comprehensive and
extensive dataset.

4.4.2 THE PROPOSED FEATURE MODEL

The features are obtained from an initial dataset that
encompasses comprehensive information on the patients
from multiple perspectives. Characteristics such as personal
information, medical history (both immediate and
extended), current health condition, blood test results, and
hormone and thyroid levels might be cited as illustrative
instances. The first feature set is refined to a limited number
of attributes that primarily focus on patient data and
variables related to thyroid function. This determination is
made by an expert utilizing established criteria for
evaluating the effectiveness of medical treatment [23].
Certain features are excluded from the analysis due to their
presence in just a sample of patients, resulting in their
absence in over half of the entire dataset. The specific
values encompassed in this context are as follows:
“increased” denotes instances where there is a necessity to
augment the patient’'s dosage; “decreased” signifies
situations where a reduction in the patient’s dosage is
warranted; “stable” indicates circumstances where the
treatment regimen should remain unaltered; and “others”
encompasses scenarios where it is imperative to suspend
the treatment entirely for the patient.



4.4.3 CLASSIFIERS

Several machine learning classifiers, such as AdaBoost,
gradient boosting, XGBC, and CatBoost algorithms, have
been used to predict the therapy plan for patients with
thyroid conditions. Based on the patient’s medical history
and current clinical status, the classifier provides a
recommendation to the endocrinologist regarding the
appropriate adjustment of the patient’s LT4 dosage, which
may involve an increase, decrease, or maintenance of the
current dosage. To identify which algorithms best categorize
each item within the dataset, distinct attributes are
contrasted and analyzed. The boosting algorithms are a
subset of the algorithms that have been chosen [24].

4.5 ALGORITHMS FOR MACHINE LEARNING

4.5.1 ARTIFICIAL NEURAL NETWORKS (ANNS)

Artificial neural networks (ANNs) receive influence from the
structure and functionality of the human nervous system.
They possess the ability to learn and simulate various types
of functions, including those that use real-valued, discrete-
valued, and vector-valued inputs, by employing a
substantial number of interconnected units known as
neurons. Backpropagation is widely regarded as the
preferred method for learning in ANNs. The algorithms of
the neural networks exhibit a tripartite structure. The design
of the system comprises three layers, namely the input
layer, the hidden layer, and the output layer. The input
layer, located at the topmost level of the hierarchical



structure, receives data from the outer layers. The hidden
layer, positioned in the center, processes the received data.
Lastly, the output layer, serving as the ultimate layer,
disseminates the network’s prediction. By utilizing this
compact network, it is possible to classify the newly
acquired data.

4.5.2 DECISION TREE (DT)

The decision tree (DT) classifier uses a graphical
representation that bears resemblance to a tree structure.
Within the context of DTs, it is crucial to note the existence
of three different types of nodes, namely internal nodes, leaf
nodes, and root nodes. An internal node of a tree symbolizes
a test conducted on a specific property, while a leaf node
signifies the distribution of a particular class. Lastly, the root
node of a tree indicates the apex of the tree. C4.5 and ID3
are the two primary algorithms employed in a DT-based
model for the diagnosis and prediction of thyroid diseases,
offering a comprehensive approach. DTs are frequently
employed in the medical domain, particularly in the context
of diagnosing thyroid problems [25].

4.5.3 K-NEAREST NEIGHBOR (KNN)

When a training tuple is sent to the KNN algorithm, it is
stored for later use when a test tuple is provided for
evaluation. The term “lazy learner” is used to describe a
machine learning algorithm that retains its training data, or
“instances,” for future reference [26, 27]. The determination
of the number of neighbors considered for categorization is



contingent upon the selection of a positive integer, denoted
as “k.” In the realm of distance measures, the concept of
“closeness” is typically characterized by metrics such as
“Euclidean distance” and “Manhattan distance.”

4.5.4 SUPPORT VECTOR MACHINE (SVM)

Support vector machines (SVMs) enable precise analysis
through the utilization of a wide range of research
methodologies. The SVM is a computational method that
utilizes a hyperplane separation algorithm to facilitate the
analysis of data sample distribution [28]. The SVM classifier
can generate one or multiple hyperplanes inside a high-
dimensional domain. The training data can be divided into
positive and negative sets by employing a hyperplane.

The machine learning library at the University of
California, Irvine, has been used to obtain the datasets
associated with thyroid disease [29]. The endeavor can be
divided into two primary phases. The first stage involved
choosing a subset of the thyroid datasets using a
customized approach based on mutual information and ANN
prediction [30]. Neural networks have demonstrated
successful implementation in specific sectors of the medical
field, particularly in the realm of disease diagnosis and
interpretation. The selection of a particular feature selection
technique is dependent upon the level of reliability exhibited
by the study conducted on datasets encompassing data
about thyroid disorders [31].



4.7 CONCLUSION

In future studies, we will investigate whether tailored
machine learning can detect thyroid disorders. A few simple
investigations have helped diagnose thyroid disease in
recent years. Scientific research has shown that neural
networks outperform other methods. However, this is to be
expected given the effectiveness of both the SVM and the
DT. Researchers have made significant progress toward
precisely identifying thyroid problems. A patient with more
characteristics requires more time and money for clinical
evaluation. Thus, it is critical to develop algorithms and
thyroid illness predictive models that can diagnose the
condition with minimal patient input, thereby saving both
time and money.
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CHAPTER 5

Machine Learning-Based
Wearable Devices for
Healthcare Applications

ABSTRACT

There has been a notable surge in the inclination towards
the utilization of machine learning and artificial intelligence
(Al) within the discipline of healthcare in the past few years.
Due to its application in the surveillance of wearable
technology, which tracks human behavior and physiological
information, as well as its role in aiding disease
identification, this technology holds considerable promise
for implementation in senior care, patient monitoring, and
therapy. The significance of wearable healthcare devices
has increased due to advancements in medical sensors and
the downsizing of electronic circuits. This chapter presents
an overview of the key topics in modern machine learning
related to these devices.
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5.1 INTRODUCTION

The term “wearable technology” comprises an extensive
range of electronic devices that have been specifically
intended to be worn either directly on the body or near it.
The latter categorization often includes mobile phones,
which have increasingly played a crucial role in enabling the
advancement of wearable technology [1]. The classification
of smart-phones as wearable technologies has been a topic
of debate. However, the widespread use of smartphones has
led to an upsurge in interest in wearable technologies as
effective tools for improving quality of life [2]. The primary
factor contributing to this phenomenon may be attributed to
the widespread availability of supplementary software
applications. While this has fostered an environment of
innovation, it has also impeded the development of
cohesive application design. Consequently, users are faced
with an overwhelming abundance of options. The present
technological advancements in smartphones have made
them more portable and capable of performing complex
computations. This has significant implications for the field
of bioassays, as it allows for the quick and dependable
execution of these tests in any location and at any time [3].
In essence, wearable technology may be categorized into
two distinct types: primary and secondary. The primary type
functions independently and acts as a central hub,
facilitating the connection between different electrical and
data systems. On the other hand, the secondary type is
designed to capture events or collect measurements, which



are then transmitted to the main wearable device [4]. The
inclusion of smart textiles, which include the ability to
measure or respond to input from the user or the
environment based on their physical properties, can also be
considered within this category [2]. The practice of
integrating electronics or unconventional tailoring materials
into clothes or directly onto the human body is currently
limited to enthusiasts with a futuristic vision. However,
there are indications that this situation may transform the
near future.

Accelerometers, optical sensors, temperature sensors,
and biometric sensors are typical examples of the various
types of sensors that could be included in a wearable device
to continuously monitor a diverse array of human signals.
Despite the potential lack of accuracy in the readings from
these sensors, they can still be used in circumstances where
more permanent medical equipment is not readily available,
subject to their particular application [1, 2]. Algorithms
employing machine learning techniques can detect and
recognize meaningful patterns within the data produced by
sensors in Internet of Medical Things devices, as well as
from human engagement with those devices. The
technology mentioned herein exhibits significant potential in
the realm of health applications, specifically in the areas of
vital sign monitoring, disease detection, recognizing falls,
and stress identification. The application of machine
learning techniques for the analysis of data obtained from
wearable sensors connected to human subjects has been



the focus of extensive study in the past 10 years. Despite
extensive research and the remarkable proliferation of
wearable  devices, particularly  smartwatches, the
commercialization of machine learning applications remains
limited in scope. One instance of such functionality is
represented by alarms that provide notifications regarding
irreqular heartbeats [3]. In 2018, the Food and Drug
Administration (FDA) granted approval to the Apple Watch,
accompanied by an extensive compilation of potential
dangers and cautionary statements.

This chapter provides an overview of the existing research
on the integration of machine learning techniques into
wearable devices. Concerns about the development,
storage, energy consumption, user  acceptability,
dependability, information exchange, confidentiality, and
the confidentiality of wearable machine Ilearning
applications are addressed. This chapter delves into the
approaches employed for privacy-preserving machine
learning training and inference (Figure 5.1).
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FIGURE 5.1 lllustration of the workflow of the
wearable device application model.

5.2 SIGNALS OF WEARABLE DEVICES USED IN
LEARNING

A wearable device can be worn that contains sensors
capable of gathering data about the human body in a non-
invasive manner. Several well-known signals and markers on
the human body can be read to determine vital signs and
other information about the patient’s health and
psychological status. Skin temperature sensors can be
utilized as an illustrative instance to demonstrate the
application of electrodermal activity sensors, also referred to



as galvanic skin response sensors. These sensors are
capable of capturing variations in skin conductance that are
linked to the activity of the sympathetic nervous system [2,
5, 6]. Another example involves the wuse of an
electrocardiogram (ECG) sensor to capture and measure the
electrical fluctuations in the dermal layer of the body
resulting from cardiac contractions [7, 8, 9 and 10].
Electromyography (EMG) and electroen-cephalogram (EEG)
sensors are utilized to record electrical activity in the brain
and muscle and nerve cell health, respectively [11, 12, 13,
14, 15, 16 and 17]. With the help of an optical
photoplethysmography sensor, a patient’s pulse rate and
heart rate variability can be determined by measuring their
blood volume pulse, as explained in Refs. [1, 18, 19 and 20].
A photoplethysmography sensor can enable an approximate
estimation of blood oxygen saturation levels (SpO,) [20, 21
and 22]. Applications that make use of the data collected by
accelerometers, gyroscopes, and magnetometers
concerning a user’s health and activity level are becoming
increasingly popular [1, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36 and 37]. An electrooculogram is created
by placing electrodes on the eye, and an electrogastrogram
is created by placing electrodes on the stomach [38, 39].
Galvanic skin response and ECG signal measurements show
that humans have varying autonomic responses to different
stimuli [40]. This is a significant challenge for models
attempting to include such sensory inputs. The inputs have
a wide range of potential applications, including the use of



aromatherapy and nutrition therapy in the treatment of
neuro-psychiatric and eating disorders. In certain instances,
it is imperative to maintain vigilance over the broader
context.

5.3 MACHINE LEARNING FOR WEARABLE
DEVICES

Machine learning enables wearable devices to collect
information through their experiences and autonomously
make decisions or judgments without being specifically
programmed for specific conditions. The classification of
machine learning as supervised, semi-supervised,
unsupervised, or reinforced depends on the characteristics
of the instructional data that is provided. The
documentation of historical events serves as a valuable
resource for acquiring knowledge through the analysis of
labeled or unlabeled data. In labeled data, the dependent
variable can be quantitative or categorical. Machine learning
serves several objectives, encompassing classification,
regression, and clustering. Classification involves predicting
category output variables; regression deals with numerical
labels; and clustering addresses the analysis of unlabeled
data. Most of the research conducted on machine learning
in wearable technology focuses on the classification of data
[41, 42]. A smaller portion of studies explores the potential
for grouping data, and only a limited number of studies can
be considered regression issues [43]. Over the past 10
years, there has been a surge in research on the application
of machine learning techniques to physical signals, with



applications in fitness tracking, senior care, and health
monitoring. The potential applications of activity recognition
encompass various aspects of health monitoring, including
predicting and assessing sleep quality, detecting falls,
monitoring epilepsy and diabetes, and predicting and
monitoring vital signs [44]. Additionally, activity recognition
can be utilized for monitoring human activities related to
health and fithess, among other functions. Numerous
disciplines have explored the possibility of wearable
technology, including tachycardia monitoring, stress
monitoring, and rehabilitative services.

5.3.1 ROLE OF WEARABLE DEVICES IN SLEEP
HEALTH

To investigate the relationship between physical activity and
sleep, researchers have employed a variety of devices,
including actigraphy sensors, standardized questionnaires,
and polysomnography. Each of these methods has
significance in clinical practice, especially in diagnosing
sleep disorders [45]. Polysomnography is commonly
recognized as the preferred method for identifying sleep-
related respiratory issues due to its extensive monitoring of
the patient’s physiological conditions for the whole duration
of the night. Overnight, these sensors keep a patient under
close observation [46]. This can be used to analyze different
types of sleep disorders. Polysomnography is normally done
overnight due to its complexity. Although a
polysomnography examination can be done in the patient’s
home, it is challenging to carry out with portable solutions



[47, 48]. There is a need for novel methodologies to explore
the correlation between the waking and sleeping habits of
an individual. Actigraphy is a technique that was developed
in the early 1990s to investigate the patterns and
characteristics of sleep using portable electronic devices
[49]. Actigraphy can monitor not just how active a person is
throughout the day but also how well they sleep at night.
Actigraphy has become popular rapidly because it is more
reliable than subjective sleep diaries and behavior logs [50].

5.3.2 ROLE OF WEARABLE DEVICES IN SEIZURE
DETECTION

Machine learning techniques are employed to analyze EEG
datasets obtained from individuals diagnosed with epilepsy.
Genetic algorithms that can recognize epileptic activity in
EEG data have been extensively investigated. The Kaggle
competition employs implanted EEG records obtained from
both humans and canines to develop a comprehensive
system for detecting seizures on a global scale [51]. The
approach used for identifying seizures from long-term EEG
involved the utilization of a random forest (RF) classifier,
which exhibited a high level of performance with an area
under the curve above 0.97. Machine learning algorithms
can identify seizures through the analysis of scalp
electroencephalography data. These algorithms have false-
positive rates ranging from 0.1 to 5 per hour, along with
sensitivities ranging from 75% to 90% [52]. Both seizures
and interictal epileptiform discharges hold similar
significance in the diagnosis of epilepsy. The utilization of



video EEG monitoring for extended durations within
residential settings is gaining popularity. The use of
automated and dependable spike detection techniques
greatly facilitates the processing of large-scale datasets.
Machine learning methods removed spike-free periods from
electroencephalography [53]. Patients with generalized
epilepsy had their epileptic discharges clinically assessed
and quantified using deep learning (DL) [54, 55].

5.3.3 MACHINE LEARNING-BASED SEIZURE
PREDICTION USING WEARABLE DEVICES

Various machine-learning approaches have been used to
detect and predict seizure events based on WD signals
recorded throughout phase 0 to phase 2 trials [56]. Tonic-
clonic seizures can be detected by the utilization of support
vector machine (SVM) models, which are trained on data
obtained from recordings of accelerometry and
electrodermal activity [57, 58]. These signals have also
been used in an algorithm that combines k-nearest neighbor
(KNN) and RF features [59]. The FDA-approved wrist-worn
seizure-detection watch was used in all the subsequent
investigations. Nevertheless, the assessment of the
comparative efficacy of various machine learning algorithms
is @a complex task due to the lack of recorded seizures and
the absence of consensus among scientists over the precise
meaning of seizures. Previous research has exclusively
documented the retrospective efficacy of smartwatches in
seizure detection. As far as current information is
concerned, there is a lack of published findings from



prospective studies utilizing the same technology. EMG
signals have commonly been employed as a feature in
machine learning systems for seizure detection when
combined with data obtained from sensors worn on the
wrist. Larsen et al. successfully attained a high level of
sensitivity (median = 1.0, min = 0.5) using surface EMG
data obtained from deltoid electrodes. These data were
employed to extract relevant features to train a RF classifier
to detect generalized tonic-clonic seizures (GTCSs) [60]. In
addition to seizures, machine learning techniques have also
been employed to detect pre-ictal signal features from
wearable devices. Heart rate variability has been
extensively used for seizure prediction [61], and preictal
changes in heart rate have been documented. Seizure
prediction using ECG has recently been made possible with
the application of DL algorithms [62]. Another study
developed an algorithm that could predict seizures for
individuals based on ECG data and an SVM. This study
demonstrated an average sensitivity of 89% in 15 people
with varied seizures, with predictive signals obtained up to
20 minutes before episodes [63]. Although there have been
initial indications of potential in seizure-forecasting
research, the evaluation of heart rate and wearable devices
in a prospective setting has not been conducted yet [63,
64]. Comparing machine Ilearning algorithms across
different devices, seizure type definitions, and inclusion
criteria remains a persistent challenge. The provision of
extensive, standardized datasets containing signals from



individuals with epilepsy, like the approach taken with EEG
recordings, would serve to address the challenges that have
been faced so far.

5.3.4 ROLE OF WEARABLE IN STRESS
DETECTION

The stress detection survey incorporated various
physiological and behavioral indicators, including heart rate,
blood volume pulse, interbeat intervals (RR intervals),
electrodermal activity, temperature, and behavioral aspects
[18]. Electrodermal activity and heart rate are the best
stress indicators. The issue of the remote monitoring of
children’s stress levels to safeguard their well-being has
been widely investigated [65, 66]. The investigation of
utilizing a neural network to identify metabolic syndrome
symptoms in children with autism spectrum disorder has
been conducted due to the potential exacerbation of these
symptoms by stress [22]. Biosignals, eye monitors,
microphones, cameras, and mobile interactions have been
used to study mental ililnesses like anxiety, bipolar disorder,
and depression [67, 68].

5.3.5 ROLE OF WEARABLES IN HYDRATION
MONITORING

Various individuals, including athletes, military personnel
deployed in combat zones, those working in high-
temperature situations, and elderly individuals who may
experience difficulties in expressing their thirst, all have a
vested interest in addressing the issue of monitoring



hydration levels. Currently, biochemical sensors are being
utilized to monitor the electrolyte concentration in sweat
and, consequently, the hydration level of an individual [69].
However, there are simultaneous efforts in the field of
machine learning aimed at acquiring knowledge from
diverse biological signals to detect dehydration. For
instance, one such effort focuses on determining how
dehydration-induced cognitive stress affects the body’s
autonomic responses [70]. To identify dehydration, ECG
signal characteristics that were annotated with resting heart
rate variability, heart rate variability during exercise, and
heart rate variability following rehydration have been
employed [71]. Electrodermal activity and heart rate
variability characteristics from photoplethysmography data
can be used to successfully find moderately dehydrated
people. The researchers utilized data from many sensors to
estimate the user’'s most recent consumption of beverages,
thereby facilitating the collection of data and enabling
modifications within the application.

5.3.6 ROLE OF WEARABLES IN DIABETES
MONITORING

Wearables have been developed to monitor the blood
glucose level, body temperature, and physical activity of
individuals diagnosed with diabetes. This data s
subsequently transmitted to a central base station through
a smartphone that is connected to a 5G network. The device
uses advanced Al and machine learning methodologies to
effectively analyze the data, enabling users to exert



enhanced management over their glucose levels and
proactively predict any health concerns. The utilization of
denser and smaller cells in 5G networks has the potential to
significantly enhance the data transmission rate
experienced by clients. There is a wide variety of devices to
consider in the design of 5G networks. There are numerous
types of sensors and equipment used in intelligent
healthcare, and each provides a unique set of data that
necessitates the wuse of 5G networks. For effective
management of healthcare systems, data must be analyzed
and used, which necessitates  several network
characteristics such as mobility, charging, security, policy
administration, dependability, and latency. The
implementation of 5G technology enables individuals to
maintain communication with their healthcare providers,
thereby facilitating the effective management of health
conditions and potentially reducing healthcare costs.
Without the necessity of a patient’s physical presence,
doctors can provide superior care anywhere in the world.
Numerous applications in healthcare have the potential to
use the substantial data transfer rates and constant
reliability offered by 5G technology. The proposed system
consists of four layers: layer one, which includes sensors;
layer two, responsible for data collection; layer three,
focused on transmission; and layer four, dedicated to the
database.



5.3.6.1 LAYER 1: SENSORS

This layer contains the sensors that measure blood glucose,
temperature, and movement. The ESP8266 module, which
wirelessly connects the sensors and sends data to the
patient’s mobile device, is likewise located at this layer.
Therefore, the sensors carry the responsibility for collecting
and transmitting the data to the patient’s smartphone.

5.3.6.2 LAYER 2: DATA ACQUISITION LAYER

The smartphone and data-gathering applications that
belong to the patient are located in this layer. The mobile
application displays the sensor readings. The 5G network
enables several simultaneous connections within each
coverage area, facilitating the delivery of data to the base
station. The primary goal is to enhance the capacity to
accommodate a tenfold increase in the number of devices
within a given area of one square kilometer, surpassing the
capabilities of the 4G network.

5.3.6.3 LAYER 3: TRANSMISSION LAYER
The data is sent over 5G from the patient’s phone to the
database and back to the doctor’s phone for review.

5.3.6.4 LAYER 4: DATABASE LAYER

This location collects and stores data from numerous
sensors before various Al algorithms process it. The server
determines if the data is positive (true positive (TP)) or
negative (false negative (FN)) using machine learning
technigues. When an abnormality is found, the system
notifies the user with an alert. A server-generated message
is transmitted to the computer system operated by the



doctor. Upon analyzing the notice, the doctor proceeds to
transmit a text message to the patient with instructions
about the prescribed treatment [71].

5.3.7 ROLE OF WEARABLES IN ARRHYTHMIA
DETECTION

Consumer-grade wristbands and smartwatches often include
major functionalities for measuring heart rate. There has
been a notable surge in the number of commercial wearable
devices that are specially engineered for detecting
arrhythmia. The definition of a normal heart rate
encompasses a range of 60 to 100 beats per minute (bpm).
Atrial fibrillation, classified as a form of cardiac arrhythmia,
is characterized by rapid and irregular contractions of the
atrial chambers of the heart. Apple conducted a clinical
study with a total of 4,19,297 participants, wherein
photoplethysmography sensors integrated into Apple
wristwatch patches were employed for the detection of
atrial fibrillation. However, the method employed by the
company did not use machine learning techniques; rather, it
relied on a proprietary threshold that was created from data
about the extent of dispersion observed in inter-peak
intervals to assess irregularity. The study was undertaken by
Apple and subsequently published in the Journal of the
American College of Cardiology. Participants who exhibited
indications of anomalies were asked to undergo ambulatory
ECG monitoring with ECG patches during a specified period
of observation and analysis. However, only 34% of the
participants (450 individuals) agreed to this request. The



introduction of the photoplethysmography signal was
proposed as a potential method to address this issue [35].
Comparable results were obtained when monitoring oxygen
saturation in the blood of individuals with atrial fibrillation
using both classic pulse oximeters and the cardio tracker
ring. According to the findings of the study, it was observed
that all other variants of the SVM exhibited superior
performance compared to a convolutional neural network
(CNN) [72]. Even when the most unfavorable outcome for
the 10-second recordings was considered, the level of
accuracy remained at 94.7%. Although
photoplethysmography signals have some problems, such
as noise from motion artifacts, it is possible to consider
using ring photoplethysmography-based wearables as an
alternative to ECG-based methods for detecting atrial
fibrillation. Even though photoplethysmography signals
have their own set of constraints, considering
apprehensions over the occurrence of false positives in
cases of atrial tachyarrhythmia, it has been proposed that
the examination of extended intervals be undertaken for
photoplethysmography signals. The DL model achieved an
accuracy rate of 89% when trained using data from both
ECG and photoplethysmography sensors [73].

5.4 CHALLENGES OF WEARABLE TECHNOLOGY

5.4.1 DATA AVAILABILITY AND RELIABILITY

A substantial amount of data gathering is required to
effectively train a machine learning model, particularly in



the context of medical applications, to enable reliable
prediction of future events based on historical data. To
ascertain the reliability of data, it is imperative to conduct
many clinical trials that employ various approaches and
freely disclose their conclusions [74]. Additionally, it is
crucial to uncover promising new pathways for further
investigation. It is imperative to develop and regulate
medicolegal considerations [75]. An illustrative framework
reported by Nelson et al. offers a systematic approach to
address the challenges associated with data reliability in the
context of heart rate data power consumption. This
framework encompasses the areas of research data
collection and organization, data preprocessing and
preparation, as well as reporting and analysis. It is worth
noting that wearable technology, despite its potential
benefits, is hindered by limitations such as high power
consumption and limited battery life [76]. The acquisition of
physiological data from wearable devices, in conjunction
with the utilization of machine Ilearning algorithms,
necessitates a greater amount of electricity. The capabilities
of even the most advanced commercial smartwatch are
limited to monitoring basic activities such as walking and
jogging, offering only approximate measurements of the
wearer’s heart rate and oxygen saturation, and exhibiting a
maximum battery life of a few weeks. A minimal charging
duration of a few hours may be sufficient for wearables
designed to consistently monitor a diverse array of vital
indicators to promptly notify users of any anomalous



situations. The amount of data recorded on the device and
transferred through the communication channel to the edge
or cloud is contingent upon various factors, such as the type
of board utilized, the quantity and nature of biosensors
employed, the operating system and additional software
operating on the board, the wearable display, the rate at
which data is logged, and the rate at which data is
transmitted. The use of electrical power is more pronounced
in storage and processing activities compared to
transmission and reception. The improvement in energy
conservation encompasses various aspects, such as the
integration of dedicated embedded circuits designed for
machine learning algorithms [77, 78], the implementation of
data reduction techniques [79, 80 and 81], the use of data
management strategies [83], the practice of data offloading
[84, 85], and the development of self-powered wearable
devices [86, 87].

5.4.2 MODEL SELECTION AND RELIABILITY

Researchers looked into cross-validation techniques for
testing how well machine learning models work using data
that wasn’t known before. They found that using data from
different sources to confirm results tends to make machine
learning algorithm predictions more accurate and effective
than they are. On the other hand, subject-wise cross-
validation tends to lead to an underestimation of these
metrics. These results were derived from a comparative
analysis of the two methodologies. This provides support for
the conclusions drawn in the study. However, several



researchers have raised concerns regarding the applicability
of record-wise cross-validation, arguing that it may not be
suitable due to the absence of within-subject dependence
among the observations. The investigators asserted that the
feasibility of this outcome resulted from the lack of any
discernible association between the recorded data and the
observed phenomena. Various techniques, such as repeated
test-train split, shufflesplit, repeated K-fold, Monte Carlo
cross-validation, and the utilization of large fold numbers,
have been employed to mitigate overfitting and ensure
generalization. The utilization of models has proven to be
advantageous for the development and implementation of
wearable technology. The process of selecting a wearable
device model encompasses a multitude of parameters. The
optimization of the assessment measure has the potential to
enhance the accuracy of classification or regression
problems. Utilizing an ensemble of models to optimize
outcomes is a common practice. The successful
implementation of healthcare-related wearable device
applications necessitates the utilization of user-friendly
categorization, regression, and clustering findings. Tree-
based models are often considered to be less complex in
comparison to neural network-based models. The memory
and model size of the wearable devices are additional
factors to consider. The limited processing capabilities of
wearable electronics have posed computational challenges
for tasks such as inference and online training for
customization until recent advancements. The technique of



personalization involves the utilization of DL and transfer
learning algorithms on the local device [88-90].

5.4.3 COMMUNICATION

In an Internet of Things edge architecture, a wearable and
an EDM machine can communicate with one another via
intra-device communication protocols such as radio-
frequency identification, Bluetooth, Zigbee, near field
communication, and ultra-wideband. Bluetooth is a popular
choice for a wide range of applications because of its low
power needs [91]. According to Bluetooth® Core
Specification Version 5.0, a maximum of seven devices can
be concurrently connected. However, in practical scenarios
where a smartphone is connected to more than two devices,
there is a noticeable decline in performance and the
occurrence of pairing difficulties. Before deciding on a
communication method, it is important to consider factors
such as the maximum distance between the wearable and
the edge device, the amount of data that needs to be sent
from the wearable to the edge device, and the maximum
amount of delay that can be tolerated [92]. The Internet
Protocol and the Transport Control Protocol, or User
Datagram Protocol, at the network level, make it possible for
edge devices to communicate with remote services or for
wearables to communicate with remote services directly
using the Internet. Transport Control Protocols or Internet
Protocols are preferred for sending sensitive data over a
wide-area network, such as medical records or Al model
parameters. The hypertext transfer protocol (HTTP) s



extensively wused for requesting and responding to
communication at the application layer between edge
devices and cloud services. Although HTTP is known for its
high resource requirements, it is often recommended to
deploy it on edge or fog devices that possess ample
processing capabilities and memory. Additionally, Transport
Layer Security is frequently employed to secure HTTP
communication via the transport control protocol.
Lightweight application layer protocols include constrained
application protocols, advanced message queuing protocols,
and message queuing telemetry transfers [93]. Message
queuing telemetry transfer has emerged as the prevailing
standard for publish/subscribe models in the domains of the
Internet of Things and wearable technology, mostly because
of its minimal resource demands and extensive adoption.
This technology facilitates bidirectional communication
between a wearable device and an edge device, enabling
the transmission of data from one device to multiple devices
simultaneously. Both channels are susceptible to various
network security vulnerabilities that are commonly
encountered, mostly because of the protocols and network
layers on which they are based.

5.4.4 SECURITY AND PRIVACY

The accelerometer and gyroscope of a smartwatch are
capable of stealing credit card numbers and passwords.
Denial-of-service and ransomware attacks against the
Internet of Medical Things have the potential to severely
interrupt medical services, leading to potentially fatal



consequences. Machine learning services are employed to
evaluate sensor data and personal data obtained from
wearable devices integrated into a health or fitness tracking
system to identify patterns and make prognostications.
While some users might consider sharing this to be no
problem, many end users are concerned about how their
data will be utilized and protected. Global information
security standards have been implemented to protect
sensitive information and medical records. However, the
emergence of wearables and other internet of medical
things devices has introduced substantial risks to the
security of this data [94].

5.5 CONCLUSION

The use of wearable technology has experienced a notable
surge in popularity in recent years. Due to the extensive
ongoing research on the utilization of Al solutions in
healthcare-related professions, wearable devices have
transitioned from being considered optional to becoming
essential tools for remotely monitoring patients and
detecting various physiological abnormalities. This chapter
provides a comprehensive overview of the methodologies,
instruments, and datasets employed in various studies
about machine learning tasks that are relevant to
healthcare wearable devices. We discuss potential solutions
to challenges with using machine learning programs on
wearable devices. Several elements need to be taken into
consideration when evaluating deployment options,
including the availability of resources such as power,



memory, and storage. Additionally, it is important to assess
the utility and user satisfaction of the chosen deployment
strategy. Furthermore, the availability and dependability of
data, as well as the effectiveness of communication,
confidentiality, and secrecy measures, should also be
considered. Data availability, dependability, and privacy are
important issues that necessitate further investigation to
facilitate the efficient and effective utilization of data
derived from wearable devices for learning purposes.
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CHAPTER 6
Prediction of Diabetes
Using Machine Learning

ABSTRACT

Diabetes threatens worldwide health, making it a major
global health issue. This metabolic illness causes
hyperglycemia, cardiovascular disease, renal failure, and
neuropathy. Scientists have been working on a reliable
diabetes prediction algorithm for a long time. Major research
obstacles can only be overcome using big data analytics
and machine learning-based methodologies due to a dearth
of adequate data sets and modeling techniques. Machine
learning is an emerging data science area that investigates
automatic learning through practice and observation. This
study combines machine learning results to enhance
diabetes prediction. Using machine learning, this study aims
to predict diabetes. Researchers hope to provide a method
for early, reliable diabetes detection.
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6.1 INTRODUCTION

The occurrence of chronic diseases on a large scale has
become a worldwide problem, impacting both developing
and developed countries. Diabetes mellitus is a prevalent
and incapacitating condition that significantly reduces
people’s lifespan worldwide. Countries located within the
visible light spectrum, such as India and certain regions of
the Sahara, are experiencing a significant rise in the
prevalence of diabetes. The consequences of diabetes are
expected to be severe and persistent. Numerous global
organizations and firms are allocating funds to conduct
research aimed at enhancing the early detection and
treatment of diabetes, with the ultimate goal of mitigating
the worldwide mortality rate associated with this condition.
Insufficient nourishment and a sedentary lifestyle both
elevate the risk of diabetes; however, individuals who
allocate time for consistent physical activity frequently see
favorable alterations in their condition. The human body is
sensitive to several harmful effects of diabetes, which can
affect organs such as the brain, eyes, kidneys, and nervous
system [1].

In recent years, diabetes has emerged as a significant
contributor to mortality in countries with low per capita
income. Both the government and private sectors are
providing financial support for the discovery of a drug or
cure for this lethal disease. Insulin resistance, the
underlying factor of diabetes, leads to persistently high
levels of blood sugar in individuals. Diabetic patients have



an impaired ability to convert dietary carbohydrates into
glucose, which is essential for their daily energy needs.
Consequently, the level of glucose in the bloodstream
progressively increases. This signifies impaired distribution
of glucose to all cells in the body, resulting in its
accumulation in the bloodstream [2]. Low-carbohydrate
diets have been suggested to be beneficial in the treatment
of diabetes. Utilizing a diverse range of predictive,
quantitative, and statistical models is essential for
diagnosing diseases. Diabetes is linked to a higher risk of
stroke and cardiovascular disease, in addition to
accelerating the onset of other medical conditions. Diabetic
individuals experience impaired cellular function, which
results in weight gain [3]. The goal is to enhance the
application of big data analytics and machine learning
algorithms by healthcare providers in decision-making,
disease prediction, and prognosis [4].

6.2 DIABETIC MELLITUS

Diabetes is one of the leading causes of death globally.
There are a lot of complications that can arise from this
disease, including heart issues, loss of vision, renal failure,
and many more. In the past, patients had to make an
appointment with a doctor at a diagnostic center, wait at
least a day, and then get their results. In addition, they are
required to continue making payments to access their
diagnosis report, even though it provides no benefit to
them. Insulin insufficiency leads to elevated blood glucose
levels and impaired metabolism of carbohydrates, lipids,



and proteins. Diabetes, encompassing both type 1 and type
2, belongs to a category of metabolic disorders
characterized by significant disruptions in insulin secretion
and/or function. Diet, sedentary behavior, and genetic
predisposition are associated with type 1 diabetes, whereas
the immune system’s destruction of pancreatic beta cells in
the Langerhans islets is a hallmark of type 2 diabetes. Type
2 diabetes is a prevalent endocrine disorder that impacts
200 million people globally. Projections on the future
prevalence of diabetes are alarming. Type 2 diabetes,
characterized by insulin resistance, accounts for 90% of all
diabetes cases. Diabetes mellitus can be classified into
various types based on differences in insulin secretion
profiles and/or ages of onset. These types include MODY
(maturity-onset diabetes of the young), mitochondrial
diabetes, neonatal diabetes, and gestational diabetes.
MODY is a type of monogenic diabetes first described as a
mild and asymptomatic form of diabetes that was observed
in nonobese children, adolescents, and young adults. The
symptoms of diabetes mellitus include polyuria, polydipsia,
and anorexia. Plasma glucose levels exceeding 7.0 mmol/L
indicate the presence of diabetes.

6.3 MACHINE LEARNING

Describing machine learning is challenging because of its
extensive and diverse nature, encompassing various
disciplines including statistics, algebra, data processing, and
knowledge analytics [5]. Machine learning is a subfield of
artificial intelligence (Al) that uses past data instances to



enhance its performance in upcoming instances. The goal of
machine learning is to facilitate the development of
adaptable and continuously upgraded software. A computer
program can acquire knowledge from experience E if and
only if it enhances its performance on tasks in class T, as
evaluated by performance measure P, following exposure E.
The development of machine learning techniques has
allowed us to create a system that uses data mining to
determine whether a certain patient has diabetes or not.
The ability to foresee the progression of a disease allows
patients to receive treatment far before their conditions
worsen to a critical stage. Using data mining, insights can
be uncovered in a sea of information on diabetes. Because
of this, diabetes research is more crucial than ever [6].
Learning can be achieved through three distinct methods:
supervised, unsupervised, and semi-supervised.

6.3.1 INSTRUCTED HUMAN PREDICTIVE MODELS

These forecasting models are built using supervised learning
techniques. A predictive model can identify the missing
value by analyzing the existing data and making informed
assumptions. For a supervised learning system to accurately
forecast the performance of a new dataset, it necessitates
the presence of input and output data examples. Supervised
learning encompasses several techniques, such as decision
trees (DTs), Bayesian approaches, artificial neural networks
(ANNs), instance-based learning (IBL), and ensemble
methods. The efficacy of machine learning can be directly
linked to these methodologies [7].



6.3.2 LEARNING WITHOUT SUPERVISION OR
DESCRIPTIVE MODELS

Unsupervised learning is used to generate descriptive
models. The result of this model is uncertain, even though
the inputs are known. Unsupervised learning is frequently
employed for analyzing transactional data. The strategy
utilizes clustering algorithms such as k-means and k-
medians.

6.3.3 LEARNING WITH LIMITED SUPERVISION

In semi-supervised learning, the training dataset consists of
both labeled and unlabeled examples. Semi-supervised
learning encompasses classification and regression methods
that rely on minimal human input. Regression techniques
include logistic regression (LR) and linear regression.

To identify people who are at the greatest risk of acquiring
diabetes, there is an urgent need for additional investigation
and the development of more accurate methods. We must
develop a system that is based on three distinct
classification methods: naive bayes (NB), support vector
machine (SVM), and decision stump. These approaches
have the potential to predict the outcomes of LR and ANN
algorithms. Mining, a topic that evolved a great deal later
than machine learning, is significantly influenced by the
constitutional standards that corporations must adhere to
ensure compliance with data science. In statistical terms,
cluster analysis, which is also commonly referred to as
clustering, is a method for organizing data that involves
locating groupings of objects within the data that are more



similar to one another than they are to those in other
clusters. Exploratory data mining has this as one of its
primary goals, and it also finds applications in a wide variety
of other fields, including machine learning, image
processing, pattern recognition, bioinformatics, information
retrieval, data compression, and the design of graphical
user interfaces.

6.4 DESIGNING A 5G METHOD FOR
CONTROLLING DIABETES PATIENTS

The monitoring of diabetic patients involves the utilization
of sensors, wearables, a smartphone application, a server
that has a database, and 5G networks. There are sensors on
the mobile device that are connected wirelessly. 5G
technology, on the other hand, can connect mobile devices
to the cellular network and send data to the primary data
storage center. The blood glucose levels, body temperature,
and activity levels of diabetes patients would be monitored
by a smartphone that is connected to a 5G network. The
data would then be transmitted to a designated base
station. Subsequently, technology utilizes Al and machine
learning to assist individuals in maintaining their glucose
levels and predicting changes in their health. Since 5G
technology can support over 60,000 connections with low
latency, we can utilize it for remote patient monitoring. The
sensors, the data gathering, the transmission, and the
database were the four fundamental tiers that we
presented. The representation of the patient diabetes
monitoring system is shown in Figure 6.1.



Diabetic patient + - EEE ESP8266 - 12F

Wearable Device ' =P Motion Sensor 4—;5 lg!

Sensors —_ Temperature Sensor

ESP8266 - 12F
Data acquisition g! WiFi D Mobile Application

Real time Monitoring
Doctor's phone alert

Transmission > & Dq—p

Data Storaae

Send notification to

Database Real time Monitoring diabetic patient
=5 s

FIGURE 6.1 Representation of various components
of a patient diabetes monitoring system.

6.4.1 SENSORS

The sensors for measuring blood glucose, temperature, and
movement are all positioned in this location. This layer
incorporates the ESP8266 module, which establishes
connections with the sensors and enables a wireless
interface for relaying data to the patient’s smartphone.
Hence, the sensors are accountable for gathering and
transmitting the data to the patient’s smartphone.

6.4.2 DATA ACQUISITION LAYER

The patient’s smartphone and the application that collects
data are stored at this location. The mobile application



provides sensor data. Additionally, the 5G network is
capable of transmitting data to the base station, which
enables several connections to be made simultaneously
within the coverage area. The goal is to achieve 1 million
devices per kilometer, which is 10 times more than the
current 4G standard.

6.4.3 TRANSMISSION LAYER

The information is delivered from the smartphone to the
database, where it is processed, and then it is sent to the
mobile device of the doctor for examination. This procedure
takes place over 5G.

6.4.4 DATABASE LAYER

The sensor readings are recorded in this data processing
module before being sent to one of the many Al algorithms
that are currently accessible for analysis and categorization.
Utilizing machine learning techniques, the server ascertains
if the data is positive (also known as true positive (TP)) or
negative (also known as false negative (FN)). If something
atypical occurs, the system will automatically provide a
warning. The doctors receive notifications on their mobile
devices, review them, and then convey their advice and
treatments to their patients, which the patients can access
on their own mobile devices [8, 9 and 10].

6 PROPOSED SYSTEM

Classification is a powerful tool for addressing numerous
practical challenges in the real world. Increasing the number



of samples does not necessarily lead to improvement in
many categorization situations. Algorithms exhibit rapid but
inadequate data classification. Enhancing classification
accuracy can be achieved by conducting tests on a reduced
sample size while training the model on a larger dataset.
The most effective methods for predicting diabetes are the
naive net, ANN, SVM, decision stump, K-nearest neighbor
(KNN), and LR.

6.5.1 K-NEAREST NEIGHBOR (KNN)

K-nearest neighbor (KNN) is a widely used technique in
machine learning as a form of supervised learning.
Primarily, it aids in resolving issues related to
categorization. KNN uses the average distance between
each object and every other object in the training data to
classify the data. KNNs are employed to ascertain the
classification of an object. Before executing the method, a
positive integer K is established. The Euclidean distance is
commonly employed for converting measurements between
length, area, volume, and area-based measuring systems
[12]. The Euclidean approach provides the following formula
for calculating distance:
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6.5.2 ARTIFICIAL NEURAL NETWORK (ANN)

The artificial neural network (ANN), like a human brain, can
execute a diverse range of intricate activities. Multi-layered
or cube-shaped ANNs have demonstrated effectiveness
since signals propagate from the front to the rear.
Sometimes, backpropagation is utilized during training when
the front neuronal units are reset through forward
stimulation once the intended outcome is already
established. Contemporary networks have increased
disorganization and intricate connections, with activation
and inhibition displaying heightened dynamism. Neural
networks that lack flexibility restrict their potential by
impeding the development of new connections or brain
units, as well as the inhibition of existing ones based on
regulations. The input layer, hidden layer, and output layer
all have significant functions in a well-constructed ANN. The
input neurons define all the attribute values utilized by the
data mining model. Seven neurons corresponding to the
seven variables (skin thickness, blood sugar, blood pressure,
body mass index, diabetes pedigree function, insulin, and
age) linked with each data point can be used.

Neurons in the hidden layer receive input from the input
neurons and transmit it to the output neurons in the same
layer. Probabilities are evaluated in the hidden layer. Each
input to the hidden neuron is assigned a different weight to
illustrate how significant it is. The ability of an activation
function to produce a progressive change in output in
response to changes in the value of the input is among the



most essential characteristics of this type of function.
Pattern recognition has found applications in a wide variety
of domains, including sequence identification, finance, data
mining, medical diagnosis, visualization, and the
classification of spam in electronic mail. Other areas include
system identification and control, quantum chemistry,
gaming, and decision-making. Rather than collecting data
from a single patient, data from a large group of patients
can be used to construct more specific models. It is not
necessary to assume any relationships between the
variables to apply any of the models. Neural network
predictions for colorectal cancer have also been
documented. Neural networks have the potential to provide
more accurate predictions for the likelihood of recovery for
patients with colorectal cancer compared to the existing
standard of care. Following the training process, the
networks demonstrated the capability to provide precise
prognostications regarding the well-being of several patients
across multiple establishments [13].

6.5.3 SUPPORT VECTOR MACHINE (SVM)

The support vector machine (SVM) algorithm is the most
often employed machine learning method. The first phase in
the SVM process involves determining the appropriate
hyperplane, which is then followed by the process of
increasing the distances between data points that are near
one another. The problem is solved by adding a feature with
the equation z = x? + y? to the SVM. The data is categorized
into meaningful groups using a SVM classifier [14].



6.5.4 DECISION STUMP

It is one of the most popular classification algorithms for
determining unique attribute values in the field of machine
learning. A decision stump is a simple machine learning
model of a one-level DT. Decision stumps form the
foundation of complicated ensemble learning algorithms like
AdaBoost for diabetic disease prediction. Decision stumps
are simple models that make one-feature decisions.
Decision stumps can be merged into an ensemble like
AdaBoost to generate a more powerful and accurate
predictive model. AdaBoost sequentially trains several
decision stumps, giving more weight to cases misclassified
by earlier stumps. This improves model prediction. The final
prediction is a weighted mixture of decision stumps. The
technique is effective for imbalanced datasets or complex
feature-target variable connections since AdaBoost can
adapt to these patterns during training [15].

6.5.5 NAIVE NETS

In addition to having a relatively low level of temporal
complexity, this method makes use of the probability
formula to carry out computations that are dependent on
the possibility of incidents occurring. In the past, it was
utilized to maximize the probability of a class or feature,
where (C|F) is equal to the PR (class | feature). After the
data has been transformed into a frequency table, the next
step is to determine the likelihood of the information being
presented. In the end, during the process of prediction, the
Naive Bayes equation is utilized.



6.5.6 LOGISTIC REGRESSION (LR) FRAMEWORK

As a result of the parameterizable nature of machine
learning models, hyperparameters can be modified, and the
behavior of these models can be fine-tuned in response to
alterations in the issue statement. When describing a
model, one can utilize a wide variety of traits and qualities,
respectively. Finding an appropriate combination of
attributes can be viewed as a search problem, which is a
perspective that is conceivable to take. The tuning of the LR
has been accomplished using both a grid search and a
random search. One method that may be utilized to
ascertain the sample distribution of all parameters and the
required number of iterations to locate the optimal model is
the random search. It is possible to calculate the value of a
hyperparameter by taking the average of many samples. A
grid search technique can achieve this.

The grid search procedure breaks down each individual
parameter and looks for its sweet spot while the others are
held steady. This is because the model score experienced a
decrease in its predictive ability. It possesses a significantly
higher capacity for exploration compared to a random



search. The robustness in the crucial area enables it to
select the optimal configuration (hyperparameter).
Increasing the predictive efficacy and efficiency of the LR
classifier can be accomplished through the utilization of grid
search [16].

6.6 CONCLUSION

Machine learning has the potential to completely
revolutionize the field of diabetes risk prediction. This is due
to the availability of cuttingedge computational methods, an
abundance of epidemiological and genetic diabetes risk
datasets, and the capability of machine learning to
fundamentally transform the field. All these factors have
contributed to the potential for machine learning to
completely change the field. Timely diagnosis is crucial for
optimal diabetes care. This chapter outlines machine
learning techniques for predicting blood sugar levels in
diabetic patients. Researchers can utilize this approach to
create a reliable tool that will help doctors make better-
informed decisions about the patient’s condition.
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CHAPTER 7

Mental Health Index
Management Using
Machine Learning

ABSTRACT

The increasing frequency of mental health concerns and the
need for more efficient healthcare have inspired an
investigation into the integration of machine learning
techniques in the treatment of mental health disorders. This
chapter presents a contemporary systematic evaluation of
various machine learning algorithms employed in the
prediction of mental health issues. Additionally, this
discussion will encompass the obstacles, constraints, and
potential advancements associated with the utilization of
machine learning in the context of mental health.
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7.1 INTRODUCTION

The rapidly increasing prevalence of psychological disorders
is largely due to the dynamic social dynamics of today. The



World Health Organization (WHO) defines mental health as
“the degree to which an individual can deal successfully
with the ordinary stressors of life, to build and sustain
rewarding relationships both at work and in one’s personal
life, and to give back to one’s community” [1]. A person’s
lifestyle and surroundings can have a detrimental impact on
their mental health in several ways, including financial
difficulties, work-related stress, marital problems, family
issues, and violent acts [2]. The aforementioned factors can
further exacerbate psychological disorders like depression,
anxiety, and stress, which have a significant negative
impact on a person’s overall health and quality of life.
Mental illness accounts for approximately 13% of the global
burden of diseases, affecting around 450 million people [3].
Based on data from the WHO, it is estimated that
approximately 25% of individuals may experience a mental
health condition at some stage throughout their lifespan [4].
The WHO announced recommendations in 2018 aimed at
enhancing the overall physical fitness of individuals with
severe mental health disorders [5]. A global population of
around 350 million individuals experiences depression, a
condition that can lead to the manifestation of suicidal
thoughts and actions [6]. As a result, the WHO anticipated in
its Comprehensive Mental Health Action Plan that people
suffering from mental illnesses would be able to rehabilitate
and lead normal lives [7]. Early detection and
implementation of a treatment regimen are crucial for
addressing mental health concerns. Early identification,



precise diagnosis, and effective intervention can be
advantageous for individuals with mental health challenges
[8]. The effects of mental illness can be catastrophic for the
afflicted individual, their loved ones, and the community at
large. Conventional methodologies to detect mental health
conditions generally involve the utilization of questionnaires,
self-report measures, or face-toface interviews. These are
time-consuming and labor-intensive methods [9]. Previous
studies have employed smartphones and wearable sensors
to facilitate healthcare and mental health monitoring.
However, these technologies have predominantly been
utilized for individuals who have already received a mental
disorder diagnosis and are consequently subject to intensive
observation [10, 11, 12 and 13].

7.2 MACHINE LEARNING IN MENTAL HEALTH
INDEX

Machine learning, a subfield of artificial intelligence (Al),
encompasses three primary domains of investigation:
categorization, regression, and clustering. The use of data
and algorithms facilitates the ability to gain knowledge and
improve performance in a way that is similar to human
behavior [14]. Machine Ilearning has demonstrated
effectiveness in various domains within the field of
psychology and holds significant potential for the diagnosis
and treatment of mental health disorders, as well as other
health-related consequences. These algorithms require a
substantial amount of data to acquire knowledge of patterns
and perform classification. The utilization of supervised



learning for the prediction of psychological disorders has
gained significant popularity. Supervised learning involves
the process of acquiring knowledge by establishing a
connection between input parameters and a target variable,
with the ultimate goal of accurately predicting new data
[15]. The support vector machine (SVM) is an example of a
supervised learning algorithm, as it can be utilized for both
classification and regression tasks. The process of margin
computation involves the partitioning of an n-dimensional
space into distinct classes based on the placement of a
hyperplane, which represents the optimal decision
boundary. The process of cataloging newly acquired
information is crucial. SVMs demonstrate exceptional
performance in the processing of both semi-structured and
fully structured data. The duration of model training
increases proportionally with the size of the dataset. The
effectiveness of it is diminished. SVMs have limitations when
used with datasets that contain noise. Decision trees (DTs)
can perform various tasks, such as classification, regression,
and supervised learning. By employing a piecewise constant
approximation, it is possible to accurately represent a tree.
The utilization of input data attributes enables the
acquisition of decision rules, which are subsequently
employed to forecast the values of target variables. The
range of logistic regression (LR) predictions is not restricted
to the values of 0 and 1 due to the categorical nature of the
dependent variable. The naive bayes (NB) algorithm offers a
probabilistic approach to classification by utilizing Bayes’



theorem. The proposed model advocates for the
examination of individual characteristics within each
dataset. Deep learning (DL) is a specialized field within the
broader domain of machine learning [16]. DL is a specialized
area within machine learning that focuses on the automatic
identification of distinct characteristics associated with
different types of input, such as raw textual information and
images, without the need for preprocessing. Due to the
autonomous learning capabilities of the architecture, a
substantial volume of data is employed to provide feature
acquisition and performance enhancements without the
need for human intervention. Consequently, there has been
a recent increase in scholarly endeavors dedicated to
enhancing the utilization of DL techniques to detect and
diagnose mental disorders. The utilization of Al in the field
of medical care has prompted several studies and articles
that investigate the potential applications of machine
learning and DL in enhancing our comprehension of various
health concerns. The utilization of Al in the field of medical
research has witnessed significant growth, mostly driven by
the urgency and significance of the task at hand.

This expansion has encompassed the realm of mental
health, where Al is now being employed to identify various
mental health disorders [17]. Recent advancements in
machine learning have demonstrated considerable promise
in the domain of mental health diagnosis. An example of a
notable advancement is the ability to seamlessly interface
with electronic health records (EHRS). In recent times, there



has been a noticeable increase in the utilization of data
analysis from EHRs to aid in the identification and
assessment of mental health disorders. Wearable devices,
such as smartwatches and activity trackers, offer a
substantial amount of data that can be subjected to analysis
through machine learning algorithms. This approach has the
potential to facilitate continuous monitoring of mental well-
being and the early detection of disorders. Predictive
modeling is a discipline that incorporates machine learning
techniques. Machine learning algorithms possess the
capability to identify individuals who may be susceptible to
developing mental health disorders. Consequently, the
timely treatment of mental health issues can effectively
prevent the development of substantial psychological
disorders. Machine learning has been employed to develop
automated screening methods for a diverse range of mental
health disorders.

Machine Ilearning is employed within this field of
psychiatry to facilitate the detection and recognition of
mental disorders by analyzing certain patterns present in
patient data. Various sources can provide data for research
purposes in the medical industry, including records, brain
magnetic resonance imaging (MRI) images, and social
media posts. To perform this task, a variety of algorithms
are employed, including both supervised algorithms that
require labeled data for training and unsupervised
algorithms that can autonomously identify patterns within
the data. With enough information, a model can be trained



to predict whether a certain individual is experiencing a
particular mental health illness and, if so, to what extent.
The forecast is generated by employing machine learning
techniques, wherein novel data is input into computational
models and the outcomes are utilized to inform their
evaluation [18].

7.3 TYPES OF MENTAL HEALTH PROBLEMS

Individuals afflicted with mental illness may encounter
impairments in their cognitive processes, emotional
experiences, and behavioral responses. The presence of
mental health concerns has the potential to hinder a child’s
ability to acquire knowledge and skills. Moreover, individuals
who have mental health conditions impose a significant
strain on their family members, colleagues, and broader
society. Mental disorders include schizophrenia, depression,
bipolar disorder, and anxiety.

7.3.1 DEPRESSION

The primary indicator of depression is characterized by
profound distress, as it is the emotional state that
experiences the most pronounced impact. In certain
instances, it is possible that symptoms associated with
depression, such as anger, impatience, and loss of interest,
may assume a position of greater significance. Physiological
manifestations encompass difficulties with sleep, an inability
to retain food, and overall fatigue. Cognitive manifestations
involve impaired cognitive functioning, contemplation of
suicide, and experiences of quilt. The recurrence of



depressive episodes is a common phenomenon observed in
individuals diagnosed with depression [18]. Many depressed
individuals may never fully recover from their illness,
instead establishing a chronic, moderate form of it [19].

7.3.2 SCHIZOPHRENIA

Schizophrenia is characterized by the occurrence of
psychotic episodes, which manifest as hallucinations and
delusions. The occurrence of hallucinations is inherently
subjective, making it challenging to provide a
comprehensive explanation due to their idiosyncratic
nature. In contrast, individuals diagnosed with delusions
exhibit beliefs that are incongruent with the actual world.
Symptoms commonly associated with schizophrenia include
social withdrawal, heightened rage, and a general
escalation in atypical behavior. Investigations are currently
being conducted to determine whether the early recognition
of such indicators and care could improve results [20].

7.3.3 ANXIETY

Another prevalent mental health issue is anxiety, which is
characterized by excessive worry about unimportant things.
The manifestation of panic disorders is marked by
physiological symptoms such as increased heart rate,
perspiration, and dizziness, which are believed to originate
from sudden and unpredictable panic attacks and intense
terror. Generalized anxiety disorder is characterized by a
tendency toward excessive worrying. Posttraumatic stress
disorder is known to induce a state of emotional numbing



after experiencing a traumatic event. Numerous individuals
afflicted with social anxiety experience profound distress
when confronted with large gatherings. According to survey
data, a significant number of individuals with anxiety-related
issues tend to postpone seeking appropriate medical
intervention for an extended period [21].

7.3.4 MANIC AND DEPRESSION

Manic and depressive episodes are considered essential
diagnostic criteria for bipolar disorder, which is classified as
a distinct form of mental illness. It is conceivable to
experience a manic or depressive episode. Mania is
distinguished by heightened degrees of restlessness,
physical movement, and drive, accompanied by a reduced
requirement for sleep. Individuals experiencing mania often
exhibit behaviors that are characterized by a propensity for
engaging in risky activities. On the other hand, the
manifestations of a depressive episode in individuals with
bipolar disorder show a striking resemblance to those
observed in cases of depression. Restoration of pre-episode
functioning has been reported, while a significant number of
patients continue to experience persistent debilitating
symptoms even after the conclusion of an episode [22].

7.4 MACHINE LEARNING AND DEEP LEARNING
(DL) METHODOLOGIES APPLIED

There are numerous methodologies and protocols for
predicting mental diseases. These methodologies find
application in the field of Al, encom-passing machine



learning, deep neural networks (DNNs), and even robotics.
The main objectives of these methodologies are the
determina-tion of the underlying etiology of these disorders,
their precise diagnosis, and the prediction of their
therapeutic outcomes. The 2019 Open-Source Mental lliness
Survey suggested that identifying and leveraging factors
that negatively impact the mental well-being of employees
in both technical and non-technical contexts could serve as
predictors [23]. In a further study conducted by Katarya et
al., machine learning techniques were employed to uncover
factors related to the COVID-19 pandemic that can predict
emotional distress [24]. Given the prevailing global health
crisis, the sections present an analysis highlighting the
significance of assessing physiological manifestations of
emotional distress and coping mechanisms. The aim is to
enhance the knowledge base for mental health
examinations and treatments.

7.4.1 DETECTION OF BIPOLAR DISORDER

7.4.1.1 EEG FEATURES

EEG biomarkers are used in studies to help diagnose bipolar
disorder. Before developing the training model, Erguzel et
al. conducted two trials using different feature selection
methodologies [25]. As a quantitative biomarker of EEG
activity, EEG coherence was used to choose aspects
indicative of different brain processes. In the first trial,
patients with bipolar disorder and major depressive illness
were treated using the improved ant colony optimization
algorithm. Subsequently, a multitude of SVM models were



developed utilizing the previously specified features. The
researchers employed a machine learning approach known
as improved ant colony optimization to choose features.
This technique draws inspiration from the social behaviors
exhibited by natural insects and animals. Once a collection
of features had been determined, they were included in the
SVM for utiliza-tion in the process of pattern identification.
The researchers examined the application of SVMs along
with four distinct feature selection approaches, one of which
was SVM-improved ant colony optimization. A comparative
analysis of the performance of SVM-improved ant colony
optimization and SVM was done separately. Among the
several models evaluated, SVM-improved ant colony
optimization exhibited the greatest accuracy rate of 80.19%
in discerning the distinction between bipolar disorder and
major depressive disorder. This evaluation encompassed a
comprehensive set of 22 criteria. Alternative models have
62.37% to 78.21% accuracy with 25 to 48 characteristics
[25]. Erguzel et al. [25] employed Cordance’s quantitative
electroencephalography to distinguish unipolar and bipolar
depression. To improve the model without selecting
features, the authors used the particle swarm optimization
method for feature selection. They then used the chosen
EEG alpha and theta frequencies to build an artificial neural
network (ANN) model [26]. The study underlines the
importance of feature selection for model improvement
since it eliminates confusing aspects [25]. Insect swarm
optimization (improved ant colony optimization) and



population-based swarm optimization represent two
instances of animal-inspired algorithms.

7.4.1.2 NEUROPSYCHOLOGICAL TESTS

The investigator developed a cognitive test for the diagnosis
of bipolar disorder that utilizes video-based technology and
does not require invasive procedures. The research involved
the establishment of a system to detect and monitor the
pupils of an individual’'s eyes. Additionally, the device
recorded the duration of participants’ gaze in various
directions and their contemplative activities. The researcher
developed a SVM algorithm using data obtained from the
pupils of subjects in both the training and test sets. The
results of the study indicated that the algorithm effectively
distinguished individuals with bipolar disorder from those
without (HC) with a high accuracy rate of 96.36% [27].

7.4.1.3 STRUCTURAL NEUROIMAGING

A total of 11 studies have been identified that utilized
structural MRI to distinguish individuals with bipolar disorder
from those with certain mental health conditions or healthy
individuals. Numerous studies have specifically examined
the characteristics of white matter and gray matter to
ascertain their distinctive features. Mwangi et al. utilized the
relevance vector machine algorithm to discern between
individuals with bipolar illness and healthy control
participants. This discrimination was based on the analysis
of gray matter and white matter density in a substantial
cohort of 256 patients. The study revealed that the
utilization of white matter alone resulted in accuracies of



70.3%, whereas the use of gray matter alone yielded
accuracies of 64.9%. When both approaches were employed
simultaneously, the accuracy dropped somewhat to 64.4%.
This difference in accuracy was statistically significant (p <
0.005). The examination of relevance vector machine-
predicted probability scores for the three stages of bipolar
disorder revealed noteworthy results. Specifically, early-
stage bipolar disorder and a healthy control group were
found to be statistically indistinguishable (p = 0.05). On the
other hand, intermediate-stage bipolar disorder and late-
stage bipolar disorder exhibited significant differences
compared to the healthy control group (p = 0.01 and p =
0.02, respectively). This strengthens the increasing number
of data linking bipolar disorder to a degenerative
neurological condition [28]. In an additional investigation,
the researchers employed SVM and Gaussian process
classification techniques to analyze whole-brain gray matter
data from two distinct populations. The objective was to
classify individuals into three groups: those with bipolar
disorder, those with unipolar depression, and a healthy
control group. The authors achieved a classification
accuracy of 75.9% (SVM, p < 0.001) and 79.3% (Gaussian
process classification, p < 0.001) in the first sample, and
65.5% (SVM, p = 0.006) and 65.5% (Gaussian process
classification, p = 0.006) in the second sample, effectively
distinguishing between bipolar disorder and unipolar
depression. There were no observed improvements in



accuracy when the white matter was incorporated into the
model, similar to the findings reported by Mwangi et al. [28].

7.4.2 APPROACHES FOR SCHIZOPHRENIA
PREDICTION

7.4.2.1 SUPPORT VECTOR MACHINE (SVM)

The support vector machine (SVM) approach is commonly
utilized in the context of nonlinear input data due to its
capacity to leverage kernel functions. Kernel functions
include linear kernel, Gaussian radial basis, and polynomial
functions. SVMs have been utilized in several studies to
diagnose schizophrenia. The structural MRI data have been
used to explore the SVM approach [29]. The investigation
involved a comparative analysis of voxel-based
morphometry to assess the estimated gray matter densities
of a sample size of 212 individuals from both the
schizophrenia and healthy control groups. To enhance the
precision of the results, a cross-validation technique was
implemented to validate the findings. The trained data
yielded an accuracy rate of 86% from a sample size of 127
individuals, whereas the validation data exhibited an
accuracy rate of 83% from a sample size of 85 individuals.
The capacity of a SVM to categorize MRI data to differentiate
individuals with seizures from those without showcases the
efficacy of machine learning techniques in elucidating
nonlinear associations between input and output data. This
exemplifies the capacity of the model to effectively handle
data with many dimensions and mitigate the issue of
overfitting.



7.4.2.2 NATURAL LANGUAGE PROCESSING

Natural language processing is a computational technique
used to derive semantic understanding from textual input,
to train an intelligent system to accurately detect instances
of schizophrenia. Natural language processing uses the
linguistic context of words to identify pertinent keywords
and phrases within a given text. For example, this method
depends on the utilization of patients’ self-reports to
ascertain the particular manifestations and indications they
experienced in the context of schizophrenia. Patients cannot
be classified based on a single term. Consequently, it is
imperative to utilize techniques for obtaining semantic
information to discern distinctions among these individuals.
In recent times, machine learning algorithms have been
employed in the field of natural language processing to
enhance learning processes and achieve more efficient
results. Several potential sources of textual data are utilized
to diagnose schizophrenia. Natural language processing
technology can be utilized to diagnose diseases by
extracting and analyzing the vast amount of data present on
social media platforms [30].

We can forecast the start of psychosis using natural
language processing and data from 40 first-episode
psychosis interview transcripts. The DNN achieved a
classification accuracy of 99% in distinguishing between
speech samples from patients and those from healthy
individuals. This demonstrates the potential of machine



learning in combination with natural language processing
techniques for extracting knowledge from spoken language.

7.4.2.3 DEEP NEURAL NETWORK (DNN)

In the context of schizophrenia, an ANN is a very efficacious
machine learning methodology for problem resolution.
Similar to the human brain, an ANN possesses several
synapses, which are connections linking its diverse
processing nodes. An ANN consists of three primary layers:
the input layer, the hidden layer, and the output layer. The
artificial neuron is a mathematical unit for nonlinear
transformation. It uses different activation functions, like
sigmoid, rectified linear unit, and hyperbolic tangent, to
calculate the weighted sum of the nodes in the input layer.
The feedforward neural network is the fundamental
structure of an ANN. The inclusion of several hidden layers
in @ neural network contributes to its complexity, rendering
it a deep ANN. These layers reveal the presence of nonlinear
relationships between the input and output data. DNNs have
been utilized in various image processing applications,
including the prediction of mental illness through the
analysis of MRI images. Convolutional DNNs have been
widely employed in mental health disorder identification
[31, 32, 33 and 34].

7.4.2.4 LOGISTIC REGRESSION (LR)

The logistic regression (LR) algorithm is frequently
employed to classify problems into two distinct groups. The
objective of binary classification is to ascertain the presence
or absence of schizophrenia in a patient. LR is a statistical



method used to estimate the probability of an event
occurring. It utilizes the sigmoid function, as in the case of
determining the likelihood of a patient being diagnosed with
schizophrenia. Several studies have employed LR as a
statistical method for the identification and detection of
sarcoidosis. LR has been utilized to identify significant
factors in the recovery stages of individuals with
schizophrenia within a cohort of 75 participants from Hong
Kong [35]. Data collection involved tracking socio-
demographic factors, stages of recovery, and various
aspects connected to the healing process. The
categorization accuracy of LR for stages 3 (“living with
disability”) and 4 (“living beyond disability”) recovery was
found to be 75.45% and 75.50%, respectively. LR analysis
reveals that age plays a key role in defining the various
phases of the healing process.

7.4.2.5 K-FOLD CROSS VALIDATION

The occurrence of overfitting and underfitting can be
minimized by employing k-fold cross-validation. In this
context, the dataset is divided into K distinct categories. In
this approach, the model undergoes initial training on a set
of K1 categories, followed by evaluation on a set of (K1) + 2
categories. This is repeated K times. A median s
determined from the outcomes of all validation sets to
establish the model’s ultimate performance. To achieve
generalization of findings, machine learning algorithms
utilize k-fold cross-validation. One study trained several
classification models for error propagation using five-fold



cross-validation [36]. The dataset was divided into two
subsets, namely a training set and a validation set, with
each subset comprising 80% of the total data. The
evaluation metrics, namely Fl-score, precision, recall, and
accuracy, are subsequently computed on the validation set.

7.4.3 DIAGNOSTIC METHODS FOR POST-
TRAUMATIC STRESS DISORDER

Reece et al. analyze Twitter postings to determine if a user
would develop major depressive disorder or post-traumatic
stress disorder using the machine learning method of
random forest (RF) [37]. The researchers thoroughly
examined a dataset consisting of over 2,43,000 tweets
posted by individuals diagnosed with post-traumatic stress
disorder to obtain their results. The authors used RF to
predict post-traumatic stress disorder with an area under
the curve of 0.89. In their study, Leightley et al. [38]
employed machine learning methodologies to forecast the
occurrence of post-traumatic stress disorder within the
British military services. The researchers utilized a dataset
of 13,690 individuals who had served in the armed forces
between the years 2004 and 2009. The forecast utilizes
many machine learning algorithms. The experimental
findings demonstrate that the utilization of RFs yields the
highest degree of predictive accuracy, reaching an
impressive 97% [38]. Among the various machine learning
techniques, it has been shown that the ANN exhibits the
lowest level of accuracy, namely at 89% [39]. In contrast,
Bagging demonstrates a higher accuracy rate of 95%, while



the SVM obtains an accuracy level of 91%. Conrad et al. [40]
examined the utilization of machine learning algorithms to
forecast post-traumatic stress disorder among Ugandan civil
war veterans. The authors employed a training data set
including 441 individuals who experienced trauma, whereas
a testing data set of 211 individuals was utilized. A diverse
range of machine learning techniques, such as RF with
conditional inference, least absolute shrinkage and selec-
tion, and LR, is being employed to make predictions about
individuals who have experienced post-traumatic stress
disorder. It was found that the RF with conditional inference
has the highest level of reliability [40], compared to the
least absolute shrinkage and selection (74.88% accuracy)
and LR (75.36% reliability) methods. Marmar et al. used
machine learning techniques to predict post-traumatic
stress disorder using audio recordings. To gain insight into
the communication patterns of individuals who have
experienced warfare, the authors collated transcriptions of
interviews conducted with military veterans [41]. Clinical
interviews also generate speech characteristics that have
the potential to serve as predictive indicators of post-
traumatic stress disorder, including speech characterized by
reduced speed and a more monotonous tone. The prediction
model employed in this study is the RF algorithm, which
achieved an area under the curve value of 0.954 and an
accuracy rate of 89.1% [42].

7.4.4 APPROACHES FOR DEPRESSION AND



ANXIETY DETECTION

The field of mental health research faces significant
challenges in predicting anxiety due to its clinical parallels
with severe depressive disorder [43]. Sau et al. used
machine learning approaches to predict depression and
anxiety in the elderly [44]. A total of 10 alternative
classifiers were assessed using a limited selection of
attributes, and it was determined that the RF algorithm
achieved the highest level of accuracy, reaching 89%. In
another study, Sua et al. employed the Hospital Anxiety and
Depression Scale as a predictive tool for assessing anxiety
and depression among individuals working in the maritime
industry [45]. A comprehensive evaluation was conducted
on a set of five machine-learning classifiers. RF achieved
81.2% accuracy and 81.2% precision, respectively, whereas
CatBoost achieved 82.6% accuracy and 84.1% precision.
Cho et al. introduced the RF method for detecting
depression. The system utilizes data obtained from
individuals who took part in the medical checkup program of
the National Health Insurance Sharing Service of Korea [43].
The study revealed that 0.02% of the participants exhibited
clinical depression, while the overwhelming majority of
99.8% did not. Consequently, the researchers were
encouraged to contemplate the implementation of down-or
up-sampling techniques to establish statistical parity
between the two groups. At the end of the study, an area
under the curve of 0.849 was recorded. In their paper,
Sharma et al. proposed a machine-learning approach using



the Lifelines Database, which incorporates self-reported
depression data and biomarker data, to enhance the
detection of depression [46]. Given the presence of skewed
information in the dataset used for this analysis, researchers
implemented various resampling techniques to address this
issue. The samples were run through an XGBoost (XGB)
algorithm (a form of extreme gradient boosting). Supervised
learning has been extensively used to predict mental illness
[47, 48]. To collect and process textual data, the researchers
employed emotional Al that was equipped with classifiers
such as naive bayes (NB) and SVMs. The multinomial NB
classifier exhibited superior performance compared to the
SVM classifier. Hilbert et al. employed supervised learning
techniques, namely utilizing a SVM, to analyze multimodal
biobehavioral data to differentiate those exhibiting
symptoms of anxiety from those experiencing depression
[49]. This study wused information from clinical
questionnaires, cortisol levels, structural brain measures,
and gray and white matter quantities. The study concluded
that the clinical questionnaires are inadequate for anxiety
classification. However, using cortisol and gray matter
volume data helped with anxiety classification. Using
cognitive behavioral performance data coupled with
machine learning, Richter et al. suggested a novel and
objective diagnostic technique for distinguishing anxiety
from depression [48]. Participants in the subclinical range
who also had high levels of depression and anxiety were
given questionnaires to fill out. The impact of their biases on



their cognitive processes was assessed by the
administration of six distinct cognitive-behavioral tasks. The
RF algorithm was employed to systematically allocate
individuals based on their comprehensive learning and
memory performance, following the collection and
preparation of the data.

7.4.5 APPROACHES FOR ATTENTION DEFICIT
HYPERACTIVITY DISORDER (ADHD) DETECTION
Mikolas et al. [50] presented a methodology for
distinguishing individuals diagnosed with attention deficit
hyperactivity disorder (ADHD) from those with other mental
disorders by utilizing de-identified clinical infor-mation. In
this study, the SVM classifier included a total of 30 features.
Additionally, a secondary classification approach was
utilized, which did not consider the demographic attributes
of the participants, such as gender or age. Furthermore, a
secondary classification method was employed to handle
missing data. The accuracy rates of the two entities were
65.1% and 68.8%, respectively, indicating commendable
performance [50]. Tan et al. blinded group-level MRI imaging
[51]. Functional volumes of the brain were computed using
the fMRI data. The predicted regional brain volumes from
imaging data were compared. Overall, 67% of ADHD
patients were properly categorized by SVM classifiers that
had been trained on functional volumes and demographic
data. Like children, adults have the potential to develop
ADHD. Batsakis et al. examined trends in adult ADHD [52].
The mixed ML-KBM model was utilized to analyze both



clinical data and survey responses. The effectiveness of this
strategy in clinical trials is 95% accurate. Peng et al. [53]
presented an Al-based diagnostic tool for ADHD. The
evaluation of features from a dataset consisting of 110
individuals was conducted using extreme learning machine
and SVM algorithms, employing the leave-one-out cross-
validation technique. In comparison to the SVM, the extreme
learning machine exhibited a higher accuracy rate of
90.18%, while the SVM had a lower accuracy rate of 86.55%
[53].

7.5 CONCLUSION

A wide range of approaches and algorithms are accessible
for the diagnosis and treatment of mental health conditions.
Numerous existing methodologies exhibit potential for
enhancement. The area of machine learning for mental
health is still in its nascent stages, with significant room for
advancement in terms of identifying novel challenges and
testing potential solutions across diverse settings. The task
of categorizing mental health data has inherent challenges,
and the selection of features included in machine learning
algorithms plays a crucial role in determining the
effectiveness of classification outcomes. Consequently, a
significant portion of research and studies continues to
encounter challenges in substantiating their findings,
primarily attributable to a dearth of credible and validated
information, particularly from external sources. Moreover,
the efficacy of most machine learning methodologies
exhibits variability contingent upon the nature of the



problem at hand. The accuracy of machine learning models
is influenced by the quality of the data used for training.
However, the outcomes of machine learning models can be
influenced by pre-processing techniques such as data
cleansing and parameter optimization. To determine the
most optimal machine learning algorithm, researchers must
conduct thorough testing and analysis of the data using
several machine learning algorithms.
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CHAPTER 8

Machine Learning
Approaches for Electronic
Health Record
Phenotyping

ABSTRACT

The rising utilization of electronic health information in
medical research has amplified the demand for accurate
and efficient phenotyping methods. Early phenotyping
efforts relied on rule-based algorithms that necessitated
manual editing by experts. However, in the past few years,
machine learning technologies have emerged as a
replacement, enabling enhanced scalability across various
phenotypes and healthcare environments. This chapter
extensively discussed deep learning (DL) models for
electronic health record (EHR) data and investigated the
potential applications of various deep neural networks
(DNNs) for analyzing diverse data sources and fulfilling
specific objectives.
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8.1 INTRODUCTION

The use of electronic health records (EHRS) is critical in the
field of human anatomy research [1]. In recent years, there
has been an increase in the use of EHR data for identifying
disease genomes, accelerating, and broadening the
recruitment process for clinical trials, and advancing
epidemiological studies about previously unknown and
recently discovered diseases [2, 3, 4, 5 and 6]. The use of
EHRs offers promise as a vital data reservoir for the
innovation and implementation of individualized treatment
plans, as well as the generation of empirical evidence in
real-world settings [7, 8]. Phenotyping, or the identification
of patients with specific phenotypes based on information
contained in their EHRs, is a critical component for any
secondary use of EHR data [9, 10 and 11]. Phenotyping is an
important first step in any EHR-based application since it
aids in the identification and definition of the population
under study.

Phenotyping typically requires four separate stages: data
preparation, algorithmic creation, algorithm evaluation, and
algorithm implementation (Figure 8.1). The first stage
entails the integration of data presentation, which
comprises two primary phases. The initial stage is extracting
and analyzing relevant data from the data warehouse
containing candidate patient records. The second phase
involves the manual inspection of a subset of charts to
generate phenotypic designations that serve as the gold
standard. In step two, researchers create phenotyping



algorithms using the data gathered in stage one, which is
often known as the data mart. These algorithms are built
using either rule-based or machine-learning methodologies.
During the third stage, the algorithm’s phenotyping is
evaluated by comparing it to the gold standard label.
Various accuracy metrics, such as positive predictive value,
sensitivity, and other measures, are used to analyze the
algorithm’s performance. Stage four utilizes the approach
created in stage two to form a cohort of individuals that
have similar phenotypic features. This cohort makes it
easier to conduct further investigations. This chapter
presents a concise overview of the most recent progress in
deep learning (DL) models utilized for analyzing EHR data.
Furthermore, it delves into prospective areas for further
investigation in this domain.



Step - 1
Data Presentation

1. Extract and process data
2. Manually review Charts

Step -2
Algorithm Development
1. Develop rule- based or Machine Learning Method

Step -3
Algorithm Evaluation
1. Obtain the algorithm identified patients

Step - 4
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1. Obtain the algorithm identified Patients
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FIGURE 8.1 Presentation of the phenotyping
process.

Conventional health analytics models may necessitate
time-consuming methods like expert-defined phenotyping
and ad hoc feature engineering. Hence, the generated
models may not be suitable for exploitation by other entities
or datasets. DL has made significant progress in multiple
domains, such as speech recognition, machine vision, image
classification, and natural language processing. The current



shift in data analytic modeling represents a significant
transition from the conventional method of expertdriven
feature engineering to the modern approach of data-driven
feature construction. Recently, there has been an increasing
amount of scholarly research that confirms the efficacy of
feature building using DL methods. The application of DL in
healthcare has attracted unprecedented attention. DL
models have exhibited improved performance in
comparison to conventional machine learning methods and
possess the benefit of necessitating less manual feature
engineering. Therefore, these models are extremely
appropriate for implementation in healthcare research. In
addition, the healthcare industry provides a wide range of
complex and detailed datasets that are very suitable for
training advanced DL models. Conversely, EHR data poses
many unique challenges for DL investigations.

8.2 ELECTRONIC HEALTH RECORD (EHR)

Electronic health record (EHR) management and
maintenance in datadriven medicine is seen as a very
promising step forward in the healthcare field because it can
use large amounts of medical data to make treatment plans
that are specific to each patient. The use of EHR is essential
to promoting the progress of data-driven healthcare. When
using an EHR, individuals may face difficulties such as
timeliness, reparability, audibility, bias, and similar
concerns. Hence, it is crucial to obtain accurate phenotyping
or feature extraction from patients’ EHR as a key



prerequisite for the successful implementation of any
subsequent applications.

A large body of literature focused on data analytics
related to patients with EHR has been published in the past
2-3 decades. Wang et al. explored the application of
multilinear sparsity LR for forecasting the risk levels of
patients based on their EHRs [12]. Zhang et al. introduced a
system that relies on similarity to generate individualized
therapy recommendations. A composite distance-metric
learning technique has been suggested to compare patients
from different organizations while keeping personal
information safe [13]. The process of extracting significant
data from patient EHRs, known as electronic phenotyping in
the field of medical informatics, is essential for the
advancement of medical applications [14, 15 and 16].
Although numerous computational models have been
developed for electronic phenotyping using EHRs, there are
still several obstacles that remain unresolved, including the
utilization of a tensor-based approach [17, 18]. Modifications
are implemented in the patients’ EHRs over time. Valuable
insights into impending patient health conditions can be
derived from the order in which health issues occur. Due to
the intricate nature of patient disorders, it is not uncommon
to observe variations in EHRs among individuals, even when
they have the same disease. Clinical research that relies
exclusively on healthcare records may be significantly
biased due to the aforementioned issues as well as inherent
flaws within the system [19].



8.3 COMPONENTS OF HEALTH OUTCOMES

Machine learning is particularly valuable for computational
phenotyping in the context of categorizing health outcomes
in four different scenarios. It is crucial to examine the
conventional procedure of recording diagnostic data on
health outcomes in EHR. Figure 8.2 presents an illustration
of common instances of health outcomes and their
correlation with the significance of machine learning
findings obtained from EHR data.
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FIGURE 8.2 Illustration of common instances of
health outcomes and their correlation with the
significance of machine learning findings obtained
from electronic health record data.



8.4 ELECTRONIC PHENOTYPING

Electronic health records (EHRs) electronic phenotyping
involves extracting and identifying phenotypic information
from electronic health data. In other words, electronic
phenotyping is the term used to describe the process of
obtaining useful phenotypes from longitudinal patient EHRs.
Medical research, clinical care, and population health
management depend on phenotyping, which characterizes
observable traits or clinical features of individuals. Through
the utilization of the vast amount of data that is stored in
the EHR, electronic phenotyping can automate and simplify
the process of identifying particular phenotypes or clinical
problems. Conducting this step is necessary prior to
implementing any data-driven applications involving EHR,
such as predictive modeling and similar tasks [20, 21].

8.4.1 DATA REPRESENTATION BASED ON
VECTORS

This method generates a vector that encompasses
information pertaining to each individual patient. The
dimensionality of each dimension corresponds to the
number of distinct medical events in the EHR. Each
dimension provides a statistical summary, such as the sum,
average, maximum, minimum, and so on, of the linked
medical event within the defined time period. The medical
events that serve as the basis are considered vectors, and
the phenotypes are determined by combining these vectors
using coefficients derived through optimization techniques



[22]. This approach fails to account for temporal
relationships between events.

8.4.2 DATA REPRESENTATION BASED ON
SEQUENCE

By going through this process, a chronological order of EHRs
is generated for each individual patient. Pattern mining
techniques can be used once the temporal patterns have
been recognized as attributes [23, 24]. The diversity of
patient EHRs often leads to a significant proliferation of
patterns, commonly referred to as pattern explosion.
Evaluating the therapeutic usefulness of a phenotype is a
difficult undertaking.

8.4.3 REPRESENTATION IN TERMS OF TENSORS

This method is used to generate a tensor of the EHR for
each patient. Each tensor mode corresponds to a unique
medical entity. The value of each slot is a statistical
aggregation of all potential event coincidences across the
relevant dimensions. Ho et al. suggested employing a
nonnegative tensor factorization-based technique to extract
phenotypes from these EHR tensors. This approach enabled
us to examine the interaction among multiple medical
components. However, they fail to consider the
simultaneous occurrence of events over time [25].

8.4.4 EXTENDING MATRIX REPRESENTATION
THEORY TO TIME

This approach involves representing EHRs as temporal
matrices, which consist of two dimensions: time and



medical events. Zhou et al. proposed a phenotyping
technique that involves clustering medical events with
similar temporal patterns. However, they failed to consider
the interconnectedness of events [26]. Wang et al.
developed a convolutional matrix factorization method to
identify shift-invariant patterns in patient EHR matrices.
However, they faced the challenge of determining the
optimal feature lengths and had to resort to enumerating all
potential combinations instead [19].

8.5 ELECTRONIC HEALTH RECORD (EHR) DATA
FORMAT

Electronic health records (HERs) systems have the capability
to record clinical data generated during the testing process
in both structured and unstructured formats. The EHR stores
coded billing data, such as diagnostic and treatment codes,
laboratory test results, and vital signs. This allows for easy
access to a wide range of clinical information. The
composition of EHR data consists of 80% unstructured text
and images, encompassing admission and discharge
summaries, progress notes, pathology, and radiology test
findings, and other relevant information [27]. Structured
EHR data cannot be retrieved using the same procedures,
and conducting a large-scale human review is not feasible
[28]. Machine learning can be used to extract and organize
important clinical information from unstructured EHR data
for tasks such as natural language processing or picture
identification. Computer speech recognition and natural
language  processing applications are experiencing



substantial advancements due to the implementation of DL
techniques [29].

8.6 ANALYSIS OF PROJECTS USING ELECTRONIC
HEALTH RECORD (EHR) DATA

8.6.1 CATEGORIZATION OF DISEASE

The process of developing a DL model for disease
classification involves using multiple layers of neural
networks to establish a connection between the input EHR
data and the desired disease outcome. Some sections utilize
data sets that are specialized for certain conditions, such as
data from the Parkinson’s Progression Markers Initiative and
the Pooled Resource of Open-Access Amyotrophic Lateral
Sclerosis Clinical Trials [30, 31]. Multiple studies utilize
multimodal data and can perform either binary classification
or multi-class classification [31]. In addition to the
multimodal data obtained from individuals with the disease,
other research has also utilized multivariate time series
data. In a previous study, researchers utilized convolutional
neural networks (CNNs) to analyze multivariate
encephalogram (EEG) signals. The objective was to
automatically classify the signals into three categories:
regular, pre-ictal, and seizure [32]. Making use of
information from the Medical Information Mart for Intensive
Care IlI (MIMIC 1ll) [33], a long short-term memory (LSTM)
model has been developed for the purpose of diagnosing
sepsis [34, 35 and 36]. Automatic diagnosis or disease code
classification of clinical records are common examples of



multilabel classification challenges [37, 38]. The convolution
plus attention model was employed in 2018 to elucidate
clinical notes into diagnosis codes [39]. Deep feedforward
and CNNs are used to automatically extract the primary
cancer site and the direction of the cancer from free text
pathology data [40, 41 and 42].

8.6.2 CONCEPT EMBEDDING

Clinical phenotyping, a specific form of idea embedding,
involves assigning phenotypes to EHR data. Phenotypic
characteristics can be derived by utilizing broad concept
embedding techniques, such as med2vec [43]. DL
techniques are frequently employed for training
unsupervised idea embeddings. Large EHR databases are
commonly utilized to obtain a high level of generalizability.
The Mount Sinai data warehouse utilized 7,00,000 digitized
health records to create a patient representation [44]. The
study investigated several shallow feature Ilearning
techniques, including principal component analysis, k-
means clustering, and the Gaussian mixture model, to
determine the most effective approach for generating an
idea embedding. The resulting embedding was then
evaluated through disease prediction tasks. Testing with
concept embedding yielded better disease prediction results
when compared to conventional feature learning methods.
Concept embedding models have been applied to a dataset
of 5,50,339 patient records from Children’s Hospital of
Atlanta (CHOA), which led to significant improvements in
performance across several real-world prediction tasks [42,



43 and 44]. Concept embedding has been used to extract
specific medical ideas from MIMIC lll discharge data and has
also been used to predict phenotypes successfully. The
study revealed that DL models, such as random forest (RF),
performed less effectively than shallow models (e.g., logistic
regression (LR)) when the training sample size was limited
[45, 46].

8.6.3 SEQUENTIAL PREDICTION OF CLINICAL
EVENTS

Neuronal networks have been used to successfully find links
between existing data and possible outcomes through the
modeling of longitudinal EHR data. Recurrent neural
networks (RNN) and Sutter Health longitudinal outpatient
data have been reported to predict the onset of heart failure
in the emergence of a completely new disease [47]. The
deep feedforward neural network had the largest area under
the curve when it came to forecasting the next hospital
admission using the 1,328,384 patients (3,295,775 visits)
from the New Zealand National Minimum Dataset. A total of
1,14,000 patient records from the University of California,
San Francisco (2012-2016) and the University of Chicago
Medicine (2009- 2016) were used for the prediction tasks.
Three distinct DL models were tested: (i) based on RNN; (ii)
based on recognition and time awareness; and (iii)
combining a neural network model with a neural network
model that included decision stumps based on boosted
time. Without requiring the harmonization of site-specific
data, DL algorithms were able to predict in-hospital



mortality, recurrence, hospitalization time, and discharge
diagnoses with a high degree of predictability across sites
[48, 49].

8.6.4 ELECTRONIC HEALTH RECORD (EHR) DATA
PRIVACY

Before maintaining confidentiality, the information
contained in a patient’'s EHR must be extracted from its
original context. Dernoncourt et al. developed a de-
identification method based on RNN using the i2b2 2014
data and the MIMIC de-identification data. RNN
demonstrates better performance compared to other
currently employed techniques [50]. A hybrid model
consisting of an RNN has been developed to de-identify
clinical notes. For character-level representation, a
bidirectional LSTM model can be employed [51].

8.7 FRAMEWORKS FOR DEEP LEARNING (DL) IN
ANALYTICS

Deep Ilearning (DL) can help in obtaining abstract
representations of data for multi-layered computational
models. The ability to diagnose diabetic retinopathy using
deep neural networks (DNNs) is an example of how machine
learning has significantly improved outcomes in the medical
and healthcare domains. This has also been noted in image
processing [52, 53], speech recognition [54], and natural
language processing domains [53].

8.7.1 CONVOLUTIONAL NEURAL NETWORK



(CNN)

A convolutional neural network (CNN) can extract complex
patterns from images, audio, and video by using the
characteristics of localized data. CNNs have significantly
enhanced the automated classification of skin lesions from
images. Convolutional layers can be used to create local
features that are translation-independent by linking multiple
local filters with their respective input data. With the help of
pooling layers, it is possible to prevent overfitting by
gradually decreasing the output rate. In the context of
image analysis, it is important to note that the expression of
a local feature does not have any impact on other regions.
Similarly, the operations of convolution and pooling, which
are carried out locally, also do not affect other regions. We
need to carefully consider how to effectively capture
temporal information when using CNNs for modeling
because time-series EHR data is so important [55]. A hybrid
convolutional RNN would be the most effective method for
both the extraction of joint characteristics and the
development of a temporal summary. Although CNNs were
initially developed to model images and events, they have
now discovered other uses, such as the interpretation of
medical writing.

8.7.2 UNSUPERVISED EMBEDDING

Convolutional neural networks (CNNs) can extract complex
patterns from images, audio, and video by using the
characteristics of localized data. CNNs have significantly
enhanced the automated classification of skin lesions from



images. A CNN works by connecting several local filters to
the input data through convolutional layers. This creates
local features that do not change when the data is moved.
Reducing the output via pooling layers can help avoid
overfitting. Local image analysis algorithms like convolution
and pooling barely affect nearby regions. When utilizing a
CNN to encode temporal EHR data, it is crucial to carefully
address the method of capturing temporality, as this type of
data often contains valuable information [32, 55]. For
extracting characteristics in the form of a vector and
simultaneously summarizing them over time, a hybrid
convolutional RNN can be utilized. Beyond the boundaries of
image and event modeling, CNNs have a wide range of
applications, including the recognition of textual formats
that are utilized in the healthcare sector [38, 40].

8.7.3 AUTOENCODER

A nonlinear transformation known as the autoencoders
model can reduce the number of dimensions without the
assistance of a human being doing so. The autoencoder
model family is commonly employed for medical concept
integration, such as translating across different medical
coding systems [56, 57, 58, 59, 60, 61 and 62]. The inputs
are encoded by the autoencoders using a low-dimensional
code representation, and the outputs are then decoded back
into the input space. The structure formed by combining the
encoder and decoder is known as the reconstruction
function. In a standard autoencoder implementation, the
number of dimensions is reduced, but the capacity to



capture the most critical aspects of the data is retained.
Using autoencoders for unsupervised modeling is a good
way to represent EHRs with long-lasting structures and
recurring patterns. Sparse artificial evolution can be
categorized into two categories: (i) demonizing
autoencoders; and (ii) low-frequency autoencoders (SAE).
Sparse representation can be obtained by incorporating a
sparsity penalty and SAE enabling into the internal code
representation, regularizing reconstruction loss. The
application of SAE is beneficial in different settings, such as
the unsupervised phenotyping of EHRs and the sparse
representation of EEG data [63, 64]. The denoising
autoencoder (DAE) model exhibits resistance to missing or
noisy data due to its construction using purposely distorted
inputs. DAE has been employed to generate precise models
of human physiology, extract meaningful phenotypes from
EHR, and identify correlations between diseases and genes.

8.7.4 RECURRENT NEURAL NETWORKS (RNNS)

Recurrent neural networks (RNNs) are neural networks that
can extend feedforward models to simulate time series,
event sequences, and natural language text. RNNs are the
ideal HER modeling architecture [65, 66 and 67] for a range
of applications, such as the prediction of sequential clinical
occurrences and the categorization of diseases [68, 69, 70,
71, 72 and 73]. RNNs are used in computational
phenotyping to capture the intricate temporal dynamics of
longitudinal EHR data. RNNs are the most effective
architecture for EHR modeling [74]. The hidden layer of the



RNN encompasses the memory of the network, which is
dependent upon the input and the state of the network.
RNNs can process sequences of various lengths. LSTM and
gated recurrent units are two well-known examples of gated
RNN architectures. They intend to address the issue of
vanishing gradients and the problem of long-term reliance.

8.7.5 GENERATIVE ADVERSARIAL NETWORK

A generative adversarial network is a type of machine
learning model that specifically deals with the production of
data using a game-theoretic process. To accomplish this, a
neural network consisting of a generator and a discriminator
is trained. The discriminator possesses the ability to
differentiate between authentic and counterfeit samples,
while the generator can produce samples in response to
random input. Both networks are trained sequentially to
enhance the generator's output and the discriminator’s
ability to distinguish between real and fake samples.
Recently, the healthcare industry has employed generative
adversarial networks to produce discrete codes and
continuous medical time series.

8.8 SPECIFIC DIFFICULTIES AND POTENTIAL
APPROACHES

The unique challenges posed by EHR data include temporal
irreqularity, nature, multimodality, lack of labeling, and the
complexity of the models themselves. These factors make it
difficult to interpret the data accurately [75].



8.8.1 TEMPORALITY AND IRREGULARITY

Longitudinal EHR data provides valuable insights into the
progression of patients’ health conditions over a period.
Long-term effects provide the global context, and doctors
use the local context to build a patient’s medical history
through the connections between the medical events
recorded in EHRs. Clinical variables, including diagnostic
tests, surgeries, and medications, have an impact on patient
health outcomes. The environment, such as the likelihood of
readmission or the presence of a disease, also has an
impact on these health outcomes. However, due to the
complex relationships between different clinical events, it
might be challenging to distinguish actual indications over a
period. Several researchers have identified significant
disparities in the quantity of data present within individual
patient records when events were selected randomly. If this
anomaly is not addressed appropriately, it would negatively
impact the model’s efficacy.

8.8.2 LACK OF LABELS

Labels pertain to the tangible conditions of clinical results or
the characteristics of diseases in their physical
appearances. The absence of specific gold standard labels
in EHR data is a frequent occurrence, posing a challenge to
training models with enough labels. A major obstacle to
utilizing DL for EHR data is developing efficient techniques
for classifying EHR information. Generating labels is a
proficiency that wusually requires the assistance of
experienced experts in the specific field who are



knowledgeable in the presentation. In practice, the term
“silver standard” is commonly employed. For instance, a
survey developed patient labels by analyzing the frequency
of codes such as treatment, analysis, and dosage regimen in
many articles that employed supervised Ilearning
methodology. These codes were found in most of the
publications analyzed. Transfer learning can be employed as
an alternative to manually created labels to avoid their
usage. LSTM can reproduce sequences of diagnostic codes,
and it can be applied to many datasets with the same level
of success. To forecast an outcome, a customized
autoencoder structure can be utilized to transfer knowledge
from a generic EHR. The prediction of prescriptions can only
be based on diagnostics [43].

8.8.3 MULTIMODALITY

Electronic health record (EHR) contains prognostic
information, drug, and therapy codes, continuous
monitoring data from ECG and EEG devices, as well as
medical photographs. The ability to identify patterns in
multimodal data is the outcome of effectively diagnosing a
problem, making precise predictions, and attaining resilient
performance in a learning system [76]. However, the
inherent variability of the data makes multimodal learning
difficult. Before this, multitask learning was employed to
analyze data from multiple sources simultaneously and
acquire expertise in diverse domains. The EHR learning
neural network model has trained multimodal neurons to
perform general tasks, while some neurons are trained for a



specific purpose. Activity can influence the results of
laboratory tests and the types of data collected. Hidden
discrete binary digits represent the Poisson distribution and
parameters for each mode. The channel data is
subsequently incorporated through the utilization of a
feedforward network with shared hidden units [77].

8.9 CONCLUSION

The extensive and diverse clinical data stored in modern
EHR systems may prove useful in identifying patients with
varying health outcomes. Developing personalized
phenotyping algorithms poses numerous obstacles for
researchers, despite the plethora of information at their
disposal. Machine learning techniques could potentially be
valuable in addressing these challenges. To increase the
adoption of machine learning for phenotyping tasks using
EHRs, further efforts are required to develop machine
learning algorithms that are adaptable and applicable in
diverse environments. To optimize the utilization of machine
learning algorithms in electronic phenotyping procedures, it
is crucial to address problems regarding transparency and
the size of training data, as these factors are essential for
attaining favorable results.
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