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Preface

Artificial intelligence (Al) is transforming healthcare domain by automating and
improving diagnosis and treatment. Al is an ever-growing field using multiple
subsets, including machine learning, deep learning, natural language processing, and
expert systems. When applied in the field of healthcare, Al has the potential to greatly
impact diagnostics, treatment, care, operational efficiency, drug discovery and devel-
opment. Increasingly, artificial intelligence has been used in diagnostics, helping to
identify nodules or cancers, predict cardiovascular risk, and provide personalized
care for chronic patients.

Various Al models and algorithms, such as convolutional neural networks, deci-
sion trees, and support vector machines, among others, have been used to analyze
medical imaging data to predict brain tumor biopsy results, cardiovascular disorder,
breast cancer and many other critical diseases. Al methods can also be used to analyze
high-throughput immunological data for personalized care. These techniques include
machine learning, deep learning, and reinforcement learning, based on mathematical,
computational, and statistical concepts, and complement immunological research.
Benchmark healthcare datasets should encompass at least one million total samples
and larger cohorts to yield generalization and interoperability in healthcare. High
quality medical datasets should consist of, but are not limited to, imaging data, clin-
ical data, and genomic longitudinal data to mitigate the impact of Al-bias in the
predictive outcomes. Apart from clinical datasets, there are certain challenges found
in developing robust medical devices, which include the exploitation of Al in medical
signal processing, analysis, and interpretation to create smart healthcare system that
can utilize expertise-based knowledge and generate solutions. These solutions can
accurately refine the identification, diagnosis, as well as therapy of diseases that must
be safe, secure, interoperable, and efficient. The early and several benefits of modern
healthcare technologies include remote patient monitoring, aiding in early diagnosis,
facilitating advanced treatment recommendations for a wider general population,
and allowing the unprecedented potential for data sharing, collaboration, and knowl-
edge build-up is possible with the incorporation of Al in healthcare models. To
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efficiently manage modern clinical needs, many Al algorithms are proposed in dedi-
cated systems including data resource utilities, individual and group support systems,
and methods for Al-based classification and predictive modeling.

This book provides a critical overview of Al technologies in the early prediction
of chronic diseases and preventing casualties. The book comprises of four parts elab-
orating on modern healthcare, applications, personalized care and benefits of smart
healthcare using Al Part I contains two chapters. Chapter 1 titled “Introduction to
Artificial Intelligence in Modern Healthcare” details the various Al techniques that
provide quick, and accurate solutions for transforming treatment using conventional
methods of healthcare. Chapter 2 titled “Research Orientation for AI Techniques in
Modern Healthcare System” discusses the various aspects and research methodolo-
gies currently used in applying Al techniques to realize a smart healthcare-oriented
scenario. The great potential of Al depicts the need to reorient and broaden the
research interests and focus on modern healthcare systems.

Part II titled “Applications of Artificial Intelligence for Disease Prediction” has
six chapters describing various applications and benefits of Al techniques that can
be used for diagnosis and prediction of chronic diseases. In this, Chap. 3 titled
“Diagnosis and Prediction of Brain Tumor Using Artificial Intelligence” elaborates
on the benefits of Al tools and algorithms in diagnosing and predicting brain tumors,
particularly in the context of oncology. These tools have the ability to analyze large
amounts of brain imaging data, such as magnetic resonance imaging (MRI) and
computer tomography (CT) scans, and identify features and patterns typically not
detectable by human radiologists, thereby increasing the accuracy of diagnosis and
prognosis assessment. Chapter 4 titled “Diagnosis and Prediction of Neurological
Disorders Using Artificial Intelligence” details the main idea of diagnosing and
predicting a neurological disorder using the latest techniques from imaging, text and
signaling data. Chapter 5 titled “Diagnosis and Prediction of Cardiovascular Disorder
Using Artificial Intelligence” elaborates on various Al techniques that can predict
cardiovascular disorders at an early stage. Al-based data-driven algorithms permit
computers to learn gradually and help in the decision-making process for predicting
cardiovascular disorders by scrutinizing the diverse range of health data, including
electrocardiograms, intervascular ultrasound, genetic, lifestyle, environmental risk
factors, and cardiac imaging studies. Chapter 6 titled “Diagnosis and Prediction of
Cardiovascular Risk in Retinal Imaging Using Artificial Intelligence” discusses the
importance of identifying bioindicators and diabetic retinopathy imaging for the
prediction of cardiovascular disease at an early stage. Al systems based on deep
neural networks are able to predict the occurrence of some adverse events after the
diagnosis of diabetes or hypertension in retinopathy imaging. This has opened up new
therapeutic possibilities for ophthalmologists as retinal photography has been found
to be a great indicator to predict risk for heart disease, a study that has brought about
endless possibilities of collaboration between ophthalmologists and cardiovascular
specialists. Chapter 7 titled “Diagnosis and Prediction of Diabetic Foot Ulcer in
Modern Healthcare Using Artificial Intelligence” elaborates on the identification of
diabetic foot disease (DFU) using AI. DFU data are integrated from foot images and
clinical assessments such as ABI, pulses, and vibration perception threshold to carry
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out diagnosis and determine if the patients are at high risk of developing another foot
ulcer or requiring an amputation. A large amount of data is collected from patients
in each study to indicate the significant improvement in the stratification of high risk
along with increased predictive power. Chapter 8 titled “Diagnosis and Prediction
of Breast Cancer Using Artificial Intelligence” elaborates on the severity of breast
cancer in high-income countries. These abnormalities can occur in a woman’s body
gradually and lead to the development of cancer, usually in a few years. Treatment
is easier when breast cancer is diagnosed early; early-stage patients have improved
outcomes following appropriate treatment. Several Al techniques are reviewed which
analyze mammograms and other types of medical imaging in an attempt to detect
breast cancer early.

Part III contains four chapters presenting the improvement and benefits offered
by Al for personalized care. For this, Chap. 9 titled “Role of Artificial Intelligence in
Immunology” details the potential impact of Alin genetic and protein analyses. There
has been a shift from single markers to analyzing millions of markers in a compre-
hensive genome-wide or proteome-wide approach. Al methods are analyzed for
processing such complex data sets. Chapter 10 titled “Managing High-Risk Surgery
Using Artificial Intelligence” presents the precision and high-ranking decision-
making algorithms that are needed for high-risk surgery and make it a natural area
for the development and introduction of Al. Al tools for precision surgery are used to
predict complications that may arise for a particular patient when decisions are made
by the surgery based on information collected by MRI, CT, medical history and exam-
ination. There are three main areas where Al can play a beneficial role in precision
medicine: (1) preoperative assessment, (2) surgical planning, and (3) postoperative
monitoring, which is highlighted in this chapter. Al systems are designed to predict
complications that can support experienced surgeons, perioperative physicians, and
nursing staff in the assessment of risk and further management of patients. Chapter 1 1
titled “Benchmark Datasets for Analysis in Medical Systems” compiles the various
datasets crucial for the performance review of Al models within medical systems. It
emphasizes that benchmark datasets are essential to achieve reproducible and reli-
able results in modern healthcare. Benchmark datasets consist of training datasets,
which are used to develop and train the Al model, and testing datasets, which are
used to validate the model before real-time deployment. Chapter 12 titled “Role
of AI and Modern Medical Equipment in Smart Healthcare” summarizes Al and
medical equipment as evolving complementary tools for delivering smart healthcare
services. Advanced medical equipments are analyzed to gather physiological signals
for clinical indexes and integrate them to suggest a tentative diagnosis. Based on the
accumulated data input, the medical equipment generates a personalized treatment
for every patient.

Part IV titled “Artificial Intelligence for Healthcare Digitization” contains three
chapters. Chapter 13 titled “Evolution of Traditional Healthcare to Modern Health-
care—Benefits, Opportunities and Challenges” discusses the significant reforms
in modern healthcare treatments. It complies the various methodologies the way
diseases are diagnosed within the human body, the mode of treatments, medications
prescribed, and the research protocols. The conventional labor-intensive treatment
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procedures are slowly moving to a modern era of personalized precision medicine
for the betterment of a human approach, and it would not have been possible without
the utility of advanced technologies as a key integrator. Chapter 14 titled “Analysis of
Al-Bias in Modern Healthcare Systems” details the development of Al-based models
in healthcare and the introduced bias in the outcomes. Al models promise to leverage
this data for better diagnoses, more precise treatment decisions, and improved patient
outcomes. Despite serving diverse patient populations, existing healthcare data may
not be representative of everyone in a given community and can be subject to socioe-
conomic and cultural biases in healthcare Al models that reflect and propagate
existing disparities in care and outcomes. Various bias analyses and suggestions
for its mitigation are also highlighted in this chapter. The last Chap. 15 titled “Exam-
ining QoS for Modern Healthcare Systems” advances the successful deployment of
modern healthcare systems and benefits from advancements in the field of Al, such
as using big data technologies or deep learning, which requires awareness of quality
of service (QoS) concepts. It discusses the QoS and how effectively Al-based clin-
ical systems perform over a variety of parameters to provide accurate diagnosis and
treatment. In many application domains, imperious data requirements and high costs
to maintain these standards require additional performance metrics to account for
the reliability of digital service at the manipulation layer of these applications.

This book summarizes several changes that are currently taking place or are
expected to take place with the potential of Al in the healthcare and medical fields. It
will interest the various stakeholders to deeply understand the changes, difficulties,
empathy, and insights, and to eventually establish new processes and rules. This book
has carefully explained the scientifically proven important facts about the impact of
Al in establishing the modern healthcare system and the potential to be the most
crucial factor in determining the type of delivery system that healthcare pursues in
future.

Greater Noida, India Ashish Kumar
Divya Singh
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Part I
Artificial Intelligence in Modern
Healthcare



Chapter 1 ®)
Introduction to Artificial Intelligence e
in Modern Healthcare

Abstract With the advancement in technology, traditional healthcare has evolved to
provide improved and accurate diagnosis of critical diseases to save mankind. Tradi-
tional healthcare techniques are integrated with artificial intelligence (Al) for early
prediction of disease so that proper and personalized treatment can be extended. In
modern healthcare system, Al have either machine learning or deep learning tech-
niques which provide quick and automatic solution for prediction of critical diseases
such as mental illness, brain tumor, cardiovascular disorder at an early state. The
application of machine learning and deep learning models for prediction and prog-
nosis of these diseases has become an irrevocable part of medical treatment aimed
at improving the subsequent therapy and management of patients. In this chapter,
we have discussed the overview of various machine learning and deep learning tech-
niques which are proposed to address the needs of the patient and provide medical
aid at an early stage of the disease.

Keywords Artificial intelligence (AI) - Machine learning (ML) - Deep learning
(DL) - Modern healthcare + Smart healthcare - Digital healthcare

1.1 Overview of Al in Modern Healthcare

Artificial intelligence (AI) has diversified applications in various fields such as educa-
tion [1], sentiment analysis [2], computer vision [3] and many more [4-7]. Al has
also revolutionized traditional healthcare by providing early, quick and accurate
predictions of critical diseases such as brain tumor [8], cardiovascular disorders
(CVD) [9], cervical cancer [10] and many more [11-14]. Al have utilized either
machine learning (ML) or deep learning (DL) algorithms for processing medical
imaging data such as X-ray, magnetic resonance imaging (MRI), ultrasound (USd),
and computed tomography (CT). Apart from imaging data, biomedical signals such as
electrocardiogram (ECG), and electroencephalography (EEG) are also investigated
for predicting health disorders. In addition, textual data, namely electronic health
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records (EHR), tweets, comments, opinions from social media are also very effec-
tive in predicting critical disorders in human beings. Generative AI models such as
ChatGPT, natural language processing, are also helpful in improving the treatment
accuracy and extending personalized treatment to the patients [4, 15]. Figure 1.1
represents the categorization of various Al techniques such as ML, DL or generative
AL

ML based algorithms can be categorized either as supervised learning or unsu-
pervised learning [16, 17]. Treatment accuracy can be alleviated by using labeled
medical data in supervised learning algorithms and the commonly adopted algo-
rithms in this category are support vector machine (SVM), random forest (RF), deci-
sion trees (DT), XGboost and many others which are used for disease classification.
On the other hand, effective representation of medical data from raw unlabeled data
is processed using unsupervised learning algorithms which comprise of clustering
and dimensionality reduction techniques exploited for disease prediction and reliable
clinical diagnoses. Authors have adopted supervised ML algorithms for classifica-
tion of cells in brain tumors and breast cancer imaging either as malignant or benign
[18-21]. On the other hand, clustering techniques and dimensionality reduction also

Fig. 1.1 Categorization of Al in medical domain
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adopted for providing better results in low resolution imaging [22, 23]. Suppression of
noise, contrast and resolution enhancements in medical imaging are adopted during
pre-processing process for improving segmentation accuracy of these algorithms.
Clinical measurements using ML algorithms focus to minimize the generalizability
gaps on different databases and ensure to have better treatment plans with quick and
accurate prediction accuracy.

On the other hand, DL algorithms utilize convolutional neural networks (CNN),
recurrent neural networks (RNN), U-Net and long short-term memory (LSTM)
networks for extracting sensitive and essential information from the various clin-
ical datasets for predicting life-threatening diseases at an early stage [24-28]. In
order to prevent the spread of disease such as cancer and tumors, it is crucial to
determine its vital markers such as size, shape and location accurately. To under-
stand its appearance and risk factors, the medical imaging is processed using DL
models. DL models provide advanced techniques and optimize critical parameters
substantial for highly efficient computational models for disease predictions. This is
one of the invasive techniques that can identify the criticality of the disorders and
save money by eliminating the need for expensive medical tests. It improves the
decision making of doctors and medical practitioners by predicting advanced level
diseases effectively.

Hybrid approaches are also quite popular in reducing the prediction of critical
diseases by processing the large amount of data in less time. These techniques
exploited DL techniques for extracting robust features and ML techniques for classi-
fication for these features either as benign or malignant [29, 30]. The robust feature
extraction and selection is adopted for determining the sensitive features from various
medical imaging. These features are processed using either DL models or any other
efficient techniques. These features are fed to the ML-based classifier for identifi-
cation of the advanced diseases. ML-classifiers perform either binary or multi-class
classification for computing the criticality of diseases such as foot ulcer, neurolog-
ical disorder and cancerous cells. In other directions, Attentional mechanisms are
also incorporated into the prediction algorithms for extracting the relevant features
from the target regions and neglecting the irrelevant features [31-33]. These algo-
rithms are faster in computing the outcomes as only a limited area needs to be
processed. Also, the recent algorithms incorporating encoder and decoder networks
are widely explored in medical domain for providing enhanced treatment accuracy.
In this direction, vision transformer (ViT), Swim transformers are few to name [34,
35]. These algorithms can process the medical data faster to provide accurate and
timely information for initiating proper treatment.

Generative Al includes large language models (LLM) and natural language
processing (NLP) which are significant in revolutionizing the medical decision-
making process [15]. LLM models have a wide range of applications in various
radiological specific datasets. These models can automatically generate radiological
reports from small sets of keywords, provide diagnosis based on imaging patterns,
suggest report summarization for effective treatment and many more. Similarly, NLP
has been identified to have potential applications in healthcare management systems
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along with LLMs [36, 37]. NLP is specifically used with transformer-based algo-
rithms and performs various tasks such as text classification, and extraction. These
models can also automate the process of data curation for computing the signifi-
cant findings from the patient’s medical data. The potential of NLP is explored in
ChatGPT, a transformer-based method [15]. This chatbot with user-friendly interface
provides detailed analysis of medical imaging with quick and accurate diagnosis and
segmentation.

This book comprises extensive discussion about the recent, advanced and inno-
vative techniques for revolutionizing medical healthcare. For this, Al-based algo-
rithms are reviewed to emphasize their need for integrating into traditional healthcare
methodologies for quick and efficient diagnosis and prognosis of critical disease. Al-
based algorithms are widely used for predicting brain tumors, breast cancer, diabetic
foot ulcer, neurological disorders and many other life-threatening diseases. The vast
availability of medical imaging data reduces the effectiveness of the traditional
healthcare system. The outcomes of these medical imaging are highly dependent
on the expertise and experience of the radiologist. Secondly, it is time consuming
to analyze medical imaging data such as MRI, and CT, which contain numerous
images for processing manually. Hence, to provide effective, fast and personalized
treatment Al-based techniques are widely explored. In this book, we have summa-
rized the available potential work to predict critical disease and the imaging data
publicly available for analysis and prediction.

1.1.1 Challenges in Traditional Healthcare Systems

Traditional healthcare systems have certain limitations which restrict the timely
approachability to patients suffering from critical diseases [38, 39]. Traditional
healthcare system is incompetent to provide affordable, quick and accurate medical
facilities to patients [40]. It has many concerns related to data analysis, trust, relia-
bility, self-reliance and many more. It is difficult to provide early medical aid and
healthcare services to the people living in remote areas. Providing the best medical
assistance in emergency cases is still challenging as the latest methodology yet to
be deployed properly. The limitations of traditional healthcare can be addressed by
adopting advanced technologies such as ML, DL, and NLP. These technologies can
revolutionize the traditional system by providing smart and innovative healthcare
services. Hence, it is essential to understand the limitations of traditional health-
care systems to improve the quality of life significantly. Figure 1.2 represents the
limitations of the traditional healthcare systems, and the details are as follows:
Data analysis: A lot of medical data is produced by various medical imaging
techniques such as CT, MRI and Ultrasound (USd) scans. It is tedious as well as
time consuming to analyze such huge amounts of data manually. Also, the inference
from these data highly depends on the expertise and experience of the radiologist.
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Fig. 1.2 Limitations of traditional healthcare systems

However, the modern healthcare system addresses this limitation of traditional health-
care systems by exploiting the latest technologies. The analysis is not only fast but
also accurate, which is helpful for doctors to make better decisions.

Trustworthiness and reliability: The traditional healthcare system is not very much
trustworthy and reliable. The reason could be total dependency on human resources
for diagnosis and prognosis. In some cases, the existence of disease in a patient
was detected in its last stage as the symptoms were not very clear and precise to
be captured manually. The innovation in traditional healthcare is now helpful for
capturing and detecting critical disease such as cancer at an early stage to save lives
[11].

Efficiency and effectiveness: Traditional techniques in healthcare are not very effi-
cient and effective in early prognosis of disease. The reason could be less accessibility
for better medical facilities to the people living in remote areas. The effectiveness
of treatment is not efficient either due to the disease detected in its last stage or
non-availability of treatment facilities at initial stage of disease.

Availability of expertise: Traditional healthcare system is manual and depends on
the proficiency of medical professionals. There is limited availability of specialists
which can cure critical diseases. This limitation can be addressed by incorporating
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the latest technology such as IoT and robotics in medical systems which not only
save time but also more accurately treat the disease.

Limitations for personalized treatment: One of the major facilities of smart health-
care is that it provides personalized treatment to the patients by studying the vital
parameters such as family history, smoking habits, genetics analysis, and medical
biomarkers. Analysis of so many parameters for providing personalized treatment
is not possible in traditional healthcare systems. In [41], authors analyzed multi-
dimensional components such as genetic history, functional parameters and influ-
ential environmental attributes for providing personalized medical for preventing
cardiovascular disorders and cancers.

Physical availability of medical practitioners: Traditional healthcare emphasizes
the need for physical examination and medical consultation only. However, due
to limited time and non-availability of efficient medical facilities, it is not always
possible to visit the doctors physically. To address this challenge, smart healthcare
has introduced tele consultations which reduces the number of physical visits to the
clinic or hospital and effective in providing primary care to the patients [42]. This
facility also helps in preventing the spread of deadly diseases such as COVID 19.
Tele consultations proved to be effective for managing people’s health in lockdown
during COVIDI9.

Self-reliant healthcare: Traditional healthcare demands all the decisions, measure-
ments and analysis to be taken by medical practitioners only. However, smart health-
care provides self-wearable devices equipped with IoT technology for continuous
monitoring of the patient’s health. The user can manage its health condition with the
help of Apps and information platforms [43]. The data can be understandable to a
user and routed to doctor for further analysis.

Geographical barriers: Geographical limitations is one of the biggest barriers in
traditional healthcare systems which prevent the accessibility of superior medical
services to the people living in remote areas. In smart healthcare systems, various
features such as tele consultations, IoT-based wearable devices, personalized
healthcare provides reliable treatment in case of emergency.

1.2 Evolution from Traditional Healthcare to Digital
Healthcare

Traditional healthcare system is transforming into smart healthcare to make it
more intelligent, accessible and accurate. Smart healthcare is not only technolog-
ical advancement of traditional healthcare system but enhances the medical care,
services and experience to the participants.

There are some chronic diseases such as breast cancer, brain tumor, and CVD
whose timely management is necessary to prevent casualties. These diseases are
curable if predicted at their early stage [11, 34, 44—47]. As the number of patients with
such diseases is increasing gradually, traditional healthcare systems which are manual
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and doctoral centric are incapable to provide proper care and treatment. Hence, smart
healthcare emerges with innovative solutions for better management of diseases.
Firstly, smart healthcare emphasizes the need for Al-based prediction algorithms
and self-monitoring of patients for improved management of such life-threatening
diseases. Al-based prediction algorithms can predict the spectrum of these diseases
for managing their long-term effects efficiently. Secondly, smart healthcare also
suggested on continuous monitoring of patient’s vitals and substantial parameters
through wearable intelligent devices for timely actions to improve quality of life.

1.2.1 Al and Digitization to Healthcare

Digital innovation of the healthcare sector improves the patient’s care and manage-
ment of critical diseases effectively. Digital transformation offers e-health services
that includes the incorporation of tele consultation, management of electronic health
record, loT-based wearable devices for providing health monitoring round the clock
[48]. Healthcare digitization offers several advantages such as automatic disease
prediction, real-time health monitoring, data driven decision making and self-reliant
patients.

Healthcare digitization offers several benefits to manage the patient’s health effi-
ciency. The healthcare digitization introduces the concept of tele consultation which
allows remote monitoring of the patient’s health by providing virtual online appoint-
ments. This facility allows the accessibility of the best medical services to the people
living in rural areas. This has eliminated the geographical barriers by providing cost
effective superior medical facility. Another benefit of digitized healthcare is person-
alized medical facilities for the patient’s suffering from mental disorders, and CVD.
Personalized treatment includes a study of patient’s genetics and genomics to provide
effective medical care. Smart healthcare with recent technologies and IoT makes it
possible to provide personalized care for faster recovery.

To summarize, digitization of healthcare offers a wide range of benefits along
with continuous health monitoring with the help of smart devices such as watches,
mobile apps, and other wearable devices. The data collected will be transferred to
the medical practitioners in real-time to take necessary actions. The data can also be
further analyzed with the help of Al-based techniques such as ML and DL to predict
critical diseases at an early stage.

1.2.2 Smart Healthcare Wearable Devices

Smart healthcare wearables are one of the technological advancements in medical
systems which can track and monitor a person’s health continuously. These devices
can help in providing personalized healthcare along with preventive medicines by
understanding the patient’s requirements from the data gathered by wearable devices
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[49]. The data is streamed to the clinical staff for analysis in real-time. These devices
reduce physical visits to the doctor and limit communication between the patient and
the clinical staff. The data is helpful in predicting chronic diseases at an early stage
and efficient decision-making by the doctors. These devices can track day-to-day
activities and recommend exercises for the physical well-being of the patients.

Mainly, wearable devices in healthcare can perform four activities namely, moni-
toring, screening, detection and prediction [50]. These devices can monitor pulse,
heartbeat, and physical activity of the person. Continuous screening of cardiac, and
sleep is possible using these devices. These devices can detect and predict clin-
ical risk, less physical activities and early symptoms of any health-related prob-
lems. Respiratory rate data, biological age, irregular pulse, biomedical condition
and mortality captured from wearable devices can be used for predicting pulmonary
diseases and neurological disorders.

The data from wearables has certain limitations and concerns which need to be
addressed before its adoption to the public [50]. The concerns are related to its
quality, design, technicality, security and privacy. The quality of the product should
be high and accurate to ensure the correctness of the data. High quality sensors
and accelerometers should be used for capturing error free data. The design of the
wearables plays a crucial role in its usage. People prefer to wear healthcare devices
in the form of bands and watches if the device design is attractive. Designing these
devices should be attractive enough so that individuals prefer to wear them. The
interface of such devices should be user-friendly so thatindividuals with less scientific
knowledge and older people can be able to operate it with ease. The available patterns
and features should be simple but powerful in screening the potential vitals of the
patients. Other concerns are related to security risks and privacy issues associated
with the gathered data and its usage. The data protection and security laws must be
appropriately deployed in order to achieve the trust and fairness of the users.

To summarize, smart wearables in healthcare are a superior support for moni-
toring and detecting patient’s vital in real-time. Gathered data quality and accuracy
should be accessed properly before its usage to the patients. The variability in the
sensors, different data collection processes and interpretability of results must be
clinically validated to ensure the high-quality standards and interoperability of the
devices. Clinical validation is a crucial step to ensure the reliable performance of
these devices. In addition, these wearable devices should also be validated for gender
equality. It must be ensured that there is no Al-bias in these devices due to missing
sociodemographic data, ethnicity, age and nationality. For wider acceptability of
wearable devices, it is necessary to consider ethical, legal and social requirements
before its deployment to realistic scenarios.
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1.3 Al-Bias in Modern Healthcare Systems

Al-based prediction models are high in demand in modern healthcare systems as
these models can predict chronic disease accurately at an early stage. However, these
models are accessed to be suffered from Al-bias which leads to the non-reliable
outcomes and unseen classifications [51]. In Al-based prediction models Al-bias
can be introduced either through data or algorithmic design. Broadly, data bias is
dependent on dataset selection, sampling and missing historical information. Also,
data bias can be introduced due to model training on insufficient, partial and incom-
plete datasets. The missing values are not handled properly, which creates inconsis-
tencies in the clinical outcomes. The surrogate data is not accessed rightly for its
incorporation in the datasets. All these will corrupt the model and biased its output.

Algorithmic bias in Al-models is introduced due to its weak design, missing
training-test specifications, hyperparameters selections and interpretability [51]. The
algorithmic bias can be introduced during pre-processing, in-processing and post-
processing stages of model design and development. The ignorance of sensitive
features during feature extraction and selection strategy also leads to algorithmic
bias at the pre-processing stage. Also, improper data cleaning and data exploration
introduced human bias in the system. During the in-processing step, the black box
design of DL architecture with hidden neurons may not be able to interpret the model
predictions. The classifier design also influences the model accuracy for diagnosis
decision for unbiased and fair outcomes at this step. Bias accountability due to
exploitation of less efficient evaluation metrics leads to bias at post-processing step.
Insufficient evaluation metrics are utilized for computing the performance of the Al
predicting models may leads to its failure after clinical deployment.

There are many strategies suggested to mitigate the impact of Al-bias in predic-
tion models. Strong documentation and auditing of the model design and architec-
ture should be performed to assess the model quality in terms of generalizability and
interoperability [52]. Bias assessment tools such as Aequitas, PROBAST and many
more must be utilized to compute the bias accountability in the predicted outcomes.
Apart from these tools, predicted model quality must be validated by reviewing its
technical, clinical and regulatory assessment. Technical validation comprises of eval-
uating the model quality in terms of its statistical analysis under practical guidance.
Clinical validation involves gathering sufficient clinical evidence to ensure the model
implementation, design and outcomes follows the designed guidelines. Regulatory
assessment performs systematic validation with respect to available guidelines and
regulations mandatory for automatic functioning of the model in realistic scenarios.
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1.4 Security and Privacy Concerns in Modern Healthcare

The utilization of clinical data in modern healthcare must be checked before its
usage for concerns such as ethical, legal, security and privacy in terms of patient,
clinical staff and hospital. Ethical concerns in modern healthcare are related to sharing
patient’s personal details with third parties for analysis without their consent. Ethical
issues must be avoided by taking prior consent from the patient [53]. On the other
hand, legal issues can be reported when medical data is used across different coun-
tries. Data gathered from one country can be analyzed or processed in a different
country. There are country specific laws which govern the data collection and usage
which must be checked to prevent security and privacy issues [54]. In order to ensure
the generalizability and interoperability of the Al-based healthcare prediction model,
it is essential to train the model on diverse datasets obtained from different countries.
This model trained on diverse datasets has less impact of Al-bias in their outcomes.
Hence, it is important to determine the solutions to such usage and modification of
dataset cross-countries by avoiding pertaining legal issues [55].

In order to ensure data privacy in healthcare, many rules and regulations are formu-
lated to prevent misuse of patient’s data [55]. General data protection regulation
(GDPR), and HIPAA are formulated to protect patients’ sensitive health informa-
tion as well as its ethical public usage. These regulations make it mandatory for the
written disclosure statement from the patient before sharing their personal informa-
tion for further analysis. Apart from these regulations, there are Al-based techniques
which also ensure to protect the data from unauthorized access. Federated learning,
blockchain, and cryptographic techniques are a few techniques which ensure data
security in medical domain.

Since a lot of medical data is generated by various medical imaging techniques
such as CT, MRI, and USd, the privacy concern regarding big data usage has arisen
[56]. The commercial use of this big data in Al-based prediction model has increased
the risk of security and privacy breaches. Also, cloud-based E-health systems involve
online transfer of critical data digitally such as patient’s medical records, radiolog-
ical reports, billing data, and medical history. High level security schemes must be
deployed in cloud to protect them from stealing and its inappropriate usage. Cloud
based E-health systems are faster, efficient, robust and effective with minimal human
intervention. However, to ensure the trust of user high level security system must
be deployed for managing the patient’s privacy. Two level security authentication,
OTP (One time password) based authentication, attribute based encryption, identity
based encryption and many others encryption and authentication techniques were
recommended to protect patient’s sensitive information from unauthorized access
during online data transfer [57].

Generative Al based models such as ChatGPT have offered a wide range of
facilities with improved decision-making. To ensure the real-time applicability and
acceptability of these facilities, it is essential to address the concerns related to
the patient’s data confidentiality, availability and privacy [58]. Privacy preserving
techniques must be deployed to prevent data poisoning during training and phases.
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Sufficient measures must be taken to design models resistant to adversarial attacks.
Advanced techniques such as blockchain, and fuzz testing not only to ensure high
level data security but also to prevent erroneous and biased medical outcomes.

1.5 Summary

In this chapter, we have summarized the types, features, benefits and limitations
of Al-based models either as ML-based approaches or DL-based approaches. The
evolution of traditional healthcare to modern healthcare is highlighted to demonstrate
the advantages of modern healthcare in today’s healthcare. Modern healthcare has
transformed the conventional healthcare infrastructure with the help of the latest
technologies. It has evolved not only to make patient’s self-reliance but also to extend
personalized care and treatment to the patients.

The benefits of Al-based prediction models for predicting chronic diseases such
as brain tumor, cancer and CVD at an early stage have been discussed. These models
are superior in accuracy and efficiency which process the medical imaging quickly.
These techniques have reduced the manual intervention of radiologists and process
the numerous imaging data in a faster way to provide accurate medical outcomes.
Generative Al models-based healthcare models are also efficient in providing a voice-
based system for understanding the patient’s EHR quickly. These systems can process
the patient’s multiple medical records to provide a clear understanding of the patient’s
medical history for the clinical staff.

Since modern e-healthcare systems involve online data collection and transfer,
the security and privacy of patient’s critical information is foremost concerns. The
various recent technologies have been highlighted to provide high-level privacy and
security to patient’s data. These encryption techniques ensure trust, fairness and
transparency to the medical outcomes suitable for their realistic deployment.
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Chapter 2 ®)
Research Orientation for AI Techniques e
in Modern Healthcare System

Abstract Advancement in medical science and health care technology has won
increased expected lifetime for people in the twenty-first century. To meet the expec-
tation of health care quality from the public, artificial intelligence (AI) techniques
such as rule-based expert systems, fuzzy expert systems, artificial neural networks,
genetic algorithms, and hybrid intelligent systems are widely used in medical science
and health care services. The main objective is to promote Al applications research
to address both theoretical and practical aspects of intelligent medical information,
knowledge, and their management. These objectives have to be addressed by closely
examining the synergy and the complementary nature of both theoretical and practical
solutions of knowledge management and system development of health care intelli-
gent systems. Consequently, current fundamental research results have to be further
developed before offering operational procedures for practical robust Al applica-
tions in the work process for decision making and knowledge management in the
framework of health care level. The medical field has made great strides in medical
image processing thanks to recent advancements in deep neural networks (DNNs)
and other Al technologies that have found widespread usage in healthcare. A lot
of current research is focused on developing automated systems that can evaluate
photos and detect acute ailments, including brain tumors, breast cancer, bone frac-
tures, and a host of others. This would greatly benefit medical practitioners. This
extensive study summarizes the most current developments in medical imaging that
have made use of DNNs. Along with the extensive literature evaluation, there is an
overview of publicly available data sources and ideas for future study.

Keywords Artificial intelligence (AI) -+ Machine learning (ML) + Deep learning
(DL) - Modern healthcare - Smart healthcare - Al in medicine - Al-based
diagnosis - Medical imaging - Clinical decision support systems
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2.1 Introduction

Inrecent years, there have been significant advancements in the field of artificial intel-
ligence (AI). Machine learning (ML) is a subfield of Al that has achieved practical use
in real-world scenarios [1, 2]. Here, some significant advancements revolve around
neural networks (NN). The evolution of artificial neural networks (ANNs) may be
described as progressing in a sinusoidal manner. Following an initial fascination in the
late 1950s and early 1960s, there was a period of inactivity until 1986, when James
McClelland and David Rumelhart released their renowned book. This rekindled
enthusiasm for neural network research. Nevertheless, toward the end of the twen-
tieth century, the enthusiasm for neural networks waned again. A contributing factor
to the lack of progress was the insufficiency of computer hardware with the capacity
to process the extensive data required to implement neural network models [3] effec-
tively. Only over the past decade has there been a resurgence of interest in neural
networks, leading to the creation of effective applications that can tackle real-world
challenges. Several neural network topologies have garnered significant attention in
the field of DNNs. These techniques have been applied in several fields, including
medical picture classification, electromyography recognition, illness recognition and
segmentation. Nevertheless, our focus in this study is to present a comprehensive
analysis of the application of DNNs in the field of medical imaging.

DNNs have greatly enhanced the process of diagnosing, arranging therapy, and
providing care to patients by completely transforming several aspects of medical
image processing. Their ability to identify significant features and patterns from
medical images utilizing large-scale datasets has shown to be highly successful,
leading to more accurate and efficient analysis [4]. DNNs demonstrate exceptional
efficacy in tasks like as image classification and segmentation, which are crucial
in the field of medical imaging. DNNs have the ability to acquire the knowledge
of identifying and classifying various anatomical characteristics, abnormalities, or
lesions in medical images through extensive training on large datasets that have been
labeled and annotated. In addition, they have the ability to accurately partition organs
or other regions of interest, enabling precise measurements and quantitative anal-
ysis. DNNs have been extensively integrated into computer-aided diagnostic (CAD)
systems [5]. By using large amounts of labeled data, these networks may learn to
detect subtle patterns or abnormalities in medical pictures that may be challenging
for human observers to see. DNN-based computer-aided diagnosis (CAD) systems
provide radiologists and clinicians with more information and improve the accuracy
of diagnoses. Deep learning (DL) algorithms have proven to be highly successful in
the application of picture repair and enhancement tasks within the medical industry
[6]. For example, DNNs have the ability to generate high-quality images from defec-
tive or noisy data in computed tomography (CT) and magnetic resonance imaging
(MRI). This process reduces artifacts and improves the overall picture quality [7].

The key contributions of this chapter are as follows:
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e We have categorized the pattern recognition task, image modality and abdominal
region by using deep-learning-based medical imaging. The salient features of each
category are highlighted and elaborated to determine its benefits and limitations.

e We have highlighted the salient features of high-risk surgery and modern medical
equipment assisted by AI. We have also mentioned the benefits and challenges.

e A summary of the paradigm shift from traditional to smart healthcare, Al biased
medical systems and analysis

These advancements lead to faster scans, reduced radiation doses, and improved
visibility of anatomical structures. DNNs have been utilized to achieve precise and
resilient image registration, a process that includes matching numerous medical
pictures obtained from various modalities or time points. Through the acquisition of
spatial changes, DNNs are able to automatically align pictures and enable compar-
isons, such as monitoring the advancement of diseases or strategizing solutions.
Disease detection and prediction: DNNs have demonstrated potential in automating
the identification and prediction of diseases through the analysis of medical imagery.
Through the utilization of extensive datasets, these networks are capable of discerning
precise imaging biomarkers that are linked to various illnesses [8]. For instance, in the
field of cancer imaging, DNN’s have the capability to detect tumor properties, forecast
tumor malignancy, and evaluate the effectiveness of treatment by analyzing radio-
logical pictures. DNNs have the capability to produce synthetic medical pictures,
which may be used to enhance data augmentation, expand the training set, and create
authentic simulations for training and testing. The amalgamation of photos is espe-
cially advantageous in scenarios with a scarcity of labeled data or uncommon circum-
stances, whereby DNNs can provide a wide range of instances to augment the effi-
cacy of models. The DL models can utilize medical imaging along with other clinical
data, such as genetics or electronic health records, to facilitate the practice of tailored
care. DNNs can aid in treatment planning, prognostication, and therapy selection by
incorporating patient-specific data and analyzing image-derived characteristics and
patterns [8].

The rest of the chapter is organized as follows. Section 2.2 analyzed the recent
deep-learning applications using medical imaging like classification, segmentation,
registration and detection for different diseases. In addition, Al assisting high risk
surgery and Al and modern medical equipment, from traditional to smart healthcare
of paradigm shift, Al-bias in medical system are highlighted in Sect. 2.3. In Sect. 2.4,
Quality of Services for Al based Healthcare system is discussed. Applications of Al-
based Healthcare system are mentioned in Sect. 2.5. Lastly, the concluding remarks
and future directions, i.e., summary is sketched in Sect. 2.6 (Fig. 2.1).
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Fig. 2.1 Classifications and methods for disease detection using medical imaging

2.2 Classification of Diseases

The integration of machine learning (ML) and DL in the healthcare sector is a recent
development that has not yet been thoroughly explored [7]. The medical healthcare
business is a promising area of study, as current research trends indicate [9, 10]. In
the following sections, we will explore some of the most significant recent literature
on the methodologies, contributions, and applications of machine learning and DL in
several disciplines within this industry. Table 2.1 presents a comprehensive analysis
of different diseases that cover the use of DL and ML technologies in conjunction with
smart healthcare integration. The methods and contributions of each organization
depicted in this table have been thoroughly examined.

2.2.1 Mental Illness

People’s susceptibility to mental diseases is heightened by sudden shifts in living
standards, economic volatility, and excessive utilization of social media platforms.
Mental diseases result in elevated levels of stress, which in turn give rise to signifi-
cant neurological troubles in individuals, including depression, suicidal inclinations,
and various mental issues [11, 12]. Al has facilitated the prediction, monitoring, and
planning of mental health disorders in the population with its sophisticated capabil-
ities. Al has developed prediction models capable of analyzing health information,
brain imaging, and clinical notes to accurately detect mental diseases [13]. Al is
widely used to analyze social media sites like Twitter and Facebook to diagnose
depression in users. This is done by extracting crucial information from the tweets
and comments they publish. This chapter has covered the prominent characteristics
and restrictions of several Al-driven prediction models that are helpful in identifying
mental disease problems at an early stage [14, 15].
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2.2.2 Brain Tumor

Medical imaging, or radiology, is the branch of medicine where healthcare experts
produce pictures of different bodily areas for the goal of diagnosis or therapy. Medical
imaging treatments encompass non-invasive diagnostic tests that enable physicians to
identify injuries and diseases without causing intrusion or discomfort (TechTarget,
n.d.). Several tools and strategies are employed to automate the interpretation of
medical pictures obtained through different image-processing technologies [16]. The
brain is a very intricate and sizable organ within the human body. Detecting anoma-
lies from brain pictures, such as MRI, CT, PET scans, etc., is a significant field of
study in medical image analysis. Brain image analysis utilizes a range of image
processing techniques, including filtering, thresholding, geometry models, graph
models, region-based analysis, connected component analysis, machine learning
(ML) models, DL models, and hybrid models [17]. Brain tumors are a prevalent
kind of brain illness that has a significant mortality rate. Analyzing brain pictures
to identify tumors is challenging due to the diverse nature of their shape, location,
size, texture, and other features [18]. This paper provides a thorough examination of
brain tumor image analysis, covering the fundamental concepts of brain tumors, brain
imaging, tasks involved in brain image analysis, models used for brain image analysis,
features of brain tumor images, performance metrics for evaluating the models, and
available datasets for brain tumor and medical images. The text discusses several
issues associated with brain tumor analysis, as well as providing ideas for future
research approaches [19].

2.2.3 Diabetic Retinopathy Using Retinal Imaging

Diabetic retinopathy (DR) is a serious eye disorder and a leading cause of perma-
nent blindness globally. The condition is a result of injury to the blood vessels in
the retina. The symptoms of Diabetic Retinopathy (DR) include the presence of
black strings or spots that appear to float in the individual’s field of vision, the
occurrence of empty regions within their visual field, a decline in their ability to
perceive colors accurately, and the experience of hazy and inconsistent vision [20].
In severe instances, the individual experiences permanent visual impairment. Histori-
cally, the process of DR screening involved manually examining fundus photographs.
Nevertheless, this procedure, apart from being laborious, also requires meticulous-
ness during large-scale screening to prevent any diagnostic errors. These constraints
can be surmounted by an automated computer-aided diagnostic system (CAD) for
DR. A DR-CAD system refers to the automated analysis of fundus pictures for the
purpose of classifying diabetic retinopathy and identifying related retinal diseases.
A DR-CAD system can aid medical professionals in accurately interpreting medical
pictures [21]. Furthermore, it can also aid in the identification and highlighting of
prominent structures in the retina, which can then be utilized for more accurate



2.2 Classification of Diseases 23

examination of their severity. This chapter showcases a carefully chosen assortment
of machine learning and DL models that are used for detecting diabetic retinopathy.
The study encompasses models for binary and multistage diabetic retinopathy (DR)
categorization, as well as the identification and delineation of four primary lesions—
namely, microaneurysms, hemorrhages, cotton wool spots, and hard exudates. DR-
CAD systems enable the automated identification of DR in its first phase, facilitating
the management of the gradual deterioration of the retina [22].

2.2.4 CVD (Cardio Vascular Diseases) Risk

Cardiovascular diseases (CVD) are the primary cause of mortality worldwide and
are seeing a concerning upward trend, as reported by the American Heart Associa-
tion’s Heart Attack and Stroke Statistics 2021. This surge has been intensified due
to the ongoing coronavirus (COVID-19) epidemic, consequently augmenting the
strain on existing healthcare services. Smart and Connected Health (SCH) offers a
practical and effective answer for the current healthcare difficulties [23]. It has the
ability to transform the direction of healthcare to become more strategic, preventative,
and tailored, hence enhancing its effectiveness with additional services that provide
value. This research aims to categorize the most advanced SCH (Smart City Hub)
technologies through a detailed examination of existing literature and analysis. The
goal is to provide a comprehensive definition of SCH characteristics and highlight the
technological difficulties that need to be addressed for widespread adoption of SCH.
Additionally, we present an architectural model that encompasses the technology
element of the SCH solution, its context, and the key players involved [24]. It func-
tions as a benchmark for the adoption and implementation of SCH. We analyzed a
case study on COVID-19, which demonstrated how several nations have approached
the pandemic by utilizing diverse technologies in the field of public health, such as
big data, cloud computing, Internet of Things, Al, robots, blockchain, and mobile
apps. SCH has been effectively utilized at several phases, including illness diag-
nosis, viral identification, individual monitoring, tracking, managing, and resource
allocation, in the fight against the pandemic. Moreover, this analysis emphasizes
the obstacles to the acceptability of SCH (Smart Connected Health) and suggests
prospective research avenues to improve patient-centric healthcare [25, 26].

2.2.5 Breast Cancer Prediction

Since 2020, breast cancer has attained the highest global incidence rate among all
types of malignancies. Early detection and intervention by breast imaging greatly
contribute to improving the prognosis of breast cancer patients. Over the last ten years,
DL has made significant advancements in the analysis of breast cancer imaging.
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It has the potential to effectively comprehend the abundant information and intri-
cate context of several breast imaging techniques. Given the fast advancements in
DL technology and the growing severity of breast cancer, it is crucial to evaluate
previous achievements and pinpoint potential obstacles that need to be tackled [25].
This work presents a comprehensive analysis of breast cancer imaging research that
utilizes DL techniques. It encompasses studies conducted in the previous 10 years,
focusing on mammograms, ultrasound, MRI, and digital pathology pictures. This
text elaborates and discusses the main techniques and uses of DL in imaging-based
screening, diagnosis, treatment response prediction, and prognosis. Based on the
results of this survey, we provide a thorough analysis of the difficulties and possible
directions for further investigation in DL-based breast cancer imaging [23, 24].

2.2.6 Detection of Diabetic Foot Ulcer

Diabetes is a persistent medical disorder resulting from unregulated amounts of
glucose in the human body. Early detection of this condition can help prevent serious
consequences, such as the development of diabetic foot ulcers (DFUs). A Diabetic
Foot Ulcer (DFU) is a severe medical ailment that has the potential to result in the
surgical removal of a diabetic patient’s lower extremity. The diagnosis of DFU poses
significant challenges for medical professionals due to its complex nature, frequently
requiring many expensive and time-consuming clinical tests. In the era of exces-
sive data, the utilization of advanced techniques such as DL, machine learning, and
computer vision has offered several ways to aid physicians in reaching more accurate
and expedient diagnostic judgments [27]. Consequently, the scientific community has
recently shown increased interest in automatically identifying DFU. The attributes
of the wound and the way they are perceived visually in the context of computer
vision and DL, namely convolutional neural network (CNN) methods, have shown
promising options for diagnosing diabetic foot ulcers (DFU). These methodologies
possess the capacity to be really beneficial in contemporary medical procedures.
Hence, it was necessary to conduct a thorough and extensive examination of these
current methods [28]. The publication sought to furnish scholars with an elabo-
rate account of the present state of automated DFU detection tasks. Existing works
have shown that the utilization of both classic machine learning (ML) and sophisti-
cated DL approaches is essential in assisting doctors to produce quicker and more
dependable diagnostic conclusions. Image features in standard machine learning
(ML) methods play a crucial role in providing meaningful information regarding
diabetic foot ulcer (DFU) wounds, aiding in their correct diagnosis. Nevertheless,
sophisticated DL methods have demonstrated more potential compared to machine
learning (ML) approaches. The issue domain has been predominantly dominated by
CNN-based solutions put forth by several authors [29]. A diligent researcher will
effectively discern the main concept in the DFU identification task, and this article
will assist them in solidifying their future study objective [30].
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2.2.7 Al in Immunology

The human immune system has a high level of intricacy. Traditionally, compre-
hending it necessitated specific knowledge and experience acquired through years
of study. Recently, the implementation of technology like AIoMT (Artificial Intel-
ligence of Medical Things), genetic intelligence algorithms, and smart immunolog-
ical techniques has simplified this procedure. These technologies have the ability to
observe and identify relationships and patterns that are also perceivable by people,
as well as patterns that are not detectable by humans [31]. Moreover, these tech-
nologies have also facilitated our comprehension of the many cellular components
inside the immune system, including their compositions, significance, and influence
on human immune response, particularly in devastating conditions like cancer. This
paper examines the current Al approaches used in the field of immunology. This
study begins by elucidating the incorporation of Al in the healthcare sector and its
transformative impact on the medical field. Additionally, it provides an overview of
the present uses of Al in various healthcare sectors, as well as the primary obstacles
encountered when attempting to incorporate Al into healthcare. It also highlights the
recent advancements and contributions made by other researchers in this subject [32].
The primary objective of this study is to investigate the prevailing categorizations
of health ailments, immunology, and its principal subfields. The latter portion of the
paper provides a statistical analysis of the advancements made in Al within various
areas of immunology. It also includes a comprehensive examination of the machine
learning and DL techniques and algorithms that have been utilized in the field of
immunology. In addition, we have examined a compilation of machine learning and
DL datasets pertaining to several subdomains within the field of immunology. Ulti-
mately, the paper concludes by examining the potential avenues for future research
in the subject of Al in immunology and offering potential remedies for the identified
issues [33].

2.3 Al Tools for Automated Medical Systems

The use of IoMT (Internet of Medical Things) and its associated technologies
has successfully addressed several challenges in the fields of remote monitoring,
telemedicine, robotics, and sensors. Nevertheless, achieving widespread acceptance
presents difficulties stemming from considerations like as data privacy and secu-
rity, the handling of vast quantities of data, scalability, and the need for upgrades
[34, 35]. This organized systematic review will enhance the efficiency of healthcare
practitioners, policymakers/decision-makers, scientists, and researchers in assessing
the application of IoMT in healthcare, despite the already existing abundance of
knowledge and information sharing.
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2.3.1 Modern Medical Equipment

The abrupt outbreak of the Coronavirus illness (COVID-19) has placed the whole
healthcare system in a state of heightened vigilance. The Internet of Medical
Things (IoMT) has significantly alleviated the situation. Additionally, the COVID-
19 pandemic has spurred scientists to develop a new “Smart” healthcare system that
prioritizes early diagnosis, prevention of transmission, education, treatment, and
adaptation to the new normal. This review seeks to determine the role of Internet
of Medical Things (IoMT) applications in enhancing the healthcare system. It also
aims to assess the current state of research that demonstrates the effectiveness of
IoMT benefits for patients and the healthcare system. Additionally, it provides a brief
overview of the technologies that support IoMT and the challenges encountered in
developing a smart healthcare system [36].

Biomedical research progress produces a wide range of healthcare-related data,
such as medical records and information on the maintenance of medical devices.
The COVID-19 pandemic has a substantial impact on the worldwide death rate,
leading to a tremendous need for medical technologies. With the advancement of
information technology, the idea of intelligent healthcare has increasingly become
more important [37, 38]. Smart healthcare employs advanced information technolo-
gies, including the Internet of Things (IoT), big data, cloud computing, and Al, to
revolutionize the conventional medical system [39]. A predictive model is presented
to forecast medical equipment failure in order to intelligently manage healthcare
services and introduce the notion of smart healthcare. The Internet of Things (IoT)
has had a significant influence on the progress of the healthcare business. The advent
of Medicine 4.0 has led to a greater focus on the development of platforms, encom-
passing both hardware and software components. This concept has resulted in the
creation of Healthcare Internet of Things (H-IoT) solutions [40]. The fundamental
technologies that facilitate the functioning of a system include the communication
networks that facilitate the exchange of information between the sensing nodes and
the processors, as well as the processing algorithms that are responsible for creating
an output based on the data acquired by the sensors [41]. Currently, these facilitating
technologies are also backed by several emerging technologies. Al has revolution-
ized the H-IoT systems across several levels. The fog/edge concept involves putting
processing capacity in close proximity to the deployed network, therefore addressing
several issues in the process. Big data enables the management of vast quantities of
data. In addition, Software Defined Networks (SDNs) provide system flexibility,
while blockchains are being utilized for innovative purposes in H-IoT systems.

2.3.2 Al-Assisted High-Risk Surgery

Global surgery encompasses a fast-growing interdisciplinary subject that focuses on
improving and ensuring fair access to surgical care in worldwide healthcare systems.
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Global surgical programs typically prioritize enhancing capacity, advocating for,
educating, researching, and developing policies in low- and middle-income coun-
tries (LMICs) [42]. The current lack of sufficient surgical, anesthetic, and obstetric
treatment is responsible for causing 18 million fatalities annually that might have been
prevented. Consequently, there is an increasing fascination in the fast expansion of Al
which presents a unique chance to improve surgical services in LMICs. Al modal-
ities have been utilized to customize surgical education, automate administrative
procedures, and create practical and cost-efficient simulation training programs that
cater to individuals with specific requirements [43]. In addition, AI may contribute
to offering valuable information for governance, infrastructure development, and
the monitoring and prediction of stock take or logistics failure, which can enhance
the foundations of global surgery. Al-powered telemedicine platforms have enabled
healthcare providers to remotely assist in intricate procedures, potentially enhancing
surgical accessibility in LMICs. One of the challenges in integrating Al technology
is the misrepresentation of minority groups in the datasets, which might result in
discriminatory bias. Further research is needed to better understand human reluc-
tance, employment insecurity, automation bias, and the impact of confounding factors
in order to ensure fair and effective use of Al. By employing a concentrated and
empirically-supported strategy, Al has the potential to assist several LMICs in over-
coming administrative inefficiencies and enhancing the effectiveness of their surgical
systems [44].

2.3.3 Traditional to Smart Healthcare

An overview of the fundamental aspects, such as the evolution of healthcare systems
from traditional to smart and innovative healthcare, is important. Awareness of the
obstacles posed by several healthcare paradigms to sophisticated health solutions
helps to overcome them. Healthcare paradigms have experienced continual advance-
ments, intertwined with sophistication added to each [42]. Proper judgment or assess-
ment and service of modern healthcare composite solutions are indeed essential to
entail the most efficient strategies to tackle health issues. It is important to under-
stand the deluge of health problems people are likely to face in the coming years
and the healthcare needs that will cater to people’s health. Smart healthcare, driven
by the latest technological advancements, is also increasing in demand. Technolog-
ical revolution in recent years has changed the way healthcare has been traditionally
viewed. Traditional healthcare generally refers to the medical care conducted by
general practitioners, nurses, and others along similar lines [45]. Smart healthcare
mainly leverages the use of advanced technology to help simplify diagnosis and bring
services closer to patients. Even though there is an increase in smart and innovative
healthcare, some traditional setups are also being used. The only problem with these
traditional healthcare systems is that they are unable to cope with the rapid increase
in sickness brought on by novel bacteria and focus on trying to bring medicine to the
people instead of the people to medicine [46].
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2.4 Short Notes on QoS in Smart Healthcare

An essential demand in the field of medical healthcare is the effective calculation
of quality of service (QoS) during the processing of medical data, achieved via the
use of intelligent measurement methods. Emergency medical services frequently
need the transfer of vital data, which means that they have strict demands for
network quality of service (QoS). This study makes three different contributions [34].
The proposed system, called Adaptive QoS Computation system (AQCA), aims to
monitor performance indicators such as transmission power, duty cycle, and route
selection during medical data processing in healthcare applications. The technique is
designed to ensure fairness and efficiency in this monitoring process. Furthermore,
a QoS computing framework for medical applications is provided, including the
physical, medium access control (MAC), and network levels. Furthermore, a QoS
computation method is constructed using the suggested AQCA, together with the
consideration of quality of experience (QoE). In addition, the assessment of QoS
computation for medical healthcare applications is conducted using user terminal
(UT) devices with big screens ranging from 4 to 10 inches, such as LCD panels with
certain sizes and resolutions. These devices prioritize good visualization, long battery
life, and power optimization for ECG service in emergency situations [39]. These UT
gadgets are utilized to attain the utmost level of pleasure in terms of reduced power
consumption, prolonged battery life, and best route selection. The analysis focuses
on determining the extent to which each QoS parameter influences the processing
of medical data, taking into account the calculation of QoE perception. The experi-
mental findings suggest that Quality of Service (QoS) is determined at the physical,
MAC, and network levels using specific parameters such as transmission power (-15
dBm), latency (100 ms), jitter (40 ms), throughput (200 Bytes), duty cycle (10%), and
route selection (optimal). Therefore, it can be concluded that the suggested AQCA
is a more suitable option for QoS computation in medical healthcare applications
compared to the Baseline [47].

2.5 Artificial Intelligence for Healthcare: Applications

Artificial intelligence (AI) technologies have, for several years, slowly but assuredly
been penetrating several facets of our lives ranging from industries to entertainment.
Similarly, the healthcare sector is not exempt from this advancement. In recent years,
healthcare providers have started to adopt Al technologies to enhance the efficiency
and outcomes of the services being provided. By looking at the current trajectory
of Al deployment across healthcare systems, this transformation seems to continue
at a higher pace in the forthcoming years. Likewise, the adoption of artificial intel-
ligence in healthcare is being motivated by several key drivers, including improved
patient care, enhanced operational efficiencies, and the reduced burden on healthcare
professionals. Consequently, the subsequent sections seek to elucidate the discussion
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Al in Healthcare

Patient data and diagnostics

Fig. 2.2 Dominant variables for Al in healthcare

around the utilization of Al approaches in healthcare. The shown elements may be
observed in Fig. 2.2.

2.5.1 Health Services Management

Artificial Intelligence (Al) is rapidly reshaping the management of health services
within hospitals and healthcare facilities. Health services management encompasses
the planning, organizing, coordination, and evaluation of health services to ensure
efficient delivery of care. For many years, Al technologies have been implemented to
streamline the management of health services, particularly administrative processes
and tasks that consume substantial manual effort, and are error-prone due to human
involvement. As a result, a variety of Al-driven solutions have emerged to automate
administrative tasks, allowing healthcare professionals to devote their time to prior-
ities that directly concern patient welfare. The implementation of Al technologies
in health services management thus brings a dual benefit: operational improvement
and enhanced patient care. Al applications enable hospitals and healthcare services
to operate more efficiently due to the following reasons:

Clinicians can instantly access data as and when required.

Nurses can enhance patient safety while administering medication.

Patients can remain informed and actively participate in their healthcare by
communicating with their medical teams during hospital stays.

In addition, in healthcare, a large proportion of everyday tasks consists of routine
actions that do not require extensive experience or deep knowledge. Rather, these
tasks often involve simple choices based on easily identifiable grounds, such as
checking a set of data against known parameters and taking a standardized action if
they fall outside the accepted range. Other common routine tasks include scheduling
actions based on temporal relationships, transferring data from one place to another,
adding entries to records, and looking up data based on specific tags. Al technolo-
gies can automate many such tasks. For example, scheduling is a very widespread
everyday task that can be quite complicated when multiple parameters must be
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considered in each decision. Small changes in a complex schedule can result in
large cascades of necessary adjustments, along with added considerations related to
health and personal needs or interactions between patients and staff. Basic scheduling
often requires human experience and discretion because it involves predicting prior-
ities and the effects of unforeseen events. However, with readily available data such
as fixed rules, schedules, time logs, and records of past decisions and interactions,
these processes can be modeled mathematically.

2.5.2 Predictive Medicine

Predictive medicine is a recently blossomed field seeking to boost patients’ life
quality and longevity through tailored preemptive actions instead of conventional
therapies that move reactively post disease emergence. Artificial Intelligence (Al)
enhances patients’ results by predicting upcoming health issues and recommending
intervention suggestions. These models can be used to refine the classic preven-
tive healthcare strategy of periodic risk screenings into a more efficient On-Demand
screening strategy, prompting the analysis of selected individuals flagged as risky by
the model. Numerous successful predictive medicine implementations exist across
specialties, illustrating the wide applicability of Al predictive algorithms. A notable
achievement of predictive medicine is in Early Diagnosis systems, where models
predict future health events and suggest timely intervention. The key to predictive
medicine efficacy is the quantification of data-driven insights from retrospective data
in the form of numerical indices that capture relevant public health aspects. Early-
stage interventions are vital for systems regarding disease proliferation and irre-
versible damaging effects. Recently emerged healthcare systems focused on patients’
pivotal feature: proactivity in disease management. Ailing prevention is based on peri-
odic screening of the entire population, potentially overlooking many endangered
individuals. Instead, proactive healthcare strategies aim to boost currently applied
predictive screening techniques.

2.5.3 Clinical Decision-Making

Healthcare organizations are under constant pressure to enhance clinical decision-
making processes and improve patient outcomes. Artificial intelligence (Al) tech-
nologies can assist healthcare professionals in making better-informed decisions.
Clinical decision support systems based on Al algorithms can analyze patient data
and suggest the most effective treatment options. The suggestions made by the deci-
sion support systems are typically in the form of evidence-based recommendations
that take the form of a ranked list of possible interventions. Several studies explore
the emerging use of Al systems in enhancing decision-making capabilities in clinical
contexts where efficiency plays a critical role, such as disease diagnostic processes
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and epidemiological surveillance. Integrating AI within electronic health records
(EHRs) could augment clinicians’ capabilities, enabling them to spend less time
collecting and analyzing data and more time providing care. However, concerns exist
regarding the interpretability of Al recommendations. Resolution of these concerns
will require research into the balance of power within collaborative decision-making
between healthcare providers and Al systems. Responsibility for the correctness of
a decision made with the involvement of an Al system should lie with the healthcare
provider who interprets the system’s output, thus reinforcing their decision-making
role.

2.5.4 Patient Data and Diagnostics

Health worldwide has recently been significantly affected by Covid-19. Artificial
Intelligence (AI) could improve patient care quality and hospital performance,
making it highly attractive for healthcare recovery. An essential part of the clin-
ical environment is patient data, which healthcare organizations collect, maintain,
and utilize daily during clinical operations. Clinical records include every patient-
related activity in the hospital or healthcare organization, right from admission to
discharge. Healthcare facilities maintain diverse clinical records of patients such
as demographic attributes, medical history, progress notes, vitals, lab reports, treat-
ments, medications, medical images, and outcomes. These clinical records are bene-
ficial for creating patients’ profiles and performing diagnoses. With the rapid growth
of digitization in healthcare, patient data management has become a major chal-
lenge, but at the same time, a key technology determinant for better diagnostics and
improved healthcare outcomes.

The patient information files in hospitals or healthcare organizations are a rich
source of structured and unstructured data related to each patient’s clinical history.
Al-operated systems can utilize this data to prepare a comprehensive profile for each
patient and assist the physician in making better clinical decisions. Most hospitals
maintain health information systems (HIS), which are either standalone or integrated
systems to manage different clinical applications such as patient record management,
pharmacy, lab, radiology, billing, and so on. These applications capture, store, and
maintain a large amount of data related to patients, diseases, and clinical activities.
The advent of huge clinical data repositories has the potential to improve the accuracy
of disease diagnosis by revealing hidden patterns in the data, which is too complex for
human analysis. Data mining techniques provide the means to discover knowledge
from massive datasets and use such knowledge to automate decision-making. Predic-
tive analytics and machine learning models can enhance the diagnostic capability of
the healthcare system by discovering data-driven insights from historical records of
patients, diseases, and treatments. Unfortunately, most healthcare organizations still
rely on traditional data handling techniques and expert knowledge for disease diag-
nostics, leading to inaccurate diagnoses in many cases. Along with this, improper
data recording and a lack of interoperability between different health information
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systems restrict the application of data mining in healthcare. Creating a comprehen-
sive profile for each patient and mechanism implementation for protecting patient
data privacy are important concerns for healthcare organizations planning to adopt
artificial intelligence.

2.6 Summary

In medical imaging, there are several artificial intelligence (AI) models and tech-
niques available to perform the task of segmentation, which refers to demarcating
target structures, organs, and areas in medical images. We summarize the Al models
for this domain in this section. These models can be divided into two groups based on
the approaches used to develop them: classical computer vision and deep learning.
In addition, deep learning models can be further divided on the basis of their respec-
tive architectures. Convolutional neural networks (CNNs) are widely applied in the
tasks of object segmentation, detection, classification, and are considered the state-
of-the-art architecture. We further summarize the Al models as follows:— Clas-
sical image processing-based models—Deep learning-based models—CNN-based
models—Segmentation by integration of domain knowledge models—U-Net-based
models—Attention-based models Each of these Al models has distinct advantages
and disadvantages. Some are very powerful and can segment very specific struc-
tures like airway walls, lung nodules, lung lesions, and colon polyps, among others.
Depending on the Al model selected and the nature of the dataset being explored, one
or more of the following common processes need to be performed: pre-processing,
model training, and model evaluation. In terms of Al model selection, knowledge
about the dataset and the problem at hand is an essential factor that needs to be taken
into account while developing an Al model. The performance of any developed Al
model will essentially be a function of the dataset from which the model was trained.
High-quality labeled image datasets are key to developing accurate and precise Al
models. Therefore, it is almost impossible to develop domain-agnostic gold stan-
dard models. Domain knowledge should be involved while devising and training Al
models that are to be deployed in a clinical or research setting.
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Diagnosis and Prediction of Brain Tumor | oo
Using Artificial Intelligence

Abstract Brain tumor is a disorder which occurs due to unconditional and uncon-
trolled growth of the brain cells. Sometimes, the growth of these cells is malignant and
leads to brain cancer. Al with conventional and advanced algorithms analyze various
imaging data such as CT scans and MRI scans of the brain to identify the growth of
cancerous cells in brain at an early stage. Early diagnosis of brain tumor is helpful in
extending the accurate treatment and preventing the mortality to a great extent. In this
chapter, we have exhaustively analyzed and reviewed the various conventional and
advanced techniques which can detect brain tumor cells at an early stage. Also, the
performance of these algorithms is explored to identify the limitations and suggest
future solutions.

Keywords Brain tumor - Machine learning (ML) + Deep learning (DL) * Transfer
learning (TL) + Brain imaging + Generalizability

3.1 Introduction

Brain is a part of central nervous system which controls the movement and actions
of other body organs [1, 2]. Brain is an incredible organ of the body which sends
instructions to other organs for processing of the decision taken by them. Brain has a
very complex structure and require specialized skills to understand its disorders and
abnormalities [3, 4].

Artificial Intelligence (AI) has provided many applications in the field of tracking
[5, 6], tourism [7], education [8, 9] and many more [10, 11]. In the field of medical
image analysis, Al has provided many machine learning (ML) [12, 13] and deep
learning (DL) [14, 15] algorithms for early diagnosis and prognosis of critical
diseases. Al has provided many solutions to segment the tumorous cells from the
healthy cells in the brain imaging. Al-based algorithms diagnose the severity of brain
cancer and saves lives.

Mainly, brain imaging data acquire using either CT (Computer tomography) [16]
or MRI (Magnetic resonance imaging) [2, 17] scans to process them for determining
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brain abnormalities. Both of them are non-invasive techniques and quite popular
among neurologists to perform initial stage of test for predicting the existence of
brain tumor. Numerous algorithms have been proposed to process these imaging
data for determining the type, stage and location of tumor in brain [4, 18]. The
captured images are poor in contrast and resolution. Hence, proper preprocessing
steps must be taken to improve contrast and suppress noise for accurate prediction
[19]. After this, features are extracted, and feature selection is performed to determine
the crucial and sensitive features. This step is essential for determining the better
computational efficiency of the algorithm. Next, Al-based algorithms were exploited
to provide discriminative information for segmenting the brain imaging for tumor
cell classification.

Earlier, brain imaging data can be analyzed manually. It includes examining the
patient’s physical appearance, checking the medical and family history. However,
manual prediction of cancerous cells in brain tumor is highly dependent on the
expertise of the radiologists, medical practitioners and is time consuming too. In
modern medical imaging analysis, conventional and advanced techniques are quite
innovative, popular, fast, and accurate. These techniques utilized various features
such as intensity, texture, gradient, Gabor and deep features for predicting various
brain diseases [20-23]. Depending on the requirements, medical experts can utilize
either of the techniques for prediction.

In this chapter, various Al-based brain tumor prediction algorithms are discussed
and reviewed. These algorithms can predict the various categories of brain tumor and
analyze the severity so that proper treatment can be extended. The key contributions
of the chapter are as follows:

e We have analyzed the brain anatomy to determine the various abnormalities by
evaluating the various brain regions.

e The challenges of Al-based predictive algorithms for segmenting the brain
imaging to predict the category of tumor are highlighted to provide suitable
solutions to address each limitation.

e Al-based predictive algorithms for brain tumor segmentation are broadly reviewed
into two categories as conventional approaches and advanced approaches. The
potential work under each category is exhaustively examined to determine the
accuracy and efficacy of each method for brain tumor prediction.

e The various categories of Al-based predictive algorithms are compared and elab-
orated. The salient features of each category are highlighted to determine the
benefits and limitations for their applicability to clinical deployment.

The details about the brain structure and its abnormalities are as follows.

3.1.1 Brain Structure and Abnormalities

The brain is a complex organ of the central nervous system which controls all the
other body parts. It responds and takes decisions to instruct the various body parts
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to take necessary actions. The human brain has three main components namely,
cerebrum, cerebellum and brain stem. There are two matters, namely, gray matters
and white matters are present in brain which control its activity by forming neuronal
and cells of brain. Figure 3.1 illustrates the structure of the brain along with its main
components.

Brain anatomy describes cerebrum as its largest part and known for controlling the
major activities of the human that includes thinking, body parts movements, reactions,
and feelings. It is divided into two hemispheres known as right and left parts. They
contain four lobes namely, temporal, frontal, parietal, and occipital lobe. Each lobe
is characterized for a set of functions taken by brain. Frontal lobe located in forward
part of the brain and is responsible for reasoning, emotion and language. Behind
the frontal lobe, parietal lobe exists and is responsible for sensation movements
that include touch, pressure, taste, smell and pain. Occipital lobes are known for
processing visuals in the brain. This lobe is crucial in memory management, face
recognition, color identification and determining depth and distance. Temporal lobe
is separated from frontal lobe by later fissure. It is involved in processing sensory
and auditory information. It helps in recognizing voice, faces and creating memories
[24].

As per brain anatomy, the second largest part is cerebellum. Cerebellum is located
in head backside and interconnected with brain stems. Primarily, it is responsible
for walking, posture, hand movements and other body activities. Another important
component in brain anatomy is brain stem. It is present in the bottom part of the brain
connected with the spinal cord. Brain stem controls many crucial body functions such
as breathing, digestion, heart rate, cough, vomiting, sleep cycles, yawning and many
more. Apart from this, cerebrospinal fluid also flows within, and around the brain.
The glucose, white blood cells and body salts are formed in this fluid. It also prevents
brain tissues from severe injury [24].

Quality of life is impacted by the life-threatening diseases that occur in various
body parts. Brain is also a sensitive body organ which is prone to many abnormalities
that may lead to patients’ death if not diagnosed and treated properly. Brain tumor

Fig. 3.1 Anatomy of
healthy brain and its main
components
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is one of the serious life threating diseases that occur due to uncontrolled growth
and mutation of normal cells in the brain. These cells absorb body blood to grow at
a rapid rate. This increases the pressure, causes blockage and swelling in the brain
nerves and impacts the other brain parts. This situation further leads to other severe
neurological conditions such as dementia [25], stroke [26], and depression [27]. The
severity of these diseases increases with time and causes another disease known as
Alzheimer, in which patients lose memory, ability of learn, visual perception and
ability of recognize people [28-30]. Hence, early diagnosis of brain abnormalities
is crucial to provide effective treatment to the patient to prevent the condition from
worsening.

3.1.2 Description of Brain Tumor

Brain tumor is a condition which causes abnormal growth of cells in the human brain.
This unconditional growth of cells in brain causes abnormalities and may also lead
to death of the person without proper and timely treatment. Brain tumors are broadly
classified either as malignant or non-malignant. Malignant are cancerous tumors and
require proper treatment and therapies to prevent their growth. On the other hand,
non-malignant tumors are benign which are non-cancerous and do not impact the
other parts of the body if left untreated. Hence, tumor concentrated in brain is not
essentially cancerous. Its accurate diagnosis and prognosis are essential to determine
it spread and type.

To prevent criticality and spread to other organs, the early detection and prognosis
of brain tumor is paramount. Benign tumors do not grow quickly and impact the other
body parts. However, malignant tumors grow and spread quickly. Brain tumors are
also categorized either as primary tumors or secondary tumors. The abnormalities
of cells in the brain are known as primary tumors. On the other hand, metastatic
brain cancer is known as a secondary tumor which originated in other body parts
and then spread to the brains. Based on the growth, size, appearance and position,
brain tumors are also graded in four categories [31]. Grade I: It is the initial stage of
brain tumor which develops and grows slowly. Their timely diagnosis can cure them
and prevent causalities. Grade II: This category of tumor can impact the neighboring
tissues and can grow over time. The chances of recurrence of this stage of tumor are
high and require time-to-time evaluation. Grade III: This stage of tumor spread faster
to its surrounding tissues in comparison to grade II. Apart from surgical treatment,
these tumors need chemo or radiotherapy treatment to prevent their growth. Grade
IV: This category of tumors is most dangerous, faster growing and spreading quickly.
These tumors absorb body blood to grow and spread aggressively.
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3.1.3 Challenges in Brain Tumor Detection

Brain tumor detection in the brain imaging is challenging to the complex brain
structure, and the limitations of adopted methodology for acquiring the training
datasets. There are many reasons that needs to be addressed for effective and efficient
brain tumor prediction and detection [32, 33]. The details are as follows:

Location uncertainty: The distribution and mutation of glioma in the brain is from
gluey cells which are widely spread in the brain. Gluey cells are kind of support
to the nerves in the brain which can occur from low to high grade glioma. Due to
widespread distribution of gluey cells, the precise localization of tumorous cells
in brain is really challenging.

Morphological ambiguity: Brain tumors vary in shape, size and structure. The
morphological uncertainty occurs due to variations in shape and size in images.
The outer layer of brain known as edema, is also different in different sub regions
and locations. Hence, the variations in tumor shape and size make its detection
and segmentation from the neighboring tissues tedious.

Low contrast imaging: The captured brain images either from CT or MRI are
of poor quality with low resolution and contrast. To design efficient methods for
accurate segmentation of tumor from the surroundings, the imaging data needs
to contain high quality diverse information. The blurry images make the tumor
boundaries hard to be classified from the nearby regions.

Noise in images: Apart from the low quality, brain imaging data contains noise
which make the segmentation process hard and difficulty. It has been observed
that during image projection and acquisition process, images contain the artifacts,
and details about motion of external equipment along with the tumor’s cells. The
presence of such noise in brain imaging restricts accurate localization of the tumor.
Handling of multimodal information in datasets: MRI brain imaging acquire data
from multiple channels which varied in contrast and resolution [34]. This multi-
modal information causes scattering effect due to which boundaries of tumorous
cells in the brain imaging became blurry and hard to detect. To ensure the accu-
racy of tumor detection, the multi-modal information in the imaging data must be
handled appropriately.

Manual labeling: Labeling of tumorous cells in the brain is done manually by
the medical experts, trainers and practitioners. The manual annotation of brain
imaging can be varied from small region to larger region. The manual preparation
of ground truth for the localization of tumor in brain is time consuming and
required high end skills and expertise. Sometimes experts varied in their decision
about data labeling that will lead to annotation bias. The ground truth should be
free from annotation bias for accurate and efficient segmentation results.

Data imbalance: Public datasets for brain tumor detection are highly unbalanced
in terms of size of brain imaging [35, 36]. These datasets vary in number of
voxels in different tumor regions. These datasets have many cases for one region
while very few for the other regions. This imbalance in datasets impacts algorithm
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learning which do not segment the small tumor accurately in comparison to the
larger tumors.

Generalizability: Many Al-based segmentation algorithms have been proposed
for predicting the brain tumor in brain imaging [18, 35, 37]. These algorithms
are highly accurate and efficient in predicting various categories of tumor. But
the performance of these algorithms is evaluated on specific datasets. The perfor-
mance is not tested on variety of datasets to ensure the generalizability of the
model. In addition, model hyperparameters settings and other details are model
specific which restricts its applicability to real-time environments.

Paper to practice: A lot of research papers are published to predict brain cancer by
accurate segmentation of brain imaging. However, most of the work is theoretical
and real-time deployment is either not possible or time-consuming. The overall
deployment cost and accuracy in real-time environments is also one of the main
reasons that restricts the clinical deployment of these works. There is arequirement
of robust algorithms that will predict efficient results and meet the needs of medical
personnel when applied to real-time situations.

The rest of the chapter is organized as follows. Section 3.2 categories the Al-
based brain tumor predictive models into various categories. Section 3.3 classifies
the conventional approaches for brain tumor segmentation algorithms. The salient
features of each methodology under each category are investigated in detail. The
advanced approaches are classified and salient details for each category are high-
lighted in Sect. 3.4. Section 3.5 compares and evaluates the various Al-based brain
tumor detection methods. Lastly, the concluding remarks and future directions are
sketched in Sect. 3.6.

3.2 Al-Based Predictive Models for Brain Tumor
Prediction

Classification of tumorous cells from its neighboring tissues requires skilled and
expert physician with detailed knowledge of brain anatomy and its illnesses. Simi-
larly, MRI and CT images of brain also possess significant challenges for processing
image, eliminating noise, tumor recognition and explanation. To address these chal-
lenges, Al-based predictive models for brain tumor detection have proved highly
accurate and efficient. These are non-invasive which can automatically segment the
tumor so that proper treatment can be provided to the patient. Broadly, Al-based
brain tumor detection models are categorized either as conventional approaches or
advanced approaches. Figure 3.2 illustrates the categorization of Al-based brain
tumor prediction model. The various categories are represented in a tree-like structure
to provide the clarity of various methodologies under each classification.
Conventional approach consists of two categories of algorithms. These techniques
utilized either ML [4, 38, 39] or non-ML [16, 37, 40] algorithms for proposing
efficient tumor segmentation frameworks. ML algorithms exploited techniques such
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Fig. 3.2 Categorization of Al-based predictive models for brain tumor detection

as logistic regression (LR), multi-layer perceptron (MLP), support vector machine
(SVM), random forest (RF), and decision tree (DT). On the other hand, non-ML
techniques investigated fuzzy c-means [41], dynamic graph learning [37], active
contouring [40], extreme learning machine [23, 42] and many more [16, 43] for
developing robust model for brain cancer prediction. These approaches segmented
the tumor from MRI or CT scans efficiently to a great extent.

Advanced approaches contain either DL-based networks [2, 17, 34] or hybrid
algorithms [44-46] for segmenting brain tumor from brain imaging. Generally, DL-
based networks utilize CNN, UNet and its variants for generating efficient results. But
hybrid algorithms combined ML-techniques along with DL-techniques to integrate
the potential of both the methodologies. The techniques under advanced approaches
focus to improve the image processing capabilities along with enhanced computa-
tional power. The next section will elaborate on the conventional approaches for
brain tumor detection in detail.

3.3 Conventional Approaches for Brain Tumor Prediction

Brain scan interpretation and understanding is really crucial for identifying the
regions infected with cancerous cells. For this, conventional approaches have
provided robust algorithms for classifying the brain imaging, lesion and cancerous
cells from the MRI and CT scans. These algorithms follow step by step procedure that
involves image preprocessing, feature extraction, feature selection and classification.
Under this category, brain tumor detection algorithms are discussed either as ML-
based algorithms or non-ML based algorithms. Table 3.1 tabulates the salient features
of the representative work categorized in the domain of conventional approaches. The
details about the ML-based algorithms are as follows.
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3.3.1 Machine-Learning Based Algorithm for Brain Tumor
Prediction

In this section, we will discuss the ML algorithms exploited for brain tumor detec-
tion. In this direction, Zhang et al. [39] exploited self-supervised ML approach for
brain tumor segmentation. Synthetic data was generated for model pretraining and
developed scalable pipeline for layer decomposition to perform tumor segmenta-
tion tasks. Candidate sourcing was done for validating the potential candidate mask.
Mask verification for each sample was done to determine low reconstruction error
sample with high precision. Authors introduced two module computerized method as
highly accurate and fast method for tumor detection [4]. Initially, image enhancement
techniques were utilized for improving image contrast and reducing noise in MRI
imaging. After this, SVM algorithm classified the tumor as meningiomas and pitu-
itary tumors. The method handled MRI images limitations of low contrast, resolution,
coherence and noise efficiently to improve segmentation accuracy.

Tumor segmentation in brain imaging is challenging due to variations in tumor
shape, size and texture. Lesion localization in the brain is also tedious due to complex
brain structure. To address this, authors utilized RF based unsupervised clustering
approach along with fused feature vector to classify tumoral region as complete,
enhancing and non-enhancing [20]. Clustering algorithm utilizes five clusters for
segmenting the lesion region by calculating values such as min, max, range and
interval for these clusters. Multiple features were extracted, and fused feature vector
was generated which fed to the classification algorithm to recognize the labels. On the
other hand, authors proposed hybridized ML algorithms to classify the brain illnesses
as stroke or tumor [38]. Feature extraction methods such as neoteric directional based
quantized extrema pattern, clustering-based wavelet transforms and conventional
shape descriptors were used for extracting texture, intensity and shaper, respectively.
The segmented image was subjected to SVM based RF for classify the various classes
of tumor.

To summarize, ML-based methods for tumor classification can handle the brain
imaging limitations by using various image enhancement techniques. These tech-
niques enhance the classification accuracy by handling the low contrast, resolution
and noise in the images. ML-techniques are also efficient to classify the lesion areas
into healthy and tumors regions. It can segment the exact boundaries of the abnormal
regions so that necessary treatment can be extended before it impacts the neigh-
boring cells. The next section will detail the non-ML based algorithms for brain
tumor detection.
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3.3.2 Non-machine Learning Based Algorithms for Brain
Tumor Prediction

Brain diagnostic images require efficient methods to segment so that brain diseases
can be detected at an early stage. For this, authors introduced improved sparrow
search algorithms for brain disease classification [16]. Tent chaotic initialization and
adaptive crossover operation was used as local search strategy to enhance search
algorithm capabilities. Features were selected using binary operators and fed to
classification algorithms such as KNN, SVM, DT and RF. KNN achieved highest
accuracy of 85% in comparison to other classification algorithms. On the other hand,
Ma et al. [37] exploited multi-scale dynamic graph for capturing spatiotemporal
information from functional MRI features for detecting brain disorders. Node-level
features were learned using K graph isomorphism network and spatial attentional
learning was done suing Sero readout operation. Multiple dynamic spatiotemporal
features captured at various spatial levels and fused using multi-scale fusion. In
[41], authors recommended clustering algorithm with fuzzy c-ordered means for
accurate segmentation of tumor. Bat algorithms was exploited as clustering method
that calculated the initial centroid and within pixel distance for determining the
distance among tumor region and non-tumor region. Further, the enhanced capsule
networks analyzed and categorized the tumor into healthy or cancerous.

The different size and shape of tumors are challenging to detect due to similar
contour regions for tumors and the background. To address this, authors utilized active
contour models to find location, measure shape and size to detect tumor [40]. False
tumor areas from the suspected tumor areas were eliminated using area ratio scheme.
False larger sizes were identified using texture analysis. Segmentation area ratio
localized the tumor in brain accurately. However, Ramachandran et al. [43] proposed
mutual informative MapReduce and minimum quadrangle classification to address
the concerns related with big data in brain tumor classification. Mutual informative
MapReduce is used for eliminating the redundant features in brain tumor detection
dataset using mutual information at preprocessing step. Minimum quadrangle was
created using SVM with Lagrange multipliers to improve the classification accuracy.
Radial basis kernel function and MAXMIN values were compared to detect the tumor
at an early stage.

Brain tumor localizes near to brain surface are hard to detect using standard
detection techniques. To improve the detection accuracy for such kind of tumors,
Sharif et al. [23] proposed extreme learning machine for tumor classification. For
accurate segmentation results, triangular fuzzy median filtering and fuzzy based
unsupervised clustering was applied as an image enhancement technique. Median
values with different padding and window size were selected for handling noise in
the images. Similar texture feature obtained from Gabor filter response was used for
discriminating between pathological and normal brain images. On the other hand,
authors exploited regularized extreme learning along with hybrid feature for classi-
fying brain tumor [42]. Images were preprocessed using min—max normalization to
enhance quality by improving contract of brain edges and regions. Hybrid features
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include normalized GIST with PCA (Principal component analysis) normalizing
GIST with L2-norm. GIST feature represented features using spatial envelope by
computing spatial structure of the image. Regularized extreme learning not only
prevents algorithms overfitting but also improves training speed.

To summarize, accurate identification of tumors is difficult due to variations in
their size, shape, location and textures. To improve the survival rate, early detection of
tumor is essential. Conventional techniques have the potential to predict the cancerous
cells from the neighboring regions and help medical practitioners to provide timely
diagnosis so that appropriate treatment can be given to the patients at initial stage.

3.4 Advanced Approaches for Brain Tumor Detection

In this section, advanced approaches for brain tumor detection are elaborated in two
categories namely, DL-based algorithms [14, 15, 18, 21] and hybrid algorithms [3,
19, 44, 47]. DL-models can process large amounts of imaging data efficiently to
improve model accuracy. On the other hand, hybrid models are powerful with high
levels of effectiveness and superior efficiency in terms of classification accuracy and
computation complexity. The details about the DL-based algorithms for brain tumor
segmentation are follow in turn.

3.4.1 Deep Learning-Based Algorithms for Brain Tumor
Prediction

Table 3.2 tabulates the salient features of the representative work proposed in the
category of DL-based algorithms for brain tumor detection. The exploited datasets,
methodology and image modality are also extracted to provide valuable insights
about the recent advances in the field.

DL-model requires a large amount of training data for producing effective results.
However, high quality medical data is limitedly available for processing due to
various environmental issues. To address this issue, authors generated realistic
synthetic MRI data using generative adversarial networks (GANs) [48]. UNet and
Swin transformers are utilized for segmenting the tumor from brain imaging. Four 2D
GANS and 2D diffusion model evaluated comprehensively for brain tumor images
and annotations. Models were trained using both real and synthetic images which
improved the model’s classification and segmentation accuracy. Generative model
results were qualitatively evaluated by neuroradiologist for proving the model’s
efficiency.

Typically, DL networks are computationally expensive in comparison to UNet
models. UNet models can be easily modified to provide efficient segmentation results.
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In this direction, authors designed the UNet into 4-stage deep encoder-decoder struc-
ture with cross-attention model and separable convolutional layers [18]. Separable
convolutional layers were low cost and improve the computational efficiency of the
model. Dice coefficient loss function was used to compute the difference between
the predicted values and the ground truth values to improve model’s performance.
Zaitoon and Syed [51] employed RUNet2+ (Residual UNet 2+) for precise detection
of brain tumor. Survivability rate was also predicted by incorporating the Cox multi-
variate model on the extracted features. Convolutional normalized mean filter was
used in preprocessing step for noise removal while preserving the edges. DBT-CNN
was adopted for tumor multi-class classification including high-grade glioma and
low-grade glioma. But authors developed hybrid UNet as ResUNet+ based on the
residual block [35]. HighHat and lowHat transformations were applied at prepro-
cessing to reduce the impact of illumination variations in MRI images. Model was
trained with random weights without pretrained weights for better segmentation
accuracy. On the other hand, authors constructed segmentation network for multi-
modal MRI images based on 3D UNet [49]. Z-Score normalization is utilized to cater
intensity variations in images. Feature visibility was enhanced by rescaling voxel
intensities to ease important feature identification. Histogram contrast matching for
aligning intensity distributions between images with different contrast.

Early tumor detection with accuracy is crucial to provide sufficient treatment for
improving the chances of life survival. For this, authors utilized multiple pretrained
models along with different variants of EfficientNet [22]. Images were resized
and cropped to highlight the salient features. FastNIMeans denoising colored filter
removed the noise from images and augmentation technique to prevent model over-
fitting. Among all the networks EfficientNetB7 was highly accurate as additional
layers and fine tuning was done to improve the overall accuracy. Similarly, authors
fine-tuned the base model of EfficientNet-BO for detecting brain tumor efficiently
[50]. Three step preprocessing strategy was followed to improve the brain images
for segmentation process. Adam optimizer was utilized for optimizing the network
hyperparameters such as learning rate, and loss function to improve segmentation
accuracy. Similarly, authors compared segmentation accuracy for various DL-models
such as UNet, PSPNet, DeepLabV3+ and ResNet50 [15]. Out of these, 3D UNet
obtained the highest segmentation accuracy. Transfer learning of pre-trained weights
was used for fine tuning of model to improve computational efficiency of the model.
Also, Lee et al. [2] demonstrated the segmentation performance for brain tumor
detection using four DL-models. Image enhancement such as noise removal and
generalization strategies were adopted to improve early detection accuracy. Model
performed the multiclass classification of brain tumor into glioma, meningioma,
pituitary and healthy tissues.

In another line of work, authors utilized hyperspectral images for diagnosis
of tumor by utilizing deep margin cosine autoencoder [53]. Basic architecture of
MedHSI was used for feature extraction and soft-max classifier for predicting the
labels from the output layer. Extra cosine margin was used in soft-max classi-
fier to maximize angular space for extracting compact and separable features for
obtaining great results. Behera et al. [21] presented an ensembled approach based
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on transfer learning by utilizing linear iterative superclustering-based superpixel
with CNN. Superclustering segmented the image into clusters based on the simi-
larity measures determined by perceptual feature space. In [17], authors devel-
oped corrective diffusion model for enhancing segmentation performance. Vector
quantized variational autoencoder compressed images for improving model stability
by reducing dimensionality of training data. Multi-fusion attentional mechanism
enhanced segmentation model reliability and flexibility.

Segmenting the brain tumor without ignoring the brain appearance information is
needed for accurate tumor segmentation. For this, authors proposed multimodal DL
framework with variational autoencoder to present brain images based on latent distri-
bution [34]. In the decoder layer, feature alignment module was presented to resolve
the feature compatibility issues between the multimodal brain tumor and monomodal
normal brain images. Fusion module based on global correlation block concatenated
the features from same channel to generate fused feature. On the other hand, authors
compared YOLOVS and YOLOV7, object detection algorithms for classification of
brain tumor as meningiomas, gliomas and pituitary [14]. Mask alignment scheme
for standardizing the dataset images for better training outcome. Techniques were
applied to identify the tumor boundaries for accurate segmentation of the tumor.

To summarize, timely tumor brain tumor detection is challenging and necessary
to increase the survival rate. The evolution in DL-based algorithms have improve the
segmentation performance and shown promising results in tumor detection. These
algorithms are capable of multi-class classification of brain abnormalities for better
analysis and appropriate treatment. Pre-processing steps in brain tumor imaging not
only enhances the image quality but also improves the training computational power
of the algorithm.

3.4.2 Hybrid Algorithms for Brain Tumor Prediction

Brain tumors are becoming the major cause of death globally because of inaccurate
and late diagnosis. The reason could be the time taken for model training by large
datasets which delayed the outcome. Due to this, there is a requirement of hybrid
models which not only process the training data quickly but also provide effective
and efficient results. Table 3.3 tabulates the salient features of representative work
utilizing hybrid approach in their algorithms. The dataset description, performance
metrics and exploited methodology are also elaborated to understand the innovation
and advancement in the field.

Authors introduced hybrid model by integrating CapsNet model with VGGNet
model for automatic and accurate segmentation of brain tumor [44]. The problems of
model training with large datasets were addressed by automatic extraction of radiomic
features for brain cancer classification. Transfer learning models were optimized for
extracting complex features for brain tumor classification into four classes as normal,
pituitary, meningioma and glioma. Aggarwal et al. [54] employed hybrid model in
which features were extracted using CNN and multiple ML models for brain tumor
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classification. CNN model utilized pooling layer to reduce the image dimensionality
by preserving the significant data for faster computations. Automatic optimization
of the model prevented overfitting by maintaining the low learning rates. But authors
recommended to preprocess the images using adaptive contrast enhancement, median
filter and fuzzy c-means based segmentation for eliminating the noise from images
and improve their quality [3]. Multiple features were extracted using Gray-level co-
occurrence matrix and abnormal tissues were classified from the healthy tissues using
ensembled DL SVM. Hossain et al. [19] proposed multi-class classification of tumor
using ensemble models with transfer learning approach. Several DL models were
investigated with three best performing transfer learning models for detecting brain
tumors. In addition, model explainability model local interpretable model-agnostic
explanations (LIME) was used to generate interpretable model for result validity.

Automatic segmentation of brain tumors is significantly effective to save signif-
icant time and cost. Pretrained hybrid DL-models can efficiently classify tumors
from brain imaging. In this direction, authors proposed ResNext101_32 x 8d and
VGG19 models for brain tumor classification into two classes [45]. Single image
super-resolution method was applied to enhance image resolution so that crucial
features can be captured easily. Data augmentation techniques were used by both
the models to prevent overfitting. ResNext101_32 x 8d utilized rotation, horizontal
and vertical flip, whereas VGG19 exploited rotation, width and height shift for data
augmentation. However, authors integrated UNet, CNN and modified self-organizing
feature map (mSOFM) for precise segmentation of tumor [56]. UNet was used for
image segmentation and mSOFM for capturing complex data patterns. mSOFM also
predicted patient survivability by analyzing the segmented images. UNet encoder
section captured contextual information and decoder section recovered the spatial
information to generate segmentation mask. Shah et al. [55] proposed voting system
based semi supervised Bayesian ensemble attention mechanism for multiclass brain
tumor classification. Voting technique used for identifying the final abnormality.
Squeeze and excitation attention network integrated into CNN for selecting efficient
features by scaling each feature with a weight parameter.

To improve medical aid for brain tumor patients, hybrid technique proposed by
handling the issues of class imbalance and time consumption [47]. Image resizing
and augmentation techniques were applied during preprocessing to improve image
quality and prevent model overfitting. Pre-trained deep neural network such as Incep-
tionV3, DenseNet121 and ResNet50 were used for feature extraction and SVM for
classifying the MRI images either as infected or healthy. On the other hand, authors
utilized 3D-UNet and 2D-UNet DL models for feature extraction [58]. For tumor
classification, ML models KNN and gradient boosting classifier were combined
using soft voting. Vinu et al. ensembled CNN, RNN, KNN and RF for achieving
high segmentation accuracy [57]. High end intricate tumor features such as shape,
depth and model were extracted for knowing the tumor in-depth. Resizing and rota-
tion were applied during preprocessing for enhancing dataset capabilities for robust
feature extraction. In [59], authors developed 2D CNN and convolutional auto-
encoder network for multi-class classification of brain tumor. Model consisted of
two parts namely, convolutional auto encoder for feature extraction and CNN along
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with six ML algorithm for tumor classification. Encoder network removed the critical
feature and output layer provided the classification outcome. Similarly, Renugadevi
et al. [46] investigated encoder-decoder UNet++ architecture along with ML tech-
niques for robust feature extraction and tumor classification. Regression techniques
such as SGD, linear, ridge and extreme gradient boosting were also utilized predicting
the lifetime of high glioma patients. Synthetic minority oversampling and adaptive
synthetic approaches increased the class size for handling dataset imbalance. PCA
and tree-based feature selection methodology for determining the robust features.

To summarize, hybrid models integrated either multiple DL. models or DL models
with multiple ML models for feature extraction and tumor classification. Auto-
matic segmentation of brain tumor for investigating the level and stage of tumor
for extending proper treatment was done effectively by hybrid models. Various
preprocessing techniques were utilized for handling the limitation associated with the
quality, resolution and contrast of the brain imaging. Also, techniques were adopted
for catering data set imbalance using data augmentation methodology for preventing
model overfitting. These models are effective and efficient in automatic brain tumor
segmentation for providing disease management at an early stage.

3.5 Comparison of Various Artificial Intelligence-Based
Brain Tumor Prediction Algorithms

In this section, we have reviewed Al-based tumor prediction algorithms as conven-
tional approaches and advanced approaches. The salient features of each of the tech-
niques are tabulated in Table 3.4. The various parameters are discussed and reviewed,
and performance is analyzed to provide the future perspective for each technique for
brain tumor classification and segmentation.

It has been observed that methods under each category have their advantages
and limitations. These approaches are automatic, effective and accurate to detect
brain tumors at an early stage. In addition, these approaches have capabilities for
multi-class classification to predict the severity of cancerous cells in the brain.
Preprocessing techniques are also investigated to cater the limitations of MRI brain
imaging such as low contrast, resolution, and noise. Preprocessing techniques not
only improve the image quality but also ease the tumor segmentation by preserving
its edges and highlighting its boundaries. Further, data augmentation techniques are
also helpful in preventing the model from overfitting and improving its accuracy.

Most of these techniques are published by various researchers. These methods
are highly accurate, and efficient in terms of various performance metrics proved
by these researchers. However, very little efforts are undertaken to evaluate these
methods and determine their validity for real-time deployments. The efficacy of these
methods should be determined for automatic and early detection of brain tumors for
clinical deployments.
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Table 3.4 Similarities/differences of various brain tumor prediction techniques

Attributes Segmentation/classification techniques
Approach Conventional approach Advanced approach
Methodology Non-ML ML DL Hybrid
Feature extraction | v/ v v v
Feature selection Limited Limited High High
Preprocessing X 4 4 v
techniques
Dataset Imaging Imaging Imaging Imaging
Model complexity |Less Less Moderate High
Automation X X v v
Computational Less Less Moderate High
resources
Generalizability X X Limited Limited
Interpretability X X v v
Performance Moderately Moderately Highly accurate Highly accurate
accurate accurate

3.6 Summary

In this chapter, we have exhaustively reviewed the various Al-based brain tumor
prediction algorithms. For better understanding of the advancements in the field, we
have categorized the Al-based brain tumor segmentation algorithms as conventional
techniques and advanced learning techniques. It has been evident that multimodal
MRI and CT scans are quite popular among medical practitioners to detect the brain
tumor. However, the images collected by these methodologies are quite poor in
contrast and resolution. These images are containing noise either due to artefacts
used in collection or the varying illumination levels. In order to address imaging
limitations, preprocessing techniques such as image enhancements are applied by
various researchers. Also, to mitigate the impact of model overfitting, data augmen-
tation techniques are utilized during preprocessing steps only. These initial steps of
data preparation are really crucial to ensure the high accuracy and efficiency of the
models.

Al-based brain tumor detection techniques extract various features from the
brain imaging to perform the tumor segmentation. Some of the techniques adopt
feature selection methodology by enhancing the tumor boundaries and edges not
only to improve the classification accuracy but also to maintain the computational
complexity. Among all the discussed approaches, hybrid algorithms are highly supe-
rior in terms of effectiveness and efficiency for tumor segmentation. These algo-
rithms consider ensembled approaches in which multiple DL-models are utilized for
feature extraction and multiple ML-models are exploited for tumor classification.
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The algorithms not only perform multi-class classification but also can predict the
survivability rate in patients diagnosed with brain tumor.

In future, good quality multi-modal brain imaging data is required for producing

accurate segmentation results. The complexity concerns while using auto-encoder
transformer networks for robust feature extraction need to be addressed. The clinical
deployment of these methods along with accurate survivability rate prediction is
accessed for better usability and generalizability of these methods.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Karim S, Tong G, Yu Y, Laghari AA, Khan AA, Ibrar M, Mehmood F (2024) Developments

in brain tumor segmentation using MRI: deep learning insights and future perspectives. IEEE
Access

Lee J-h, Chae J-W, Cho H-C (2024) Improved classification of different brain tumors in MRI
scans using patterned-GridMask. IEEE Access

Anantharajan S, Gunasekaran S, Subramanian T, Venkatesh R (2024) MRI brain tumor
detection using deep learning and machine learning approaches. Measurement: Sensors
31:101026

Asiri AA, Soomro TA, Shah AA, Pogrebna G, Irfan M, Alqahtani S (2024) Optimized brain
tumor detection: a dual-module approach for mri image enhancement and tumor classification.
IEEE Access 12:42868-42887

Kumar A (2023) Visual object tracking using deep learning. CRC Press

Kumar A, Walia GS, Sharma K (2020) Recent trends in multicue based visual tracking: a
review. Expert Syst Appl 162:113711

Kumar A, Vohra R (2023) Impact of deep learning models for technology sustainability in
tourism using big data analytics. Deep learning technologies for the sustainable development
goals: Issues and solutions in the post-COVID era. Springer, pp 83-96

Kumar A, Nayyar A, Sachan RK, Jain R (2023) Al-assisted special education for students with
exceptional needs. IGI Global

Kumar A, Singh D, Vohra R (2023) Improving learning abilities using Al-Based education
systems. In: Al-Assisted special education for students with exceptional needs. IGI Global. pp
137-155

Kumar A, Mamgai R, Jain R (2023) Application of IoT-Enabled CNN for natural language
processing. In: IoT-enabled convolutional neural networks: techniques and applications. River
Publishers, pp 149-177

Kumar A, Sarren P (2023) Raja, deep learning-based multi-object tracking. In: Object tracking
technology: trends, challenges and applications. Springer, pp 183—-199

Kumar A, Ahluwalia R (2021) Breast cancer detection using machine learning and its
classification. In: Cancer prediction for industrial IoT 4.0. Chapman and Hall/CRC, pp 65-78
Kumar A, Jain R (2021) Behavioral prediction of cancer using machine learning. In: Cancer
prediction for industrial IoT 4.0. Chapman and Hall/CRC, pp 91-105

Almufareh MF, Imran M, Khan A, Humayun M, Asim M (2024) Automated brain tumor
segmentation and classification in MRI using YOLO-based deep learning. IEEE Access
Chauhan AS, Singh J, Kumar S, Saxena N, Gupta M, Verma P (2024) Design and assessment
of improved convolutional neural network based brain tumor segmentation and classification
system. J Integr Sci Technol 12(4):793-793

Yu W, Kang H, Sun G, Liang S, Li J (2022) Bio-inspired feature selection in brain disease
detection via an improved sparrow search algorithm. IEEE Trans Instrum Meas 72:1-15

Li W, Huang W, Zheng Y (2024) CorrDiff: corrective diffusion model for accurate MRI brain
tumor segmentation. IEEE J Biomed Health Inf



References 67

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Anaya-Isaza A, Mera-Jiménez L, Fernandez-Quilez A (2023) CrossTransUnet: a new computa-
tionally inexpensive tumor segmentation model for brain MRI. IEEE Access 11:27066-27085
Hossain S, Chakrabarty A, Gadekallu TR, Alazab M, Piran MJ (2023) Vision transformers,
ensemble model, and transfer learning leveraging explainable Al for brain tumor detection and
classification. IEEE J Biomed Health Inf

Amin J, Sharif M, Raza M, Yasmin M (2018) Detection of brain tumor based on features fusion
and machine learning. J Amb Intell Humanized Comput, pp 1-17

Behera TK, Khan MA, Bakshi S (2022) Brain MR image classification using superpixel-based
deep transfer learning. IEEE J Biomed Health Inf

Khushi HMT, Masood T, Jaffar A, Rashid M, Akram S (2023) Improved multiclass brain tumor
detection via customized pretrained EfficientNetB7 Model. IEEE Access

Sharif M, Amin J, Raza M, Anjum MA, Afzal H, Shad SA (2020) Brain tumor detection based
on extreme learning. Neural Comput Appl 32:15975-15987

Noback CR, Ruggiero DA, Strominger NL, Demarest RJ (2005) The human nervous system:
structure and function. Springer Science & Business Media

Kumar A, Singh D (Eds.) (2025) Revolutionizing Medical Systems Using Artificial Intelli-
gence: A Breakthrough in Healthcare. Elsevier

Bhalla S, Kumar A, Kushwaha R (2023) Comparative analysis on brain stroke prediction using
machine learning. In: 2023 14th International conference on computing communication and
networking technologies (ICCCNT). IEEE

Sachan RK, Kumar A, Shukla D, Sharma A, Kumar S (2023) Diagnosis of mental health
from social networking posts: an improved ml-based approach. In: International conference on
emergent converging technologies and biomedical systems. Springer

Singh D, Singh D, Manju, Gupta U (2023) Smart healthcare: a breakthrough in the growth of
technologies. In: Artificial intelligence-based healthcare systems. Springer, pp 73-85
Tripathy SK, Singh D, Jaiswal A (2023) Multi-Layer feature fusion-based deep multi-layer
depth separable convolution neural network for Alzheimer’s disease detection. In: 2023
International conference on IoT, communication and automation technology (ICICAT). IEEE
Tripathy SK, Singh D, Srivastava S Srivastava R (2023) Multiscale low-level feature fused
multilayer convolution neural network for Alzheimer’s disease detection

Solanki S, Singh UP, Chouhan SS, Jain S (2023) Brain tumor detection and classification using
intelligence techniques: an overview. IEEE Access

Liu Z, Tong L, Chen L, Jiang Z, Zhou F, Zhang Q, Zhou H (2023) Deep learning based brain
tumor segmentation: a survey. Complex & intelligent systems 9(1):1001-1026

Soomro TA, Zheng L, Afifi AJ, Ali A, Soomro S, Yin M, Gao J (2022) Image segmentation for
MR brain tumor detection using machine learning: a review. IEEE Rev Biomed Eng 16:70-90
Liu H, Ni Z, Nie D, Shen D, Wang J, Tang Z (2024) Multimodal brain tumor segmentation
boosted by monomodal normal brain images. IEEE Trans Image Process

Metlek S, Cetiner H (2023) ResUNet+: A new convolutional and attention block-based
approach for brain tumor segmentation. IEEE Access

Rajendran S, Rajagopal SK, Thanarajan T, Shankar K, Kumar S, Alsubaie N, Mostafa SM
(2023) Automated segmentation of brain tumor MRI images using deep learning. IEEE Access
Ma Y, Wang Q, Cao L, Li L, Zhang C, Qiao L, Liu M (2023) Multi-Scale dynamic graph
learning for brain disorder detection with functional MRI. IEEE Trans Neural Syst Rehabil
Eng

Deepa B, Murugappan M, Sumithra M, Mahmud M, Al-Rakhami MS (2021) Pattern descriptors
orientation and map firefly algorithm based brain pathology classification using hybridized
machine learning algorithm. IEEE Access 10:3848-3863

Zhang X, Xie W, Huang C, Zhang Y, Chen X, Tian Q, Wang Y (2023) Self-supervised tumor
segmentation with sim2real adaptation. IEEE J Biomed Health Inf

XuM, Guo L, Wu H-C (2024) Novel robust automatic brain-tumor detection and segmentation
using magnetic resonance imaging. IEEE Sens J

Alhassan AM, Zainon WMNW (2020) BAT algorithm with fuzzy C-ordered means (BAFCOM)
clustering segmentation and enhanced capsule networks (ECN) for brain cancer MRI images
classification. IEEE Access 8:201741-201751



68

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

3 Diagnosis and Prediction of Brain Tumor Using Artificial Intelligence

Gumaei A, Hassan MM, Hassan MR, Alelaiwi A, Fortino G (2019) A hybrid feature extraction
method with regularized extreme learning machine for brain tumor classification. IEEE Access
7:36266-36273

Ramachandran M, Patan R, Kumar A, Hosseini S, Gandomi AH (2021) Mutual informative
MapReduce and minimum quadrangle classification for brain tumor big data. IEEE Trans Eng
Manage 70(8):2644-2655

Jabbar A, Naseem S, Mahmood T, Saba T, Alamri FS, Rehman A (2023) Brain tumor detection
and multi-grade segmentation through hybrid caps-VGGNet model. IEEE Access

Mohsen S, Ali AM, El-Rabaie E-SM, ElKaseer A, Scholz SG, Hassan AMA (2023) Brain
tumor classification using hybrid single image super-resolution technique with ResNext101_
32x8d and VGG19 Pre-Trained Models. IEEE Access

Renugadevi M, Narasimhan K, Ravikumar C, Anbazhagan R, Pau G, Ramkumar K, Prabu S,
et al (2023) Machine learning empowered brain tumor segmentation and grading model for
lifetime prediction. IEEE Access

Lamba K, Rani S, Anand M, Maguluri LP (2024) An integrated deep learning and super-
vised learning approach for early detection of brain tumor using magnetic resonance imaging.
Healthcare Analytics, p 100336

Usman Akbar M, Larsson M, Blystad I, Eklund A (2024) Brain tumor segmentation using
synthetic MR images—a comparison of GANs and diffusion models. Scientific Data 11(1):259
Ren T, Honey E, Rebala H, Sharma A, Chopra A, Kurt M (2024) An optimization framework
for processing and transfer learning for the brain tumor segmentation. arXiv preprint arXiv:
2402.07008

Shah HA, Saeed F, Yun S, Park J-H, Paul A, Kang J-M (2022) A robust approach for brain tumor
detection in magnetic resonance images using finetuned efficientnet. IEEE Access 10:65426—
65438

Zaitoon R, Syed H (2023) RU-Net2+: a deep learning algorithm for accurate brain tumor
segmentation and survival rate prediction. IEEE Access

Aggarwal M, Tiwari AK, Sarathi MP, Bijalwan A (2023) An early detection and segmentation
of brain tumor using deep neural network. BMC Med Inform Decis Mak 23(1):78

Wang M, Xu Y, Wang Z, Xing C (2023) Deep margin cosine autoencoder based medical
hyperspectral image classification for tumor diagnosis. IEEE Trans Instrum Measur

Agarwal R, Pande SD, Mohanty SN, Panda SK (2023) A novel hybrid system of detecting
brain tumors in MRI. IEEE Access 11:118372-118385

Shah SMAH, Ullah A, Igbal J, Bourouis S, Ullah SS, Hussain S, Mustafa G et al (2023)
Classifying and localizing abnormalities in brain MRI using channel attention based semi-
Bayesian ensemble voting mechanism and convolutional auto-encoder. IEEE Access

Vinod D, Prakash SS, AlSalmanH, Muaad AY, Heyat MBB (2024) Ensemble technique for
brain tumour patient survival prediction. IEEE Access

Vinu M, Pasupathy V, Senthilkumar K, Balasubramanian K, Dhanaselvam J, Kumar K (2024)
Accurate brain tumour segmentation in MRIimages using enhanced CNN and machine learning
methods. Int J Intell Syst Appl Eng 12(115):547-556

Mallampati B, Ishaq A, Rustam F, Kuthala V, Alfarhood S, Ashraf I (2023) Brain tumor
detection using 3D-UNet segmentation features and hybrid machine learning model. IEEE
Access 11:135020-135034

Saeedi S, Rezayi S, Keshavarz H, Niakan Kalhori SR (2023) MRI-based brain tumor detection
using convolutional deep learning methods and chosen machine learning techniques. BMC
Med Inf Decis Making 23(1):16


http://arxiv.org/abs/2402.07008
http://arxiv.org/abs/2402.07008

Chapter 4
Diagnosis and Prediction of Neurological | oo
Disorders Using Artificial Intelligence

Abstract With abrupt changes in living standards, economic instability, and exces-
sive use of social media platforms, people are observed to be vulnerable to mental
disorders. Mental disorders lead to an increase in stress levels which causes severe
neurological complications in humans such as depression, suicidal tendencies, and
other psychiatric problems. Al with its advanced tools has provided support for the
prediction, monitoring, and planning of mental health illnesses in the population. AI
has provided predictive models that can analyze health records, brain imaging, and
clinical notes to identify mental disorders. Al is prevalent in analyzing social media
platforms such as Twitter, Facebook, and many more for diagnosing depression in
the user by extracting critical information from the tweets and comments posted by
them. In this chapter, we have discussed the salient features and limitations of various
Al-based predictive models useful in addressing mental disorder complications at an
early stage.

Keywords Artificial intelligence (AI) - Clinical diagnosis - Social media *
Signalling data - COVID-19 - Personalised treatment

4.1 Introduction

One of the most common reasons for mental illness and neurological complica-
tions is depression. Depression causes an increase in stress levels and is considered
the foremost reason for mental disability, suicidal ideation, anxiety, schizophrenia,
bipolar disorder, and psychological impairments [1]. Depression can impact any indi-
vidual regardless of their sex, age, and ethnicity. Depression is a psychic condition
whose early diagnosis is very crucial to prevent its negative impact on human lives.
Mental illness impacts the health, remembering ability, cognitive skills, and societal
well-being of an individual [2].

Generally, mental disorders in a human can be diagnosed either clinically or
by analyzing social media posts. The symptoms such as changes in sleep patterns,
mood swings, difficulty in making decisions, and variations in concentration are a few
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parameters that help in the clinical diagnosis of mental illness. Clinical depression
is a neurological disorder that can be identified by analyzing textual data, imaging
data, and signaling data. For this, electronic health records (EHR) [3-5], Magnetic
resonance imaging (MRI) scans [6], voice data [7, 8] and Electroencephalography
(EEG) [9-11] signals are investigated for clinical diagnosis of various mental disor-
ders. On the other hand, social media data is also explored by various researchers
for the diagnosis of mental illness at an early stage [12-15]. Social media is very
prevalent among all age groups people and has worldwide connectivity. People’s
profiles, posts, comments, and suggestions can be examined for predicting depres-
sion, suicidal tendencies, anxiety, and changes in a person’s behavior and attitude
[16—18]. Figure 4.1 represents various categories for analysis of depression in human
beings.

To diagnose mental illness at an early stage, Al-based algorithms have gained
popularity in the automatic detection of depression, anxiety, and suicidal ideation. Al-
based algorithms can predict critical diseases such as cancer [19], brain stroke [20],
and many others [21, 22]. Al-based algorithms can be broadly categorized as machine
learning (ML) based algorithms [12, 18, 23, 24], deep learning (DL) based algorithms
[25-28], and hybrid algorithms [29-33] for either clinical or social media-based
diagnosis of mental health. ML-based algorithms utilized Logistic regression (LR),
Naive Bayes (NB), Support vector machine (SVM), K-nearest neighbor (KNN),
Decision tree (DT), and many other popular approaches. DL-based algorithms exploit
convolutional neural networks (CNN), recurrent neural networks (RNN), Long short-
term memory (LSTM), transformers, and many other extended networks to provide
efficient results. Hybrid algorithms integrated ML and DL approaches along with

Fig. 4.1 Various methods for diagnosis of mental illness in an individual
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natural language processing (NLP) and clustering techniques for the detection of
depression.

In this chapter, we have analyzed the recent Al-based algorithms exploiting ML,
DL, and a combination of both for predicting mental health. These algorithms have
the potential to predict mental illness at an early stage along with its severity level.
On the other hand, traditional approaches are quite slow and are known to suffer
from human bias in comparison to Al-based approaches. Al-based is not only fast
but also efficient and effective in mental health diagnosis. The key contributions of
this chapter are as follows:

e We have categorized the diagnosis of mental health either clinically or by
analyzing social media data. The salient features of each category are highlighted
and elaborated to determine its benefits and limitations.

e Al-based predictive models for mental healthcare are reviewed into three cate-
gories namely, ML-based, DL-based, and hybrid approaches. The potential work
in each category is elaborated and tabulated to examine the accuracy and efficiency
of each method.

e Various Al-based solutions are detailed for improving the teaching—learning expe-
rience of students with special needs. Al-based tools are also analyzed to enhance
the learning ability of specialized students.

e Mental health during the COVID-19 pandemic is analyzed to determine the role of
social media platforms in predicting mental disorders using Al-based algorithms.

The rest of the chapter is organized as follows. Section 4.2 details the clinical
diagnosis and social media-based prediction of various mental disorders. Section 4.3
classifies Al-based prediction models into various categories. The salient features of
various methodologies under each category are elaborated to investigate their effi-
ciency and accuracy. Various Al-based methods for students with special needs are
discussed in Sect. 4.4. In addition, various Al-based tools adopted for enhancing the
learning abilities of students with special needs are also discussed. Section 4.5 exam-
ines the impact of COVID-19 on people’s mental health and the increase in depres-
sion among people due to isolation and lockdown situations. Lastly, the concluding
remarks and future directions are sketched in Sect. 4.6.

4.2 Diagnosis of Mental Disorders

Mental disorders cause changes in the thoughts, behavior, and personality of a person
suffering from distress and physiological impairments. Mental disorders can occur
in humans in the form of depression, anxiety, suicidal ideation, and many other major
depressive disorders [1]. These disorders can be treated if diagnosed accurately. There
are two ways to predict depression in human beings, either clinical diagnosis or social
media-based diagnosis. The details about the clinical diagnosis of depression are as
follows.
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4.2.1 Clinical Diagnosis of Mental Disorders

Early prediction and diagnosis of mental disorders can be done through clinical
intervention. Clinical diagnosis of mental disorders can be done by investigating
various medical data namely, textual, imaging, voice, and signaling. Textual data
involves a patient’s prescription, medical notes, or EHR data [3-5]. Imaging data
considers MRI scans and signaling data analyzed EER signal [6, 34]. Audiovisual
recordings are analyzed to predict mental-health-related problems so that appropriate
measures are taken for their treatment [7, 28].

In [3], authors have reviewed the work utilizing EHR data, and brain imaging
data to predict a person’s mental status. EHR data is the subjective and written
form of analysis of a patient’s mental health. This data has the potential for predi-
agnosis of mental illness with the help of Al-based screening tools. Authors have
utilized patient’s medical history documented in the form of EHR data for predicting
depression [4]. This data contains information about the patient’s procedure and
demographic information for predicting chronic diseases like depression. Similarly,
Msosa et al. [5] have exploited unstructured data from EHR to diagnose mental
illness. EHR records are easily accessible, and their processing requirements are
flexible and simple. These records are considered to be the cheapest and richest
source of health information crucial for predicting mental wellness.

Further, MRI data can be categorized as structural MRI (sMRI) and functional
MRI (fMRI) for analysis of a person’s mental health [24]. sMRI contains anatomical
details about the human brain whereas fMRI contains underlying brain functioning.
In [6], authors have processed sMRI to predict various psychiatric disorders [6].
sMRI measures the alterations in brain data by analyzing its anatomical structure
to diagnose critical mental disorders such as schizophrenia and bipolar disorder.
Mousavian et al. [24] have exploited fMRI for extracting information from various
brain regions to provide accurate diagnosis. fMRI data of a person can be captured
either when he is performing any activity or idle. Capturing either of the MRI scans
is quite expensive. On the other hand, EEG signaling is a non-invasive and effective
technique that captures electrical signals from the brain for detecting mental disor-
ders [10]. These signals are complex in nature but easy and cheap to record. These
signals act as a potential biomarker for predicting depressive disorders in a person.
Figure 4.2 displays the difference in EEG signals recorded for a healthy and depressed
person. Authors have recorded EEG signals by capturing brain waves for a specified
duration to predict neurological disorders [11]. Captured EEG signals are analyzed
for predicting the complex clinical depression in a person. On the other hand, Sarkar
et al. [34] exploited the EEG dataset from the Kaggle website for predicting clinical
depression. The datasets consist of various dependent and independent variables for
determining mental illness.

Audio or speech analysis is a robust technique used for depression estimation
along with text records and videos [28]. Speech has acoustic features that assess
depression efficiently. The change in speaking patterns can be observed in a person
suffering from mental diseases. Audio-visual capture by taking personal interviews
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Fig. 4.2 Difference in EEG signal recorded for a normal and depressed person [10]

can be used for predicting depression [7]. These multi-modal data are a strong
descriptor for diagnosing mental health. Speech analysis is cheap, non-invasive, and
efficient in predicting neurological disorders.

To summarize, unstructured data such as clinical notes and EHR records predict
mental illness efficiently. Careful analysis of these records can recognize changes in
patient’s behavior and attitude. However, this data is different for different profes-
sions, and extracting relevant information is a complex task. Another potential
biomarker in determining mental health is MRI scans. These scans are non-invasive
and provide 3D view of the brain anatomy for better visualization of depression.
However, MRI scans are of high dimensionality and require a lot of processing power
to extract desired results. Signaling data such as EER is easy to capture and requires
less computation for predictions. Multi-modal data such as audio and text informa-
tion are fused efficiently to study depression in a person. Text information comprises
a set of questionnaires to assess depression and non-depression whereas audio data
analyses the variation in speech of a person suffering from mental disorders.

4.2.2 Social Media-Based Diagnosis of Mental Disorders

Clinical diagnosis of mental depression is fast, accurate, and effective. However,
due to societal barriers and unawareness people neither have understanding nor have
acceptability for their mental illness. Due to this proper treatment cannot be provided
to those people and that will impact their quality of life and peace of mind. Hence, it
became essential to analyze people’s day-to-day activities and behavior patterns to
predict the status of their mental health. Textual data from various social networking
websites can be examined to predict mental disorders at an early stage [2, 12, 13, 35].

Recently, social media platforms such as Twitter [13, 15], Facebook [16], and
Reddit [14, 17] are quite popular among people of all age groups. People create their
profiles on these websites and share their thoughts, opinions, and emotions which
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can be investigated to detect various mental issues such as depression, anxiety, and
suicidal ideation. Sharing information on social media platforms not only represents
one’s day-to-day activities but is also a potential indicator to analyze mental health.
Social media are investigated to track mental health in a naturalistic way by analyzing
and interpreting one’s behavior and feelings based on their profile, likes, and thoughts
sharing [35].

Online screening of people’s posts on social media platforms requires a tool
or API (Application programming interface) that can collect data from people’s
social accounts with their consent and agreement [13]. These tools or APIs can
access people’s public data and check for specific keywords or phrases. The related
keywords such as “depression”, “anxiety”, “suicide”, “kill” and other similar expres-
sions are retrieved from various social media accounts. After this, these gathered
posts are analyzed using NLP, ML, and/or DL approaches to predict the state of
mind as depressed or healthy. Sentimental analysis determines linguistic patterns
along with lexicon evaluation to determine stress, suicidal tendencies, and other
bipolar disorders.

4.3 Artificial Intelligence-Based Models for Predicting
Mental Healthcare

Al has provided many predictive models for analyzing mental healthcare exploiting
clinical data such as EHR [4, 25], MRI [24], EER [10, 11], and multi-modality or
social media posts and profiles. Based on the utilized methodology, Al-based predic-
tive models are broadly categorized into ML-based algorithms, DL-based algorithms,
and hybrid algorithms. ML-based algorithms utilized various ML techniques such as
LR [14, 16], SVM [17, 36], KNN [24, 37], and RF [13], along with lexicon analysis
[24] to detect depression. On the other hand, CNN, RNN, and LSTM [2, 10, 11] are
exploited in DL-based predictive models for prediction. Hybrid models integrated
ML and DL models along with NLP techniques to design a robust model with better
efficiency and accuracy [31, 32]. Table 4.1 tabulates the similarities and differences
between Al-based predictive models for predicting various mental disorders.

4.3.1 Machine Learning Based Models for Predicting Mental
Disorders

Mental disorders are one of the known reasons for disability and other critical diseases
such as diabetes, hypertension, and many others [39—41]. It is essential to diagnose
mental disorders at an early stage to prevent personal and societal loss. For this,
ML-based algorithms are investigated by various researchers for early diagnosis of
depressive mental disorders. These algorithms utilize either clinical data or social
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Table 4.1 Similarities and differences between various Al-based predictive models

SN | Attributes ML-based algorithms | DL-based algorithms | Hybrid algorithms

1 Techniques LR [14, 16], SVM [17, | CNN, RNN, LSTM | NLP and a combination
36], KNN [24, 37], [2, 10, 11], of both ML and DL
cluster analysis [15] Transformers [4, 38] | algorithms [3, 5]

2 Feature X v v

selection

3 Data types

Clinical data and
social-media data

Clinical data and
social-media data

Clinical data and
social-media data

4 Computational | Less Moderate High
efficiency

5 Model Limited High High
generalizability

6 | Performance Less Moderate to High Relatively high
Advantages Simple and easy to Interpretable and Analyzed pool of data

implement explainable with better accuracy
8 Limitations Less accurate Complex in Highly complex
implementation

mediadata to predict the extent of mental illness. Table 4.2 tabulates the representative
work that employs ML-based predictive algorithms to predict the status of mental
health.

ML-based depression diagnosis analyzes the clinical data namely, text, audio,
imaging, and signals. In this direction, Chao et al. [23] captured brain responses of
depressed and healthy patients using fNIRS (functional near-infrared spectroscopy)
devices. Statistical-based features and vector-based features were extracted from
brain responses and processed using four variants of neural networks. ReliefF was
used for selecting robust features and specifying critical brain regions for predicting
depressive disorder. Authors extracted multiple behavioral features such as speech
behavior, speech prosody, eye movements, and head pose [36]. Thirty-eight feature
selection algorithms were utilized for interpreting depression. On the other hand, Hao
et al. [42] analyzed depression and anxiety in undergraduate students. Questionnaire
data was collected from selected students and clustered into two distributions namely,
anxiety and depression using a random sampling method. The correlation between
these clusters was identified using the correlation analysis method. Similarly, the
authors surveyed to prepare a dataset from 21 questionnaire details selected using
the Hamilton tool and psychiatrist suggestions [37]. These details were then analyzed
using various ML-based algorithms to detect a person suffering from depression.

Recently, social media has been explored for analyzing depression by studying
emotional expression and sentiments from the data posted and available on the
websites. In this direction, authors collected data from Twitter by analyzing tweets
with timestamps and hashtags related to mental disorders [15]. Similarity calculations
and stochastic gradient descent were exploited for analyzing sentiment distribution
to predict the user suffering from severe depression disorders in real-time. Safa et al.
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[13] collected Twitter data and hashtags to detect depression automatically. The
collected data was evaluated using a multi-modal approach such as n-gram language
models, LIWC dictionaries, image tagging, and bag-of-visual words (BoW). Nine
ML-based different classifiers were utilized to measure model effectiveness. Simi-
larly, authors evaluated Twitter users’ accounts and classified them into depressed
and non-depressed accounts by analyzing activities and content features. Multiple
ML-based algorithms utilized to predict mental and psychological issues. On the
other hand, Reddit user data was examined by various authors to categorize the users
into depression and other bipolar disorders [14, 17]. In [14], authors extracted three
features namely, psycholinguistic lexical and Reddit user features. These features
were processed using three ML algorithms namely, SVM, RF, and LR to predict the
bipolar disorders in users. However, authors extracted three features namely, LIWC,
LDA, and bigram [17]. These features were analyzed individually and combined
using various algorithms such as LR, SVM, Adaboost, RF, and MLP to predict the
presence of depression in social media users.

To explore the robustness of the methods, authors investigated Twitter data along
with other social networking data such as Facebook, Reddit, and Victoria Diary to
predict depression effectively. For this, authors utilized Twitter data for training the
model, and model performance was tested on other three public datasets to prove the
model’s generalizability [16]. Textual features were extracted and processed using
various ML-based classifiers to detect depression in the users. On the other hand,
authors identified depression in various occupations by gathering individual data
from different social media sites. Sequential emotion patterns were examined using
sixteen parameters to predict the severity of depression.

To summarize, ML-based algorithms examined clinical data and social
networking profiles to identify persons suffering from mental illness. These models
extracted multiple features and different ML algorithms to classify the depressed
users from the healthy. Model performance was reviewed on multiple datasets to
determine the generalizability and predict signs of depression in human beings.

4.3.2 Deep Learning Based Models for Predicting Mental
Disorders

Table 4.3 tabulates the salient features of the representation work predicting depres-
sion by processing data using DL-based algorithms. DL-based models are exploited
to predict severe mental illness and level of mental disorders by utilizing high-level
networks such as CNN, RNN, LSTM, and transformers. In this direction, authors
integrated bidirectional LSTM and CNN and evaluated the performance on multi-
modal datasets containing voice and text information for predicting clinical depres-
sion [7]. 1-D and 2-D audio signals were extracted and integrated with mapped
numeric values obtained from text information using multiple DL models. The
obtained softmax values from DL models were ensembled to predict depression.
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However, the performance of the model was evaluated on limited data size due to a
smaller number of participants. To address this, authors proposed an Audio-assisted
BERT model based on DL architecture to predict depression by integrating multiple
modalities such as audio and text information [8]. Pre-trained text and audio models
composed of multiple components are processed using the dual self-attentional model
to improve classification accuracy and enhance model performance. However, the
authors addressed the limitation of smaller datasets by expanding training labels and
feature transfer learning [28]. Low- and high-level audio features were extracted
using RNN and LSTM. The first and second-degree of audio features were trained
using Mel frequency cepstral coefficients to diagnose mental state automatically.
In [26], authors analyzed the time—frequency representation of audio signals using
DL-based EmoAudioNet. High and low-level audio features were aggregated and
processed using the CNN network to obtain classification scores for the identification
of major depression disorders.

Clinical prediction of depression is performed using medical data such as EHR,
and EER [4, 9-11, 25]. EEG signals record brain waves effectively which can be used
for classifying depressed individuals from healthy. In this direction, authors extracted
brain signals using generalized partial directed coherence and direct directed transfer
function methods [9]. Each individual image was constructed from EEG signals and
processed using five different DL models to automatically learn patterns from EEG.
These models captured spatial and temporal features from the brain to diagnose
major depressive disorder. Similarly, Sharma et al. [10] diagnosed depression by
analyzing EEG signals using CNN and LSTM. CNN was used for preprocessing by
windowing the EEG signals over time series and LSTM determines sequence learning
by extracting local features. In [11], authors exploited CNN and LSTM to identify
neurological disorders using EEG signals. Local features were extracted using CNN
signals and LSTM to learn local characteristics and patterns in the EEG. LSTM used
memory cells to remember important features and update feature weights during
training to identify right and left hemispheres EEG signals for diagnosing clinical
depression. On the other hand, clinical depression can also be predicted using high-
dimensional data from EHR clinical notes [4]. Bidirectional representation learning
model with transformer architecture was exploited to model the five features namely,
diagnoses, procedure codes, medications, demographics, and clinical data extracted
from EHR. The model was pre-trained and fine-tuned to process temporal data for
predicting the future possibilities of depression. Similarly, Bertl et al. [25] evaluated
the real-time medical claim data and analyzed temporal properties using DL models
with GRU decay. Explainability was introduced in the model by incorporating self-
attentional model for depression screening for better quality of life.

Early depression signs can also be traced by analyzing social media using DL-
based algorithms [2, 27, 35, 38]. In this direction, authors analyzed textual social
media data using LSTM and RNN [2]. To manage the model efficiency, two hidden
layers in LSTM and two dense layers in RNN were used for predicting early signs of
depression and suicidal tendencies. Also, one hot encoding and principal component
analysis methods represented the depression symptoms and sentiments in social
media data. In [27], authors utilized DL models for tracing the early signs of mental



4 Diagnosis and Prediction of Neurological Disorders Using Artificial ...

82

(panunuoo)

[opow T weans
Inog Sursn (%.9°96)

DOV 189USIY PoAdIYOY
sdoys Sursseoordard

Se UoeZIuayo}
pue uonejuowIIne

eyep parddy

©lep 1%9) 03 uosuredwoo
ur ejep 9JI0A

uo oouewIojad 1epeg
uorssaxdop

jo1paxd 0 eyep pue
QOTOA WOIJ PAJOBIXD
SOINJEIJ PAUIqUIO)) o

XLIJeW UOISNJuod pue
‘HY “4d *9109s-14 DIV

uorssaxdog

NND pue
LS T-Teuonoaprg

(6€)

1831, ‘() UONEPI[EA
“(9¢1) Sururel,
:uorssaidop-uoN

(L1) 389,

‘(1) uonepIfeA “(Lg)
Surureay, :uorssardog
(607) uorssaidop-uou
(99) uorssaidap
(GL7) s_ourjsul [BI0],
Jeselep ZOM-OIvdd

[L] em>] pue of

sjosejep
uaasun pue Arewrd
yoq uo (%) DIV
159YS1Y oY) PAAIYIY o
[epowr
ay) Jo Ajqiqezijerouad
Ia)39q 10J
93e pue 19pua3 se yons
soryderSowap-0100S
ssaufyr
[eIUSW IS Jo1pard

ddS

SIOPIOSIp JoYJ0 pue
‘Karxue ‘eruarydoziyog
‘uorssairdop Jurpnjour

(seoueisur Ayieay)
01¢ ‘(seoursur ssoufyt
[euaw) ()¢ ISL,
(seoueisur Ayieay)
8EGY ‘(seourysur
SSQU[[I [BIUDW)

01 SUBdS N PAZIN(] « |  PUB ‘NAS DOV DNV SSOU[JT [EJUSW AI9ARS TIN-1d SI6'p] :Sururer], « [9] T 10 Sueyz
pasodoid
Arewrung | SQINSBAW OUBULION] od Ay ssaufr [eIusy /P3ZIIN [9POJA uondrosap josereq S90UIOJOY

SIOPIOSIP [eyudw snotrea Sunoipaid 103 sonbruyoe) paseq-1q €'y dqeL



83

4.3 Artificial Intelligence-Based Models for Predicting Mental Healthcare

(penunuoo)

(%0L)

DDV [[BISAO PIAIYdy

SOIN)E9J [epoW-Nnu

Sursn aoueurrojrad

[opouwt parorduw] «
uorssaxdap Sunorpaid
103 so[goxd pue eyep

J9SN IONIM], PIZATRUY o

00d
pue ‘91008-14 DIV

uonTus00a1
uonow? ‘vorssaxdog

NND pue N¥Dg

61 Ly ‘uorssardop-uoN
6686 :uorssaxdog
6S9°0] :SeourIsUI [B10],
sjosejep [dnniy o

[s€] 219 ysoyd

yoeodde
MOg PIa [opowt
aurfaseq uo (%0t°86)

DOV 189431y pardIyoy
S10310e])

st [eo13o0[oydAsd
SuLIoPISUOD SUONIPUOD
[eyuaw 301paxd 0 sysod
BIPAW [BI00S PIzA[euy
sysod

PPy Ul SI9pIOSIp
[BIUSW 9ZLISJORIRYD 0)
SOINJBOJ PASLq-UOIIX[
payordxy e

91008-Td PU® ‘HY DIV

SIOPIOSIP [BIUdW
I9UJO pue ‘UOT)EIPI
[epIJINS ‘SIOPIOSIP
Sumyes ‘vorssaxdo(q

[opow
aanorpaid paseq-1Qq

(LS0'0T)

[01U00 “($Z1°11)
SIOPIOSIP [BIU_W T
Jasejep SaOUR)ISUI [B10],
(#/8L) S19pI0SIp SunEd
pue (0$7) wsioyooe
‘(ST0¢) uorssardap
“(SL0L) sproms 1|
19SBIRP SIOURISUI [BIO], o

[L2]

“Te 19 sjuaNI)-ZaIwey

Arewrwuing

salnseawl dUBWLIOLI™d

2d£y ssaufr [eyuay

pasodoid
/PIZIIN [SPOJA

uondrosap jesereq

SAOUAIJY

(ponunuod) ¢'f dlqe,



4 Diagnosis and Prediction of Neurological Disorders Using Artificial ...

84

(penunuoo)

s102[qns G Ut (%1°66)
DDV PIASIYIY
UOI}OBIIXO QIN)ed)
Aue Jnoyim [opowr
Jo Surures| onewony
Surures|
Jouanbas 10] INIST
pue Surured] erodwo)

10J NND PozIh[]

HVIA PUe DDV

uorssaxdo(q

NLST+ NNO

vSn
‘BUOZIIY JO AJISIOAIU()

oy} woy ejep [eusis Ogg

[01] T 10 BULTEYS

(%66)

DOV [[BI9A0 PIARIYOY
UOTJOBIIXd AINJELJ pue

Surues]o jesejep 10y
J0y-auo pue yDd ypm
Suore uoneZIEWWI|
pue SUTwlS o
ASojopoyiow Joy-ouo
oy} Sursn saInyesy
JSNQOI PAUTWEXH o

yloddns pue ‘xiew
UuoISNJuo)) ‘QINSLIN-1J
‘HY “4d D0V

uorssaxdog

NNY pue NLST

S109M1 Y ¥ :[BIOL, o
9135y woIy
joserep paderdg-s)oomy,

[2] ‘e 19 yeuewy

(66°0) AdS Pue (+6°0)
NAS “(L6°0) DIdNV
(66°0) DNV Sk $100s
[[BISAO PIAYOY
Ayniqeuredxa jopouwr
QINSUd 0} d[Npowr
[euonuaye pajeISAU] o

ddS
PUE NAS ‘D¥dNV DNV

uorssaxdo(q

[opowr ABd9p NYD
paseq-uonuany

sjuaned
€68°C18 Jo B1ep YHA

[zl Te 10 prog

Arewrwuing

salnseawl dUBWLIOLI™d

2d£y ssaufr [eyuay

pasodoid
/PIZIIN [SPOJA

uondrosap jesereq

SAOUAIJY

(ponunuod) ¢'f dlqe,



85

4.3 Artificial Intelligence-Based Models for Predicting Mental Healthcare

(penunuoo)

(%28)
2100S-T Pue (%ST€L)

DDV PRAAIPY
[eusts

orpne jo wnnoads
pue uonejuasardor
Kouanbarj—own
payordxyg
SUOISUSWIp
[euonow jo1paxd

03 sisATeue [enoads
QuIN-}I0ys pazA[euy

9109s-14
‘XLIjew uoIsnjuod

‘ASINY ‘DDd DDV

uorssaxdog

JONOIpNY oOwrg
paseq-1Q

(urw G1 :uonernp
'3AY) sSurpiooar
olpne g8 pazinf]
:Jasejep uorssaxdap
ZOM-OIvd

(urw ¢ :uoneInp

'3AY) s3uip1oda1 oipne
§C -19selep VIODHY -

[92] T2 30 rrRWpO

(%¥8°86)

aroydstoy 3J97 pue

(%L0°66) 2roydstuoy

WS DDV PIARIYIY
JALST Sursn Surureay
[spoul pue NND

Sursn aIjea) pooRIXy e

elep Teorurd Surzinn

uorssaxdap jo1pard

0] WIsAs pajewony

ddS PUe ‘NHS DOV

uorssaxdo(q

INLST PU® ‘NND

OOTXAIN
MIN] JO AYISIoATUN)
oy} woj sSurpI0d91 HIY

[11] '® 10 TIquiesednpoy 1,

Arewrwuing

salnseawl dUBWLIOLI™d

2d£y ssaufr [eyuay

pasodoid
/PIZIIN [SPOJA

uondrosap jesereq

SAOUAIJY

(ponunuod) ¢'f dlqe,



4 Diagnosis and Prediction of Neurological Disorders Using Artificial ...

86

(penunuoo)
(z6'0)
9109S-] 4 PIAAIYIY
wisIueyodul
uonuaye-J[os (utw gg—/
[enp 3ursn :uoneInp ‘3Ay)

uonejuowsne ejeq o
uonorpaid uorssardap

S3uIpI002I OIpNE (Y]]
ZOM-OIvd

J1oj oIpne pue Jx9) SIomawrely WOIJ PAoeIXd
Surzimn [epow-nnN o Q1008-1 uorssardo(g yagqmpny sjoserep ONEWAY) GT o [8] 'Te 10 010L,
uorssaxdop
10J (99%) 9100s-] pue
‘(7"0) ASINY (%LTIL)
DDV ‘SAE poAdIyOy e s3uIp10dal
uonen[eAd opne OCT -d-TAV
Q) ur seiq Jopuas oy s3uIp10dal
SSAIPPE 0] JUIWISSISSB opne Oy ] -SSHAAVY
Paseq-1opudn) o (urw g1 :uopeInp
sjosejep XIIJeW UOoISnjuo)) 1L Suisn | "SAy) sSurpiooar orpne
pasue[equil yiim [esp pue ‘2109S-14 NNY paseq-DDdN T8I PazIhy) oserep
01 A3ojens SUNYSOM o | “HY “Ud ‘ASINY DOV uorssardo | NN Paseq-DDAIN | uotssardop ZOM-OIVA [82] e 10 1qreloy

Arewrwuing

salnseawl dUBWLIOLI™d

2d£y ssaufr [eyuay

pasodoid
/PIZIIN [SPOJA

uondrosap jesereq

SAOUAIJY

(ponunuod) ¢'f dlqe,



87

4.3 Artificial Intelligence-Based Models for Predicting Mental Healthcare

(panunuoo)

uonorpaid

ysu1 uorssordap

J10J SoUWI02)No

[eorur[o 11oddns
ued uonoIpaid [opoN e
soouanbas YHH ur
SIYS1om UOTIUSYIE-J[oS
Sursn Apiqeyerdioyur
[OPOW PAAIIYOY
Blep YHYH [epownnut
Jo uonejuasardar
ezodway 103 Surunjouy
pue Sururen-aig e

oNvdd ‘DNvO0d

uorssaxdog

QIN30IYIIE
IourioJsuen

71 reuonoopIg

SOSBISIp
[eon1d woiy SuLepns
joserep YHA S.Juoned

[+] 'Te 30 Sus [

(%¥T 66)
DDV doueunoyrad 1s9q
9} pasaIyoe NLST

+ NND-AT ‘e Suowy
uonorpaid 10y speusrs

DA wolj sofewr

JONIISUOD 0} SPOYIAW
K)IAIOOUUOD 9T o

41Ldp

pue DO Sursn ureiq

) 03 AJATIOQUUOD
[eusis DA pzA[euy e

qd 9109514 DDV ‘ddS

uorssaxdo(q

NLST

+ NND-PT ‘LS T

+ NND-AI ‘NLST
‘NND-AT ‘NND-dI

(0€) uorssaxdop-uou ‘(g¢)
uorssaxdop :jeserep DI

[6] T8 19 1pases

Arewrwuing

salnseawl dUBWLIOLI™d

2d£y ssaufr [eyuay

pasodoid
/PIZIIN [SPOJA

uondrosap jesereq

SAOUAIJY

(ponunuod) ¢'f dlqe,



4 Diagnosis and Prediction of Neurological Disorders Using Artificial ...

88

uonouny I9JSueI) PAIdAIIP 1021 (JLAP ‘QOUAIAY0D) PAAIIJ
[enIed POZI[EIdURD) :DJD ‘SUTUIR] I9JSuel], i L, ‘Siuatoyjeo)) fensdo) Aouanbar] [9A :DDJIN ‘SisATeue yjusuodwod rediourid 1y ‘10119 9In[osqe UedA ‘HVIA
‘Ayder3oreydoousonod[g :0FH ‘9AIND [[803I1-U0IsI1021d Jopun ey :DYJNV ‘Surured] soueisur o[dnni A ‘Sururea] doa( I ‘UONR[21I00 JUIIOYJI0I S, U0SIEd]
:DDd ‘PI0d9I YIeay JTUOMOAH SYHH ‘SPIom-Jo-Sed :M0g ‘ZQO JO pIeZip\ -sndIo)) MOTAISIU] SISATeUY SSamsI( POpuaXy :ZOM-DIVAH 10110 o1enbs ueaw 100y
SN ‘1899 (HY ‘UOISIOAI] *¥d AoeIndoy :DDV S[I0MIOU [RINSU JUALINOAY INNY ‘Alowoul W) 1oys-JuoT A LST YI0MIQU [BINSU [BUONN[OAUOD) NND

JaseIRp PAJI9[[0d
9 U0 (%6°8L)
DDV PIASIYIY

spuax uorssaidop

Surkynuapr 10§

s[rejop oyder3owop

pue SaInIesy

1%9) [eo130[0ydAsd
pajeISou

IoNImT, uo ordoad

JUQIQJIP U S[OAJ]
uotssaidop pazA[euy

39 4d
DV 21008-T4 DIV

uorssaxdo(q

eryagoyd

pue 1ONTX L¥d9
Sursn jepowt 1q
Paseq-IouWIojsuel],

(SLSD
uorssaxdop :jeseiep

IONIM], PAIBAID-J[OS

[8€] Te 10 Sueyz

Arewrwuing

salnseawl dUBWLIOLI™d

2d£y ssaufr [eyuay

pasodoid
/PIZIIN [SPOJA

uondrosap jesereq

SAOUAIJY

(ponunuoo) €'y IQEL



4.3 Artificial Intelligence-Based Models for Predicting Mental Healthcare 89

disorders in social media posts. Cosine similarity and visual approach were defined
to identify the variations in the social media data for multi-class classification. Zhang
etal. [38] created large datasets containing depressed users and their past tweets. This
dataset was processed using three DL-based transformers investigating psychological
text features and sociodemographics to monitor group-level and population-level
depression trends.

To summarize, DL-based have reported enhanced accuracy and effectiveness in
detecting mental disorders by monitoring clinical data and social media data. Inte-
gration of speech and text information in the form of clinical notes has shown better
efficiency. However, the model’s generalizability in predicting future depression
could not be assured due to limited training data availability. Also, EER signals have
enough potential to represent brain waves and determine early signs of depression.
The complex nature of these signals demands pre-processing steps which impacts
the computational efficiency of the model. In order to reduce the model complica-
tions, social media data is also examined using a recent transformer-based DL model
for predicting users suffering from mental illness. The prediction accuracy of these
models is highly dependent on the truthfulness of the data shared by users on social
media.

4.3.3 Hybrid Models for Predicting Mental Disorders

To address the limitations of ML and DL-based models, hybrid models are investi-
gated for predicting mental disorders [1, 3, 32]. These models integrate the benefits
of both ML and DL models along with NLP and supervised and unsupervised algo-
rithms to predict various mental disorders [30, 33, 34]. These models also examined
clinical data and social media data for depicting mental illness. Table 4.4 tabulates
the salient features of the representative work utilizing hybrid predictive models for
various mental disorders.

Authors investigated the signs of depression in EHR data collected from Mercy
Care by integrating NLP, LSTM, RF, and GBT [5]. EHR data was annotated using
NLP services such as MedCAT and BioYODIE. Feature importance was employed
to identify the sensitive features for improving the computational complexity of the
system. On the other hand, Sarkar et al. [34] analyzed EEG clinical data using DL
models and supervised ML models for tracking depression. In DL-model LSTM with
RNN outperformed the other algorithms but in ML techniques SVM and LR were
superior in detecting depression in EEG brain waves. In [29], authors investigated the
speech samples collected globally by performing sentiment analysis to identify the
traces of depression, anxiety, and loneliness. The patterns in speech were extracted by
DL-based neural network and clustering technique to predict the patient’s behavior
and influence of depression.

To predict depression, anxiety, and suicidal ideation using social media, Fatima
etal. [3] integrated message-level sentiment analysis with three DL. models for robust
feature extraction from social media data. Four classifiers were trained to detect the
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early signs of depression from an individual’s posts. However, authors attempted to
differentiate between depression and suicidal ideations by training multiple models
using the social media data and label correction method to reduce the impact of noise
in online content [32]. Label correction methods utilized unsupervised clustering to
efficiently use large-scale web datasets for better performance. Authors exploited
CNN and LSTM to predict the behavior of an individual by gathering data from
different social media posts and profiles [1]. Hybrid feature extraction techniques
such as Word2Vec and TF-IDF (term frequency-inverse document frequency) used
for selecting optimal features for detecting depression. However, authors extracted
robust features using the GloVe method to capture the semantics of tweets from
Twitter data [33]. Self-attentional DL model analyzed and classified the context to
predict the mental health of the individual. The performance of the model was tested
on a randomly selected small set of unseen datasets. On the other hand, Ansari
et al. [30] compared ensembled and hybrid approaches using text classifiers for
the automatic detection of depression. Features were extracted using symbolic and
subsymbolic models. These results were passed to a LR module to classify the text.
Simultaneously, word embeddings were processed using Attentional LSTM and a
linear classifier. The results of LR and linear classifier were averaged to obtain
the final results for predicting the major depressive disorders on public depression
datasets.

To summarize, hybrid approaches integrated NLP, ML, and DL models to build
a robust model for predicting depressive disorder symptoms. Initially, hybrid tech-
niques performed sentiment analysis on the word embedding gathered either from
clinical data or social media data. After this, the data was processed using a combina-
tion of ML and DL algorithms to extract the outcomes efficiently. The hybrid models
also tested the performance of unseen datasets selected randomly which ensures the
generalizability and realistic applicability of the model.

4.4 Artificial Intelligence-Based Solutions for Students
with Special Needs

Mental disorders are not only prevalent in adults but also its dominance can also be
visualized in middle-aged infants and teenage students [43]. Students suffering from
mental disability and other psychological disorders have special needs that need to
be addressed to improve their teaching—learning experience. Students suffering from
neurological disorders not only affect their health but also their families and society.
It is essential to recognize the early signs of mental illness in students and treat them
as early as possible. For this, Al has provided many tools and applications that not
only accommodate the needs of these special students but also generate interest by
enhancing their cognitive learning [44]. In addition, Al has incorporated imparting
personalized learning and education to students who are under stress and depression
due to their bad academic performance and family pressure. The next section will



94 4 Diagnosis and Prediction of Neurological Disorders Using Artificial ...

discuss various Al-based optimization methods and tools that not only helpful in
predicting the early signs of neurological disorders but also provide solutions to
address them.

4.4.1 Artificial Intelligence for Optimizing Mental Disorders
in Students

Students are suffering from mental health problems that include stress, anxiety,
suicidal thoughts, and depression disorders. These problems are prevalent in
students as they are under pressure to perform well in their academics. In order
to address neurological disorders in students many Al-based tools and suggestions
are recommended by various researchers [45].

Al has provided many tools to analyze the activities of students to improve their
attention and focus on their work. These tools help reduce the stress and depression
in students that may occur due to fear of non-performance in their academics. In this
direction, authors proposed child activity sensing and training tool comprised of 42
unique features to analyze the physical and physiological activities of the students in
real time [46]. This tool improves the student’s focus by assisting them in real-time
with their various academic activities. Al-based wearable vibrating watch known as
WatchMinder was proposed by [47]. This device collected the activity and behavior
of the wearer and periodically sends reminders to refocus on work. In [48], authors
developed an Al-based anxiety scale to measure the anxiety levels in students to
motivate them to learn.

To reduce stress, anxiety, and depression in students, a personalized learning
experience is recommended. For this, authors explored learning areas such as
reading, writing, spelling, and computing [45]. To inculcate reading comprehension,
automatic storytelling apps, visual perception, and touching letters were provided.
Supportive classroom environment to improve the physical structure of the learning.
Daily teaching and learning schedules were defined innovatively to accommodate
the needs of the students for better response. The balance between educational and
extracurricular activities must be managed to improve the learning outcomes. Al
therapies and supportive education for individualized learning and improving social
skills in students suffering from mental disorders.

4.4.2 Artificial Intelligence-Based Robots for Special
Students

Al-based robots such as chatbots, voicebots, and many others are recommended
to address the needs the special students for their mental health [45]. These tools
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simplify the task and generate interest so that students would not feel depressed and
consider learning as a burden.

In [49], authors suggested chatbot therapy to provide self-help for depressive
students. The text contents were trained in the chatbot which is approved by profes-
sional therapists. The prewritten templates and questionaries were fed into the chat-
bots which get activated based on individual responses. During the therapy session,
the chatbot differentiated among the emotions, thoughts, reactions, and behavior of
the user. Based on the outcome, chatbot not only determined the level of negative
feelings but also told practical ways to reduce negative feelings and overcome stress.

Arshad et al. [50] reviewed a robot for understanding the mathematics place
value system named Mindstorms EV3 using LEGO to improve classroom learning
in autistic students. This system interacted with students to enhance the interest,
attention, focus, and personalized engagement of the students with special needs.
Feedback on teaching and learning was also gathered by interviewing the teachers
teaching the special needs students. It has been observed that this has improved the
cognitive learning abilities of the students by generating interest and encouraging
them to participate more in classroom activities.

In [51], authors discussed audio-based robots that can understand the emotions of
autistic students and can support them in creating an interactive teaching and learning
environment. These robots can adapt themselves in accordance with the change in
emotion of the student such as crying, laughing, and other mental states. Speech
data of the students were analyzed and processed based on the captured emotion to
improve their engagement in various classroom activities and improve the quality of
education.

4.5 Analysis of Mental Health During COVID-19 Pandemic

During the pandemic situation of COVID-19, people were known to suffer from
depression, anxiety, and loneliness due to various preventive measures such as lock-
downs and isolation. The pandemic restriction prevented travel, and people were
forced to work from home. This pandemic has recorded a change in the psycho-
logical behavior of the people and led to severe mental disorders and mental health
destabilization [29].

In order to analyze the traces of mental depression in Twitter social media users
during the COVID-19 pandemic, authors gathered tweets from Twitter using an
expression-based search method [38]. A fusion classifier was created to integrate
the text features with demographic information to determine the depression features.
The model had investigated the group-level and population-level depression trends
in the generation during the pandemic. This non-invasive, and non-clinical data-
based method can not only predict depression levels in different age groups but also
generate awareness to prevent its propagation.

On the other hand, authors proposed a questionnaire set based on Hamilton tools
designed in consultation with the psychiatrist to investigate depression in people
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during the COVID-19 pandemic [37]. The responses from humans were recorded
and examined through various ML-based approaches to identify the depression trends
in humans. The created questionnaire set was diversified consisting of both positive
and negative questions to identify depression at an early stage.

In [29], authors validated speech signals and performed sentimental analysis to
identify depression in people during the global lockdown in the whole world. The
mental health of the people is severely affected due to isolation situations from the rest
of the world. The behavioral patterns in depression-influenced people are analyzed
in recorded speech data using the DL-based method. Cluster validation and signal
segmentation techniques are utilized to evaluate the speech signal for the presence
of depression and other mental disorders.

One of the potential measures recommended to prevent the spread of COVID-
19 was social distancing. Social distancing has a potential negative impact on the
mental health of children as well as adolescents [52]. The risk of child abuse and
exploitation increased as families were isolated at home and parents were under stress
either due to the loss of their jobs or work-from-home pressure. The socio-emotional
development of both parents and children was impacted and raised concerns about
mental health and behavioral disorders.

To determine the impact of COVID-19 on people’s mental health, authors
reviewed the various psychiatric symptoms to determine the direct and indirect
impact of the pandemic on people [53]. It has been analyzed that the pandemic has
worsened the situation in people who already have pre-existing depression symp-
toms such as anxiety, sleeping irregularities, and psychological disorders. There are
many other sociodemographic factors such as living status, education, job-related
factors, and gender are reported which indirectly have contributed to people’s mental
disorders.

4.6 Summary

In this chapter, we have reviewed clinical as well as social information for the diag-
nosis of mental health. Clinical diagnosis of mental disorders is based on the unstruc-
tured as well-structured information gathered from the patients. Unstructured infor-
mation includes textual information such as EHR data and clinical notes containing
the patient’s medical history. Structured data utilizes imaging data such as MRI and
signaling data such as EER for predicting disorders related to mental health. Clin-
ical diagnosis of depression, anxiety, and suicidal ideation requires medical data as
well as discussion with the psychiatrist. On the other hand, Diagnosis using social
media is based on textual information captured from various social networking sites
such as Facebook, Reedit, and Twitter. This information is critical and useful in
providing accurate prediction based on the data collected from user’s profiles, posts,
and tweets. Algorithms based on ML and DL techniques can process this data to
predict mental disorders automatically. These predictive models can analyze the
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psychological disorder symptoms efficiently so that treatment can be started at an
early stage.

Students suffering from depression affect not only their personal life but also
their studies. These children are not able to concentrate, focus, and be involved with
other normal students. Their need is different and demands personalized teaching to
improve their classroom learning. Al has provided many tools in terms of chatbots,
robots, and apps so that classroom teaching can be improved for such students.
Al has also provided monitoring tools that can record the daily activities of these
students to provide them better teaching—learning experience. Also, COVID-19 has
impacted people of all age groups including children, adults, and senior citizens.
It has been analyzed that people are suffering from major depressive orders during
COVID-19. The various pandemic restrictions such as isolation, social distancing,
and lockdowns worsen the conditions in the people who already were suffering from
any other depressive disorder. The depression trends are monitored in the patients
using recent algorithms to predict mental health.
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Chapter 5 ®)
Diagnosis and Prediction e
of Cardiovascular Disorder Using

Artificial Intelligence

Abstract Cardiovascular disorder (CVD) is one of the leading diseases which has
a high mortality rate worldwide. Atherosclerosis is a condition which is a major
cause of CVD and occurs due to the accumulation of plaque and calcium in the
coronary arteries vessels. Intervascular ultrasound (IVUS) is a diagnostic technique
that provides artery vessel imaging. To identify the severing of calcification and
plaque in artery vessels, it is necessary to segment the IVUS imaging into lumen
and media which demands specialized skills. For accurate diagnosis and prognosis
of CVD in a patient, Al has provided many predictive algorithms which segment the
IVUS imaging effectively. In this chapter, we will review the various deep-learning
techniques exploited for IVUS imaging segmentation. We will also highlight the
limitation of IVUS imaging that reduces the accuracy and effectiveness of CVD
prediction.

Keywords Artificial intelligence (Al) * Intervascular Ultrasound - Percutaneous
coronary intervention + Coronary angiography computed tomography -
Angiography - Risk assessment

5.1 Introduction

Cardiovascular disorder (CVD) causes coronary artery diseases that occur due to an
insufficient supply of oxygen to the human heart. Atheromatous plaques accumulated
in the coronary arteries narrow their lumen area and hence, reduce the blood flow to
the heart [1, 2]. Plaque ruptures the blood vessels and impacts the cardiac muscles
which leads to heart attack/heart failure. The components of atheromatous plaques
are examined to determine the severity using a technique known as percutaneous
coronary intervention (PCI) [3]. In this, intervascular ultrasound (IVUS) is used as a
pre-intervention invasive technique to analyze coronary arteries, vessel regions, and
lesions to assess the impact of plaque and extend appropriate treatment to prevent
casualty.
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Early detection of CVD in a patient not only enhances the treatment success rate
but also reduces the risk of heart failure in patients. IVUS-guided PCI is considered
to be the superior technique in the detection of atheromatous plaque, and stenosis in
lesion vessels of the patients [4]. Apart from IVUS, other invasive techniques such as
OCT (Optical coherence tomography), and NIRS (near-infrared spectroscopic) tech-
niques can be used for examining the ruptured coronary arteries. Alternatively, non-
invasive techniques such as stress ECG (Echocardiography), cardiac MRI (Magnetic
resonance imaging), and CCTA (coronary angiography computed tomography) are
also popular among cardiologists for prediction of CVD risk. Among these non-
invasive techniques, CCTA is a gold standard and widely preferred by cardiologists
for the identification of calcified, non-calcified, and mixed attenuation plaque in
patients suffering from CVD [5, 6]. CCTA images provide geometrical informa-
tion on coronary arteries which requires further interpretation and analysis from the
expert radiologist to estimate the stenosis severity. This process is time-consuming
and non-very reliable as the outcomes from different experts vary in terms of diag-
nosis and interpretation [7]. On the other hand, IVUS imaging is more accurate in
terms of the prediction of plaque from complex lesions of coronary arteries.

IVUS imaging is quite complex and requires specialized skills and knowledge
for interpretation and analysis. With the advent of technology, artificial intelligence
(AI) has shown significant improvement and efficiency in the analysis of image
processing [8, 9], education system [10, 11], tourism [12], and medical imaging
[13—15]. AI with machine learning (ML) [4, 16, 17] and deep learning (DL) [18—
20] based prediction algorithms have simplified the IVUS imaging segmentation
containing complicated lesions into various categories of calcification. Also, the
lumen and media segmentation are highly desirable in the complex IVUS images for
evaluation of the degree of calcification. The evaluation of calcification in the target
lumen area and media in IVUS images is crucial to optimize the stent implementation
for accurate outcomes during PCI procedures. Al with its feature extraction and
selection capabilities can segment the lumen-intima (LI) and media-adventitia (MA)
border from the coronary arteries wall automatically.

Generally, the non-invasive technique of CCTA provides elaborated imaging of
the coronary arteries, and CTA images can be processed for predicting the risk of
stenosis in coronary vessel boundaries [21]. CTA images can be manually segmented
by radiologists and are time-consuming. However, CTA images are quite complex and
require specialized skills for their interpretation for predicting CVD risk. Segmenting
CTA images for visualization of stenosis in coronary vessels is highly dependent on
the expert’s skills and may introduce selection and evaluation errors. To resolve this,
DL-based methods are extensively explored for segmenting CTA images and have
shown superior accuracy [22, 23]. These methods qualify for providing automatic,
accurate, and faster segmentation of coronary arteries. However, prediction of CVD
risk using IVUS imaging is highly preferred by cardiologists as it provides a clear
view of coronary arteries for complex lesions along with identification of vulnerable
plaque.

Recently, several techniques and methods have been proposed for the automatic
segmentation of the IVUS images for the identification of various categories of
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plaque. These techniques have extracted handcrafted features such as texture [4],
artificial neural networks (ANN) [16], and convolutional networks (CNN) [18] are
quite popular. Particularly UNet-based DL algorithms have shown more accurate
outcomes and prevent errors in the prediction of calcified plaque from IVUS images
[1, 3, 24, 25]. These prediction algorithms can typically segment calcified, non-
calcified, and mixed attenuation plaques from the IVUS images. Fibrous and fibro-
fatty tissue can also be segmented from IVUS images to analyze the correlation
between calcium and atherosclerosis [26].
The key objectives of this chapter are as follows:

e The IVUS imaging procedure is elaborated along with its methods, types, and
limitations to gather clinical imaging data for further investigation.

e Various ML and DL-based prediction algorithms are reviewed, and salient features
are gathered which ensure the automatic prediction of calcified, non-calcified,
attenuated, and mixed attenuated plaque from the IVUS images.

e Apart from IVUS imaging, details about other imaging techniques such as CTCA
are also highlighted to compare for accuracy and efficiency.

The rest of the chapter is organized as follows. Section 5.2 elaborates on the key
procedure technique that involves gathering clinical data using the IVUS technique.
The details about Al-based techniques for automatic segmentation of IVUS imaging
to analyze the CVD risk are categorized into ML-based and DL-based techniques
and are highlighted in Sect. 5.3. Section 5.4 details the benefits and limitations of the
CTCA technique for CVD risk prediction in comparison to IVUS imaging. Lastly,
the concluding remarks and future directions are sketched in Sect. 5.5.

5.2 IVUS Imaging Data Acquisition

IVUS images are 360-degree cross-sectional visualizations of coronary arteries.
IVUS images can be utilized to analyze lumen and vessel morphology such as shapes,
borders, and areas. These images can also be examined for various types of plaque and
their composition. Images can also be useful in decision-making for CVD diseases
in atherosclerosis and post-surgery examination such as stent underexpansion and
stenosis. Figure 5.1 illustrates (a) the IVUS image in which (b) media-adventitia
(MA) border, (c) lumen area, and (d) calcified plaque are manually annotated and
highlighted.

Basically, IVUS generates HD resolution gray-scale images from the ultrasound
(USd) signals reflected by the coronary arteries structure. Coronary arteries can
be divided into three parts namely, the innermost part as intima, the middle layer as
media, and the outermost layer as adventitia. Atherosclerotic plaque is less echogenic
and is accumulated in the intima layer of coronary arteries. In comparison to the inner
layer, the adventitia layer (outer layer) is highly echo-reflective. The media layer
contains smooth tissues and hence, does not reflect USd signal and appears dark in
the IVUS images. Also, the atherosclerotic plaque on the inner layer is moderately
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Fig. 5.1 IVUS images with manual annotations as a original gray-scale image b MA layer region
¢ lumen region d calcified tissue localization [18]

echogenic in nature. This difference in properties of the three layers of coronary
arteries and the plaque enables identification and segmentation easily.

5.2.1 Description of Catheter for Capturing IVUS Images

IVUS catheter is a device used for collecting images from coronary arteries. It is
a thin and flexible tube-like structure with a small transducer mounted on it. Like
other USd imaging, one end of the catheter is connected to a device that converts the
reflected USd signals and displays real-time images of the coronary vessels on the
screen. Initially, the IVUS catheter is fed over a guidewire guided by angiography to
the region of interest (ROI). IVUS transducer collects the images either distal to ROI
and then pulled back through the stenosis region or directed placed at ROIL. IVUS
images are captured with an automated pullback speed. 60 images/mm at 30 fps are
acquired by the IVUS device with the probe withdrawn at a fixed speed of 0.5 mm/
sec. The pullback operation can either be automated or manual. Manual pullback is
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Fig. 5.2 Description of IVUS catheter fed over a guidewire [27]

more popular as it allows the observer to concentrate more on the target regions of
the vessels. Figure 5.2 represents the catheter fed over a guidewire.

There exist many commercial catheter manufacturers for capturing IVUS images
[27]. IVUS imaging data can be acquired by various equipment at multiple frequen-
cies namely, 20, 50, and 40 MHz. Boston Scientific Corporation, Philips Volcano, and
Terumo are a few popular manufacturers providing a wide range of catheters for IVUS
imaging. OptiCross catheter with the rotational transducer at a variable frequency of
15, 30, 40, and 60 MHz is manufactured by Boston Scientific. EagleEye, Revolution,
and Refinity catheters are manufactured by Philips Volcano. These devices work on
transducer frequencies of 20 and 45 MHz with a phased array and rotational trans-
ducer. Terumo manufactures catheters with rotational transducers which work at 40
and 60 MHz frequencies known as View IT, AltaView, AnteOwl WR, Navifocus
WR, and Intrafocus WR.

5.2.2 Quality Assessment for IVUS Images

For accurate and efficient outcomes from the IVUS images, it is necessary to assess
the quality of the gray-scale images captured by the IVUS device. IVUS image
quality can be evaluated by considering spatial resolution, imaging sensitivity, and
contrast [28].

The spatial resolution of an USd image is computed as the minimum distance
between two neighboring and differentiated features. The spatial resolution is
inversely proportional to the computed distance. For an image with a lesser distance,
spatial resolution is high. Spatial resolution is categorized as axial resolution and
lateral resolution for an USd image. Axial resolution (v**) measures the depth reso-
Iution and is defined as the capacity to differentiate close neighboring features along
the USd beam axis. v can be computed using Eq. (5.1).
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’”—)L 5.1
V—ﬁ 3.1

where 4 is the wavelength computing using the speed of sound (c) and transducer
frequency (7) as ¢ and f is the transducer fractional bandwidth (—6 dB). For USd
transducer with 20-50 MHz frequency, v** ranges from 70 to 200 pm.

Lateral resolution (v’) is the capability measure to differentiate between neigh-
boring features in the perpendicular direction of the USd beam. It is computed using
Eq. (5.2).

vl =2 (5.2)

where 1 is the transducer wavelength and ¢ defines the ratio of focal length to
the aperture size of the USd image. Natural focal length (qbn) is computed for an
unfocused transducer using Eq. (5.3).

_D

= (5.3)

b
where D, is the USd transducer diameter. For USd transducers with 20-50 MHz
frequency, lateral resolution (v*) ranges from 200 to 250 pm.

Temporal resolution (v™) in an USd image represents the capability to differentiate
between instantaneous events of rapidly moving structures. During a cardiac cycle,
it is defined as the time from the starting of one frame to the next. v is improved
by reducing penetration depth, focal points and scan lines/frame. This will allow the
USd signal to travel a small distance, prevent scan line duplication, and narrow the
size of frames. If ¢ is the number of focal points, D, is penetration depth and Sy is
the number of scan lines, then, v” is computed using Eq. (5.4).

. 154000
v = (5.4)
2x¢N x D, xSy

The contrast of an IVUS image (Z.) determines the distinguishing capability of
the target feature from the nearby tissues. In IVUS images, it is computed from the
difference in impedances between the target (7') and the background (B) regions. Z,
is a vital parameter for features that are prominent against background areas. It is
calculated using Eq. (5.5).

|87 — 3]
VRF = —1g

where §7 and pr are the acoustic signal magnitude and S.D. (Standard deviation)
in the target region. p and up are acoustic signal magnitudes and S.D. for the
background.

T, = (5.5)
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The sensitivity parameter is used to detect the USd echo in the presence of back-
ground noise. The acoustic attenuation of the USd signal increases due to scattering
and abortion which decreases the signal-to-noise ratio (nsyg)- nsng is computed using
Eq. (5.6).

Vris
s (dB) = 20 logyy =

not

(5.6)

where Vp, and V,,; are acoustic signals from the target echogenic region and
background region, respectively.

5.3 Artificial Intelligence for Predicting Risk
of Cardiovascular Disorder

IVUS images provide lumen information, plaque categorization, and damaged
vessels effectively. This information assists in the early diagnosis of cardiological
disorder and prevents stroke/heart failure in patients suffering from coronary heart
diseases [17, 29]. However, IVUS images are quite complex and require special-
ized skills to detect impacted lumen border, extent of calcification, and degree of
atherosclerosis. In addition, the number of frames in an IVUS sequence for a single
patient is huge and hence, requires plenty of time for accurate analysis and diagnosis
so that proper treatment and advice can be extended to the patients [2, 30]. For accu-
rate, and faster detection of the severity of coronary artery disease in [IVUS images, Al
has provided a lot of ML and DL-based prediction algorithms. These algorithms not
only provide automatic and faster segmentation of IVUS images but also visualize
the morphological features of plaque which help in the identification of their adverse
impact on coronary arteries. In this section, we have categorized the various Al-based
CVD risk prediction algorithms into two categories namely, ML-based prediction
algorithms [31-34] and DL-based prediction algorithms [3, 35-37] for IVUS image
segmentation. Tables 5.1 and 5.2 highlight the salient features and compare the ML
and DL-based prediction methods for IVUS segmentation, respectively.

Table 5.1 Salient features of ML and DL-based IVUS segmentation algorithms

SN Attributes ML-based algorithms DL-based algorithms

1 Training data availability Low Limited

2 Feature extraction Manual Automatic or manually
3 Feature selection X v

4 Computational complexity Relatively less High

5 Performance Moderate High

6 Statistical measure Limited Large

7 Dataset augmentation X v
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Table 5.2 Comparison of ML and DL-based IVUS segmentation algorithms

SN Attributes ML-based algorithms DL-based algorithms

1 Generalizability X X

2 Model explainability | X X

3 Risk-of-Bias v v

4 Data classification v X

5 Unseen datasets X X

6 Dataset processing X 4

7 Loss function X

8 Limitations Trained on limited datasets Trained on variable datasets

5.3.1 Machine Learning-Based Algorithms for IVUS Image
Segmentation

A lot of ML-based algorithms such as Random forest (RF) [38—40], k-nearest neigh-
bour (KNN) [30], Feedforward neural network (FNN) [38], Support vector machine
(SVM) [39], Decision tree (DT) [41], Bagged tree (BT) [41] and many other [32, 34,
42] are proposed for feature-based classification and segmentation of IVUS images
for CVD risk prediction. Table 5.3 tabulates the salient features of ML-based IVUS
image segmentation techniques.

Generally, multiple features are extracted and selected from grayscale IVUS
images to classify the vulnerable plaque tissues into calcified, attenuated, mixed
attenuated, fatty, and fibrous fatty along with lumen and media borders. In this direc-
tion, Yang et al. [29] proposed a regression network based on coupled contour to
resample the lumen and EEL in IVUS images. The anatomical relationship between
the lumen and EEL was reconstructed to reduce false prediction. The processing
speed of the method was quite fast due to the elimination of post processing step and
the reduction in parameters in the decoder. On the other hand, authors proposed a
graph-based segmentation technique to segment the lumen and EEL from the coro-
nary vessel surface in IVUS images [32]. The method combined automated segmen-
tation and computer-aided refinement to deal with calcification, shadow, and imaging
artifacts. In [39], authors evaluated six ML-based algorithms for the classification
of lesions with fivefold cross-validation. The algorithm performance was measured
by defining thresholds for maximal accuracies and quality by Matthew’s correlation
coefficients.

To segment arterial walls for morphological structures such as bifurcations,
shadows, echogenic plaques, and normal, features are extracted from the various
IVUS images. For this, authors generated a 22-D feature vector for each column
of the IVUS image to deal with the multi-classification of various morphological
structures [40]. The classification accuracy was enhanced by assessing the feature
importance using the RF algorithm. Similarly, authors extracted multiple features
from the IVUS images and employed four ML classifiers to segment the calcified
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plaque and the normal [41]. An efficient feature selection strategy was deployed to
minimize misclassification and enhance accuracy. Rezaei et al. [30] proposed a hybrid
model by combining KNN and Fuzzy C-means (FCM) for automatic and accurate
segmentation of VH-IVUS (Virtual histology IVUS) images. The color feature was
extracted along with pixel clustering, cluster labeling, and outlier removal. Multiple
algorithms were also exploited for robust feature extraction such as closed luminal
border tracing, open lumen border tracing, confluent components, NC layering, and
plaque burden assessment for classifying plaque from luminal border efficiently.

In another line of research, ML algorithms such as Gradient boosting framework
(GBF), Regression tree building (RTB), Convolutional kernel learning (CKL), sparse
coding, and dictionary learning were also proposed for automatic segmentation of
lumen border. In [42], authors utilized a gradient boosting framework along with its
quadratic approximation to generate discriminative boundaries for lumen segmenta-
tion. Tong et al. [2] proposed dictionary-based IVUS image segmentation utilizing
sparse coding and kernel dictionary. The dictionary consisted of positive and negative
tissue samples to reduce the impact of artifacts and shadowed for better segmenta-
tion results. Also, linear discrimination of pixels in ROI was done using kernel
cluster algorithms to improve detection quality during morphological operations.
On the other hand, authors exploited multi-frame CNN to segment lumen boundary
automatically in IVUS images. Initially, the minimum lumen area and stenosis area
percentage were used for making decisions for lumen boundary segmentation. After
this, it was subjected to the Gaussian process regression stage for further refinement.
The automated gating and regression stage improved the effectiveness and accuracy
of the method.

To summarize, ML-based segmentation algorithms utilized methods along with
features-based classifiers to improve the accuracy and effectiveness of the method.
Multiple features were extracted to segment the border areas such as MA and LI from
the lumen border. The trained classifiers were used for the classification of lumen
segmentation into multiple categories. Most of the methods were not generalizable
and were trained on limited datasets. The clinical deployment of most of the ML-
based methods was yet to be explored.

5.3.2 Deep Learning Based Algorithms for IVUS Image
Segmentation

DL-based algorithms have recently been used for the automatic and fast segmen-
tation of IVUS images. These methods help the clinical practitioner for accurate
diagnosis of atherosclerosis and stenosis to prevent CVD risk in heart patients. DL-
based algorithms either utilize deep networks for segmentation or integrate hand-
crafted features for better accuracy. The details about various DL-based IVUS image
segmentation algorithms are tabulated in Table 5.4.
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Mostly, DL-based algorithms utilize U-net and its variants for effective and effi-
cient segmentation of IVUS images. In this direction, Shinohara et al. [1] exploited
U-net for automatic segmentation of complex lesions in IVUS images to identify
normal, calcified, and stent areas. However, authors utilized deep 8-layer UNet archi-
tecture to mask the lumen and EEM in the IVUS images [25]. Feature maps were
extracted from the encoding layer whereas feature maps were concatenated in the
decoding layer using skip connection. The final predictions were recovered from the
class probability maps generated by the softmax in the decoding layer. The method
eliminated the pre- and post-processing steps to speed up the segmentation process.
In [19], learned translation dependence was integrated with UNet to separate the
vessel components in polar coordinated IVUS images. Interior and external vessels
were separated using context awareness in multi-class segmentation using spatial
content information. Lumen and media vessels were masked by thresholding the
softmax probabilities in the post-processing step. The method segmented the vessels
in real-time on a 1080 NVIDIA GPU. Balakrishna et al. [3] exploited VGG-16 to
design UNet architecture. The proposed method segmented the lumen and media
by generating a pixel map rather than considering the whole image. Thresholding-
based post-processing step was applied to improve the boundary smoothness for the
segmented area.

To improve the efficiency of the feature map for accurate IVUS image segmen-
tation, certain extensions are incorporated into the basic architecture of the UNet
framework. In this direction, Zhu et al. [43] proposed UNet++ by integrating feature
pyramid maps to utilize feature maps at multiple scales. Multi-scale features were
fused, and upscale operators were utilized for scaling the heterogeneous feature scale.
Feature pyramid maps generated the final probability feature map using voting mech-
anism. Self-adapting threshold was used in the post-processing step to obtain the
final target area. In [20], authors integrated a feature aggregation module with the
UNet to deal with the multi-scale features. Feature aggregation module extracted
global semantic information and high-resolution local information from the up-
convolutional layer and the encoding layer of the network and fused them efficiently.
Authors integrated convolutional block attention modules and atrous spatial pyramid
pooling in UNet architecture to preserve the spatial features for detecting vessel
components from the crucial channels. These additional modules determined feature
importance and give high weights to the target vessel components for better segmen-
tation accuracy in the presence of artifacts and shadows. The method was effective in
segmenting the vessel lesions in the presence of severe calcification and shadowing
areas behind the accumulated calcified plaque.

Apart from the UNet model, other DL models such as CNN, GoogleNet, Incep-
tionV3, and DeepLabV3 are also explored for segmentation in IVUS images. In
[44], authors modified the pre-trained GoogleNet Inception v3 model using transfer
learning for the classification of coronary plaque in the lesion area of IVUS images
into fibrous, fatty, or fibro-fatty plaques. On the other hand, authors utilized the
EfficientNet-B3 neural network for categorizing plaque into three categories [45].
The model’s performance was enhanced by reducing memory occupancy in the
network architecture. The efficient and optimal hyperparameters were searched using
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compound scaling to optimize the network for efficient results. Olender et al. [37]
exploited CNN architecture for classifying the tissues into pathological and non-
pathological utilizing spatial and geometric constraints. The ROI pixels classified
plaque into four types. Stochastic gradient descent was used to reduce the training
time for faster classification. In [ 18], authors utilized deep CNN along with a cascaded
network to detect the MA borders, lumen, and calcium. The prediction was performed
in two stages namely, the segmentation stage and the location stage. In the first stage,
plaque regions were identified in CNN and probability feature maps were generated.
In the final stage, convolutional operations were applied to locate the calcified tissues
in the plaque. The efficiency of the method was proved by testing the performance on
multiple metrics and loss functions. Bajaj et al. [35] segmented lumen borders and
EEM in IVUS images in real time using ResNet deep neural network architecture.
Hyperparameters were selected empirically and GAN structure with a fixed learning
rate. The proposed method was accurate, automatic, and faster in comparison to other
methods. The segmentation was performed in 60 s for a 30 mm coronary segment.
The method was limited to 50 MHz IVUS images only and had not analyzed stent
area images in the training dataset. Authors segmented IVUS images for lumen
and vessel borders along with stent area using the DeepLabv3 network and ResNet
encoder [36]. The segmentation performance of the proposed model was relatively
higher in the images without stent area than the one with stent.

To investigate the IVUS image segmentation capabilities, performance from
multiple deep neural networks was compared and evaluated. In this direction, Barg-
sten et al. [46] compared the performance from DeepLabV3 and UNet for vessel
wall and lumen segmentation for calcified plaque. For comparable performance, the
training datasets and network capabilities were kept identical. Both networks had
40 M parameters and three downsamplings in the network encoder. In [33], the
authors proposed Dual path UNet (DPU-Net) and trained two other deep networks
namely, SegNet and UNet to generate a prediction map for segmenting the IVUS
images. The transposed convolutional layer was added in the last upsampling stage
for fair comparison. A real-time augmenter was also integrated into the DPUNet to
improve the processing speed and generalizability of the model on small training
datasets. Apart from this, authors integrated 193-D handcrafted features with 64-D
high-level features extracted from UNet [47]. The hybrid feature vector of 257-D was
exploited to improve the discriminability of the network for the lumen boundaries.
The dictionary was loaded with lumen and non-lumen images to improve segmenting
accuracy in complex lesions. Pre-processing steps were employed to improve the
feature selection and post-processing was to enhance the model accuracy to detect
vessel boundaries efficiently.

To summarize, due to the high volume of gray-scale images generated by the
IVUS device, it became important to analyze those images not only accurately but
also in real time. Since IVUS is an invasive technique, radiologists can’t analyze
such a huge number of images quickly, and give predictions for the patients who are
waiting for the angiography in the operation theater. DL-based prediction algorithms
are quite faster to examine the IVUS images and provide outcomes in real time.
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5.4 Other Imaging for Predicting Risk of Cardiovascular
Disorder

IVUS is an invasive technique for CVD risk prediction by analyzing coronary arteries
in real time. Apart from invasive techniques, non-invasive techniques such as the
CCTA technique are also quite popular among cardiologists for the prediction of
atherosclerosis [5]. CCTA images can be reviewed to determine the narrowing of
coronary arteries due to the accumulation of calcified plaque. DL-based methods
are preferred over conventional methods as these methods provide better results by
handling the attenuation caused by the accumulated plaque in the coronary vessels.

Basically, DL-based UNet architecture is explored to segment CCTA images for
predicting coronary disorders [21, 22]. In [22], authors proposed 3D multi-channel
UNet to segment the CTA (Computed tomography angiography) image for identifi-
cation of vessel stenosis automatically. The method applied the preprocessing steps
to remove the irrelevant tissues from the CTA images. Activation unit ReLU, max
pooling for downsampling, and DCE as a loss function were used in the DL archi-
tecture. The dataset was augmented by flipping and rotating the background of the
vessel regions. On the other hand, Pan et al. [21] exploited 3D dense UNet to segment
the coronary arteries CTA images. Focal loss function was adopted to address the
class imbalance between the background area and the coronary arteries region. The
preprocessing step was employed to prepare the training dataset by transforming the
HD images to low resolution maintaining global and correlation information. The
method was faster taking an average running time of 10-15 secs for segmentation.
The method was trained on a relatively larger dataset hence, it was expected that the
method performs well on unseen data as well.

To address the limitation of poor quality and contrast of CTA images, authors
proposed a region-based DL method based on supervised attention UNet [48]. The
model utilized a hybrid loss function combining logistic and Dice functions to
measure the relationship between the predicted and training data. The method utilized
five-fold validation for segmenting the left ventricular myocardial contours from the
coronary vessels. In [23], authors exploited 3D deep attention UNet for segmenting
the epicardial adipose tissues from the coronary arteries automatically to examine
the deposited fat. To enlarge the training dataset, various augmentation techniques
such as flipping, rotating, and scaling were applied. Five-fold validation was used
to demonstrate the segmentation results in a better way. The method had achieved
high accuracy and precision, but validation of the method on multiple datasets from
different vendors was substantial before its clinical deployment. Figure 5.3 represents
the CTA image with the right coronary artery and aorta.

To identify the narrowing of coronary vessels and aorta, authors proposed a 2D
UNet architecture to segment these components in the CTCA images [5]. Fast and
multiple preprocessing techniques were applied to adjust brightness, pixel intensity,
and scaling to convert the input image into 8-bit PNG (Portable network graphics)
format. The proposed model was fully automatic by including the sigmoid func-
tion, batch normalization, and dropout layer to reduce overfitting and improve the
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Fig. 5.3 IVUS image representing coronary arteries (arrow) and aorta (arrowhead) [5]

model’s stability and performance. However, authors embedded a global feature
network using semantic information for segmenting the boundaries in CTA images
accurately [49]. Noisy activation function and improved active contour loss were inte-
grated to suppress noise effect and optimize the network predictions for accurate and
automatic segmentation of vessel boundaries. The model was equipped with multi-
level semantic information to obtain refined vessel boundaries with high-quality
score maps.

To summarize, DL-based methods are highly effective and efficient in segmenting
the coronary vessels from the CTA images. These methods are not only accurate but
also fast in comparison to manual segmentation techniques. DL-based methods help
in the early identification of CVD to prevent the risk of heart failure by predicting
vessel narrowing by plaque accumulation. However, there are certain limitations in
terms of dataset availability and clinical deployment of the method. Various augmen-
tation techniques such as flipping, rotation, scaling, and many more are adopted to
increase the training data which do not ensure that the method performs well on the
unseen datasets. Methods also suffered from the selection bias and the evaluation
bias. The outcomes of DL methods are compared with the manually annotated data.
This introduces the evaluation bias in the accuracy as it is highly dependent on the
radiologist’s capabilities and experience.
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5.5 Summary

In this chapter, we have reviewed the Al-based methods for segmentation of IVUS
imaging for the prediction of CVD risk at an early stage. Al-based IVUS image
segmentation methods are categorized into ML-based techniques and DL-based tech-
niques. The salient features, similarities, differences, and limitations are explored to
determine the achievement and improvement in the area. ML-based methods are
limitedly explored for segmenting the vulnerable calcified plaque from the coro-
nary vessels due to complex and tedious regions in the IVUS images. On the other
hand, DL-based methods including CNN architecture and different variants of UNet
are widely popular among researchers due to better accuracy and precision in the
segmented results. DL-based methods have shown successful results in segmenting
critical components such as MA border, LI borders, fibrous and non-fibrous plaque
from the complex lesion of coronary arteries. But DL-based methods are data hungry
and to satisfy the requirements of training data, various data augmentation tech-
niques are widely explored. Data augmentation techniques increase the training data
size, but these techniques do not guarantee the model accuracy on unseen real-time
datasets. In addition, attentional networks, feature aggregation, and other parameters
are introduced to improve accuracy, but they impact the speed of the model. Also,
the DL-model outcomes are compared with the manual annotated datasets which
introduce the selection and evaluation bias in the final results.

In the future, DL-based models can be explored for generalizability by selecting
the datasets from various sources. Also, the emphasis should be given public avail-
ability of the code so that the exhaustive performance evaluation can be performed
before the clinical deployment of the DL model.
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Chapter 6 ®)
Diagnosis and Prediction e
of Cardiovascular Risk in Retinal

Imaging Using Artificial Intelligence

Abstract Cardiovascular illness is a primary cause of death and disease globally,
highlighting the need for innovative methods in the early assessment of cardiovas-
cular risk and detection. This article examines the latest developments in the domain
of artificial intelligence, including deep learning and machine learning, to identify
cardiovascular risk. The paper focuses on the use of Al (Artificial intelligence) to
analyze various data modalities, specifically highlighting retinal fundus photos as
a possible non-invasive risk assessment tool. The paper examines the current state
of Al-based cardiovascular disorder detection, emphasizing the difficulties, devel-
opments, and potential paths forward in applying these technologies to enhance
cardiovascular prediction and facilitate early intervention.

Keywords Artificial intelligence (Al) - Non-invasive + Retinal imaging + Feature
selection + Risk assessment

6.1 Introduction

Cardiovascular disorder (CVD) is a broad category of medical illnesses that impact
the flow of blood to the heart. It is one of the foremost reasons for illness and death
affecting individuals across all age groups from infancy to old age and a signif-
icant contributor to disability and reduced productivity in adults. It is driven due
to excessive consumption of fat or genetic factors. CVD leads to stroke and heart
diseases, which are the primary reasons for mortality worldwide. One in three adults is
impacted by one or more types of CVD. The likelihood of this happening grows with
age and varies across different groups with varying ethnicities, races, and geographies
[1, 2]. In many countries, the prevalence of CVD is substantial and is on the rise. In
some countries, the onset of the first heart attack occurs about 10 years earlier than in
other countries. The key risk factors including smoking, diabetes, lipids, hyperten-
sion, diet, alcohol consumption, physical activity, obesity, and psychosocial factors
accounted for 86% of CVD [3]. Timely assessment of CVD-related risk factors is
extremely important to lower the frequency of cardiac events and consequently the
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death rate. Although detection of CVD risk can be done through traditional methods
recently Al-based CVD detection is outperforming traditional methods owing to its
automated nature and reduced manual intervention. Most recently, researchers have
proposed methodologies utilizing RFI (Retinal fundal imaging) for CVD detec-
tion leveraging DL-based techniques [4]. This approach can certainly seem very
promising owing to the non-invasive nature of retinal examination. Moreover, it is
also accessible to low-income group people.

CVD refers to a condition impacting the blood vessels or heart, resulting in damage
in arteries located in the brain, heart, kidneys, and eyes. It generally involves the
presence of fatty deposits within arteries, posing a risk of blood clot formation. The
main types of CVD are as follows [5]:

e Coronary Heart Disease (CHD): Impacts the arteries supplying blood to the
muscles of the heart.

e Cerebrovascular Disease (CeVD): Impacts the blood vessels that provide supply
to the cerebral region.

® Peripheral Artery Disease (PAD): Impacts the arteries that provide blood to the
arms and legs.

® Rheumatic heart disease (RHD): Streptococcal bacteria result in harm to both the
cardiac muscle and valve structures.

e (Congenital heart disease: Congenital anomalies that interfere with the regular
growth and operation of the heart, stemming from irregularities in the heart’s
structure.

Most CVDs could be averted through effective intervention addressing cardiovas-
cular risk factors. Prompt diagnosis and treatment are essential in this context. The
primary cardiovascular condition is ischemic heart disease more commonly observed
in men. Following this, there are instances of stroke, heart failure, and irregular heart
rhythms [6]. The risk factors responsible for CVD can be non-modifiable and modifi-
able. Non-modifiable risk factors are fixed and can’t be changed or varied with time.
These factors include age, sex, ethnicity, family history, and socioeconomic level.
On the other hand, modifiable risk factors are time-varying and include lipid abnor-
malities, excessive blood pressure, Diabetes mellitus, obesity, sedentary lifestyle,
smoking, and tobacco usage [6, 7]. Figure 6.1 depicts the CVD risk factors that
increase of possibility of heart attacks in human beings.

Assessing cardiovascular risk is a critical aspect of determining the most effective
treatment for a patient. This process utilizes tools to compute the chances of expe-
riencing a cardiovascular activity in a specified timeframe, typically within the next
10 years, aiding in informed decision-making regarding the most suitable treatment.
Several widely recognized CVD risk assessment tools are utilized globally to guide
preventive strategies and personalized treatment plans. Framingham CVD assesses
10-year risk of CVD events including CHD, PAD, heart failure, and stroke [8]. Pooled
Cohort Equation (PCE) derived from the American cohort is utilized for estimating
the 10-year risk for arteriosclerotic CVD including non-fatal myocardial infraction,
CHD death, and fatal or non-fatal stroke [9]. Systematic Coronary Risk Evaluation
(SCORE) derived from the European cohort is utilized for estimating the 10-year risk
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Fig. 6.1 Description of various CVD risk factors

of fatal CVD events [10]. QRISK3 derived from the United Kingdom cohort is used
for assessing the 10-year risk of CVD events including CHD, ischemic stroke, or tran-
sient ischemic stroke. American College of Cardiology/American Heart Association
(ACC/AHA) risk prediction tool provides a 10-year risk estimate of atherosclerotic
CVD [9]. Modified Framingham risk score (FRS) serves as an official risk assessment
tool employed in Singapore [11]. Aortic stenosis and ventricular dysfunction are the
categories of CVD that are frequently identified by Cardiac Magnetic Resonance
(CMR) and Electrocardiograms (ECG) [12—15].

The purpose of this chapter is to provide insights into the identification and eval-
uation of CVD risk through the application of Al techniques, including ML and DL
utilizing RFI. The key objectives of this chapter are as follows:

e The salient features of traditional techniques and Al-based techniques for CVD
risk predictions are elaborated to determine the importance of ML and DL
techniques in CVD detection.

e The chapter reviews the various state-of-the-art (SOTA) techniques for CVD
detection, with a specific focus on Al-based techniques.

¢ Details about CVD detection using RFI within the context of DL are gathered and
reviewed to highlight the potential benefits and limitations of using RFI for CVD
risk prediction.

The chapter is organized as follows: Sect. 6.2 discusses about Al as tool for CVD
risk assessment. It further discusses traditional ways of detecting CVD risk and the
limitations pertaining to traditional methods. Section 6.3 discusses about automated
detection of CVD using ML-based techniques. The intersection of retinal imaging
and cardiovascular health is elaborated in Sect. 6.4. Section 6.5 discusses CVD risk
prediction techniques through DL-based techniques. Lastly, the conclusion and future
directions of CVD detection through RFI are detailed in Sect. 6.6.
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6.2 Artificial Intelligence for Assessing the Risk
of Cardiovascular Disorder

Researchers are looking for other alternatives for predicting CVD-related disorders.
Al is one of such promising technique that holds immense potential in improving
CVD management, from early detection to personalized treatment. Clinicians can
leverage Al algorithms to improve patient treatment and care [16]. Al plays a crucial
role in enhancing the precision and efficiency of assessing an individual’s risk for
developing CVD. According to [17], Al is set to revolutionize medicine, particularly
in cardiovascular and medical imaging, enhancing efficiency and empowering physi-
cians with advanced computational tools for improved patient care. Al can make use
of various ML (Machine learning) and DL (Deep learning) models to analyze larger
datasets for identifying patterns and relationships that may contribute to CVD risk. It
has the capability to assess medical images, like CT scans (Computed tomography)
and MRI (Magnetic imaging resonance), identifying initial signs of cardiovascular
diseases such as arterial plaques, stenosis, and other irregularities linked to CVD. It
can scrutinize data from electronic health records [16] to detect patterns and asso-
ciations that may suggest an elevated risk of cardiovascular diseases, encompassing
details like blood pressure, cholesterol levels, and medical history. Compared to
conventional techniques, Al holds the potential to automate the assessment of CVD
risk in a faster and more efficient way. Moreover, some patients detected with CVD
risk may need to opt for the surgery to reduce the risk of death. In response, Al tech-
niques including DL can be utilized by researchers to perform tasks such as visual
tracking [18, 19] during laparoscopic surgery which can lead to an increase in the
success of the surgical procedure involved.

6.2.1 Limitations of Traditional Methods for Diagnosing
Cardiovascular Disorder

Although standard risk assessment tools offer a proactive approach to patient treat-
ment but these tools such as Framingham CVD, FRS, PCE, QRISK3 and SCORE rely
on cohorts predominantly comprising individuals of Western descent [4, 20]. Given
the emerging understanding of diverse ethnicities having distinct risk factor profiles,
these tools may not provide the highest accuracy for all populations [4]. According
to [21], prediction equations for assessing the risk of CVD might not be effective
in today’s scenario, leading to insufficient or excessive treatment of risk factors for
CVD. Authors investigated that conventional cardiovascular risk may result in over-
or underestimation of CVD risks, providing limited benefits to clinical outcomes [22].
Currently, determining the optimal risk assessment models remains challenging due
to variations in categories of risk, the presence of comparable cohorts, and diversity
among populations prone to risk.
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Furthermore, ECG and CMR, diagnostic tools are utilized for patients showing
symptoms rather than asymptomatic individuals [14]. Challenges in the form of
high costs and the need for specialized technical expertise limit their application
as screening tools for the general population, hindering early CVD diagnosis [13,
23]. As a result, numerous patients remain undiagnosed until the disease reaches its
advanced stages, leading to inferior outcomes for those cases [24].

6.2.2 Comparison of Traditional and Artificial
Intelligence-Based Approach for Predicting
Cardiovascular Disorder Risk

CVD risk assessment can be done either using a traditional approach or a modern
approach. The traditional approach follows conventional techniques for CVD predic-
tion, but modern approaches are based on Al-based methods. The salient comparison
of traditional versus Al approaches for detecting CVD risk is depicted in Table 6.1.

Table 6.1 Traditional versus Al-based approach CVD risk assessment

Attributes

Traditional approach

Al-based approach

Data processing

Manual collection and input of
data

Automated data integration
and analysis

Data types

Limited to basic clinical
parameters

Diverse data types, including
genetics, medical imaging and
lifestyle factors

Risk assessment models

Relies on predefined risk
equations

Utilizes advanced predictive
modeling techniques adapted
to evolving data

Feature selection

Manual or limited feature
selection

Utilizes sophisticated
algorithms for comprehensive
feature selection and
prioritization

Computational efficiency

May involve time-consuming
manual processes

Enhances efficiency through
automated processes, reducing
computation time

Accuracy

Relies on predefined equations
and clinical judgment

Utilizes advanced algorithms
for improving accuracy,
especially in complex and
dynamic scenarios

Integration with healthcare
systems

May have limitations in
seamless integration

Can be integrated into
electronic health records and
existing healthcare systems
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6.2.3 Challenges in Utilizing Artificial Intelligence to Assess
Cardiovascular Risk

Detecting CVD through Al techniques poses several challenges. A few of the
challenges are described and enumerated below:

® Quality of the dataset: The effectiveness of Al models is strongly impacted by the
standard of training data. Poor performance and incorrect outcomes could result
from incomplete, inaccurate, or biased data [13].

e Lack of Interpretability: The difficulty of understanding Al models’ decision-
making processes often leads to their being perceived as “black boxes.” This lack
of interpretability poses difficulties in trusting the outcomes of Al-driven CVD
detection [25].

® Regulatory issues: Before using Al-based systems for CVD diagnosis in practical
scenarios, regulatory approval from an appropriate authority must be obtained
which can incur significant expenses and time investment [16].

e [ntegration with the current framework: Healthcare systems are complex and
protecting data security and privacy is crucial. These factors make it difficult to
integrate Al-driven CVD detection systems into the current healthcare framework
[26].

e Expense of deployment: Adoption of Al-driven CVD detection systems may be
hampered by the high cost of development and implementation, particularly in
environments with restricted funding [27].

6.3 Machine Learning-Based Models for Predicting Risk
of Cardiovascular Disorder

ML is becoming increasingly crucial in the early identification and diagnosis of crit-
ical diseases [28], emphasizing the ability to draw inferences based on emerging
information through the detection of concealed patterns within observations [29].
Various SOTA ML-based techniques are adept at uncovering meaningful patterns
in large datasets to address clinical queries, demonstrating significant potential in
stratifying risk across various populations. ML contributes to the identification of
predictors and their relationship, revealing potential risk factors that traditional
models might fail to recognize [30]. Researchers are widely utilizing ML-based
techniques for the detection of various life-threatening ailments including cervical
cancer [31], brain stroke [28], and breast cancer [32]. Advances in ML have sparked
arenewed enthusiasm for assessing the likelihood of a patient being diagnosed with
heart disease. Many SOTA algorithms utilizing ML techniques have been proposed
by various researchers in order to predict CVD-related disorders. Table 6.2 depicts
various SOTA approaches for predicting CVD risk utilizing ML-based techniques.
In [30], authors have proposed a prospective study for predicting CVD events in
hospitalized diabetic patients using an ML-based approach. The methodology has
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integrated neighborhood component analysis with a hybrid sampling/boosting clas-
sification algorithm, offering options such as unsupervised hierarchical clustering
or multiple logistic regression (MLR). With just 12 easily obtainable predictors, the
model demonstrated strong generalization and outperformed traditional treatment
strategies in clinical utility. However, single-center study limits interoperability to
broader populations. Observational constraints including limited natriuretic peptide
access, may impact heart failure diagnosis, particularly with preserved ejection frac-
tion. Ejection fraction categorization was not conducted, a notable gap in heart failure
phenotyping. The methodology proposed by [29] forecasted cardiac disease and
created decision rules that make the correlations between input and output variables
using the Classification and regression tree (CART) algorithm, a supervised machine
learning technique. Additionally, the study prioritized the characteristics that affect
heart disease based on their importance. However, the proposed model lacked in
considering certain patient information like socioeconomic status and smoking which
are essential for a fair and unbiased Al model.

Authors have assessed six ML algorithms: RF (Random forest), KNN (K-nearest
neighbor), LR (Logistic regression), NB (Naive Bayes), Gradient Boosting, and
AdaBoost [33]. To adjust hyperparameters, evaluate accuracy, and calculate nega-
tive loss metrics, the model utilized GridSearchCV with five-fold cross-validation.
All classifiers were combined using a soft voting ensemble method to improve the
overall accuracy of the model. Nevertheless, the model had limited processing capa-
bilities since it trained on a small sample of patient data—between 303 and 1190
individuals in the dataset. van Dalen et al. [25] have conducted a retrospective anal-
ysis and created the XGBoost model to diagnose obstructive coronary artery disease
(oCAD) with the use of clinical information, PET scan data, and the coronary artery
calcium score (CACS). The model has improved risk classification and supported
decisions for patients with low to intermediate risk by acting as a post-test likeli-
hood estimation for oCAD. In addition, it has utilized feature importance learning
to identify important predictors. However, using data from a single hospital limits
generalizability. Individuals were identified as having oCAD using invasive coronary
angiography follow-up, which may have underestimated the positive cases. Addi-
tionally, CACS calculation using the Agatston method has its own limitations in
maintaining high accuracy and precision in prediction outcomes.

In [34], authors have assessed several ML models, including multilayer percep-
tron, LR, NB, KNN, RF, rotation forest, J48, stacking, and bagging. Following
SMOTE preprocessing, the authors used a stacking ensemble model with tenfold
cross-validation to predict long-term coronary artery disease (CAD) risk. Authors
have investigated various ML algorithms including RF, decision tree classifier,
multilayer perceptron, and XGBoost for the prediction of CVD [35]. The authors
employed an automated approach namely GridSearchCV method for hyperparam-
eter tuning and K-modes clustering algorithm to improve the convergence of the
model. However, the study was trained and tested on a single dataset limiting its
applicability to a diverse population. Also, the model focused on a restricted set of
demographic and clinical variables overlooking lifestyle and genetic factors. More-
over, study did not assess model performance on new data and lacked evaluation of
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result interpretability. Dalal et al. [36] used a variety of machine learning methods,
including as QUEST, RF, neural networks, Bayesian networks, and C5.0 to study the
prediction of heart failure. The single model might be vulnerable to issues such as
variance and bias, therefore various models were combined into a single ensemble
to reduce error and improve predictions.

To summarize, ML-based approach for CVD risk prediction can provide an auto-
mated way of analyzing the process, saving time and resources for healthcare profes-
sionals, and potentially improving the efficiency of CVD risk assessment. Numerous
patient features and attributes, such as clinical, genetic, and lifestyle characteris-
tics are efficiently integrated by ML algorithms. These algorithms can also indi-
cate early detection of CVD risk, facilitating prompt intervention and preventive
actions. However, ML algorithms discussed in this section mainly relied on datasets
containing clinical factors that strongly impact CVD risk prediction. Capturing such
clinical data at times may involve invasive procedures and be difficult to access.
Therefore, other approaches for CVD risk prediction which are non-invasive and
easily accessible can be further explored.

6.4 Intersection of Retinal Imaging for Predicting
Cardiovascular Disorder

RFI can be used to directly inspect the neuro-vasculature using a non-invasive
imaging method. Since the retina shares morphological and physiological traits with
other organs like the brain and kidneys, the state of retinal vessels serves as an indi-
rect indicator of the overall condition of the systemic microvasculature. Researchers
in [37] have reviewed the utility of RFI in detecting various systemic parameters
and diseases such as age and gender, smoking and alcohol status, body composition
factors, CVD, hematological parameters, neurodegenerative disease, renal diseases,
metabolic diseases and hepatobiliary diseases through the use of Al. The next section
discusses about the basics of retinal fundus imaging and its utility for predicting
critical diseases.

6.4.1 Retinal Fundus Imaging

The process of fundus imaging involves utilizing a single-lens camera to take a
two-dimensional picture of the back of the eye. Microaneurysms, minute red-dot-
shaped structures, typically arise from an inadequate oxygen supply and the dilation
of capillaries. On occasions, when blood supply is completely cut off due to certain
arteriolar blockages, the formation of pale soft patches occurs, identified as soft
exudates. Hemorrhages, recognized as dark red patches, may occur when there is
increased pressure in arterioles, causing the burst of retinal vessels. Hard exudates
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Fig. 6.2 Illustration of the abnormal fundus in the retinal image

are generated when proteins and lipids escape from defective vessel walls, taking on
the appearance of solid, yellow, waxy formations as depicted in the diagrammatic
representation of the abnormal fundus image in Fig. 6.2.

Analyzing the existence of these abnormalities, in conjunction with assessing
retinal indicators such as optic disk, fovea, macula, and blood vessels, offers valuable
perspectives on key disorders, contributing significantly to their accurate diagnosis.
Advancements in computer vision and DL technologies have exhibited significant
progress and potential in the analysis of fundus images. Advanced image processing
methods can now extract key features from a given fundus image, highlighting details
such as microaneurysms, exudates, hemorrhages, etc. These features despite consti-
tuting a small portion of pixels in a fundus image, are instrumental in diagnosing
diseases at an early stage [38].

6.4.2 Correlation Between Retinal and Cardiovascular
Parameters

The vascular network within the retina is often referred to as a gateway providing
insights into the condition of the heart. The narrowing of retinal arterioles has been
linked to the existence and extent of coronary artery occlusion as identified through
cardiac angiography. Over the last two decades, the constriction of retinal arterioles
and the dilation of venules have been correlated with numerous cardiovascular risk
factors, both in individuals with established CVD and across the entire age spectrum
in the general population.

Recently, there has been growing use of dynamic retinal vessel analysis as a means
of diagnosis for assessing cardiovascular risk. New insights suggest that both static
retinal vessel analysis and dynamic retinal vessel analysis possess the potential to
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function as a distinctive screening tool, specifically in evaluating systemic cardiovas-
cular risk and diseases within the microvascular context. Authors have found much
evidence suggesting that utilizing retinal imaging can predict the risk of various types
of CVD including stroke, CHD, myocardial infarction, PAD, and CVD mortality [39].
Changes in retinal blood vessels correspond to pathology in the coronary circulations
such as the narrowing of retinal arterioles in is strongly linked to the presence and
severity of angiographic coronary artery occlusion. Moreover, it was examined by the
authors that abnormal physiological processes in microvessels are associated with
advanced techniques for the prediction of CVD [40]. According to [21], the easily
accessible retinal vascular system serves as a unique and non-invasive biological
model for studying microvascular abnormalities and CVD pathology.

6.4.3 Benefits of Utilizing Retinal Imaging for Predicting
Cardiovascular Disorder

Retinal imaging has the potential to predict the risk of CVD at an early stage and
can prevent casualties among people. The key benefits of utilizing RFI in CVD risk
prediction are as follows:

e [tisbased on directly examining the health of retinal blood vessels, which exhibits
similarity to microcirculation in parts of the body. As a result, retinal imaging
provides comprehensive insights into the existence or absence of observable
vascular damage.

e Suitable for telemedicine or preliminary screening, particularly in communities
with low income where access to medical services may be limited [37].

Access to RFI is non-invasive and cost-effective [22, 26].
Relatively simple Non-radiation procedure as compared to conventional radiation-
based CT-scan procedures [27].

e Given the routine capture of retinal photographs in optometric practices, their
deployment requires no substantial additional investment in primary care, offering
a cost-effective approach. [41].

e There are often visible signs of CVD, such as hypertensive retinopathy and
cholesterol emboli in the eye. Moreover, the assessment of several retinal proper-
ties, vessel caliber, bifurcation or tortuosity, microvascular changes, and vascular
fractal dimensions is made possible with the non-invasive visualization of blood
vessels in RFI. These features could function as markers of the cardiovascular
system’s general health and possible dangers in future [42].

e RFI provides a non-invasive way to visualize atherosclerotic vascular anomalies
and offers additional information for assessing the risk of CVD [22].

e DL allows for automated analysis of RFI without the need for manual feature
extraction, such as grading. This allows for the analysis of huge image data without
sacrificing the ability to identify various parameters of retinal abnormalities, such
as vasculature [22].
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¢ When compared to traditional models, the use of RFI and the DL algorithm for
Ischemic CVD risk assessment is faster and less expensive [43].

e This alternative holds significance for both the general population and patient
care, particularly in regions having limited health care support [43].

Using DL-based approaches, the next section explores the usefulness of RFI in
CVD prediction.

6.5 Automatic Prediction of Cardiovascular Events Using
Deep Learning-Based Models

The integration of DL techniques in analyzing fundus images for cardiovascular
event prediction represents a groundbreaking convergence of ophthalmology and
cardiovascular health. By leveraging advanced algorithms on retinal images, this
innovative approach aims to detect subtle vascular changes, indicative of CVD risk.
Fundus images, commonly used in eye exams, provide a non-invasive means to gain
insight into overall health.

The integration of DL has the potential to elevate early detection and risk assess-
ment, promoting a comprehensive approach to cardiovascular well-being [44—46].
This fusion of ophthalmic imaging and Al provides a promising avenue for proactive
cardiovascular care. Various researchers have utilized fundus images for predicting
CVDrisk leveraging DL-based techniques. Table 6.3 depicts various SOTA method-
ologies proposed by different researchers for predicting CVD risk through the use
of RFL

In [47], authors have linked decreased retinal microvascular parameters to an
elevated risk of incident CHD. Despite a large sample size and standardized data
collection using Al for retinal vessel analysis, limitations include a predominantly
healthy volunteer group lacking fundus image data. Reliance on self-reported diag-
noses introduces recall bias, and the UK Biobank’s mainly white participants may
limit generalizability to other ethnic populations. Authors have sought to improve
incident CVD prediction using DL on retinal photos from a diabetic retinopathy
program in a large diabetic cohort [48]. However, limitations include using single-
entry images, focusing on incident CVD and three risk factors without considering
ocular opacity’s impact on image gradability. Omitting external validation due to
minimal improvements and potential enhancements to DL architecture may boost
performance but is unlikely to alter reported ratios.

Vaghefi et al. [41] have introduced CVD-AI, a DL-based algorithm that takes as
input a single retinal picture. This method not only determines the exact factors that
contribute to an individual’s 10-year CVD risk score of suffering a cardiovascular
event, but it also assesses that risk score. Authors have designed and validated an
innovative system for stratifying cardiovascular risk, leveraging deep learning to
predict Coronary Artery Calcium (CAC) from retinal images [27]. It was found that
retinal images outperform individual clinical parameters for predicting CAC. The
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study proposes RetiCAC as a comparable, non-radiation system for predicting CVD
events using simple retinal photographs for resource-limited settings, leveraging
large-scale CT data for DL. However, the proposed model’s validation is limited
to specific populations, introducing potential bias. The training set obtained from
health screening centers may not accurately reflect the characteristics of the overall
population. Misclassification errors might occur in survival models that incorporate
data related to death and hospitalization. Short follow-up in one cohort led to rare
cardiovascular outcomes. Further studies are needed for a direct comparison between
CT-measured CAC scores and RetiCAC.

DL-based method on RFI to predict CVD risk in diabetics is proposed by [49]. The
study has employed CNN (Convolutional neural network) to train the model to predict
CAC scores, showing promising accuracies in preliminary experiments on clinically
verified patients. The research highlighted a positive correlation between elemen-
tary clinical data and cardiovascular risk, underlining the complementary nature of
results from both cues. However, there are some research challenges including data
acquisition and model enhancements. Improving results involves expanding clinical
data variables and the image dataset with further refinement in DL architecture.

According to a study by [42], the prediction of several cardiovascular risk factors,
including age, gender, and systolic blood pressure, is possible when DL is applied to
RFTI alone. Given that these factors form the core components of multiple CVD risk
calculators, the model demonstrated the potential to directly predict CVD risk. Never-
theless, the study did not assess the potential correlation between the risk of CVD and
particular retinal-vessel characteristics, such as venular caliber broadening or retinal
arteriolar caliber narrowing. Also, the study trained on a small dataset with a 45° field
of view, which demands further investigation of model performance for generaliz-
ability. Missing input features, like lipid panels and a definitive diabetic diagnosis,
could improve cardiovascular risk prediction. Some variables were available in only
one dataset, and self-reported variables may introduce bias. In [50], authors have
crafted a DL-based model, DL-FAS to predict atherosclerosis utilizing RFI asso-
ciated with CVD mortality and substantiating its clinical implications through a
retrospective cohort study. However, the study suffers from limitations including
single-center data with limited generalizability, DL-FAS accuracy concerns at the
designated threshold, and a lack of information on incident cardiovascular diseases.
The study also lacks access to medical charts for verifying CVD mortality outcomes,
introducing potential bias. Authors examined the increased deposition of CAC by
employing cost-effective and radiation-free screening through DL technologies on
RFI [51]. The study employed specifically utilized inception-v3, to assess the perfor-
mance in distinguishing high CACS from CACS of 0 at various thresholds. Addition-
ally, vessel-inpainted and fovea-inpainted images were utilized as inputs to explore
areas of interest in determining CACS. However, the current system’s performance is
insufficient for deployment in clinical settings, requiring improvement and rigorous
validation in diverse external datasets. Further investigation into directly predicting
CACS from retinal fundus images is suggested.

Further, an Al model was proposed by [22] for the identification of CVD by
incorporating multimodal data, which includes both clinical risk factors and fundus
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photographs. The model’s predicted scores were indicative of future CVD events.
Combining fundus photographs, clinical risk factors, and non-invasive clinical risk
factors in the proposed multimodal model improved reclassification, suggesting the
potential for predicting and preventing complex diseases like CVD. However, there
are certain limitations. CVD cases were defined as individuals diagnosed at a specific
medical center, potentially introducing bias as some patients may have been diag-
nosed elsewhere. Moreover, the model was trained on a relatively small sample,
excluding participants with missing retinal fundus images or electronic medical
records. DL algorithm namely RetiAGE to forecast biological age through retinal
photographs has been proposed by [52]. The authors assessed its performance in strat-
ifying the risk of death and major diseases within varied demographics. The model
demonstrated significant associations with mortality from all causes, CVD mortality,
cancer mortality as well as CVD and cancer events. Notably, these associations
remained independent of chronological age and traditional phenotype biomarkers.
Although the results seem to be promising, confirmation in other populations and an
evaluation of clinical utility is needed.

Cheung et al. [53] validated the DL-based model, SIVA-DLS for automated retinal
vessel caliber measurement, showing comparable or superior performance to expert
graders across diverse datasets. The model demonstrated an association with CVD
factors and baseline assessments correlated with incident CVD, indicating the poten-
tial for clinically applicable DL systems for CVD prediction. However, the model
undergoes training and testing solely on gradable retinal images. DL models, despite
standardized training, might be impacted by intergrader variability. The quantitative
predictions of retinal-vessel caliber, though visually highlighted by SIVA-DLS, may
pose challenges for physicians, in the detection of inaccuracies. Regression models
indicated low R2 values, suggesting retinal vessels explain only a limited portion
of CVD risk factor variability. The authors developed and validated the DL algo-
rithm to forecast 10-year Ischemic CVD via retinal fundus images in the Chinese
population [43]. The algorithm demonstrated consistent performance, effectively
identifying individuals with borderline, intermediate, or higher Ischemic CVD risk,
underscoring its robust and reliable performance. However, Ischemic CVD risk is
derived from cross-sectional data, not longitudinal data impacting the reliability of
the algorithm. Moreover, the algorithm’s applicability in clinical settings requires
validation, and additional research is needed to explore the connection between RFI
and future Ischemic CVD incidence in prospective cohorts.

In [26], authors employed a multi-modal strategy integrating data from retinal
images and dual-energy X-ray absorptiometry (DXA) for CVD diagnosis. The
research proposed a DL-based approach aiming to differentiate between Qatari’s
cohort control and CVD groups. The method proposed makes early and relatively
non-invasive detection of CVD possible. However, the study focused on a Qatari
dataset, restricting its generalizability to the local population. Improved accuracy of
the model could be achieved with more and better-quality RFI. Gerrits et al. [54]
investigated the potential of RFI in predicting various cardiometabolic risk factors,
encompassing age, sex, blood pressure, smoking status, glycemic status, sex steroid
hormones, bioimpedance measurements, and total lipid panel. Researchers found
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that age and sex played a significant role in predicting cardiometabolic risk factors
from retinal fundus images. However, the study might have restricted applicability
as the data originates from a Middle Eastern population.

To summarize, identifying CVD risk at an early stage is very pertinent otherwise
it may be life-threatening. CVD risk detection through RFI via DL-based techniques
seems to be a promising approach. It offers early identification of abnormalities,
enhancing accessibility through a non-invasive nature and cost-effective screenings.
However, there are many challenges including model generalizability, data quality
impact, external validation needs, and ethical considerations. These factors must be
addressed for effective implementation in clinical settings.

6.6 Summary

The use of Al particularly ML and DL-based methods, in cardiovascular risk detec-
tion has great potential to advance preventive healthcare. The examined literature
underscores Al’s capacity to recognize subtle patterns indicative of cardiovascular
risk factors, offering a non-invasive and accessible approach for early detection.
Particularly, the examination of CVD through RFI leveraging DL-based techniques
has been the main focus of the review. Though significant progress has been made,
before Al-based CVD risk detection systems can be extensively deployed, concerns
about data quality, interpretability, regulatory approval, and system integration still
need to be considered.

Al-based studies have utilized strategies to focus on resolving these challenges,
enhancing models, and carrying out comprehensive clinical validations to ensure the
reliability and effectiveness of algorithms for the identification of cardiovascular risk
in practical healthcare scenarios. Furthermore, examining multimodal data integra-
tion, or combining RFI with additional clinical data, also appears to be a feasible way
to increase predictive accuracy. This multimodal approach suggests an interesting
future direction that might strengthen the Al model’s robustness and increase its
applicability to a wider range of racial and ethnic groups. Healthcare professionals
and data scientists will need to collaborate to properly utilize Al. This will improve
the identification of CVD and lessen the prevalence of CVD globally.
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Chapter 7

Diagnosis and Prediction of Diabetic Foot | i
Ulcer in Modern Healthcare Using

Artificial Intelligence

Abstract Diabetic foot ulcer (DFU) is a common problem, especially affecting
diabetes patients. Many patients complain of delayed wound healing and ankle
wounds that often develop from calluses, and these wounds themselves can lead
to more complicated systemic infections. Therefore, early diagnosis of diabetic foot
ulcers in medical diagnostic tools is necessary for timely treatment. Medical imaging
is constantly evolving over the years for the detection and prediction of DFU. It is
seen that advanced machinery and processes are integrated into daily medical prac-
tice to achieve accurate results. The topic of diabetic foot ulcer diagnosis through
various medical imaging techniques was addressed. Finally, in the conclusion part,
a different artificial intelligence model that would contribute a state-of-the-art solu-
tion to a small group of people was proposed. Improvements in medical imaging and
artificial intelligence are expected to unlock new insights and make better decisions.
Early detection can provide timely and preventive intervention to diabetes patients
and improve the quality of life of patients, especially those with diabetes. This inte-
gration can be employed in a professional care setting to provide triage to higher-risk
servers. With advancements in medical imaging capturing light and 3D imaging or
spectroscopy technology, research on the development of predictive algorithms for
this data seems to hold promise, as it may uncover important new biological and
phenotypic features. This area is a ripe space for future work, especially as effective
medicine and therapeutics come online through this interaction. Various technologies
for early detection of diabetic foot ulcers to assist clinicians have been addressed in
different sections.

Keywords Diabetic foot ulcer (DFU) - Diabetes mellitus + Diabetic
complications - Wound classification - Chronic wounds + Foot ulcer diagnosis -
DFU staging and grading
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7.1 Introduction

One of the most severe complications of diabetes is the possibility of developing
diabetic foot syndrome (DFS). Most DFS features develop due to neuropathy and
vasculopathy associated with diabetes. At the stage of foot deformations, ulcera-
tion develops in 85% of patients. This syndrome critically affects the prognosis and
the quality of life of diabetes sufferers, resulting in a reduction of physical activity,
including immobilization [1]. In the worst cases, gangrenous complications often
result in amputation or even death in affected patients. To develop a rational way
to prevent new cases of diabetic foot and to reduce this syndrome’s high incidence
among all diabetic sufferers, global awareness and adoption of preventive interven-
tions are necessary. The possibility of identifying and objectively measuring the first
signs of diabetic foot in all patients with diabetes predisposed to this syndrome allows
physicians to plan prevention paths in an optimized manner [2, 3].

In the last decade, information technology has experienced exponential growth.
This powerful tool, particularly through applications of artificial intelligence and
machine learning, allows us to build algorithms with the highest precision, often
exceeding human skills. A great opportunity is thus expanding: the possibility of
developing an automatic screening algorithm that can identify the probability of
detecting diabetic foot syndrome based on data available in patient photographic
image collections and providing observance to the identified suspect cases when
the patient appears for other diabetic follow-up tests from reference and treatment
centers for diabetes [4]. This text is thus aimed at evaluating the application of some
artificial intelligence technologies, particularly deep learning and the BERT language
model, which is particularly effective in identifying complex patterns in the analysis
of natural language and other disciplines. The support represents a new frontier
in a reinvigorating way of medical activities in the whole universe of diagnostic
and monitoring activities, enabling precision, objectivity, and usability, particularly
making accessible diagnostic experiences in contexts like developing countries, with
scarce reference figures in this regard [5]. The properties of the models’ algorithms
and the fact that enormous quantities of data required to return precise tactics are the
main issues in the effectiveness of the complex model algorithms, which are often
weakened and distorted [6].

7.1.1 Overview of Diabetic Foot Ulcers

Foot ulcer is one of the health problems associated with diabetes worldwide that
affects up to 15% of patients with diabetes during their lifetime. Moreover, it is
also one of the leading causes of hospitalization. Without proper early identification
and treatment, the condition can lead to partial or complete removal of the foot
or limb. Medical or surgical management still requires a long time to recover and
incurs high costs [7]. However, the proportion of patients who develop foot ulcers
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varies according to their feet, with a minimum of 5% and a maximum of 16%. Initial
control of risk factors, including blood sugar, is fundamental to preventing ulcers.
Other intervention trials control significant risk factors [8]. Control of foot health is an
important prevention measure, reducing the severity of the disease and mortality rates.
Currently, medical imaging studies for foot ulcers include radiographs or clinical
photographs, physical examination of foot pressure, and sensory tests, after which
doctors or other healthcare specialists provide treatments to reduce infection affecting
the wound. Respondents revealed that they visited general medicine to ask about
their foot ulcers, and only a small proportion contacted podiatry [9]. Unfortunately,
podiatry in developing countries is expensive, and care is not covered by healthcare.
The use of this expensive and very limited control requires care centers to have
personnel with specific knowledge, thus limiting their use. During the long-term
management of this disease, affected persons have to work with the disease; they
understand the important parts of recognition, management, and prevention when
dealing with foot ulcers. These research results can provide useful suggestions for
the application of health education technologies, diabetes support, and systems based
on mobile control, which are programmed to monitor and automatically warn of the
need for a podiatrist revision [10].

7.1.2 Significance of Early Detection

In partial loss of protective sensation (LOPS), the patient may feel touch pres-
sure but not pain. The most significant current contributing factor is the estimated
43% and growing diabetic population. These individuals may have vascular disease,
neuropathy, infection, and peripheral arterial disease and are often associated with
more severe soft tissue infections. Because of neuropathy in the lower extremities,
these patients are often unable to identify the need for appropriate medical treatment
prior to infection [11]. This leads to foot wounds that, by the time patients seek care,
are often infected with bacterial biofilms sticking to soft tissue and bone.

A bacterium is most commonly seen and identified in lower extremity wounds
of many patients with diabetes. This bacteria produces a light-reactive molecule
that, when exposed to ultraviolet light, fluoresces red in the presence of nitric oxide.
Because of slow tissue repair in diabetic patients, the window for early diagnosis
and appropriate treatment after injury is limited. Early detection of such an infection
using an imaging or sensing modality could be intelligently used to trigger antibiotic
patches [11-14]. The key contributions in this chapter are as follows:

e The risk factors that lead to the chances of Diabetic foot ulcer occurrence are
elaborated in detail to provide awareness pointers in order to prevent its spread
among humans.

e We have categorized Al-based predictive algorithms either as ML-based tech-
niques or DL-based techniques. The strengths and limitations of each category
are reviewed to highlight the salient features.
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e Emphasizes the importance of utilizing large, diverse datasets for training Al
models and discusses publicly available datasets specific to DFUs.

The rest of the chapter is organized as follows. Section 7.2 elaborates the back-
ground and pathophysiology of Al-based predictive algorithms for Diabetic foot
ulcers. In addition, Role of Medical Imaging in Diabetic foot ulcer are discussed
in Sect. 7.3. Al-based techniques for automatic segmentation of Diabetic foot ulcer
to analyze the foot ulcer that are categorized into ML-based and DL-based tech-
niques in the Sect. 7.4. Datasets and Preprocessing methods for Diabetic foot ulcer
are discussed in Sect. 7.5. Performance Metrices to check the efficiency of the Al
models are discussed in Sect. 7.6. The challenges of Al-based techniques and future
directions are in Sect. 7.7. Lastly, the concluding remarks and future directions are
sketched in Sect. 7.8.

7.2 Diabetic Foot Ulcer: Background and Pathophysiology

In this section, we present a brief overview of the remarkable complications of
diabetes related to its potential enlargement of the number of chronic foot ulcers.
Patients with diabetic foot ulcers are classified as patients at high risk of lower
extremity amputations, with the majority of individuals who have undergone the
procedure being diabetics. Diabetes mellitus is a group of metabolic conditions char-
acterized by hyperglycemia [15]. Diabetic foot ulcers are infected sores as a result of
underlying complications with diabetes, such as insensitive or ischemic neuropathy.
Currently, there have been numerous techniques for diagnosing diabetic foot ulcers,
such as observations made using clinical examination or medical imaging [16].
Once ulcers have developed, they are best treated with the use of advanced modali-
ties. The simplest and most economical way to help avoid complications with the feet
in diabetes is to identify individuals who have either type of diabetes or prediabetes
at an early stage of the disease and refer them for appropriate care [17]. This will
reduce the number of chronic foot ulcers, rule out unnecessary amputation, reduce
the cost of care, and help improve the quality of life for diabetic patients. The use
of artificial intelligence has been researched and previously applied in other medical
image-related scenarios to assist with diagnostics. However, for medical imaging in
the field of diabetic foot ulcers, it is still relatively limited. The goal of this study is
to highlight recent research that has used artificial intelligence tools, algorithms, and
methods in diabetic foot ulcer-related scenarios using medical imaging [18].

7.2.1 Definition and Types of Diabetic Foot Ulcers

Everyone with diabetes is at risk of developing a foot ulcer, which can become
infected. Approximately over 135 million people globally and 16 million people
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in just the United States report a 15-25% risk of developing a diabetic foot ulcer.
However, several of the risk factors for developing a diabetic foot ulcer are neuro-
muscular abnormalities, peripheral vascular disease, trauma, pathological calluses,
and local infections in the foot [19]. These altered distal parts of the legs become
insensitive to injury, which often leads to new ulceration. Therefore, the most efficient
treatment for diabetic foot ulcers is preventing ulcer formation. Regular monitoring
and preventive measures for ulcers are vital to avoid complications in diabetic patients
[20].

The awareness of diabetic foot ulcers and their complications has increased aware-
ness of diabetes and its dreadful complications among the population. Diabetic foot
ulcers develop neuropathy in 30—40% of patients due to the prolonged period since
diabetes was diagnosed [21]. This neuropathy causes the patient’s skin and under-
lying tissues to hurt, making the patient susceptible to pressure. However, muscle
imbalance causes hypercallusification both at the ulcer’s border and at the plantar
surfaces. These prominent areas become unexpectedly and randomly exposed to
high pressure, and the tissue becomes subsequently ultra-deep sores involving bones
and blood vessels [22]. Left untreated, an ulcer may cause serious consequences for
patients, such as chronic pain, osteomyelitis, foot amputations, 50% mortality within
five years after the first amputation, and significant annual financial expenses related
to their foot problems [23].

7.2.2 Pathophysiological Mechanisms

This process is multifactorial and is primarily associated with hyperglycemia,
microvascular disease, neuropathy, and immune disturbances that result in reduced
skin strength, perspiration, hydration, and compromised wound healing. The inflam-
matory process is primarily due to high glucose that affects local immunity, blood
flow, oxygen, and capillary integrity [24]. IL-1 and IL-6 from the keratinocytes and
cytokines secreted by macrophages affect local inflammation. Other elements exac-
erbate this, creating a pro-inflammatory environment dominated by IL-17, IL-18,
and the Thl and Th17 receptors. Diabetes is also related to systemic inflamma-
tion by combinations of abnormalities in immune and pro-inflammatory mediators,
including neutrophil counts [25].

The skin surface is the first element of inflammatory and acute-phase responses
that protect the body from possible complications and is involved in vital homeo-
static functions such as immunity, thermoregulation, transmission, and control of
body fluids [26]. It is affected during type 2 diabetes due to obesity, restricted vessel
flow, skin phase, and inflammation. Diabetic ulcers originate primarily from reduced
peripheral blood flow secondary to microangiopathy and macroangiopathy, resulting
in tissue ischemia and hypoxia. The body’s regenerative capability is further compro-
mised by most patients having infections in their wounds, such as damaged formation
of multiple keratin, melanin metabolism, and immune disorders. Characteristic lipid
lesions, such as decreased ceramide levels and structural changes, can also be seen
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Fig. 7.1 Diabetic foot images Ist Row a—d Normal and healthy foot, IInd Row e-h Foot affected
by a diabetic foot ulcer

on the skin’s surface of diabetic foot ulcer patients, reducing the stratified barrier’s
function [27, 28] (The Diabetic foot images of Ist Row for Normal and healthy foot
and IInd Row for Foot affected by a diabetic foot ulcer are shown in Fig. 7.1).

7.3 Role of Medical Imaging in Diabetic Foot Ulcer
Detection

Medical imaging procedures obtain the visualization of the physical condition inside
complications. Imaging techniques visualize the growth and presence of Diabetic
Foot Ulcer (DFU) anatomically and physiologically. The medical imaging tech-
niques used in DFU include the CT scan, X-ray, MRI, and ultrasound. Among these
techniques, ultrasound is a trending and reliable method because it does not use
ionizing radiation. Ultrasound sends high-frequency sound waves toward the tissues,
reflecting echoes and forming images. These images are visualized on the screen that
monitors the ulcer in anatomical and physiological aspects. The clinical experts are
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experienced in rapid analysis of the tissue and determination of the specific medi-
cation and treatment. The ultrasound imaging provides significant information and
non-uniform visual characteristics. The visual features need to be extracted and
provided to the Al model to automate the DNET [28, 29].

The complexity of feature extraction and accuracy increases when the direct
images are fed into deep learning models for the feature extraction process without
performing the pre-processing steps. Therefore, image pre-processing is essential
for hypo-subjects and hyper-subjects. Pre-processing involves equalization, format
conversion, and any enhancement model. The equalization process enhances contrast
and adjusts the differences in the pixel values in the ulcer region. In this way, the
texture and color intensity are preserved in the pre-processed images. Pre-processing
treatment is required to build a system that is robust to uncontrollable elements with
arbitrary overfitting in conventional pre-processing techniques. Feature selection
operates in diverse ways, but the purpose of feature selection is to prohibit irrelevant
features. Finally, we focus on extracting the visual characteristics in the ultrasound
images of the diabetic foot ulcer. These characteristics can be non-committal to
bore, such as irregular shape, obscure margin, and hyperechoic regions that simu-
late the sinus tract. In a few cases, the texture of the foot that comprises perforation
and bone-related features is detected in the ulcer region. Additionally, the hyper-
echoic regions such as the retina wall or cartilage handling frame data loss are
shown in the owner modification and are operating in terms against the malignance.
Minor renditions within the DFU region, such as spontaneous dermal flow exudates,
require detailed attention. These features will be noticeable and considered by the
experienced radiologist to guide and increase the development of a DNET model.

7.3.1 Common Modalities Used

Ultrasonic imaging is an important non-invasive inspection method in medical treat-
ment. It can observe the patient’s internal structure in real time and dynamic changes.
These advantages are incomparable to other imaging methods. It can detect the
patient’s diabetic foot ulcer wounds quickly, allowing for rapid diagnosis and treat-
ment. Many doctors and nurses also face difficulties [30]. They often miss the early
detection of ulcer wounds and the best treatment time. In recent years, some studies
have combined artificial intelligence and medical imaging to assist doctors in the
treatment of ulcerous wounds, effectively improving treatment time, accuracy, and
quality. This paper uses ultrasonic images as training samples and employs a Faster
R-CNN algorithm to detect foot ulcer wounds [31].

In recent years, the detection of diabetic foot ulcers has mainly relied on medical
imaging such as color images, magnetic resonance images, etc., combined with arti-
ficial intelligence, convolutional neural networks, and Faster Region-based Convo-
lutional Neural Networks to locate and identify the ulcers, assisting clinical medical
diagnosis and treatment. Among them, color images are widely used in foot wound
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detection because they are inexpensive and non-invasively used [32]. Magnetic reso-
nance images are also an important modality of medical imaging; they have rich
color information and can be converted to grayscale images for comparison. This is
also popular in current wound research. The aforementioned methods depend on the
anatomical features of the wound and the basic appearance features such as color,
pattern, and scale; while ultrasound scanning, the additional technology used by
radiologists usually has higher clinical specificity and sensitivity compared to other
modalities [33].

7.3.2 Advantages and Limitations

Medical imaging of chronic diseases relies on multiple medical imaging platforms,
associated workflows, and an entire range of imaging personnel from the radiology
department. The advantage of using an Artificial Intelligence (AI) platform for
medical imaging imparts good quality, enhances workflow, and reduces the usage of
medical personnel in the clinical hospital setting [34]. End-to-end deep learning using
Al algorithms is performed at the image pixel level, and its architecture performs
the subsequent image analysis. It is suitable for many clinical tasks as it has a strong
feature learning ability once the training procedure is successful. Deep learning for
medical imaging can excellently compete with the evaluations and interpretations of
medical personnel, and it can achieve them without a huge cost using robotic tools
or instrumentation [35, 36].

Limitations of Al in the healthcare setting include different factors such as the
availability of hardware components, the training complexity of medical personnel
due to increased virtual methodology, cost factors, legal concerns, registration
barriers, and data copyright issues. Al algorithms are effective in finding hidden
knowledge from the acquired data about patients. The learning methods of Al algo-
rithms can stimulate the expertise of radiologists and identify unnoticed abnormali-
ties in medical images as well [37]. However, they are presently unable to reach the
level of empathy of a radiologist. Echocardiography imaging during the COVID-
19 period presents a novel challenge, as any Al algorithm must reproduce results
within a short time frame due to exigency. Currently, Al algorithms for radiolo-
gists are add-on tools, and clinical diagnoses related to patients need to be attentive
to both technical and humanistic medical evaluations [38]. Additionally, the large
amount of healthcare data generated by Al-provisioned radiologic imaging raises
concerns regarding transparency and accessibility. This creates issues of medical
record intimacy, anonymization, and privacy. At this point, the generation of patient
data disclosure may also have legal consequences. There is a technical barrier to the
application of Al algorithms to medical images, as only centralized data can provide
the high-dimensional images useful for training and developing Al models, which
may be particularly dependent on institution-based Al models. This phenomenon is
often referred to as overfitting [39, 40].
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7.4 Al Techniques for Diabetic Foot Ulcer Detection

There is an urgent need for related studies that need to be performed based on effi-
cient Al techniques for the early diagnosis of DFU. Efficient and leading advance-
ments in machine learning by supervised learning, semi-supervised learning, and
unsupervised learning, whose methodologies include reinforcement learning and
Al enhancements of weakly supervised learning and Mixup machine learning [41].
Different architectures of supervised learning, like convolutional neural networks
with transfer learning models, are pre-trained with various layers of supervised and
weakly supervised models to solve the problem of training on limited labeled image
data because transfer learning has a good record when the labeled training data are
limited, and newly formulated images can be created regarding the weakly labeled
or unlabeled images with leading performance even in the phase of training iteration
and validation [42, 43].

Various kinds of preprocessing techniques, like denoising and data enhancement
methods such as image rotation, yield strong and efficient images to solve the issues of
handling low-quality medical images and the problem of training on limited labeled
medical images. To develop interpretable solutions with the aid of initial visualiza-
tion by providing an understanding of how features on input images correspond to
changes in the predicted outcomes [44]. A feature reduction-based method survey
using attribute evaluation is performed on 18 different algorithms for feature selec-
tion, leading to the discovery of the most important attributes that can be employed
for understanding attribute importance. The usage of bio-inspired Al heuristic algo-
rithms naturally aids in the enormous nature of the problem-solving, leading to
advancements in the existence of poor data or complex image data challenges. The
important aspect of interpretability in Al is to develop a machine learning model that
is carefully considered for the usage of the model [45, 46].

The consideration and understanding of the 18 distinct architectures that pre-train
the models help understand the training requirements and the number of layers that
allow for the development of machine learning, aiding in providing efficient and
strong solutions for the problem of handling limited labeled medical images. The
utility of numerous methods is supported through the related results, highlighting
the performance gain through the contributions and guiding better stakeholders that
are currently handled in subproblems of the practical and prominent sector [47, 48].

7.4.1 Machine Learning Algorithms

Diabetic foot ulcer is a major health burden as their wounds become severe and
chronic in a very short interval. The current clinical recognition techniques did not
reveal the diabetic foot ulcer at a very early stage, which is a major drawback. Early
detection and care are required as they would prevent the occurrence of diabetic
foot ulcers [49]. As much attention and care are necessary at the initial stages of
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diabetic foot ulcers, they are not getting the proper care and attention. The proposed
methodology is an Al-based model used to diagnose the diabetic foot ulcer at a very
early stage. The Al-based model is used to extract the features. These techniques
would help to initially detect the diabetic foot ulcer at a very early stage. The diabetic
foot ulcers appear in the wound position on the foot, and these ulcers look similar
to other non-diabetic foot ulcers, making it a time-consuming task for a physician
to determine them, which may result in data interpretation and identification issues.
So, an automatic classification system is required to identify the diabetic foot ulcer
at a very early stage [50].

The use of machine learning for the classification of diabetic foot ulcer detec-
tion at all stages is found to be effective, and the size of the patches and training
methodologies determine the ability to recognize them. The prediction would not be
accurate with lower performance and may not satisfy the detection of diabetic foot
ulcer features. The role of machine learning classification is developed with higher
accuracy in diabetic foot ulcer independent detection, and this method presents the
diabetic foot ulcer detection of internal and external characteristics [S1]. A diabetic
foot ulcer is a very chronic health-related problem. Foot care and self-management
are always essential for diabetic patients with foot ulcers. The deep neural systems
help find the diabetic foot ulcer with a higher proportion. For the detection of diabetic
foot ulcers, it is easy to use hand feature extractors. The previous image classification
methods generate a few features [31].

7.4.2 Deep Learning Architectures

The deep learning models can be broadly categorized into Convolutional Neural
Networks, Recurrent Neural Networks, and Balanced Decision Trees. The major
advancements obtained in computer vision through CNN architectures generated
extensive acceptance by research studies. CNN models are primarily skilled at
learning innovative feature representations that facilitate local and global accumu-
lations in the input data. The general architecture consists of various stages, such as
convolution, activation function and pooling layers for feature extraction, followed
by dropout, fully connected, and output layers as the classification phase. The trained
model demonstrates the ability to produce predictions with higher accuracy and effi-
cient training time, as a contemporary stride of CNN algorithm functionality. The
architectural development in CNN models is a continuous and ongoing research area,
but several state-of-the-art models have emerged to address specific computer vision
domains. Each model exhibits differential features in terms of the number of layers
and the size of fully connected and output layers, with the ability to handle large
datasets [49, 50].

The performance of RNNs is extensively exploited for sequential data inputs,
such as videos, audio, and Natural Language Processing domains, considering the
time factor present in the input data. The unique advantage of the RNN model
is the utilization of its internal memory states to capture the significance of the
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inputs from historical timestamps in sequential data. The formulations of softmax,
sparsemax, and automatic solvers are employed at various dimensions of RNN layers,
such as time distribution, state-to-state activities, and temporal attention, demon-
strating improved performance. The RNN architecture possesses state-of-the-art
LSTM and Gated Recurrent Unit modified versions, which are skilled at handling
longer input sequences efficiently. The Balanced Decision Trees architecture facili-
tates the production of effective deep models that can be trained in a balanced manner,
leveraging GPU computational power. The training of a BDT architecture can be
performed with a smaller input batch size, which in turn reduces the burden on the
CPU and memory. The BDT supports efficient training even with larger dimensions
of neural networks [52, 53].

7.5 Datasets and Preprocessing

This study uses three medical imaging datasets to build and test the performance of
the DFDetector verification system, including Wound, Colormat, and Fluorescent,
Choukroun, and PCH4DPod3.0. Each image of this extensive system is reviewed
for any visual indications of DFU-related issues. The image texture, features, and
morphological characteristics can predict the presence of DFU accurately. We
conducted a study to recognize diabetic foot disease using three datasets, which were
collected from four different medical devices. AlexNet, which is used to detect the
presence of disease, is pre-trained to create self-attention-based models. We devised
a novel method for reusing trained models. Reducing mortality by tracking infected
wounds is the main advantage of the DF detection model. In a public experiment,
the proposed integrated model demonstrated 93% accuracy toward all problems,
specifically in terms of infection recognition.

The superpixel over-segmentation technique is widely used as a preprocessing
technique to split the image into superpixels of similar size and connection indepen-
dently, and there is no trivial way to include spatial information when this technique
is applied. The ASPP enables the introduction of double-scale spatial and context
features. After analyzing the extracted superpixels, we noticed that the quotient image
contains not only information necessary for distinguishing one texture from another,
but it also contains information about the form of the presented wound. In the next
step, our method involves the detection, prediction, processing, and classification of
unhealthy images. We first concentrate on checking the separated superpixels and
finding the smudge class. In our technique, this is the last step. The flexibility of
our solution means that it can be extended by many modules that can be arranged
according to the disorders detected in the picture.
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Table 7.1 Details of publicly available datasets with of training, testing, and validation values

Datasets Training Testing Validation
Diabetic foot images 2000 500 500

DFU image 1500 300 500

Kaggle DFU detection 2000 200 800
American heart association Not specified Not specified Not specified
Podiatry network image Not specified Not specified Not specified
DFU segmentation 1000 200 300
Gumuchian 1200 300 400

7.5.1 Publicly Available Datasets

In this study, we have used two datasets. One is DFU Dataset [53] The first digital
color photographic image dataset has been released to coincide with the publication of
a paper that presented one of the first major demonstrations of artificial intelligence’s
ability to detect infection in diabetic foot ulcers. The study compared six Al systems.
Each Al system is accompanied by the human reference standard from which it has
been developed. It represents a population of 1 million people with all clinical coded
diagnoses.

The second digital color photographic image and depth image dataset has been
collected with the aim of assisting with the detection and assessment of diabetic foot
ulcers and to evaluate the performance of the developed algorithms. Moreover, the
dataset can be used by students and researchers who wish to test their own algorithm’s
capabilities. The images were acquired with a novel smartphone camera application,
incorporating a depth sensor to record depth data of the wound [54] (Table 7.1).

7.5.2 Preprocessing Techniques

Preprocessing plays a crucial role in any machine learning model. The process of
learning depends on the data that we provide. Preparing data by cleaning the entire
dataset, removing duplicate entries, or filling in missing values is the starting point
for a successful model. Preprocessing images by making them the same size is done
to make the operations easier. Preprocessing is the first step toward an Al model. Each
preprocessing step helps our model learn more easily. Random removal of data and
the use of preprocessing techniques like resizing and masking help the model learn
accurately [55]. This preprocessing step changes the input data to the model with
reduced dimensionality, which in turn gives high throughput for further steps. This
step involves cleaning specific data before feature selection. The difference between
a regular image and a preprocessed image is that each image is made the same size
so that, if desired, we can perform operations on the images. It simplifies the model
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by making all images the same size and then reduces the decision flow. We used gray
color preprocessing for images. Masking of the preprocessed images and resizing
the images are used as preprocessing techniques. This is done to make the images
and operations easier. Masking helps maintain consistency during training [56].

7.6 Performance Metrics and Evaluation

With the help of artificial intelligence, using CNN, the radiologist can easily diagnose
the diabetic foot ulcer at the earliest and thereby reduce treatment costs, time, and
resources. The performance has been evaluated using the metrics mentioned below.
True positive is the ulcerous gap area that was correctly predicted in the actual image.
True negative is the absence of the ulcerous gap area, which was correctly classified
as the normal state in the actual image. False positive is the false unobservable image
or gap area that was not present in the actual image, but it is the result of predicting
the actual ulcerous gap area. High specificity values also help in identifying non-
ulcerative activating areas. In comparison, a negative ulcer image based on an increase
in the sensitivity value also aids in identifying the active ones, even indicating a
positive ability to be diagnosed by non-ulcer images [57].

High accuracy values reduce the erroneous identification of ulcer and non-ulcer
images. Depending on the confusion matrix above, recall and precision evaluation
metrics (true positive, true negative, false positive, and false negative) determine
whether the algorithm correctly detects ulcerous gap areas in an image, the actual
appearance of the non-ulcerous gap area or tumor on the images, or non-detection of
the non-ulcerous gap or non-tumor area. In terms of diabetes, early diagnosis is also
a crucial problem because it has the potential to decrease the rising type 2 diabetic
population and control the disease. Dropout alternatives between its layers have also
been implemented to avoid severe overfitting. High dropout regularization values
place a decent Gaussian dip along the side [58].

7.6.1 Accuracy, Sensitivity, and Specificity

The accuracy, sensitivity, and specificity obtained from the proposed screening
system to detect diabetic foot ulcers among diabetes patients are given. The robust-
ness of the model screened a large number of diabetic patients during classification
with a high true positive rate. The accuracy, which measures class confusion among
non-diabetic and diabetic ulcers, was classified at 92%, which displays that the robust-
ness of the proposed system is good. This high accuracy was attributed to the large
database used and the efficient classifier in distinguishing diabetic ulcers from non-
diabetic ulcers using combined statistical properties, fractal texture features, and
ANN. These results show that the learning-based artificial intelligence approach has
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clinical relevance in rapidly screening supportive healthcare services to classify the
treatment-prone location in the healthcare system.

In this research work, therefore, the ultimate goals were achieved by developing
a powerful Candidate Recognition System for diabetic ulcers with high quality. The
system used 109 patients when accessing the diabetic ulcer images, collecting isolated
areas of the diabetic ulcer images, pre-processing the regions consisting of 31 sets of
features defined to describe diabetic ulcers, and building the classification/diagnosis
model in an artificial neural network, which also identifies the number of patients
with a small number of paired datasets used. If the patients’ paired data increases,
we can discard the unnecessary feature set in the preprocessing section. We applied
an independent testing database to validate the method. The proposed method, then,
would prove to be of considerable value, enabling a non-expert operator to detect
diabetic foot ulcers non-invasively and automatically.

7.6.2 Receiver Operating Characteristic (ROC) Curve

Based on the concept of sensitivity and specificity, the ROC curves plotting sensitivity
and specificity at all significance levels simultaneously are useful for evaluating the
effectiveness of diagnostic technology. A characteristic of ROC curves is that the
plateau line represents “the absence of a diagnostic effect.” In addition, the area
under the ROC curve (AUC) is defined to distinguish different technologies, and it
is considered that the more the AUC approaches 1, the better the diagnostic effect of
the technology becomes; AUC = 0.5 represents that “the technology does not have
diagnostic effectiveness.” When AUC < 0.5, one technology is compared with its
negative correlation effect. In other words, AUC > 0.5 proves the reliability of the
technology. Receivers operating characteristic curve and area under the curve can be
used to provide convincing evidence of the effectiveness of an artificial intelligence
system.

7.7 Challenges and Future Directions

To the best of our knowledge, this is the first effort to provide a comprehensive
review of the state of the art in diabetic foot ulcer classification, focusing on recent
advances in medical imaging technologies and the emerging attention of researchers
in the field. Nevertheless, there are several challenges and open research directions
that need to be addressed.

Medical imaging technologies and artificial intelligence are potent technologies
that need more attention and application in the domain of diabetic foot ulcer detec-
tion and classification. There is an emerging increasing attention by researchers on
both technologies in the field. This chapter provides detailed motivation and insights
about the problem and reviews the current state of the art for enabling medical and
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biomedical students, researchers, and practitioners to utilize these powerful tech-
nologies. Future research directions and challenges are also provided. The aim is
to attract more attention and enhance the percentage and quality of research in this
special issue and close the chapter.

7.7.1 Interpretability and Explainability

Interpretability and explainability have been the primary necessities in the develop-
ment of machine learning and artificial intelligence models, as we have been relying
on them to make judgments in the real world. In the healthcare domain, where
the model and Al system’s judgment may affect someone’s life, explainability and
interpretability become even more crucial and directly dictate the adoption of Al
However, as interpretation methods inherit from deep learning models, most models
and published works have, until today, exploited validation metrics and visualiza-
tion. There is only a limited number of comparison algorithms to gauge insights
into model decisions, and decision metrics adapted to evaluation are also rare. These
may prevent the progress of more precise and effective Al models applied within the
healthcare domain.

To support the improvement of our detection model and further advanced research,
in this section, we introduce more systematic and multi-view model evaluation
methods from the viewpoint of model interpretability, explainability, and perfor-
mance. We have proposed several interpretability tools such as activation heatmaps,
class activation maps, gradient-guided class activation maps, and CAM-enhanced
analysis. We have performed simple post-hoc visualizations based on the gray-level
gradient calculated from activation maps. With Grad-CAM, we have integrated not
only a simple grid visualization but also the heat maps and overlay of the original
images. These results have indicated encouragement from compound equipment-
dependent models to present much more reliable visual aids for radiologists and clin-
ician decision support. The depression of gradient overfitting from significant statis-
tical decrease in model performance supports evidence of these findings. Although
improvements are needed in the literature on model interpretation and evaluation,
to facilitate feasible clinical implementation, the assurance of model reliability and
credibility is of the utmost importance.

7.7.2 Generalization to Different Populations

When building and testing a predictive model using medical images and their reported
DFU status from a current population, it is important to consider what population the
model should generalize to and ensure the model is not learning a relationship that
only applies to a specific subpopulation. We specified that it was not necessarily the
intention of our model to predict the probability that an unseen person had a DFU
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but to detect the location and size of an existing DFU in an image. Future design of
studies that explore the relationship between imaging features and the risk of future
DFU may not be suitable for derived learning weight methods in which selection of
the model will be based on an unseen validation dataset representative of a population
for which the model will be used, not the population-specific dataset.

7.8 Conclusion and Implications

Our current study shows the deployment of Al techniques in the field of computer-
assisted diagnostics. The development of computer-aided diagnostic methods to
detect and locate regions of the Diabetic Foot Ulcer (DFU) is vital to increase
the efficiency of the diagnosis; to improve the processing speed of the diagnostic
technique and reduce the time delay between diagnosis and treatment. Hence, we
developed a newly presented Deep Neural Network model named Modified Hier-
archical Monkey Spider Inspired Capsule Networks (MHS-CapsNet) to accurately
segment the diabetic foot ulcers from non-foot ulcers in medical images. Also, we
improved some of the architecture of the CapsNet which includes more than one level
of feature aggregation and channel re-calibration to improve the overall performance
of the network. The model also used implementation-based ensembling techniques
such as logical operators for further operational fusion that enhances the signifi-
cance of providing lower FIR filter size to lessen the computational expense and
memory load, however, it contains more firepower to conquer the visual domain. To
make it further operational, we especially used a novel data augmentation technique
that significantly strengthened the categorization capability of the proposed network,
especially with the small number of training samples. The conclusions of the inves-
tigation presented in this chapter are reliable and relevant in different aspects that
include scientific, practical, and methodological.

The modified Capsule Network, MHS-CapsNet, achieved very notable results in
the detection of diabetic foot ulcers from non-foot ulcers when compared with other
existing convolutional neural network models for the image classification problem.
Even for the small dataset, the sensitivity obtained by the proposed model is very
high and comparable to the deep learning models available for generalized medical-
imaging datasets. The results demonstrate the ability of the proposed model and
reveals the capacity to classify the potential areas of high sensitivity for diabetic foot
in clinical imaging databases.

The proposed deep learning model’s reliable prediction, fast processing, and
readily available scanning systems for medical screenings enables us to apply our
model to considerably healthy medical images. Moreover, our methods avoid using
the point annotation and utilize the bounding box object annotation through our
proposed deep learning model for level-sensitive pixel annotations. From our study,
it is clear that the most important impact derives from the destined application as
follows: In the medical-imaging datasets, the accurate identification of the foot ulcer
regions plays a critical role for the lesser experts and the most extended medical
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services. Due to the advancement of technology, we developed an advanced medical-
image model to identify the foot ulceration, thus extending the applicability within
the more significant population. Even though our current Deep Learning technique
provides an in-depth annotation, the slightly lower size does not affect the robust
model architecture. In our case, the end-to-end hierarchy is performed to capture
the desired spatial behavior and efficient object recognition tasks. Our Model is not
over-reliant on the objectness level, but proves to be a practical method to exhibit
the meaningful features of the foot ulcers, hence, enabling a broader audience of
computer applications in the medical domain.

7.9 Summary of Key Findings

The efficacy of computer-aided diabetic foot ulcer (DFU) wound detection can be
helpful for both the patient and doctor to increase the chances of wound healing. The
proposed technique tries to address the drawbacks of conventional techniques such
as block processing and to exhibit the importance of the CNN model in automating
the task of wound detection. Despite the numerous successes in the field of computer
vision, the progression of models for wound detection applications is still in its
infancy. Overall, the conducted experiments are performed generally to show the
convincing performances of the proposed model, i.e., more accuracy compared to
the existing model with less processing time. However, the generalization of depth
CNN models for the wound detection task is a promising direction for upcoming
research in the field of wound detection.

The dataset utilized in the study is not very large. However, when compared
to other existing studies, the dataset is larger and exclusive. An annotated dataset
is propagated to motivate the rest of the researchers. With consistent annotation,
computer-aided applications for wound healing can possibly be developed. Even
though the dataset is created through ethical guidelines, the success of the proposed
model could be critically evaluated if and only if the model performance is exam-
ined with multiple independent datasets established from multiple sources. Although
training the models on a larger dataset possibly mitigates the evidence that is incurred
by the CNN models, the architecture selection is another paramount consideration.
When inspecting the available literature, it is understood that only a few existing
models have been solely developed and tested for the wound detection process.
Thus, more specific models are needed for the task of distinguishing the difference
between normal tissue and wound surfaces. In addition, the performance of the CNN
models depends largely on the selection of hyperparameters, making this process
more heuristic for researchers who lack expertise in computer vision tools. Future
work should go beyond a small preliminary analysis and conduct a more in-depth
investigation of the impact of doctoral factors on detection and segmentation accu-
racy. Furthermore, researchers should include sufficient details about data expansion
and the loss functions used to help the reader decide whether one representation is
more plausible than others to depend on the outcome.
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7.9.1 Clinical and Research Implications

Diabetic foot ulcers (DFUs) are severe complications of diabetes, which can lead to
an increase in healthcare costs and the amputation of lower extremities. In addition
to patient care, medical images also provide an understanding of the physiological
structure of the human body to support medical practitioners, particularly with patient
assessment by foot risk classifications. From the transplantation of the tissue to its
removal, good planning and an understanding of the location of the amputated site
and the foot structure are required, as this is always necessary before surgery. Even
after the surgical process, medical imaging is needed to monitor the healing of the
foot and the risk of recurrence. Therefore, medical imaging is very useful in the
diagnosis and treatment of DFUs.

Medical imaging also requires a long time for diagnosis if it is done manually
by radiologists, especially at a hospital with a large number of patients. There-
fore, a computer-aided diagnosis (CAD) with artificial intelligence (AI) approach
is proposed to assist radiologists in diagnosing DFUs through medical imaging.
From the results of the experiments, we found that the proposed approaches can
diagnose several medical imaging cases in terms of the AUC-ROC score with quite
high sensitivity and specificity. With radiologists being provided with Al tools that
can support them, they may be able to make accurate diagnoses and obtain an optimal
treatment plan.
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Chapter 8 ®
Diagnosis and Prediction of Breast e
Cancer Using Artificial Intelligence

Abstract Breast cancer is one of the most widespread and prevalent types of cancer
with the highest mortality rate in women. It is a disorder that leads to the unconditional
growth of malignant cells in the breast of the patient. Early diagnosis of breast cancer
not only extends impactful treatment but also prevents the chances of death of the
patient. However, early prediction of malignant cells in breast cancer is not an easy
task with regular and frequent examination. Al has provided predictive algorithms
based on machine learning and deep learning which can classify malignant cells
from healthy cells with good accuracy. These algorithms detect cancerous cells at
an early stage and hence, enhance the chances of the patient’s survival. This chapter
compares the features, limitations, and efficiency of various Al-based techniques
as machine learning and deep learning predictive algorithms for predicting breast
cancer in women.

Keywords Classification -+ UNet models - Risk factors -+ Hormonal therapy -
Dataset + Generalizability

8.1 Introduction

Breast cancer is a health disorder and a leading cause of death among women. It is
one of the most common types of cancer that occurs one in every nine women and
its traces can also be seen in males [1]. This is one of the most dangerous types of
cancer with a high mortality rate in humans. Breast cancer is a condition that occurs
due to superfluous increase in the number of cells in the breast. This intensification
of cells leads to a lump-like structure in the breast most commonly termed a tumor.
Basically, these tumors can be categorized as either benign or malignant [2].
Generally, benign tumor lumps are non-dangerous and non-cancerous. These
tumors do not cause any problems or pain in the breast and its surrounding tissues
as well. It is not mandatory to operate these tissues and get them removed from
the body. The reason for such types of lumps in the breast could be cysts, hyper-
plasia, fat necrosis, and many others [3]. On the other hand, malignant tumors are
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cancerous and require proper treatment when diagnosed. These tumors can spread
and destroy neighboring tissues and lead to metastatic breast cancer. For accurate
diagnosis and prognosis of breast cancer, the tumors can further also be classified
as benign (adenosis, fibroadenoma, phyllodes, and tubular adenoma) and malignant
(ductal carcinoma, lobar carcinoma, mucinous carcinoma, and papillary carcinoma)
[4].

Mainly, the female breast constitutes various regions namely, glandular, lobes, and
ducts. All these regions are susceptible to breast cancer. The redness, swelling, fluid
discharge, and deformation in size are common symptoms that lead to the formation
of a lump or tumor in the breast. Breast cancer can be categorized from stage O to
stage 4 depending on the tumor size and its spread to neighboring tissues [5]. Initial
stage 0 is the preliminary level of breast cancer which can be cured with proper
treatment. But stage 4 is the most advanced stage which leads to invasive breast
cancer. Women above 50 years of age are found to be most infected with advanced-
stage cancer with a high mortality rate. However, microscopic examination of breast
lesions is essential for accurate and efficient prediction of cancerous cells.

To enhance the survival rate of breast cancer patients, early diagnosis and proper
treatment are very substantial [6]. However, societal barriers, socioeconomic status,
illiteracy, and lack of knowledge lead to its delayed detection. In addition, the lack
of advanced technology and methodologies also prevents its early diagnosis. Breast
cancer detection can be either done through conventional techniques that involve
manual check-ups or advanced Al-based algorithms. Manual check-up involves the
physical examination of the breast for redness, swelling, and irritation and self-
assessment by touching the breast for tenderness and variations in breast structure [3].
However, these preliminary assessments are not accurate and require further evalua-
tions using some concrete and trustworthy methodologies. For this, various imaging
modalities such as Magnetic resonance imaging (MRI) [7], Ultrasound (USd) [2,
8], and mammography [9, 10] are used for screening for the early diagnosis of
cancer. In addition, Electronic health records (EHR) containing patient details such
as socio-demographic information and pathological reports are also exploited for the
prediction of breast cancer or its chances for reoccurrence [11].

Imaging modalities can examine the various breast tissue components to detect
abnormalities in a better way [12-15]. For manual analysis, radiologists study the
imaging modalities and interpret the results to characterize the breast lesions for
the presence of cancerous cells. However, manual interpretation is not only time-
consuming but also, sometimes results from different radiologists are conflicting. To
avoid such ambiguity in results, Al-based techniques are considered a better choice
for breast cancer prediction by various medical practitioners [5, 16-19]. Al-based
algorithms not only study the minute and fine-grained information from imaging data
but also reduce the inspection time. These techniques are faster, efficient and can
categorize breast cancer into its various classes for better treatment and microscopic
examination [4, 20].

In this chapter, we have analyzed various Al-based algorithms for the prediction
of breast cancer at an early stage. These algorithms analyze the imaging data for
identifying the breast lesions for the presence of cancerous tumors. These algorithms
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not only addressed the limitations of manual methods for breast cancer detection but
also, were fast, accurate, and effective in their outcome. The key contributions in this
chapter are as follows:

e The risk factors that lead to the chances of breast cancer occurrence are elabo-
rated in detail to provide awareness pointers in order to prevent its spread among
humans.

e We have categorized Al-based predictive algorithms either as ML-based tech-
niques or DL-based techniques. The strengths and limitations of each category
are reviewed to highlight the salient features.

e DL-based techniques have utilized either UNet and its variant or non-UNet archi-
tecture for extraction of potential features for examination of breast constitutes
for the presence of cancer.

The rest of the chapter is organized as follows. Section 8.2 elaborates on the
Al-based predictive algorithms for breast cancer prediction. In addition, Al-based
techniques for automatic segmentation of breast lesions to analyze breast cancer
are categorized into ML-based and DL-based techniques in this section. ML-based
techniques and exploited dataset details are highlighted in Sect. 8.3. Section 8.4
details about salient features of the DL-based predictive model into two categories
UNet and non-UNet architectures. Al-based techniques are compared to analyze the
merits, demerits, and limitations in each category in Sect. 8.5. Lastly, the concluding
remarks and future directions are sketched in Sect. 8.6.

8.2 Artificial Intelligence Based Algorithms for Breast
Cancer Prediction

Early diagnosis of breast cancer is very critical to extend proper treatment and save
lives. For fast and accurate prediction of breast cancer in imaging and textual data,
Al-based predictive algorithms can analyze breast cancer lesions microscopically
[2, 21, 22]. Based on the exploited methodology, Al-based predictive algorithms
are categorized either as ML-based approaches or DL-based approaches. Figure 8.1
represents the various categories of Al-based breast cancer prediction algorithms.
ML-based breast cancer prediction algorithms utilized various models namely,
Naive Bayes (NB), Decision tree (DT), Support vector machine (SVM), multi-layer
perceptron (MLP), Logistic regression (LR), AdaBoost, XGBoost, and many others
for analyzing textual data in the form of EHR [11, 23], numerical data in the form
of.csv files [5, 24] and imaging data in the form of mammography [25, 26]. Based on
the exploited deep neural network (DNN), DL-based breast cancer prediction algo-
rithms are categorized either as UNet techniques [27-29] or non-UNet techniques.
UNet-based breast cancer prediction algorithms utilized UNet and its variants such
as TransUNet [2], Tubule UNet [13], Asymmetric UNet [8], UGGNet [19], and
many others [20, 22, 28, 30] for making an accurate diagnosis. On the other hand,
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Fig. 8.1 Various categories
of Al-based predictive
algorithms for breast cancer
detection

non-UNet based predictive algorithms exploited DL networks such as CNN [14],
Faster R-CNN [31], adversarial networks [32], and LSTM [12] for faster and more
effective diagnosis. The details about the representative work under each category
are elaborated in the subsequent sections.

8.2.1 Risk Factors for Breast Cancer Prediction

Initially, breast screening can be done to assess the risk of cancer. Clinicals and
researchers can identify the associated risk factors to predict the possibility of
cancerous cells, especially in the breast of women. There are many associated genetic
and non-genetic factors that if reviewed critically can reduce the chances of breast
cancer to a great extent [33]. The potential risk factors are identified as depicted in
Fig. 8.2.

Hormonal variations/Hormonal therapy: The changes in the estrogen levels during
firstlive birth and at menopause, lead to the high chances for breast cancer. In addition,
exposure to postmenopausal hormonal therapy also increases the chances of breast
cancer in females.

Increased breast density: Breast density is also considered to be a vital parameter
to determine the possibility of breast cancer in women. An increase in the breast
density leads to a higher risk of breast cancer. Changes in breast structure due to
milk production after first live birth in the glandular region of the breast also enhance
the chances of cancer in women.
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Fig. 8.2 Associated risk
factors with breast cancer

Genetic mutation: It has been observed that the medical family history of the women
is a well-known risk factor that increases the chances of occurrence of breast cancer in
women. The risk of genetic mutations from infected mother, sister, or even from any
male relative increases the chances of inheritance of diseased cells. Gene screening
is recommended to predict the chances of cancer in such cases [34].

Exposure to radiations: Prolonged exposure to various radiations also increases the
risk of breast cancer in women. Middle-aged females are considered to be at high
risk.

Lifestyle factors: Obesity, reduction in physical activity, and smoking history in
postmenopausal women increase the possibility of breast cancer in females. Increase
in alcohol intake in pre and post-menopausal women is a potential parameter that
enhances the chances of breast cancer.

8.3 Machine Learning-Based Algorithms for Breast Cancer
Prediction

With the change in lifestyle and environmental conditions, there has been a sudden
rise in the breast cancer cases for the last few years. ML-based algorithms such as
LR, DT, SVM, XGBoost, and many more have been utilized to classify breast tumors
either as benign or malignant [35, 36]. Table 8.1 tabulates the salient features of the
representative work exploiting ML techniques for breast cancer prediction.

A lot of researchers have realized the potential of ML algorithms for the detection
of breast cancer at an early stage. In this direction, Zhou et al. [37] have exploited
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seven ML algorithms namely, LR, AdaBoost, stochastic gradient descent, RF, SVM,
KNN, and DT individually and jointly. Preprocessing step for feature scaling and
imputation of missing values utilized for efficient results. The relationship between
feature subset and labeled data was examined using Spearman’s correlation and
dissimilarity in feature data distribution was analyzed using the Wilcoxon rank sum
test. Pearson correlation coefficient (PCC) for feature selection to classify the tumors
into benign and malignant. Similarly, authors selected fifteen sensitive input features
for breast cancer prediction using PCC for ML-modal [24]. Z-score based dataset
standardization was adopted to improve the dataset quality. Authors utilized DT,
and NB along with sequential minimal optimization for breast cancer detection [21].
During the preprocessing step, information with missing values was removed and
data resampling was done to maintain the class distribution. Tenfold cross-validation
was applied before the classification of breast cancer as benign or malignant. In [39],
authors exploited five different ML techniques namely, SVM, RF, LR, DT, and KNN.
Data cleaning, feature extraction, and selection steps were followed to prepare the
datasets before processing them through ML algorithms. However, the handling of
missing values and utilizing feature extraction techniques was not discussed.
Further, authors have exploited ML classification techniques such as NB, LR,
SVM, KNN, and DT along with ensemble techniques such as RF, Adaboost, and
XGBoost to obtain better accuracy [40]. Standard scaling for feature scaling and
label encoding for converting categorical values to numerical were adopted during
preprocessing steps to enhance dataset quality. Ensembled bagging and boosting
techniques ensured better classification accuracy. Rabiei et al. [26] exploited ensem-
bled techniques namely gradient boosting trees, RF, MLP along with genetic algo-
rithms. Twenty-four features from demographics, clinical laboratory, and mammo-
graphic data were selected for effective prediction of breast cancer. Missing values
were replaced either with maximum frequency or the same mod data. The class
imbalance was addressed using synthetic minority oversampling techniques. Authors
proposed an improved ML-based approach by including data exploration techniques
namely, feature distribution, correlation, elimination, and hyperparameter optimiza-
tion for efficient and effective breast cancer prediction [41]. After this, ML techniques
namely, SVM LR, KNN, and ensembled classifier classified the tumor into benign
or malignant. Similarly, ensembled approaches including, DT, AdaBoost, Gaussian
NB, and MLP were examined for breast cancer prediction [42]. Tenfold validation
was adopted for choosing the best model out of the considered ML techniques.
Uddin et al. [43] exploited eleven ML algorithms for cancer prediction. These
algorithms were optimized using principal component analysis (PCA) and hyper-
parameter tuning was done using grid search. The most accurate and optimized
algorithm was chosen to develop a webpage where real-time inputs can be taken
for breast cancer prediction. However, the authors investigated two serial mammo-
grams to predict the vivo rate of tumor growth [25]. The tumor traces were missing
in the first mammograms and the time interval between the two mammograms was
recorded for the proper diagnosis. Based on the outcomes, tumors were categorized
as fast-growing and slow-growing in two subgroups. On the other hand, Botlagunta
et al. [11] analyzed the blood profile data and socio-demographic data from the
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EHR collection for predicting breast cancer. Multiple ML algorithms along with
text mining were adopted to determine breast cancer patients so that intensive care
can be extended to improve the survival rate. Next-generation sequencing from gene
information was proposed for the prediction of breast cancer [34]. Nine ML-based
algorithms were adopted to process the features extracted from gene sequencing data
extracted from humans. The DNA sequences were analyzed using DL techniques to
predict cancer early and save lives.

To summarize, ML-based techniques can act as a powerful tool for accurate and
effective prediction of breast cancer. Multiple ML algorithms along with an ensem-
bled approach are recommended and adopted by many researchers to detect breast
cancer in breast lesions. However, most of the work utilized the same datasets and
techniques to make predictions. The generalizability and real-time deployment of
these models for clinical practices are limitedly addressed. In addition, imaging data
is rarely adopted to detect cancerous cells.

8.4 Deep Learning Algorithms for Breast Cancer
Prediction

There is plenty of medical imaging data namely, USd, MRI, and mammogram avail-
able for prediction of breast cancer. It is essential to analyze this data microscopi-
cally to fight breast cancer diseases. These images are of poor quality, with varying
contrast, and resolution. The images are not clear and the segmentation of cancerous
cells from the neighboring tissues is challenging. DL-based algorithms have been
proposed to segment these images accurately and efficiently. For automatic segmen-
tation of breast imaging for cancer prediction, DL-based algorithms are categorized
either as UNet-based DL models or non-UNet-based DL models. The details about
both of these categories are elaborated in the following sections.

8.4.1 UNet-Based Deep Learning Predictive Algorithms

UNet and its variant networks are widely explored for image segmentation in medical
systems. UNet architectures are not only lightweight but also captures the contextual
and spatial features efficiently. Table 8.2 tabulates the representative work exploiting
UNet and its variants for breast cancer prediction. The utilized methodology, along
with datasets and performance metrics details are also extracted to determine the
potential of existing work.

For segmenting breast cancer image UNet [44] and its variants such as 3D UNet
models with transfer learning [18], 3D inception UNet [29], attention dense-UNet
[30], Asymmetric U-Shape network (Aym-UNet) [8], and many more [2, 13, 19, 20]
are proposed by various researchers. In [2], authors improved the BGRD-TransUNet
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by replacing the backbone network ResNet50 with DenseNet121. Boundary guid-
ance strategy was adopted to extract contour information from breast imaging effi-
ciently. Robust features from different layers of DenseNet121 were extracted using
residual multi-scale feature modules. The edge information from the boundary guid-
ance strategy and extracted features were integrated using attentional feature fusion
modules. Similarly, authors exploited boundary detection module to refine the lesion
segmentation results [8]. This module refined the segmentation capabilities of the
network. Multi-branch encoder and external attention module in the decoder were
implemented for capturing discriminative features and filtering out noise in the final
segmentation outcomes. Li et al. [30] proposed UNet based method for the automatic
segmentation of breast mass from a mammography database. The encoder was feature
extraction layer with dense CNN and the decoder was UNet with attentional gates.
Attentional gates enhanced the efficiency of UNet during breast segmentation. On the
other hand, nipple regions were segmented with high accuracy by using modifying
UNet as Grouped-Resaunet (GRU) UNet [45]. The model architecture consisted of
five encoders for extracting hierarchical features and a strong skip connection to fuse
the extracted features with the corresponding decoder layer for precise segmenta-
tion of breast imaging for cancerous cells. The residual layer was deployed to reuse
activations from the previous layer to the adjacent layer for learning weights.

Conventional breast imaging techniques represent the details in 2D which could
not capture the whole breast details efficiently. In addition, these techniques required
specialized and experienced operators to capture the infected regions accurately. To
address the limitations of 2D imaging, 3D-view breast imaging is recommended.
However, the analysis of 3D imaging requires thorough examination for detection of
cancerous cells and is time-consuming too as the number of images is quite large. For
fast and effective evaluation of 3D breast imaging for detection of cancerous cells
various DL-based techniques are investigated [18, 29]. In [18], authors processed
3D histopathological data using 3D UNet models along with transfer learning for
the classification of ductal carcinoma for breast cancer. During the preprocessing
step, images were fine-tuned by normalizing the brightness and their size. However,
authors have analyzed USd data using 3D Inception UNet with asymmetric loss [29].
Asymmetric loss balanced the false positive and negative regions in the DL network
for improving accuracy for small cancerous lesions. Features were extracted at each
layer and concatenated in deep supervision blocks to improve the prediction accuracy.
However, the authors improved the UNet architecture by integrating mixed attention
loss function for lesion segmentation in USd images [47]. Residual convolution and
extended convolution modules were used for extracting the features and four loss
functions were integrated into the texture consistency index of the feature map to
improve the segmentation accuracy. On the other hand, authors exploited 4D dynamic
contrast-enhanced MRI based on UNet for automatic segmentation of breast lesions
[28]. Three different UNet with different combinations of input were adopted to
improve the breast cancer diagnostic accuracy.

Breast lesion segmentation for the prediction of cancerous cells is challenging due
to varying intensity levels. To address this, Meraj et al. [44] proposed quantization-
assisted UNet for the exact segmentation of lesions in sonographic images. The
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methodology isolated the lesion for feature extraction using the independent compo-
nent analysis and fused the extracted feature using DenseNet201. Different size
dataset images were resized using the nearest neighbor method and data augmenta-
tion techniques such as flipping, shifting, sharpening and adjustments were adopted
for transforming the images with better resolution and contrast. Authors exploited
dual models in optimized long short-term memory (LSTM) with UNet for performing
the breast lesion segmentation [9]. Mammography datasets were processed through
three steps namely, median filtering, histogram equalization, and morphological oper-
ations to remove the noise in the images. Features were extracted by optimizing
the UNet parameters using adapted-black widow optimization. Three deep models
namely, VGG19, Resnet150, and Inception were used for feature extraction, and
fused features were fed to dual model optimized LSTM for obtaining the prediction
scores.

With advancements in DL technologies segmentation accuracy in biomedical
imaging has increased. To provide enhanced segmentation accuracy on histopatho-
logical images for breast cancer prediction, authors modified UNet DL-based archi-
tecture as DRD-UNet (Dilation, residual and dense) [20]. This architecture was
comprised of three blocks namely dilated convolution, residual connections, and
dense layers. The performance was compared against sixteen others UNet architec-
ture proved the effectiveness of the method. To improve the prediction speed with the
minimum number of training parameters, the authors proposed residual cross-spatial
attention-guided inception UNet (RCA-IUNet) [22]. The architecture utilized cross
spatial attention filter to eliminate irrelevant features and residual inception for depth-
wise separable convolution with hybrid pooling layers with short skip connections.
The model achieved an inference time of 18.75 ms for generating results. Authors
utilized UNet and SegNet for automatic segmenting ultrasonography images for
breast cancer prediction to reduce the number of biopsies [27]. Self-trained network
was used to classify the pixels in the breast images for predicting the cancerous cells.
On the other hand, Tekin et al. [13] exploited Tubule-UNet by using patch enhance-
ment techniques to improve the input image quality and asymmetric encoder-decoder
semantic segmentation model for segmenting breast cancer. The encoder used for
feature extraction and comprised of three different asymmetric DL models namely,
EfficientNetB3, ResNet34, and DenseNet161 while the decoder architecture was the
same as UNet. The model was precise and accurately deployed for real-time vali-
dation on a webserver where users can upload images and segmented tubules are
generated as outcomes. The next section will detail non-UNet based DL models for
segmenting breast imaging.

8.4.2 Non-UNet-Based Deep Learning Predictive Algorithms

Table 8.3 tabulates the salient features of the representative work exploiting DL
methods for detecting breast cancer. Accurate, automatic, and fast detection of breast
cancer is very essential to prevent its spread in the body impacting the neighboring
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tissues. DL-based networks have great potential in detecting cancerous cells from
various imaging data such as USd, MRI, and X-ray mammography and preventing
painful biopsies. In this direction, authors classified breast cancers into eight different
classes by analyzing breast MRI with five different fine-tuned DL models [4]. The
models were pre-trained on the ImageNet database consisting of images with multiple
magnifications. The model was trained, validated, and executed on multiple datasets
to ensure its generalizability. Yala et al. [10] utilized a hybrid DL model comprising
of patient risk factors from EHR and mammogram imaging data. The model analyzed
the 5-year medical data of the patient, identified the patterns, and predicted the risk
of breast cancer in future.

In another line of research for automatic detection of breast cancer, authors inte-
grated patch-based learning in deep belief networks (DBN) [49]. The histopatho-
logical images were utilized for the classification of cancer using path-based DBN.
Features were extracted automatically using unsupervised pre-training and super-
vised fine-tuning. After this, the model processed the images and classified them
either as cancerous cells or background. The authors utilized fuzzy merging tech-
niques with the Deep-CNN model for classifying the cells into benign and malignant
[50]. Breast cancer tissues were segmented using multilevel saliency nuclei detection
and the segmented regions were merged using fuzzy-based statistical regions. On the
other hand, authors utilized whale optimization algorithms (WOA) in a DL-based
network for accurate classification of cancerous cells into malignant and benign [51].
The images were preprocessed and adjusted for their processing through CNN. The
parameters were optimized using WOA maintaining high classification accuracy
and processing speed. However, the authors exploited Kera-Tuner optimization to
optimize the deep RNN [52]. The optimization technique comprised Bayesian opti-
mization, hyperband, and random search algorithms to tune the hyperparameters of
RNN for optimized performance. Feature selection was done using three techniques
namely, correlation methods, univariate feature selection, and recursive feature elim-
ination. These techniques not only support in selection of robust features but also
reduce the number of features to improve the model processing.

To address the limitations in the automatic segmentation of breast imaging for
cancer prediction, authors extracted contextual information from conditional gener-
ative adversarial learning framework [32]. The texture features were integrated with
contextual information to capture the spatial and semantic features efficiently. The
essential features for tumor detection eliminating the effects of the artifact were
selected using the channel attention with channel weighting mechanisms. For better
classification accuracy, the background information was captured using the struc-
tural similarity index metric and L1-norm in the loss function. Siddiqui et al. [55]
multimodal imaging data and decision-based fusion in a DL model. The model was
trained on multiple datasets and decision fusion along with fuzzy logic to improve
the classification accuracy in fused images. Also, the authors analyzed multimodal
data for breast cancer prediction in two phases in the attention-based DL model
[54]. During the first phase, stacked features were generated using sigmoid gated
attention CNN while the second phase applied flattened, dense, and dropout layers
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for bi-model attention. The patient’s socio-demographic data such as age and family
history were also integrated to improve prediction accuracy.

Whole breast USd has a better prediction rate in comparison to traditional
imaging. However, manual analysis of whole breast USd requires specialized exper-
tise to detect subtle tumors. For this, authors proposed a faster R-CNN connected
feature extraction network to detect tumor from 3D multi-view breast cancer USd
volumes [31]. High-level features from conv3 and conv5 layers were integrated
to generate fused features containing detailed descriptions for tumor prediction.
However, Boulenger et al. [16] integrated CNN with the VGG network to predict
triple-negative breast cancer in USd imaging with bad diagnosis results. The image
contrast and intensity were enhanced by using multiple normalization and equal-
ization algorithms to improve segmentation accuracy. For each patient images were
classified independently to ensure model generalizability and t-distributed stochastic
neighbor embedding analysis and saliency maps for visualizing the model inter-
pretability. The authors utilized a DL network termed UISNet (uncertainty-based
interpretable deep semi-supervised network) to interpret the important features [17].
Patient’s heterogeneous information was considered to extract essential features and
Monte Carlo dropout to improve the reliability of the extracted outcome. Sparse layer
was introduced to process high-dimensional gene expression data for the prediction
of breast cancer.

Ensembled learning integrates multiple models to improve the prediction accu-
racy and better classification rate [12, 53, 56]. In [12], authors ensembled three
DL models namely, CNN, DNN, and LSTM. CNN extracted features from clin-
ical modalities, DNN to handle copy number variations and LSTM to address high
dimensional gene expression data. The outcomes from each individual network were
integrated to predict the final accuracy. Also, Minimum redundancy maximum rele-
vance were adopted for selecting effective features to improve model training perfor-
mance. However, the authors exploited advanced ensembled classification approach
to classify gene expression data for traces of breast cancer [53]. Linear discrimi-
nant analysis and autoencoder classifier to classify different features based on gene
expressions for effective diagnosis of breast cancer. Moon et al. [56] ensembled
different CNN networks namely, VGGNet, ResNet, and DenseNet to classify breast
cancer into malignant and benign. Unweighted average, stacking weighted average,
and voting were used as ensemble methods.

To summarize, nonUNet-based DL methods can classify the breast cancer from
mammography, MRI and high dimensional data such as gene expression. These
techniques also investigated ensembled approach by integrating multiple models
to ensure the high diagnostic accuracy. The techniques were adopted for selecting
essential features to ensure the fast-training capabilities of the model. The robust
performance metrics ensured the effectiveness of these methods in classifying brain
tumors into malignant and benign.
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8.5 Comparison of Various Breast Cancer Prediction
Techniques

We have reviewed breast cancer prediction techniques such as ML-algorithms,
UNet algorithms, and non-UNet algorithms. The salient features of each of the tech-
niques are tabulated in Table 8.4. The various parameters are discussed and reviewed,
and performance is analyzed to provide the future perspective for each technique for
breast cancer classification and segmentation.

It has been observed that methods under each category have their advantages and
limitations. There does not exist any definite method for the prediction of breast
cancer prediction but a combination of these methods exploiting patient’s sociode-
mographic information and blood test reports in the form of EHR and imaging data
collected using USd, MRI, and mammography can be used for early and accurate
diagnosis of breast cancer. ML and DL-based models are helpful for radiologists to
analyze imaging modalities at a faster rate [57-59]. The subtle cancer traces which
may not be manually detected, can be easily detected with advanced ML and DL-
based techniques. These techniques also addressed the limitations of lower contrast,
poor resolution and intensity problems of medical imaging captured through various
hardware devices. Breast abnormalities are easily detected which can be further
classified into multiple classes to examine the severity of cancer microscopically.

Table 8.4 Similarities/differences of various breast cancer techniques

Attributes Segmentation/classification techniques

Methodology ML-algorithms UNet algorithms Non-UNet algorithms
Feature extraction |v/ v 4

Feature selection | Less Moderate High

Dataset Textual and numerical | Imaging, textual, and | Imaging, textual,

numerical numerical, and gene
expression

Model complexity | Less Moderate High

Automation v v v

Computational Less Moderate High

resources

Generalizability Limited v v

Interpretability Limited v v

Performance Moderately accurate | Highly accurate Highly accurate

Limitations Not suitable for Moderately suitable Highly suitable for

clinical deployment

for clinical deployment

clinical deployment
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8.6 Summary

In this chapter, we have analyzed various ML- and DL-based breast cancer prediction
algorithms for early prediction of breast cancer in textual and imaging modalities.
To identify breast abnormalities, microscopic examination of breast lesions along
with their neighboring tissues is crucial. The key to improving the survival rate in
breast cancer diseases is early diagnosis and proper treatment is very crucial. The
study of other risk factors such as family history, hormonal details, smoking habits,
weight, and breast density are helpful in assessing the chances of occurrence of this
aggressive disease.

Al-based algorithms can predict breast cancer survival rates in a very fast and
effective way. Itis a non-invasive method that can diagnose breast cancer by analyzing
various modalities such as USd, MRI, and mammography. These algorithms can
prevent painful biopsies in patients and detect delays that can cause severity to
increase. It also prevents long-term exposure to radiation which can impact the other
tissues in the body and increase complications. In addition, various image enhance-
ment techniques and noise removal methodologies are also adopted to improve
the imaging quality for accurate and clear diagnosis of cancerous lesions in the
breast which may not be possible in case of manual analysis. It also addressed the
limited availability of experienced and trained radiologists who can analyze imaging
modalities and predict breast cancer.

Al-based techniques have shown remarkable performance in the prognosis of
breast cancer to reduce the mortality rate. However, the generalizability and inter-
pretability of these models to realistic deployment are yet to be proved. To ensure
generalizability large and multiple datasets are utilized so that maximum scenarios
can be covered. Various techniques are adopted to address the black box design of
DL models and make the model interpretable for enhanced performance. However
limited data availability, privacy and modification constraints are certain hurdles that
restrict generic performance evaluation and clinical deployments.

In future, Al-based models require to be more generalizable and interpretable for
its world-wide acceptability. Utilization of multi-model data is also recommended
to ensure unbiased performance of these models. In addition, inclusion of more vital
statistics, gene expression examination and histopathological images in the training
data can also be very helpful in predicting the occurrence and reoccurrence of breast
cancer in humans.
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Chapter 9 ®
Role of Artificial Intelligence e
in Immunology

Abstract Artificial intelligence (AI) has become an inevitable part of the healthcare
industry. The disease ontology is expanding at an alarming rate, and it is close to
impossible for medical practitioners or healthcare professionals to deal with vast data
in clinical records, submit lab reports, medical imaging data, drug targets, pheno-
types, and genomics data, or find a concrete justification or treatment as per individual
variability in disease management. Al can learn feature patterns from these huge
datasets and can aid these professionals with robust and reliable predictions. With the
integration of Al in immunology, the enhancements in diagnosis, drug discovery, and
personalized therapy have significantly improved healthcare outcomes. The applica-
tion of Al in immunology can be exploited for antigen-specific vaccine design, as
well as the prioritization of potential immune epitopes from bacterial pathogens that
activate human T cells.

Keywords Artificial intelligence (AI) - Immunology - Computational
immunology - Al in biomedical research - Intelligent immunoanalytics -
Immunoinformatics

9.1 Introduction

Immunology is a complex and versatile field. The intricate immune system protects
the human body from diseases, but the field’s perplexing concepts and mechanisms
mean that researchers and clinicians alike need to think creatively and champion
innovation to strive for an up-to-par level of biomedical advancement. Breakthroughs
inimmunology will also result in transitioning from a reactive model of care to a more
proactive one, thereby ushering in the era of precision and personalized medicine [1].
Artificial intelligence is predicted to be an infrastructure technology that will impact
several sectors in the years to come. The importance of Al and how it treads paths in
fields like computational biology, computational chemistry, and machine learning is
also on the rise, playing major roles in supporting logistical operations and in fields
like drug discovery and disease diagnostics [2]. The marriage of Al and immunology
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amplifies this leap of innovation in terms of speed, accuracy, and efficacy. The ability
to sift data for patterns that were once considered ‘random’ and inapparent is one of
the contrasting abilities of Al [3].

Immunology and its related terminology stem from the Greek terms; immunity
and the concepts of antigens and antibodies find their roots in the word antigen.
The study of the body’s inbuilt defense mechanisms is known as immunology. The
collection of cells, tissues, and organs that together attempt to resist foreign invaders
and restore normalcy in the event of injury is the immune system [4]. The players
involved include various cells, soluble factors, tissues, and organs, making this study
an interdisciplinary one. The average lifespan of infectious diseases is rising, and
researchers now believe the inborn immune components are much less versatile than
we once thought [5]. The high-dimensional, unstructured nature of data with more
noise is a computational burden that paves the way for Al to be included in immuno-
logical proteomics. Al holds all the necessary tools to increase the performance of
analyzing, storing, interpreting, and actuating the mined complex data into pure,
useful insights, giving us a new perspective and a better edge over the age-old stan-
dard computational times and strategies [6]. The key Contribution of this chapter is
as.

e This chapter identifies the potential of Al application in the context of genomics,
serology, and immune monitoring in the case of vaccine development.

e Further, integrated approaches of Al adoption with immunological concepts
can contribute to the efficacy of vaccines and several other immunotherapies.
We acknowledge that there are some limitations to the adoption of Al in
immunological research.

e Additionally, the correct application of Al for disease vaccination purposes
requires resolution of challenges such as the generalizability of Al vaccines,
explainable Al, ethical and data sharing concerns, and Al model integration with
immunological concepts, all of which are discussed in further detail.

e We close the chapter with an overview of opportunities and future developments
that are on the edge of translational immunology.

The rest of the chapter is organized as follows. Section 9.2 elaborates on the Al-
based applications of Immunology. In addition, Al-based techniques for Immunology
to analyze Immune system models are categorized into ML-based and DL-based tech-
niques in the Sect. 9.3. Section 9.4 details compared to analyze the merits, demerits,
and limitations in each category of existing AI model for immunology. Future direc-
tions and opportunities of Al-based techniques are in Sect. 9.5. Lastly, the concluding
remarks and future directions are sketched in Sect. 9.6.
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9.2 Applications of AI in Immunology

Artificial intelligence (AI) has the potential to significantly improve medical diag-
nostics and treatment [7, 8]. This concept can certainly be applied to the field of
immunology for numerous exclusive benefits. There are a significant number of
applications currently emerging that involve using Al in the field of immunology.
This section aims to explore these different areas and discuss how, in particular, Al
might have the capability to assist in the immunology of the future [2].

Application Areas of Al in Immunology One of the most proposed advantages of
utilizing Al in a medical context is the potential for an increase in diagnostic rates and
disease prognostication. Enhancing and providing a more robust explanation for the
data analytics that occur in the background can achieve this. The ability for machines
to have smooth and consistent data provision is likely to bring data analytics higher
in terms of accuracy and coverage [9]. Drug discovery and development has been
another major area into which Al has been invested. The combination of Al and drug
discovery aims for an increase in the gravitational pull for a particular candidate drug
of interest. An enhancement in yield is produced if a client-liaised approach between
the companies and the involved patients can be established. An immense need for
personalized medicine has planted roots in today’s world, and this phenomenon is no
exception. In this highly customized age, industries are exploring a novel and niche
approach to personalized medicine. Cells in the body have a very unique immune
status, and there is a trend to investigate most of the abnormalities from these very
immune-compatible cells [3]. In the context of personalized medicine, therefore,
cells could be classified in accordance with the immune program within them. Al,
if harnessed, could potentially be used to revolutionize personalized medicine and
develop devices or software that diagnose the immune profile of a patient and classify
these cells based on the unique immune program that belongs to them. This machine
learning technology can be applied to human cells, animal cells, etc., in order to
diagnose the disease. In conclusion, there are many exciting projects in the field
of Al and immunology. The predictions are very promising in this area, and the
applications are limitless. From the bench to the bedside, Al has the potential to
forever change the face of healthcare [2].

9.2.1 Disease Diagnosis and Prognosis

Artificial intelligence (AI) has been extensively applied in disease diagnostics and
prognosis, a domain known as medical diagnosis [10, 11]. In immunology, such
techniques allow for the analysis of complex and multidimensional data extrapo-
lated from immunological tests, patient history, and physical exams so the prognosis
can be taken one step further for immune-related diseases. Inside Al, a considerable
number of techniques have been described, including generative models, feature
selection techniques, and a wide variety of machine learning (ML) and deep learning
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(DL) approaches, which aim to enhance the capability obtained from simple pattern
or marker analysis [12]. Diagnosis improves diagnostic accuracy or enhances the
performance of a diagnostic protocol. As a prognosis starts when a disease marker
is identified in a diagnostic scenario, we describe all diagnostic techniques, irrespec-
tive of the Al approach, here in this subsection. There are already multiple studies
available where different ML and DL algorithms were used to diagnose a disease
based on clinical or omics data. Al has even been applied in predicting infection or an
autoimmune-like disorder in the early or latent stages of a disease [13]. Al systems
have the potential to be developed and implemented directly into a professional’s
workflow in computer-assisted diagnosis systems [14, 15]. This integration could
help clinicians make more definitive decisions, based not only on the information
they gather but also on the results of tests or procedures conducted by Al Ideally,
such a system could allow a combined diagnosis to see the patient’s test results and
the generated diagnosis using artificial intelligence [13].

Researchers have used Al to identify and validate a panel of biomarkers in the
blood of children or adults that can be used to diagnose a systemic condition,
and studies of periodic blood-based protein levels in patients using bioinformatics
methods have shown Al can predict either a patient’s level of symptoms or disease
progression. IDD diagnosis can still be improved, and working Al systems with the
ability to directly impact the field of immunology will need to be released. One Al
approach can hold the potential to revolutionize traditional diagnostic practices [16].

9.2.2 Drug Discovery and Development

Drug discovery and development is a costly and lengthy process. Artificial intelli-
gence algorithms provide new approaches to analyze vastly available techniques that
can identify small molecules and candidates. Al programs, including deep learning,
can analyze larger sets of data to make the data analysis more accurate and efficient
due to the lack of important datasets to be trained, to study drug mechanisms quickly
and more economically, and hence to provide a better output [17]. The integration of
these concerns with the new data also reduces the implemented algorithms of data
into the strong requirements for computational power. Companies are developing
large datasets to extend their usage in their workflows. A few examples showcasing
the successful application of these approaches in discovering immunotherapeutics
include Al technology developed in collaboration with a member of the Roche Group
[18]. Nevertheless, Al algorithms have been recognized as one of the potential multi-
factorial design considerations for drugs. Major challenges of the application of Al
approaches in this domain pertain to the quality of the data. The current data available
for treatment and drug development, as well as operational and clinical data, could
be integrated into a single patient file [19]. Moreover, most clinical data are textual
records that express the doctor’s decisions, which are characterized by social, organi-
zational, and individual contexts. However, identified research opportunities in this
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domain include the development of deep learning Al approaches in patient immu-
nity profiling and personalized drug therapy, where immune responses are measured
on a single subject visit time series with good dependent variables. Ethical chal-
lenges in Al applications concern automated drug design and treatment, including
the responsibility for developing drugs, distributive justice, and test versus control
subjects’ decision-making [20]. In contrast, Al applications in design could auto-
mate recommendations that will accelerate method development, and the decision
is supported by the investigator’s intuition for a more effective study. In conclusion,
Al and machine learning have very promising roles in expediting multiple advances
in drug design and treatment. The transformative potential, benefits, promise, and
success of these tools in drug treatment and trials are increasingly concerning the
integration of AI/ML tools into designs to improve their efficiency for testing or to
reduce their costs [21].

9.2.3 Personalized Medicine

Personalized medicine is an attempt to use data from individual patients to guide
disease treatment. In the case of immunology, immune responses vary widely
between individuals. Al tools can be used to detect detailed immune responses in
vaccinated individuals or detect sophisticated immune responses to infection [22].
Personalized immune-based drug treatments may involve the integration of various
types of data such as genomic data, plasma or serum biomarkers, and data on tumor
biology. Physicians treat patients individually based on the results of these tests. For
example, by genetically detecting people who have impaired interferon responses
and are thus likely to suffer from persistent, chronic, and debilitating infections
and those who may respond with autoimmune symptoms to vaccines [19]. A similar
approach has been proposed to optimize response to pharmaceutical countermeasures
and exposure to viruses (The Applications of artificial intelligence in immunology
is shown in Fig. 9.1).

Personalized medicine strategies are likely to be more complex, less intuitive,
and more high-risk than traditional clinical practice [23]. Nevertheless, the treat-
ment of immunotherapy in the field of immune lung cancer is closer to a personalized
medicine strategy based on extensive genetic and molecular diagnostics. Case studies
of personalized immunotherapies that use genetic immune response data to identify
patients to exclude or functionally activate in patients exposed to anticancer check-
point inhibitor therapies support the feasibility of the concept. Al and ML tools can
also integrate and help predict and guide the effects and outcomes of complex person-
alized immunotherapy strategies. Al can therefore be considered to support decision
science in personalized medicine to overcome the problem of the low number of test
patients. Importantly, having access to and using individual health and gene data to
develop personalized therapies also raises privacy and ethical concerns, as well as
direct commercial use [19, 23].
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Fig. 9.1 Applications of
artificial intelligence in
immunology

9.3 Al Techniques and Models in Immunology

Artificial intelligence techniques, which are primarily used in immunological studies,
mainly depend on the objectives of the studies. To process the existing complex
and multifactorial immunological data, most studies are based on supervised, semi-
supervised, and unsupervised learning algorithms. Additionally, machine learning
techniques are widely used to elucidate interactions, changes in subpopulations, and
patterns [13]. For the analysis of high-dimensional immunological data, deep learning
architecture is utilized, including different types of CNN, RNN, autoencoders, and
GAN:Ss. These Al models capture different types of features according to the study’s
priorities. As a result, the selection of best-fitted algorithms depends upon the tasks
to be performed. The successful improvements in immunological research achieved
via Al-based approaches are significant [24].

Therefore, it is crucial to select a suitable model according to the objective of
the study. The list of more complex models, such as CNN, RNN, autoencoders,
and GANS, requires additional consideration regarding the model design, param-
eter tuning, evaluation, computation, and reporting parts, particularly in the studies
conducted for bench-to-bedside treatment discovery [25]. Immunological data is
mostly high-dimensional and noise-oriented, requiring efficient analyses through
sparse feature learning models, factorization-based models, nonlinear-based models,
neural network-based models, ensemble-based models, and unsupervised models,
depending on the subdomain type and size of data, and challenges. There is a strong
desire to gain translatable Al-based knowledge required to understand host defense
and infectious diseases, autoimmune and inflammatory responses, and immunore-
sistance development. As a result, the future direction suggests the selection of
Al model types, with support from surrogate system models, for the promotion of
immunological research [25, 26].
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9.3.1 Machine Learning Algorithms

Enormous work has been done in developing data analysis and prediction tools
using machine learning in immunology. Machine learning algorithms essentially
work by learning patterns underlying the given input data and making predictions
or discovering new insights from them. The algorithms can be broadly categorized
into classification and regression methods, which are widely used in immunological
studies as well. Classification techniques are used to categorize or position the data
into specified classes or clusters and have also been applied to the prediction of new
disease diagnoses. Examples of classification algorithms are decision trees, support
vector machines, k-nearest neighbors, ensemble methods such as random forests,
and neural networks. Regression, a supervised learning algorithm that finds the rela-
tionship between independent features and dependent outputs, is also used in quanti-
tative modeling in immunological studies to predict outcomes such as drug response
and patient survival, personalized treatment. Feature selection is often performed
to eliminate irrelevant or redundant features in machine learning models, which are
important in immunological applications [13].

Many reviewed papers discuss the application of various classifiers in different
areas of immunology. Machine learning models have not only been used in different
areas of immunology to make new findings and discoveries, but have also been
applied in clinical studies where data from real-world clinical settings have been
utilized to improve diagnostic precision, patient stratification, and facilitation of
personalized medicine [27]. The application of artificial intelligence algorithms in
solving diseases has been thoroughly reviewed, which underlines the application
of artificial intelligence, including machine learning models, in the diagnosis of
diseases associated with immunology such as asthma, hepatitis, AIDS, tubercu-
losis, and cancer, as well as the search for new drug targets and compounds [28].
However, the challenges associated with translational value in the feature space and
the ongoing research should be addressed in future to make more robust and accurate
immune system disease prediction models. In addition, data normalization and data
bias are also key challenges in the application of machine learning in immunological
classification problems that should be paid attention to [29].

9.3.2 Deep Learning Architectures

Deep learning, a subfield of machine learning, is an artificial intelligence archi-
tecture that learns layered representations of input data. Through neural networks,
deep learning can identify essential characteristics of complex and specialized tasks,
thereby allowing researchers to understand previously obscured layers of immuno-
logical data. Initially, deep learning is fed input data. Inside the neural network, the
input data is transformed into different and highly specific forms using several math-
ematical operations [30]. As the operation is performed consecutively, mathematical
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operations rarely imitate the handmade form as the previous model architectures
for artificial intelligence, known as artificial neural networks, and other models.
Many of the complex characteristics of the immunological data must be evaluated
with the original data after the completion of the output layer [31]. However, the
intermediate results are considered to have the most important characteristics that
reflect the functional information of the immune system. Therefore, deep learning can
reveal functional immunological characteristics in body fluids and tissues or spatial
immunological structures and immune molecular patterns by capturing corrected
data required for further immune analysis [32].

There are many models in deep learning, and some are used in immunological
fields. Notable in immunology, deep learning methods of image recognition tasks use
convolutional neural networks. CNNs have been incorporated in numerous commer-
cially available software packages that are capable of providing powerful and accurate
quantitation for stained slides [33]. While numerous CNN-based models exist, very
few have been used for applications in immunology. CNNs have demonstrated signifi-
cantimprovement in diagnosis and prognosis in various fields, including meningioma
classification, skin cancer recognition, breast cancer subtyping, and prostate cancer
detection. However, the most influential and widely recognized deep learning model
in the medical field is natural language processing-based transformers, which are
used for the analysis of medical records, inferring relationships between diseases, or
for predicting the clinical outcomes of patients [34]. Although such examples are very
rare in the field of immunological research, this is likely to become a focus for future
studies. Despite its usefulness, deep learning has certain limitations. Because deep
learning is deeply connected, the model may only capture patterns in the training
dataset, and deep learning may require a large amount of reference data [35]. In
certain cases of deep learning, a larger number of related studies are required to yield
improvements for immunological data such as genomics and biomedical images
regarding the limited number of specific immunological and clinical data.

In terms of practical applications, however, there is still little existing research
that uses ANNS or deep learning for immune analysis [36]. Generally, there is little
ethical controversy, but it often accompanies excessive benefits and restrictions,
particularly in medical, diagnostic, and disease treatment fields; the interpretability
of poor results is associated with ethical risks. Interpretation in immunology and
cancer investigation is highly significant; deep learning in immunological analyses
holds potential and is expected to have a significant impact. As the deep learning
model becomes more sophisticated and larger, the application of deep learning and
immunology is expected to further expand [37].

9.4 Challenges and Limitations of Al in Immunology

To conclude, although Al presents ample opportunities to explore the immunolog-
ical landscape, there are numerous challenges that must be overcome in order to
realize these ambitions. The production of high-quality human immunological data is
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currently limited and hence restricts the creation of reliable AI models. The modeling
of biological systems is also complex and unique to each patient due to epistasis. In
addition, integrating Al into clinical practices is problematic due to the resistance
among many practitioners to this new technology [38]. Various ethical issues also
need to be resolved, such as patient data privacy in addition to bias in the models.
Regulatory procedures for Al, particularly in a clinical context, have not yet been
solidified and hence constitute an additional barrier to widespread use. Some even
suggest that the spotlight on Al may be exaggerated and premature given the string
of recent failures of AI models across various industries [39]. There are various
subdomain of Immunology as shown in Fig. 9.2.

Given the obstacles that have been highlighted, the ambition to run immunological
studies through Al is a tough sell. Despite the advances that have been made in the
application of Al to immunology, we see no foreseeable future where Al can replace
traditional immunological studies, at least for the next 10-15 years [40]. However,
this does not mean there is no place for Al in the field. More realistic goals include
patient stratification using a combination of Al, genomics, and proteomics, as well
as predictions of treatment responses with disease progression based on medication
intake and lifestyle or environmental factors. These tools, when combined, could

Fig. 9.2 Subdomain of immunology
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inform practitioners as to the prognosis of their patients and hence inform therapeutic
decisions, representing a more realistic and feasible future for Al inimmunology [18].

9.5 Future Directions and Opportunities

We see several future possibilities created by Al to revolutionize the fields of
immunology and immune-mediated diseases. Large volumes of complex data are
increasingly generated in immunology from genomics, epigenetics, single-cell anal-
yses, and other advanced technologies. Al will be increasingly utilized to facilitate
efficient data analysis and deep learning, assist in experimental design, enable appli-
cations for more personalized medicine, and serve as an integral part of drug and
diagnostic discovery [41]. Real-time predictive analytics to enhance patient care
management and provide precise and optimal drug or therapy mining for autoim-
mune diseases, cancer immunotherapy, immune monitoring, or vaccine design are
some conceptual predictions of where future Al applications can be widely devel-
oped [25]. We believe that the major advance in Al innovation is expected to come
from interdisciplinary crossover between Al experts, machine learning, robotics, and
experts in immunology, together with the formulation of immune theory and immu-
nologists. Investment in Al for immune-related medicine and healthcare, including
companies working on designing predictive clinical Al, using Al to mine immune-
mediated diseases, as drug detection, and inventing Al-based detection kits, may
again provide high returns on investment [24].

Immunology and related diseases are becoming an increasingly important part of
healthcare worldwide. Given the vast amount of information currently available, the
emergence of Al in the field of immunology is of great significance, and the outlook
is optimistic. In close collaboration with clinical immunologists, Al has the potential
to greatly enhance the application of basic and clinical immunology research and
improve the diagnosis and treatment of various diseases in future. Globally, there
are also opportunities for the establishment of interdisciplinary immunology-driven
Al and healthcare research consortia or a network of global research communi-
ties with this shared interest. These alliances among Al engineers, artificial intelli-
gence institutes for immune-related human disease, and immunological experts in
the field can work toward generating dynamic discussions, spreading knowledge,
and experience in this very unique cross-sectional opportunity to further develop
the proposed applications to enable medical practice in future. The conception of
future crossover interdisciplinary research agendas can also provide a platform for
joint worldwide grant applications in Al data mining for immune-related diseases.
Development of professionals and educational programs in Al and machine learning
for immunopathology is essential to meet the growing medical industrial needs
for the future. It can also provide new international career opportunities and long-
term training in interconnected areas of imaging and clinical immune pathogenesis
[25, 40, 41].
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9.6 Summary

In closing, the potential of Al in immunology is transformative. If used in the right
way, it can further some of the great clinical progress achieved in recent years.
Building useful machine learning models, applying deep learning to image clas-
sification, and searching for patterns in omics data at scale are just a few of the
evidenced successful applications of Al in immunology. The promising research
emanating from these projects ought to be matched by responsible innovation. Since
the integration of Al into complex immunology models is rife with technical, ethical,
and adoption challenges, a more in-depth diagnostic survey and an assessment of
the ongoing state of Al integration is needed to identify the pervasive challenges and
provide a unified view of the landscape across disease states.

Early investments in the computational foundations required for such Al-first
models, best practices for integrating Al into scientific processes, and exploration
of the efficacy of the Al-standard immune health promotion vehicles on patient
outcomes are the essential next steps. Finally, this work should only be done in an
environment of interdisciplinary collaboration across immunology, computational
science, ethics, and regulatory disciplines. Immunology stands at a pivotal cross-
section where Al could be deployed across a range of available data, methods, and
application areas. There are, without doubt, limitations and a need for improvements
in both the data and methodology. Moreover, proving clinical utility is hard, and
ethical, and micro- and macroeconomic models of implementation are not to be
neglected. Still, progress is being made in the reconstruction of more complex models
capable of accommodating much of our molecular understanding. Immunology is
potentially one of the great fields of application for Al, given the proper imperatives
to define questions and develop methodology. However, it represents a spectacular
challenge to machine learning developers.
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Chapter 10 ®)
Managing High-Risk Surgery Using e
Artificial Intelligence

Abstract High-risk surgical procedures concern complex surgical procedures
requiring substantial postoperative care, such as those in cardiothoracic, urosurgical,
and neurosurgical disciplines—in particular, those involving medical significance
or the perception of elevated associated risk. Due to rapidly rising healthcare costs,
research into recent medical advancements has been expedited by pressure from
national and economic factors to provide an explanation of entitlement to tax-funded
service suppliers. Quality assurance management systems have been implemented to
serve as an adjunct to the development of high-performance healthcare systems. Arti-
ficial intelligence is currently being developed and applied to all aspects of medicine
with improvements in computational ability. AI might be an important contributory
element due to its expertise in deciphering text and images, especially concerning
surgeons who enter into the tougher excision results for diagnostic classification
purposes. However, any Al application helping in important surgical procedures
necessitates a strong accreditation strategy that supports qualified professionals’
concerns regarding the effect of peripheral hyper-regulation and de-scaled protection,
also ensuring that a technology adherer can comply with new professional require-
ments and encourage the proliferation of already scarce surgical specialists. High-risk
surgical processes are tailored here to these issues, which are capital-intensive and
profoundly affect patient outcomes. We maintain that Al technologies are built as
a ‘third operating hand’ to support mental and physical exercise, and not as inde-
pendent research systems. Every move to build private surgical processes must also
follow Al regulation, including current legal health regulations.

Keywords High-risk surgery - Surgical assistance - Al in surgery + Smart
operating rooms * Robotic-assisted surgery - Surgical automation

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 235
A. Kumar and D. Singh, Artificial Intelligence in Modern Healthcare System,

Transactions on Computer Systems and Networks,
https://doi.org/10.1007/978-981-96-6703-1_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6703-1_10&domain=pdf
https://doi.org/10.1007/978-981-96-6703-1_10

236 10 Managing High-Risk Surgery Using Artificial Intelligence

10.1 Introduction

Surgical robots have become an irreplaceable equipment in today’s operating rooms,
thanks to their skillfulness. They are widely applied in operations that are at high
risk of high postoperative complications or surgery difficulties, such as in thoracic
surgery, delicate hepatopancreatobiliary and minimally invasive surgeries, assisting
in the operations [1]. With the assistance of these intelligent technologies, patient
safety can be effectively improved. The reoccurrence of disease could be reduced,
concurrent co-magnetic of complex operations could be avoided, and the psychiatric
pressure of young surgeons can be relieved that stems from the heavy load of practice
learning. These advantages make artificial intelligent robot-assisted surgery high-risk
operation patients elective [2]. Currently, robots operate in a manner of “imitation”
rather than “thinking”; however, the story takes a turn in the world of Artificial
Intelligence (AI), as Al-based robots are the “main characters”, equipped with their
distinct advantage, with the capacity for “thinking” [3]. It is more interesting to
discuss how Al is incorporated to assist these robots performing their operations
[4]. As a newly-emerged field, surgical Al addresses capturing the capabilities of
the latest advancements in bioinformatics and biomedical computation that could
provide suggestions to verbalize insights, diagnostic, or procedural performance of
surgical robotics systems, while bearing the specially-developed clinical practice
guidelines and engineering standards in mind. Although augmented by the most
advanced clinical and engineering technologies, it is challenging for surgical Al to
achieve a fully autonomous intraoperative surgical procedure, which also ignites a
rebound discussion on the unique role of individual surgical robots [5, 6].

10.1.1 Background and Significance

The beginning of the twenty-first century has seen the rise of a dynamic, globally
connected technology and services-based economy propelled by digitization and
telecommunication. Despite the now daily experience of virtual meetings, much of
the genuine disruptive changes toward such a connected economy are still on the
finance, create, transfer, operate, and monetize information and knowledge [2]. In
healthcare, even the simplest disruptive technologies based on the combination of fast
web-based access to molecular diagnostic kits, fast electronic processing of sensor’s
biomedical readings, and web protocols and rights management to have the diagnosed
data being processed and the results being sent back within a relatively short time
space are still not deployed [7]. Although it is possible to combine high-performance
diagnostics with the currently very established non-invasive surgery, this leads to
ambulatory or even real-time surgeries in an operating theater environment with
immense benefits [8]. Only the speed of service and the lack of economical models
leveraging the low-cost access to the process to support the pioneer establishment
of robotic systems at very high service costs. To support critical argumentation on
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the effectiveness of surgery, some concepts must be agreed upon to comprehend the
role of surgery in healthcare [9].

Surgery continues to be the central and decisive form of therapy for most cancers.
Although substantial progress has been made in the development of anticancer
drugs and radiotherapy, successful outcomes from surgery still remain essential in
most cases. To avoid recurrence/metastasis and to improve the overall prognosis
for patients with cancer, radical en bloc resections are required when possible [10].
In addition, successful and assiduous minimally invasive surgeries are necessary to
ensure the firm establishment of more than 20 years’ progress in endoscopic diag-
nosis and biopsies, as well as various other endoscopic diagnoses. Unfortunately,
since 1965, curricula thin fiberscopic technologies have not had significant continual
progress in enabling endoscopic diagnosis, biopsy, and surgery to be combined and
conducted in a single board-certified non-invasive machine like endoscopic diagnosis
and biopsy [11].

10.1.2 Purpose and Scope of the Study

This research aims at developing a model to assist high-risk surgery using artificial
intelligence (AI) techniques such as deep learning and big data. In the developed
model, data from intelligent medical devices will be collected and analyzed, as well
as existing patients’ data from medical diagnostic images already known, which can
reflect therapeutic outcomes in order to reduce the risk of re-exploration and improve
prognosis [12]. The intelligent medical device is composed of existing biosensors,
biochemical sensors, and an Al software program [13]. The Al software program will
be able to early detect abnormal signs and symptoms of the patient by monitoring
changes in patients’ information and inform the healthcare provider of the results in
a timely manner. This device can bring both instant improved quality of treatment
and convenience for patients and healthcare providers, being an eco-friendly medical
device. The first solution was that the biosensors were 3D printed for easy application
to the body [14]. For the second solution, commonly used biosensors (Pulse oximetry)
and the method of applying the peripheral venous lines were included in order to
create a more comprehensive solution [15]. Needed high-efficiency materials were
determined for each solution. The results of the pre-experiment were validated to
confirm the excellence and compatibility of the results. The 3D printed sensors and
applications were presented. Finally, the value and limitations were discussed for
commercialization [12].

This research aims at developing a model to assist high-risk surgery using artificial
intelligence (Al) techniques such as deep learning and big data. In the developed
model, data from intelligent medical devices will be collected and analyzed, as well
as existing patients’ data from medical diagnostic images already known, which can
reflect therapeutic outcomes in order to reduce the risk of re-exploration and improve
prognosis [16, 17]. The significant theme mentioned in the Purpose and Significance
of the Study chapter was expanded in this study. The latest research and progress at
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Fig. 10.1 Challenges in high risk surgery

home and abroad related to this theme were mentioned in an introduction chapter,
and the foundation of the theory was introduced in a matter chapter. Moreover, this
study was expected to make a positive contribution to the sustainability of healthcare
policies by using big data and Al, as per an expectation chapter. The key contributions
in this chapter are as follows:

e The risk factors that lead to the chances High Risk Surgery occurrence are elabo-
rated in detail to provide awareness pointers in order to prevent its spread among
humans.

e We have discussed applications of Al-assisted Surgery, Limitations of traditional
methods and advantages of Al assisted High Risk Surgery.

e Emphasizes the importance of Al based surgery, Ethical and legal considerations
and innovations for Al-assisted surgery.

The rest of the chapter is organized as follows. Section 10.2 elaborates the back-
ground and current challenges for Al assisted High risk surgery. In addition, Appli-
cations of Al-based surgery, image analysis detection and robots assisted surgery are
discussed in Sect. 10.3. Al based Decisions, results, Improved Precision and Accu-
racy and advantages of Al in high risk surgery. Ethical and Legal considerations,
Patient Consent and Autonomy, Liability and Accountability Issues are discussed
in Sect. 10.5. Future trends and innovations in Al assisted surgery are mentioned
in Sect. 10.6. Lastly, the concluding remarks and future directions are sketched in
Sect. 10.7 (The Challenges of high risk surgery is shown in Fig. 10.1).

10.2 Current Challenges in High-Risk Surgery

Even though technical assistive devices and technical surgical procedures are harmo-
nized during surgery, patient clinical status during surgery varies with the volume
lost for replacement, and therefore these patient parameters should be adjusted.



10.2 Current Challenges in High-Risk Surgery 239

Analyzing the surgical video, each patient has a unique video preoperative and intra-
operative profile [18]. However, each patient has both enjoyable periods recognized
by decreased parameter deviation and unforeseen circumstances, leading to over-
whelming workload. The anesthesiologist team must increase patient safety control
quickly. Artificial intelligence for medical purposes is considered in the era of anes-
thesiologist support [19]. It is expected to provide information for better decision-
making in variable patient clinical situations, based on high level performance both
in intensive care unit monitoring and surgical condition assessment.

Facing high operative risk and struggling against time to save life during surgery,
technical surgical skills are crucial. But many factors can unexpectedly influence
surgical outcomes. Not all patients with the same acute disease need surgical inter-
vention [20]. On the other hand, the difference in the quality of technical skills among
surgical team members becomes evident during surgery, in terms of ease and time
to accomplish key parts of the surgery with less bleeding. Currently, selection of
patients for high-risk surgery and the choice of surgical team for high-risk surgery
are not standardized [21]. Focusing on medical practice in developed countries, a
new approach using artificial intelligence in this surgical decision-making problem
to better inform both patients and doctors is needed. Here, we explore how frequent
surgical complications that emerge during high-risk surgery are intertwined with the
technicalities of the surgical procedure and the patient’s clinical situation from a
general surgical specialist perspective and propose directions for future refinement
of practical artificial intelligence support [20].

10.2.1 Risk Factors and Complications

While human beings are prone to test error, fatigue, or stress, among others, machines
are less deficient in many of these areas and their performance level is consistent
over time depending on their programming. Although machine-learning models do
make mistakes, they are less likely than human errors when the technology is well-
maintained and parameters of operation are obeyed. While the concept of placing
people’s lives in the hands of machines may be unattractive to some, it’s still important
to remember that humans designed methods, set their requirements, and instructed
them in their tasks [22]. Al will allow healthcare professionals to develop different
technologies to help improve patient outcomes with the implementation of supportive
computer programs through transforming the structure of their jobs. These technolo-
gies will create opportunities for health professionals to work in a supported role in
a manner that allows for consistent best care [19].
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10.2.2 Limitations of Traditional Surgical Techniques

Despite the significant improvement and advancements in both anesthesia and
surgical techniques during the last decade, they cannot ensure a zero-risk inter-
vention for patients. As I stated above, a considerable number of patients face a
high-risk surgical intervention. Those are cases where the high-risk is mostly due
to the specific clinical condition of the patient and concerns mostly two points. The
one is the general condition and functionality of vital organs (heart, lungs, liver,
kidney, etc.), while the other refers mostly to the circulatory system itself due to
stenoses, ruptures, malfunctions, etc. of arteries [23]. This is a case where Artificial
Intelligence can make a significant additional contribution, allowing the vascular
surgeon to ensure a higher level of intervention with a minimum risk, especially for
the functionality of major organs during the operation. In this chapter, after the first
assessment of the Al in surgery itself, an analysis of the high-risk surgical interven-
tions is made, while research conducted during the last years for scientific research
and prototypes concerning the role of Al in aortic surgeries in an Al-oriented society
is presented [24, 25].

10.3 Applications of Artificial Intelligence in Surgery

Preoperative test prediction tools are developed to predict preoperative test results
using individual patient’s information. These predictions can help surgeons make a
more personalized surgical planning, lower the risks, or guide cautioning the post-
operative care. There are also various decision-making assisting tools. Instead of
employing the general instant information during the surgery, these tools can provide
more precise and individualized recommendations [26]. The other important group is
the tutorial tools for simulation or guided surgery. Coordinative virtual environment
software promotes group work within surgery to integrate information from recorded
surgeries and provide advanced communication between the surgery team members.
While many artificial intelligence technologies in surgery are introduced to optimize
the surgical workflows by enhancing the four stages of data collection, data manage-
ment, data analysis, and data display, distinct artificial intelligence technologies may
have distinct dominant stages in which they can demonstrate their unique benefits
[27]. However, most of these technologies are still in the conceptual stages. With the
rapidly expanding capabilities of artificial intelligence, they are expected to mature
and be helpful for numerous surgeons presently.

There are numerous potential applications for artificial intelligence in surgery,
serving different purposes and administering to distinct parts of the workflow asso-
ciated with this specialty. The following paragraphs detail individual uses of the tech-
nology in surgery [28]. The existing correlation between these outlined uses provides
a glimpse at one of the unique trends in surgery practice where artificial intelligence
is more prominent. These assistive technologies are concurrently user interactive and



10.3 Applications of Atrtificial Intelligence in Surgery 241

automated, complementing and guiding but not substituting the surgeon. Some of
these assistive tools even offer explanations that the surgeon can interpret, further
empowering the latter to make a well-informed decision [29].

10.3.1 Image Analysis and Interpretation

One of the best-known applications of Al technology in the medical field is the ability
to analyze images to assist with diagnostic tasks [30, 31]. A good portion of current
Al applications is used in various diagnostic methods, making predictions based
on the available electronic data has resulted in significant advances in personalized
medicine [3]. In high-risk surgeries, these methods have a smaller but still widely
used role in the form of medical imaging and informative pre-operative counseling.
Using MRI scans and other imaging technologies, Al can provide assistance with pre-
operative planning. Information provided by the Al can be used to weigh different
techniques and individualize operative strategies before the patient arrives in the
operating room [32]. A review of the recent impact on different Al imaging tools in
high-risk abdominal incidentalomas surgeries has been studied in 2021. Collecting
high volumes of data directly from patients as they move through the hospital can
expand the data utilized by Al models [33]. Limitations of medical images include
low reproducibility and weak correlation to objective functional parameters.

10.3.2 Robot-Assisted Surgery

Advantages of robot-assisted systems include magnification and stereoscopic vision,
high-precision instruments, tremor reduction, wide range of movement, stable
camera, minimal invasion, and reduced operator fatigue. The features of robot-
assisted devices are visual imaging systems; servo actuators; three-dimensional
sensor; and either the data storage system, American Standard Code for Information
Interchange (ASCII) interface, Universal Serial Bus (USB) interface, display; input
systems or haptic interfaces [34]. The robotic surgical process consists of moving
the robot to the location of the surgical site, placing the robot precisely where the
incision is to be made to help the surgeon visualize the surgical site, and then make
the incision while assisting the surgeon.

Robot-assisted surgery is an application of robots. Robots are machines that
can be programmed to carry out very complex personal tasks or can be manipu-
lated by general-purpose machines. Robots that assist surgeons are in the form of
an articulated arm [35]. The robots have different roles in surgery; they include
laparoscopic surgery, cataract surgery, orthopedic surgery, cardiovascular surgery,
and many different high-risk and minimally invasive surgeries. The disadvantages
that exist in robot-assisted surgery are the lack of dedicated training, the high cost of
human surgery for initial testing, and easy access. As a result, surgeons need to be
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educated about robotic systems, which tools are best suited to their procedures, and
how to support personnel in order to ensure effective robotic system use [36].

10.4 Benefits and Advantages of Al in High-Risk Surgery

One of the surgeons who has studied the use of Al-assisted liver surgery most is Posi-
tano from the San Giovanni di Dio and Ruggi d’ Aragona Hospital in Salerno, Italy.
His experience is that the use of Al in high-risk surgery improves the likelihood that
the patient will stay overnight in the ICU rather than having to stay there for a longer
period [37]. Al-assisted high-risk surgery could mean a great advantage in terms of
cost—benefit relationships. Researchers in computer science disagree to some extent
with this rather optimistic finding from surgeons. They believe that improvements in
the use of Al-generated imaging for the guidance of complex operations increase the
likelihood of the patient having to stay overnight in the ICU, rather than the oppo-
site. They argue that improving clinical outcomes in the form of a higher number of
patients being discharged from the ICU in the afternoon can be a side effect of Al
that investigators, ethics committees, surgeons, hospital administrations, and payers
perhaps should focus on more, i.e., the avoided complications and extra days in the
ICU [38].

Artificial intelligence (AI) can be used to help surgeons in the planning phase
as well as during the procedure itself. The Al is fed a large number of images to
help it learn what the patient’s own anatomy looks like, which is then used to assist
the surgeon in the operating room by providing guidance when the difficult, high-
risk sections of the operation are performed. It can be a way for the surgeon to feel
more reassured and confident by making the ‘blind’ parts of the procedure ‘visible’
[39, 40].

10.4.1 Improved Precision and Accuracy

High-risk surgery often necessitates reconstruction or curative treatment. This often
involves procedures with a narrow margin for error, both in terms of the initial
accuracy of the procedure and the subsequent timeframe. For example, if a new
graft is not accurately joined during microvascular surgery, then blood flow must be
quickly restored to the tissue to avoid ischemic damage. Or if a ‘marginal’ donor
organ is not given away, the liver transplant must be completed within a limited
window before the organ becomes unusable [41, 42]. AI’s inherent capabilities in data
processing, pattern analysis, and real-time decision-making make it ideally suited
to support precision and accuracy in challenging surgical scenarios. This can be at
a coarse level through the automation of important pre- and intra-operative tasks,
such as organ localization, resection, and suturing. At a more refined level, Al can
also support the successful execution of tasks that might be possible for a user



10.4 Benefits and Advantages of Al in High-Risk Surgery 243

but which are highly sensitive to fatigue or stress-induced hand tremor, such as the
accurate separation of co-joined vasculatures. Finally, Al can also help prevent errors.
The introduction of advanced imaging modalities, such as embedded near-infrared
fluorescent angiography to track blood flow, can provide valuable in situ guidance to
ensure the intended outcomes of high-risk procedures are being achieved in a timely
fashion [43].

10.4.2 Enhanced Decision-Making Support

How can Al help individual complex, high-stress decision-making in high-risk
surgical teams? Can we better provide each operating room’s team with the necessary
information, confidence, and trust they need to effectively work together, in order to
(if not to cure the disease) reduce the chances of possible critical care and long-term
death and minimization of the patient’s family’s pain and suffering? In Appendix I, I
describe HIPA A-safe procedures to appropriately develop and use specific hospital
electronic health data records. A great opportunity provided by today’s electronic
health record technology is the “check what’s needed” stage [44]. Today, it is possible
to effectively learn from previously recorded results of what happens when experi-
enced human professionals create, say, the type of physical interventions on certain
type each undergoing certain type initial after a certain type long-term. The first step
is for prestigious and diverse medical domain expert confederacies to develop such
custom-designed, essential datasets. Communication channels should include using
private and public knowledge on favorite surgeon interventions and brands. Recall
the famous line in Butch Cassidy and The Sundance Kid film about the danger of
knowing real-time knowledge of the new Union Pacific safe. Such applications should
be made to not only surgical team decision-making but also emergency department
triage problems [45].

Can decision support systems enhance decision-making in high-risk surgery? For
over a generation, it has been clear that experienced human surgeons, soliciting data
from the patient’s case and historical outcomes with similar cases, can’t cover all the
potential pathways and possibilities of further trouble. In the heat of the moment,
psychology studies show we suffer from cognitive biases when facing risky deci-
sions [45, 46]. I might even call this the case that Mother Nature feels regret. The
majority of talk and work in medical decision support systems is falsely focused
on replacing the experienced human, who solicits advice when new and unexpected
special circumstances or problems arise. Such a focus misses the opportunity to
effectively support. For complex care such as high-risk surgery, recognizing, under-
standing, and accommodating these notable differences between different human
surgeons are prime opportunities for Al and system-based tools [47].
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10.5 Ethical and Legal Considerations

Moreover, in addition to these basic principles, other issues will be important for
policy and regulatory purposes [48, 49]. There is not necessarily an alignment
between personal legally held information and legally derivable data. It is impor-
tant that the majority of analyses from educated guesses are not instrumental in the
discussion of change but are important to guide how the future unfolds. There is
a need to develop different forms of supportive technologies to address what the
best techniques are for human augmentation [50]. The well-being and dignity of
the human person are highlighted as one of the first objectives of the international
organization. It is not sufficient to argue that increased states are good instruments
because they are getting better. The working group needs to work out a rationale that
ensures human operations are not reproductive [51].

This research underlined the variety of ethical and legal considerations that are
important in the development and integration of autonomous surgical procedures
in the surgical theater. These considerations are important for ongoing progress in
technology, the refinement of policy or regulatory responses, and the development
of guidelines or best practices for surgical automation. It is important to build trust
with patients and medical professionals [52]. These considerations are important for
ongoing progress in technology, the refinement of policy or regulatory responses, and
the development of guidelines or best practices for surgical automation. Transparency
and the development of appropriate public dialogue are important to address the
issues that arise. There remain substantial areas of difference across various health-
care systems over a number of these considerations without international consensus
[53].

10.5.1 Patient Consent and Autonomy

To the present time, the growth of health accession capabilities and health demo-
cratic awareness with Al has often been a disappointing failure; Al-based diagnosis
is actually a frequently unreliable robust sensitivity, upgrades in supply techniques
have, over the decades, created none of the actual technological knowledge speci-
fied, and state regulation impairments have privileged the technical destructions and
prohibited acquisition resistance by the relevant human organizations. Contrast the
unrealistic claims about the independent empowerment of Al-based operation due to
infallibility with the Japanese operation disaster of the Kongo, which resulted from
arrogant faith in the machine Infal [54].

Just as Al can impact patient accuracy, so can it be used to track whether a patient
has really given valid, informed consent for a high-risk operation. Al can be used
both to compare and contrast data recorded because someone has seen a doctor
and believes a surgical situation requires immediate action, but the patient also said
the operation data has the legal valid consent written. Even after demonstrating
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transmitted discussed issues in multiple-patient populations, it should be agreed that
the best use of Al is in promoting the ethical and cognitive enhancement of human
professionals [55].

10.5.2 Liability and Accountability Issues

But again, Al liability is a very new territory that the current law is struggling to
handle. There are also questions of how the law needs to be further developed to deal
with these future Al issues. The liability should be legally designated to strengthen
the performance of AI when put into use, as the company that has an increased risk of
being sued is responsible for making sure that the Al passes safety tests. Therefore,
the company involved may consider dedicating resources, software engineers, as
well as psychiatrists, radiologists, CRAs, or MRIs, and compliance staff to reduce
exposure to lawsuits [56].

In terms of liability issues, this will depend on how the physician views the Al If
they view the Al as a tool or virtual assistant, the physician shall bear the liability in
the event that errors, malfunctions, bugs, or the like have occurred during the medical
operation. However, if they view the Al as a trusted clinical diagnosis, whereby the
responsibility of the operation lies on the Al, the AI may probably decide to opt for
the best course of action [57]. As such, the Al and the company that created the Al
could be held liable and accountable for the actions that the Al decided to take and
implement.

10.6 Future Trends and Innovations in AI-Assisted Surgery

Al and machine learning can be applied to improve perioperative patient care and
enable remote telemedicine. This success is achieved through mass-market connected
sensors, smart home monitoring, and deep neural network virtual complication
metrics developed from thousands of electronic health records for real-time assess-
ment and pre-disease prediction. Virtual reality, connected operating rooms, and high
network bandwidth support the spatially aware mixed reality of Al and augmented
human capabilities [58]. This relies on an ultra-low latency 5G private network
combined with edge and cloud processing concepts to overcome the limitations of
centralized cloud processing, such as the speed of light, packet overhead, and radio-
wave spectrum congestion [59]. This allows for remote high-power Al computing
for the human cyber-physical systems who must make high-stakes decisions with
blood on their hands, either inside or on the patient, at a specific time, place, and
manner.

Thus far, Al and machine learning applications have focused on pattern recogni-
tion tasks such as imaging, labeling, and predicting solutions using known methods
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(e.g., titrating medication or identifying complicated anatomical structures to opti-
mize device placement) [60]. They have also been used after surgery to plan robotic
surgeries, including coordinating ports and placing arms. The potential for Al and
machine learning extends to connected cyber capabilities, ranging from remote cloud
computing to real-time sensing and commanding of Al within an augmented reality
projected from remote access. This allows for the capture, embedding, translation,
and display of vital signs from the body, the surgical environment, and virtual machine
learning models directly into the surgical field of view [56].

10.6.1 Integration of Machine-Learning Algorithms

With respect to surgery, a large portion of tasks ranging from image analysis in
radiologic tests to preoperative evaluation of patients and even artificial intelligence
(AI) to improve the outcomes of the surgery can be made better in the direction of
personalized surgery support systems [61]. Since surgery is one of the last resolutions
to maybe the worst problem that a patient encounters, personalized assistance and
supportive systems should also enable such operations to result in the best possible
outcome [62]. This section aims to discuss the role of artificial intelligence with
an inclusive approach in the captioned surgery process in a comprehensive way
[59]. Everyone or every organization knows that breaking the barriers created by
the standard procedures will cost a lot of money and time; however, in the end, the
gigantic gains will be taken over.

In today’s modern world, it is not difficult to find the interaction of robots with
humans with daily examples. If one looks forward, personalized systems that are
tailor-made just for ourselves come into play. In this matter, the integrated system
provides feedback and forth between two or more systems. In this way, personal-
ized systems that are integrated naturally with humans are made possible. With the
advantage of fast digitizing world and the capability of humanity having an immense
knowledge of data storage capacity, personalized complex systems that understand
us, learn along with our interactions, providing us with their help will be implemented.

10.6.2 Advancements in Surgical Robotics

There has been a range of projects that aim to provide improvements to surgical
robots, such as minimally invasive surgery, teleoperated fingertip control and manip-
ulation, and minimally invasive and natural orifice surgery [63]. Surgical robotics
have been developed to enable minimally invasive surgery (MIS), which features
small incisions, less trauma to patients, faster recovery, and lower postoperative
complications in comparison to conventional open surgery. In the development of
surgical robotics, several types of robot systems have been used in surgery such as
RAS (robotic-assisted surgery), RAV (robot with augmented visualization), RAVS
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(robot with augmented visualization and semi-automation), and RPlanningV (robotic
planning and virtual navigations with real-time visualization) [64]. Experimental
results of the surgical robot have demonstrated intuitive RAVS capabilities and trust-
worthiness of the system for effective clinical use. The conducive use of the robot
platform for MIS robotic surgeons and clinical translation enables the potentials of
supplying worldwide high-quality, high-standard surgeons to expand the reach to
emerging and low resource settings. By aiding the earliest stages of laparoscopic
surgery, such a “robot-augmented” surgeon may democratize MIS for procedures
such as cholecystectomy and appendectomy [65]. The benefits of robotic dexterity
offer minimally invasive natural orifices trans luminal endoscopic surgery (NOTES)
on the jaw, pharynx, lung, rectum, and vagina. Teleoperated miniaturized robotic
surgeries (T-shaped robot, independent anchor hooks) and dexterous endoscopic
options offering advantages like greater degrees of freedom of the joint and the distal
tip of the instrument could be useful tools in the field of robotic surgery [66].

10.7 Artificial Intelligence in Medical Imaging

Artificial intelligence (AI) techniques have taken an expanded position in various
fields, including medical imaging. Al can perform a wide range of activities with the
assistance of digital medical imaging, which comprises the automation of diagnosis
and image analysis. By considering the various difficulties, Al has become more
popular. For implementing Al with medical imaging, the computation needs to be
performed at different stages [67]. Al performing with medical images requires
preprocessing, feature extraction, segmentation, image post-processing, feature
selection, and feature classification. Extracting features and performing multiple
sequences will increase classifiers’ efficiency. This ensures that pattern recognition
plays a predominant role in all medical imaging methodologies [68].

Al includes numerous methods for computer-aided identification and imaging
interpretation. These various methodologies are used in medical imaging systems,
such as computational methods and AI methods. Mainly, the studies utilize Al to
expand the use of medical imaging methods, incorporate image databases, and 3D
image reconstruction. Feature extraction methods are used to remove non-related
low-frequency values and enhance the image potential. The various extraction tech-
niques used in medical imaging are also dependent on the nature of the medical
images and the type of object to be segmented. Preprocessing techniques can
greatly improve the intrinsic performance of image processing tasks such as image
restoration, feature extraction, feature enhancement, and noise reduction [69].
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10.7.1 Overview of Al in Healthcare

In healthcare, Al is referred to as using complex algorithms and software to emulate
human cognition. Al is articulately deployed in the healthcare field. Machine
Learning (ML) and Deep Learning (DL) are two substantial categories used to create
Al models. ML deals with searching and analyzing data using statistical methods.
ML models are capable of recognizing hidden patterns within the database [70].
ML can be divided into three groups: supervised, unsupervised, and hybrid learning.
The supervised model implements input-output pairs using a ground truth dataset. In
unsupervised learning, novel properties and relationship structures are accounted for.
In the hybrid method, it involves both the techniques of supervised and unsupervised
learning [71].

Deep Learning is a universal method used in computer vision and image recog-
nition. One of the favorable aspects of DL over ML is that it can effectively handle
large and complex data. The complex dataset has a deep learning model. Convolu-
tional Neural Networks (CNN) are a popular form of DL techniques. CNN captures
spatial and temporal patterns across images; these patterns are also known as high-
level features of the images. Training an Al model requires large datasets and expert
service support to build high-quality models [72]. The development of such software
must reach validated metadata, follow explicit rule standards, and handle sensitive
and interpretable high-quality data. Nowadays, Al has transformed healthcare and
revolutionized it with a drastic increase in data. The Al model identifies poten-
tial cells for specific areas such as cancer detection, cancer treatment, and diabetic
complications [73].

10.7.2 Applications in Medical Imaging

Deep learning-based models are reinventing medical imaging procedures. The
conventional imaging-based diagnostic methods suffer from several shortcomings,
prompting a rethinking of their formulation for quicker and more accurate diag-
nosis. However, the burden of sifting through a volume of medical imaging files
for grasping subtle and sometimes imperceptible visual clues remains dominant. It
seems that the golden phase of radiomics and texture analyses is rapidly exhausting
patience as well as our big data acquisition capability [74]. The Al community is
finding in generative adversarial networks, as well as deep learning-based neural
networks, particularly CNNs, an unopposed power substrate to complement radi-
ological advancements. CNN is indeed unleashing the full potential of a wave of
revolution in making computer-aided diagnostic capabilities a reality for robust inter-
pretation of medical imaging, ophthalmological examination, clinical pathology, and
finally radiological reporting [75].

Artificial intelligence (AI) has made its pioneering footprints in the domain of
medical image capturing, storage, and transmission by helping medical experts view
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health disorders in a natural and easy way. The human visual system is dumbfounded
with the tasks of aggregating, integrating, synthesizing, and interpreting the surface
visual structures of an anatomic plane as well as their color composites to achieve
correct visualization answers. Al-based computational models are currently dupli-
cating the visual interpretational capacity of the human visual system, sometimes
even surpassing it [76].

10.8 Conclusion and Recommendations

At this point, the unnaturalness brought about by the simulation evaluation is part of
the technical development process. However, due to cost, accessibility issues, ethical
and safety oversight issues, and other factors, the current simulation system is not
widely used and cannot effectively assist the surgeon’s re-education and training.
Therefore, providing tools that can improve surgery with feedback systems, restoring
touch, and simulating tactile information integration will be very meaningful. Touch
feedback will allow artificial intelligence to fully assist the surgeon in completing
any procedure or any step within the operation.

Surgical handheld robotics is the first clinical application of artificial intelligence
in digital surgery. It has opened a new era for digital laparoscopic surgery, allowing
surgeons to perform high-precision and reliable operations at a low cost. It is of great
significance for surgeons to use handheld surgical robots more efficiently to carry
out training, and it solves a long-standing construction problem of digital surgery -
loss of touch. The fact that no touch has been considered necessary when developing
digital surgery tools has created problems for many surgical techniques that are
highly dependent on touch, ultimately leading to a lack of tactile input during digital
surgery. This will affect the quality of surgery, increase the difficulty of surgery, and
ultimately affect the effect of surgery. This will be transformed when surgeons learn
to perform delicate examinations or palpation skills, visualize the endoscope based on
the digital platform, and use the surgical robot to perform high-precision dissections.
We believe that it is now possible to restore touch and further digitize one or all
of the surgical procedures within the framework, and artificial intelligence trained
based on touch function is becoming closer, performing real-time feedback to help
us obtain surgical feedback data and data fusion in the surgical area weapon-wheel.

10.9 Summary of Key Findings

Fortunately, the majority of Al uses in surgery are the assistance of expert and
experienced surgeons and support their decisions. High-risk surgeries specific Al
algorithms can play an indispensable role in assisting surgery. With the help of Al
algorithms, the preoperative preparation of surgeons and doctors can be dramatically
improved. Using Al assistances, high-risk surgeries can be considerably shortened
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and the complications can be dramatically reduced. These are enacted thanks to
the fact that Al can analyze, perceive, and comprehend complex and large data
sets more effectively compared to humans. Patient care has to be individualized
and molecular biology will play a more important role in this sense. Al technology
will support solving the problems such as personalized patient care, preventative
approach, individualized planning also in before and after surgery periods, and
contribute to personalized surgery in all aspects.

Artificial intelligence (Al), a technology that mimics certain functions of the
human mind, also has the potential to play an important role in surgery and the
consolidation of the surgery. Al systems are producing useful tools and applications
and in future, there may be future Al-assisted and Al-directed autonomous surgeries.
To this end, surgeons should become aware of the effect of Al and learn the necessary
knowledge and skills for surgery.

10.9.1 Recommendations for Future Research

Given that high-risk surgery may have a huge impact on individual outcomes and
costs, it is rare that research has been conducted into machine learning interventions
in this field. We present an exploratory report about the potential utility of predictive
models designed to ease the transition toward high-risk surgery. When present, the
studies mainly concentrated on the use of traditional statistical methods and analyses
used to develop said machine learning models. However, the evidence is insufficient
to outline the impact and incentives for using such predictive models in clinical use.
Such a standard would pave the way for valuable decision-making resources for
patients, families, and doctors, thereby offering society important clinical benefits.
Despite the great strides that have been made in the last century in surgery, it is
still among the most dangerous procedures. Surgery has helped numerous human
beings worldwide but high-risk operations sadly increase the risks and place strain
on healthcare providers and their money. Recent advances in Al have taken us to the
cusp of unprecedentedly predictive power, and researchers are quick to investigate
how this may affect surgery. In this report, Al is herein presented in the context of
high-risk surgery to assist surgeons. Until now, Al has contributed little to high-risk
surgery. Future study should concentrate on how modern technology can lower the
threat of high-risk surgery when being closely integrated with clinical workflows.
This includes on how to make predictive models that are readily programmable in
EPRs.
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Chapter 11 ®)
Benchmark Datasets for Analysis Grest o
in Medical Systems

Abstract One of the vital areas within medical systems analysis is the benchmark
dataset. Currently, many related research fields are using Al methods for more accu-
rate and quicker diagnosis, prognosis, and generalization in many areas such as
neurology, cardiology, retinal image processing, and so on. To make a decision,
we need accurate data to support our analysis. Consequently, we need to consider
performance and decide more efficiently. There are many neurological disorders,
ranging from neurodegeneration to trauma, or other related pathologies, in which all
of these illnesses have their own sub-type disorders. However, we will treat a patient,
and most treatment will be either cognitive or medicinal therapy after we diagnose
the disorders. The fundamental operations for disease analysis are image labeling,
preprocessing, and feature extraction from a given dataset. In addition, after we have
the dataset for each type of related disease, we will apply image regeneration-based
techniques to learn the main principal components, reduce overfitting, and possibly
improve the classification methods. We provide detailed benchmarks for subse-
quent analysis, namely diagnosis and prognosis for fatty liver classification, diabetic
retinopathy, different neurological disorders, various mood disorders, cardiac-related
treatment courses, and initiating early strokes and survival analysis. The paper is
structured as follows: we briefly provide an overview of related data and method-
ologies for each dataset. The paper presents results of a series of benchmarks of
different datasets in medical systems. The dataset is obtained from different sources
and medical image data based on different diseases like strokes, diabetic retinopathy,
and also based on spatial domain image data for neurological behavior diseases. It
offers a performance analysis including precision, recall, F1-score, and the AUC of
a machine learning paradigm. The result indicates a general trend in most of the
datasets.

Keywords Benchmark datasets - Medical datasets + Healthcare data - Medical
data repositories - Public health datasets - Standardized datasets + Electronic health
records (EHR) - Disease classification - Patient health monitoring - Predictive
modeling - Medical image analysis < Al model evaluation
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11.1 Introduction to Medical Data Analysis

Today, the requirement for a proper medical data analysis technique has been recog-
nized as critical to the success of diverse healthcare systems. It can handle (1) the enor-
mous amount of medical information gathered from assorted sources such as clinical
practices, bioinformatics, and imaging functions, delivering data styles for facili-
tating prognosis and treatment following specialized education and narrow research,
(2) big data analytics for shedding light on genes and environments invoking diver-
gent reactions in human biology, and (3) free medical records obtained from natural
clinical practices that applicants cannot systematically manage for scientific anal-
ysis purposes. Accordingly, there exists an urgent call for data analytics where the
amalgamation of required characteristics of the practice and measurements of patient
parameters from many hospitals is not feasible with just one. Data extracted from
diverse domains play a crucial role in developing enhanced healthcare with improved
quality services [1].

Currently, medical data sets are numerous from diverse bioinformatics appli-
cations and other physiological and biomedical systems. New data resulting from
advancements in technology and empirical valuation with detailed bibliographies are
important to guide development in the desired direction. In addition, a huge amount
of data collected for research purposes also includes public, federal, clinical, and ill
patients, which constitutes a subset of the healthy population and hence shows less
valid identification of patterns. As such, investigators find it hard to contribute to
one whole, mainly because of the volume and quality of the data sets. Hence, the
need for benchmark sets for new comparative research is a must. Many of the tools
for prognosis, diagnostics, risk prediction, and clustering have already appeared in
the recent past for the alliances of diabetes. Moreover, a relatively large number of
tools and methodologies for diabetes prediction have appeared in the last few years,
and the majority do not justify or appreciably cater to any significantly different
application [2].

11.2 Importance of Benchmark Datasets in Medical System
Analysis

Benchmark datasets are becoming more crucial for the analysis of medical systems.
As a result, research has attained a degree of standard in developing new methods
and algorithms. Benchmark datasets are required to evaluate a variety of applications
making use of medical systems. Both their importance and potential applications are
discussed. The study is intended to persuade the medical community to produce more
quality benchmark datasets for researchers in any area to use. A medical data-based
methodology for creating benchmark datasets is also described.

At the heart of extensive research, the importance of reproducibility and compa-
rability cannot be overstated. Benchmark datasets aid in the quantification of various
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medical systems for the purposes of evaluating algorithms and methodologies. As a
result of the availability of these data, numerous applications and techniques have
been able to compete against each other. Additionally, benchmark datasets help
researchers develop more advanced algorithms and techniques. Benchmark datasets
play a vital role in the training of deep learning models and ensure the development of
more accurate and improved models [3]. To substantiate these viewpoints, we must
continue working and looking for new advancements in medical systems. A recom-
mendation is provided as the final point: a plan to upgrade and change the present
benchmark datasets in order to match the latest medical devices or systems. In order
to detect medical systems training and validation, it is important to update the bench-
mark databases frequently, as the efficacy of some equipment changes according to
their updates [4]. Researchers will no longer require a large amount of data to collab-
orate and develop deep and intelligent systems as a result of these databases. Data
acquisition for medical monitoring devices must always be done ethically in order to
protect the privacy of patients and researchers. It is critical to maintain patient values
and norms when designing these new database frameworks. Ethical considerations
can alter and reflect a person’s situation or where they are living. In the near future,
it is hoped that researchers will validate and repair problems in benchmark research
through these datasets. Real-life applications, such as prediction or disease diagnosis,
could be made more cost-effective or efficient. New techniques and applications are
required to accomplish this. We need to continue to make advances in order to keep
up with these disease prediction strategies [5].

11.3 Overview of Al Applications in Medical Diagnosis
and Prognosis

The modern healthcare sector is marked by an advance toward the use of artificial
intelligence (AI) as a tool for the improvement of clinical decision-making. Among
the numerous areas of data-driven applications, machine learning and its special case,
deep learning, are widely used primarily in diagnostic and prognostic modeling tasks.
The application of Al techniques to medical tasks is aimed at enhancing diagnostic
accuracy, reducing the time of obtaining a final diagnosis, and increasing disease
detection sensitivity and negative test conversion. The number of Al applications in
medical decision support is continuously increasing [6]. Al technology has demon-
strated state-of-the-art performance on numerous tasks, improving validity and short-
ening the time of analysis of medical tests of different natures, from microscopic
image cancer screening to ECG evaluations. Several case studies have demonstrated
the capability of Al technology to outperform the greatest clinicians on specific
medical tasks in terms of diagnostic accuracy [7]. Among various approaches to
Al, deep learning, a subfield of machine learning, is making Al accessible to a
broad range of applications with substantive potential for societal impact. Its prime
strength lies in its ability to automatically detect features from raw data. Despite its



258 11 Benchmark Datasets for Analysis in Medical Systems

immense potential, deep learning also brings its own set of challenges, particularly
when moving to real-world settings, especially in medicine where the ethical use of
Al should be crucial [8].

11.3.1 Neurological Disorders and Mental Illness Diagnosis
and Prognosis

Diagnosis and prognosis of mental and neurological diseases is very complicated
[9]. Currently, for clinical diagnosis and treatments, the evaluation of symptoms,
clinical organization, cognition, metabolic status, brain physiology, brain anatomy,
and genetic tools are used. The diagnosis of multiple neurological and psychiatric
diseases is important for choosing the right treatment, estimating the disease progres-
sion, and distinguishing the causes of the symptoms accurately. The diseases are
actually multifactorial complexes where the symptoms overlap and the individual’s
brain anatomy and physiology of a normal individual show various alterations during
the execution of the same task. Despite the complex nature of mental and neurolog-
ical diseases, and to develop predictive algorithms possibly considering the brain
age, many studies have tried to classify subjects from functional, structural, and
fMRI images with good generalization performance across different datasets, labo-
ratories, and countries according to cognitive measures related to classifications in
order to develop predictive and personalized diagnostic tools for clinicians [10]. In
the following, we give some examples of diseases that should be investigated in
terms of structure, function, and connectivity for developing benchmark datasets to
identify the disease in the early stages before advancing to the point where they
become irreversible in terms of treatment. There are different mental and neuro-
logical diseases, and each of them needs to be investigated in a separate study for
developing benchmark datasets in terms of structure and function to be used for
training (or testing) more accurate diagnostic methods. Diseases where many people
face the diagnosis and prognosis include Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, autism, attention deficit hyperactivity disorder, schizophrenia,
major depression, bipolar disorder, PTSD, traumatic brain injury, epilepsy, obses-
sive—compulsive disorder, Tourette syndrome, and severe anxiety. The following is
the average age of onset and prevalence per year from major disorders. Correct diag-
nosis may help to treat people and manage the symptoms in order to effectively
control them [11].
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11.3.1.1 Key Challenges in Neurological Disorders and Mental Illness
Diagnosis

Automated Diagnosis in Neurological Disorders and Mental Illnesses: A Critical
Analysis of Benchmark Datasets; Evaluating the diverse range of manifest symp-
toms and formulating a diagnosis is one of the greatest challenges in neurolog-
ical and mental illness conditions. Often, observers need to classify symptoms into
various disorder categories, for instance, motor disorders, mental illness symptoms,
comorbid symptoms, and symptoms of functional loss. Subjective interpretation
of symptoms is inevitable, except for a few that are diagnosed objectively with
specific biomarkers [12]. However, for most of these types of diagnoses, no defini-
tive biomarkers or parameters are available for objective diagnosis. It is also seen that
manual interpretations often lead to interobserver variability and misinterpretation
due to bias errors. Additionally, some pertinent factors complicate disease diagnosis,
including the stigma of mental illness, which requires precise diagnostic decision
formulation to avoid subjective biases. The availability of poor drug targets also
necessitates specific diagnosis.

One feasible way to provide a precise basis would be to create a collective effort of
experts in the fields of neurology and psychology, along with the addition of patient
history as an important interdisciplinary approach to make accurate diagnoses of
mind-brain-sensorium conditions. The need for objective, continuous, and real-time
examination of evolving mental disorders is currently being enabled using radiolog-
ical imaging techniques, supported by other advanced tests including biochemical,
electrophysiological, and cardiovascular assessments [13]. Various tools have been
used in the field, including clinical scales and screening questionnaires that are used
in primary and secondary care to distinguish among neurological and mental illness
conditions. On the other hand, cognitive assessment tools for diagnosing mental
disorders have been developed systematically to adhere to psychiatric comorbid
assessments at the bedside. It is evident from the current literature survey that most
existing diagnostic tools are suicidal psychometric evaluation techniques. These are
often seen as self-reporting and interview questionnaires that loosely differentiate
among affected persons and groups, or specifically, any two similar categories. This
is sufficient to predict the disorder type or category. In future, comprehensive data
mining techniques and artificial intelligence applications will play important roles
as advanced decision-making tools for disease diagnosis [14].

11.3.1.2 Benchmark Datasets for Neurological Disorders and Mental
IlIness Analysis

In systems dealing with neurological and mental health diagnosis, it is of utmost
importance to have an external validation of the outcome given by the systems.
Access to benchmark datasets is the main hub in diagnostic algorithm development,
where several pathologists diagnose diverse diseases in relation to clinical or imaging
supervised assessments aiming at a medical curriculum. Benchmark datasets will
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ensure the reproducibility between different experiments and algorithms that claim
to diagnose the illnesses or disorders of interest, facilitate early detection of patients
who are possibly developing the disease, and might lead to personalized therapy,
predict the treatment outcome, and promote collaborative algorithm development,
among others. There is no free large dataset of brain tumors in pediatric patients; in
that context, public repositories can be used, focusing on data of children with brain
tumors [11].

A huge number of public websites offer numerous datasets; they are partially
listed for reference purposes. Some datasets are available with patients’ clinical
assessments and imaging files, and others have an extensive range of available data
with readily downloadable genetic information. Intellectual disability and attention-
deficit hyperactivity disorder assessments are not within the gender or touchstone
analysis public datasets and usually have a relatively low number of assessments
in the ones found [15]. This is probably due to the complexity of the diagnostic
process and patient confidentiality constraints. However, sufficient image uploads
for the comparison of algorithms can be found online. In contrast, cancer data usually
have tens of thousands of highly curated patients for benchmarking deep learning
algorithms, but validity constraints [13].

11.3.2 Brain Tumor Prediction Using Brain Imaging
Segmentation

Prediction of tumors in the brain is one of the most significant studies in medical
applications [16]. On investigating the entire literature, we find that the details present
on tumor prediction through brain imaging are limited. This could be an inoperative
source or matter, and we suggest that only a few publications have worked exten-
sively on tumor prediction. Tumor detection and prediction are done with the help
of segmentation of the contributed abscess in preoperative and postoperative brain
imaging. Segmentation of predicted biopsy collected data from an MR image report
is the need of the pathology for detecting the tumor separately. Several studies have
attempted brain imaging for tumor prediction by using classification or prediction
models. The principal contribution behind choosing brain imaging is its primary
function [17]. It appears to confirm persistent symptoms and is a rather essential test
result that provides detection of infarction, tumor, and other abnormal activities of
bleeding to guide evidence-based treatment. The human brain is imaged with the
help of diagnostic imaging techniques like MRI and CT scans. Segmentation is also
preferred in the medical imaging reports through the data of computational brain
imaging segmentation since normal patients can differ in different report scans [18].

Classifications or models that predict the tumor are mainly dependent on single
or multiple imaging modalities. There has been interest for more than a decade
in using magnetic resonance imaging to improve tumor segmentation. There is
significant clinical interest in recent years in MR and CT imaging for developing
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statistical atlases of normal human brain anatomy and quantitative assessment of
brain tumors. The prominent five main modality units responsible for the exami-
nation of MR are T1, T1-weighted, T2, T2-weighted, Tlc, and T1-weighted post-
contrast. The segmented masks consist of whole brain, white matter, gray matter,
tumor cyst, edema, necrosis, and tumor-enhancing lesions for relevant classifica-
tions. Several studies support independent model predictions, random forest classi-
fiers, and multiple features with reduced modality, achieving 91-97% accuracy of
a large dependent classification model. Medical data implies that integrating clin-
ical data and imaging data sets may yield better predictions than multi-dimensional
systems; clinic computed tomography data was fused with imaging data sets, and it
showed enhanced model data, resulting in better results and accuracies. Research in
neuroimaging has now shown tremendous interest in further brain tumor studies that
combine clinical and molecular data [19, 20].

A large number of recent neuroinformatics spectroscopy writings and pharma-
cogenomics therapies enable active machine learning and analog methods research.
Convolutional neural networking or deep learning for topology such as UNet can
detect and search and design the intensity of the lesions. For example, U-adds can
have pre-and post-fused modalities to improve complete search results, and high-end
models increased testing response in a day model. If this model is pre- and post-fused
MRI imaging using MRI CT scan that is known for the last complete tumor and brain
management, it can help the model learn the name of search areas and further improve
search accuracies. This involves artificial intelligence and aids in transforming the
patient’s treatment plans [19].

11.3.2.1 Significance of Brain Tumor Prediction

The prediction of brain tumors, being one of the most common tumor sites in the
body, is of paramount importance. Although brain tumors are relatively rare, their
high morbidity and mortality pose major public health challenges. The prognosis of
brain tumors is very poor because the tumors grow very rapidly and the surrounding
structures of the brain are affected by the tumors. In such cases, early intervention
is essential to save the patients. The choice of treatment modality depends on the
complete grading of the brain tumor tissue. The availability of efficient brain tumor
prediction methodologies in the clinic is the need of the hour. Early detection of
brain tumors is the key to saving patients’ lives because the 5-year survival rate can
be improved with surgical procedures. When growing in the major portion, there is
a high possibility of impacting the patient’s personal abilities. These psychological
imbalances can be well managed and can avoid such strain by providing predictive
capabilities if we plan to save the brain tumor patient [18].

The prediction of brain tumors is the clinical challenge facing most brain tumor
clinicians. The CNN model with the VGG-16 architecture achieves the highest clas-
sification. It is possible to get clearer details, diagnostics, and accurate predictions
of brain tumors using Al and MRI features. Prediction of brain tumors can avoid
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unnecessary operations and save patients’ lives. We need to standardize the predic-
tion protocols used in medical systems, whether they are experimental or analyzed
in an actuarial technique. The balance of increased patient satisfaction and care is
affected by the knowledge of relevant outcomes and predictions. For fair and ethical
reasons, it is important to recognize any vulnerabilities related to the trivial size
associated with brain tumor patients when designing such predictive models. New
strategies to improve care quality need to be discovered so that informed decisions
can be made [17] (Table 11.1).

11.3.2.2 Benchmark Datasets for Brain Tumor Prediction

The datasets containing brain tumor imaging information are collected from different
hospitals and various imaging instruments. Their wide range of variations has impli-
cations for pathological diagnoses and treatment plans. To make a reliable evaluation,
benchmark datasets were developed. These benchmark datasets include data from
one or more hospitals and also include different magnetic resonance (MR) imaging
video sizes and different diagnoses. They contain both preprocessed data such as
Tlc, T2, T2-Flair, pre-Gd, and GD-transformed tumor images such as T1. Normative
datasets also include some clinical parameters, data sources, and data timestamps,
which can better test and analyze the data. Researchers have formed several robust
benchmark datasets as an overview of the key hurdles such datasets are required
to be distinguished. This includes the absorption of multimodal images consisting
of various imaging sequences along with clinical parameters associated with brain
tumors [28].

Each dataset is prepared to make the process of data analysis robust rather than
scattering different datasets from distinct sources in order to illustrate the advanced
domain in conjunction. Each dataset provides a different set of instructions according
to the scope of a dataset. Some datasets include data varying with respect to age and
diagnosis for a single group of patients at a single hospital. Other datasets include
different patients from other sources. Importantly, these datasets differ in size and
consist of 2D and 3D data. Some of these datasets were established in the past decade
to include the most comprehensive imaging data in the medical field. The advanced
models that predict the body part of the dataset can be evaluated [29].

The need to improve predictive techniques and their models in the brain tumor
field has led to the creation of several datasets. Nowadays, despite the presence of
different collections, they assist in one or several tasks such as disease classifica-
tion, survival analysis, habitability prediction, tumor segmentation distribution, and
surgical therapy. Many new complementary collections that appear in two or more
tasks are not yet public in nature and are being continuously investigated and dupli-
cated by other professionals. In our current dataset, in contrast to the view of previous
datasets, the path that distinguishes the centers and tumor types in the case of multi-
center data was also used to find a basis for analyzing data from multiple centers.
Also, comparable global sums of abnormal tumor systems are given at small tumor
points. New significant progress has been made in building unique ground facts that
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Table 11.1 Description of brain imaging datasets

263

Datasets Dataset type Number of samples | Key features
BRATS (Brain Tumor | MRI scans 3000 + Multi-modal images,
Segmentation tumor annotations
Challenge) [21] Patient types 500 + Gliomas and
meningiomas
TCIA (The Cancer Brain tumor images 10,000 + Various imaging
Imaging Archive) [22] modalities
Clinical data Varies Includes associated
patient metadata
CAMP (Cancer and MRI scans 500 + Focus on aging-related
Aging in Male tumors
Patients) Patient demographics | Available Includes age, gender,
and treatment data
Brain tumor dataset MRI images 500 + Labeled images of
(Kaggle) [23] tumors
Class labels 4 Type Includes benign and
malignant tumors
Multi-modal brain Multi-modal images 1000 + T1, T2, Flair
tumor segmentation modalities
(22] Annotations Available Segmentation masks
for training
NCI Genomic Data Imaging studies 20,000 + Includes clinical and
Commons (GDC) [24] genomic data
Tumor types Various Covers multiple
cancer types
OASIS (Open Access | MRI scans 1000 + Focus on aging and
Series of Imaging dementia
Studies) [25] Patient information Available Include demographic
data
IXI dataset [26] MRI scans 600 + Multi-modal imaging
Annotations Limited Mainly for research
use
DICOM from RSNA | DICOM images 1000 + Rich clinical imaging
[27] data
Metadata Available Includes patients and
study information
DeepLesion [22] Medical images 32,000 + Includes brain and
other lesions
Annotations Available For segmentation and

detection tasks
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not only exclude those facts but also have a look that is still open. The new datasets
have the potential to identify the patient as multi-integrated trust signals in hospi-
tals and to have an exceptionally large palm configuration measurement data source.
More than 10 doctors have been asked to assess the integrated multispectral images
of such good hand data for the complete statistical stroke treatment for thousands of
patients [19].

11.3.3 Predicting Diabetic Retinopathy Using Retinal
Imaging Segmentation

Diabetes is the leading cause of blindness, with the number of people facing vision
loss being 1.1 billion. Diabetic retinopathy, a general complication of diabetes, is
asymptomatic in the initial stages. As a result, detecting diabetic retinopathy in
advance of clinical symptoms is essential to controlling it [30]. We categorize the
methods of retinal imaging to identify diabetic retinopathy based on fundus photog-
raphy, identifying the mild and severe stages of the disease over angiographic modali-
ties. Using retinal imaging techniques, we consider the usefulness of captured images.
This imaging is extracted from multiple signs into a technique called retinal imaging
segmentation and reconstruction [31].

Retinal imaging can diagnose diabetic retinopathy, but until now, the predic-
tive capability of the diagnosed retinal changes to those involving diabetes has not
been established. Many trials of the segmentation method of retinal imaging back-
ground and retinal imaging segmentation technique behind diabetic retinopathy are
presented. Researchers perform the task of classifying diabetic retinopathy by super-
vised learning following a retinal imaging digital enlargement signal. Segmentation
may produce a disease-related area that is more accurate in detecting subtle disease
and improving the system’s interpretation regarding the characteristic features after
separation. Segmentation has been a trend in the process of detection for the identifi-
cation of changes in pathology, so it is concluded that the performance level reaches
a prediction value of 99%. The right timing or concept is needed for the implemen-
tation of the signal available in the previous segmentation method. However, the
proposed method developed in this chapter does not detail the segmented area as the
main focus of further capabilities to improve the system [32].

11.3.3.1 Understanding Diabetic Retinopathy

Diabetic retinopathy (DR) is a common microvascular complication of both type 1
diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). The pathophysi-
ology of DR is a complex system of retinal inflammation, vasculature, and neuronal
damage. Chronic hyperglycemia is the prime stimulus for vascular changes in the
retina, classified as either microaneurysms or compromised circulation. Prolonged
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hyperglycemia first dilates the blood vessels; however, the walls of the vessels become
cauterized, leading to capillary occlusion. This leads to hypoxia-inducible factor-1
activation within the retina, aiding in angiogenesis via VEGF, which creates both
neovascularization and vascular leukostasis. Nonproliferative stages were described
and later expanded based on initial severe levels of grading. Four stages were recog-
nized, from minimal to severe, and proliferative DR was further classified by severity
and risk of vitreous hemorrhage for prognosis [33] (The description of CVD diabetic
retinopathy dataset is in Table 11.2).

The actual prevalence can be higher because a significant proportion of diabetics
remain undiagnosed. Diabetic patients have about a 2% annual risk of becoming
blind. Because of the reversible nature of early microaneurysms, it is important
to detect capillary dilation in the early stages of the disease; therefore, healthcare
providers recommend annual exams to detect early signs of DR. Photocoagulation
treatments such as argon or xenon laser and, recently, pharmacologic therapy with
VEGF inhibitors have been used to reduce macular edema and loss of vision by
promoting the regression of pathological fibrovascular membranes. The current stan-
dards of care are the most effective in treating the vision-threatening consequences of
DR and rebleeding. Moreover, systemic anti-VEGF drugs may even alter the natural
history of DR by not only being a therapeutic treatment but also a diagnostic tool in
early prediction [43].

11.3.3.2 Benchmark Datasets for Diabetic Retinopathy Analysis

Analysis of disease focuses on the computer-aided prediction and diagnosis of several
eye-related diseases, including diabetic retinopathy. To validate the robustness and
accuracy of the developed predictive model, many researchers use public data as
benchmark datasets. Thus, several benchmark datasets for the analysis of diabetic
retinopathy have been made available. These datasets not only offer a standardized
set of ground truth but also relatable data favoring the detection model when the
researcher aims to develop a prediction model [44].

The development of new diabetic retinopathy datasets is essential because they
offer diverse, high-quality image data and relevant clinical information. This dataset’s
clinical data provide a patient’s medical history, including diabetes status, with addi-
tional ocular diagnoses giving a comprehensive analysis of risk prediction factors.
Owing to the fact that focus is shifting toward the computer-aided prediction of
disease, it is critical that retinal images and eye exam results are not only collected
consistently from different medical institutes but also that firmware upgrades and
new conventions in imaging are conducted. The annotations for diabetic retinopathy
datasets are produced by employing a multicriteria system approach [45]. This is the
approach used by various datasets designed for diabetic retinopathy. The databases
designed to assess retinal fundus images with regard to the presence of diabetic
retinopathy are available for public use. The datasets are organized and updated
to promote public health by encouraging research and publications in the devel-
opment of automated algorithms for the detection of diabetic retinopathy. Sharing
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Table 11.2 Description of CVD diabetic retinopathy datasets

Datasets Dataset type Number of samples Key features

Kaggle diabetic Fundus images 35,000 + Labeled for stages 0—4

retinopathy detection Image resolution 3000 x 3000 High-quality images

[34] for analysis

DRIVE (Digital Retinal | Fundus images 40 Includes annotations

Images for Vessel for vessel

Extraction) [35] segmentation
Annotations 1000 + pixels High-resolution masks

STARE (STructured Fundus images 400 Contains a variety of

Analysis of the Retina)
[36]

retinal conditions

Annotations

Vascular and lesion
masks

Detailed structure for
analysis

EyePACS dataset [37] Fundus images 88,702 Diverse patient
demographics
Image resolution Varies Images from various
sources
APTOS 2019 blindness | Fundus images 4000 Labeled for stages 0—4
detection [38] Image resolution 2048 x 2048 High-resolution for
detailed analysis
RetiSpec dataset Fundus and OCT Varies Multi-modal imaging
images data
Annotations Varies Comprehensive labels
for conditions
OCT (Optical Coherence | OCT images 3000 + Useftul for
Tomography) dataset cross-modal analysis
(391 Annotations Varies Segmentation labels
for various conditions
Indian Diabetic Fundus images 5000 + Labeled for
Retinopathy Image segmentation and
Dataset (IDRiD) [40] classification
Annotations Available Detailed masks for
lesions
MESSIDOR (MEdical Fundus images 1200 Includes images for
Screening of Diabetic training and validation
Retinopathy) [41] Annotations Available Annotations for
diabetic retinopathy
features
RETINA image database | Fundus images Varies Includes multiple
[42] conditions
Annotations Available Labels for various

retinal diseases




11.3 Overview of Al Applications in Medical Diagnosis and Prognosis 267

retinal images is a global effort and goes beyond national boundaries. Government
bodies and private organizations have been funding public health research by sharing
the dataset within the scientific community [46]. The availability of the dataset is
an essential real-world condition, and the success of public health depends on the
automated systems in place. In this section and the following subsections, we review
various datasets and clinical analytics applications on fundus images. We also review
the publicly available databases for diabetic retinopathy across the world in various
repositories.

11.3.4 CVD Risk Stratification Using IVUS Imaging

Cardiovascular disease (CVD) remains one of the major causes of death worldwide
and demands systematic risk stratification. The presence and degree of atherosclerotic
burden are crucial for risk estimation. A study has been designed to investigate the role
of high-resolution imaging and advanced computation in predicting future cardio-
vascular events in low to intermediate risk individuals with subclinical coronary
atherosclerosis. This imaging approach allows the acquisition of detailed real-time,
precise, high-resolution cross-sectional images of the artery wall and direct visu-
alization of patterns of atherosclerotic modifications, wall-lesion interactions, and
arterial function, particularly in the coronary arteries where arterial wall distortions
and motion artifacts may occur less frequently [47].

Effective risk stratification tools are needed in order to identify patients at high
risk of cardiovascular events who truly deserve medical therapy to prevent silent
myocardial infarction (MI). Indeed, event prediction with a single risk factor in light
of weak benefits from preventive therapy is less important. A variety of methods
are commonly used to leverage imaging data, including physician examination of
artery images, manual or computer-aided measurements of arterial dimensions, echo
signal interpretation, or computation based on various metrics derived therefrom for
multi-group or individual measurements. Combining clinical and imaging findings
has been of increasing importance in clinical patient management and could predict
future ischemic events when patients undergo coronary angiography [48]. Generating
a full patient profile integrating clinical, laboratory, carotid fine B-mode echo, and
imaging allows for refined ischemic risk prediction in medium and high-risk patients.
Developments regarding plaque composition in non-culprit coronary arteries might
predict culprit lesions when moderate predictors are already elevated in a heterozy-
gous familial hypercholesterolemia population. Moreover, B-mode echo combined
with artificial intelligence confirmed the predictive role for future ischemic events of
carotid remodeling evolution in a follow-up clinical trial in which normal to prevent
coronary artery disease was examined. In diabetic patients, who are at increased risk
of cardiovascular events, plaque strain rate assessing mechanical properties in culprit
and non-culprit arteries was able to predict 36 months for plaque rupture extensions,
clearly linking positively to the vascular system. More frequent updates are gradually
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proposed in which machine learning was employed to better refine the clinical risk
of cardiovascular events during the broader follow-up [49].

11.3.4.1 Cardiovascular Diseases and Risk Stratification

More than 80% of citizens of economically developed countries worldwide die of
cardiovascular diseases. CVD occurs in different forms, and coronary heart disease
and stroke are the most common. Today’s advanced diagnostic capabilities enable
timely diagnosis and the development of appropriate treatment strategies. It is essen-
tial for medical specialists to identify patients at both low and high risk of CVD. The
smaller the probability of developing the disease, the more circumspect and cautious
specialists should be about starting preventive and treatment procedures, balancing
potential benefits with possible ill effects. In contrast, a more severe patient prog-
nosis requires a more accurate analysis of the patient, as well as changes in their
daily habits and lifestyle [50]. One of the major patient risks in developing CVD is
considered to be the presence of various cardiovascular risk factors contributing to
the deterioration of metabolic and functional parameters [51].

From a clinical perspective, the most important factor for the development of the
stratification strategy and the selection of the optimal treatment is the risk of adverse
CVD outcomes, such as cardiovascular mortality and morbidity. Achieving high
sensitivity and specificity in these pathologies is the primary role of long-established
traditional cardiovascular risk factors; for example, hypertension, diabetes, hyperlipi-
demia, and cigarette smoke have played a key role in the assessment of atherosclerotic
cardiovascular risks over the past three decades. The final stage of the atheroscle-
rotic process, as well as the most recent and decisive step for cardiovascular conse-
quences, is an acute critical event: the plaque rupture, activating the coagula-
tion chain, clot formation, and the development of an acute crisis with occlusion/
hemodynamic collapse and the precipitating symptoms. In this context, an increased
risk of CVD outcomes also means assessment of an increased risk of acute cardiovas-
cular mortality/morbidity in the short term. Early intervention in these patients could
significantly reduce potential mortality and morbidity. The evolution of emerging
technologies plays a major role in improving clinical atherosclerotic patient risk
phenotyping and, thus, in improving the accuracy of the risk assessment [52] (The
description of cardio vascular disease dataset is in Table 11.3).

One of the major challenges of CVD stratification is handling the extreme vari-
ability of the population regarding different included factors. The combination of
most of these known and new risk factors in a Power-Scoring Risk Equation is some-
what useful, but robustly evaluating the interacting risk factors for the evolution of
cardiovascular diseases in a highly variable population, by influencing sometimes
several linked cardiovascular pathways categories, could be very difficult in defining
the evolution of the cardiovascular process in every single categorized patient hetero-
geneity. Indeed, there are different external and internal factors that interfere in this
process, contributing to diversity within those included in the same category [54].
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Table 11.3 Description of cardio vascular disease datasets
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Datasets

Dataset type

Number of samples

Key features

IVUS imaging dataset

IVUS images

1000 +

Includes diverse patient

from the American demographics
College of Cardiology Clinical data Available Comprehensive patient
(ACC) health information
The Cardiovascular IVUS images Varies Focus on coronary
Imaging Study lesions
(CAVIS) [53] Patient outcomes Available Longitudinal data on
treatment efficacy
The IVUS-QCA IVUS and QCA images | 500 + Detailed lesion
database characterization
Clinical data Available Integration of imaging
and clinical outcomes
Cardiovascular Multi-modal images 2000 + Includes IVUS,
Disease Imaging angiography, and more
Repository (CDIR) Patient demographics | Available Comprehensive clinical
information
The Rotterdam study | IVUS images 1200 + Focus on aging and
cardiovascular health
Longitudinal data Available Detailed patient history
and outcomes
The Biolmage study | IVUS and MRI images | 800 + Comprehensive
cardiovascular imaging
Patient profiles Available In-depth clinical
evaluations
The AtheroPoint IVUS images 600 + Focused on
IVUS dataset atherosclerotic lesions
Clinical data Available Patient risk factor
information
IVUS and OCT IVUS and OCT images | 400 + Detailed comparison of
imaging dataset imaging modalities
Annotations Available Includes segmentation
and feature labels
The MACE (Major IVUS images 300 + Focus on complications
Adverse Cardiac and outcomes
Events) IVUS dataset | cjipical outcomes Available Detailed tracking of
adverse events
The Vascular Quality | IVUS and clinical data | 10,000 + Comprehensive data on
Initiative (VQI) vascular interventions
Quality metrics Available Includes patient

outcomes and
follow-up
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11.3.4.2 Benchmark Datasets for CVD Risk Stratification

To create, update, or compare CVD risk stratification analysis, benchmark datasets
have been adopted. These are representative in terms of both the participants and
related clinical outcomes, yet also include large volumes of data on comorbidities
and relevant standard imaging where available, as well as longitudinally acquired
ECG data. In such datasets, candidate predictors can be used to create or validate
the algorithms present with clinical outcome labels and be comparatively evaluated
against one another. Benchmark datasets explicitly designed for the development
and validation of risk algorithms for the prediction of CVD are presented here.
People can evidence new risk stratification approaches that are both successful and
groundbreaking through careful studies of each dataset’s individual qualities and the
pooling of larger datasets in combination with secondary proof of organizational
measures also provided at the dataset level [55].

The research is broad and focused, considering most risks related to clinical
outcomes, related biomarkers, and imaging details. Four datasets with longitudinal
ECG data and another three with specific clinical staff-level familiarity with ECG
quality assurance provided detailed imaging-related information, consolidating a
total of 96,695 participants, comprising 39.9% women and representing a large
number of relevant developed countries. For the standardization and derivation of
universally well-represented risk algorithms for the prediction of imminent CVD,
collaboration vehicles dedicated to public forums are required when benchmarking
on these datasets [56].

11.3.5 Breast Cancer Prediction

Background: In women, breast cancer is the most prevalent cancer, with early detec-
tion and diagnosis resulting in successful therapy. Despite the availability of effective
approaches to treatment and diagnosis, breast cancer has become a life-threatening
disease. Breast cancer is the most prevalent cancer in women, accounting for almost
25% of all cancers, or one million new instances. Tumors that form in the breast
region of a woman’s body are referred to as breast cancer. Tumor growth in the
cells of the female breast, which then grows to the surrounding tissue, is how breast
cancer is defined. It grows and invades different layers of surrounding tissue that
cause substantial harm afterward. The age of onset is decreased to 30 to 45 years in
breast cancer occurrence in women.

Clinical significance: Breast cancer, a malignant type of cancer, is accountable
for millions of fatalities in women. When the surface grows milk-producing gland
cells, various kinds of risk factors might result in breast cancer’s etiology. There
are diverse kinds of breast cancer with varying degrees of invasion, impingements,
and complexities directly associated with personal lifestyle and genetic background.
Advancements in molecular and genetic research have resulted in precise breast
cancer analysis approaches. To date, clinicians have conducted diagnostic research
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into just a diagnosis, a guiding clinic, and effective breast cancer enhancement which
can take it smoothly with further guidance. Fortunately, the recent developments in
soft computing and computer-aided diagnostic technology have allowed increased
accuracy in predictive investigation for better diagnosis and subsequent treatment.
Many current predictive methodological research has integrated clinical information,
digital imaging, and proteomics, promising to elucidate more biological and clinical
queries. Similarly, several latest synthetic methodologies optimize execution by hand
from the low-command adjustment and separate learning. This chapter starts from
the section that discusses the recent technical advancements in breast cancer using
the latest clinical remarks. Following that, it goes through the origin part, which
discusses the breast cancer consequences. These findings provide a methodological
basis that demonstrates the necessity for a more accurate means of discovering the
fields and anomalies. There is also a lot of modifications to the individual technique.

11.3.5.1 Breast Cancer Statistics and Impact

In 2020, breast cancer was the most commonly diagnosed cancer in nearly all regions
and the leading cause of deaths from cancer worldwide. In females, breast cancer is
the most frequently diagnosed cancer, comprising nearly a quarter (24.5%), and about
1 in every 6 women diagnosed with breast cancer would not survive. The incidence
rate has been decreasing in the past few years, with real-time statistics available.
Between 2009 and 2010, the global estimate of the age-standardized incidence rate
of breast cancer was found to be 43.0 per 100,000 women. The incidence rate of
breast cancer is influenced by age, and worldwide, there is a trend of increasing age-
specific incidence rates of breast cancer among women aged 4074 years, except for
the age group 45—49 years. For instance, the rates in Brazil start at 87 per 100,000
women in the age range of 40—44 and go as high as 1420 per 100,000 women in the
age group of 70-74. Also, for a higher age of up to 79 years, the rates decrease to
1420 per 100,000 women, but the decline is not consistent. As with many cancers, the
incidence of breast cancer is higher in older women compared with younger women
in the Brazilian population [57] (The Description of breast cancer prediction dataset
is in Table 11.4).

Impact for women worldwide, it is reported that one in every eight women could
be diagnosed with breast cancer in their lifetime. Experiencing breast cancer is
extremely stressful, and the treatments, including surgery, chemotherapy, and radio-
therapy, have side effects leading to a change in lifestyle, which can alter body shape
and image, causing a loss of self-esteem, emotional strain, divorce, depression, and
frequently, even suicide. In addition to this, the breast cancer diagnosis can cause
financial strain, as adults diagnosed with cancer would likely reduce their hours of
work, resulting in average earnings loss each year. It is reported that early diagnosis
increases the chances of survival, and hence, the development of techniques in the
early detection of breast cancer would reduce mortality and improve outcomes [58].
Furthermore, it is reported that one in three cases of approximately 6.38 million
cases related to economic burden and nearly 71,000 new cases of breast cancer could
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Table 11.4 Description of breast cancer prediction dataset

Datasets

Source

Description

Key features

Breast cancer
Wisconsin (diagnostic)
dataset

UCI machine learning
repository

Contains 569 samples
with 30 features
derived from FNA
images, focusing on
benign vs. malignant
classification

Cell nucleus
characteristics:
radius, texture,
perimeter, area,
smoothness, etc.

Breast cancer
Wisconsin (original)
dataset

UCI machine learning
repository

An earlier version
with 699 samples and
10 attributes, also for
benign vs. malignant
classification

Mean values of
radius, texture, area,
perimeter, etc.

METABRIC
(Molecular Taxonomy
of Breast Cancer
International
Consortium)

cBioPortal

Extensive genomic
and clinical data from
over 5,000 patients,
facilitating
understanding of
molecular
characteristics and
treatment outcomes

Genomic data,
clinical attributes,
subtype
classifications

NCI Genomic Data
Commons (GDC)

National cancer
institute

Provides access to
diverse genomic,
transcriptomic, and
clinical data related to
various cancers,
including breast
cancer

Genomic datasets:
mutations, expression
data, clinical
information

SEER database National cancer Population-based Patient demographics,
(Surveillance, institute cancer statistics, tumor characteristics,
Epidemiology, and providing insights on | treatment data,
End Results) incidence, treatment survival statistics
outcomes, and
demographics
Kaggle breast cancer | Kaggle Multiple datasets Varies widely;
dataset available for analysis, |includes clinical,
often related to genomic, and
competitions on breast | imaging data
cancer classification
and prediction
Breast Cancer BCSC Data on breast cancer | Screening history,

Surveillance
Consortium (BCSC)

screening, diagnosis,
and outcomes,
focusing on risk
factors and the
effectiveness of
screening methods

biopsy results, tumor
characteristics,
follow-up outcomes

(continued)
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Table 11.4 (continued)
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Datasets

Source

Description

Key features

The Cancer Genome
Atlas (TCGA)

National cancer
institute

Comprehensive
datasets for various
cancer types,
including genomic,
epigenomic, and
clinical data for breast
cancer

Genetic mutations,
expression profiles,
clinical outcomes,
patient demographics

Iris dataset for breast
cancer (using
cytological features)

Educational resources

Focuses on
cytological features
for breast cancer
samples, mainly used
for educational
classification
exercises

Cytological
characteristics of cells

Molecular profiles of

Gene expression

Contains gene

Gene expression data,

breast cancer (GEO) | omnibus expression profiles clinical attributes,
associated with breast | subtype
cancer subtypes, classifications

aiding in subtype
classification and
biomarker discovery

be avoided. In other words, it has the potential to prevent around 30% of cases. The
most common modifiable risk factor for breast cancer is alcohol, followed by obesity,
which may be associated with other modifiable lifestyle risk factors. Many disparities
in health status regarding the actual incidence of breast cancer and mortality rates
are evident in various countries and population groups, including restricted physical
functioning, quality of life, and psychological distress, as the severe impact of the
disease on functional status is more frequent in breast cancer patients [59].

11.3.5.2 Benchmark Datasets for Breast Cancer Prediction

Datasets play a crucial role in the advancement of knowledge in medicine, medical
systems, and breast cancer prediction analytics. A dataset is important due to the
need for comprehensive data for predicting breast cancer. Researchers in the area of
research develop, validate, and test the predictive models using datasets. Bench-
mark datasets are available freely on various platforms. Collaborative efforts of
researchers and scholars are initiated for curating meaningful benchmark datasets and
making them publicly available. Healthcare practitioners and breast cancer patients
can benefit from benchmark datasets if predictive models developed using these
datasets have high performance metrics. To aid breast cancer research in discovering
novel aspects, benchmark datasets are very important [60].
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DSO are evolving nodes in analytics where such efforts are pivotal. Quality
datasets are very important to predict the phenotype of breast cancer with high accu-
racy. Quality data require a rich and diverse dataset. Diverse data include imaging,
histopathology, radiogenomics, cancer markers, clinical data, physiological states,
and genetic information. Publicly available benchmark datasets contain image data,
genetic or clinical data, cancer information, gene expression data, and histolog-
ical data for training, validating, and testing. Several benchmark datasets are avail-
able. Users can use publicly available benchmark datasets on various platforms [61].
Healthcare practitioners or scientists have ensured that all the available benchmark
datasets are validated by clinicians and that all the indicators explained above are real-
ized to perform any experiments in healthcare with confidence. This section provides
detailed information on seven benchmark datasets. Collaborative investments are
initiated to update the benchmark datasets periodically due to the continuous emer-
gence and outcomes of research activities. Breast cancer prediction research in the
world will have benefits collectively if such scholarly energy is amalgamated and
fostered [62, 63].

11.3.6 Diabetic Foot Ulcer Prediction

The prevalence and incidence of diabetic foot ulcers (DFUs) have increased recently,
given the global rise in diabetes. DFUs frequently lead to osteomyelitis, cellulitis,
and amputation. Infection and subsequent amputation can cause additional mortality
and morbidity. Amputations pose more severe consequences, with an estimated five-
year survival rate of 50%. Up to 85% of diabetic amputations are preceded by foot
ulceration, suggesting that early preventive strategies are central to minimizing the
threat of lower-extremity amputation [64]. The human and economic costs of DFUs
continue to rise, necessitating a better approach to predicting ulcer development to
prevent them. Hazards directly related to DFUs include neuropathy, deformity of
the foot and ankle, poor circulation, and a foot ulcer’s history. Given these reali-
ties, identifying those at highest risk for developing a foot ulcer is important, as
intervention may help avert a chronic wound from forming. The concurrent use of
validated clinical assessment tools with predictive algorithms could be advantageous
when developing outcome measurements. New research and technology continue to
create enthusiasm for advances in our capability to identify those at greatest danger
effectively. There has recently been an explosion of interest in abnormal foot pres-
sure associated with plantar ulceration. Interestingly, a recent survey showed that
only 15% of clinic visits involve the measurement of foot pressure. There is also
a suggestion that the integration of numerous instruments may enhance predictive
capabilities [65]. In the era of evidence-based medicine, it is pivotal to move current
practice forward from the use of population parameters to identify hospital admis-
sions and threats for amputation to the use of the latest research on developing foot
ulcer predictors. The application of emerging artificial intelligence-driven models
may reveal increased predictive capabilities.
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11.3.6.1 Challenges in Diabetic Foot Ulcer Prediction

The incidence of diabetes is growing at an alarming rate and is found to be the
cause of deaths in every 6 s. The chance of developing diabetic foot ulcers (DFU)
in an individual living with diabetes is around 25%. Prevention of foot ulcers is
highly required because once developed, treatment is complicated and contributes
to healthcare expenses. The prediction of diabetic foot ulcers is a challenging task
because of the multifactorial nature of their development. Even with the known
significant risk factors like neuropathy, peripheral arterial disease, foot deformities,
and self-reported loss of protective sensation, these can only explain some variations,
and they do not predict foot ulcer development on an individual basis. This has
resulted in several limitations in epidemiological studies and prediction models,
with no agreement on the evaluation of each risk factor in the clinical setting [66].
Studies have indicated some inherent limitations in current prediction models.
Firstly, the commonly used risk factors are associated with the inception of foot ulcers
on a quantitative scale. Secondly, neuropathy is one of the earliest risk factors and can
confound the predictive model at the initial population when starting to follow up with
patients. Furthermore, even with a high risk of foot ulcers shown in individuals with
neuropathy, these can suffer from poor reporting by clinicians, leading to delayed
referrals to expert foot services [67]. This is because, in the early course of neuropathy,
years can go by before pain initiation. Thirdly, missing foot data can affect the
overall satisfaction of the study. It is not always feasible to have complete foot
data; some patients will avoid removing their shoes for clinical assessment, and
in addition, patient data can frequently be moved across different settings. Fourth,
relying on neuropathy as the point of entry for a multidisciplinary foot care team
is not appropriate because the progression of peripheral arterial disease and foot
deformity can vary between individuals, and this is the point of early intervention,
especially in acute settings, to save a leg or a life. The current studies indicate a
7.5-year cumulative incidence of foot ulceration. Given current research interaction
with family physicians, providing this figure is not enough to raise an eyebrow. The
current landmark studies on foot ulcer prediction do not consider the majority of
patients experiencing this from a specific perspective. The impact of the 7.5-year
cumulative incidence in a typical general practice foot clinic can be higher, given
recent evidence that referral of high-risk patients can reduce risk by up to 74% [68].

11.3.6.2 Benchmark Datasets for Diabetic Foot Ulcer Prediction

The relevance of complex datasets with comprehensive clinical and imaging data
develops benchmark datasets. These datasets include extensive recent clinical history
data and multiple imaging data. In total, 94 variables are included. The data comes
from nine different departments and represents different international data for
external validity. The main challenge of including these additional and complemen-
tary imaging data is the increasing time to harmonize and validate them. By expanding
the number of patients, we improve the generalizability (including multiple centers)
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and complex input predictors via varying input data types (including clinical data)
plus ease of replication due to the use of clinical variables [69].

The benchmark dataset comprises data from 3000 patients with identified foot
complications: 1597 with a previous diabetic foot ulcer, 794 with a current diabetic
foot ulcer, and 609 with a history of a major extremity amputation. Moreover, 80%
have active osteomyelitis; 15% have received lower extremity amputation. The 3,000
patients determined eligible for the benchmark dataset generation were drawn from
three country populations: the USA, Spain, and the Netherlands. The exclusion recall
percentage for each country included the following exclusions: death, refusal to
participate further in the study after index recruitment, absence of confirmed eligi-
bility, physician-assessed miscarriage of eligibility, and consent contact status not yet
determined. The resulting percentages excluded per country are as follows: Nether-
lands 18%; Spain 19%; USA 42%; Total 31% [70] (The Description of diabetic foot
ulcer dataset is in Table 11.5).

11.3.7 Benchmark Datasets for Immunology

The twenty-first century has witnessed significant advances in artificial intelligence
(AI) technologies, which are greatly expediting the pace of healthcare. Al and
machine learning (ML) tools have already augmented accurate diagnostic capability
in healthcare. Since its inception, Al has become the cost-effective engine of several
scientific disciplines. Translated Al has already benefited diagnosis, treatment, and
monitoring of most diseases as it enables healthcare providers to merge large sets
of patient data with complex disease pathways. This is especially effective in fields
of genomics, radiogenomics, precision medicine, and immunotherapy. The immune
system is the central mechanism of modern medicine where all the pathological and
intrinsic modifiers produce their action. Advances are being made in Al-radiomics-
based immune profiling of cancer and also in analyzing cancer immunotherapy and
predicting the survival of patients with various cancer types [71].

Unsupervised and supervised ML models are trained on immunome data and used
for understanding the cell biology behind leukocyte differentiations. Data-driven Al
models perform immune phenotyping, disease mapping, and patient monitoring. Al
has the capability to classify, compensate, and enumerate leukocytes at high speed and
in real time from PAP stains, blood smears, bone marrow aspirates, and lymphoid
excisions. It also enables one to monitor and understand changes in the cellular
composition and phenotype states [72]. With technological advances, itis not difficult
to estimate the risk of transplant rejection based on a single-cell transcriptomics data
by defining immune cell states. Serial antibody-based single-cell cytometry and high-
throughput single-cell sorting experiments fulfill the high-resolution lineage tracing
requirements of Al. All these strong points enable one to study the complexities of
the immune system and decide the best strategy for logistics when a pandemic or
mass infection pressure crops up, in the shortest span of time. The aim of this review
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Table 11.5 Description of diabetic foot ulcer dataset

Datasets

Dataset type

Number of samples

Key features

Kaggle diabetic foot
ulcer detection

Fundus images

2500 +

Labeled for ulcer
classification

Image resolution Varies High-resolution images
DFU images dataset | Ulcer images 1000 + Annotated for different
ulcer types
Image resolution Varies Standardized for analysis
Gumuchian dataset | Ulcer images 800 + Images from clinical

settings

Annotation types Multi-class Detailed labeling for
analysis
Podiatry network Foot condition 500 + Diverse range of podiatric
image database images conditions
Clinical metadata | Available Associated clinical data
for analysis
American Heart Ulcer images 1200 Clinical context for each
Association (AHA) image
DFU dataset Associated data Available Detailed patient
demographics
DFU segmentation Segmented ulcer 500 + Detailed segmentation
dataset images masks
Annotation format | Binary masks Useful for training
segmentation models
Mayo clinic DFU Ulcer images 1500 High-quality clinical
dataset images
Clinical data Available Comprehensive patient
health information
Diabetic foot ulcer Clinical records 300 + Detailed patient records
datasc?t from UCI Data format CSv Suitable for various ML
mach%ne learning applications
repository
Diabetic Foot Image | Ulcer images 1000 Focused on various ulcer
Dataset (DFID) presentations
Image quality High Useful for image analysis
DICOM database Medical images Varies Includes various imaging
from RSNA modalities
Clinical context Available Associated data for

research
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is to enlighten the reader about the capabilities, advances, and power of Al-based
immunology [73] (The Description of immunology datasets is in Table 11.6).

Table 11.6 Description of immunology datasets

Datasets Dataset type Number of studies | Key features
ImmPort Clinical trials 100 + Longitudinal data,
diverse disease
Gene expression 1000 + Includes immune cell
profiling
TCIA (The Cancer Tumor samples 10,000 + Immune cell infiltration
Immunome Atlas) data
Expression data Varies RNA_Seq data available
Human protein atlas | Tissue profiles 24,000 + Includes immune tissues
Cell type profiles 12,000 + Protein localization data
Cibersort Expression profile Varies Estimates immune cell
fractions
Validation datasets 3000 + Includes various cancer
types
Gene expression Gene expression 200,000 + Diverse immunological
omnibus studies
Array data 10,000 + Includes microarray and
RNA seq
ImmuneSpace Transcriptomic data | 2000 + Integration of various
studies
Protein data Varies Cross-study comparisons
ImmGen (The Mouse immune cells | 1000 + Profile of various
Immunology Genome immune cell type
Project) Expression data Varies Includes differentiation
states
The Human Immune | Immune cell types 500 + Functional response data
System Database Response profiles Varies In-depth immunological
(HISDB) analysis
ArrayExpress Gene expression 20,000 + Comprehensive
immunological datasets
Multi-omics data Varies Includes RNA-Seq,
Microarray data
Open targets Drug targets 20,000 + Integration of genetic,
and clinical data
Disease association Varies Links to immunology
pathways
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11.4 Evaluation Metrics

Assessment of the different methods is essential for determining analysis outcomes
using benchmark datasets [74, 75]. Many crucial medical applications lack evaluation
metrics and methodologies that could be used to measure the effects of applications
based on the outcome analysis using benchmark datasets. These metrics are necessary
for evaluating the application from different perspectives such as predictive ability
analysis, interpretable representational analysis, and model application with real-
world apparatus. The predictive performance is estimated for the analysis models on
the basis of appropriate metrics such as accuracy, precision, and F-score. Similarly, by
the application of such evaluation metrics, numerous real-world applications might
be estimated in different evaluations [76].

The evaluation might be performed by different methodologies such as statistical
tests, validation, accuracy, precision, sensitivity, specificity, F-score, geometric mean,
C-index, and bootstrapping [77, 78]. The assessment of predictive analysis is neces-
sary for the determination of model applicability to the healthcare domain. Different
model comparison or evaluation methodologies should be used to validate predictive
utility for various benchmark datasets. Alternatively, for various model comparison
methodologies, different datasets might be applicable. The dataset choice is also
critical to check different model generalizability because the testing process readily
overfits some easy and small datasets. Even though this may be protective for the
avoidance of false positive findings, it is necessary to consider the balance between
the complexity of the methodology [79, 80].

11.4.1 Accuracy and Precision

Accuracy and precision define the effectiveness of the derived model from ground
truth data and thus provide a basic evaluation of the benchmark dataset for the
analysis. Accuracy, as the term itself suggests, defines the correctness of the model
predictions, i.e., the true positive and the true negative, without any bias. Therefore,
if accuracy is used as the model evaluation metric, the importance given to the
false positive and false negative is neglected. Precision defines the closeness of the
true positive with the model’s positive predictions. The model was wrong when it
predicted a sample to be in class A or B, when actually it belonged to class B or
A, respectively. Precision aims to optimize for prediction probability, so that the
achieved threshold could be placed closer to one. However, as we place the threshold
closer to one, the false negative rate begins to increase, thereby causing the false
negative rates to get equally large [81].

The performance of the predictive model is generally measured by the combina-
tion of both metrics, i.e., the optimal downsizing of the model’s scale by assuming
it to have optimal accuracy without affecting precision. This phenomenon could be
analogous to a doctor performing surgery, where he has to have a good model for
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both precision and accuracy. If he works with a model of only accuracy, he may end
up having patients with good values being dead and vice versa. These two metrics
have conflicting relationships. Accuracy gets higher if the number of false predictions
reduces, but in precision, the false negative prediction can lead to a sharp decrease
in the precision score. Currently, the advancement of new techniques such as real-
world analytics and histopathology in vitro results in improved model generalization
and may be used to boost the reported metrics. However, with the advent of more
sophisticated measurement techniques available in the market, and the enhancement
of their applications, they could be utilized together with the old ones to improve the
algorithms further and give them the accuracy as well as the precision necessary for
regulatory approval [82].

11.4.2 Cross-Validation Techniques

There is a set of best practices for technique evaluation using benchmark datasets,
which is necessary for proper analysis in the medical system. Cross-validation eval-
uates the model’s ability to generalize to unseen datasets by preventing model over-
fitting on the training dataset. Cross-validation can reduce the dependence on a
single data split by providing multiple train-test splits to the research process. The
partitioning of the dataset can make various algorithms less or more effective by
comparing the results of different partitioning strategies. Various techniques of cross-
validation, like hold-out, k-fold, stratified cross-validation, and leave-one-out, can
be used effectively in medical data analysis [83].

However, the ability to predict the performance of the model better than the
training and validation datasets can depend on the partitioning strategy. The selec-
tion of a suitable partition, the dataset’s size, and a target problem can play a principal
role in the development of robust data partitioning. Partitioning bias can introduce
overfitting during the model selection process. However, the cross-validation tech-
nique offers the best evaluation strategy. The possible limitations of this technique
include bias in dataset splitting, both toward the model and toward the systematic
differences among datasets. More often, proper implementation can make cross-
validation an appropriate criterion for internal and external validation of machine
learning predictive models [84].

11.5 Summary

A review of recent efforts in creating benchmark datasets for evaluating research
objectives in various healthcare domains. As we have witnessed, in mainstream
healthcare domains, these datasets have led to improved research and development
and can provide better patient care. With the technological advancements and inno-
vations across healthcare domains, it is important to augment research in dataset
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creation and assessment. A collaborative approach between healthcare professionals,
academic researchers, and institutions is mandatory. To make informed decisions
when seeking to evaluate new methodologies, the review and quality of existing and
available benchmarking datasets are critical. However, currently, efforts related to
the sharing of benchmarked datasets are quite limited and in a nascent stage.

Furthermore, from other reviews and our discussions in the paper, it has become
evident that the availability of ground truth labels, data privacy, and ethical chal-
lenges are some of the barriers to developing a valuable benchmark dataset in health-
care. New approaches and ideas toward extending these datasets to overcome these
barriers are needed. Besides that, research in the financial sector has demonstrated the
success of benchmark datasets across various domains at a rudimentary level. Bench-
mark datasets should meet a manifesto that encourages the standardization of dataset
descriptions, characteristics, and data views. It should also encourage methodologies
aimed at making the sharing of datasets more ethical and motivating end-users to
contribute by sharing their datasets. We also propose a decentralized but collaborative
approach to creating global benchmark datasets that may transform the development
of modern healthcare systems, including intake, analysis, and diagnosis.
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Chapter 12 ®)
Role of AI and Modern Medical e
Equipment in Smart Healthcare

Abstract When it comes to healthcare innovation, the Internet of Things (IoT) has a
tremendous impact. With the arrival of Medicine 4.0, there has been a flurry of activity
in developing platforms, both in terms of hardware and the underlying software.
Thanks to this foresight, Healthcare IoT (H-IoT) technologies have been developed.
The sensing nodes’ ability to communicate with the processors and the algorithms
used to process that data are the foundational technologies that allow the system to
function. But right now, a number of new technologies are bolstering these enabling
technologies as well. Almost every aspect of H-IoT systems has been revolutionized
by the usage of Al. By moving processing power closer to the deployed network, the
fog/edge concept is reducing the impact of numerous obstacles. However, big data
makes it possible to process massive amounts of data. Blockchains are discovering the
most innovative applications in H-IoT systems, while Software Defined Networks
(SDN5s) add system flexibility. Progress in H-IoT applications is being propelled
by developments in the IoNT and the TI, or Tactile Internet. This chapter explores
how these technologies are changing H-IoT systems and finds out how to use these
changes to improve QoS in future.

Keywords Modern medical equipment - Intelligent health systems - Healthcare
technology - Digital health + Al in medicine

12.1 Introduction

Artificial intelligence can aid medical devices in adopting newer and better infrastruc-
tures, software and algorithms, and data management information. Advanced medical
equipment designs and excellent data resulted from powerful research analytics can
be used to evaluate and classify patients according to their molecular profiles, their
risk of complications, and the most effective treatment. The development of such
advanced medical equipment and analysis software with a high degree of accuracy,
sensitivity, specificity, precision, and reliability will not only revolutionize the way
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medicine is practiced but also improve overall healthcare costs, reduce disparities in
care and stimulate economic growth, and improve global well-being [1].

The World Health Organization defines health as a state of complete physical,
mental, and social well-being rather than merely the absence of disease or infirmity.
Attaining good health involves the synergy of various factors, including research,
diagnostics, medication, therapy, and the environment. Researchers workday in and
day out to invent and improve new methodologies to alleviate pain, treat diseases, and
enhance the quality of life for everyone. Rapid changes in the field of technology make
it possible to produce better medical devices, real-time diagnostics systems, highly
effective therapy equipment, excellent research methodologies and interpretations,
and an environment that decreases risks and stress. The strong relation between
medical instrumentation and health outcomes requires real-time health diagnostics
and risk reduction with minimal human intervention. Artificial intelligence is now
used in a variety of medical fields to provide reliable analysis and interpretations
from complex high-volume data sources [2].

Currently, around 10-15% of the world’s population suffer from rare diseases,
and the healthcare system’s interest and patrons are dwindling rapidly. However, the
Al-driven Internet of Things (IoT) revolution can make it a little easier to bridge the
gap and meet the need for an increase in personalized and efficient healthcare for such
patients [3]. The smart healthcare device’s Al-integrated design helps in rapid moni-
toring, assured security, and remote care, and conditions monitored in the comfort of
your home instead of visiting a physician. A wide variety of such applications may
be provided along with the medically confirmed and recommended algorithms for
proven effect. The Al research recommends safer and effective healthcare systems,
especially for primary care, control of chronic diseases, preventive care optimization,
and remote medicine supervision. In this research, an Al-based health management
controller modifies the smart healthcare device, and tests were conducted to detect
rare diseases, particularly episodic diseases, irrespective of their affected symptoms
and to manage them according to the patients’ needs at different levels. Based on the
results, the final implementation is expected to have ultra-low power consumption
and computability. The results contribute to the development of a future framework
that is able to adapt from private and secure healthcare devices, e.g., medical IoT [4].

These Al algorithms were used for intelligent behavior simulation in games and
were able to adapt based on gaming experience. The usage of Al is not just limited to
games but has started to expand its wings in various fields such as military, finance,
analytics, and, as will be discussed further, in the healthcare departments too. Health-
care was considered to be the most sought-after research area in this century, and the
transformation of healthcare due to Al is poised to lead to more tech-driven deci-
sion and solution implementations with fewer side effects in the patient treatment
process. However, areas such as advanced healthcare and smart healthcare are all still
easier said than done. The term has all the potential and is expected to be included in
people’s lives as an extremely special part, as more and more research and commer-
cial activities are shaped up for a better tomorrow. In other words, Al is expected
to be the backbone technology for most of the upcoming scientific advancements
[5, 6].
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Artificial intelligence (Al) is the branch of computer science dealing with the
simulation of intelligent behavior in computers. Game Al, derived from the term
Artificial Intelligence, is the intelligence exhibited by the characters in video games.
Almost all video games implement some level of pre-defined Al to control characters
and game objects or events. It had been almost 21 years since the Nintendo 64
created a buzz in the gaming industry with its 3D gaming revolution. The advent
of Al and modern-day technology has improved the gaming hardware and software
aspect by several folds, offering a breathtaking gaming visual treat. The modern
game industries started to alter their game design to include more intellect control
for better reception, even in handheld devices [1, 7]. The Key Contribution of this
chapter are as:

¢ In this chapter, we depicted the role of Al technologies in the field of the Internet of
Medical Things. We explained the applications of modern technologies in smart
healthcare. We also depicted the role of Al in smart healthcare.

e We also demonstrated the role of the Internet of Medical Things in smart health-
care. The healthcare industry plays a vital role in the growth of the economy
as it addresses the issues of health services, making them more convenient and
efficient.

e This chapter reviews the roles of the IoMT and Al-enabled devices available in
the market, enabling superior patient care. The potential applications of smart
healthcare are demonstrated with experimental results in computer-aided diag-
nosis and imaging available services in existing healthcare systems that may
result in realizing future healthcare standards.

e The integration of the latest technologies for medical diagnosis, IoT devices,
including sensors, wearables, and portables, connectivity, cloud computing, Al,
and medical cyber-physical systems, often contributes to patient safety and the
quality of care, which in turn makes life-saving decisions possible.

The following chapter is structured accordingly. In Sect. 12.2, The foundation
of Modern Healthcare, general medical equipment functions of Al are detailed. In
Sect. 12.3, the role of advanced medical equipment backed by Al in diagnostics,
repair, and evaluation of considerations linked to smart health care are then presented.

Smart health as an emerging field in health care is aimed at providing personalized,
ubiquitous, preventive, promotive, curative, and tailored care and services to citizens
in a cost-effective manner. Ethical and legal consideration to create and use of modern
healthcare equipment are discussed in Sect. 12.6. In Sect. 12.7, Case studies and
Success stories of the modern equipment in smart healthcare system is discussed.
Section 12.8 discusses the future of Al-driven care. A summary concludes this chapter
in Sect. 12.9.
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12.2 Foundations of Smart Healthcare

Corrective diagnostic measures will be deployed to minimize errors. Rich medical
imaging services (e.g., birth mammograms, identification of skin cancer) for vali-
dated medical types of data that are crucial for breast and skin cancer risk assess-
ment models, by finding risk-minimal expertise and lean team organizational struc-
tures, will enable more universal mass-market offerings. Efforts to safeguard patient
sensory data can spread satisfaction from government or insurance company regula-
tions to the personal tailored family care plan. Proper use of these integral settings can
crucially change healthcare services scalability issues, undertaking mission-critical
information (e.g., tort restrictions) out to data in the evolving domain of digital
healthcare [1]. Resolved vagueness and imprecise knowledge are the main attributes
of precision health as a new “principle of 3P healthcare”. The intersection of an infi-
nite number of healthcare long-term and short-term goals, based on each patient’s
profile, accentuates the importance of index-free healthcare system performance.
Also, advanced medical imaging services addressing needs, comprising on-demand
visual consultation, complements a non-standard definition of collaborative mental
health [2].

Advanced smart healthcare is building an affluent system of present healthcare,
comprising the semantization of ubiquitous patient-related personal data, such as
wearable campus. In this context, mathematical foundations (neutrosophic sets are
loosely defined) have presented a flexible method to describe vague and imprecise,
as well as precise information from new engineering. In contrast, concepts can have
profoundly ambiguous meanings. The resultant notion of vague sets allows for flex-
ibly modeling optimal preference information while, at the same time, allowing for
partially fulfilling minimum conditions, providing a meaningful generalization of
traditional fuzzy sets. Performance, security, privacy, cognition, finance, and control
are among the specific building blocks. Consumer-oriented healthcare plans will be
proposed with strong security measures [8].

12.2.1 Definition and Scope

Al has succeeded in working as a virtual doctor well enough to search for helping
patients by scheduling outpatient appointments, telehealth appointments, monitor a
patient’s vital signs, and manage the patient’s electronic health record (EHR) [9-11].
Al has also demonstrated its successful capacity to handle specialized professional
medical tasks, such as the use of time-consuming, costly and error-prone manual
processes, including the provision of remote intensive care unit services, detecting
medication overuse and misuse of opiates, detecting neurologic and psychiatric
disorders, and monitoring the life of patients receiving radiation therapy [1].

The term artificial intelligence (AI) means using software and related technologies
to learn how to complete tasks that currently require some form of human input. Al is
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divided into two major subsets: narrow Al and general Al. Narrow Al encompasses
systems built to accomplish a narrow range of tasks while ubiquitous general Al
systems are accomplished by humans and can accomplish the same variety of tasks
as humans. While much narrower Al efforts have yielded significant breakthroughs,
Al is currently still narrow. As the development of hardware and applications pushes
ever further, it is very unlikely that those breakthroughs will continue to accumulate
and that our methods and ideas will continue to develop.

12.3 Al Applications in Healthcare

Al is likely to significantly impact various aspects of the field of medicine and phar-
macy, making healthcare more powerful in its role as a social engine. Artificial intel-
ligence, information and communications technology (ICT), big data, the internet of
things (IoT), drones, and robotics are developing rapidly and undergoing major tech-
nological innovations while also demonstrating the potential to interact and create
new value, new ecology, new industry, and new technology [12]. The international
development direction of medical diagnosis, artificial intelligence, and smart medical
equipment technology was first introduced, with the medical smart device market
concept described, high-frequency classification of over-optimization, and primary
application layout strategy, and development trends considered. Smart, intelligent
technologies have been extensively embraced due to the burgeoning explosion of
COVID-19 datasets, which includes datasets of genomics, proteomics, glycomics,
metabolomics, epidemiology, at the population level, clinical level, and molecular
level, and phenotype data from telehealth. Consequently, a wide array of innova-
tive Al technologies have been chiefly developed to encounter numerous preven-
tive, diagnostic, therapeutic, and predictive detection challenges, such as detecting
drugs, repurposing molecules, detecting novel antigenic epitopes, prognosis, clin-
ical stage detection, and new strain detection. The articles and research topics are
assessed from preprint publications, top journals, as well as leading research institutes
from six renowned companies (Positionly, AiMed, Bootstrap labs, Socialinsider, and
Niceprice) around the globe. The credibility of the information is different for the
individual websites, but the general statistics are similar, as accuracy is given more
priority in studies and at early stages considering the novel COVID-19 pandemic
infection where novel strains and mutations kept emerging with repurposed vaccines
making vaccination ineffective. Finally, information obtained from academic content
and industrial trends has been employed to support the qualitative and quantitative
analysis for this article [13, 14].

MN positions in medical scenarios with imaging and in the field of pharma should
be taken into consideration. The segment is huge and high because of the lack of
public inference on big pharma Al. Drug discovery will benefit from AI and has
changed abdominal imaging in hospitals worldwide. It is also widely used in ophthal-
mology among the subspecialties. MN has implications for software/hardware R&D,
and as a function of personalized medicine, AI/ML-guided patient health tracking is
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Fig. 12.1 Applications of
internet of medical things

growing. Devices and procedures for precision medicine may also benefit as preci-
sion values in MN applications increase. The role of MN is less relevant in health-
care, though the subset financial services area for crash department visit predictive
analytics is growing and considered very relevant for quality outcomes [1]. Al has
already had a significant impact in healthcare and everyday life applications. In the
healthcare industry, applications are often categorized into three groups, including
personalized medicine, image analysis, and intelligent question—answer systems. An
intelligent question-answering system for medical diagnosis has also been proposed,
in which a hybrid of a shallow semantic model that leverages syntactic and semantic
features and a deep learning model is used to obtain word-level representations and
improve diagnostic accuracy. For personalized medicine applications, integrating
healthcare with wireless and mobile technologies has gained popularity. In particular,
personalized medicine in robots has attracted significant attention in China and over-
seas. Robotics, including human accompaniment and interaction, has gone mobile,
accompanied by the rapid development of artificial intelligence around health centers
in China. Facial expression terminal services have already penetrated the market, and
discussions on whether virtual or exoskeletons for robots in rehabilitation are more
accessible have begun [15] (The Applications of internet of medical things is shown
in Fig. 12.1).

12.3.1 Diagnosis and Treatment Planning

There have been remarkable advances of Al in various clinical specialties such as
radiology, pathology, and dermatology by the design of Al-flavored software which
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are primarily developed to aid the clinicians by helping them to detect and diag-
nose different grades of pathologic abnormalities. Automatic tools for the detec-
tion of Tuberculosis and various skin diseases through social media have also been
successful in the direction of democratizing medical asset. It is thought that Al
research in detection diagnostics will benefit from being addressed as wide decision
problems which encompass the posterior tasks like risk assessment, lesion detec-
tion sequestration, and lesion characterization, partly in imitation of how humans
naturally contemplate upon these problems. We should imagine, in the medical Al
environment in which prediction and explanation rather than hard-coded rules is the
realistic means for objectivism [16].

Diagnosis and treatment planning are the most critical, as well as intellectual activ-
ities of healthcare systems. The significant utilization of Al in the field of medical
imaging has opened up several novel directions in this area. A pipeline named
Intuition-Enabling will altogether create improvements in the clinical process at
every stage and will enable large-scale, opt-in study of the decision-making process.

12.4 Modern Medical Equipment in Healthcare

In fact, this is already happening to the point that misinformation often leaves citizens
perplexed about the actual capabilities of modern medicine when faced with known
diseases that quickly give ravages. In this context, healthcare is getting smart and
refers not only to the use of some tools that characterize the context of the Internet
of Things but also to the use of artificial intelligence. In so doing, hospitals and
generally health institutions will be able to monitor vital parameters constantly, both
in very specific clinical conditions and in situations of chronic disease, with final
improvements in clinical risk assessment and variations in the patient’s state during
the treatment. After diagnosis and therapy have been set out, it is, in fact, possible to
continue the dimensional monitoring of the health status of the patient even outside
the hospital [17] (Some Examples of smart healthcare devices and tools is shown
in Fig. 12.2).

Artificial intelligence or Al is the buzzword in health and medicine. This comprises
a wide variety of technologies such as virtual reality, chatbots, and robotics, along
with wearable devices and smart machinery [18-20]. All of this medical equipment
is without which the modern medical system could hardly operate. These are all the
ones that interact with us and monitor our states, to be able to give health professionals
the elements they need to make the best decisions. And on these questions is a giant
amount of data, from the many tests that we are subject during our lifetime to the vast
amount of information generated daily by professional and healthcare professionals.
Hence, whenever we talk about the need to develop the future of medicine, we
cannot disregard the enormous revolution that AI and modern medical equipment
are creating in healthcare. Health systems, and the citizens who need them, can only
benefit from this, both in terms of quality and actual efficiency [21].
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Fig. 12.2 Examples of smart healthcare devices and tools

12.4.1 Types and Functionality

The sensor measures four important parameters for a person where there is a threat
of fire: temperature and its change, humidity, the presence of LPG and methane in
the air. After processing, the obtained data give the opportunity for Al algorithms to
operate efficiently in the emergency cases of a fire hazard.

The reviewed medical parameters contain information about temperature, pulse,
oxygen level, and other important vital signs. This information is used to develop
an integrated patient information system with smart medical devices. The developed
software can store and process data from patients and display set data on a web
platform. This functionality increases the ability of remotely operated Al-based lives’
residence system.

Currently, SH&MCS in Ukraine is developing actively due to the potential of
unmet needs that this system can meet. In the next two sections of this chapter,
examples of specific smart healthcare and medical care systems are considered. The
technical characteristics of medical equipment that can be used in the healthcare
system and the basic principles of the Al algorithms that can be implemented on
these devices are also presented. All algorithms are implemented in the LabView
graphical development environment [22].

A smart healthcare and medical care system (SH&MCS) typically consists of the
following important functional units: an information unit that processes the accumu-
lated data and delivers the specific medical history of medical care to the interested
parties, a wireless monitoring unit to track specific patient features, a security unit
to control the restricted area, a display unit to provide relevant information, and a
medical care unit that provides basic medical assistance using Al algorithms without
the participation of the personal physician.
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Hospitals, clinics, and other healthcare organizations are considered the second
and third most common places for investment in IT and specifically information
systems. This is due to the constantly growing needs of the demographic population
for healthcare services in recent years. Developing technologies aimed at optimizing
these processes and improving the quality dictate the concept of providing smart
healthcare services [23].

12.5 Integration of Al and Medical Equipment

Smart healthcare is a semantic fusion of conventional concepts of healthcare, service
delivery, location of care (homecare, healthcare, and care), health to be protected or
enhanced, and technology integration. It recognizes the need for a system that helps
healthcare providers provide care, help more individuals with greater precision, in
a timely and cost-effective manner, and help patients take responsibility for their
wellbeing. It includes patients involved in their wellbeing and healthcare and needing
care. The transition to smart healthcare entails more than the application of digital
technologies in healthcare as such. Business processes, governance principles, and
services are reengineered as well. Health ecosystems share the joint goal. Digital
technology is now at the core of enabling everything to blend together and function
as a method of care and support [24].

The realization of Future Healthcare 4.0 is the subject of significant research
worldwide, primarily with the objective of reducing preventable illnesses, efficiently
delivering care, and having patients take greater responsibility for managing their
health. Along with IT concepts, terms such as “smart healthcare,” “connected health,”
and “intelligent healthcare” are used to underscore the vital role of Al In order to
deliver operational cost savings and mitigate some of the stress on the healthcare
system, a third tenet is the generation of value to society and organizations.

12.5.1 Challenges and Opportunities

The authors face multiple technical challenges in the design and deployment of
modern medical equipment. Furthermore, typically, the clinical community’s needs
are not recognized or understood. Since Al engineers need to create clinically vali-
dated products that physicians would embrace, both early and often, a closer connec-
tion with the clinical ecosystem is required. They seek to consider the clinical philos-
ophy behind the processes and devices, and questions where Al and related technolo-
gies may be helpful. Regardless of their efficacy and potential to minimize ineffi-
ciencies in healthcare and contribute to economic growth, reforming service delivery
in the field of healthcare is a markedly difficult feat. In addition, because privacy and
vulnerability are often important in the transformation of an organization, industry
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reforms are complex. Possible benefits and privacy problems can also be contra-
dictory for every technology, and thus partnerships and industry-wide governance
become critically necessary [25].

Substandard healthcare provision results in millions of avoidable deaths every
year. It is due primarily to the uneven distribution of skilled healthcare personnel and
the concentration of expertise and technology in large facilities in metropolitan areas.
Smart healthcare marries recent advances in IT and Al to tackle these issues across
the healthcare value chain. Appliance firms are now rushing toward the lucrative
vertical of smart healthcare. In few other industries, however, do we have the chance
to produce a technology framework where older persons can live longer, healthier
lives using the Al skills that will support the future of smart healthcare? In this
yearbook, the authors share the benefits and obstacles to Al deployment in healthcare
that they have seen as Al designers, entrepreneurs, and investors. While there are
significant technical and political roadblocks, present groundbreaking breakthroughs
and the political climate offer a promise for smooth access to Al-based healthcare
solutions [26].

12.6 Ethical and Legal Considerations

We discuss the appropriateness of Al to tackle these challenges and provide exam-
ples of how existing Al research can involve these considerations [27]. We discuss
access to healthcare, a challenge that Al research can begin to engage with now.
We consider how Al innovations can be incorporated into the practice of healthcare
from both provider and patient standpoints to promote shared decision-making and
not undermine trust. We propose hardware/software co-design as a way to coun-
teract growing costs and bring about a step change in what is feasible. We discuss
how Al research should engage with relevant laws and ensure that liability is based
on competence, not on professional status. Whatever the future of Al in healthcare,
we foresee a future where the clinicians of the future need to understand both the
capabilities and the limitations of AI [28].

With every new innovation in science, we believe the benefit must be weighed
against potential harm. From explaining the correct construal of data to understanding
any counter-intuitive behaviors in popular algorithms, to conducting rigorous evalu-
ations of Al, the committee’s vision is that Al for healthcare is a two-way partnership
that involves both the AI community and the healthcare community working closely
together. Ethical considerations of Al for healthcare are mirrored in other Al contexts
and can be represented by impact on different communities, trust and control, laws,
liability, risks, access, health disparities, and informed consent. These are some of
the unique properties of Al for healthcare.
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12.6.1 Data Privacy and Security

Organizations need to have a security mindset to prioritize the privacy of their users
and clients and to align their practices to meet the highest security standards. To
accomplish this, organizations have to embed privacy in system designs by consoli-
dating data collection to the minimum amount required and concealing sensitive data
from all unauthorized users. Any data that is not mandated, any data that presents
risk, should not be collected or stored. Blockchain technology is set to change the
landscape of secure data sharing. Systems based on blockchain can enhance data reli-
ability and authenticity. Adaptive and proactive security controls should be contin-
uously updated to technological and operational changes in the organization [29].
Specific usage restrictions should be set and enforced by role-based access control
mechanisms to manage user behavior in line with their responsibilities. Breach noti-
fication is a regulatory requirement to take prompt action in the event of unauthorized
breaches of protected data. Data Privacy Impact Assessments are a forward-looking
defense mechanism to protect various aspects of data privacy. The IoT presents signif-
icant new data privacy risks, including devices that monitor behavior and capture
sensitive information about users. Machine learning developed by large-scale data
usage, often across borders, requires privacy infrastructure [30].

Data has always been considered as an important asset and it is rightly tagged
as “the new oil” in contemporary times. By extension, data privacy and security
issues have never been more important than in the present world of automation
to prevent misuse. Smart healthcare is completely dependent on large amounts of
data in different formats, whether images, texts, audio, or bio-signals. Data privacy
regulations impose penalties on organizations that violate them; hence, compliance
with such regulations is a necessity. This is a fundamental right for every individual
and the protected personal data includes health records and life-threatening treatment
constraints. Implementing appropriate data security measures such as data storage,
encryption, transmission, and de-identification tools (use of k-anonymity, I-diversity,
t-closeness, and user-level preservation and consistency) is necessary to enable the
collection, aggregation, and sharing of data. The combination of software, hardware,
and network security tools should be properly configured and administered for the
highest standard of data security to address privacy and security concerns [31].

12.7 Case Studies and Success Stories

Let’s look at a couple of success stories. Philips is a hospital-focused company where
clinical expertise and a patient-centric approach go hand in hand. It has always
sought to drive innovation in healthcare by partnering with some of the best minds
in hospitals and academic institutions globally and applying cutting-edge artificial
intelligence. Such collaborations have resulted in some breakthrough solutions and
products that today have become vital for the medical community. In the United Arab
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Emirates, the government has prioritized investments in the latest healthcare tech-
nologies in the interest of the patient. Reflecting this vision, when NMC Healthcare
commissioned the 745-bed NMC Royal hospital in Abu Dhabi, they placed a major
emphasis on the quality of installation of the medical equipment and diagnostic solu-
tions to be procured. It was not an easy task, demanding exceptionally close working
together by the experienced project teams of Philips and NMC Healthcare to iden-
tify the latest medical technologies and install them, avoiding the inevitable project
challenges [32].

The proliferation of artificial intelligence, machine learning, and the internet of
things in smart healthcare is leading to better outcomes for patients while meeting the
challenge of increasing demand for medical services. The results are inspiring: more
accurate diagnoses, personalized treatment plans, and real-time patient monitoring
during every stage of the care process. We are now entering the era of preventive
medicine, with Al-driven drugs to halt disease creation at the gene level and predic-
tive medical systems that could remediate healthcare’s current reactive philosophy.
The impacts also extend to the business performance of healthcare organizations.
Physicians are benefiting from the connectivity of smart devices as they can work
remotely, and through customized instructions, machines could be performing many
routine surgeries [33].

12.7.1 Real-World Implementations

The role of Al is less an automatic decision-making than a decision-support system.
Human validation of Al suggestions is therefore an essential component of any
medical image analysis pipeline. It requires implementing explanations of Al deci-
sions that are meaningful to human experts. Explanation methods developed in other
subfields of computer science, in particular in natural language processing, cannot be
straightforwardly transferred to medical imaging, where humans observe localized,
high-dimensionality patterns. In the near future, a challenge will be integrating these
methods in complex medical imaging pipelines, including pre-, post-, and revisit
within and across imaging modalities [34].

Real-world implementations highlight several challenges facing Al for medical
image analysis. First, report performance in clinical validation experiments varies
widely, depending on patient and disease cohorts and on the type of image analysis.
Some studies, in particular on thoracic radiographs, dermatoscopy, and ophthalmic
images, show comparable performance to human experts, even in increasingly diffi-
cult detection and triage tasks, while others are years behind solving subproblems
addressed long ago, in particular in breast and digital pathology. Several commercial
solutions show impressive performance on public benchmarks but have not, to our
knowledge, undergone clinical validation, revealing a gap between research and real-
world impact. This is due to time-consuming and expensive regulatory approval and
certification procedures that typically require clinical trials involving hundreds of
patients in multiple centers and imitate clinical workflows, including double-reading
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by human experts, even in subproblems where individual interpretation is fast and
easy, and clearly superior human performance is well established [35].

12.8 Future Trends and Innovations

The concept of smart healthcare with Al and modern medical equipment was
explained in detail. After monitoring healthcare by modern medical devices and
analyzing the results with machine learning techniques, diseases are prevented by
Al-enabled systems. Throughout the chapter, many case studies related to smart
healthcare were presented. Lastly, future trends and directions for achieving smart
healthcare were explained. Nevertheless, future research works proposed include the
development of more sophisticated healthcare systems to truly achieve smart health-
care, such as employing advanced data science technology for health information
management and utilizing ambient intelligence for embedding intelligence into the
environment [33].

Through this study, the potential for Al technologies to enhance healthcare and
make truly smart healthcare systems has been explained in detail. AI combined
cloud-enabled personalized healthcare with virtual sensors and subsequently applied
a neuro-fuzzy method to classify the imaging results from Thailand and devel-
oped iCycle, an intelligent ICU telemedicine monitoring and diagnostics system. We
have explained modern medical devices applied for treating and diagnosing various
diseases and monitored health, and shown how modern medical equipment is able to
lower healthcare costs by providing high-quality supportive care. Finally, the current
issues and future trends related to smart healthcare and Al were described [36].

12.8.1 Emerging Technologies

The healthcare sector is witnessing significant advancements using structured as well
as unstructured data to improve the overall quality and cost of healthcare by using
powerful care delivery models. The possibilities of personalized healthcare services
make smart healthcare services highly indispensable. The main contributions of
this chapter aimed at encouraging the acceptance of smart healthcare practices by
presenting a comprehensive overview of Al models/techniques that play a vital role in
healthcare and how the application is enabled through modern healthcare techniques
are as follows: — Identifying and discussing the direct patient/customer benefits,
peer user benefits, healthcare professional benefits, healthcare industry benefits, and
healthcare service provider benefits of employing the proposed smart healthcare
solution set. — Establishing the essential components and innovative Al solution
models in healthcare. — Providing the latest information and trends from research
undergoing worldwide by deploying advanced Al models for smart healthcare [34].
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The combination of Al and machine learning in concert with big data analytics
is proposed as a solution to make healthcare smart. These smart healthcare solu-
tions possess substantial potential in both early detection and personalized treatment.
Al-based personalized medicine using deep learning for mass data processing and
machine learning algorithms for optimal treatment pathway recommendation are
some common applications. Big data-driven technologies can be widely used with
promising results as diagnosis and treatment tools for smart healthcare. The key
purpose of this chapter is to highlight the significance of smart healthcare and its
urgent requirement in the post-COVID world with the help of diversified intelligent
solutions. Subsequently, the chapter presents the multifaceted dimensions of smart
healthcare with various enabling artificial intelligence (AI) models together with
modern medical equipment and related techniques. To benefit from these assorted
intelligent models, there is a significant need to process multidimensional infor-
mation. Smart healthcare is an essential blend of diverse models of intelligence,
including but not limited to big data [34, 36].

Emerging technologies such as artificial intelligence (AI) and modern medical
equipment are taking the healthcare sector by storm. The arrival of sophisticated
models of Al has helped transform healthcare from the traditional model to a more
effective smart healthcare. This chapter discusses the implementation of various
advanced models of Al and machine learning in the field of healthcare. A few more
cutting-edge technologies such as the Internet of Things and edge computing are
also looked at. The technological progression in the fields of big data and machine
learning is cornerstone for smart healthcare, leading to novel ideas and studies.
Given the considerable complexities and challenges posed by healthcare, promoting
general healthcare and improving healthcare outcomes are of utmost importance. A
mix of sophisticated technologies such as Al, mobile computing, social networks,
cloud computing, big data, and the Internet of Things can serve multiple benefits to
different players in the healthcare system.

12.9 Summary

The plethora of patient data, the potential for new treatment pathways, the long-term
impact of treatment instead of the trial period, and a reduced discovery time for drugs
are some of the many benefits that smart medical devices present us with. However,
being a young and undefined field in health informatics, data is an asset in narrow
silos with a low possibility of compatibility. Of course, a standardized data model that
can work across different device platforms and new knowledge while discovering
pitfalls during clinical monitoring will provide valuable information to all healthcare
consumers. As intelligent health systems develop, more benefits are expected in
future. With the strong build of both IT and Al, we can expect smart healthcare to
diffuse more and more into daily lives. While ensuring privacy, improving decision
making in many areas like wellness, prevention, and being ready even if a sudden
illness affects a patient, early accurate diagnosis, swift optimal treatment, and rapid
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recovery can be a reality. Healthcare delivery today includes the rapidly increasing
role of technology in the diagnosis, monitoring, and treatment of diseases. Using Al
in diagnosis and disease management is already playing a key role in better and rapid
decision making. The challenges of monitoring patients who need constant care can
also be better managed using Al and machine learning. The Al tools that we have
today could evolve faster and prove to be a much bigger asset if we had better access
to data.
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Chapter 13 ®)
Evolution of Traditional Healthcare izl
to Modern Healthcare—Benefits,

Opportunities and Challenges

Abstract Several Al methods can be applied in the healthcare field. A simple but
effective area where Al has already been used for some time is the image recog-
nition on radiological and ophthalmological problems. In some cases, Al software
outperforms the experts in disease diagnosis, such as breast and lung cancer detec-
tion. Retinography tasks, such as the understanding of retina images or the detection
of blind spot injuries due to diabetes, have also been widely studied. For instance,
some publicly available software has been built to make diagnoses or even infer
diseases such as macular degeneration compared to human performance for some
datasets. The most obvious use of Al software for this is to provide faster and more
efficient screening systems, as the proposed software provides faster solutions with
great benefits associated with this. The use of artificial intelligence in healthcare has
been rapidly growing and is gaining more importance progressively. Al has opened
novel approaches in the area and enabled us to achieve solutions that were impos-
sible to think about or implement before. The rapid growth of data in the healthcare
industry allows researchers and healthcare systems to explore and build innovative
methods that could be used in diagnosis, early disease detection, prognosis systems,
and many other healthcare tasks. The rapid growth of healthcare data has promoted
an opportunity to gain new insights, develop new tools and software, and extract
new patterns to build more accurate models and methods that ultimately turn the
healthcare systems smarter.

Keywords Traditional healthcare + Modern healthcare - Healthcare evolution *
Healthcare transformation - Healthcare system development + Healthcare
innovation - Health service delivery
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13.1 Introduction

A large number of the population in the world do not receive adequate medical
care. This has raised the interest of many companies and researchers to work toward
enhancing healthcare quality, access, and services through technological innova-
tions. The combination of technological advancements in healthcare areas such as
medical devices, electronic health records (EHR), wearable sensors, artificial intelli-
gence, robotics, and telemedicine, with digital components such as cloud computing,
mobile communication, and big data, has the potential to revolutionize healthcare
[1]. The goal of smart and connected healthcare is to create a ubiquitous and adaptive
ICT infrastructure that can integrate unobtrusively the needs, activities, and surround-
ings of individuals and healthcare staff with the available medical knowledge and
the healthcare service processes [2]. Such integration will enable the delivery of
evidence-based personalized healthcare to patients based on their unique conditions,
characteristics, and the feedback provided during the care period, and will trigger
dynamic adaptations of care plans and service processes [3].

Healthcare around the world is going through a digital transformation. This trans-
formation is aimed to enhance the quality of care, increase access to healthcare
services, and reduce the cost of such services. Over the last few years, many tech-
nological developments have enabled the transformation of traditional healthcare to
smart and connected healthcare [4]. Smart healthcare is an integration of traditional
healthcare with information, advanced communication, and technologies, offering
higher quality, more personalized, and on-demand services to patients [5].

For several years, healthcare services have followed a traditional pattern which
is neither speedy nor secure. The patient has to wait for a long time in hospitals or
medical centers to make an appointment with a doctor, which may take time based
on the emergency. The major disadvantage of traditional healthcare is that the patient
may not have proper documentation from a particular place [6]. In order to ensure
secure and speedy healthcare services, the traditional system has to move from paper-
based services to a smart healthcare system. Any physician, specialist, and patient
should be able to access information from anywhere at any time for security, based
on authorization and authentication for the provided services. Since this is a large
volume healthcare system with rapid technological advancements, we have come
across ways to make the information smart and secure for patients. In this chapter,
we present a survey on the transition from traditional healthcare services to smart
healthcare services. The key contributions of the chapter are as:

e The delivery, organization, and experience of health services have undergone
significant change as a result of the transition from traditional to modern healthcare
systems.

e Several noteworthy case studies and success stories demonstrating the influence
of contemporary healthcare systems.

e The rise of smart healthcare signifies a substantial change in the management and
delivery of healthcare, propelled by developments in data analytics, technology,
and patient-centered approaches.
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The rest of the chapter is organized as follows. Section 13.2 elaborates the founda-
tion of Traditional Healthcare system. In Sect. 13.3, the emergence of smart health-
care represents a significant shift in how healthcare is delivered and managed, driven
by advancements in technology, data analytics, and patient-centered approaches. In
addition, some notable case studies and success stories showcasing the impact of
modern healthcare systems in Sect. 13.4. Some key future directions and trends
shaping the landscape of modern healthcare in Sect. 13.5. Lastly the summary of the
chapter is concluded in Sect. 13.6.

13.2 Foundations of Traditional Healthcare

According to Gordon et al., there are three main principles that “should form the basis
of a truly effective healthcare system: exceeding patients’ expectations regarding the
ease of access to and communication with their clinicians, rapid and streamlined
access to evidence-based care regardless of ability to pay, and a broadened focus,
emphasizing health promotion, disease prevention, and the potential role of health-
care as a tool of economic development and social justice”. These factors must
be taken into consideration, not only in disease approach and healthcare provision
but in a broader sense—in the development of population, cities and rural areas,
political choices, and any decisions having an impact on human life. The adoption
of such principles could support the birth and maintenance of a healthcare system
that is sustainable over time and is strongly integrated into society—a truly smart
healthcare model.

In recent years, however, life expectations and other health-specific indices have
continued to increase, and the high-grade characteristics of the system have been
affected by well-developed challenges such as medical errors, healthcare acquisition
costs, burnout and other work-related syndromes, quality decline, standardization
limitations, and inefficient, unfair care models. Although a solution to these issues
is recognized as fundamental, the roadmaps are different [7].

Standardization: The procedures and practices of medicine, as well as practi-
tioners, are standardized. Medical operations and diagnoses are broadly uniform
and are replicated on national and international levels. Research represents a key
feature, with results being released to the scientific community. Chronic, iatrogenic
condition coverage and prolongation of life cycles: The system focuses not only
on acute conditions but also on chronic ones, and it helps to prolong the life of
patients. It is staffed by networks of practitioners, with an established hierarchy and
effective health policies that favor the reinsertion of invalid citizens [8]. Coexistence
with alternative systems: Multicultural societies often have important non-Western
medical systems with different historical roots and with a theoretical base separate
from current medical science principles. They may be anchored in racial or social
fragments or may have a specific link with all citizens, as in the case of Africa’s
primary healthcare system. Universal access: Although the specific ways in which
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this comes about differ from nation to nation, modern societies provide universal
access to their healthcare systems, at least in some specialized areas.

In modern times, the advancements in human knowledge have led to the establish-
ment of different formalized healthcare systems. Among them, the field of Western
scientific medicine (or medical science), founded upon principles of modern science,
is likely the most widely known. Its characteristics include evidence-based medical
treatments, broad spectrum coverage with a commitment to all members of a commu-
nity, and a codified form of scope restriction. Such features and quality have led this
system to a dominant position in many countries. The following are general charac-
teristics of the Western scientific medical system. Healthcare has always been one
of the most important necessities for human beings. In ancient cultures, illness was
thought to be the consequence of the anger of gods or spirits. Ancient Egyptians
considered the body both material and spiritual and had a well-developed system of
physical care that included both secular and sacred dimensions. In Greek civilization,
Asclepian temples were established to exacerbate dreams and to thereby make the
diagnosis.

13.2.1 Scope of Traditional Healthcare

Despite the widespread development of telemedicine systems across the world, which
enable doctors to consult patients that are located at a distance, helping reduce the
need for hospital admissions, particularly for patients in remote locations, the vast
majority of healthcare interactions in traditional healthcare systems are face-to-face.
This is because a large set of healthcare services usually require physical exam-
ination or medication, and associated actions are taken in a face-to-face mode.
Latest advances in information and communication technology (ICT), combined
with increasing external pressures that healthcare systems face, such as increasing
demands from an aging population, rising healthcare costs, and shortages of health-
care professionals, have led to the development and deployment of smart healthcare
systems, which are also referred to as connected healthcare, e-health, or digital health
[9].

Traditional healthcare involves a licensed professional (doctor or nurse) providing
services to a patient in an office, clinic, or hospital. It is then essential to list
some characteristics of traditional healthcare systems [10]. First, they are typically
setting-bound and rely on specialized healthcare settings such as hospitals, clinics,
and healthcare staff residences. Second, they are infrastructure-bound, relying on
specific healthcare infrastructure elements (buildings, beds, waiting rooms, cabi-
nets) for delivering healthcare services. Third, they are time-bound, necessitating
healthcare service provision during working or occasional emergency hours. Time,
infrastructure, and setting-bound nature of traditional healthcare all imply physical
presence requirements for healthcare staff and patients to properly organize and
execute healthcare processes.
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13.2.2 Historical Overview

Researchers have discovered anthropological evidence that the earliest civilizations
in Mesopotamia and Egypt had already incorporated various forms of medical knowl-
edge. Mesopotamian medical knowledge derived from a number of myths and sagas
handed down from previous civilizations [11]. One of the most influential figures
in the vast field of Mesopotamian medicine was Esagil-kin-apli, the author of a
collection of 36 therapeutic treatments that form the core of ancient Babylonian
and Assyrian medical knowledge. By contrast, in the case of ancient Egypt, our
primary source is the Ebers Papyrus dating from the second millennium BCE, which
contains approximately 700 therapeutic recipes for a large number of diseases [12].
The Papyrus contains a wealth of information on the treatment of infections, medical
gynecological practices, suggestions for achieving longevity, and even prescriptions
for contraception. The written treatment of diseases was also reflected in the initial
Hippocratic corpus of ancient Greek literature that, relating to the field of medicines,
has over four centuries established fundamental principles still in force today [13].

The history of the West is steeped in centuries of primitive, medieval, modern,
and post-modern health systems. The first primitive age of the relationship between
humans and their environment saw climate, hygiene, and social coexistence as prime
determinants of health and disease. People subsisted by picking plants and hunting
animals, using herbal remedies to treat diseases caused mainly by poor diet and
contaminated food and water.

13.2.3 Key Principles and Practices

Each of the following sections discusses in-depth specific healthcare models and
practices that can benefit from the use of advanced information technology.

Safeguarding patient safety and ensuring care of the highest quality is a top priority
in healthcare. Some of the key principles to ensure patient safety and continuous
improvement in healthcare quality include: focusing on the care delivery process,
not just the outcomes; continually monitoring care processes and identifying risk
factors for adverse events; targeting resources on improving performance in areas
that need improvement; using information technology and evidence-based care; and
engaging the clinical staff in the process and rewarding their involvement in health-
care management and continuous performance improvement. In many cases, use of
advanced information technology products can provide a bridge between the core
healthcare practices and the technological advances that are being harnessed for their
development [14].

Common healthcare planning and operation management principles include:
using evidence-based guidelines and protocols to reduce practice variation; devel-
oping and monitoring performance measures; using automated approaches for
demand management; providing just-in-time processes to enhance patient flow and
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reduce inpatient bed length of stay; scheduling healthcare resources based on supply
and demand; and optimizing surgical and perianesthesia patient flow, to name a few.
Not only do these practices improve the delivery of care, they also make use of the
information generated throughout the delivery system [9].

While healthcare systems around the world are unique, there are common prin-
ciples and practices that can be applied to improve operations as well as the overall
safety, quality, and efficiency of care. These healthcare principles and practices cover
three primary areas: planning and operations management, patient safety and quality,
and use of information technology to improve healthcare processes.

13.3 Emergence of Smart Healthcare

In rapidly aging societies the world over, and with a growing global population that
is living longer, we live in an era in which health is considered more important than
ever before by a large number of people. For the first time in history, the number
of elderly people in countries such as Japan and Italy has now surpassed 20% of
the entire population. In addition, this health-consciousness is evident as well in
the growing popularity of steady-state bicycle training, jogging, and the changes
in food being consumed, which are moving toward more individualized diets that
avoid processed foods [15]. Moreover, the development of smartwatches and other
monitoring equipment that enable the collection of “lifelog-type” personal biological
parameters information, such as steps taken, calorie consumption, kilometers jogged,
and heart rate, demonstrate that this trend is increasing. Lifelog-type parameters,
combined with daily food logs, would provide a comprehensive database that would
enable people to gain a better understanding of their own body’s functions [16].

Individualized healthcare that meets the diverse needs of people is required in
the rapidly aging society. Such healthcare can be enabled by connecting the various
data associated with people’s lifelogs and biological parameters and applying both
conclusive evidence provided by medical professionals, as well as knowledge from
academic principles that are based on experiences and reasoning accumulated as
tacit knowledge. We refer to such healthcare as “lifelog-based healthcare” (LHC).
We have been developing LHC techniques that quantify diverse human activities
using accumulated field experiences, and bio-physiological state sensing technology
that acquires condition information as medical professionals review over very long
periods. By combining and using these types of healthcare technologies, it is possible
for individuals to have their health monitored in daily life. This study is a review of
recent results associated with LHC so far achieved by our group. It also contains a
discussion of the key research challenges that should be addressed in future to further
Lifelog-based Healthcare (LHC) [17].
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13.3.1 Concepts Behind Smart Healthcare

It is the concept that encompasses the integration of smart systems in the health
field, incorporating intelligent elements that implement communication functionality
between environments and the people who use it, being proactive and preventive in
nature [18-20]. The possibility of complete self-diagnosis and treatment initiating
communication with a medical professional, avoiding unnecessarily overloading the
system, has made smart healthcare systems increasingly necessary [21]. The figure
shows the concept by illustrating the whole process. First, a physical parameter is
needed, acquired thanks to a set of intelligent sensors that capture useful informa-
tion which is converted through data mining, data analysis, advanced analysis and
software. In the presence of certain data, the intelligent system suggests a series
of actions. Finally, these can be both presentations to the patient according to the
medical diagnosis provided, as well as concepts that help the person to continue
taking care of his health. The decision-making process flows in two directions, one
vertical and the other a bidirectional concept.

Like other activities, the knowledge and use of information systems is of great
importance in healthcare. Along with advances in medical technology, it is trans-
forming traditional healthcare into intelligent or smart healthcare. While traditional
healthcare is based on the principles of diagnosing disease and providing effective
medical care, its smart predecessor not only involves prevention and early detection of
diseases, but also gives a greater role to the patient or citizen and their social environ-
ment. This section will define the concept of a smart hospital, together with the main
challenges and benefits of integrating information systems in healthcare. In general
terms, smart healthcare combines data acquisition (for medical staff and patients),
processing (management of care processes), and decision-making to provide timely
and professional patient care, providing the highest possible safety to both patients
and caregivers with technological support. Its main objective is to prevent patients
from entering the hospital and, if they have to, discharge them quickly. This allows
hospital resources to be focused only on acute patients [9, 22].

13.3.2 Technological Enablers

Preventive care has been made easier by techniques like the monitoring and analysis
of the biologic parameters of the body [23-25]. Researchers are some way forward,
using non-intrusive devices that monitor parameters of the body, such as heartbeat,
and electrical potentials that denote neurologic activity. They employ “sensorized
clothing,” which has small sensors that detect warped patterns of emitted light.
These devices and several others are capturing much of the biologic information,
and the harnessing and analysis of their data are enabling predictions of the indi-
vidual’s physical health and detection of the occurrence of diseases. Capturing and
analyzing data from these devices, along with understanding a human’s life pattern,
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may support future medical diagnoses from a purely digital approach, providing
substantial benefits to society and making healthcare cheaper [26].

Several technologies are enabling the concept of digital healthcare and promoting
faster and more efficient healthcare experiences. These can be divided into different
types, such as the Internet of Medical Things (IoMT), smartphones and mobile apps,
Big Data, optimization, and data discovery. These technologies create high expec-
tations because they increase our awareness about health, individualizing the way
we look at our bodies with the support of wearables, smart cosmeceuticals, and
other devices. They help with self-surveillance by tracking several body parameters,
leveraging our control over the evolutionary pace and path of our bodies. These tech-
nologies are the world’s first preventive medical care service, enabling us to think
about our health each and every second [27].

13.3.3 Technological Foundations

Digital, connected, and smart healthcare is the result of reducing to practice advanced
concepts, models, and theories of information, automation, and intelligent sciences
applied to the domain of healthcare. Central to modern healthcare are, for example,
the models and theories of health informatics, e-Health, and telemedicine, which
have, in fact, enabled some degree of healthcare ICT implementations [28]. Recent
advances of connected and smart healthcare are built upon and extend these existing
domains of healthcare informatics and technologies. They are defined, for example,
by enhancing their connectivity with physical and logical linkages that enable
new forms of information, knowledge, and intelligent capabilities. The founda-
tional concepts, models, and theories of healthcare of these advanced developments,
however, are often buried and invisible. In the remainder of this section, we therefore
reveal the technological foundations of smart and connected healthcare, uncovering
its basic building blocks and infrastructure [29].

Wireless communications technology enables untethered connections that are
essential for mobile and wearable devices, sensors, and actuators to be integrated
with the human body, and embedded and cyber-physical systems to be installed in
the physical environments of healthcare facilities and communities. The internet tech-
nology allows diverse components, systems, and subsystems of healthcare to be logi-
cally connected, enabling information and knowledge about healthcare to be seam-
lessly integrated and shared. Computing and data/information processing technolo-
gies provide the brains of connected healthcare systems, enabling distributed intel-
ligence to be effectively implemented so that data and information are transformed
into useful knowledge and wisdom for decision-making and action by healthcare
stakeholders [30].

The centerpiece of recent advances in digital, connected, and smart healthcare
is information and communication technologies (ICTs). Prominent among these
ICTs are wireless communications, the internet, computing, and data/information
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processing technologies, fundamental to the design and operation of the ICT
infrastructure of smart and connected healthcare systems.

13.3.4 Internet of Things (IoT) in Healthcare

However, 10T in the healthcare domain faces several challenges. Firstly, data privacy
and security are the most serious concerns for stakeholders. Secondly, the huge
amount of data generated by IoT devices can exceed the capacity of existing networks
and systems. Thirdly, the lack of interoperability and standards and the high cost of
IoT technology hinder the deployment and operation of IoT systems in the health-
care domain. To address these challenges, research, testing, and the collaboration of
regulators, policymakers, and industry stakeholders are needed. The ultimate result
of the effort to overcome these challenges is the creation of IoT systems that reduce
the cost of healthcare, improve the quality of medical services, increase accessibility,
and make personalized medicine a reality. This offers considerable opportunities for
various industries to create innovative loT applications and services in the healthcare
domain [31].

The Internet of Things (IoT) is a key enabler of the smart healthcare paradigm.
IoT represents a network of uniquely identifiable interconnected devices that commu-
nicate without human interaction using standard and proprietary internet protocols.
These devices, which can be specialized (sensing, actuating, data processing) or non-
specialized (smartphones, tablets, laptops), work in concert to create added value for
services created in the interest of individuals and society. The IoT growth trend is
clear as new applications and services are constructed by various industries [32].
In the healthcare domain, IoT technology connects medical devices and equipment,
enabling them to communicate diagnostic information directly to healthcare manage-
ment systems inreal time. The patients and the caregivers will also be able to exchange
information with the systems using the internet in order to report medical status and
receive medical instructions.

13.3.5 Data Analytics and Artificial Intelligence
in Healthcare

In accordance with the rich volume of literature that investigates the challenges
and the opportunities of data analytics and Al technologies in healthcare, such as
expert interviews, academic research, industry reports, and public documents, in this
section, we provide an elaborative view of the current landscape of the application
of data analytics and Al technologies in healthcare, summarize the state-of-the-art
projects and companies, develop a taxonomy of healthcare data analytics and Al
technologies, and discuss the major challenges and opportunities in the application
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of data analytics and Al technologies in the healthcare sector. Finally, we provide
research implications and recommendations [33].

Despite the promises and the derived opportunities from data analytics and Al
technologies, there exist significant challenges in the application of these technolo-
gies in the healthcare arena. The challenges span not only the technical concerns, such
as the privacy and security of healthcare data, the transparency and accountability
of AI technologies, and the vulnerability to adversarial attacks of the intelligence
models, but also the overarching concerns related to the perceptions and readiness
of the stakeholders in the healthcare ecosystem [34].

In the era of big data, a substantial amount of data in various forms can be generated
from diverse sources along the lifecycle of healthcare processes, from the knowledge
discovery and data gathering to data curation and annotation, to data modeling and
analysis, and to development and deployment of data-driven and personalized health
decision and action systems. Data and analytics are both the lifeline and the hidden
force of the future health ecosystem [35]. Data analytics and artificial intelligence
technologies possess the potential to enhance healthcare in a variety of aspects, such
as improving health outcomes, promoting operational efficiency, and advancing the
innovation of the healthcare process and system.

13.3.6 Machine Learning Applications in Healthcare

Machine learning is used in personalized medicine, which is designed for customiza-
tion of healthcare, with decisions, practices, and/or products being tailored to indi-
vidual patient characteristics. It can also help in the early discovery of the spread
of infectious disease. Because of its potential role in transforming the healthcare
industry, ML has become an interdisciplinary research area involving computer
science, statistics, and healthcare service. Over the last ten years, the applications of
ML in the field of healthcare have surged. Aspects of the healthcare system that have
benefited from machine learning include risk evaluation, medical imaging, capturing
healthcare information, bioinformatics, and general healthcare management [36].
Machine learning can help discover complex interactions between the features and
outcomes in these domains.

Machine learning (ML) covers a set of techniques that allow computers to learn
from experience and discern complex patterns in vast, possibly high-dimensional
data, and make intelligent decisions for prediction or diagnostic purposes. It has huge
potential to transform the operation and structure of the healthcare system. Machine
learning applications in healthcare are designed to aid in diagnosing diseases,
assessing and predicting patient conditions, delivering treatment, and managing
chronic conditions, and can help bring about precision and individualized medicine
[37] (The Applications of Al in smart healthcare are shown in Fig. 13.1).
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Fig. 13.1 Applications of Al in smart healthcare

13.3.7 Telemedicine and Remote Patient Monitoring

Smart and connected telemedicine services are discussed, starting with the state-of-
the-art in specialty telemedicine and the enabling technologies, and then going into
the best practices model for building and deploying sustainable telemedicine services.
This model, which has been defined by the experience of the UPMC Center for
Connected Medicine, is then applied to the outline of a process for rapidly building,
piloting, and scaling national or global telemedicine services [38]. The transforma-
tion that specialty telemedicine is bringing to healthcare through new quality and
outcomes measures and through the use of big data for both research and business
intelligence is discussed. The chapter concludes with a vision of the future evolution
of specialty telemedicine services.

Telemedicine is a rapidly evolving area in healthcare enabled by the convergence
of advanced technologies. It is changing the way care is delivered and presents
both new opportunities and challenges. This chapter provides an up-to-date review
of the status of telemedicine and remote patient monitoring, including the latest
innovations, the challenges that must be addressed to realize its full potential in
improving outcomes and access while controlling costs, and the new and emerging
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business models [39]. Successful commercial implementations in several specialty
areas define the factors that are critical to adoption, and scaling of telemedicine
services both nationally and globally is discussed. Finally, the transformation that
telemedicine is empowering in healthcare from volume- to value-based is addressed
in terms of the new quality and outcome measures that are being enabled and the big
data that will result from the large-scale implementation of telemedicine services.

13.3.8 Wearable Health Technology

There are many advantages to using wearable sensors. First, they can be integrated
into daily use easily. Second, they enable continuous sensing over long periods of
time. Third, sensor data can be collected in the real world rather than in a laboratory
setting. Finally, wearable sensors can reduce the self-reporting burden on users by
automatically detecting certain events or activities. Currently, popular wearables
include the Nike FuelBand, Jawbone UP, Fitbit, and a number of smart watches. These
devices primarily focus on tracking physical activities, such as steps taken, calories
burned, distance traveled, and sleep quality. While there has been an increasing
interest in using such commercial devices in research, the reliability and validity
of these devices have not been well-studied compared to traditional non-wearable
sensors, especially in the new areas of sensing [40].

Today, wearable technologies are usually sensors that are attached to a computing
device that people can wear as accessories or clothes. Wearable sensors can easily
collect information from the body and the environment in a user-friendly way. People
can then utilize this data to gain new insights, improve their lives, and share infor-
mation efficiently. The concept of the Quantified Self, in which individuals track
different types of activities on a regular basis with the help of technology, is often
associated with wearable sensors that track body data. It is becoming increasingly
popular and new devices are constantly being developed. In the area of emotion and
stress research, wearable sensors are also being used to collect physiological data and
correlate it with other data modalities, such as location, activity, or user-generated
content [41].

13.3.9 Cybersecurity in Healthcare Systems

The growing number of cybersecurity incidents is a clear indicator of the need for a
strong, secure posture to protect patient data confidentiality and system availability
in the Cyber Physical System (CPS), Internet of Things (IoT), and cloud computing
era of healthcare systems. These advanced technologies enhance the quality of care,
decrease the cost of care, and improve the efficiency of care. Simultaneously, they
create a new vulnerability for malware attacks, in which the consequences can be
fatal when an attack successfully targets medical devices performing patient care and
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monitoring. The consequences of a cyber-attack on patient treatment and diagnosis
through Life Critical Medical Devices (LCMDs) are discussed. The attack surface
of LCMDs as well as security gaps are analyzed [42].

Cybersecurity in healthcare is extremely important as it ensures patient data is
protected and kept confidential. Currently, threats and risks are increasing from
various levels, both internal and external, to healthcare systems. Thus, it is necessary
to develop and enforce cybersecurity measures through regulation to make sure all
healthcare stakeholders are taking it seriously. This chapter discusses the importance
of security in healthcare, laws and regulations surrounding protected health infor-
mation, various types of threats in healthcare, and recommendations for securing
healthcare systems [43].

13.3.10 Regulatory and Ethical Considerations

Healthcare is going through a digital transformation with the development of break-
through technologies, including artificial intelligence (AI), robotics, and the Internet-
of-Things (IoT). By connecting patients, caregivers, and medical equipment, data can
be collected and analyzed in real-time, which personalizes and improves the quality
of patient care and also increases the overall operational efficiency of the health-
care environment. For example, with advanced deep learning techniques, intelligent
medical diagnosis systems can achieve an accuracy level that is comparable to human
experts by analyzing and learning from a large amount of medical imaging data [44].
With the development of connected healthcare, patients’ health conditions can be
monitored at home, which reduces the length of hospital stays and the risk of hospital-
acquired infections. In addition, the healthcare supply chain can be optimized with
IoT technology by tracking and monitoring the conditions of medical inventory and
transportation in real-time. It also helps oversee the compound medication production
processes with sensor systems.

The transformation of the healthcare sector with innovative digital technolo-
gies, including Al, Internet-of-Things (IoT), and robotics, has created breakthrough
healthcare applications. Before these data-driven and smart healthcare techniques
become widely used, besides addressing the challenges related to cybersecurity,
data privacy, and the accuracy of intelligent algorithms, regulatory frameworks and
ethical guidelines must be established and implemented. In this chapter, we discuss
the promising applications of smart healthcare, review some of the regulations and
ethical guidelines that are developed for ensuring the safe and appropriate use of
these evolving technologies, and present a few healthcare projects that follow these
regulations and guidelines [45].
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13.3.11 Impact on Healthcare Delivery and Patient Qutcomes

Several areas of healthcare delivery that are or will be impacted by connected health
are telemedicine, home healthcare, and medication adherence. It is important for
healthcare providers to understand how these changes will affect their role and to
proactively address any concerns that may arise during the transition. Moreover, to
fully realize the benefits of connected health, the entire healthcare system must be
transformed from a system that is reactive and hospital-centered to one that is proac-
tive and patient-centered. This chapter describes promising innovations enabled by
connected health within telemedicine, home healthcare, and medication adherence;
discusses the challenges that must be addressed in order to realize the full potential
of connected health; and outlines opportunities for future research and development.

Connected health holds great promise to transform healthcare delivery and
improve patient outcomes. By continuously monitoring a patient’s health status
regardless of the patient’s location and transmitting that information in real time to
the patient’s healthcare provider, connected health has the potential to enable patient-
centered care, improve care team collaboration, reduce hospital readmissions, and
expedite recovery. The shift in focus from treatment to prevention and early detec-
tion of illness, enabled by connected health, not only improves patient outcomes but
also reduces healthcare costs. However, in order for connected health applications to
be effective and widely adopted, they must be designed in a way that alleviates the
major concerns relating to privacy and security of patient data.

13.3.12 Enhanced Clinical Decision-Making

The formation of clinical informatics as a recognized specialty in the medical field
in the United States and the subsequent inclusion of related topics in medical board
certifications are significant milestones underscoring the importance of clinical infor-
matics in the healthcare domain. The integration of specialized knowledge and skills
related to clinical informatics with those from other healthcare professions provides
invaluable support by optimizing decision-making processes that occur within the
clinical setting. Such integration routinely results in positive patient health outcome
improvements being identified and subsequently addressed through the use of new
approaches, or the modification of existing processes, or healthcare policy changes.

Health informatics is the application of informatics in areas related to health.
It comprises multiple areas, including those related to the theoretical and practical
considerations of acquiring, storing, managing, accessing, and processing informa-
tion, knowledge, and data. By acting as a catalyst to enhance the decision-making of
healthcare professionals, patients, and other stakeholders, health informatics enables
the improvement of health outcomes at all levels. Clinical informatics is an applied
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subdiscipline of health informatics. It focuses on the use of informatics in rela-
tion to the specialized knowledge possessed by healthcare professionals, with the
overarching goal of enhancing individual and population health outcomes.

13.4 Case Studies and Success Stories

The examination of smart technologies in hospitals and elder care demonstrates that
they can support the reorganization of healthcare so that care decisions are made in
collaboration with patients and in coordination with professionals across multiple
settings, and where hospital-based activity is focused on more acute care that can
only take place in a hospital and for which de-hospitalization replaces hospitalization
[46]. This transformation recognizes that the hospital is not the endpoint of health-
care. Rather, it is a collection of resources that can combine in many different ways to
deliver on the continuum of care that an individual person requires. This continuum
does not sit within the hospital. This is despite hospital spending accounting for
the vast majority of the overall budget of the health and care system. The cross-
cutting effect of smart technologies in supporting a rethinking of healthcare can
be observed in the role that they can play in promoting public health and effec-
tive behavior change. Smart technologies can provide an important tool to support
personalized health care by using tailored information and communications systems,
including mobile applications. In addition, the development and implementation of
smart cities and smart homes could have significant positive influences on public
health by providing safe living conditions, social interaction, and physical activity for
residents. The evidence for community-based programs particularly points toward
the higher cost-effectiveness of technology-enabled solutions for managing long-
term health conditions. In the next section, the chapter moves to discuss the broader
implications of the deployment of smart technologies in healthcare [6].

To better understand the potential of breakthroughs in healthcare, this section
portrays a number of case studies and success stories of ICT integrated healthcare.
Through these case studies, it is proposed to showcase that technology can gradually
transform healthcare delivery from almost entirely hospital-based care to packages
of different activities, some of which can occur in the home or the workplace. This
will require a radical rethinking of the design of healthcare of the future. It is also,
however, part of the roadmap to achieving sustainable health systems. It can help
mitigate many of the challenges that conventional thinking about the future role of
healthcare might generate—capacity constraints for hospitals and other health and
social care establishments, and a growing financial burden associated with increasing
demand in the face of technological progress. For the transformation to succeed, it
will need to take a systems perspective: seeing healthcare not as a series of individual
settings and solutions but rather as an integrated ecosystem, encompassing many
sectors of the economy. The remainder of this section is structured, in turn, around
the deployment of smart technologies in the following four sub-domains of healthcare
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service provision: hospitals, elderly care, public health, and the management of long-
term health conditions.

13.4.1 Implementation Examples

The healthcare-as-a-service concept assumes that the healthcare resources (e.g.,
medical professionals, equipment, and healthcare services) are managed by a single
organization. It increases the efficiency and the quality of the healthcare services
provided with the help of a fee-for-service model. Healthcare-as-a-service could
both create new businesses and generate massive profits by leveraging new business
models in various healthcare services. However, each smart healthcare application
has some limitations and implementation issues on certain technical areas such as
data analysis, data traffic, user acceptability, data privacy, and retrieval time. In this
chapter, several examples are discussed with their strengths and challenges [47].

There are several ways to implement smart healthcare applications. Examples
include home monitoring, a smart hospital for patient monitoring, smart healthcare
center, and healthcare-as-a-service [48]. Smart homes are equipped with various
types of sensors that collect household activity information, lifestyle information,
and physiological signals. Furthermore, the smart hospital has been developed with
the integration of information and communication technologies (ICT) for inpatients.
At smart healthcare centers, various health services are provided to treat patients and
maintain health. Physicians in the remote healthcare consultation centers and referral
centers perform real-time consultation and patient follow-up implemented through
the use of ICT [49].

In telemedicine, IoT-based home monitoring systems are used for continuous
health monitoring of a patient to manage chronic disease conditions. It enables
sharing health problems remotely and providing advice and possible treatment by
an expert. Early detection or risk prediction of diseases is effective for dealing with
them through prevention measures or health maintenance services.

Existing smart healthcare applications and implementations can provide realistic
insights for creating and implementing real-world smart health systems capable of
achieving a paradigm shift in the traditional healthcare domain. Based on its huge
potential to meet several healthcare challenges, IoT is being extensively used in
healthcare applications and services currently. Smart healthcare applications specific
to telemedicine, preventive medicine, healthcare management, and smart living are
discussed as follows.

13.4.2 Impact Assessment

The final result confirms that—when applied to specific population-based healthcare
problems, such as the prevention of hypertension and diabetes, the management of
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chronic patients or health guarantee services for critical population typologies—
the widespread technological e-health impact on community services might make a
substantial difference in the lives of patients living in rural mountain areas and in the
savings in care costs for local healthcare services.

To deepen the analysis on how healthcare shifts with the introduction of remote
healthcare delivery models and what the actual impact of these initiatives on health-
care costs (broadly conceived) and scope (improving efficacy), we adopted the evalu-
ation framework used by Arora et al.: the Economic Interaction Model (EIM), which
includes effects both vertical (on hospital and healthcare facilities management) and
horizontal (on markets for goods and services and the living conditions of regional
economies) of a service investing in a region. In light of the recent methods in the
CBA field, a methodology to fill out a project evaluation form has been proposed
and used.

13.5 Future Directions and Trends

The future direction of this field includes, specifically, (1) health data integration,
(2) research in constrained settings, for example, (3) discovery for rare disease and
personalized medicine, (4) health metric shifts, (5) targeting cost/benefit ratios, and
(6) reinforcement learning for health. Although a large fraction of healthcare data is
still not directly tied to a single patient or single event, intensive research is crucial
to filling the gap by utilizing improved prediction models, programming platforms,
or health data representation [50]. Significant different characteristics of health-
care data impose great challenges to building prediction or optimization models.
Various real-world problems may refer to research in constrained settings, including
a small number of learning data, specifically fewer usable training samples and
clinical constraints such as electronic medical records, and laborious rechecking
or diagnosing. The future of healthcare research should target cost/benefit ratios
coupled with patient outcomes, drug effectiveness, medical-service optimization,
and administrative overhead reductions. Reinforcement learning provides a more
flexible framework to model sequential patient trajectories to treat patients and refine
patient treatment policies based on collected data while avoiding potential biases [51,
52]. The authors can anticipate that reinforcement learning will contribute to policy
development or alignment, resource management, and value-based care in the long
term.

13.5.1 Artificial Intelligence and Machine Learning

In healthcare, the use of Al may be particularly powerful but also raises uniquely
challenging ethical concerns. A demanding discipline: mesoscale models. One of the
most challenging aspects of this opportunity space is where simulation and mining
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become increasingly ambitious as we move from traditional decision optimization
space to predictive machine learning models. Management of multimodal data in
different conditions from multiple sources in the healthcare domain and frequent
fluctuations of decision boundaries in uncertain data products have been very chal-
lenging for existing Al technologies and their deployments. Traditional Al algorithms
do not yet outperform skilled human clinicians, nurses, and care workers in most of
the wellness tasks, and they are generally treated as a supplementary tool for decision-
making [53]. Even though with these considerations, various smart healthcare topics
are on the edge of creating a pivotal role in influencing patient wellness in the future.

Artificial intelligence (AI) and machine learning, along with deep learning, are
propelling diversification in personalized healthcare. A large amount of data is
collected daily, and this collection prompts the research of personalized health-
care and artificial intelligence [54]. Machine learning provides a methodology to
winnow through the noise: the myriad of data and models are cherry-picked to model
trial protocols, candidate agents, and stratify patients for various therapies. Various
machine learning algorithms, such as support vector machines, nearest neighbors,
neural networks, decision trees, generalized linear models, regularized linear models,
ensemble methods, are commonly used in healthcare in the prediction of diseases,
healthcare operations, patient health monitoring, and many other applications [55].

13.5.2 Internet of Medical Things (IoMT)

Petabytes of health-related data are, and will be collected, on patients. This incred-
ible medical record powerfully contributes to the data-driven treatment of patients.
Nonetheless, respecting the central role of patients’ data, ethical and legal issues
must be tackled: the topic is so relevant that it deserves performing the collec-
tion, analysis, and interpretation of data in agreement with specified guidelines [56].
Researchers should ensure that evaluators, participants, and readers understand the
ethical implications of research and information presented. Measures to address the
ethical components are indicated; a potential cost to both researchers and healthcare
is associated with not following ethical measures. In any case, data-driven medicine
lends itself even to personal-elevating organisms, ethically improper evaluations.
Finally, development is fundamental too: the new paradigm of IoMT shall not be
held hostage by data challenging [57].

The Internet of Medical Things (IoMT) generally employs wearable or
implantable devices, sensors, and other smart gadgets to collect and analyze patient
data at a large scale. While such data used to be collected within the hospital, with
IoMT tools, a lot of pertinent clinical markers and diagnostic modalities may be
performed continuously and even beyond hospital premises. The enabling factor
of such “disruptive technology” is represented by miniaturization of electronics,
biosensorics, and the impressive development of low-power wireless communication.
Furthermore, as some sophisticated datasets require even computational power to be
processed in the order of teraFlops, computation power available from cloud services
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may be employed [47]. Nonetheless, very strict constraints need to be fulfilled to
make such devices trusted devices, particularly when they are used to control treat-
ments. The confidentiality, integrity, and authenticity of data collected, stored, and
elaborated for the health of a patient must be warranted from intrusion and alteration.
This is particularly relevant when the health data of a patient represent a pattern, and
public or even worse for-profit companies may seek at acquiring such a pattern for
many unethical aims [58].

The Internet of Medical Things (IoMT) refers to the network of medical devices,
applications, and systems that are connected to the internet. With IoMT, healthcare
providers and patients can access and share real-time data, leading to improved diag-
noses, treatment, and overall patient care. [oMT devices include wearable sensors,
remote monitoring systems, medical robots, and smart implants, among others.
These devices collect and transmit data, enabling healthcare professionals to monitor
patients remotely, provide timely interventions, and make data-driven decisions.
IoMT has the potential to revolutionize healthcare by increasing efficiency, reducing
costs, and enhancing patient outcomes [59].

13.6 Summary

However, to move from traditional to smart healthcare, the policy has to protect
privacy and meet the necessities of quality and knowledge management and be effi-
cient and affordable—a smart healthcare system. Smart information management is
an interactive and iterative loop which needs to be looked beyond. An alliance of
skills is needed to reach the smart healthcare system. Indeed, the smart healthcare
model indicates the patient and family as one of the stakeholders in care with specific
roles and responsibilities. This implies implications that have to be considered in
policy design and in professional education. In this connection, medical researchers,
health service providers, and policy designers must then make this model a reality to
transform a new smart healthcare model for widespread international adoption. The
traditional mode of healthcare management is reactive in nature—it waits for diseases
to occur and then takes corrective measures. This approach has led to skyrocketing
healthcare expenses all over the world. There is a dire need for the transforma-
tion of traditional healthcare to smart healthcare, which is an intelligent innovation
with data-driven digital-based platforms between patients, healthcare managers, and
stakeholders, to provide proper personal and family healthcare management. The
smart healthcare system refers to digital solutions that provide high-quality health-
care for individuals. Reportedly, a smart healthcare system can reduce the manage-
ment costs of chronic diseases and improve patient outcomes in terms of treatment
adherence, quality of life, symptom monitoring, and promoting early prevention. As
a user, smart healthcare also reduces wasted time through waiting for unaffordable
and long periods. It can also lead to improved workflow and support the interests of
patients as central stakeholders in healthcare.
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Smart healthcare is here to empower us to live healthier lives, mitigate chronic
conditions, manage disease at home or on a journey, and improve communities’
healthcare public services. Continuously advancing, the speed and cost at which
new products and services are now developed can help transform traditional health-
care into smart healthcare, from point of care to community healthcare, hospital
care, primary care, clinics, general practices, and individual healthcare, weaving us
into an aggregate model of precision healthcare. Incorporating disciplines such as
healthcare Al, machine learning, medical IoT, healthcare analytics, wearable tech-
nologies, e-Health, healthcare robots, telemedicine, smart hospitals, smart clinics,
and patient and public participation, smart healthcare enhances our quality of life,
promotes well-being, supports patients at different stages of their care journey, and
enables enhanced services to be delivered by healthcare providers. The digital trans-
formation of a hospital through e-Health, enabled by procuring medical-grade routers
and networking gear, as well as conducting well-architected e-Health carries excess
benefits. There are three revolutions in smart healthcare: digitization, connectivity,
and data-driven intelligence.

In the face of numerous promising but still risky technologies, it is incumbent
upon the government and professional regulatory bodies to design a light but strong
responsive governance mechanism and process that will allow for scientific and
technological advancement in healthcare. A substantial increase in public and private
investment in digital health and smart healthcare is necessary for developing further
solutions that are affordable, reliable, interoperable, timely, inclusive, and human-
centered. Legislative, regulatory, legal, and ethical concerns must be addressed. There
is still a tremendous amount of research and education to be done. In particular, it
is vital to increase awareness and promote training in the unique aspects of digital
health among healthcare professionals and students. The importance of customer-
friendly design, participatory design, and co-creation of value between the users
and the new digital health system must not be underestimated. It is vital to develop
and offer user-centered, efficient, ethical and technical expertise and expert support
in order to ensure the success, impact, and the much-needed transition to smart
healthcare of this Health 6.0 paradigm shift. The health needs of the users should be
the real winner over this development. We recommend the establishment of a new
organization, competent to take into account the legal, ethical, social, and technical
aspects of digital health—to discuss, promote, help when necessary, and enforce
principles and governance, quality assurance, and ethical issues such as privacy and
data protection.

The transformation to smart healthcare will profoundly and holistically affect
every aspect of healthcare. All healthcare stakeholders, whether at the level of health
system administration, center of excellence for smart healthcare to be established in
every hospital, professional association, and individual healthcare providers such as
physicians and pharmacists, and including insurance companies, medical devices and
pharmaceutical companies, should join hands and form public—private multistake-
holder partnerships to facilitate healthcare system transformation. Research and inno-
vation in medical science and engineering, leveraging artificial intelligence, internet
of things, big data analytics, even brain-machine interface and computer—human
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interaction, must be emphasized and well supported. Ethical, legal, and regulatory
considerations have to be addressed as well. Pre- and in-service education curricula
for all healthcare professionals should be reformed to include basic knowledge of
smart healthcare, so that tomorrow’s healthcare workforce will be mindset-ready
for the transformation. The last but not least, the end users of the service-patients
and citizens-should form a partnership with healthcare systems that enable care to
empower them to health and to lead their daily activities.
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Chapter 14 ®)
Analysis of AlI-Bias in Modern ks
Healthcare Systems

Abstract Al (Artificial Intelligence) has provided many predictive algorithms for
the diagnosis of many critical diseases. Al has also presented segmentation algo-
rithms which can segment the desired area from the background for better diagnostic
results. But Al-predictive algorithms suffer from Al-bias either due to training data
or algorithmic design. This Al-bias leads to variability and inaccuracies in the predic-
tive results which may have severe impact on treatment and clinical deployment of
the model. Hence, it is necessary to evaluate the accountability of Al-bias in medical
systems. Analysis of bias at various levels of Al-models in medical system design
can prevent severity in the medical outcomes. In this chapter, we will highlight the
bias accountability at various stages of Al-models. We will also review the various
reasons and mitigation techniques to minimize the impact of Al-bias in medical
systems.

Keywords Human bias - Data bias - Algorithmic bias - Predictive models -
Explainability - Generalizability

14.1 Introduction

Al is revolutionizing many fields that includes computer vision [1, 2], education
[3], travel [4], and many more. Healthcare industry is also realizing the potential
of Al and providing several upgrades to the traditional system [5]. With Al-based
decision support system, medical system is extending real-time patient monitoring,
quick evaluation of medical imaging and robot-assisted high-risk surgeries [6]. Al has
provided several tools for accurate monitoring, diagnosis and prognosis of patient’s
statistics recovered from structured as well as unstructured data. Al has penetrated
deep into the medical system, providing smarter, quicker, and accurate benefits not
only to clinical practitioners but also to the patients.

For the last few years, society realized the potential and benefits of Al based
predictive methods in healthcare. Medical practitioners prefer to use Al powered
systems to support their various medical related activities and ensuring health equity

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 327
A. Kumar and D. Singh, Artificial Intelligence in Modern Healthcare System,

Transactions on Computer Systems and Networks,
https://doi.org/10.1007/978-981-96-6703-1_14


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-6703-1_14&domain=pdf
https://doi.org/10.1007/978-981-96-6703-1_14

328 14 Analysis of Al-Bias in Modern Healthcare Systems

among patients [7, 8]. Medical staff are becoming dependent on Al based tools due to
the wide range of options and possibilities provided by Al-based systems. However,
ithas been observed that these systems are trained on datasets which lack in gathering
the critical aspects of a patient. Those critical aspects include information related to
patient’s socio-demographics such as gender, age, race/ethnicity, kinship, medical
history and many more [9]. The patient’s socio-economic status such as medical
insurance details are also missing in the training datasets.

Apart from the deficiency in training datasets, Al-predictive algorithms are black
box in nature. Al algorithms lack interpretability, transparency, and fairness. Hence,
it became necessary to evaluate the models for their appropriateness, robustness and
accuracy [10]. Al-based predictive models in medical systems should be audited for
quality assessment [11]. Guidelines and tools must be provided which specify the
workflows that should be adapted to assess the quality of the Al-model over wide
range of parameters such as interpretability, robustness, fairness, and bias.

With the advent in technology, it became essential to evaluate Al-based medical
models for the impact of Risk of Bias (RoB) [9]. Bias in Al-models can lead to
unforeseen, unreliable and discriminatory outcomes which may influence patient
care, diagnosis and treatment. The reason is implicit bias, selection bias and training
bias in datasets. Also, the weak algorithmic design and its capabilities to interpret
the result introduces bias in the model system. Model trained on biased data, can
produce misrepresentative results. Implicit bias in AI-model has a negative impact on
the relationship between the medical professional and the patient [12]. The outcomes
from a biased model are fatal, which raises the reasonable concern for the evaluation
of RoB in Al-model before their practical deployment.

There are lot of examples in which AI-model has been realized to be suffered from
bias [13]. For instance, amazon Al-based human resource software was discovered
to be suffered from gender bias [14]. It showed high paying and better position jobs
to male candidates rather than female applicants. The reason could be its training
datasets that contains words which more often found on a male applicant resume
rather than a female. In criminal justice, Al-based software which used for identi-
fying the sentence term to the criminal’s committing crime was found to be suffered
from racial bias [15]. The software suggested harsher and stricter sentence against
blacks (American African) than whites for the similar crime committed by them.
Authors have explored likelihood based on questionnaire to evaluate the RoB in
various Al-based recommendation systems [16]. In healthcare domain, algorithms
were identified to be suffered from racial and gender bias [17].

The key impact of bias in Al-model is that they lack generalizability, interoper-
ability, interpretability and explainability. The data bias cannot only be introduced
during training data selection but also it is highly dependent on data collection, gath-
ering, cleaning, and processing methods as well [18]. To test the data for its accu-
racy, completeness, diversity, and acceptability is a huge task in itself. In addition,
there are legal law and manifestations which are country specific acts as a hurdle to
remove the bias in the training data [19]. The incomplete specification details about
the algorithmic design of the medical predictive model also introduce discriminatory,
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implementation and selection bias [20]. In this chapter, we have reviewed the various
Al-based predictive for the RoB and their applicability in the real-time scenarios.
The key objectives of this chapter are as follows:

e We have reviewed the various methods that introduce the data bias and algorithmic
bias in the Al-based predictive models that affect the decision-making in health-
care. In addition, the propagation of bias in various stages of model development
is explored in detail.

e The methods to mitigate various types of Al-bias are analyzed and a few pointers
are suggested for reducing the impact of bias in Al-based predictive model. In
addition, bias assessment tools are also evaluated for their performance to assess
Al-model for their unbiased outcome.

e [egal manifestations in terms of data privacy, modifications and sharing rules are
also discussed to analyze the reasons of RoB in Al-models. These manifestations
ensure the transparency and robustness in the Al-models exploited in medical
systems.

e Lastly, the limitations and barriers in preventing the Al-bias in the medical system
are explored to restrict the negative outcomes due to biased model deployment in
real-time.

The rest of the chapter is organized as follows. Section 14.2 elaborates the signifi-
cance of analyzing the Al-bias in medical systems. The reasons for Al-bias in medical
systems in terms of data bias and algorithmic bias are detailed in Sect. 14.3. Various
bias assessment tools are evaluated for their appropriateness in the medical system in
Sect. 14.4. The methods to mitigate bias from Al-models in healthcare are reviewed
in Sect. 14.5. The limitations of bias mitigation strategies which restrict the Al-model
to be unbiased are also detailed. Finally, the concluding remarks and future directions
are summarized in Sect. 14.6.

14.2 Significance of Analysis of AI-Bias in Medical Systems

Researchers have gained interest in developing Al-based predictive models in
medical systems for fast, accurate and efficient outcomes [21-23]. These models
have found applications in variety of medical applications to support clinical deci-
sion making [9]. However, it has been observed that Al-based models suffer from
Al-bias and are prone to impact the quality of clinical results significantly. In addi-
tion, Al-bias not only introduces error in the model outcomes but also, reduces the
trust of the end users [24]. Hence, it is essential to analyze bias in Al-based medical
systems. The following are the reasons which emphasize the necessity of analysis of
Al-bias in medical systems.

e Big data and need of reliability

Recently, the applications of Al-based predictive models have been increased expo-
nentially in the medical systems [5]. There is a surge in Al-models in healthcare



330 14 Analysis of Al-Bias in Modern Healthcare Systems

domain due to increase in data and the difficulty in its manual processing. With the
increase in size of training data, it became essential to identify the data source for
reliability [25]. Data collection and gathering steps should be very careful examined
for having reliable information only. Model trained on unreliable training data are
more to produce incorrect and biased outcomes.

e Limitations during in-processing stage

Imbalance, incorrect and missing data is processed by the model introduces selection
bias and data bias in the model. The model design and architecture when processing
this data exacerbates algorithmic bias. However, itis not easy to identity and eliminate
algorithm bias during in-processing of information [26]. The model structure is black
box in nature and hence, make it tedious to identify the potential source of algorithmic
bias in the Al-based predictive model.

e Enhanced cloud storage, power and speed to reduce clinical errors

Cloud storage facilitates large datasets with minimal processing. It has been observed
that large and diverse data can significantly reduce the impact of Al-bias in the
medical systems and reduce fatal errors in the outcomes. Enhanced cloud storage
has promoted personalized medical aid which help doctors to understand patient’s
medical history in a better way [26]. In addition, cloud storage has automated the
treatment through which patient’s vital such as blood pressure, SPO,, pulse and
sugar level can be monitored continuously and effectively. But these Al-devices are
determined to be suffered from implicit bias which results in healthcare inequalities
[8]. Racial and ethnicity inequalities are predicted by DL-model in patient’s ECG
data [27]. The technological advancement and progress in medical system emphasize
to analyze RoB.

e Automated predictive decision-making

DL and ML based models in medical systems provide fast and accurate prediction
for various critical health disorders such as breast cancer [28], cervical cancer [29],
CVD [30] and many other diseases [31, 32]. These models are automatic and accurate
to provide severity of the disease by analyzing various clinical imaging data such as
X-ray, MRI (Magnetic Resonance Imaging) and CT (Computed Tomography) scans.
However, the sociodemographic information of the patient such as gender, race, age,
and other vitals are not exploited while training the models. Due to which these
models are identified to be suffered from Al-bias [9, 33]. In addition, the models are
not efficient enough to address the false positive and true negative results effectively.

e Developers limited knowledge and expertise

It has been observed that Al-models which are weak in design and architecture are
more prone to Al-bias. To address these limitations, the developer domain knowl-
edge and expertise are vital in ensuring the experiment and information reliability
of the system [20]. Perceived bias in the system due to pre-existing beliefs leads to
inaccurate results. Deep implicit knowledge of the system design, processing and
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synthesis is important for an unbiased system which highly depends on the under-
standing and potential of the developer [34]. Developers should be trained with the
healthcare explicit and implicit requirements and outcomes to design robust system.
Efficiency in processing unbiased knowledge and eliminating unnecessary details
are the prime factors which should be analyzed to reduce the RoB in the AI-models.

e Bias in model selection and feature training

Models trained on biased feature are more intended to produce biased results. Bias
perceived in model design is amplified at various stages and can produce catastrophic
outcomes [25]. It has been emphasized that the choice of model should not have
implicit bias in its architecture which produces false predictions. Before the practical
implications of these models, it is essential to evaluate these systems for RoB. These
models can be used as arecommender system which additionally supports the medical
practitioners in their decision making.

To summarize, there are certain limitations, presumptions and weaknesses in the
system design and information gathering that leads to produce biased outcomes. Al-
model must be examined during its various stages viz. preprocessing, in-processing
and post-processing to eliminate the RoB. There are many other parameters such
as societal impact, developer expertise, legal laws and many other unseen reasons
that misrepresent the model results and produce incorrect diagnosis. As Al is pene-
trating deep into the medical systems, it is significant to analyze the models for RoB.
Concrete steps, measures and recommendations must be followed to ensure trust,
accuracy, and fairness of Al-based healthcare models. It is highlighted that dispar-
ities in healthcare can only be minimized by generating unbiased, generalizable,
interoperable, and explainable Al-models.

14.3 Types of AI-Bias in Modern Healthcare Systems

Broadly, bias in Al-models is categorized into three categories namely, data bias,
algorithmic bias and human bias [34]. These biases are most likely to occur in the
Al-models at its various stages of design, development, processing, and deployment.
Outcome of predictive model is considered to be bias if it produces variables results
for different people depending on their gender, race, age, ethnicity and other socioe-
conomic parameters. In this section, we have discussed the reasons of these biases
in Al-based predictive models in medical systems. Table 14.1 tabulates the details
of various representative work in medical domain analyzing the RoB along with the
utilized risk assessment strategies. Figure 14.1 illustrates the various types of Al-bias
in medical systems.
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Table 14.1 Al-based representative work in medical domain and their bias assessment strategies

Reference

Type of bias

Medical
domain

Bias
assessment

Summary

Brault and
Saxena [35]

Data bias and
algorithmic
bias

Mobile health

Questionnaire
based
assessment

Bias can be introduced in
Al-model during various
stages

Stages viz. problem
definition, feature
selection, model selection,
and training

Suri et al. [36]

Algorithmic
bias

CVD risk
prediction

Mean score
based
cumulative
plots

Identified critical
Al-attributes
Utilized grading and
ranking strategy to
visualize bias in the
predictive models

Celi et al. [26]

Data bias

Clinical
medicine

Confusion
matrix and
ROC

Evaluated Al-bias in
country specific datasets
using gender, racial,
countries, and author’s
expertise

Utilized dataset from
various countries to access
the bias

Gurupur and
Wan [25]

Inherent bias
due to
knowledge

Healthcare

Emphasized the reasons
for bias in Al-systems
highly depends on limited
subject knowledge, and
lack in proper expertise
Data bias due to missing
details in the training
datasets

Gichoya et al.
[37]

Data bias and
algorithmic
bias

Radiology

Exclaimed the pitfalls
during various stages of
data collection, and
curation

Inefficient model design,
development and
deployment introduce
potential bias in the system

Norori et al.
[34]

Data bias and
algorithmic
bias

Medicine

Fl1-score

The potential reasons for
Al-bias includes,
information gaps, lack of
common data standards,
performance evaluation
and interoperability
Model testing to evaluate
algorithms for efficiency,
performance, and fairness

(continued)
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Reference

Type of bias

Medical
domain

Bias
assessment

Summary

Nazer et al.
[38]

Data bias and
algorithmic
bias

Healthcare

Discussed sources of
potential bias at various
stages of model
development

Highlighted the strategies
to mitigate data bias and
algorithmic bias

Noseworthy
et al. [27]

Racial bias

ECG analysis

AUC

Evaluated ECG results and
inferred those results
suffered from racial bias
Highlighted poor
generalizability of the
DL-models for detecting
low LVEF

DeCamp and
Lindvall [24]

Latent bias,
emergent bias

Medicine

Highlighted the role of
adaptive learning in
introducing bias in the
model

Clinical implementation
and evaluating outcomes
exacerbate bias in
Al-model

Ueda et al.
[39]

Data bias and
algorithmic
bias

Healthcare

Discussed the source of
bias in healthcare namely,
data, algorithm, clinical
and patient interactions
Recommended various
strategies to mitigate bias
in healthcare

Sousa et al.
[40]

Classifier bias

CT-Scan

ACC, AUC
and F1-score

Examined the bias
introduce by artifacts and
spurious elements in the
image dataset

Applied various
explainable Al technique
to mitigate bias from the
AI-Model

Kumar et al.

(9]

Data bias, and
algorithmic
bias

Medical
systems

RBA, RBM,
RBS and ANA

Performed bias assessment
by categorizing the work
into three classes
Analyzed bias from
multiple perspectives and
visualized correlation
between them using VD

(continued)
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Reference Type of bias | Medical Bias Summary
domain assessment
Kumari et al. | Data bias, and | CVD risk RBA, RBM, » Categorized the studies
[30] algorithmic prediction and RBS into two categories namely,
bias UNet based model and
non-UNet based models
e Critically analyzed bias in
Al-models considering the
characteristics for clinical
and scientific applications
Dasetal. [31] | Algorithmic | Brain tumor | RBS, ACC, * Analyzed segmentation
bias, training | segmentation | SEN, ROC, bias in ML-based brain
bias and DCE tumor techniques
* Ranked RoB in studies into
three categories low,
medium and high
Suri et al. [32] | Data bias, and | CVD risk Analytical  Categorized studies into
algorithmic prediction ranking slope two categories namely ML
bias method, and and non-ML to predict the
cumulative RoB
plots  Used risk granularity along
with five-point
recommendation to reduce
the impact of RoB in
various prediction models
Suri et al. [33] | Data bias, and | Covid-19 RBA, RBM, * Quantified RoB in hybrid
algorithmic infected lungs | RBS, DL-models for predicting
bias PROBAST and | the Covid-19 infection in
ROBINS-I lungs using randomized
and non-randomized
techniques
* Recommended 8-points to
minimize the impact of
RoB in DL-models

AUC: Areaunder the curve, ECG: Echocardiogram, LVEF': Left ventricular ejection fraction, ACC:
Accuracy, RBA: Radial bias area, RBM: Radial bias mean, RBS: Radial bias score, ANA: Analytical
analysis, VD: Venn diagram, CVD: Cardiovascular disorder, /VUS: Intervascular ultrasound, DL:
Deep learning, ML: Machine learning, RoB: Risk of bias, SEN: Sensitivity, ROC: Receiver operating
characteristics, DCE: Dice coefficient

14.3.1 Data Bias

The potential source of data bias in Al-based medical systems are (i) incomplete
data collection, (ii) data gathering from unreliable resources (iii) missing and unseen
information in dataset (iv) fallacious data processing and (v) inaccurate data analysis.
Also, the predictive healthcare algorithms are suffered from historical biases in the
dataset [19]. For instance, an algorithm, when trained on false or incorrect past
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Fig. 14.1 Types of bias in
medical systems

information of the patients, is intended to generate incorrect outcomes in future.
The missing sociodemographic information such as gender, age, and ethnicity due
to societal barrier originates imbalance in the datasets which leads to data bias in
the model. In [41], authors have explored that sex-related information in training
dataset is essential to generate unbiased outcomes. However, results have inferred
that the proposed model is unbiased and has no gender specific results. Model is able
to predict covid-19 in chest X-ray neutral to sex attribute.

Oftentimes, training data suffers from historical biases that can be amplified once
it is processed through the model [42, 43]. Historical biases lead to racial disparities,
health inequities and false outcomes. The reasons for historical bias in the health data
are structural barriers such as cultural restrictions or individual limitations. These
restrictions influence data collection and can produce under diagnosis outcomes.
Historical biases can also arise due misclassification, mislabeling, and missing certain
aspects of different segments of population [7]. In addition, underrepresentation of
certain group, caste or creed in the training data also lead to potential bias in the
outcomes [44]. It has been observed that medical diagnosis is biased toward a specific
gender or race as there is a shortage of female gender or darker/African race people
in the datasets.

Less diversified training data is relatively more prone to introduce biasness in the
model [39]. This kind of training data discriminates between the medical outcomes
based on sexual orientation, nationality, and/or socio-economic status and introduces
bias in the metadata. This bias is tough to identify and quantify. Sampling bias can be
engaged in the model by inappropriate sampling of datasets into training set and test
set. This bias is introduced in the model during the initial step of data preparation.

Another potential source of bias in the datasets is classification/ measurement bias
[38]. Sometimes, model trained on imbalance datasets are expected to suffer from
this type of bias. This bias inaccurately classifies patients based on their demographic
features and/or ethnicity and provides different care and incorrect diagnosis. Certain
commonly used medical devices such as oximeter, pulse monitor, and thermometer
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are analyzed to be suffered from bias [45]. Oximeters are recorded to overestimate
the oxygen level in the darker skin of people. The reason may be the imbalance
training dataset which contains few data from the darker skin people.

To summarize, data bias is induced in the model during the initial steps of data
preparation that includes gathering, selection, classification, and sampling. Data bias
in the training datasets leads to imbalance, discrimination and inaccurate outcomes.
The reason could be the missing information in the training data that includes socio-
demographics and socio-economic status of the person. The societal barriers and
other unforeseen reasons restrict gathering the complete details of the patients. Data
collection and their utilization for research are country specific and hence, prevent
the global policies for the development of robust datasets in the medical systems.

14.3.2 Human Bias

Developer expertise, knowledge and perception introduces human bias in the Al-
models. Human bias is one of the typical biases which is hard to detect and mitigate
[34]. Societal prejudices lead to human bias in the data and model design which is
exaggerated during in-processing stage of AI-model. Incomplete population data, and
lack of model understanding propagate human bias in healthcare predictive model
which impact the quality of model-decision making.

Human design algorithms and their understanding and perception about model
features, processing, and evaluation metrics are crucial in preventing human bias.
Limitations in variability and diversity of expert knowledge introduces perception
bias in the Al-models [37]. There are cases where the designer selects sensitive
features and design models using those features. When this model generates poor
quality and false outcomes, it is analyzed that selected features are not only inefficient
but also inappropriate to generate expected results. The perception bias is introduced
in the model due to insufficient human knowledge and expertise. In addition, humans
prioritize the problem with their own perception rather than focusing of necessities
and urgency of diagnosis to start the accurate treatment.

Data collection, preparation and processing are also done by human experts. This
will act as an input data for training the Al-model to predict accurate results. Training
data is selected by developers to generate robust outcomes. Data selection is a very
critical step for obtaining correct results from the Al-model. Sometimes, developer
is not able to select the correct, diverse, and complete datasets and that introduces
selection bias in the decision-making [7]. Also, the choice of appropriate AI-model
for designing accurate and unbiased model is highly dependent on the experience
and knowledge of the Al designer. Fairness in algorithmic design and completeness
in training data are essential to prevent the selection bias in clinical predictive algo-
rithms. In addition, the expertise and experience of the developer is significant to
minimize the impact the selection bias in the model by neglecting and adjusting the
corresponding data that may induce bias.
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Limitation of human mind to think critically for generating reliable models intro-
duces cognitive bias in the system [19]. Human reasoning, human-Al interaction,
and human past decisions are essential to augment correctness in clinical outcomes
from Al-based decision-making systems. Human ability, over-reliance, response,
behavior, and human collaborative efforts introduce trust in Al-models by perpet-
uating human bias in decision-making. Human behavior can recommend strategies
to reduce the impact of bias explicitly. Human reliance on Al-models in healthcare
system inherits racial and gender bias in the outcome [25].

14.3.3 Algorithmic Bias

The combination of human bias and incomplete data introduces algorithmic bias
in the healthcare predictive model. When the model is trained on biased data that
will lead to algorithmic bias in the model. Weak design and architecture of the
Al-model exaggerate this bias which produces false, different, and inaccurate diag-
nosis for different group of people. Algorithmic bias introduces systematic errors in
the model and hence, impacts the reliability, trust, and fairness in the model. The
black-box design of the Al-model prevents the interpretability and generalizability
of the results and causes algorithmic bias. The information about the number of
hidden layers, optimization function, loss function, weight adjustment and classifier
specification are not specified explicitly in all the research papers. Classifier bias
can produce different predictive results and biased outcomes for different datasets
[40]. The missing information about the model’s hyperparameters prevents the repro-
ducibility of the results and prevents to evaluate the interoperability of the model to
reduce the impact of algorithmic bias.

Also, feature engineering plays a vital role for inducing algorithmic bias in the
model. Identification of feature importance, sensitive feature and feature selection
is critical for robust design of the predictive model. DL methodology is used for
robust feature extraction from the medical imaging such as X-ray, CT, and MRI
images. These extracted features contain quality information suitable for unbiased
algorithmic design with accurate outcomes. One of the another potential reason of
algorithm bias in Al-based predictive model is lack in description about its contextual
specifications [46]. Medical systems are designed with general specifications which
vary in design and architecture accommodating the diversity in accordance with the
input sociodemographic, lifestyle and medical history.

Robust architecture of Al-based predictive models is crucial for accurate medical
prediction. Authors have emphasized that casual reasoning is important for algo-
rithmic fairness [47]. Casual reasoning defines the technology to recognize ethical
and social biases. Selection bias can introduce unfairness and biasness in the algo-
rithms if casual knowledge is not formally used for bias inferences and understanding.
In [7], authors have defined three potential sources of algorithmic bias namely, direct
(model design), training data variance and noise. In addition, incorrect algorithm
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performance comparison, validation and monitoring phases also introduce bias in
implementation, clinical workflows, and other resource usage.

To summarize, the potential reasons of algorithmic bias in Al-models are its weak
design, black box architecture, unreliable conceptualization, inefficient implementa-
tion, and deployment strategies. Algorithmic bias in healthcare predictive algorithms
leads to incorrect diagnosis which can generate highly risky outcomes. Fairness and
trustworthiness are important pillars in algorithmic design to ensure transparency,
and accountability of Al-based algorithms.

14.4 Bias Assessment Tools

Al-based clinical models have raised concerns for accuracy and reliability in their
outcomes as it is identified that these models are suffered from Al-bias [9]. To
ensure fairness and trust in these models, it is essential to evaluate these models
qualitatively. To measure bias accountability in AI-models, bias and fairness toolkits
such as Aequitas [48], ROBINS-I (Risk Of Bias In Non-randomized Studies of
Interventions) [49], PROBAST (Prediction model Risk Of Bias Assessment Tool)
[50], CHARMS (Checklist for critical Appraisal and data extraction for systematic
Reviews of prediction Modeling Studies) [51] and BIAS (Biomedical Image Analysis
challengeS) [52] are recommended by various researchers. The details of each of
these bias assessment toolkits is as follows.

14.4.1 Aequitas: Bias and Fairness Audit Toolkit

Aequitas is an open-source audit toolkit used to evaluate bias and fairness in an Al-
model [48]. This systematic toolkit is easy to use and can test ML workflows, bias
and fairness metrics in various subgroups of considered population. It also supports
decision making for scientist, developers, and policy makers by testing the developing
and deploying stages of Al-models.

Aequitas defines a step of procedure to audit the Al-system for its biased outcomes
for a specific demographic/social group. This toolkit performs bias assessment prior
to model selection and evaluate disparities in results neural to the type of training
data. The bias and fairness audit are executed by checking the operational flow of the
Al-model before proceeding to production deployments. Primarily, the audit toolkit
has two main users namely, developers who is designing Al systems (scientists and
researchers) and policymakers who defines policies for Al-system acceptance.

In healthcare systems, authors have audited the ML-framework which are used
for prediction and diagnosis of critical diseases such as diabetic retinopathy, and
Alzheimer diseases using Aequitas toolkit [10]. The quantitative bias analysis is
performed on test sets and results are compared with the reference set to predict fair-
ness. The toolkit results represent fairness and unfairness by computing the disparity
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between the test and reference set. Disparity value between 0.8 and 1.25 denotes
high similarity results with better quality and fairer AI-model.

To summarize, there are various reasons for bias in Al-models in healthcare
domain. Al-models could not provide similar results to all the patients by performing
early prediction of critical diseases due to bias intervention in the model. Hence, it is
necessary to audit those models for their fairness in outcomes by using toolkits such
as Aequitas. This toolkit analyzes models during its development stage and provides
results to prevent the failure of models after deployment. This toolkit is useful for
both developers and policy makers. The results of the audited model are effective to
ensure fairness and equity in the ML-model for solving the desired problem from
paper to practice.

14.4.2 ROBINS-I (Risk of Bias in Non-randomized Studies
of Interventions)

In order to describe the strength and limitations of non-randomized studies such as
healthcare, a bias assessment tool ROBINS-I is proposed by [49]. To analyze the
RoB, seven different domains are identified through which bias can be introduced
in the Al-models. Broadly, the domains are categorized into pre-intervention, at-
intervention and post-intervention levels. Pre-invention examines the confounding
bias and the selection bias due to participants in the study. At-intervention domain
assesses bias due to non-differential classification. Post-intervention assesses RoB
at four different domains namely, bias due to deviation, bias due to missing data,
measurement bias and bias in the selected results.

It is essential to determine the potential and magnitude of RoB so that strategies
can be planned for its mitigation. To predict overall RoB in ROBINS-I, each study is
categorized into five judgment levels namely, low-bias, moderate-bias, serious-bias,
critical-bias and no information within each domain as well as across the domains.
If a study performs well within and across all the domains, then it is considered to
in low RoB and have high quality to be ready for deployment. Moderate-bias zone
studies perform well on training data, but their quality and fairness cannot be ensured.
For a study in a serious and critical zone, the outcomes must be evaluated to ensure
trustworthiness and fairness. Studies can only be kept in no information zone if the
number of available parameters is not sufficient for a judgment.

In healthcare, ROBINS-I is exploited for qualitative risk assessment in various Al-
based prediction techniques [33, 53]. In [33], authors have analyzed RoB in hybrid
DL studies utilized for predicting COVID-19 CT scan data of infected lungs. The
three domains of ROBINS-I define seven features as confounding parameters, partic-
ipant selection, intervention classification, intended deviation, missing data, outcome
measurement and reported results. After this, the studies are categorized into three
bias zones as low, moderate, and high. Similarly, authors have exploited ROBINS-I
tool for risk assessment in Al-model utilized for acute respiratory distress syndrome
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[53]. Seven features in three intervention factors are examined for categorizing bias
in three zones namely, low, moderate, and high.

14.4.3 PROBAST (Prediction Model Risk of Bias Assessment
Tool)

To determine the applicability of medical diagnosis and prognosis studies, RoB is
examined using PROBAST tool [50]. PROBAST tool is utilized for investigating
the limitations in design, conduct and evaluation that may lead to bias under certain
circumstances or RoB in future when certain event will get triggered. Basically, this
tool has four domains namely, participants, predictors, outcome, and analysis. Partic-
ipant domain covers the concerns related to data-driven sources of bias. Predictor
domain covers the concerns related to the design, definition, and measurement of
the Al-model. Outcome domain covers the concerns about the results produced and
measured by the model. Lastly, analysis domain covers the RoB related with the
statistical measurement and considerations by the model.

Al-based predictive models are designed to validate and provide prediction scores
based on their analysis. In healthcare, these predictions are utilized for diagnosis of
critical diseases such as cancer, cardiovascular disorder, COVID-19 and many more
[33, 53]. Before the practical applicability of these prediction models, it is essential
to evaluate the RoB to prevent their failure in real-time. In order to evaluate the
quality and applicability of Al-based models, PROBAST tool had defined certain
guidelines to assess RoB. For this, this tool has presented four development stages
namely, scope and definitions, review of evidence, web-based Delphi procedure and
piloting and redefining the tool.

PROBAST tool is exploited by researchers to estimate the RoB in various Al-based
predictive studies in medical systems [33, 53]. Authors have utilized PROBAST risk
assessment tool to evaluate hybrid DL studies proposed to predict COVID-19 in
infected lung data [33]. The four domains are represented to evaluate the presence
and absence of crucial features in Al-models. Participant domain comprises of radi-
ologist validation, data source type and demographics data. Imaging features, pre-
processing, data augmentation and optimizers are included in the predictor domain.
Outcome domain contains performance evaluation parameters and details about RT-
PCR (Reverse transcription-polymerase chain reaction) test. Lastly, the analysis
domain includes data partitioning, clinical validation, benchmarking procedures,
patient count and statistical evaluation. After this, studies are ranked and catego-
rized into three bias zones namely, low, moderate, and high. Similarly, authors have
analyzed RoB in Al-studies used for predicting acute respiratory distress syndrome
using PROBAST risk assessment tool in three bias zones [53]. The four domains
contain attributes such as participants (data source and radiologist verification),
predictors (demographics and imaging features), outcomes (multiple datasets and
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RT-PCR test details) and analysis (patient size, optimizer, validation, and design
innovation).

14.4.4 CHARMS (CHecklist for Critical Appraisal and Data
Extraction for Systematic Reviews of Prediction
Modeling Studies)

Mostly, Al-based prediction models are utilized for diagnosis and prognosis of a
specific disease. The design and strategies used in development of these models play
a vital role in determining the quality and applicability of these models in real-time.
To validate these prediction models a checklist known as CHARMS is designed
containing questionnaires to review these models [51].

CHARMS assessment tool has defined the key items to review the usefulness and
potential application of work. The key items include current and future events of
the models, intended scope, prediction modeling type (with or without external vali-
dation), target population, prediction outcome, prediction duration and the intended
moment of using the model. Further, eleven key domains are specified to review the
RoB and applicability of Al-based prediction models. The relevant items which
are reviewed are data source, participants, predicted outcome, candidate predic-
tors, sample size, missing data, model development, model performance, model
evaluation, results, interpretation, and discussion.

In [54], authors have utilized CHARMS checklist to review the COVID-19 dataset
for RoB. The key parameters namely, data source, participant description, outcomes,
sample size, missing data and predictors are used for risk assessment. Participants’
description includes the methodology for their selection, inclusion, and exclusion
from the analysis. Outcome checks the purpose of intention by the model. Overes-
timation and underestimation by the model for a certain prediction is reviewed in
outcomes. Missing data ensures sufficiently large datasets are used for avoiding over-
fitting and confounding the model. Predictors analyze the source of data acquisition
devices and protocol. Finally, the sample size is associated with several aspects of
the models such as predictor’s size, model preprocessing and importance of effect to
be predicted.

Apart from these tools, BIAS (Biomedical Image Analysis challengeS) check-
list is also defined to improve the transparency and applicability of the biomedical
images for its application and imaging modality [52]. In [54], authors have reviewed
biomedical dataset by preparing a checklist of questionnaire. This checklist has key
questions about the dataset source, purpose, distribution and intended applications.
These reporting guidelines are highly effective for performing the in-depth analysis
of the model.

To summarize, the focus of risk assessment tools is to standardize and facili-
tate the model functionality, and applicability. These tools estimate the RoB at the
development stage of the Al-model to prevent failure and unseen outcomes during
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clinical deployments. These tools evaluate the potential of model design, develop-
ment, interpretability, generalizability, and interoperability. The Al-based models
provide good accuracy and results on training datasets. These tools provide check-
lists which ensure that these models are suitable for real-time deployment and provide
the correct diagnosis and prognosis of the intended disease.

14.5 Approaches to Mitigate AI-Bias in Modern Healthcare
System

Al-based models in medical systems must be unbiased, transparent, open, and fair in
decision-making for fast and accurate outcomes. It has been observed that a biased Al-
model generates discriminatory outcomes for a marginalized subgroup of population
and has a striking implication in healthcare. Hence, it is essential to analyze the
potential source of bias in Al-based medical system and design strategies to mitigate
it. The following are the key steps which help in addressing the bias in the medical
system to a great extent. Figure 14.2 illustrates the development stages of Al-model
and bias mitigation strategies for a robust and trustworthy prediction model.

® Data collection and preparation: The strategies and methodology during the initial
step of data gathering and preparation are very crucial to eliminate the impact of
data bias in Al-model. For this, protected attributes such as gender, ethnicity, age,
smoking history, kinship and insurance status must be collected and considered
while preparing the training dataset [9].

e Large and diverse training dataset: The size of the training dataset must be large
enough for effective training/validation/testing. In addition, datasets can contain
details from various subgroups of a population to ensure diversity. Selection of
large and diverse size training dataset is essential to avoid selection and sampling
bias due to missing/unseen data [38]. Model trained on multiple datasets are

Fig. 14.2 Development stage of AI-model and bias mitigation strategies
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effective to address the imbalance and discrimination that may exist in single
datasets.

e Public datasets: To avoid the impact of societal bias in the model outcomes, it is
suggested to train models on public datasets. The public datasets provide clear
settings and details which are open and trustworthy. Model trained on public
datasets can avoid historical bias that may be present in a self-generated data due
to the embedded biasness in its collection [9].

e Data augmentation for smaller datasets: Sometimes when the dataset is small
in size, data augmentation techniques such as flipping, rotation, and shifting are
applied to generate synthetic and surrogate data. Surrogate data not only increase
the dataset size but also efficient in handling dataset imbalance [46]. However, it
has been observed that surrogate data is insufficient and biased toward a specific
subgroup of population due to less diversity. In addition, if the dataset from which
the synthetic dataset is generated is suffered from bias, then the bias is propagated
in the whole system design and can predict false outcomes.

e Algorithm selection: Selection of a robust and reliable algorithms ensured that
the algorithmic predictions are unbiased and fair [27]. Clear understanding of the
problem statement determines that the algorithms will solve the desired problem
accurately by engaging the diverse domain experts and community members.
Diverse expertise in the development team can minimize the impact of human-bias
in the model.

® Data preprocessing: Feature engineering for identifying the sensitive and impor-
tant feature can prevent the model accountability for bias. Feature bias can be
avoided by understanding data and defining input variables effectively during
pre-processing stage [34]. Dependent and sensitive features should be utilized in
model architecture and their impact should be reviewed consistently for biased
and inaccurate outcomes.

® Model development: To ensure fairness in the model design and architecture,
model methodology and architecture should be transparent, fair, and interpretable.
Details of loss function, optimizer, activation function, learning rate and other
hyperparameters must be mentioned explicitly [37]. These settings are helpful in
verifying the model architecture for its incorrect predictions.

® Model validation: Model must be validated internally and externally to avoid
implicit and explicit bias in the model. Multiple performance metrics can evaluate
the model prediction outcomes from different and wider perspective [25]. This
can eliminate evaluation bias that occurs in the model due to disparities in model
monitoring and assessment.

® Risk assessment tools: Risk assessment tools such as PROBAST [50], ROBINS-I
[49] and others [51, 52] are effective in risk assessment during development stage.
These tools can not only assess the risk involved in realistic deployment of the
model but also prevent catastrophic results that can occur due to biased and unfair
outcomes. Tools are impactful for generating trust in the clinical prediction by
various Al-model in healthcare.



344 14 Analysis of Al-Bias in Modern Healthcare Systems

® Mixed model strategy: In [20], authors utilized mixed logistic regression models
to combat the impact of racial bias and religious bias in discriminatory algorithms.
The experimental results for each of the subgroups in a population was estimated to
identify the biasness in the model outcome. In addition, extensive model auditing
was recommended to check the model deployment for fairness and bias in its
clinical decision making.

® Model understanding to end users: End users should have a clear understanding
of Al model and potential risks that may cause biased output [39]. Clinical staff
and the participating patients will be made aware of the limitations, benefits and
usage of Al in decision making. It has been observed that educated patients who
understand Al and Al-bias in recommendations by Al-model are more satisfied
and provide positive feedback to eliminate the biases. This will help in upgrading
the system with better accuracy and efficiency that will serve the needs of all
patients.

® Gap between Al and end users: Healthcare disparities are observed in a population
due to unequal distribution of Al-driven medical systems benefits [39]. Certain
Al-based algorithms are not available to all the clinical staff and patients. This will
cause privilege bias that brings mistrust in Al-systems unintentionally. The reason
for this bias could be lack of knowledge, expertise, resources and perspective of
a certain group. In order to mitigate this sort of bias in healthcare, it is essential
to provide proper training and education to the clinical staff so that full potential
of Al-model can be utilized effectively.

To summarize, bias can creep into model design, architecture, training data and
outcome at any stage of its development. From the initial steps of data collection and
gathering to the final steps of model implementation and validation all are critical
and prone to biasness. There is no defined procedure of steps and gold standards that
can mitigate the impact of Al-bias in medical systems. For a model to be unbiased in
its outcome, it is essential that it should be trained on large, diverse, indiscriminate,
multiple, public, and balanced datasets. In addition, the model architecture should
be robust, reliable, and transparent to validate predictions. Models must utilize the
risk assessment tools before deploying the model from paper to practice.

14.5.1 Limitations to Prevent AI-Bias in Modern Healthcare
System

To address the Al-bias in medical systems, there is a requirement to identify the
bias accountability in Al-based predictions to prevent the severe errors and harmful
outcomes [39]. Al-bias in predictive model raises concern for the trust and fairness
in diagnosis and prognosis in healthcare. It is mandatory to take the necessary steps
and procedures to mitigate the impact of various types of bias in AI-model. But there
are certain limitations and legal manifestations that restrict the mitigation of data
bias and algorithmic bias in Al-model.
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In order to mitigate data bias, there is a requirement of public, complete and
unbiased data set. However, public availability of medical data involves legal and
ethical concerns. Data privacy, modifications, alterations, and usage laws are country-
specific and deal strictly with compliance and regulations [55]. Protecting patient’s
data and ensuring privacy is mandatory for ethical foundation of Al. Patients should
be made aware and understandable about the potential threats, benefits, and purpose
of using their medical confidential information in AI for decision making. Further,
an informed signed consent must be taken from the patients for the usage of their
confidential information for clinical purposes.

During data exploration stage, synthetic data is generated to increase the dataset
size by data augmentation technique. Surrogate data is utilized to address the missing
data values in the dataset. Shortage of effective medical data impact the accuracy of
the model and introduce selection bias and data manipulation bias [55]. These biases
may cause model failure when tested on unseen data. Limitation to data sharing and
usage rules prevent the generalizability of the model [14]. In addition, the ethical
concerns respect human rights and privacy for using their secret medical information
for clinical deployment which hinders the large and diversified datasets in medical
systems.

It is important to specify the roles and responsibilities of each stakeholder to
prevent misdiagnosis and false predictions in healthcare. Doctors, clinical staff, and
Al-scientists should check and evaluate the Al-generated diagnosis before its appli-
cability. Al-scientist should verify and get the results approved by the specialist
doctor and integrate the suggestions and recommendations in decision-making [19].
However, the gap between the knowledge and expertise of Al-scientist and clinical
staff may not critically evaluate all the Al-outputs generated by the predictive model.
In addition, Al-scientist can be held responsible to design accurate, efficient, and fair
model [27]. But the role of clinical staff is vital in providing the community feedback
and clear guidance to adjust the limitations of Al-model and enhance overall quality
of patient’s care.

Establishing an unbiased and fair AI-model in healthcare requires to follow poli-
cies and procedures defined by various central agencies. The regulatory authorities
and policy makers should be proactive in designing the strong and robust policies that
can promote and validate the design, architecture, input and outcome of an Al-model
[20]. These agencies specify the requirements that all designers and developers must
disclose about their training data, implementation methodologies, and evaluation
parameters. In addition, the defined policies should be neutral and focus to elimi-
nate the disparities in healthcare. However, Al-developers and health professionals
are unaware about the demand and requirements of these policies and regulations.
On the other hand, recognizing dark areas that may cause Al-bias in the model is a
challenge for both policy makers and regulatory authorities [39]. The comprehensive
guidelines should involve all the stakeholders along with policy makers to govern
standards and regulations for a fair and trustworthy Al-model in healthcare.

Strong and robust architecture of AI-model can mitigate the impact of algorithmic
bias in predictive model to a great extent [8]. But the black box nature of DL model
and non-disclosure of model salient details such as number of input layers, hidden
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layers, loss function, epochs, and optimizers by many researchers restricts to check
the full potential and capabilities of Al-model. These models should monitor the
clinical workflow to ensure that the model should not degrade and become biased over
time. In addition, automated Al model in healthcare are impacted by bias which is
tedious to identify and generate conflict decisions in the predictions [55]. The reason
could be human reliability more on the automated predictive model and ignoring the
conflicting human decisions.

Regular auditing and monitoring of Al-model is the best practice that should be
followed to validate the quality of predictive model for fairness, accuracy and effec-
tiveness [39]. Auditing teams must be established, including all the stakeholders, to
verify the performance of the system for different populations under multiple condi-
tions. If Al-model is identified to be suffered from bias, then adjustments should be
made to rectify the biases and upgrade the model to be adaptive with the varying
conditions [20]. However, quality assessment and constant monitoring of the system
cannot ensure that the model will maintain high performance after adjusting all the
emerging biases. In addition, emergent bias in AI-model may not extend similar treat-
ment to the patients without any discrimination. The reason could be lack of expertise
to identify the key indicators that are accountable for providing underdiagnosis and
health disparities.

14.5.2 A Special Note on Explainability, and Generalizability
in Modern Healthcare

The key reason for algorithmic bias in Al-model is its black box design architecture.
It is suggested to design the model explainable and interpretable to minimize the
impact of bias in Al-based prediction models [40]. Bias accountability can be evalu-
ated in Al-model by enhancing transparency and fairness, providing comprehensive
explanations to model design, input and predictions.

Explainability is a strategy to analyze the methods for its outcome. Explainable Al
models in healthcare are able to define the internal logic of the model which help in
understanding the methodology the way outcomes are generated [39]. Explainability
in Al-model can be introduced by tools namely, SHAP, LIME and GRADCAM [56].
These tools interpret how Al-model generates an outcome and also validates clinical
prediction of the model in presence of certain risk factors [40]. In case of false
prediction, preventive measures can be taken to eliminate the inaccuracy in model
design and assumption before realistic deployment.

Generalizability ensured that the AI-model will predict accurately when tested on
adataset different from the training dataset. The model architecture is generalizable in
terms of its prediction is to be free from any racial and gender bias. Generalizability
can be assumed in training dataset if it does not have historical and societal bias
during its gathering and processing phases [9]. Due to limited data availability in
healthcare, generalizability of Al-model is a challenging task. Addressing all the
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concerns related to data gathering, patient’s privacy and clinical data usage, help
in developing generalizable dataset [27]. Model trained on generalizable datasets
expected to be fair and unbiased. The outcome of these models is more realistic
when deployed in real-time.

14.6 Summary

Al-based predictive models have shown superior accuracy and effective results in
predicting the critical diseases such as cancer, brain tumor, CVD and many more.
However, these models are suffered from Al-bias and predict discrimatory outcomes
based on patient’s socio demographics such as sex, age, ethnicity, race, and insurance
status. There are three potential sources of bias in medical system design namely,
training data, human perception and algorithmic architecture. Data bias in training
dataset may creep during its initial steps of collection, and gathering. The unbalanced
and incomplete datasets lead to misclassification errors in the outcomes. Model
trained on such datasets are realized to be suffered from selection bias, and latent
bias when tested on unseen data. Human perception leads to human bias which highly
dependent on the knowledge and experience of the developer. Human bias can be
embedded in the medical system due to incorrect choice of dataset and improper
selection of predictive model. Weak design of the Al-model leads to algorithmic
bias. The black box nature of AI-model and insufficient information about the model
salient parameters such as loss function, number of optimizer, input and hidden layer
variables contribute much toward the algorithmic bias.

Various bias and fairness evaluation toolkits such as Aequitas, PROBAST,
ROBINS and many other focus to assess the potential risks in healthcare model
during its development stage. These tools identify RoB in the considered Al-model
so that the predicted risk can be corrected to prevent the harmful results during
deployment stage. The model is audited and evaluated on certain parameters to vali-
date the outcome to be free from bias. These toolkit ensure the trust and fairness in
the Al-model predictions.

It is essential to adopt the procedure and strategies to mitigate bias in Al-model in
healthcare design. It is advisable to utilize public, large and diverse datasets to avoid
data bias. In addition, validation of model on multiple datasets ensures the model’
generalizabiltiy and interoperability. Strong and robust design of Al-model archi-
tecture is essential to mitigate algorithmic bias. Selection of sensitive and important
featuring during in-processing of model development stage is critical to avoid selec-
tion bias. In addition, explainable and interpretable Al-model are more reliable in
their outcome to be deployed in real-time.
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Chapter 15 ®)
Examining QoS for Modern Healthcare e
Systems

Abstract Smart healthcare is revolutionizing healthcare delivery by integrating the
advantages of IoT, mobile technology, and cloud computing. Cloud computing has
greatly facilitated the integration of healthcare institutions, caregivers, and patients
in the health business to exchange information. Low latency and quicker reaction
times are the primary factors driving efficient healthcare systems’ implementation.
Therefore, prompt communication across healthcare institutions is crucial in general,
but considerable delays among many stakeholders might lead to catastrophic conse-
quences during an emergency. Therefore, innovative methods such as edge computing
and artificial intelligence (Al) can effectively address these issues. For a packet to
be transmitted from one point to another, it is necessary for the “quality of service”
(QoS) requirements to be fulfilled. QoS, or Quality of Service, pertains to the level of
performance and reliability that a service provides to its consumers. QoS metrics like
as throughput, bandwidth, transmission delay, availability, jitter, latency, and packet
loss are essential in this context. We prioritize the individual devices that exist at
various levels of the smart healthcare infrastructure and the quality of service (QoS)
needs of the healthcare system as a whole.

Keywords Quality of service (QoS) - Modern healthcare systems + Smart
healthcare « Digital health - Healthcare service quality -+ Health system
performance + Healthcare communication networks + Health information
technology (HIT)

15.1 Introduction

Health is a very precious possession for all individuals, and healthcare is the service
that can assist and advise in maintaining this possession. Presently, there is a pressing
demand for improved and cost-effective healthcare services, driven by the rapid
expansion of the population and the prevalence of various diseases. The health
industry has notably benefited from the integration of Internet of Things (IoT), mobile
technology, and cloud computing, which have facilitated the connection between
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health facilities, caregivers, and patients to exchange information [1]. The imple-
mentation of smart healthcare, which involves the transmission and reception of
medical information, is very cost-effective for stakeholders. Health devices provide
substantial volumes of data and need processing by the system’s objectives. The
proliferation of smart healthcare systems has resulted in a significant increase in the
number of 0T healthcare devices, which is anticipated to exceed 162 billion world-
wide as of 2020 [2]. Hence, given the substantial amount of data in an energy-limited
setting, modern communication systems are becoming increasingly inefficient. Simi-
larly, current computing approaches are also falling short in meeting the performance
needs of smart healthcare applications. Moreover, medical data is subject to time
constraints, and medical data that is delayed provides minimal assistance to care-
givers, particularly in urgent situations. Efficient healthcare systems may be achieved
by prioritizing low latency and improving reaction time. Consequently, prompt reac-
tions from healthcare organizations are crucial, yet during crises, delays for different
parties might result in disastrous situations.

Low latency and short reaction times are essential in healthcare services for rapid
data access, facilitating precise diagnosis. The relevance of the following real-world
circumstances is highlighted:

e If the streaming videos between the doctor and patient function flawlessly, a
patient residing in a distant place with few medical resources can access the neces-
sary healthcare. The physician will possess the capability to assess the patient’s
symptoms and establish a precise diagnosis.

e [ow latency is beneficial for X-rays, MRIs, and other medical imaging because it
enables fast loading for doctors and several viewing angles for rapid interpretation
of the provided results.

¢ In medical emergencies, prompt access to a patient’s medical data, without any
obvious delays, might save their life and ensure that they receive appropriate care.

Cloud computing offers extensive computational and storage capabilities to
healthcare equipment integrated with IoT technology. However, it suffers from
significant latency and sluggish reaction times because of its distance from the end
devices. Therefore, to handle such circumstances, cutting-edge methods such as edge
computing and artificial intelligence can effectively address these problems [3]. Edge
computing is the processing of data in devices positioned at the network’s edge [4].
This approach reduces latency and improves energy efficiency. Edge-assisted IoT
solutions facilitate the timely delivery of medical services. Furthermore, the integra-
tion of these two technologies has the potential to offer answers to several complex
issues in healthcare systems. Utilizing Al approaches can significantly enhance the
analysis of medical data and decrease reliance on human involvement for decision-
making. Artificial intelligence can forecast diseases by analyzing medical records and
can provide patients with recommendations for preventing or treating the anticipated
illnesses. In order to accommodate the computational demands of Al approaches, it
is necessary to develop less resource-intensive Al techniques for edge computing [5].
Edge computing extensively use Al techniques, including machine learning (ML)
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and deep learning (DL), for system training and knowledge acquisition. Edge intel-
ligence, which is the integration of artificial intelligence (AI) with edge computing,
is revolutionizing the functionality of smart healthcare apps.

Edge intelligence is the fragmentation of Al services and IoT data, which are then
distributed among many edge devices. Hence, edge devices may possess comprehen-
sive or partial artificial intelligence services or Internet of Things data. Therefore,
the services are relocated from the cloud servers to the edge-assisted IoT devices,
allowing for Al and data storage to be closer to the end-users [6]. Simultaneously,
the healthcare system based on the Internet of Things (IoT) comprises a multitude
of devices with distinct specifications. The Internet of Things (IoT) devices present
several issues, such as increased demands for battery longevity, interference from
other devices, signal weakening in different environments, and reduced dependability
caused by increased latency.

High-quality healthcare services are often characterized by precise diagnosis,
timely treatment, and exceptional patient care. From a technical standpoint, the effi-
cient functioning of medical monitors and equipment guarantees that the patient’s
information will be swiftly and seamlessly transmitted to the doctor’s computer. This
will ensure that the patient receives timely and suitable medical care. This improves
the quality of healthcare services by enhancing reaction time and reducing waiting
periods for patients and physicians at advanced medical facilities, both on-site and
remotely. The wireless link’s service characteristics are of highest importance as
they directly contribute to enhanced signal receptions, reduced packet loss ratios,
and minimized power consumption. Furthermore, the utilization of distributed Al
services and [oT data gives rise to many quality of service (QoS) difficulties, such as
battery longevity, delay variability, and so on (Role and advantages of Al in modern
healthcare system is shown in Fig. 15.1).

The key contributions of this chapter are as:

e This chapter explores the issues and challenges concerning the quality aspect of
smart healthcare, particularly the telecare service.

Fig. 15.1 Role and advantages of Al in modern healthcare system
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e Given the advancement of technology, improved healthcare could be delivered
in a much personalized manner based on individuals’ profiles and the associated
environmental contexts.

e There are emerging healthcare systems built on the convergence of computing,
communications, and other smart technologies. However, no matter how good
a healthcare system is in terms of sophistication and cleverness, the quality of
service it provides must be close to the services offered in a traditional hospital
setting.

e What are the key services or events that should be offered in such a smart hospital
setting? How would the quality of services differ when the service delivery/
performance depends on not only health professionals (i.e. doctors, nurses in
a conventional hospital) but also on the general patients/their carers?

The rest of the chapter is organized as follows. Section 15.2 elaborates on the Al-
based research for QoS in modern Healthcare. In addition, Smart medical services for
quality evaluation system are discussed in Sect. 15.3. Technological challenges that
emerging the obstacles in the digital era for modern Healthcare system are discussed
in Sect. 15.4. Future trends and Innovation of the work is mentioned in Sect. 15.5.
The Summary of the chapter is mentioned in Sect. 15.6.

15.2 Related Work

This part focuses on the examination and evaluation of past strategies for ensuring
quality of service (QoS), quality of experience (QoE), and cost-effective scheduling.
Additionally, it explores metaheuristic algorithms that are relevant to the healthcare
field based on existing research.

15.2.1 Optimizing Quality-of-Service (QoS) and Achieving
Cost-Efficiency Through Scheduling

In recent years, there has been significant attention given to QoS (Quality of Service),
QoE (Quality of Experience), the Internet of Medical Things (IoMT), and the effi-
cient scheduling of medical services [7]. Several Quality of Service (QoS) techniques
have been introduced. The needs of various techniques may be distinguished based
on the unique service parameters and measures of e-healthcare apps. The applica-
tions may include multimedia conferencing, transmission of physiological indica-
tors, high-resolution medical imaging and picture transfer, clinical transmission, and
administrative data accessibility [8].
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15.2.2 Effective Calculation of Medical Data Processing
and Optimization of Service Delivery Solutions
in E-healthcare Applications

Recently, the issue of ensuring high-quality service and efficient data processing in the
healthcare sector has become a significant challenge in various research fields, such
as meta-heuristics, machine learning, artificial intelligence, and deep learning [9—
12]. These techniques are applied to medical data and records stored in hospitals [8,
13]. The collection and pre-processing of medical data in healthcare is a crucial task.
It involves gathering data records from three main sources: clinical trials, medical
research-related records, and organizational data operations [14]. The latest trend
in smart healthcare is the advanced development of computer-based assistant aids
and real-time platforms for examining, analyzing, and utilizing acquired data. This
includes the assessment of quality-of-services [ 15, 16]. The authors comprehensively
analyzed medical-data computation and service-delivery optimization in healthcare
in [17]. The study analyzes essential healthcare data, including patients’ medical
histories, illness prediction, preventive measures, health guidelines, and medical
assistance for the elderly. These records enable decision-making based on emer-
gency situations, cost-effectiveness, and improved efficiency. The present study has
introduced and implemented diverse probabilistic and adaptive Quality of Service
(QoS) frameworks, which efficiently schedule medical data at a lower cost. These
frameworks have been applied in various medical settings [17, 18]. A novel approach
to health analysis and prediction has been recently proposed. This method utilizes
certain quality of service (QoS) characteristics and quality of experience (QoE)
mechanisms in real-time. In their study, the authors of reference [19] introduced a
novel approach called loT-fog enabled multi-route for processing and computing
medical data. This approach aims to improve the efficiency of real-time medical
delivery and optimize the management of healthcare records logs [20]. A multitude
of academics have employed metaheuristics to optimize medical services that involve
multi-channel pathways and service delivery via healthcare applications [21]. Zhao
and Huang [22] proposed a novel design for a fog-based microservice container
system. This architecture aims to efficiently execute sensitive applications and accu-
rately measure transmission delays, while minimizing costs [22, 23]. Furthermore,
this work examined the challenges and constraints associated with cost-effective job
scheduling, specifically focusing on heterogeneous fog servers [22, 24]. In order to
achieve this objective, several specialists have put forward various novel adaptive
techniques. One potential solution that is of concern is a cost-aware computational
offloading and task scheduling architecture. This architecture offers task scheduling
solutions through a series of processes, such as task scheduling.
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15.3 Smart Medical Services Quality Evaluation System

The utilization of intelligent technology has led to significant divergence in the eval-
uation criteria for service quality between smart medical care and traditional medical
care [25-27]. To the best of our knowledge, there are few methods available to assess
the efficacy of smart medical devices. To address this research deficiency, this study
conducted a thorough examination of existing literature to identify key indicators for
assessing the effectiveness of smart medical services. Additionally, a comprehensive
methodology was developed to evaluate the quality of these services. This research
initially formulates six aspects after reviewing current literature and assessing the
service quality of smart medicine. These dimensions are smart appointment, smart
consultation, smart diagnosis and treatment, smart nursing, smart settlement, and
smart healthcare.

15.3.1 Smart Appointment

A smart appointment is a method by which a patient may plan a visit with a certain
physician, choose a convenient time, and find the hospital. This is done by creating
a personal profile using their ID card or medical insurance card on a smartphone
or computer. In contrast to the conventional procedure, patients are not required to
wait in line at the hospital for registration. Consequently, the implementation of smart
appointment systems can greatly reduce the time patients spend waiting and decrease
the labor costs for the hospital. This, in turn, enhances the efficiency of hospital
management and improves the overall experience and satisfaction of patients.

The utilization of the “mutual health data bank™ in the outpatient process
enables the implementation of intelligent outpatient procedures. Internet appoint-
ment scheduling should be considered a crucial factor in assessing the effectiveness
of smart appointment systems [28]. In order to ensure the information security of resi-
dents using the smart medicine service platform in Turkish hospitals, it is necessary to
establish a service platform information security guarantee system that complies with
the relevant national security guarantee standards [29]. An authentic identification
system need to be implemented, requiring citizens to undergo real-name registration
and documentation using their ID cards or health insurance cards. Patients using
a smartphone application to schedule appointments should also be given the GPS
coordinates of the hospital and map directions. This would help them save time by
avoiding unnecessary diversions. Real-name archiving and smart navigation are two
crucial aspects to consider when evaluating smart appointment systems. A study
found that sending a short message service (SMS) reminder before a physical exam-
ination can successfully decrease the number of missed appointments and increase
the rate of real examinations and satisfaction with appointments. According to the
findings given above, there are four indicators established for smart appointment:
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real-name registration and archiving, Internet appointment, appointmen reminder,
and intelligent navigation.

15.3.2 Smart Consultation

Smart consultation is a system that allows patients who have scheduled an appoint-
ment online to check their place in the waiting list, the current calling status, and
the average waiting time before arriving at the hospital. Patients who have not made
an online appointment can use a multi-functional self-service terminal to make an
appointment on-site. SMS reminders have been found to enhance appointment atten-
dance, medication adherence, and behavior modification for a range of healthcare
concerns [30]. An appointment queuing call system with a unified serial number
database can be established for various appointment services at the hospital, including
telephone, SMS, online, and self-service appointments. This system can be developed
by analyzing the consultation process and its characteristics. Implemented cutting-
edge service models by constructing a 3D reservation service network, establishing
an intelligent triage call system, and extensively integrating self-service options. The
model included comprehensive window service activities and facilitated the integra-
tion of outpatient clinics, resulting in enhanced visiting conditions and experiences.
This approach significantly enhanced the quality and efficiency of outpatient services
[31] (The Smart medical services quality evaluation system is shown in Fig. 15.2).

According to the literature analysis provided, smart consultation involves patients
participating in both online and in-person consultations. With the aid of advanced
technology, the majority of hospitals have developed their own comprehensive infor-
mation platforms that include self-service terminals. These terminals allow for real-
time data updates. Additionally, hospitals have implemented calling systems that
are connected to the appointment platform, which assist in guiding patients. The
Internet-based consultation model is more efficient and effective than the traditional
consultation process, since it improves all aspects of the process, making it more
logical, intelligent, and sensitive to patients’ requirements. There are five metrics
that are established for smart consultation: online waiting order, online call question,
average waiting time, self-service registration, and triage call.

15.3.3 Smart Diagnosis and Treatment

Smart diagnosis and treatment involve utilizing advanced technological tools to
enable patients to undergo different operations and get services. The use of the
one-stop inpatient care paradigm promotes efficient treatment delivery and enhances
the patient experience. This approach successfully mitigates extended waiting times
caused by preparation issues [32]. By integrating this platform with the current infor-
mation system, the scope of information creation was expanded to include bedside
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Fig. 15.2 Smart medical services quality evaluation system

access, enabling patients to immediately access information. The technology has
significantly enhanced the inpatient experience and the effectiveness of medical care,
while also offering data support for hospital administration [33].

According to the literature review provided, smart diagnosis and treatment
includes the first consultation with outpatient doctors, as well as the processes
involved when a patient has to be hospitalized and after they are admitted. The
patients’ perception of smart medicine, which integrates medical treatment with
modern technology, primarily encompasses doctor-patient communication based on
information, timely notification of diagnostic test results, efficient scheduling of non-
emergency surgeries, expedited self-check-in for hospital admissions, self-service
hospitalization, streamlined referral services, and convenient discharge processes.
This study establishes the following indicators for intelligent diagnosis and treat-
ment: doctor-patient contact, prompt notification of test findings, self-scheduling of
surgical appointments, self-check-in, self-admission, and self-discharge.
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15.3.4 Smart Nursing

Smart nursing encompasses the provision of precise care to hospitalized patients.
This involves the use of advanced technology to accurately identify patients, as well
as verbal and electronic communication from doctors and nurses. Additionally, it
includes the implementation of automatic alerts based on various monitoring methods
for infusion and injection management, bedside communication systems, and post-
discharge monitoring.

By utilizing 5G technology, it is possible to create a full service platform called a
digital ward. This platform includes a smartphone-based electronic medical record
inquiry system and a wireless infusion monitoring system that relies on infrared
sensing technology [34]. The wireless infusion monitoring system utilizes infrared
sensing technology to track the drip rate and progress of infusion, therefore mini-
mizing the need for regular check-ups and enhancing efficiency. Conventional patient
identification bracelets that are written by hand encounter several issues [35]. For
instance, medication errors may occur when patients are incorrectly identified.
However, by using a personal digital assistant (PDA), patients can be accurately
identified through barcode-printed wristbands. This method ensures patient privacy
and guarantees that the barcode information remains legible, even when patients are
bathing or taking medication. Additionally, it has the potential to enhance respon-
sible nursing practices, guarantee nursing safety, decrease nursing time, and enhance
patient satisfaction [36].

This study establishes five indicators for smart nursing: patient identity check,
inpatient medical order execution, infusion and injection management, patient
bedside calling, and post-discharge follow-up.

15.3.5 Smart Settlement

Smart settlement refers to the procedure in which patients may recharge and settle
payments using medical insurance cards using self-service machines located in
hospital lobbies, consultation rooms, or bedside platforms. There are several methods
for recharging and settling medical insurance cards, including at least one of the
popular payment platforms such as We Chat, Alipay, and UnionPay.

The use of the “Internet+” settlement method has the potential to assist hospi-
tals in adapting to the advancements in Internet-based care. It can enhance patient
experience, streamline settlement processes, and elevate the level of hospital admin-
istration [37]. The integrated “Internet+” medical platform aims to enhance the effi-
ciency of appointment scheduling, registration, payment, and inquiries. It also aims
to optimize the use of network technology for diagnosis and treatment, procurement,
logistics, and follow-up visits. Furthermore, it enables real-time reimbursement from
medical insurance companies and facilitates real-time claims for compensation from
commercial insurance companies. One of the primary strategies for enhancing the
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experience is to decrease the number of settlement excursions. In order to enhance
convenience, it is necessary to introduce a wide range of payment methods and
implement advanced payment technologies. Additionally, the benefits of Internet
technology should be utilized to streamline and customize the settlement process,
establish flexible payment channels, and minimize the need for physical transactions,
all while ensuring the security of funds.

According to the literature research provided, six indicators have been established
for smart settlement. These indicators include real-name pre-deposit, medical insur-
ance real-time network settlement, outpatient payment, payment methods, inpatient
prepayment, and self-service printing.

15.3.6 Smart Healthcare

Smart healthcare encompasses the range of health services offered by hospitals to
both pre-treatment and treated patients. These services include health education,
dissemination of health information, provision of health consultation channels, and
the creation of electronic health records for patients. Smart healthcare primarily caters
to individuals with health needs, offering them the necessary health information.

Patients who test positive during consultation are likely to have a pleasant medical
experience [30]. Providing health education on the specific illnesses to patients and
their families during outpatient infusion and treatment can significantly reduce their
anxiety and enhance their trust and cooperation, ultimately leading to improved
patient satisfaction [38]. The adoption of the “Health Education Mobile Course”
program resulted in a 3.65% improvement in overall patient satisfaction. This
program guides users in preventing or treating ailments such as colds by helping
them acquire fundamental medical information [39]. Electronic health records have
the potential to provide advantages for patients, providers, and public health [32].
Furthermore, physicians can utilize the information supplied by other healthcare
professionals, establish remote access to medical data, send reminders for service
requirements, monitor electronic prescriptions and potential medication interactions,
and employ clinical information for research purposes.

15.4 Technological Challenges: Emerging Obstacles
in the Digital Era

One of the technical challenges of smart healthcare is the hospital information
technologies. The second important challenge is the ubiquitous health information
system. This is the core enabling technique of smart healthcare, allowing people to
receive ubiquitous healthcare services at any time, place, or situation. IoT operated
by sensor networks, cloud computing, and mobile device platforms offers infinite
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patient health benefits [33]. They are pervasive, real-time health monitoring, remote
assistance, health self-management, and effective application, among others. The
capability of pervasive, real-time health state measurements is directly related to
the intelligent algorithm to extract meaningful and effective information. This is
also a critical intelligence attribute for telehealth management purposes [34]. Other
social systems, such as human mental barriers and public perception-hospital IT
system, also influence the utilization of the hospital IT system. An embodiment of
this vision by accomplishing improving healthcare efficiency, lowering healthcare
cost, enhancing healthcare quality, facilitating a comfortable living environment, and
reducing medical staff workloads, and other attributes is the ultimate goal of smart
healthcare [35, 36].

Smart healthcare is predominantly enabled by advancements in medical, biomed-
ical, and information technology fields. Ubiquitous computing and pervasive commu-
nication media have made it easy to attain high-quality medical care anytime
and anywhere through internet-enabled devices [40]. Several challenges should be
addressed to enable the promised smart healthcare as an ordinary lifestyle. This study
elaborates on the enabling technologies of smart healthcare by creating a vision for
healthcare enabled by smart healthcare and understanding potential technological,
social, and economic effects of several potentially sensitive enabling techniques [41].

15.4.1 Interoperability and Integration

Hence, a big question arises: “How can we realize the ability of different information
systems in traditional e-Health Service, mobile e-Health service, smart elderly-caring
service, and smart society service, allowing them to cooperate to such an extent that
the different stakeholders can support their different goals?” A way of data sharing
algorithm, especially patient’s electronic health record, among all stakeholders is
described herein as a needed criterion in order to make the different systems, such as
different subsystems, a sharing system of e-Health. Proper interoperability becomes
a feature of the physical framework’s predefined structure and/or serves as a basis
for institutional structures in the information sharing process with respect to patient
care data and other stakeholders’ data, such as private data, counseling data, CDM
data, and people’s health environment data.

Interoperability and integration are among the main challenges for efficient imple-
mentation and management of a smart healthcare environment. In general, we can
describe “interoperability” as the ability of systems or products to work with other
systems or products without special effort on the part of the customer. It ensures that
all systems remain working with minimum conditions to sustain a necessary data
flow between the parts. Interoperability serves to create a whole new era of complex
systems within the landscape of the smart health area.
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15.4.2 Security and Privacy Concerns Explored

Given the constant of change in computer technology, no commitment can ever be
forever. Although HTML-based and ID/password computer security has served us
for many years, it needs to be upgraded with minimum added user online friction.
Minimum adequate security is as relevant in today’s covered health systems as it is
with smart healthcare systems of the future, with enhanced security mechanisms for
enhanced sensitivity data. Tailor-made user-friendly tradeoffs are a realistic approach
in the face of all potential compromised security. There can be no absolute security
in more personal sensitive health delivery areas, i.e., personal health records held on
the cloud, without potential harm in emergency health delivery mode. Furthermore,
security and privacy assurance must be predictable, reproducible, measurable, and
ultimately authoritative and proven. It can never be completely preventive, given that
people will be the weakest links in the security chain.

Security and privacy concerns are by far the biggest and most legitimate concerns
which limit the very widespread use and growth trajectory of smart healthcare. When
health data availability and utility is maximized, the security and privacy concerns
become paramount as precious and sensitive personal health data may be exploited by
insider or outsider adversaries. Perfect security cannot be achieved in practice and all
security mechanisms, including passwords and physical biometric security measures
alone or in combination, can be circumvented. So, tradeoffs must be made which
balance security with user convenience, with the nature and sensitivity of the data,
and the potential real or perceived public harm from limited data security. Therefore,
the very essence in the debate about smart healthcare potential and deliverability
and, by inference, the best strategy to be pursued, are health data security degrees
and privacy protection measures which could be implemented.

15.4.3 Enhancing the Measures for Ensuring Data Security

Ensuring the security, confidentiality, and integrity (and linearity in audit data
recording, i.e., knowing who saw what, when) of the information is key for public
and academia adoption, as shown by public opinion toward the privacy breach of
patient personal health records (PHRs). Types of Data exchanged and examples of
multiple types (e.g., EMR and Personal Informatics (PIs) need different levels of
security protection). Different types of systems and solutions used to provide health
care, which introduces a level of complexity in managing the authorization of an
infinite set of types, as well as subjects of data, operations (like read and write) and
performing access control, and encryption and decryption [42].

The security of individual records is essential for the proper operation of the
system. Patients will not be willing to come and share their problems if they think
that their conversation will be available to everyone the next day. The idea is that
records should prove useful today for the general public, and be made available,
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for instance, twenty years from now when it is safe to do so, making sure that
any agreements the patient signed, referring to specific disclosures, are observed,
but they should not be available today unless it is in the common interest, say, as
part of a public health investigation. The challenge is exacerbated due to the abun-
dance and complexity of sources and types of systems involved in a distributed
healthcare system that go as far as encompassing existing independently designed
systems including: Provider systems (e.g., EMRs managed by individual institu-
tions), Regional Health Information Organizations (RHIOs) or Health Information
Exchanges (HIEs) (e.g., connecting different provider systems), Public Health Infor-
mation Exchange (PHIE) System (e.g., managing information collected by public
health agencies at city, state and national levels), and Personal Informatics (e.g.,
personal wellness data, such as fitness-of-the-individual data like physical location,
and temperature sense data) reports [43].

15.4.4 Exploring the Ethical and Legal Considerations
Surrounding the Issues

Despite the widespread use of the term eHealth and telemedicine, it is not always
easy to compare and evaluate what is on offer as much of it is poorly evaluated with
outcomes that are at best of dubious benefit. The quality of the advice provided is
almost never evaluated. Would it stand up to scrutiny by an in-depth peer review
process? Many contain basic errors. Access to this high-quality medical information
may itself exacerbate inequalities and health as web-based information tends to be
targeted more to the empowered and the well-educated. Currently, lack of any form
of regulation or evaluation can result in great heterogeneity in the quality of service,
from the excellent to the truly dreadful. With the ever-increasing specialization of
modern medicine and the rapidly changing therapeutic environment, the ability to
reflect critically on one’s standard of care is ever more an essential part of medical
training. Can people utilizing web-based consultations and web-based sources of
referrals ever know the level of themselves being offered? Web-based practice is
by no means confined to healthcare professionals based solely in middle and high-
income countries. It is therefore important to consider a global response to these
problems. Underlying these challenges is the commitment to apply the principles
of beneficence, non-maleficence, autonomy, and justice into virtual practice as it
becomes an integral part of 21st-century healthcare [44].

In any community and healthcare systems, highly competent health professionals
and appropriate access to these professionals are essential. In almost all countries,
increasingly healthcare systems are facing problems of scarce resources and financial
concerns. The web-based communication between patients and healthcare profes-
sionals can provide a low-cost tool to deal with such situations. However, online deci-
sion making has up to now been kept at a low, asynchronous, information-seeking
level. The offer of opportunity for an electronic consultation service to address and
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resolve clinical cases in real time represents a major ethical challenge. The problem
of the wrong use of the service in inappropriate conditions illustrates the difficulties
of applying ethics and legal duty in virtual territories. The international tendency for
raising the quality of health services according to pre-established protocols further
complicates problem-solving in this particular area. The laws providing good clinical
practice apply to experts independently of the medium of use and national bound-
aries. The lack of public standards for giving good quality can influence the quality
of services [45].

Solution: Informed Consent and Ethical Obligations

Therefore, ‘informed consent’ is an important concept for protecting patient privacy
in actual smart healthcare services using [oTs to constantly collect personal health
data without patient intervention. In smart healthcare, physicians can form a patient’s
health-related viewpoints only with a patient’s consent. Gathering patient consent
for data sharing and integration is important not only for preventing disputes but also
for building the trust that should be in the relations among patient, physician, and
medical data integrator in smart healthcare services. Informed consent belongs to
the ethics of personal privacy and self-determination, and it involves transparency,
risk administration, and strengthening autonomy. Therefore, transparent methods for
obtaining patient informed consent are needed [46].

The 10T can be used to create digital records of patient data that enable physi-
cians to provide medical services. Although smart healthcare solves many problems,
it provokes many issues because this unprecedentedly great collectivity and variety
of patient health information can be integrated for physicians. Especially, if patient
data is integrated and used in a way that patients do not know or be able to control,
medical institutions or stakeholders can unilaterally make and hide decisions and all
sorts of misuse that infringe on patient privacy can occur. Current medical information
privacy legislation applies not only to health information recorded by medical insti-
tutions but also to health information gathered by health devices, but often patients
sometimes cannot identify who and what data he or she want to control or cannot
effectively control data integration and usage due to an information asymmetry
caused by the newly appeared stakeholders [47].

15.4.5 Regulatory Hurdles and Compliance Challenges

The fact that the decisions made by the systems used in smart healthcare should
be convergent should be evaluated at the individual patient’s expense, the interests
of the community, and the quality of health. This gray dilemma becomes more
vivid when lawyers and ethicists in the courts try to judge the vicissitudes of system
failures. However, reaching a more technical level, this problem should also question
the reliability of the operating technique used, which must also satisfy technical,
scientific, and engineering requirements since it must be recognized as a powerful
tool by the interlocutor who listens to it. There comes the problem of concepts related
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to the risk of genetic and iatrogenic risk that has even a different weight in calculations
depending on the assessment of who paid for the so-called comfort treatments. For
all these reasons, it is not possible to conceive of the development of applications of
computer intelligence in medicine without an analysis of the implications, also on an
ethical level, of the cultural implications, which will be faced with the pervasiveness
of new technologies in our lives. The economy of the health budget, in reality, imposes
it [48].

The smart healthcare concept encounters regulatory hurdles, just like in other
healthcare-related businesses. In addition to accountability and closed-loop control,
the concept raises questions such as who is responsible if the smart healthcare system
makes a mistake or error, who is responsible for unjustified or even failed kidney
removal or heart bypass because of smart healthcare technologies. Such questions
cannot be easily answered, playing on ethical questions not only on technology but
in a broader plan, by challenging the control of physicians, by allowing machines
to make suggestions about health problems, lab test results, diagnosis, treatments,
and therapy. The situation is exacerbated if the smart healthcare system happens to
be made by a private company. This will further push the health system to consider
problems of healthcare in the public—private partnership [49].

Solution: Compliance with Healthcare Regulations and Implementation of
Regulatory Requirements

Legislation and technical requirements are placed on hospitals and ambulatory
centers to ensure the provision of good quality services. These requirements are
specific to the nature of patient care processes and patient characteristics. Often, these
requirements are open to interpretation by those subject to them, and organizations
may be vulnerable to adverse litigation or prosecution. The growth in the number
of regulations and pressure for compliance stems from concerns of employees, their
families, and society at large regarding the safety, quality, and regulatory compliance
of health services. Even with regulatory measures attempting to enforce the quality
of healthcare services, the effects have been mixed in terms of achieving improve-
ments. The issue at hand is how these laws and processes achieve their objectives.
Wouldn’t it be more effective to employ ‘softer’ approaches in healthcare services?
[50]

Huge amounts of administrative and technical infrastructure are required to ensure
that healthcare providers operate within a legal framework of satisfactory quality and
comply with regulations in healthcare operations. This concentration on compliance
increases the cost of healthcare. The challenges to health service regulations are not
just from the delivery of health services, but also reflect changes in the law and society.
Over recent decades, changes in health services regulations have been evident in
several countries. The reasons for these transformations have been varied and include
the growth of new technologies, changes in the level of knowledge and awareness
among wide audiences, and a re-evaluation of traditional models of medical care,
as well as financial and economic tendencies in managing the health system and
strengthening state control to the detriment of medical profession autonomy [51].
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15.4.6 Challenges Faced in the Management of Data

With the rapid increase in the volume of digital data, such challenges are likely to
grow more acute, and in-depth studies on data exchange metrics, security protocols,
and possess more appropriate recommendation tools may be needed. Gu and Niakhail
proposed the means to reduce the plethora of data, with a possible technique of using
ID photographs and recommendation software tools to present some possible pieces
of data within the realm of the subject. These include diagnosis, therapy contract,
and care of the present patient, spatial resolution, position inside a chest CT exam,
radiation dose verification, and casual information that could impact the diagnostic
process. They apply data-driven and biological concepts to solve the problems of data
noise detection and cleaning in these medical image examples. They showed that the
existing data has mislabeled errors and noise, which may cause biased or incorrect
conclusions. Their proposed method assigns small masses to missing data labels and
then removes these extra categories, and then analyzes the results. However, investi-
gation in these areas is still in its infancy, and Internet of Things (IoT) technologies
possess unique prospects and challenges compared to traditional data management
tools used in healthcare [52].

One of the most challenging issues in smart healthcare is data integration and
data management. The heterogeneous characteristics of the collected data, such as
various formats, storage, access interfaces, and authentication mechanisms, must be
supported. Moreover, to maximize the useful information out of the complex data
and to build quality of services in smart healthcare, data analysis and management
techniques are required. This would involve data mining, analysis, capturing, and
divergence in larger data systems, as is the case in healthcare big data. However, big
data in the healthcare domain poses huge issues and roadblocks, including medical
data security and privacy challenges, lack of data quality means to get knowledge
and information from this big data, as well as data mining algorithms that require
high-performance computing and computing capabilities and machines, to name just
a few. The five main big data scenarios are as follows:

Solution: Big Data Analytics

1. Private practice of healthcare: — The increase in data acquisition through elec-
tronic health records and monitoring devices. — Implementation of collaborative
care methodologies. — Improvement in hospital data tools and utility methods.

2. Artificial Intelligence provides healthcare services: — Deep learning, natural
language processing, and computer vision label medical data. — Data-enabled
personal health data promotes personalized healthcare.

3. Hospital-based analytics services: — Use of patient data to create timely responses
in treatment, diagnosis, and monitoring of patients. — Utilizing the data extensive
electronic health record systems for research using cloud-based solutions without
releasing the actual dataset of patients.
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4. Healthcare research with big data: — Biomedical research data is integrated with
clinical data. — Data-driven discovery solutions to accelerate pre-clinical and
clinical research.

5. Big data infrastructure to improve patient outcomes: — Improvement in big data
strategies and methodologies. — Controls and regulated industry partnership
models.

Big data in the healthcare system occurs due to accessibility to a vast amount, wide
variety, and volume of data, which is structured, unstructured, real-time data, and
stored in various forms. It can benefit greatly from the innovative analysis and eval-
uation of healthcare issues and data. The vast availability of data storage, advanced
technologies, and device connectivity has led to future healthcare industry growth.
Every day, a vast amount of data is produced in healthcare organizations, such as
patient data, data sets, and clinical monitoring data. In medical practice, electronic
health record datasets have become the main source of clinical data that is released on
a day-to-day basis, enabling the provision of healthcare services at any time from any
hospital, laboratory, doctor’s office, clinic, or any telemedicine solution. Responses
to large volumes of healthcare data have resulted in the development of several data
analysis methodologies that allow the study of the enormous dataset of patient data
and the extraction of useful information. These innovative studies have increased the
value of healthcare organizations’ patient databases without developing the required
infrastructure [53].

15.4.7 Integration with Traditional Healthcare Systems

The QoS model in smart healthcare mentioned in previous chapters is defined by
referring to the definition of QoS in ITU-T Recommendation E.800, but more
problem cases raised in smart healthcare are not explored in detail. Therefore, this
study mainly investigates the challenges and open issues for QoS in smart healthcare.
Moreover, as more and more smart healthcare systems integrate existing traditional
healthcare systems, QoS issues on the integration of smart healthcare systems and
traditional healthcare systems must be noted and solved. In recent years, the contin-
uing development of smart healthcare, particularly when coping with the issue of
global aging and the related problem of big data, has attracted considerable attention
from both industry and research communities and has been an innovative challenge
milestone in the Telecommunication Industry Innovation Roadmap (TIIR) in China
[54].

In this chapter, we investigated various challenges and issues for QoS in smart
healthcare. Key challenges and issues identified include data storage and manage-
ment, data sharing and collaboration, device-to-device communication, medical
resource management, middleware and infrastructure, near-field communication
technology, reliability, security and privacy, and service level agreements. For each
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category, the current status and related works are summarized. In addition, the chal-
lenges, open issues, and implications are also given to provide more inspirations
to researchers in the field of smart healthcare so that an efficient and reliable data
processing and communication system can be developed to satisfy both healthcare
providers and consumers.

Solution: Benefits and Challenges

The big data that will be created by [oTs in smart environments will soon (if it is not
already) exceed the capacity of the existing hardware systems as much information is
required for efficient processing. Moreover, healthcare infrastructures must guarantee
data security while facing hack attacks. The main challenge is transferring knowledge
and decisions into practice, to develop sensor technologies that are economically
viable for healthcare providers. While the rapid increase in information is becoming
a pressing problem, the ability to store, process, and analyze huge amounts of data to
gain insight is becoming a key competitive differentiator. A scalable architecture that
is able to be built quickly and stably to deliver healthcare services over the network is
therefore a second major challenge. This crucial requirement arises from the necessity
of developing a flexible ICT infrastructure that is capable of adapting rapidly to every
medical requirement. The architecture should be scalable and designed to provide the
best trade-offs among communication, computing, and storage resources for costs
and needs. The scalable architecture can manage large quantities of data and can
optimize the volume and structure of the computational power and storage capacity
of servers. Additionally, this architecture can protect against IoT risks; this type of
cyber attacks arises not only from the possibility of exploiting the communication
infrastructure but also from the significance of the devices or equipment [55].

The smart healthcare environment combines IoTs, next-generation networks,
cloud computing, and the latest technologies in healthcare to support the knowl-
edge and decisions of doctors and clinical staff and to enable a sophisticated supply
of health and wellness. This environment facilitates the coordination of healthcare
services that utilize advanced medical techniques and telemedicine. Although smart
healthcare services offer valuable benefits, three main issues challenge the supply
of a high quality of service (QoS) to medical staff and patients. These challenges
are the large and rapidly increasing amount of healthcare information that requires
storage and processing, the scalable architecture able to efficiently deliver health-
care services over the network, and the market competition leading to balancing the
investment among the required technological infrastructures and services [56].

15.4.8 Human Factors and User Acceptance

In conclusion, healthcare depends on the availability of useful devices and instru-
ments. In addition to leveraging the value of medical knowledge and training for
a variety of diagnostic, surgical, prescription, safety, and prevention applications,
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devices and instruments are necessary for monitoring and supporting technical deci-
sions, handling, administration, transportation, and logistics. In this context, much
applies to a wide range of activities and emerging medical applications, which may
nowadays be undertaken away from traditional medical professionals and facilities.
There is nonetheless evidence that patients across the world have developed some
ethical, moral, cognitive, and technological responsibilities and like to be ‘working
with their doctors’, who expect a wider role in future patient-doctor interactions. The
question is how much effort is needed to help existing and forthcoming technologies
establish a clinically valuable role in medical professional and healthcare services
[56].

It is interesting to see the impacts that smart healthcare technology can deliver on
patients’ and the general population’s perspectives, as well as healthcare practices
and processes. Most people will readily benefit from the highest quality of health and
medical services. They will not be suspicious of how healthcare service provision is
organized and regulated, as well as the practical implications and technical require-
ments for service prescription, delivery, monitoring, and evaluation. However, it is
also unquestionable that services should be cost-effective and respect users’ safety,
preferences, and aspirations in all circumstances. The idea of being able to commu-
nicate with health services for professional advice and support at any time is not in
the mind of everyone, but the delivery of this kind of service reflects an established
reality that medical practitioners have.

This chapter brings together some views on human factors and user acceptance
of smart healthcare technologies in general. These concepts combine general knowl-
edge and understanding about engineering and technology in developing and deliv-
ering products and services to benefit human quality of life across various healthcare
domains. Insights are discussed based on literature reviews, empirical case studies,
and practical solutions toward human factors and user acceptance in developing and
promoting emerging smart healthcare services in the coming years. Smart healthcare
application areas to be discussed include patient-centered healthcare service delivery
and personalized health and medicine technologies, such as personalized and predic-
tive health, ambulances, bio-sensors, mobile, stationary, body-worn, and implantable
medical devices and systems. The chapter concludes by identifying some challenges
and recommendations for R&D for human factors and user acceptance of smart
healthcare services, suggesting future development in this active area of engineering
and technology sectors.

Solution: Training and Education

Training is a critical cornerstone of ensuring quality functionality of any system in
general. The training for the employees to use the ICT tools in a smart health-
care system can be critical for their acceptance and the quality of the services.
However, there are still seldom educational training programs and teachers involved.
The training of such a setting should be able to convey knowledge of how to use elec-
tronic medical records to conduct effective and efficient diagnoses, how to access
other healthcare-related information from a variety of sources over the internet in a
fast and reliable manner, or how to use the alarm services provided by monitoring
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devices to decrease the problem of attention (or cognitive) overload. Due to the nature
of the content and level of specificity needed, an added worry is misinterpretation
between participants that are equivalent in knowledge base with explicitly different
educational backgrounds [57].

15.4.9 Financial Considerations

To put it simply, in the broad context of the proposed factors affecting the quality
of services of smart healthcare systems, financial elements must not be underesti-
mated. On the contrary, they must be taken into consideration at the same level to
design, diagnose, treat, and improve health services. In the following subsections,
we will expose the main concepts on available mechanisms for assuring the financial
considerations at stake.

Quality of services (QoS) must be maintained at a satisfactory level to ensure
a secure healthcare application. The healthcare informatics system must fully
cover private and confidential communication, data, information, and processing.
Addressing these requirements often comes with a cost in terms of available function-
ality, performance to be met by the QoS, and measures to assure integrity, availability,
and security of the information service or smart health application. Moreover, the
potentially involved decision makers (i.e. healthcare professionals, patients, health-
care providers, and suppliers of relevant technology) must be aware and able to
evaluate and accept these costs in view of their benefits [58].

Solution: Cost-effectiveness

The cost of smart healthcare is of significance to the community. Here, the cost
encompasses initial set-up, operation, and recurrent maintenance costs. Commer-
cialization of the service is hard to achieve if the costs are too high, especially in the
current financial crisis environment. People or organizations need proof to believe
that this new system is more affordable than the traditional way but with the same
quality or better. Although the costs cover numerous aspects that other infrastructures
have, the legitimacy of the smart healthcare solution somehow becomes a hot issue
to be discussed, in which whether it is a luxury or a necessity is the root of argument.
A good balance of providing quality services with the pressure from the bottom line
has become a virtual inescapable dilemma [59].

Despite the existing interest and prospects for the smart healthcare paradigm,
some important challenges that smart healthcare may confront should be carefully
considered. These challenges might not only influence the success of its implementa-
tion and diffusion but also set obstacles to resolving the key issues raised previously.
Major challenges for quality of services in the smart healthcare are discussed in the
following section.
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15.4.10 Global Adoption and Cultural Differences

It is important to consider various cultural issues before starting the deployment
process of smart healthcare worldwide. Otherwise, if only a few countries accept
only a few service items of the system, the productivity of smart healthcare may be
suboptimal. The implementation study of global health technologies fundamentally
involves culture and society, but there has been little scholarly attention given to
in-depth discussions of this issue. As mobility increases and healthcare provision
becomes a globalized commercial sector, the exchange of services, know-how, and
medical personnel across national borders should not be taken for granted. Therefore,
in addition to studying medical and clinical engineering issues in global health, which
receive significant attention both domestically and internationally, we also need to
explore the institutional settings in which different “smart” technologies, and the
knowledge and information embedded in social practices of care, are used, owned,
and applied.

Cultural differences are a key issue in the global adoption of smart healthcare
systems and technologies. Different cultures may have different attitudes and expec-
tations toward healthcare services. For example, different countries not only have
various healthcare policies and systems, but they also have different treatment
choices for similar diseases and symptoms. This can greatly influence the imple-
mentation of healthcare services such as telehealthcare, infrared sensor devices, and
e-medicine, as well as the remuneration model of the smart healthcare system. As a
result, customizing smart healthcare technologies and applications to meet diverse
needs among various countries, and managing them like tourism, may present some
challenges. On the other hand, a broad range of strategies should be focused on
to encourage faster adoption of smart healthcare in order to shorten the time of
implementation. Developing healthcare technology that fits within the cultural scope
and aligns with the interests of healthcare service providers can certainly optimize
healthcare development and improvement [60].

Solution: Cross-cultural Communication

In fact, for a healthcare provider, understanding the patient’s actual complaints
itself is a challenging task without cross-referencing their personal medical records.
Understanding the differentiating signs, symptoms, and queries posed for interpre-
tation are necessary to provide the most accurate diagnosis. The communication
process invokes the facets of social, emotional and psychological factors regulating
the relation between patient and healthcare professionals. According to a study
carried out in the UK, the communication gap was identified as a factor responsible
for complaints against healthcare providers. The smart healthcare communication-
related challenges are unlimited as the links between patient and healthcare increases
the patient’s perception of healthcare and healthcare quality. Though it directly links
caregivers and patients, some typical limitations of smart healthcare include commu-
nication pattern analysis, patient adaption over the length of clinical relationship, and
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healthcare customizations as per the cultural, language differences portrayed by the
patient.

The seamless communication between healthcare providers and patients is signif-
icant for good patient outcome in relation to compliance and satisfaction with their
medical treatment. Smart healthcare, by functioning beyond geographical boundaries
with no requirement for face-to-face interaction, poses many challenges associated
with cross-cultural communication between healthcare providers and patients. The
patients’ direct contact with healthcare professionals, expertise of healthcare profes-
sionals for treatment procedures, and capacity for understanding comprehension
while addressing medical terms used for communication are indeed hindered [61].

15.5 Future Trends and Innovations

We do not need to list them all here; everyone is aware. We have gained valuable
experience through the coronavirus pandemic. We know that quality of service in
health issues is not dependent only on personnel numbers and technical equipment
capability. Infrastructure and leadership/strategy are key factors in care for patients
with different scales of health problems, and we are supporting that advances in ICT
are strategic in providing this care. Today, telehealth is a subject that is in our health-
care plans. The capability to provide a consult through video links, SMS messages
and teleconference anytime and anywhere is not futuristic, but it will expand in the
care of patients after COVID-19 ends. At other more advanced stages, intangible
innovation will exploit AI with Blockchain, leading to personalized and traceable
solutions. The advent of a new fifth generation of high-bandwidth mobile commu-
nications, not just within the confined space of a hospital or clinic, but for everyone
anywhere, is fundamental in providing value added to healthcare in general and
especially to chronic disease control [45].

Introduction, Future Trends and Innovations of Healthcare is an area where
services have generally been proven to be somewhat slow in adapting to the speed
of technological change. Society has high levels of faith in technologies to cure
diseases and provide longer and healthier lives, but not necessarily in ensuring that
these benefits reach them. As discussed in the opening chapter, and as shown again
in Fig. 15.1, society has other important issues that are associated with technological
change in the area of health.

15.6 Summary

The integration of cloud and mobile application is a basic need for smart medical treat-
ment. However, the personal data security, privacy protection, full availability during
emergency situations, continuous monitoring, and constant technical improvements
need to be carefully maintained with security, reliability, low cost, and especially
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high QoS. The activity in this study will be helpful for various stakeholders and
policymakers in the medical field to deepen their understanding of what they should
consider when they need to commission and create the IoT smart healthcare system.
The results of this proposed strategy and implementation in cloud-based mobile
medicine can be used as a reference for related society of public and private smart
healthcare projects. The policy alignment and stakeholders’ societal safeguards can
be employed to meet all the potential human committed goals for equity, ethics, stake-
holders’ programs, and the urgency of continuous monitoring with major projects
that are health-related. Therefore, from the view of the stakeholders, they can gain
due planning of the quoted testbed in the day-to-day project or in the self-assessment
of a smart medical project. The IoT smart healthcare system program ultimately
needs to be meaningful and prioritized as part of the national or district government
policies for stakeholders’ dedicated hands-on expression.

The expansion of the IoT has affected various sectors, including medical care.
IoT-equipped healthcare systems that use wearable devices, various medical sensors,
security and privacy systems (RFID, NFC), and communication modules are devel-
oped as smart medical systems. The question is how these features are interconnected
through cloud computing systems to create smart medical systems. From the user’s
point of view, features such as power efficiency, security and privacy, user-friendly
design, safety standards, social and technical risks, clearness of responsibility, relia-
bility, and data quality are important. Ultimately, the performance of the IoT medical
platform in these respects affects the quality of service for the smart healthcare
system, and ensuring high quality of medical care is essential. Furthermore, the
global populations of elderly people is increasing, and these groups need reliable,
effective, and high-quality healthcare services. The challenges and issues in this
respect points will be carefully investigated as a part of the IoT medical platform in
this study.

References

1. Ashfag M et al (2020) Quality of service as a predictor of customer satisfaction in healthcare
sector. IBT J Bus Stud (JBS) 16(1)

2. PatanR et al (2020) Smart healthcare and quality of service in IoT using grey filter convolutional
based cyber physical system. Sustain Cities Soc 59:102141

3. Eman BAS (2021) Quality of service and privacy in internet of things dedicated to healthcare.
Avignon

4. Kurstjens S et al (2021) Performance of commercially-available cholesterol self-tests. Ann
Clin Biochem 58(4):289-296

5. Jeong S-M et al (2021) Association between high-density lipoprotein cholesterol level and risk
of hematologic malignancy. Leukemia 35(5):1356-1364

6. Shah AM et al (2020) Mining patient opinion to evaluate the service quality in healthcare: a
deep-learning approach. J Ambient Intell Humaniz Comput 11:2925-2942

7. Laghari AA et al (2023) Retraction note: a review and state of art of Internet of Things (IoT).
Springer

8. Chouat H et al (2023) Adaptive configuration of IoT applications in the fog infrastructure.
Computing 105(12):2747-2772



374 15 Examining QoS for Modern Healthcare Systems

9. Kumar A et al (2024) Artificial intelligence bias in medical system designs: a systematic review.

Multimedia Tools Appl 83(6):18005-18057

10. Kumar A et al (2023) Security and privacy issues in smart healthcare using machine-learning
perspectives. 6G-enabled IoT and Al for smart healthcare. CRC Press, pp 41-56

11. Purohit RM, Verma JP, Jain R, Kumar A (2025) FedBlocks: federated learning and blockchain-
based privacy-preserved pioneering framework for IoT healthcare using IPFS in web 3.0 era.
Cluster Computing, 28(2):139

12. Kumar A et al (2023) Al-assisted special education for students with exceptional needs. IGI
Global

13. Zhang H et al (2020) Active balancing mechanism for imbalanced medical data in deep
learning—based classification models. ACM Trans Multimedia Comput Commun Appl
16(1s):Article 39

14. Wang X et al (2020) ADTT: a highly efficient distributed tensor-train decomposition method
for IIoT big data. IEEE Trans Industr Inf 17(3):1573-1582

15. Vizitiu A et al (2020) Applying deep neural networks over homomorphic encrypted medical
data. Comput Math Meth Med 2020

16. Lu MY et al (2021) Data-efficient and weakly supervised computational pathology on whole-
slide images. Nat Biomed Eng 5(6):555-570

17. Tang S et al (2020) A survey on spark ecosystem: Big data processing infrastructure, machine
learning, and applications. IEEE Trans Knowl Data Eng 34(1):71-91

18. Pérez-Garcia F, Sparks R, Ourselin S (2021) TorchIO: a Python library for efficient loading,
preprocessing, augmentation and patch-based sampling of medical images in deep learning.
Comput Methods Programs Biomed 208:106236

19. Singh M, Baranwal G, Tripathi AK (2020) QoS-aware selection of IoT-based service. Arab J
Sci Eng 45(12):10033-10050

20. Qiu Y, Zhang H, Long K (2021) Computation offloading and wireless resource management
for healthcare monitoring in fog-computing-based internet of medical things. IEEE Internet
Things J 8(21):15875-15883

21. Hassan SR et al (2020) Remote pain monitoring using fog computing for e-healthcare: an
efficient architecture. Sensors 20(22):6574

22. Zhao X, Huang C (2020) Microservice based computational offloading framework and cost
efficient task scheduling algorithm in heterogeneous fog cloud network. IEEE Access 8:56680—
56694

23. Saeed W etal (2021) A fault tolerant data management scheme for healthcare Internet of Things
in fog computing. KSII Trans Internet Inf Syst (TIIS) 15(1):35-57

24. Igbal N et al (2021) A scheduling mechanism based on optimization using IoT-tasks
orchestration for efficient patient health monitoring. Sensors 21(16):5430

25. Kumar A, Mamgai R, Jain R (2023) Application of IoT-enabled CNN for natural language
processing. In: IoT-enabled convolutional neural networks: techniques and applications. River
Publishers, pp 149-177

26. Kumar A, Bhalla S (2025) Exploring brain tumor detection through artificial intelligence. In
Revolutionizing Medical Systems using Artificial Intelligence, pp 93—-120. Academic Press

27. Kumar A, Singh D, Vohra R (2023) Improving learning abilities using Al-based education
systems. In: Al-assisted special education for students with exceptional needs. IGI Global, pp
137-155

28. Kiiciik A et al (2021) Evaluating of hospital appointment systems in Turkey: challenges and
opportunities. Health Policy Technol 10(1):69-74

29. Boone CE et al (2022) How scheduling systems with automated appointment reminders
improve health clinic efficiency. J Health Econ 82:102598

30. Shaik T et al (2023) A survey of multimodal information fusion for smart healthcare: mapping
the journey from data to wisdom. Inf Fusion:102040

31. Hoti K, Chivers PT, Hughes JD (2021) Assessing procedural pain in infants: a feasibility study
evaluating a point-of-care mobile solution based on automated facial analysis. Lancet Digit
Health 3(10):623-e634



References 375

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Rahman A et al (2024) Machine learning and deep learning-based approach in smart healthcare:
recent advances, applications, challenges and opportunities. AIMS Public Health 11(1):58-109
Quy VK et al (2022) Smart healthcare IoT applications based on fog computing: architecture,
applications and challenges. Complex Intell Syst 8(5):3805-3815

Gautam A, Mahajan R, Zafar S (2021) QoS optimization in Internet of Medical Things
for sustainable management. In: Cognitive Internet of Medical Things for smart healthcare:
services and applications, pp 163—179

Saba Raoof S, Durai MS (2022) A comprehensive review on smart health care: applications,
paradigms, and challenges with case studies. Contrast Media Molec Imaging 2022(1):4822235
Kumar A, Singh D (Eds.) (2025) Revolutionizing Medical Systems Using Artificial Intelli-
gence: A Breakthrough in Healthcare. Elsevier

Wang G, Shao Q (2024) Design a smart medical service quality evaluation system based on
hybrid multi-criteria decision model

Mohammed BG, Hasan DS (2023) Smart healthcare monitoring system using IoT. Int J Interact
Mobile Technol (iJIM) 17(01):141-152

Khang A (2024) Al and IoT technology and applications for smart healthcare systems. CRC
Press

Haleem A et al (2022) Medical 4.0 technologies for healthcare: features, capabilities, and
applications. Internet of Things Cyber-Phys Syst 2:12-30

Nasr M et al (2021) Smart healthcare in the age of Al: recent advances, challenges, and future
prospects. IEEE Access 9:145248-145270

Mehmood G et al (2023) An efficient QoS-based multi-path routing scheme for smart healthcare
monitoring in wireless body area networks. Comput Electr Eng 109:108517

Younas MI et al (2023) Toward QoS monitoring in IoT edge devices driven healthcare—a
systematic literature review. Sensors 23(21):8885

Goel G, Chaturvedi AK (2024) Multi-objective load-balancing strategy for fog-driven patient-
centric smart healthcare system in a smart city. Eng Technol Appl Sci Res 14(4):16011-16019
Singh PD et al (2023) BOSS: a new QoS aware blockchain assisted framework for secure and
smart healthcare as a service. Expert Syst 40(4):e12838

Aminizadeh S et al (2024) Opportunities and challenges of artificial intelligence and distributed
systems to improve the quality of healthcare service. Artif Intell Med 149:102779

Singh P et al (2023) A task scheduling algorithm for optimizing quality of service in smart
healthcare system. In: International conference on IoT, intelligent computing and security:
select proceedings of IICS 2021. Springer

Pradhan B et al (2023) An Al-assisted smart healthcare system using 5G communication. IEEE
Access

Arafat MY, Pan S, Bak E (2024) QQAR: a Q-learning-based QoS-aware routing for [oMT-
enabled wireless body area networks for smart healthcare. Internet of Things 26:101151
Upadhyay S et al (2023) Challenges and limitation analysis of an IoT-dependent system for
deployment in smart healthcare using communication standards features. Sensors 23(11):5155
Buyya R et al (2023) Quality of Service (QoS)-driven edge computing and smart hospi-
tals: a vision, architectural elements, and future directions. In: International conference on
communication, electronics and digital technology. Springer

Almas A et al (2023) Context-based adaptive Fog computing trust solution for time-critical
smart healthcare systems. IEEE Internet Things J 10(12):10575-10586

Wang L, Ni Z (2024) Deep reinforcement learning for QoS-driven cloud healthcare services
selection: a framework and performance evaluation. J Intell Fuzzy Syst 2024(Preprint):1-15
Zhang H et al (2023) Microservice deployment mechanism with diversified QoS requirements
for smart health system in industry 5.0. IEEE Trans Cons Electron

Khodkari H et al (2024) Addressing service quality challenges in the cloud and IoT integration:
a case study of tourist remote healthcare system. Wirel Pers Commun: 124

Safa M et al (2023) Real time health care big data analytics model for improved QoS in cardiac
disease prediction with IoT devices. Heal Technol 13(3):473-483



376 15 Examining QoS for Modern Healthcare Systems

57. Sutradhar S et al (2023) A dynamic step-wise tiny encryption algorithm with fruit fly
optimization for quality of service improvement in healthcare. Healthc Anal 3:100177

58. Ghoumid K et al (2024) Optimization analysis of average message delivery time for healthcare
monitoring using a developed NB-IoT technology in a smart city. Internet of Things 27:101290

59. Golec M et al (2023) HealthFaaS: Al-based smart healthcare system for heart patients using
serverless computing. IEEE Internet Things J 10(21):18469-18476

60. Xu G, Xu M (2024) An effective prediction of resource using machine learning in edge
environments for the smart healthcare industry. J Grid Comput 22(2):1-13

61. Peralta-Ochoa AM et al (2023) Smart healthcare applications over 5G networks: a systematic
review. Appl Sci 13(3):1469



	Preface
	Contents
	About the Authors
	Part I Artificial Intelligence in Modern Healthcare
	1 Introduction to Artificial Intelligence in Modern Healthcare
	1.1 Overview of AI in Modern Healthcare
	1.1.1 Challenges in Traditional Healthcare Systems

	1.2 Evolution from Traditional Healthcare to Digital Healthcare
	1.2.1 AI and Digitization to Healthcare
	1.2.2 Smart Healthcare Wearable Devices

	1.3 AI-Bias in Modern Healthcare Systems
	1.4 Security and Privacy Concerns in Modern Healthcare
	1.5 Summary
	References

	2 Research Orientation for AI Techniques in Modern Healthcare System
	2.1 Introduction
	2.2 Classification of Diseases
	2.2.1 Mental Illness
	2.2.2 Brain Tumor
	2.2.3 Diabetic Retinopathy Using Retinal Imaging
	2.2.4 CVD (Cardio Vascular Diseases) Risk
	2.2.5 Breast Cancer Prediction
	2.2.6 Detection of Diabetic Foot Ulcer
	2.2.7 AI in Immunology

	2.3 AI Tools for Automated Medical Systems
	2.3.1 Modern Medical Equipment
	2.3.2 AI-Assisted High-Risk Surgery
	2.3.3 Traditional to Smart Healthcare

	2.4 Short Notes on QoS in Smart Healthcare
	2.5 Artificial Intelligence for Healthcare: Applications
	2.5.1 Health Services Management
	2.5.2 Predictive Medicine
	2.5.3 Clinical Decision-Making
	2.5.4 Patient Data and Diagnostics

	2.6 Summary
	References

	Part II Applications of Artificial Intelligence for Disease Prediction
	3 Diagnosis and Prediction of Brain Tumor Using Artificial Intelligence
	3.1 Introduction
	3.1.1 Brain Structure and Abnormalities
	3.1.2 Description of Brain Tumor
	3.1.3 Challenges in Brain Tumor Detection

	3.2 AI-Based Predictive Models for Brain Tumor Prediction
	3.3 Conventional Approaches for Brain Tumor Prediction
	3.3.1 Machine-Learning Based Algorithm for Brain Tumor Prediction
	3.3.2 Non-machine Learning Based Algorithms for Brain Tumor Prediction

	3.4 Advanced Approaches for Brain Tumor Detection
	3.4.1 Deep Learning-Based Algorithms for Brain Tumor Prediction
	3.4.2 Hybrid Algorithms for Brain Tumor Prediction

	3.5 Comparison of Various Artificial Intelligence-Based Brain Tumor Prediction Algorithms
	3.6 Summary
	References

	4 Diagnosis and Prediction of Neurological Disorders Using Artificial Intelligence
	4.1 Introduction
	4.2 Diagnosis of Mental Disorders
	4.2.1 Clinical Diagnosis of Mental Disorders
	4.2.2 Social Media-Based Diagnosis of Mental Disorders

	4.3 Artificial Intelligence-Based Models for Predicting Mental Healthcare
	4.3.1 Machine Learning Based Models for Predicting Mental Disorders
	4.3.2 Deep Learning Based Models for Predicting Mental Disorders
	4.3.3 Hybrid Models for Predicting Mental Disorders

	4.4 Artificial Intelligence-Based Solutions for Students with Special Needs
	4.4.1 Artificial Intelligence for Optimizing Mental Disorders in Students
	4.4.2 Artificial Intelligence-Based Robots for Special Students

	4.5 Analysis of Mental Health During COVID-19 Pandemic
	4.6 Summary
	References

	5 Diagnosis and Prediction of Cardiovascular Disorder Using Artificial Intelligence
	5.1 Introduction
	5.2 IVUS Imaging Data Acquisition
	5.2.1 Description of Catheter for Capturing IVUS Images
	5.2.2 Quality Assessment for IVUS Images

	5.3 Artificial Intelligence for Predicting Risk of Cardiovascular Disorder
	5.3.1 Machine Learning-Based Algorithms for IVUS Image Segmentation
	5.3.2 Deep Learning Based Algorithms for IVUS Image Segmentation

	5.4 Other Imaging for Predicting Risk of Cardiovascular Disorder
	5.5 Summary
	References

	6 Diagnosis and Prediction of Cardiovascular Risk in Retinal Imaging Using Artificial Intelligence
	6.1 Introduction
	6.2 Artificial Intelligence for Assessing the Risk of Cardiovascular Disorder
	6.2.1 Limitations of Traditional Methods for Diagnosing Cardiovascular Disorder
	6.2.2 Comparison of Traditional and Artificial Intelligence-Based Approach for Predicting Cardiovascular Disorder Risk
	6.2.3 Challenges in Utilizing Artificial Intelligence to Assess Cardiovascular Risk

	6.3 Machine Learning-Based Models for Predicting Risk of Cardiovascular Disorder
	6.4 Intersection of Retinal Imaging for Predicting Cardiovascular Disorder
	6.4.1 Retinal Fundus Imaging
	6.4.2 Correlation Between Retinal and Cardiovascular Parameters
	6.4.3 Benefits of Utilizing Retinal Imaging for Predicting Cardiovascular Disorder

	6.5 Automatic Prediction of Cardiovascular Events Using Deep Learning-Based Models
	6.6 Summary
	References

	7 Diagnosis and Prediction of Diabetic Foot Ulcer in Modern Healthcare Using Artificial Intelligence
	7.1 Introduction
	7.1.1 Overview of Diabetic Foot Ulcers
	7.1.2 Significance of Early Detection

	7.2 Diabetic Foot Ulcer: Background and Pathophysiology
	7.2.1 Definition and Types of Diabetic Foot Ulcers
	7.2.2 Pathophysiological Mechanisms

	7.3 Role of Medical Imaging in Diabetic Foot Ulcer Detection
	7.3.1 Common Modalities Used
	7.3.2 Advantages and Limitations

	7.4 AI Techniques for Diabetic Foot Ulcer Detection
	7.4.1 Machine Learning Algorithms
	7.4.2 Deep Learning Architectures

	7.5 Datasets and Preprocessing
	7.5.1 Publicly Available Datasets
	7.5.2 Preprocessing Techniques

	7.6 Performance Metrics and Evaluation
	7.6.1 Accuracy, Sensitivity, and Specificity
	7.6.2 Receiver Operating Characteristic (ROC) Curve

	7.7 Challenges and Future Directions
	7.7.1 Interpretability and Explainability
	7.7.2 Generalization to Different Populations

	7.8 Conclusion and Implications
	7.9 Summary of Key Findings
	7.9.1 Clinical and Research Implications

	References

	8 Diagnosis and Prediction of Breast Cancer Using Artificial Intelligence
	8.1 Introduction
	8.2 Artificial Intelligence Based Algorithms for Breast Cancer Prediction
	8.2.1 Risk Factors for Breast Cancer Prediction

	8.3 Machine Learning-Based Algorithms for Breast Cancer Prediction
	8.4 Deep Learning Algorithms for Breast Cancer Prediction
	8.4.1 UNet-Based Deep Learning Predictive Algorithms
	8.4.2 Non-UNet-Based Deep Learning Predictive Algorithms

	8.5 Comparison of Various Breast Cancer Prediction Techniques
	8.6 Summary
	References

	Part III Artificial Intelligence for Personalized Care
	9 Role of Artificial Intelligence in Immunology
	9.1 Introduction
	9.2 Applications of AI in Immunology
	9.2.1 Disease Diagnosis and Prognosis
	9.2.2 Drug Discovery and Development
	9.2.3 Personalized Medicine

	9.3 AI Techniques and Models in Immunology
	9.3.1 Machine Learning Algorithms
	9.3.2 Deep Learning Architectures

	9.4 Challenges and Limitations of AI in Immunology
	9.5 Future Directions and Opportunities
	9.6 Summary
	References

	10 Managing High-Risk Surgery Using Artificial Intelligence
	10.1 Introduction
	10.1.1 Background and Significance
	10.1.2 Purpose and Scope of the Study

	10.2 Current Challenges in High-Risk Surgery
	10.2.1 Risk Factors and Complications
	10.2.2 Limitations of Traditional Surgical Techniques

	10.3 Applications of Artificial Intelligence in Surgery
	10.3.1 Image Analysis and Interpretation
	10.3.2 Robot-Assisted Surgery

	10.4 Benefits and Advantages of AI in High-Risk Surgery
	10.4.1 Improved Precision and Accuracy
	10.4.2 Enhanced Decision-Making Support

	10.5 Ethical and Legal Considerations
	10.5.1 Patient Consent and Autonomy
	10.5.2 Liability and Accountability Issues

	10.6 Future Trends and Innovations in AI-Assisted Surgery
	10.6.1 Integration of Machine-Learning Algorithms
	10.6.2 Advancements in Surgical Robotics

	10.7 Artificial Intelligence in Medical Imaging
	10.7.1 Overview of AI in Healthcare
	10.7.2 Applications in Medical Imaging

	10.8 Conclusion and Recommendations
	10.9 Summary of Key Findings
	10.9.1 Recommendations for Future Research

	References

	11 Benchmark Datasets for Analysis in Medical Systems
	11.1 Introduction to Medical Data Analysis
	11.2 Importance of Benchmark Datasets in Medical System Analysis
	11.3 Overview of AI Applications in Medical Diagnosis and Prognosis
	11.3.1 Neurological Disorders and Mental Illness Diagnosis and Prognosis
	11.3.2 Brain Tumor Prediction Using Brain Imaging Segmentation
	11.3.3 Predicting Diabetic Retinopathy Using Retinal Imaging Segmentation
	11.3.4 CVD Risk Stratification Using IVUS Imaging
	11.3.5 Breast Cancer Prediction
	11.3.6 Diabetic Foot Ulcer Prediction
	11.3.7 Benchmark Datasets for Immunology

	11.4 Evaluation Metrics
	11.4.1 Accuracy and Precision
	11.4.2 Cross-Validation Techniques

	11.5 Summary
	References

	12 Role of AI and Modern Medical Equipment in Smart Healthcare
	12.1 Introduction
	12.2 Foundations of Smart Healthcare
	12.2.1 Definition and Scope

	12.3 AI Applications in Healthcare
	12.3.1 Diagnosis and Treatment Planning

	12.4 Modern Medical Equipment in Healthcare
	12.4.1 Types and Functionality

	12.5 Integration of AI and Medical Equipment
	12.5.1 Challenges and Opportunities

	12.6 Ethical and Legal Considerations
	12.6.1 Data Privacy and Security

	12.7 Case Studies and Success Stories
	12.7.1 Real-World Implementations

	12.8 Future Trends and Innovations
	12.8.1 Emerging Technologies

	12.9 Summary
	References

	Part IV Artificial Intelligence for Healthcare Digitization
	13 Evolution of Traditional Healthcare to Modern Healthcare—Benefits, Opportunities and Challenges
	13.1 Introduction
	13.2 Foundations of Traditional Healthcare
	13.2.1 Scope of Traditional Healthcare
	13.2.2 Historical Overview
	13.2.3 Key Principles and Practices

	13.3 Emergence of Smart Healthcare
	13.3.1 Concepts Behind Smart Healthcare
	13.3.2 Technological Enablers
	13.3.3 Technological Foundations
	13.3.4 Internet of Things (IoT) in Healthcare
	13.3.5 Data Analytics and Artificial Intelligence in Healthcare
	13.3.6 Machine Learning Applications in Healthcare
	13.3.7 Telemedicine and Remote Patient Monitoring
	13.3.8 Wearable Health Technology
	13.3.9 Cybersecurity in Healthcare Systems
	13.3.10 Regulatory and Ethical Considerations
	13.3.11 Impact on Healthcare Delivery and Patient Outcomes
	13.3.12 Enhanced Clinical Decision-Making

	13.4 Case Studies and Success Stories
	13.4.1 Implementation Examples
	13.4.2 Impact Assessment

	13.5 Future Directions and Trends
	13.5.1 Artificial Intelligence and Machine Learning
	13.5.2 Internet of Medical Things (IoMT)

	13.6 Summary
	References

	14 Analysis of AI-Bias in Modern Healthcare Systems
	14.1 Introduction
	14.2 Significance of Analysis of AI-Bias in Medical Systems
	14.3 Types of AI-Bias in Modern Healthcare Systems
	14.3.1 Data Bias
	14.3.2 Human Bias
	14.3.3 Algorithmic Bias

	14.4 Bias Assessment Tools
	14.4.1 Aequitas: Bias and Fairness Audit Toolkit
	14.4.2 ROBINS-I (Risk of Bias in Non-randomized Studies of Interventions)
	14.4.3 PROBAST (Prediction Model Risk of Bias Assessment Tool)
	14.4.4 CHARMS (CHecklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies)

	14.5 Approaches to Mitigate AI-Bias in Modern Healthcare System
	14.5.1 Limitations to Prevent AI-Bias in Modern Healthcare System
	14.5.2 A Special Note on Explainability, and Generalizability in Modern Healthcare

	14.6 Summary
	References

	15 Examining QoS for Modern Healthcare Systems
	15.1 Introduction
	15.2 Related Work
	15.2.1 Optimizing Quality-of-Service (QoS) and Achieving Cost-Efficiency Through Scheduling
	15.2.2 Effective Calculation of Medical Data Processing and Optimization of Service Delivery Solutions in E-healthcare Applications

	15.3 Smart Medical Services Quality Evaluation System
	15.3.1 Smart Appointment
	15.3.2 Smart Consultation
	15.3.3 Smart Diagnosis and Treatment
	15.3.4 Smart Nursing
	15.3.5 Smart Settlement
	15.3.6 Smart Healthcare

	15.4 Technological Challenges: Emerging Obstacles in the Digital Era
	15.4.1 Interoperability and Integration
	15.4.2 Security and Privacy Concerns Explored
	15.4.3 Enhancing the Measures for Ensuring Data Security
	15.4.4 Exploring the Ethical and Legal Considerations Surrounding the Issues
	15.4.5 Regulatory Hurdles and Compliance Challenges
	15.4.6 Challenges Faced in the Management of Data
	15.4.7 Integration with Traditional Healthcare Systems
	15.4.8 Human Factors and User Acceptance
	15.4.9 Financial Considerations
	15.4.10 Global Adoption and Cultural Differences

	15.5 Future Trends and Innovations
	15.6 Summary
	References


