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Foreword

The 2024 Nobel Prize in Physics was awarded to John J. Hopfield and Geoffrey
Hinton for foundational discoveries and inventions that enable machine learning
with artificial neural networks. Two of the three winners of the 2024 Nobel Prize
in Chemistry, Demis Hassabis and John Jumper, both from Google Deepmind, were
cited for developing an Al model to solve a 50-year-old problem: predicting complex
structures of proteins. These coveted prizes to Artificial Intelligence (Al) researchers
bear testimony to the sweeping influence of Al

Driven by extraordinary strides made over the years, especially in the past decade,
Al now has the potential to fundamentally transform human civilization. Its impor-
tance is now recognized by societies across the globe as a key technology with the
ability to solve some of the most complex societal and engineering problems of our
times such as universal access to healthcare and education, efficient transportation,
increased efficiency in providing e-governance services to the public, etc. To harness
the power of Al, large-scale national and international efforts are underway.

Al has now matured to a level where Al applications are beginning to impact our
daily lives: generative Al tools like ChatGPT and Gemini are now extensively used
by researchers, students, and even public. Among the myriad of disciplines impacted
by Al engineering and management disciplines occupy a prominent position. Al and
data science are now providing a major tool box to solve a wide spectrum of problems
in engineering and management.

There is a large corpus of textbooks and research monographs on the foundations,
theory, and advances in artificial intelligence, machine learning (ML), and deep
learning (DL). There is, however, an urgent need for a book that provides a conve-
nient, friendly, and yet rigorous treatment of Al and ML techniques to researchers,
professionals, and students engaged in core engineering disciplines and also core
management topics. This gap is splendidly filled by authors Srinivasa Raju and
Nagesh Kumar, by bringing out their fine and timely textbook Artificial Intelligence
and Machine Learning Techniques in Engineering and Management.

This is a nice book accessible to anyone seeking to clearly understand and rigor-
ously apply Al techniques to problems in engineering and management disciplines.
In particular, it will be a precious resource to undergraduate, master’s, and doctoral
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students applying Al and data science to their projects and research problems. The
coverage of topics in machine learning and deep learning models is gentle and
thorough, focussing on the main principles. The illustrative numerical examples,
completely worked out, elevate the utility and understandability of the contents. The
final chapter is especially valuable, with more than 200 case studies reviewed; this
will be a goldmine to look up detailed studies of real-world problems.

The authors must be congratulated for conceptualizing a much needed AIML
companion to students and researchers and for presenting the content in a lucid
manner. For engineering and management audience, this book is a lovely resource
on a live and lively subject.

Y. Narahari

Honorary Professor

Department of Computer Science
and Automation

Indian Institute of Science Bangalore
Bengaluru, Karnataka, India
https://gtl.csa.iisc.ac.in/hari/


https://gtl.csa.iisc.ac.in/hari/

Preface

Artificial Intelligence (Al) is becoming familiar due to the minimum requirement
of data, facilitating accurate predictions, and minimal necessity of understanding
the physics behind input—output relationships. Its potential to tackle non-linear
and complex problems with greater flexibility is an added advantage. Its appli-
cations in engineering, management, and allied fields are growing exponentially.
Over time, numerous experts introduced books and developed blogs on the theme,
which are primarily theoretical. However, the proposed book amalgamates relevant
theory, numerical problems, case studies, and recent advances wherever possible. We
believe that this new dimension will greatly benefit present-generation researchers
and students.

The present book consists of seven chapters: (1) an introduction; (2) a
description of performance indicators; (3) classical machine learning algorithms;
(4) advanced machine learning algorithms; (5) fuzzy logic-based modelling
algorithms; (6) emerging research areas, topics including, Blockchain, recent ML
techniques, evolutionary algorithms, Al tools, the Internet of Things, big data, deci-
sion support systems, Taguchi design of experiments, data augmentation, and cross-
validation; (7) representative case studies. The appendix covers representative Al
tools, data sources related to Al, books, and journals on Al. The present book can
support undergraduate, postgraduate, and Ph.D. students in Al, Data Mining, and
Soft Computing in Engineering and Management and allied fields.

We are grateful to Prof. Yadati Narahari, Department of Computer Science
and Automation, Indian Institute of Science, Bengaluru, who consented to write
a Foreword for the book.

vii
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Special acknowledgments to Vogeti Rishith Kumar for posing thought-provoking,
out-of-box questions, providing lots of input, and unstinting support wherever neces-
sary. Heartfelt gratitude to Sistla Shashank, Prof. Alivelu Manga Parimi, Deepjyoti
Deb, Dr. R. Madhuri, R. Bhavi Tej, Dr. Sriman Pankaj, Kathan Pranav Naik, Y. Sai
Kiran, Pratyush Pandey, P. Sagar Subhash, Bhavesh Rahul Mishra, Harshal Nayan
Rathi, Rahul Jauhari, Rishabh Daga, Ayushman Kar, Aakash Bansal, Kaustav Chat-
terji, and L. Ashoka Vardhan (who are presently or formerly associated with BITS)
who contributed immensely for the book. Also, thanks to Prof. M. Janga Reddy (IIT
Bombay), Prof. Shishir Gaur (IIT BHU), Prof. D. Graillot (EMSE France), Prof. D. V.
Morankar (College of Military Engineering, Pune), and many others who supported
us from time to time.

We referred to a number of research papers and many blog sites related to
Al Overall, they shaped the book in its present form. We acknowledge LINDO
SYSTEMS INC. for providing access to the LINGO software trial version, Scopus
for research data analysis, and Python for programming support.

We have incorporated a few portions from some of our published research papers,
either utilizing CC BY 4.0 and CC BY-NC-ND 4.0 licenses under the open access
category or taking permissions in case of non-open access category journals. All
these research papers were referred at suitable places. We wholeheartedly express
gratefulness to the publishers of these journals, IWA, Springer, ASCE and Wiley. We
extend thanks to all the co-authors of the papers for their constant encouragement
and support in realizing our plan to publish this book.

We made the best possible efforts to quote all the sources in the form of acknowl-
edgements or references, but still, some would have been missed. We will incorporate
them upon notice in the upcoming editions.

Professor Raju appreciates the institute leadership for providing the necessary
ecosystem for writing this book. He acknowledges the help of his wife, Gayathri
Devi; Daughter, Sai Swetha; and son, Sai Satvik; and Parents, Gopala Rao and
Varalakshmi, for their unstinting support. He thanks Prof. A. Vasan, Subbulakshmi
Vasan, Dr. K. Nagajyothi, and Mr. B. Surendra for their motivating support. Professor
Nagesh acknowledges the support of his wife Padma, daughter Sruthi, son Saketh,
and parents Subrahmanyam and Lakshmi.

We sincerely thank Sri D. V. Subrahmanyam for diligently checking the
manuscript and proofs.

We wish to thank all our colleagues, friends, and students who encouraged us
from time to time with pleasant inquiries and inputs, which undoubtedly accelerated
the writing of the book.
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Chapter 1 ®)
Introduction Check for

1.1 Introduction

Artificial intelligence (Al) is acomprehensive multidisciplinary research area that can
mimic human intellect as effectively as achievable. Some tasks that are expected to
be simulated are learning, reasoning, perceiving, recognizing patterns, and decision-
making. This process is also likely to minimize hindrances based on previous expe-
riences. There are two primary classifications of Al based on functionality, which
are as follows:

e Strong Al: Machines that can understand and analyze problems in various domains
like humans. However, it has not yet reached complete reality. It is also termed
as general Al

e Weak AI: Works on a specific activity or function. If data is related to the heart,
the experience will work for that particular task effectively, not for other domains.
It is also termed as narrow Al

A number of researchers viewed Al as a supporting mechanism for automation
(Nilsson, 2009). However, most of the time, human intervention is necessary to
understand the outcomes of Al for possible implementation with minimal challenges.

Two important sub-categories of Al are (a) Machine Learning (ML) and (b) Deep
Learning (DL). These are employed as vehicles to accomplish AI (Fig. 1.1).

A brief description of ML and DL is as follows (Russell & Norvig, 2010): ML
empowers machines to learn from available datasets without explicit programming
and architecture. It uses data trends and statistical inferences to predict. DL is a
sub-category in ML that utilizes the philosophy of multiple hidden layers to capture
complex data phenomena automatically. The critical differences between ML and
DL are the feature extraction process, data requirement, and computational resources
(Alaskar & Saba, 2021; Janiesch et al., 2021).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 1
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2 1 Introduction

Fig. 1.1 Classification of Al into ML and DL

e DL does not require a feature extraction process. It extracts information as part of
the learning, making it more efficient in prediction. On the contrary, ML requires
an extensive extraction process to improve the model’s performance.

e DL can work exceptionally well even with high-dimensional and unstructured
raw data situations. On the other hand, ML requires pre-processing of data to
ensure high performance.

e Interpretability of the prediction process is relatively more complex in DL than
in ML.

e DL requires high computational resources due to its complex mathematical intri-
cacies and hardware. In the case of ML, the requirements for computational
resources are less than those for DL.

Some of the algorithms falling under ML and DL are presented (in alphabetical
order) below for the reader’s benefit (a detailed discussion of some of these algorithms
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is presented in Chaps. 3-5). In addition, related terminology is presented here for
the reader to understand effectively.

Adaptive Boosting (AdaBoost) refers to ensemble methods that make a strong
learner from several weak learners. It concentrates on situations with high-loss
functions to enrich total performance.

Adaptive Neuro-Fuzzy Inference System (ANFIS) facilitates non-linear rela-
tionships, quick learning capability, and adaptive inferences to predict complex
situations reasonably. It can also handle noisy or inconsistent data effectively.
Artificial Neural Networks (ANN) can build non-linear associations between
inputs and outputs. Their architecture comprises several layers. Every individual
layer has a number of layers. Here, the output from each layer contributes to the
succeeding layer.

Categorical Boosting (CatBoost) is similar to AdaBoost. In this context, a Deci-
sion Tree (DT) is established on a symmetricwise strategy considered to tackle
categorical features competently.

Convolutional Neural Networks (CNN) are developed on the perception of local
neural connectivity stimulated by the cognitive structure of the animal visual
cortex.

eXtreme Gradient Boosting (XGBoost) is an ensemble technique established in
levelwise (or depthwise) form. It utilizes a principle identical to that of CatBoost.
However, formation is governed by the depth of the tree.

Extreme Learning Machine (ELM) employs feed-forward networks with one
hidden layer. It converges faster than several traditional algorithms and will likely
reach a global optimal solution.

Fuzzy CNN and Fuzzy LSTM (Long Short-Term Memory) capitalize on the
advantages of CNN, LSTM, and fuzzy reasoning. They handle imprecise data
and efficiently establish relationships.

K-Nearest Neighbour (KNN) stores all the datasets and classifies new datasets
built on distance functions related to the stored datasets.

Light Gradient Boosting (LGBoost) uses a leafwise strategy that enables data to
be facilitated quicker than conventional level-based techniques.

Linear Regression (LiR) establishes a linear association involving independent
and dependent variables.

Logistic Regression (LR) predicts classes of a binary nature and utilizes the
logistic function.

LSTM utilizes memory blocks. These blocks function as neurons in the hidden
layers with the help of sigmoid and hyperbolic tangent functions. Information
from layers is traversed through gating units to obtain the output.
Multi-adaptive Regression Splines (MARS) can establish flexible and inter-
pretable relationships between the variables using knot selection and forward—
backward passes.

Natural Gradient Boosting (NGBoost) employs a natural gradient to build a
probabilistic estimation with remarkably greater accuracy.
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e Random Forest (RF) uses a bagging approach to create an ensemble of DT,
resulting in a reliable predictive model.

® Recurrent Neural Networks (RNN) use recurrent connections, hidden states,
activation functions, and training through back-propagation.

e Support Vector Regression (SVR) can be used to accomplish regression analysis.
Its primary idea is to find the best hyperplane that fits most points, minimizing
the error.

e Wavelet Neural Networks (WNN) use the mother wavelet to captivate information
from primary data and disintegrate it further.

1.2 Representative Applications of Al

The role of Al in Engineering, Science, Management, and other domains is rapidly
expanding over time due to its capability to handle complex relationships between
different features, uncertainty in data, and fewer data requirements (than in the
traditional models). Representative applications include.

Customer Choices (Hu et al., 2023; Salminen et al., 2023)

Energy (Szczepaniuk & Szczepaniuk, 2023)

Financial framework (Bahoo et al., 2024)

Inventory (Chopra & Sharma, 2021; Li et al., 2023)

Knowledge-based management (Jarrahi et al., 2023; Taherdoost & Madanchian,
2023)

Manufacturing (Mypati et al., 2023; Naz et al., 2023; Plathottam et al., 2023)

Health (Castiglioni et al., 2021; Pesapane et al., 2018; Wang et al., 2021)

Precision agriculture (Son et al., 2024)

Quality Engineering (Martin et al., 2023; Aldoseri et al., 2023)

Robotics and Automation (Sarker, 2022; Soori et al., 2023).

Recent Al applications include text mining and Natural Language Processing.
More details are presented in Chap. 6.

1.3 Scopus Analysis of Al

Scopus is an abstract and citation database launched in 2004 by Elsevier. It utilizes
data analytics to understand various aspects of research papers, including related
metrics (Scopus Content, 2024), and can be accessed using the following simple
process: type ‘www.scopus.com’ in Internet Explorer. The dialog box appears, with
two critical blocks: Search within and Search documents. In the Search within option,
the user can find many sub-options to explore.

In summary, the accessibility of computational resources eventually accelerated
the growth of AIl. However, the user is expected to have complete domain knowledge
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of the mathematical framework before applying it, which is the motto of the present
book.

1.4 Organization

There are seven chapters in the book.

This chapter briefly introduces Al, ML, and DL and provides the book’s work-
flow. Chapter 2 discusses performance indicators, which judge the simulating ability
of models and related software. Chapter 3 describes classical ML models used for
forecasting and classification purposes: ANN, WNN, SVR, ELM, LR, and KNN.
Activation functions are also part of this chapter. Chapter 4 describes a few advanced
ML algorithms specifically used for forecasting. These are CNN, RNN, LSTM,
Bi-directional (Bi)-LSTM, Gated Recurrent Units (GRU), and possible hybridiza-
tions of these algorithms. In addition, boosting algorithms, AdaBoost, XGBoost,
and CatBoost are part of this chapter. Chapter 5 provides insight into fuzzification,
defuzzification, FIS, ANFIS, Fuzzy Cognitive Mapping (FCM), optimization, and its
fuzzy extension. It also comprises fuzzy-based CNN and LSTM and their hybridiza-
tion, i.e., fuzzy CNN-LSTM. Chapter 6 discusses Blockchain, Advanced ML Tech-
niques, Advanced Optimization Techniques, Al Tools, the Internet of Things (IoT),
Big Data, Decision Support Systems (DSS), Taguchi Design of Experiments, Data
Augmentation, and Cross-Validation. Chapter 7 presents representative case studies
in Civil, Chemical, Mechanical, Electronics and Computer Science, Engineering,
and Management. The purpose is to facilitate a comprehensive view regarding the
applicability and potentiality of the methods. The appendix lists representative Al
tools, data sources, books, and journals on Al. Figure 1.2 presents the flow of the
topics in the chapters.

Before moving further, brief terminology on the theme of the book is presented
below for the benefit of the readers:

Activation function facilitates non-linearity in the network, allowing it to capture
complex patterns.

Architecture: It provides a holistic view of the network.

Batch size: The number of training examples used in one iteration.

Dropout: 1t is a regularization approach.

Epoch: It represents one cycle passing through the training dataset.

Error (Loss function): Itis the deviation between simulated and observed datasets.
The error can be positive or negative. It can also be expressed as squared deviation.
Note that the purpose of any modelling approach is to minimize discrepancies.

Forecasting: It is a statistical approach to predict output.

Learning rate is the pace at which the updation of parameters can occur.

Momentum factor: It minimizes deviations in weights and enriches the training
mechanism.
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Fig. 1.2 The flow of the topics in the chapters

Parameters and hyperparameters: Internal elements of the model are termed as
parameters. Hyperparameters are those parameters that significantly influence the
training process.

Pre-processing: Itis a preliminary step before transmitting the data to the network,
such as normalization, outlier, and identification.

Supervised learning: It relates input and labelled output during training. In
contrast, unsupervised learning does not have labelled output.

Training: A mechanism to determine optimum parameters (including connection
strengths) that minimize the error between simulated and observed data.

Validation: 1deally, a model should not be tested on the dataset trained earlier,
mainly for unbiased evaluation. For example, monthly rainfall and runoff data are



References 7

available for 1970-2020. Out of which, data from 1970 to 2010 can be utilized for
training. Accordingly, weights and other parameters are established. These and the
last 10 years of rainfall are used to compute runoff for possible comparison with the
observed data, as a part of testing.

Weights are connection strengths that vary from (—o0,00) and are continuously
updated in the training process.

Exercise problems and advanced review questions are part of Chaps. 2 to 6.
Algorithms, models, and techniques are used interchangeably in the book: data,
points, and datasets; loss function, error, and discrepancy. It is requested to note the
same.

Revision Questions

1.1 What is AI? What is the mechanism behind the same?

1.2 What are strong and weak AI?

1.3 What are the sub-categories of AI?

1.4 What is the philosophy of ML and DL?

1.5 What is the significant difference between ML and DL? Compare with two
features.

1.6 Mention applications of Al in engineering and management.

1.7 What is Scopus analytics? How is it useful?

1.8 What are the challenges of applying Al to real-world problems?

Advanced Review Questions

1.9 Mention three views of researchers about Al
1.10 Can you only employ DL for every chosen problem instead of ML? If yes or
no, justify your view.
1.11 Can you make inferences from a few case studies where ML and DL were
applied?
1.12 Do you think Al is necessary in engineering and management? Justify!
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Chapter 2
Description of Performance Indicators

2.1 Introduction

q

Check for
updates

The present chapter briefly discusses representative performance indicators used to
examine the competence of the chosen ML algorithm in simulating observed data
(Jackson et al., 2019). Binary classification-based indicators are also part of this

chapter.

2.2 Performance Indicators

Mathematical descriptions of indicators are as follows.

Letx;, y; represent observed and simulated values, respectively. i, i, are mean of
X;, yi and oy, oy are corresponding standard deviations. N is the number of datasets.

a. The Sum of the Square Loss Function (SSLF) is (Eq. 2.1):

N
SSLE =) (x; —y)’

i=1

b. Mean Square Loss Function (MSLF) is the mean of SSA (Eq. 2.2):
1
MSLF = — x SSLF
N

¢. Root Mean Square Loss Function (RMSLF) is (Eq. 2.3):

RMSLF = vMSLF
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Normalized Root Mean Square Loss Function (NRMSLF) is (Eq. 2.4):

RMSLF

NRMSLF = (2.4)

I

Average Absolute Relative Loss Function (AARLF) is the ratio of the absolute
Loss Function to the observed value (Eq. 2.5):

N
1 (i — x)
AARLF = — 2.5
Normalized Standard Loss Function (NSLF) is (Eq. 2.6):
oy
NSLF = — (2.6)
Ox

The coefficient of Correlation R (or CC) is aregression measure mainly in alinear
mapping framework between simulated and observed (Eq. 2.7). It provides how
the regression line best characterizes the data.

Z?I:l(xi — My) (J’i - /‘Ly)

R = 2.7
(N — Doyo,
Nash Sutcliffe Efficiency (NSE) is (Nash & Sutcliffe, 1970) (Eq. 2.8):
N L v:)2
NSE=1— X:Ifl(x—’y’) (2.8)
Zizl(xi - Mx)z

Kling Gupta Efficiency (KGE) is based on correlation, variability, and mean biases
(Gupta et al., 2009) (Eq. 2.9):

. 5 5\ 705
KGE=1—|:((R—1)2+<—y—1> +(ﬂ—1>>} (2.9)
Ox Mox

Taylor Skill Score (TSS) is based on a standard deviation of observed and
simulated spatial correlation coefficient R (Taylor, 2001) (Eq. 2.10):

4
Tsg = 0+ R) ; (2.10)
(1+R)) (2 +2)

Ry is the highest possible R based on the perception of the user.
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k. Fractional Skill Score (FSS) (Maetal.,2018; Roberts & Lean, 2008) is (Eq. 2.11):

(ﬁ Z?Izl(xi - J’i)z)

S T B ey

@2.11)

Lower values (ideally zero) are preferred for indicators (a—f). Higher values (ideally
one) are preferred for indicators (g—k). Detailed information about some of the indi-
cators and their ranges is available from Moriasi et al. (2007) and Moriasi et al.
(2015).

Numerical problem 2.1. Table 2.1 presents the observed and simulated rainfall
obtained by the ML algorithm. Compute indicators described in this section.

Solution:

Related calculations are showcased in Table 2.1.

Number of datasets = 10.

Y x=12lcem, ) y=115cm, Y xy= 1450 cm’

D %= 1525cm’, Y y? = 1487 cm’
My =12.1cm, u, = 11.5 cm.

oy =2.6013cm, 0, = 4.2753 cm.

Table 2.2 presents a list of indicators and corresponding values based on Egs. 2.1—
2.11.

Numerical problem 2.2. Table 2.3 presents the number of times noise beyond a
certain decibels (dB) was measured using electromagnetic sensors in the manufac-
turing industry. A simulated number of occurrences from modelling is also part of
Table 2.3. Compute NSE, CC, KGE, TSS, and FSS. Present this information using
a bar chart.

Solution:

Related calculations are presented in Table 2.3.
Table 2.4 and Fig. 2.1 present indicators and corresponding values.



2 Description of Performance Indicators

12

Y4 6V ge Sree LS8T0 14 sy 109¢ S L 0l
(43 691 1474 g8'¢ 9¥8€°0 4 sy 18°0 81 el 6
§ec 691 Sol SI'e 8¢ST°0 4 §Tel 18°0 SI €l 8
001 124! 0cl S1'o L991°0 14 gee 100 ol Cl L
961 Izl ¥Sl SLC— LTLTO 6 §T9 1Tl 4! 1T 9
691 96¢C 80¢ g8'¢ SL8T0 6 §ee |29 el 91 S
9 961 41! §9'9— 98¢0 9¢ geel 19°¢ 8 14! ¥
9 18 L G801 IT11°0 I geel 19°6 8 6 €
9 4! 96 Seo £e€e’0 91 geel 100 8 4! [4
9s¢T 961 ¥CC 6’8 6Cv1°0 4 §coc 19°¢ 91 14! 1
(W) | (o) | (;wod) (L) Grun sz (;wo) (zu) (;wd) (wo) (wo)
Na X | (S =€) (11 — x) fromry NAA —X) N?i - b NQ?; —x) | A [[ejurer paje[AWIS | X [[BJUIRI PIAIISQQ | Joseie(

SUONB[NOED PAJB[AI PUB SIN[BA PAB[NWIS PUB PAAISqQ ['T dqEL



2.3 Indicators in Binary Classification Problems

13

Ic?rlilees;c.)i df;;f:lfg: and Indicator Value Unit
SSLF 112 cm?
MSLF 112 cm?
RMSLF 3.3466 cm
NRMSLF 0.2766 No unit
AARLF 0.2467 No unit
NSLF 1.6435 No unit
R (or CC) 0.5845 No unit
NSE —0.8391 No unit
KGE 0.2324 No unit
TSS 0.3107 No unit
FSS 0.9628 No unit

2.3 Indicators in Binary Classification Problems

Many indicators also exist in binary classification problems. Before moving into the
detailed understanding of indicators, the following related definitions will be helpful.

Confusion matrix: It is a matrix with four different possibilities of simulated and

observed data (Fig. 2.2), and the related description is as follows:

True positive (TP): Envisaged as positive, and itis correct. Example: Itis envisaged
that a flood will occur, and the flood has occurred.

False positive (FP): Envisaged as positive, and it is incorrect. Example: It is
envisaged that a flood will occur, and the flood has not occurred (falling under
Type 1 error).

False Negative (FN): Envisaged as negative, and it is incorrect. Example: It is
envisaged that a flood will not occur, and the flood has occurred (falling under
Type 2 error).

True Negative (TN): Envisaged as negative, and it is correct. Example: It is
envisaged that a flood will not occur, and the flood has not occurred

Some of the standard classification indicators derived from the confusion matrix

are as follows (Agrawal, 2023; Czakon, 2023) (Egs. 2.12-2.17):

FP
True Positive and False Positive Rates (TPR, FPR) = ,
TP+ FN TN + FP
(2.12)
. . TN FN
True Negative and False Negative Rates (TNR, FNR) = ,
TP +FP" TP + FN
(2.13)
. TP
Precision (P) = (2.14)

TP + FP
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Table 2.4 Indicators and .
. Indicator Value

corresponding values
NSE 0.5310
CC 0.9252
KGE 0.6656
TSS 0.8170
FSS 0.9473

Fig. 2.1 Selected indicators and their values

Fig. 2.2 Confusion matrix

2xTPR x P
F-measure = ————
TPR + P
TP + TN
Accuracy =
TP 4+ TN + FP 4+ FN

Error = 1— Accuracy

(2.15)

(2.16)

(2.17)
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The value of TPR gives an idea of how many correct positive results are present
in all of the positive scenarios. On the other hand, FPR shows how many incorrect
positive examples are present in all negative scenarios.

Area Under the Curve-Receiver Operating Characteristic (AUC-ROC) curve
conveys the change in the classification ability of the model with various thresh-
olds. Here, FPR and TPR are shown on the x and y axes (Fig. 2.3) (Chapi et al., 2017;
Madhuri et al., 2021).

Users can plot an AUC-ROC curve on a graph sheet (pairs of FPR and TPR
for various thresholds). It can be used to compare and validate various algorithms
(Shahabi & Hashim, 2015; Tehrany et al., 2015). The training curve is constructed
by varying the threshold probability of a classifier, above which a dataset is assigned
a positive class and below which is assigned a negative class. Initially, all datasets
are classified as positive, yielding a TPR of 1 and an FPR of 0. As the threshold
increases, TPR decreases when more positive datasets are erroneously classified as
the negative class.

Similarly, FPR increases as more datasets are accurately classified as the negative
class. All datasets are classified as negative at a probability threshold of 1, giving the
other extreme of an FPR of 1 and TPR of 0 (top right corner of the graph). A diagonal
line usually accompanies the AUC-ROC curves to depict the behaviour of the worst
possible classifier (i.e., a random classifier that correctly predicts 50% of the time)

Fig. 2.3 Representative AUC-ROC training curves for different algorithms (Modified and adapted
from Madhuri et al., (2021) under CC BY-NC-ND 4.0 license)
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(refer to Fig. 2.3). The greater distance of the AUC-ROC curve from the diagonal
line indicates the model’s efficacy in discriminating the classes, which occurs in the
high AUC-ROC situation, resulting in the arch curve. The range of AUC-ROC is
between O to 1. Generally, an AUC-ROC of 1 ideally distinguishes between negative
and positive classes. If the value is 0, the model predicts positive classes as negative
and vice-versa (Madhuri, 2022).

As a note, it is the choice of the individual to pick up the relevant indicator
according to their requirements.

Numerical problem 2.3. Two situations exist in water distribution networks (WDN):
leak and no-leak. During observation by the field engineers, 12 leaks and 16 no-leaks
were observed. Later, they used one of the algorithms to simulate these types of leaks.
The algorithm identified only 9 leaks (TP), 12 no-leaks (TN), 4 no-leaks as leaks
(FP), and 3 leaks as no-leaks (FN). Plot a confusion matrix for the given data. Analyze
the problem with standard classification indicators.

Solution:

Confusion matrix forTP = 9, TN = 12,FP = 4, FN = 3ispresented as Fig. 2.4

TP 9

TPR = = = 0.75
TP + FN 9+3
FP
FPR = = = 0.25
TN + FP 12 +4
TN 12
TNR = = = 0.923
TP + FP 9+4
FN 3
FNR 0.25

“TP+EN 9+3

Fig. 2.4 Confusion matrix for the given numerical problem
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TP

Precision = =
TP+FP 944

= 0.69231

2xTPR x P _ 2 x 0.75 x 0.69231
TPR+P 0.75+ 0.69231

TP + TN B 9+ 12
TP+ TN+FP+FN 94 12+4+3

F-measure =

Accuracy =

= 0.75
Error=1—- 0.75 = 0.25

Numerical problem 2.4. Two scenarios existed in students’ performance in academic
institutions: pass or fail. During analysis by the student welfare division, it was noted
that 22 students passed and 20 failed. The official who is monitoring the process used
a simulation algorithm. It identified 14 (TP), 14 (TN), 6 (FP), and 8 (FN). Draw a
confusion matrix for the given data. Compute Precision, Specificity, F-measure, and
Accuracy.

Solution:

Confusion matrix for TP = 14, TN = 14, FP = 6, FN = 8 is presented as Fig. 2.5

TP 14

Precision = = =
TP+FP 14+6

0.7

_ FP 6
T IN+FP  14+6

FPR 0.3

Fig. 2.5 Confusion matrix for the given numerical problem
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Table 2.5 Data of FPR and

TPR for various thresholds Dataset FPR TPR
1 0 0
2 0 0.3
3 0 0.5
4 0 0.7
5 0.3 0.7
6 0.5 0.7
7 0.5 0.9
8 0.7 0.9
9 0.7 1
10 0.9 1
11 1 1

TP 14

TPR = =
TP + FN 14 +38

= 0.63636

2xTPR x P 2x0.63636x0.7
TPR+P  0.63636+0.7

TP + TN _ 14 + 14
TP+TN+FP+FN  14+14+6+8

F-measure = = 0.6667

Accuracy = = 0.6667

Numerical problem 2.5. Table 2.5 consists of FPR and TPR obtained for various
thresholds to predict the thermophysical properties of hybrid nanofluids. Draw the
AUC-ROC curve and compute the indicator.

Solution: Refer to Fig. 2.6

AUC-ROC value = 0.7 x 0.5 + 0.9 x 0.2 + 1 x 0.3 = 0.83 [accumulation of
individual areas yields AUC-ROC value].

Representative Software for the Computation of Indicators

Agricultural and Meteorological software (https://agrimetsoft.com/calculators/)
facilitates the calculation of various indicators.

Revision Questions and Exercise Problems

2.1 Why should simulated and observed be compared?

2.2 What is the role of indicators in modelling? Mention six indicators relevant to
engineering with mathematical expressions and units.

2.3 What is TP, TN, FP, and FN? What is their purpose in modelling? What are
the minimum and maximum values that are possible for these indicators?

2.4 What are Type 1 and Type 2 errors?

2.5 Discuss salient features of the AUC-ROC curve.


https://agrimetsoft.com/calculators/

20

2 Description of Performance Indicators

Fig. 2.6 AUC-ROC curve

2.6
2.7

2.8

2.9

2.10

2.11

What is the ideal value of the AUC-ROC curve?

Can you differentiate between accuracy and the AUC-ROC curve? Which do
you prefer and why?

Information on the observed and simulated number of vehicles travelling on
a highway for days 1-10 for a specific duration is as follows.

Observed number of vehicles: 130, 110, 80, 130, 150, 120, 110, 120, 120, 60
Simulated number of vehicles: 150, 80, 90, 100, 120, 130, 90, 140, 170, 40
Compute KGE, NSE, FSS and TSS. Draw the inferences from the obtained
values.

The problem is related to Computer Numerical Control (CNC) machines,
where the number of metallic sheets handled for four consecutive hours is 20,
35, 40, and 65. However, the machine is expected to handle 18, 40, 35, and 70
metallic sheets as per norms. Analyze Loss Function-based indicators.

The problem is related to the electronics engineering domain, where several
smoke detection sensors were developed. Compute Precision and Accuracy
for TP = 10, TN = 320, FP = 20, and FN = 50. Make relevant inferences.
Table 2.6 contains FPR and TPR obtained for various thresholds in sorption-
enhanced biomass chemical looping gasification. Draw the AUC-ROC curve
and compute the related value.
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Table 2.6 Data of FPR and

TPR for various thresholds Dataset FPR TPR
1 0 0
2 0 0.35
3 0 0.45
4 0 0.55
5 0.35 0.75
6 0.55 0.80
7 0.6 0.85
8 0.7 0.9
9 0.8 1
10 0.85 1
11 1 1

Advanced Review Questions

2.12 Can you develop indicators other than those mentioned in this chapter? If so,
what will be the advantages of the proposed indicators over the existing ones?

2.13 Do you think weights are to be assigned for the indicators? Justify your answer!

2.14 Do you have any challenges while computing the AUC-ROC value? If yes,
what are they?

References

Agrawal SK (2023) Metrics to evaluate your classification model to take the right decisions.
Accessed February 10, 2024, https://www.analyticsvidhya.com/blog/2021/07/metrics-to-eva
luate-your-classification-model-to-take-the-right-decisions/

Chapi, K., Singh, V. P,, Shirzadi, A., Shahabi, H., Bui, D. T., Pham, B. T., & Khosravi, K. (2017). A
novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental
Modelling and Software, 95, 229-245.

Czakon, J. (2023). 24 Evaluation metrics for binary classification (and when to use them). Accessed
February 10, 2024, https://neptune.ai/blog/evaluation-metrics-binary-classification

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal
of Hydrology, 377, 80-91.

Jackson, E. K., Roberts, W., Nelsen, B., Williams, G. P., Nelson, E. J., & Ames, D. P. (2019).
Introductory overview: Error metrics for hydrologic modelling—A review of common practices
and an open source library to facilitate use and adoption. Environmental Modelling & Software,
119, 32-48.

Ma, S., Chen, C., He, H., Wu, D., & Zhang, C. (2018). Assessing the skill of convection-
allowing ensemble forecasts of precipitation by optimization of spatial-temporal neighborhoods.
Atmosphere, 9, 43.

Madhuri, R. (2022). Risk assessment and mitigation strategies for urban floods under climate
change. Ph.D. thesis, BITS Pilani, India.


https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-classification-model-to-take-the-right-decisions/
https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-classification-model-to-take-the-right-decisions/
https://neptune.ai/blog/evaluation-metrics-binary-classification

22 2 Description of Performance Indicators

Madhuri, R., Sistla, S., & Raju, K.S. (2021). Application of machine learning algorithms for flood
susceptibility assessment and risk management. Journal of Water and Climate Change, 12,
2608-2623 [open access paper under under CC BY-NC-ND 4.0 license].

Moriasi, D. N., Arnold, J. G., Liew, M. W. V., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007).
Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.
Transactions of the American Society of Agricultural and Biological Engineers, 50, 885-900.

Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models:
performance measures and evaluation criteria. American Society of Agricultural and Biological
Engineers, 58, 1763-1785.

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part [—A
discussion of principles. Journal of Hydrology, 10, 282-290.

Roberts, N. M., & Lean, H. W. (2008). Scale-selective verification of rainfall accumulations from
high-resolution forecasts of convective events. Monthly Weather Review, 136, 78-97.

Shahabi, H., & Hashim, M. (2015). Landslide susceptibility mapping using GIS-based statistical
models and remote sensing data in tropical environment. Scientific Reports, 5, 9899.

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram.
Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192.

Tehrany, M. S., Pradhan, B., Mansor, S., & Ahmad, N. (2015). Flood susceptibility assessment using
GIS-based support vector machine model with different Kernel types. CATENA, 125, 91-101.

Suggested Further Reading

Hridik, P., Vasan, A., & Raju, K. S. (2022). Leak detection in water distribution networks using
deep learning. ISH Journal of Hydraulic Engineering, 29, 674—682.



Chapter 3 ®)
Classical Machine Learning Algorithms e

3.1 Introduction

The present chapter is a blend of classically familiar algorithms, namely, Artificial
Neural Networks (ANN), Wavelet Neural Networks (WNN), Support Vector Regres-
sion (SVR), Extreme Learning Machine (ELM), Logistic Regression (LR), and K-
Nearest Neighbour (KNN). Before proceeding to the details of these algorithms, an
important topic, the activation function, is briefly discussed.

Note: Given input and output values are considered to be normalized in all the
numerical problems discussed here and in other chapters. In addition, a representative
situation for connecting the problem to the real-world scenario was provided.

3.2 Activation Function

The activation function estimate output from the given input (Fig. 3.1). These can be
developed or modified depending on the requirement. Figure 3.2 presents selected
activation functions and their mathematical philosophy (Sharma, 2017).

3.3 Artificial Neural Networks

ANN can develop a non-linear relation between inputs and outputs. Figure 3.3
presents architecture. It comprises layers. Each layer receives output from the
preceding layers, i.e., output from each layer contributes to the next layer. Here,
Feed-Forward with Back-Propagation (FFBP)-based ANN is discussed briefly
(Fig. 3.3).
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Fig. 3.1 Weighted sum input to the neuron (or node), activation function, and the resulting output

FFBP has forward and backward phases (Rao, 2000). The forward phase is
associated with transmitting inputs to the output layer via the hidden layer using
the activation function. Contrarily, the error between simulated and observed is
propagated proportionately to the preceding layers in the backward phase. The
process can be stopped when there is no change in the error between successive
epochs (or termination criterion as specified by the user). Weights established at this
stage are considered optimal and used for further analysis. The weight adjustment
process is as follows (Eq. 3.1):

JoE
Awji(n) = =L x — +M; X Aw;j(n — 1) (3.1)
8(1),7

where M;andL, are momentum and learning rates, respectively. Aw;(n — 1),

Aw;j(n) are weight changes between nodes iandj in the course of (n — 1) and
nepochs. The computation of updated weights is as follows (Eq. 3.2)

w;j(new) = w;;(old) + Aw; (3.2)

Further simplifying Egs. 3.1 and 3.2, without momentum factor yields (Eq. 3.3),

whnew = wjold + Ly x B! x xi (3.3)
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Shape of activation function
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Most  flexible; the

range is -1 to 1.
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Fig. 3.2 Activation functions a Sigmoid b Rectified Linear Unit (ReLU) ¢ Binary step function

d and Hyperbolic Tangent and their mathematical philosophy
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Fig. 3.3 The representative architecture of ANN

where mjk is weight relating ith layer, jth node to the (i 4+ 1)th layer, kth node;

Ef:’l is the error of (i + 1)th layer, kth node; xj; is the input from ith layer, jth node
to the (7 + 1)th layer, kth node.

Numerical problem 3.1. In a typical architecture, one input layer (with four inputs,
namely, Dissolved solids, Electrical conductivity, Turbidity, and pH) and one hidden
layer with one node exist. Input values are 0.2, 0.3, 0.4 and 0.5. Assume connection
strengths between four inputs and the hidden layer as 0.4, 0.5, 0.6, and 0.7. Compute
output from the hidden layer. Sigmoid activation function can be chosen. What may
happen if the activation function is Hyperbolic Tangent?

Solution:

Weighted input to the hidden layer Z?:l wixi =02 x 04403 x 054+ 04 x
0.6 + 05 x 0.7 =0.08+ 0.15 + 0.24 4 0.35 = 0.82

Output from a hidden layer on the basis of Sigmoid function, f(x) =
m = 0.6942

l+e—0.82 -

In the case of a Hyperbolic Tangent, output from the hidden layer, f(x) =
eX—emt MR 08 2270404404 _ () 675
eXwifo—2wr . 0824 ,-082 T 22704+0.4404 — .

1 —
Ide— 2w
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Output based on the Hyperbolic Tangent activation function is slightly lower
compared to Sigmoid.

Numerical problem 3.2. Three inputs, current, sampling time, and temperature (A,
B, C) with magnitudes 2, 4, and 6, produce an output X (state of health of battery)
of 0.6. One hidden layer with two nodes, K and L, is suggested. Initial weights from
input (A, B, C) to the K node are 0.1, 0.2, and 0.3; these values for the L node
are 0.15, 0.25, and 0.35. Initial weights from hidden nodes K and L to output X
are 0.4 and 0.45, respectively. The learning rate is 0.1. Use the Sigmoid activation
function. Draw the architecture. Establish a relationship using FFBP-ANN and show
the computations for one epoch.

Solution:

Figure 3.4 presents the architecture for the given problem.
Input values x;, x5, x3 (Nodes A, B, C) are 2, 4, 6; Observed value Ox is 0.6
Activation function: Sigmoid f (x) = 1

THe™
Epoch 1:

Weighted input to the K node of the hidden layer = Z?zl wix; = 0.1 x2402 x
4+03x6=28

Output from the K node of the hidden layer, Ox = 7o = 1ro=v = 0.9427.
Weighted input to the L node of the hidden layer= Zle wix; = 0.15 x 2 +
025 x4+ 035 x6 =34

Output from the L node of the hidden layer, O, = H% = W%“ = 0.9677
Weighted input to the output layer X, from K and L nodes = 0.4 x 0.9427 + 0.45 x
0.9677 = 0.8125

Fig. 3.4 The architecture of ANN for the given numerical problem
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Predicted output P from the output layer X, Px = ; +16,X = ; +e10-8125 = 0.6927

Observed output Ox = 0.6

Error Ex = Ox — Px = 0.6 — 0.6927 = —0.0927

The division of errors is E;_; = O,(1 — O,) > w,Ej [Ifjis X, j — 1is K, L]
Entrusting errors to elements in layer 2

Ex = O x (I — Ok) x (wgx % Ex)
— 0.9427 x (1—0.9427) x (0.4 x —0.0927) = —0.002003

EL = OL X (1 —OL) X ((X)LX X Ex)
= 0.9677 x (1-0.9677) x (0.45 x —0.0927) = —0.001304

Weights are updated as per Eq. 3.3. Tables 3.1 and 3.2 comprise updated weights
connecting nodes in layers 1 and 2 & 2 and 3, respectively.

Numerical problem 3.3. The architecture is 5-4-1 (refer to Fig. 3.5). Five inputs
(muscle strength, aerobic endurance, body mass index, speed, and flexibility) (A to
E), with magnitudes 5, 6, 7, 8, and 9 affecting non-academic performance X, with the

Table 3.1 Updated weights connecting nodes in layers 1 and 2

Updated weight for input to | Equation for updating weights | Updated weights

hidden nodes

AK ®AK.old + L x Ex X x| 0.140.1 x (—0.002003) x 2 =
0.0996

BK ®BK.old + Lr X Ek X x2 0.240.1 x (—=0.002003) x 4 =
0.1992

CK OCK.old + Lr X Ek X x3 0.3 4 0.1 x (—=0.002003) x 6 =
0.2988

AL wAL.old + Ly X EL X x1 0.15+ 0.1 x (=0.001304) x 2
=0.1497

BL ®BL.old + Ly X EL x x3 0.25 4+ 0.1 x (—0.001304) x 4
=0.2495

CL wcL.old + Lr X EL X x3 0.35 4+ 0.1 x (—0.001304) x 6
=0.3492

Table 3.2 Updated weights connecting nodes in layers 2 and 3

Updated weight for the | Equation for updating weights | Updated weights
hidden to output nodes

KX okx.old + Ly X Ex x Ex 0.4 4 0.1 x (=0.002003) x
(—0.0927) = 0.4000188

LX oLx.old + Ly X EL x Ex 0.45 4+ 0.1 x (—=0.001304) x
(—=0.0927) = 0.450012
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Fig. 3.5 The architecture of ANN for the given problem

value of 1. Initial weights connecting input and hidden nodes are 0.1, whereas these
are 0.2 for hidden nodes to output. The learning rate can be considered as 0.2. Use the
Hyperbolic Tangent activation function. Establish a relationship using FFBP-ANN
and show the computations for one epoch.

Solution:

Input values xj, x,, x3 x4, xs (Nodes A, B, C, D, E) are 5, 6, 7, 8, 9; Observed value
Oxis 1.
Hyperbolic tangent function f (x) =

Epoch 1:

Weighted input to the hidden layer Zle wx; =01x54+01x6+4+01x7+
0.1 x 8 +0.1 x 9 = 3.5[K, L, M, N nodes in the hidden layer]
Output from each node [K, L, M, N] in the hidden layer Ox = O, = Oy = On =
Cr = S = 0.9982
Input to the output layer = 0.2 x 0.9982 x 4 = 0.79856 [Here 4 represents four
hidden nodes that are connected to the output layer]

of — ¥ £0.79856 _ ,—0.79856

Predicted output from the output layer X, Px = == = SGmmeg,ome = 0.6632

e —e ¥

er e
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Observed output Ox = 1

ErrorEx = Ox — Px = 1 — 0.6632 = 0.3368

The division of errors is E;_; = O,(1 — 0,) > w,;E; [Ifjis X,j — 1is K, L, M, N]
Entrusting errors to elements in layer 2

Ex = Ok x (1 — Og) x (wgx X Ex)
= 0.9982 x (1—0.9982) x 0.2 x 0.3368 = 0.000121

Ep = O x (1 —Or) x (wrx x Ex)

= 0.9982 x (1-0.9982) x 0.2 x 0.3368 = 0.000121

Em = Om x (I = Onm) X (omx X Ex).
=0.9982 x (1 —0.9982) x 0.2 x 0.3368 = 0.000121

Ex = On x (1 = On) x (wnx X Ex)
= 0.9982 x (1-0.9982) x 0.2 x 0.3368 = 0.000121

Weights are updated as per Eq. 3.3. Tables 3.3 and 3.4 comprise updated weights
connecting nodes in layers 1 and 2 & 2 and 3, respectively.

Table 3.3 Updated weights connecting nodes in layers 1 and 2

Updated weight for input to hidden nodes Updated weights

AK = AL = AM = AN 0.1 4+0.2x0.000121 x 5 = 0.100121
BK = BL = BM = BN 0.1 +0.2 x 0.000121 x 6 = 0.100145
CK =CL =CM = CN 0.1 4+ 0.2 x 0.000121 x 7 = 0.100169
DK = DL = DM = DN 0.1+ 0.2 x 0.000121 x 8 = 0.100194
EK = EL = EM = EN 0.1+ 0.2 x0.000121 x 9 = 0.100218

Table 3.4 Updated weights connecting nodes in layers 2 and 3

Updated weight for the hidden to output nodes | Updated weights
KX = LX = MX = NX 0.2+ 0.2 x 0.000121 x 0.3368= 0.200008
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3.4 Wavelet Neural Networks

The principle behind wavelet transform (Guo et al., 2022; Vogl et al., 2022) is to
get hold of sufficient insights from primary data and disintegrate the same into
further narration. Dilation and translation are essential features in wavelet disin-
tegration. Wavelet transforms are dealt with low and high-pass filters. A standard
WNN architecture is presented in Fig. 3.6.

Workflow is as follows: Primary data is established in the input layer, whereas
the hidden layer comprises wavelons (or hidden units). The primary input data in
the hidden layers are metamorphosed into dilation and translation mother wavelets.
Lastly, approximations of the observed values are computed in the output layer
(Fig. 3.6). Equation (3.4) denotes the single hidden layer process of feed-forward
WNN, which acts like a linear model when no hidden units exist (Vogeti et al., 2022).

o n
Ysim = ®q + Z wM(z;) + Z ;X 34
=1 i=1

x; = Input value, yg, = Simulated output values; @ = Number of wavelons;
wq = Constant ; w; and w; =weights of input and hidden network; n = Number of
inputs; z; =Normalized input to wavelon; M(z,-j) =Intermediate outputs, which are

Fig. 3.6 Architecture of WNN
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dependent on the selected mother wavelet. They are the crucial components of WNN,
which decide the dilation and translation pattern within the Wavelons in the hidden
layer. Mathematical expressions of some of the mother wavelets are (Eqs. 3.5-3.8):

72
Gaussian M(z;) = z; - e i/2 (3.5)
72
Mexican hat M(z,-j) = (1 — 25) - e u/z (3.6)
_2
Morlet M(z;) = e U/Z. cos 5z; 3.7
Shannon M(z;) = sinc (7). e it (3.8)

The workflow of WNN is discussed below:

e Identifying the number of hidden units, type of mother wavelet, dilation, and
translation and related parameters

e Random assignment of initial network weights

e Computation of yg, and estimating the error

e Updating the weights (and associated parameters) till the chosen termination
criteria are fulfilled.

Most of the parameters mentioned above influence network weights significantly,

except, Dropout. It purposefully discards wavelons from the network to improve
further.
Epochs can be continued till a tolerance error is achieved with adequately assigned
learning and momentum rates. Equation 3.9 represents the total error (E,,), i.e., the
difference between observed output (yops) and the ygm, weighted by the wavelet
function (Z) for each training example.

By = ) (obs — Ysim) X W(Z) (3.9)

The error serves as a performance indicator for the network and is typically mini-
mized during training. Repeat the analysis using the new weights and modify the
mother wavelets until the observed and simulated values are closer. Once reasonable
simulated values are obtained by adjusting the weights and mother wavelets further,
the E,, is back-propagated by using the chain rule till tolerance error is achieved
(Yang et al., 2009).

Numerical problem 3.4. Using WNN, establish the relationship between stress
(input x) and strain (output y). Datasets are presented in Table 3.5.
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Table 3.5 Information about

datasets Dataset X y
1 0.05
2 0.03
3 19 0.2
4 4 0.5
5 21 0.22
Solution:

Step 1: Selection of the number of hidden units, Activation functions (here it is

Mother wavelet)

Number of input variables i = 1;
Number of output variables k = 1;
Number of training records P = 5;

The number of hidden units is 7 = 1 (considered only one hidden unit), and the type

of mother wavelet function considered is Gaussian wavelet.

Step 2: Assigning w,,; with a matrix size of n x i to multiply with input.
W4 18 assigned based on random weight allocation and matrix size n x i. In this

numerical, the matrix sizeis 1 x 1
we1 = [0.35] (Say the weights are randomly assigned)
Step 3: Computation of weighted input

Weighted input =1=0.35 x x
Step 4: Assigning translation (b) and dilation parameter (a)

b=0.5M; +Ny)

a=02M; — N

where,

M; = Maximum of the inputx = 21

N; = Minimum of the inputx = 4

b =05M+N) = 0521 +4) =125

a=02M;—N;) =0221-4)=34
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Step 5: Computation of Z value (u-term)

1-h  1-125

Z value = _
vae =—, 34

Step 6: Computation of hidden unit value or ¥ value

W(Z) =e /2

Step 7: Multiplication of weight matrix w,y, of size n x k with a hidden layer.
W2 1s assigned based on random weight allocation, and the matrix size is n x k. In
this numerical, the matrix sizeis 1 x 1

wy2 = [0.45] (Say the weights are randomly assigned)

Step 8: Computation of simulated values and resulting anomalies (Table 3.6)
Ysim = W2 \IJ(Z)

2 i1 Bi
Average total error = = = 0.1476
Eu =Y (obs — Ysim) X ¥(2)
= (0.047) x (0.0068) + (0.02) x (0.0228) + (0.097)
x (0.2278) + (0.498) x (0.0049) + (0.076) x (0.3198)
= 0.04962

Numerical problem 3.5. Establish the relationship between Depth of water, Velocity
of flow (x; & x,), and Flood damage (y) using WNN. Information is presented in
Table 3.7.

Table 3.6 Computation of simulated strains (y) and anomalies

X Weighted input = | Z value = W(Z) = Vsim = Yobs E; =
[=035xx L=b e/ wa2x ¥(Z) Yobs — Ysim
1.75 -3.16 0.0068 0.003 0.05 0.047
3.15 -2.75 0.0228 0.01 0.03 0.02

19 6.65 -1.72 0.2278 0.103 0.2 0.097

4 1.4 —3.26 0.0049 0.0022 0.5 0.498

21 7.35 —1.51 0.3198 0.144 0.22 0.076
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Table 3.7 Information about

datasets Dataset X1 X2 y
1 2 0.5
2 3 0.7
3 4 0.1
4 8 0.4
5 11 9 0.6
Solution:

Step 1: Selection of the number of hidden units, Activation functions (here it is
Mother Wavelet)

Number of input variables i = 2;

Number of output variables k = 1;

Number of training records P = 5;

Number of hidden units, n = 1 (considered only one hidden unit), and the type of
the mother wavelet function considered is Mexican Hat.

Step 2: Assigning w,,; with a matrix size of n x i to multiply with input.
W41 18 assigned based on random weight allocation, and the matrix size n x i. In this
numerical, the matrix sizeis 1 x 2
w1 = [0.30.4] (Say the weights are randomly assigned)
Step 3: Computation of weighted input.
Weighted input = 1=0.3 x x; + 0.4 x x»
Step 4: Assigning translation (b) and dilation parameter (a)

b=0.5M; +Ny)

a=02M; — N

where,

M; = Maximum of the inputx; = 11

N; = Minimum of the inputx; = 1

b=05M;+N;) =05(114+1)=6

a=02M —N) = 02(11 = 1) =2
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Step 5: Computation of Z value (u-term)

Z value = =
a

I-b 1-6
2

Step 6: Computation of hidden unit value or ¥ value

W(Z) = (1-2%).e 7"

Step 7: Multiplication of weight matrix w,, of size n x k with a hidden layer.

Wy 18 assigned based on random weight allocation, and the matrix size n x k. In
this numerical, the matrix size is 1 x 1

wy2 = [0.4] (Say the weights are randomly assigned)

Step 8: Computation of simulated values and resulting errors (Table 3.8)

Ysim = W2 ¥ (2)

"
2B 55
n

Average total error =
By =) (obs — Yeim) X ¥(2)
= (0.5995) x (—0.2487) + (0.8773) x (—0.4433) + (0.1666)

x (—0.1665) + (0.7985) x (—0.9963) + (0.3117) x (0.7207)
= —1.1366

Table 3.8 Computation of simulated flood damage (y) and error

X1 | xp | Weighted input Zvalue |y(z) = Vsim = Yobs i =
=1=03xx1+ |— % (1 _ Zz).efzz/z we2 X U(Z) Yobs —
0.4 X x2 Vsim

1 2 1.1 —2.45 —0.2487 —0.0995 0.5 ]0.5995

4 3 2.4 —-1.8 —0.4433 —0.1773 0.7 ]0.8773

7 4 3.7 —1.15 —0.1665 —0.0666 0.1 0.1666

9 8 59 —0.05 —0.9963 —0.3985 0.4 ]0.7985

11 |9 6.9 0.45 0.7207 0.28828 0.6 ]0.3117
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3.5 Support Vector Regression

The primary focus of SVR is to determine the best hyperplane that suits most datasets
by maximizing the error margin (Granata et al., 2016; Raghavendra & Deka, 2014;
Vapnik, 1998) (Fig. 3.7). It has a robust theoretical framework that incorporates prin-
ciples of convex optimization, ML, statistics, and mathematical analysis. These also
have good generalization performance, strong adaptability, and the ability to handle
non-linearity and noisy datasets compared to traditional algorithms (Madhuri et al.,
2021; Mohammadi, 2021; Sujay & Paresh, 2014)). Mathematically, a hyperplane
can be denoted (Eq. 3.10):

ox+b=0 (3.10)

where w" and b are weight vector and bias.

Equation 3.11 defines the decision boundary of the hyperplane, o™x + b = 0. If
wTx + b > 0, then the datasets related to overestimated vectors; if w'x + b < 0, the
dataset related to underestimated vectors. The remaining vectors that fall within the
error margin are termed support vectors. The optimal hyperplane can be identified by
satisfying the constraint of maximizing the error margin by minimizing the objective
function (Eq. 3.11)

Fig. 3.7 Hyperplane of SVR
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1
Z =—.|o) (3.11)
2

subject to y; (wa[ + b) > 1fori = 1,2, ..., n, where |oo|2 is the squared normal-
ized weight vector w; X; and y; are ith datasets in the feature space. The constraint
Vi (u)Tx,- + b) > 1 ensures the margin is at least 1 for all datasets. The optimization
problem can be worked out utilizing the Lagrange multiplier approach, and the dual
form of the problem is defined as the (Eq. 3.12)

1
Maximize L = sum(o;) — <§> x sum(sum(ay.0; - y; - Yj - X; - X;)) (3.12)

subject to o; > 0 and sum (o, y;) = 0
where o; is the Lagrange multiplier for the ith constraint. The decision boundary
can be found using Eq. 3.13.

f(x) = sign(sum(a; - y; - x; - x;) + b) (3.13)

It can be extended to non-linearly separable datasets using the kernel trick.
Some kernels are the Radial Basis Function (RBF), Sigmoid, and polynomial. The
mathematical formula for the RBF kernel is (Eq. 3.14):

ooy

K (x,-,xj) =e 2 (3.14)

where o is a hyperparameter that controls the width of the RBF function, the param-
eters governing SVR are the kernel, shape, regularization parameters, and dropout.
The loss function can be computed between observed and predicted values. Local
gradients can be updated until the termination criteria are satisfied (Madhuri, 2022).

Numerical problem 3.6. Using SVR, relate rainfall (x) and drought index (y).
Datasets are presented in Table 3.9. Compute output value for input of 6. Assume
suitable data, if any.

Table 3.9 Information about
. Dataset X y
input and output
1 2 7
5 37
4 17
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Solution:
The given problem is solved in a stepwise manner, as presented below
Step 1: Calculation of kernel matrix K by selecting the appropriate kernel function

The computation of kernel elements (k;) depends on the chosen kernel function.
Here, RBF is selected as the kernel; thus, the elements of the kernel present in the

matrix are computed based on the RBF expression as k; = e~ Y llxi—x ”2. Here, Y is
a positive constant controlling the spread of a kernel chosen as 0.1 in this problem.
The choice of 0.1 as a default value for Y is often a reasonable starting point for a
wide range of datasets. It is neither too small nor too large, allowing for a balance
between capturing local patterns and generalizing well to unseen datasets.

X1 = 2,)62 = 5, andx3 =4

Kernel Elements can be represented as follows:

X1 X2 A3
X1 ki1 k12 k13
X2 ka1 k2o ka3
X3 k3 k32 k33

Calculations of the kernel elements based on the input elements are presented as
follows (Table 3.10)

ky = eCYln=nl?) — o(=TI2=2F) — 0 — |
kiy = e(ZTIn=xl?) — (=TI2-51%) — ,=01x9 _ () 4065
ki = e(FTIn=xl?) — (=YI2=417) — ,=01x4 _ () 6703

ko = e(TThenl) = ((FTIS22) = =019 — 04065
o(~TIo-nlP) _ J(-TI5-5I7) _ 0 _

koz = e(—THXz—XgHZ) — e(—THS—4||2) — ¢ 0IxI _ (9048

ks = el — o(=YI4=217) _ ,-01x4 _ () 6703
kyp = eCTInmnl®) = o(=TI4=5I") = (=01x1 — (9048

e
ks = CTI=0l?) — p(-TI4—417) 0 g

Step 2: Computation of contraction coefficient (o) based on observed variables and
the obtained kernel matrix (K), which is as follows:
The output y is the function of kernel matrix (K) and contraction coefficient (o)

y=K-a
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Table 3.10 Kernel matrix
K = X1 X2 X3
X1 1 0.4065 0.6703
bY) 0.4065 1 0.9048
X3 0.6703 0.9048 1
(or)
a=@® "y
7
where, y = | 37
17

In this numerical problem, the Gauss-Jordan elimination procedure is used. The
augmented matrix of the K is as follows =

1 0.4065 0.6703 1 0 0
0.4065 1 0.9048
0.6703 0.9048 1 0 0

Sequentially pivot the diagonal elements for the first three columns and apply
row operations such that diagonal elements are one and the remaining elements are
zeroes. The row operations applied to the matrix are as follows:

Ry, = Ry — 0.4065R1;R3 = R3 —0.6703R; Ry = 1.1979R3; R3 = R3 — 0.6703Ry;
R3 13.9435R3.R; = Ry —0.3623 R3and Ry = Ry — 0.7575R3.

The inverse matrix computed from Gauss-Jordan elimination is as follows:
K™=

3.029 3.3405 —5.0528
3.3405 9.1987 —10.5621
—5.0528 —10.5621 13.9435

K" y=qa
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(K)! y a
3.029 3.3405 —5.0528 7 58.904
3.3405 9.1987 —10.5621 37 184.18
—5.0528 -10.5621 13.9435 17 —189.128
Cip = 3.029 x 7 + 3.3405 x 37 + (—5.0528) x 17 = 58.904
Cy = 3.3405 x 7 + 9.1987 x 37 + (—10.5621) x 17 = 184.18

C3; = (—5.0528) x 7 + (—10.5621) x 37 4+ 13.9435 x 17 = —189.128

Step 3: Computation of bias (b)

Step

be=yi— Y aikyip=1

by =y — Zdiklj
by =7 —1(58.904 x 1) 4+ (184.18 x 0.4065) 4+ (—189.128 x 0.6703)]
by = —0.0006716

by = yk —Zaikp-; p=2

by =y, — Z a;koj
by = 37 — [(58.904 x 0.4065) + (184.18 x 1) + (—189.128 x 0.9048)]
b, = —0.0014616

by =yk—206ikp‘;p=3

by =y; — Zaik3j
by = 17 — [(58.904 x 0.6703) + (184.18 x 0.9048) + (—189.128 x 1)]
by = —0.0014152

by + by + b3
p= T
, _ (0.0006716) + (=0.0014616) + (~0.0014152)
N 3
b= —-0.0011828

4: Computation of simulated values using density function f (x;)

Density function f (x;) = Y ouk; + b(m={1,2,3}, j ={1,2,3})
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Fori=1,f(x;) = > ouki; + b=ouky; + ozkin + ozkiz +b

fx1) = (58.904 x 1) + (184.18 x 0.4065) + (—189.128 x 0.6703) + (—0.0011828)
fx1) = 6.99948

Fori=2,f(x2) = > ouwky + b=ouky + cokpp + azkos + b

f(x2) = (58.904 x 0.4065) + (184.18 x 1) + (—189.128 x 0.9048) + (—0.0011828)
f(x2) = 37.0002

Fori = 3, f(x3) = > amks; + b=ayks; + orksy + azkss + b

F(x3) = (58.904 x 0.6703) + (184.18 x 0.9048) + (—189.128 x 1) + (—0.0011828)
f(x3) = 16.8482.

Step 5: Computation of loss function between observed and simulated values
(Table 3.11).

The simulated values have a good agreement with the observed values; thus,
in this numerical, the density function can be used for predicting the new input
values (x,) as presented in Step 6. If the simulated values deviate significantly
from the observed values, the kernel functions can be changed (for example, Linear,
Polynomial, Gaussian, Logistic).

Step 6: Computation of kernel and output using density function f (x;) for the new
input value x,,
The kernel calculated for input, x, = 6 are presented as follows:

k(xi, ) = e~ Tl=sl’
Fori = 1, k(x;, x,) = e~ Tha=ul® — ¢=0112-6I" — 2019
Fori = 2, k(x2, x,) = e~ Vlle=nll> = o=0.11I5-61" — (.9048.
Fori = 3, k(x3, x,) = e~ Y=l — o=01I4=6I" — (. 6703.

Table 3.11 Observed,

. . Dataset | Observed values | Simulated values | Loss function
simulated, and loss function I—
values k) J () = yr —f(xn)
1 7 6.99948 0.00052
2 37 37.0002 —0.0002
17 16.8482 0.1518




3.5 Support Vector Regression 43

Now, applying the updated kernel elements in the density function, f(x,) =
Z OLl‘knj + b

S () = (58.904 x 0.2019) + (184.18 x 0.9048) + (—189.128 x 0.6703) 4+ ( — 0.0011828)
= 51.765.

For the new value (x,), output value predicted using the density function is f (x,) =
51.765.

Numerical problem 3.7. Relate wheel load (x) and pavement failure (y) using the
SVR for the datasets presented in Table 3.12. What is the output for an input value
of 67

Solution:

The given problem is solved in a stepwise manner, as presented below:

Step 1: Calculation of kernel matrix K by selecting the appropriate kernel function
The computation of kernel elements (k;;) depends on the chosen kernel function.

Here, RBF is selected as the kernel; thus, the elements of the kernel present in the

matrix are computed based on the RBF expression as k; = e~ * =", Here, T was

chosen as 0.1 in this problem. x; = 3,x, = 7,x3 = 5,and x4 = 14.

Kernel Elements

X1 X2 X3 X4
X1 k11 k12 ki3 kia
X2 ka1 k2o ka3 ko4
X3 k3i k32 k33 k34
X4 kay k4 ka3 kag

Calculation of the kernel elements based on the input elements are as follows:
(Table 3.13)
ki = e(-rIm=nl?) = ((=7I3-31") — 0
kiy = e(TT=al®) — o(=YI=TF) — ,-0.1x16 _ 07019,

ks = eCThimnl?) = (CYIBSI7) — =014 — 0 6703,

Table 3.12 Information

about input and output Dataset X y
: 3 12
2 3
> 5 1.6
! 14 6.5
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kg = e(VIxni—ul?) — o (=vI3=1417) _ ,(=0.1x121) _

kyy = e(-Te—nl?) = H(=YIT-3I7) — ,-0.1x16

kyy = eCTI—0l?) — ((=TI7-71%) — 0 —
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= 0.2019.

koz = e(—THXz—X;HZ) — e(—TH7—5||2) — ¢ 0x4 _ 0.6703.

Koy = eCYIR=xl?) — H(=TIT=1417) — ,=0.1x49 _ () 00745

ky = e(*T”)Q*Xl %)
ky = e(—Tllxz—Xsz)
ki = e(—T”Xz—XzHZ)

kyy = e(—Tllxs —x4])%)

ki = e(CTanl?) = (=TI14-31F)
kyy = e(Tlu—nl?) _ ,(=TI14=7]%)
kiz = e(-Yl=xl?) = o(=TI14-51)
kuy = e(7T||x47x4||2) _ e(’T””’M”Z) — =1

— e—O.1><121

= o(=YI5-317) ,=0.1x4 _ () 6703.
— o(=YIS=717) _ ,=01x4 _ (6703,

= e(_THS_S”z) = eo = 1.

= (=TIS=1417) — ,=0.1x81 _ (9 903,

=0.
= ¢ 0% — 0.00745.
= ¢ 0131 — 0.0003.

Step 2: Computation of contraction coefficient (o)) based on observed variables and

kernel matrix (K) obtained

The output y is the function of kernel matrix (K) and contraction coefficient (o)

y=K-a

or
—1

a=K)™" -y

Table 3.13 Kernel matrix K =
X1 X2 X3 X4

X1 1 0.2019 0.6703 0
X 0.2019 1 0.6703 0.00745
X3 0.6703 0.6703 1 0.0003
X4 0 0.00745 0 1
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1.2
3
where, y =
Y= 16
6.5

The augmented matrix of the K is presented as follows.

1 0.2019 0.6703 0 1 0 0 0 0
0.2019 1 0.6703 0.00745 0 1 0 0 0
0.6703 0.6703 1 0.0003 0 0 1 0 0
0 0.00745 0 1 0 0 0 1 0

Sequentially pivot the diagonal elements for the first five columns and apply row
operations such that diagonal elements are one and the remaining elements are zeroes.
The row operations applied to the matrix are as follows (as part of the Gauss-Jordan
Elimination procedure)

Ry = Ry —0.2019R1; R3 = R3 —0.6703R1; Ry = 1.0425R5; R3 = R3 — 0.534966R,;
R4 = R4 — 0.00745R;; R3 = 3.9628R3; Ry = R4 + 0.004155R3; Rq4 = 1.00012Ry4;

R3 R3 4+ 0.015276R4; Ry = Ry —0.007767R4; Ry = Ry —0.5577R3; Ry = Rj—

0.6703R3; R; = Ry — 0.2019R;.

The inverse matrix computed from Gauss-Jordan elimination is as follows:
K=

22751 1.0222 —2.2102 —0.00695
1.02219 2.2753 -2.2103 —0.01629
22102 —2.2103 3.9630 0.01528
—0.007615 —0.01695 0.01646 1.0001
2.2152
o= 4.4102
2.4615

6.467

Cyp = 2.2751 x 1.2 4+ 1.0222 x 3 + (=2.2102) x 1.6 4+ (—=0.00695) x 6.5 = 2.2152.

Cy1 = 1.02219 x 1.2 4 2.2753 x 3 + (=2.2103) x 1.6 + (—=0.01629) x 6.5 = 4.4102.
C3; = 2.2102 x 1.2 4+ (—2.2103) x 3 + 3.9630 x 1.6 4+ 0.01528 x 6.5 = 2.4615.
C41 = (—0.007615) x 1.2 4+ (—0.01695) x 3 + 0.01646 x 1.6 + 1.0001 x 6.5 = 6.467.

Step 3: Computation of Bias ()
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bk =yk—201ikp',p=1

by =y — Zaiklj

by = 1.2 —[(2.2152 x 1) + (4.4102 x 0.2019) + (2.4615 x 0.6703) + (6.467 x 0)]
by = —3.555

b =y _Zuikpj; p=2

by=yr— ) aiky

by =3 —[(2.2152 x 0.2019) + (4.4102 x 1) + (2.4615 x 0.6703) + (6.467 x 0.00745)]
by = —3.555

by = yr — Zaikpj;p =3

by =y; — Zuik3j
b3 =1.6 —[(2.2152 x 0.6703) + (4.4102 x 0.6703) + (2.4615 x 1) 4+ (6.467 x 0.0003)]
by = —5.3044

bk = Yk —Zaikpj; p=4

by =y4 — Z ik
by = 6.5 —[(2.2152 x 0) 4+ (4.4102 x 0.00745) 4+ (2.4615 x 0) 4+ (6.467 x 1)]
by = —0.000144

_b]+b2+b3+b4
- 4

b

_ (—3.555) + (—3.555) + (—5.3044) + (—0.000144)
B 4

b

b= -3.1036

Step 4: Computation of simulated values using Density Function f (x;)

Density function f () = Y. ks + bm = {1,2.3.4}, j = {1,2.3.4})
Fori=1,f(x;) =Y oukyj + b= ajky + ozkip + ozki3 + aukis+ b

f(x1) = (22152 x 1) + (4.4102 x 0.2019) + (2.4615 x 0.6703) + (6.647 x 0) + (—3.1036)
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f(x1) = 1.65.
Fori=2,f(x) = ) aokoj + b = a1ky) + o2kps + azkaz + ogkps+ b

F(x2) = (22152 x 0.2019) + (4.4102 x 1) + (2.4615 x 0.6703) + (6.647 x 0.00745) + (—3.1036)
Fx2) = 3.4533

Fori =3,f(x3) =) azks; + b = a1ks; + ooksy + azkss + aukzs+ b.

f(x3) = (2.2152 x 0.6703) + (4.4102 x 0.6703) + (2.4615 x 1) + (6.647 x 0.0003) + (—3.1036)
f(x3) = 3.8009.

Fori=4,f(x4) =) agks; + b = a1kyr + ks + azksz + askas+ b.

f(xg) = (2.2152 x 0) + (4.4102 x 0.00745) 4 (2.4615 x 0) + (6.647 x 1) + (=3.1036)
f(xq) = 3.5762.

Step 5: Computation of loss function between observed and simulated values
(Table 3.14)

The simulated values have a moderate agreement with the observed values and require
further updation of the kernel functions, contraction coefficients, and biases until the
deviation is minimized to the best possible extent. However, in this numerical, the
density function is used to predict the new input values (x,) as presented in Step 6
for demonstration purposes.

Step 6: Computation of kernel and output using density function f (x;) for the new
input value x,,.
The kernel calculated for x,, = 6 are presented as follows:

k(xi, x,) = e(_Y”xi_anz)

Fori =1, k(x;,x,) = e~ YIn=xl® — o=0-113-61" — () 4065
2
Fori =2, k(x, x,) = e~ 2=l

= ¢ 0761 = 0.9048

Fori =3, k(xs,x,) = e~ Yu=xl® — p=0-1I5-6I" — ( 9048
;[;?Il:lifa‘:’e'?arzbliirs\/:i’lc tion Dataset | Observed values | Simulated values | Loss function
values ’ O%) f () L =y —f (xn)
1 1.2 1.65 —0.45
2 3 3.4533 —0.4533
3 1.6 3.8009 —2.2009
4 6.5 3.5762 2.9238
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For i =4, k(xs, x,) = e~ Tl = o=0114=61" — 0,00166.
Now, applying the updated kernel elements in the density function, f(x,) =
Z OLl'knj + b

() = (2.2152 x 0.4065) + (4.4102 x 0.9048)
+ (2.4615 x 0.9048) + (6.467 x 0.00166) + (—3.1036) = 4.025

For the new value (x,), output value predicted using the density function is f (x,,) =
4.025.

3.6 Extreme Learning Machine

ELM employs only a single-hidden layer in the feed-forward networks framework
(Wang et al., 2022). Figure 3.8 presents the architecture. Weights connecting the
input and hidden layer are randomly given. Similarly, biases in the hidden layer
are randomly assigned. They are kept constant during the training procedure. The
algorithm converges faster and is likely to reach a globally optimal solution than
several traditional algorithms, as no iterative process is involved during the learning
process (Huang et al., 2015). Here, only the basic version of ELM is presented.

The input layer is comprised of multiple nodes, each representing a data feature.
The hidden layer is formed by multiplying the input values with a randomly generated
weight matrix to create a linear combination. The output layer is a linear combination
of the hidden layer with a weight matrix 3 (that connects the hidden and output
layers). The training intends to estimate the J;. The mathematical formulation is as
follows (Eq. 3.15):

L

L
fiw =D i wi(X) =Y Jix Wiwx+b),j=12,...N (3.15)

i=1 i=1

Here, L and N are the hidden units and training datasets (in numbers), x,, is the input
of the nth feature of the dataset; w;, b; are the weight and bias vectors connecting
the input and hidden layer J;, is the weight vector between ith hidden layer (i = 1,
2, L) and output. ¥ is an activation function employed elementwise to the result of
the linear transformation.

The process is similar to the back-propagation in standard neural networks and is
as follows (Eqgs. 3.16-3.17):

Yobs = A3 (3.16)
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Fig. 3.8 The architecture of basic ELM

[ W(w; xx1 +by) - V(o xx] +bL) ar
A= : : d=]
| V(o xan+b1) ... W(oL x N +D0) |y :lE Lxm
_y?
Yobs = | (3.17)
BN N xm

X refers to the hidden output layer matrix linking the input and hidden layer, and m
is the number of outputs. Y,s represents the observed data. The working mechanism
of ELM is as follows:

e [Initial assignment of weights and biases
e Computation of
e Computation of the output vector between the hidden and output layer

3 = Myons; AT refers to Moore—Penrose generalized inverse of the matrix h, Jis
the estimated output weight vector.
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e UseJto predict new output, ypreq = )\j Ypred 18 predicted output.

It is challenging to understand the working of the model with randomly generated
weights. Room for flexibility is minimal as it is a one-layer network. In addition, the
algorithm requires careful input scaling to ensure that they are in a range appropriate
for the activation function. Otherwise, it may lead to poor prediction accuracy.

Numerical problem 3.8. Table 3.15 presents datasets with two input variables
(x1, x2), Corrected speed, Pressure ratio, and one output variable (y,,), Corrected
flow rate. Analyze the problem in the ELM framework using the Hyperbolic Tangent
Function.

Solution:

Step 1: Weights connecting the input and hidden layers are randomly initialized. A
set of weights characterizes each node (0, w;) and a bias (). For this example, one
hidden layer with two nodes is considered. Two weights are randomly generated for
each input feature, which are as follows (Table 3.16):

Step 2: Computation of A (refer to Eq. 3.17):

W(w; X x4+ by) -+ W(oL x x; + br)

A= : e :
lIJ((J\)l XXN+b1)...\I’((,0LXXN+bL) NxL
. . . . . el—e2
The activation function is Hyperbolic tangent, ¥V (Z) = Eez _H_ﬁ? .
Table 3.15 Information Dataset
about input and output atase 1 *2 Yobs
1 3 4
2 11 7
Tabl.e 3.16 Random weight Input Node Hidden node Hidden node
matrix
N A2
X 0.15 0.35
X2 0.25 0.50
b 0.1 0.2
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Similarly, the below feature matrix \ is obtained by calculating all hidden layer
outputs.

| ¥@2x015+3x025+0.1) w(2x0.35+3x0.5+0.2)
W6 x0.154+ 11 x 0.25+0.1) W(6 x 0.35+ 11 x 0.5+ 0.2) NxL

W(1.15) W(2.4)
W(3.75) W(7.8)
A ¥

_ 1 0.8178 0.9836

1 0.9989 0.9999

Step 3: Computation of output weight vector

d= )\Tyobs

where N = (WTA\)~'\T; Here, \T is the transpose of feature matrix X, Yops i a
vector of observed output. To solve for 3, use the Moore-Penrose pseudoinverse of
X, which is denoted by INE
t [ 0.8178 0.9989
~ 10.9836 0.9999

1.6666 1.8032
A =
&3 [1.8032 1.9673}
AT = ————Adjoint(A T
(W) = ooy Adiointh )
Tt | 72435 —66.394
7= |:—66.394 61.365

A= T~ = 72.435 —66.394 || 0.8178 0.9989 | | —6.0674 5.9685
- T | —66.394 61.365 || 0.9836 0.9999 | ~ | 6.0613 —4.9624

—6.0674 5.9685 || 4
6.0613 —4.9624 || 7

Output weight vector 2 = A yops =[
(—6.0674 x 4) + (5.9685 x 7) ] _ [ 17.5099
(6.0613 x 4) + (—4.9624 x7) | ~ | —10.4916

The output variable is a linear combination of hidden layer nodes, and the
corresponding Equation is

Ypred = (17.5099 x A1) + (=10.4916 x k,)
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Using the )\ and output variable from the previous steps, predicting the output
for the training dataset (by multiplying the 3 with hidden layer output values of the
input):

1= (17.5099 x 0.8178) 4 (—10.4916 x 0.9836) =4
Y2 = (17.5099 x 0.9989) + (—10.4916 x 0.9999) = 7

The Mean Square Loss Function (MSLF) is presented in Table 3.17.
MSLF = 0. Hence, the parameters employed are logical.

Numerical problem 3.9. Three-input variables (x|, x5, x3), Catalyst loading, Gasifi-
cation temperature, blending amount, and one output (yobs), Syngas yield is consid-
ered (Table 3.18). Analyze the problem in the ELM framework using the Sigmoid
activation function.

Solution:

Step 1: Weights connecting the input and hidden layers are randomly initialized. A set
of weights characterizes each node (w;, w;, w3) and a bias (b). For this example, one
hidden layer with three nodes is considered. Three weights are randomly generated
for each input feature, which are as follows (Table 3.19):

Step 2: Computation of ) (refer to Eq. 3.17):

W(w; xxL +by) -+ W(wp X x1 +br)

A= : . :
U(wy X xny+b1) ... V(g X xy + br) NxL
Table 3.17 MSLF computation
Dataset X1 X2 Yobs ﬁpred MSLF
2 6 4 4 0
2 3 11 7 7 0
Table 3.18 Information about input and output
Dataset X1 X2 X3 Yobs
2 3 5
2 2 4 6
4 5 7
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Tabl.e 319 Random weight Input Node | Hidden node |Hidden node |Hidden node
matrix
M 2 A3
X1 0.2 0.4 0.3
X 0.5 0.1 0.4
X3 0.3 0.5 0.2
b 0.1 0.2 0.3

The activation function is Sigmoid, ¥ (z) = ﬁ
Similarly, by calculating all hidden layer outputs, \ is obtained.

Y1 x024+2x05+3x034+0.1) (1 x04+2x0.14+3x05+0.2) ¥(1x03+2x04+3x02+0.3)
A=| ¥y2x024+3x05+4%x034+0.1) y2x04+3x0.1+4x05+0.2) y2x03+3x04+5x0.2+0.3)

Y(3x0244x05+5x03+0.1) yB3x04+4x01+5x05+02) y3x03+4x04+5x02+03) |

TW(2.2) W(2.3) W(2)
A= | ¥(3.2) v3.3) U@3.)
| W(4.2) W(4.3) ¥(3.8)
M Ao A3

[10.90025 0.90887 0.88080
A =] 0.96083 0.96443 0.95689
| 0.98523 0.98661 0.97812

Step 3: Computation of output weight vector. 2 = Afygps

where AT = (ANTA)~!\T; Here, AT is the transpose of A, y, is observed output.
To solve for 3, use the Moore—Penrose pseudoinverse of X, which is denoted by
INE

0.90025 0.96083 0.98523
AT = | 0.90887 0.96443 0.98661
0.88080 0.95689 0.97812

2.70432 2.71690 2.67602
) = | 271690 2.72957 2.68841
2.67602 2.68841 2.64817

Tt Adjoint(A ")

1
T det(\Th)
1 210103.04337 —147638.78660 —62430.41641
(ATh) " = | —147638.78660 106986.43917  40579.31809
—62430.41641  40579.31809 21891.41874
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Table 3.20 MSLF computation

Dataset X1 X2 X3 Yobs ﬁpred MSLF

2 3 5 4.98977 0.000105
2 2 3 4 6 6.12951 0.016773
3 3 4 5 7 6.88268 0.013764

—27.90996 —253.00896 273.47927
M= T = | 67.21071 155.09989 —212.82836
—39.69591 98.57442 —59.92364

Output weight vector 3 = Ty, =
—27.90996 —253.00896 273.47927 5

67.21071 155.09989 —212.82836 || 6
—39.69591 98.57442 —59.92364 7

(—=27.90996 x 5) 4+ (—253.00896 x 6) + (273.47927 x 7) 256.7513
= | (67.21071 x 5) + (155.09989 x 6) + (—212.82836 x 7) | = | —223.146
(—39.69591 x 5) 4 (98.57442 x 6) + (—59.92364 x 7) —26.4985

The output is §,.q = 256.7513 x h + (—223.146) x ko + (—26.4985) x %3
Ypred = 256.7513 x Ay + (—223.146) x ©hy + (—26.4985) x hs.

Using the )\ and output variable from the previous steps, predicting the output
for the training dataset (by multiplying the 3 with hidden layer output values of the
input):

91 = 256.7513 x 0.90025 + (—223.146) x 0.90887 + (—26.4985) x 0.88080 = 4.98977
2 =256.7513 x 0.96083 + (—223.146) x 0.96443 4 (—26.4985 x 0.95689) = 6.12951
93 =256.7513 x 0.98523 + (—223.146) x 0.98661 + (—26.4985 x 0.97812) = 6.88268

The MSLF is presented in Table 3.20.

Here, the total MSLF value is 0.010214. If not satisfied with the obtained MSLF,
one option is to assign different weights. However, the procedure mentioned above
remains the same.

3.7 Logistic Regression

LR uses the logistic function to predict (Pathak et al., 2020; Pradhan, 2010). The
output is the chance of occurrence that a specific dataset fits into the positive or
negative class (1 or 0) (Madhuri et al., 2021) (Eq. 3.18):
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_ 1
T l4e:

p (3.18)

If the chance of occurrence is more significant than a chosen threshold, the dataset
is categorized as a positive class; if it is lesser, it belongs to the negative class. Here,
z is defined as (Eq. 3.19)

Z=wo+ WX+ wrXxs...+ WX, (3.19)

Here inputs are xj, x5, x3 . . . x,,, whereas wg, w, w2, ...®, are the related weights.

Optimal weights arrived during the training are expected to provide the best
possible division between the classes. The negative log-likelihood is used as a loss
function to decrease the cost (Eq. 3.20).

The loss function for each chosen dataset = —[yi log(p;) + (1 — y;) log(1 — p)]
(3.20)

The subscript i in Eq. 3.20 refers to the ith training example (i = 1, 2, N). Here,
the Log represents the natural logarithm. Stochastic gradient descent with a selected
learning rate to minimize the loss function can be used, where one training example
is considered at a time, and the weights are updated using it. Each dataset used is
referred to as an iteration. Iterations can be stopped when there is no significant
change in average loss per epoch in consecutive epochs. Rate of change of the loss
function L with reference to wg, ®w; and w, can be computed (Eqs. 3.21-3.23):

oL
Fon P (3.21)
N
oL
Pyt (i —yi) (3.22)
(Y]
JL
— =x2(pi — i) (3.23)
3032

Now, using these values, update the values of w; as per Eq. 3.24:

oL
wi = m; — Ly x — (3.24)
30),'

The learning rate, L;, typically is chosen between 10~ and 107°.

The advantages of LR are less training effort, flexibility, implementation and
interpretation, effectiveness for linearly separable datasets, and less chance of over-
fitting. The challenge is sensitive to noise.

Numerical problem 3.10. There are 12 datasets representing different locations in a
city. Each dataset is characterized by two inputs: Distance from the Nearest Stream
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(DNS) and EvapoTranspiration (ET) and one output about flooding (either flooded
or non-flooded). Detailed information is presented in Table 3.21. Use LR for the
analysis. Show datasets graphically for visualization. Compute flood status (flooded
or non-flooded) for DNS and ET values of 6 and 8.

Solution:
The datasets are graphically visualized in Fig. 3.9.

Iteration 1: Initial value of p; is needed to compute the rate of change of the loss
function. In this regard, wg, w; and w; are all assumed as zero, making z zero as
well, and are used for calculating p; [Using Eqs. 3.18-3.19 (for DNS of 2.4 and ET
of 10.2)]:

z=04+0x244+0x102=0

1 1
= - 0.5
p 14+ez 1+

Plugging in values for the first training example (DNS of 2.4, ET of 10.2, y; = 0),
the following values will be obtained (using Eqs. 3.21-3.23)

oL
b =p,—y,=05—0=05
3(1)()
oL
b =.X](p,' _yi) = 24(05 — 0) =12
8(1)1

Table 3.21 Datasets considered for the problem

Dataset DNS ET Did flood occur? Observed y;
1 24 10.2 No 0
2 12 54 Yes 1
3 4.5 16 No 0
4 7.6 20.3 Yes 1
5 9.3 14.5 Yes 1
6 4.9 7.8 Yes 1
7 8.1 14.2 No 0
8 43 4.5 Yes 1
9 32 12.4 No 0
10 5.5 5.5 Yes 1
11 7.2 11.2 Yes 1
12 4.5 8.5 No 0
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Fig. 3.9 Dataset representation for the problem (Red: Non-flooded; Blue: Flooded)

JL
— =x(p;—y;) =10.2(0.5-0) =5.1

8(1)2 n
Using Eq. 3.24, update the values of w; which is as follows:

oL
w; = w; — L x —
8(1)[

Plugging in the values for wg,w;, ®w, and assuming a L, of 0.01,

wp =0—10.01 x 0.5 =-0.005
w; =0-0.01 x 1.2 =-0.012
wy; =0—-0.01 x 5.1 =-0.051

Loss for dataset 1 = —[0 x 1log(0.5) + 1 x log(0.5)] = 0.6931
Iteration 2: Calculating p; with the second training example (DNS of 12, ET of 5.4,
y; = 1) using Eq. 3.18:

1 1
- = =0.395
l+e=

pi T ] 4 e~ [(=0.005)+(=0.012x12)+(=0.051 x5.4)]
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It is followed by calculating the gradients of the weights using Eqgs. 3.21-3.23

oL
— =(0.395-1) = —0.605
30)0
oL
— =12(0.395— 1) = —7.254
8031

aL
— =54(0395—1)= —3.264
8032

Updating the weights using Eq. 3.24:

wp = —0.005 — 0.01 x —0.605 = 0.001
w; = —0.012 - 0.01 x —7.254 = 0.061

wy = —0.051 — 0.01 x —3.264 = —0.018

Loss for dataset 2 = —[1 x 10g(0.395) 4+ 0 x log(0.6045)] = 0.928.
Similarly, all other datasets were processed, completing one epoch. Table 3.22

presents the results for the epoch 1.

The average loss is 0.919 for epoch 0. The lower the loss, the better the model

has trained. A decrease in loss is observed with an increase in epochs (Table 3.23).
The algorithm terminates when the difference between the average losses of two

Table 3.22 Results at epoch 1

Dataset | DNS | ET | y; | pi aaTEO aBT%, ;—(‘JLZ wo o W) Loss
1 24 |10.2|0 [0.500| 0.500| 1.200 5.100 | —0.005 | —0.012 | —0.051 | 0.693
2 12 |54 |1 /0.395|—-0.605|—7.254| —3.264| 0.001| 0.061|—-0.018 |0.928
3 45 |16 |0 |0495| 0495 2227 7.919 | —0.004 | 0.038 | —0.098 | 0.683
4 7.6 |203|1 |0.155|—-0.845| —6.419 | —17.146 | 0.005| 0.102| 0.074 |1.862
5 93 |145|1 |0.884|—0.116 | —1.080 | —1.684 | 0.006| 0.113| 0.091 |0.123
6 49 |78 |1/0.781|-0.219 | —-1.075| —1.712| 0.008 | 0.124| 0.108 |0.248
7 8.1 |142]0 |0927| 0.927| 7.510| 13.166|—0.001 | 0.049 | —0.024 |2.62
8 43 |45 |1 ]0.525|-0475|-2.040| —2.135| 0.003 | 0.069 | —0.002 |0.643
9 32 |124|0 [0.549| 0.549| 1.756 6.803 | —0.002 | 0.052 | —0.070 |0.795
10 55 |55 |1 0474 —-0.526 | —2.894 | —2.894 | 0.003 | 0.081 | —0.042 |0.747
11 72 |11.2|1 [0.530 | -0.470| —-3.386 | —5.266| 0.008 | 0.115| 0.011 |0.635
12 45 |85 |0 ]0.650| 0.650| 2.924 5.523 | 0.001| 0.085|—0.044 |1.049
Average | 0.919
loss
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Table 3.23 The average loss

in each epoch Epoch Loss
0 0.919
1 0.836
2 0.793
3 0.768
4 0.751
5 0.740
6 0.732
7 0.725
8 0.720
9 0.716
10 0.713
2915 0.630

consecutive epochs is less than or equal to 107°, which occurred at epoch 2915

(Fig. 3.10).

The values of the weights at this epoch are found to be

Fig. 3.10 Status of flood nodes at epoch 2915 (Red: Non-flooded; Blue: Flooded)



60 3 Classical Machine Learning Algorithms
wo = —1.934, w; = 0.771, w, = —0.223

To predict the class (flooded or non-flooded) of an unseen dataset, the values of
DNS and ET, i.e., 6 and 8, can be directly substituted in Eq. 3.19.

7z=—1.9344+0.771 x 6 —0.223 x 8§ = 0.908

Visualizing the classification by calculating the probability for all possible datasets
(using the updated weights) as follows:

1 1
P e T T e 0o

If the output value is more significant than 0.5, the prediction is considered
as flooded. Two non-flooded locations have been incorrectly classified as flooded,
while one flooded location has incorrectly been classified as non-flooded (refer to
Table 3.24).

Numerical problem 3.11. The dataset consists of 8 thermal power plants
(Table 3.25). Inputs are TEMperature (TEM) and HUMidity (HUM), and the output
is about safety (either safe or unsafe). Consider initial weights as 0.1. LR can be
utilized for the analysis. Solve the problem for one epoch. Compute the status of the
thermal power plant for a TEM value of 10 and a HUM value of 5.

Solution:

Table 3.24 Observed and predicted flood occurrences at epoch 2915

B

Dataset |DNS |ET Flooded? |Observedy; |z Predicted Flood
probability | occurrencet
p

1 24 10.2 | No 0 —2.358 |0.086 0

2 12 54 Yes 1 6.114 |0.998 1

3 4.5 16 No 0 —2.033 |0.116 0

4 7.6 20.3 | Yes 1 —0.601 |0.354 0

5 9.3 145 | Yes 1 2.003 |0.881 1

6 49 7.8 Yes 1 0.105 |0.526 1

7 8.1 142 | No 0 1.145 10.759 1

8 43 4.5 Yes 1 0.378 |0.593 1

9 32 12.4 | No 0 —2.232 | 0.097 0

10 5.5 5.5 Yes 1 1.080 |0.746 1

11 7.2 11.2 | Yes 1 1.120 |0.754 1

12 4.5 8.5 No 0 —0.360 |0.411 0

"z =—1.934+0.771 x DNS - 0.223 x ET;p = 7=
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Table 3.25 Dataset for the problem

Dataset TEM HUM Is the plant safe? Observed y;
1 1 30 No 0
2 38 1 Yes 1
3 1 18 No 0
4 8 13 No 0
5 46 50 No 0
6 23 16 Yes 1
7 5 26 No 0
8 47 17 No 0

Iteration 1: Initial value of p; is needed to compute the rate of change of the loss
function, i.e., when wg, w; and w; are all taken as 0.1. Calculating p; Using Egs. 3.19
and 3.18 (for TEM of 1 and HUM of 30)

z2=014+01x1401x30=3.2

1
T l4er 14e 3

pi S = 0.9608

Plugging in values for the first training example (TEM of 1, HUM of 30, y; = 0)
and using Eqs. 3.21-3.23, the output is as follows:

oL
— =p; —y; = 0.9608 — 0 = 0.9608
8(1)0
oL
— = xi1(pi — y;) = 1(0.9608 — 0) = 0.9608
3(,01
oL
— = x(pi — yi) = 30(0.9608 — 0) = 28.83
3032

Now, using these values, the updation of values of w;

Plugging in the values for wg,w;, w, and assuming a learning rate o of 0.01 (using
Eq. 3.24)

wp = 0.1 —0.01 x 0.9608 = 0.0904

w; = 0.1 —0.01 x 0.9608 = 0.0904
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wy; = 0.1 —0.01 x 28.83 = —0.1883
Iteration 2: Calculating p; with the second training example (TEM of 38, HUM of

1,y; = 1) using Eq. 3.18,

1 1

T 1 de< 1+ e [(0:0904)(0.0904x38)+(—0.1883xD)] 0.9657

pi
It is followed by calculating the gradients of the weights using Eqgs. 3.21-3.23

L
= (0.9657 — 1) = —0.0343

on

oL
— =38(0.9657 — 1) = —1.3043
8(1)1

aL

— =1(0.9657 — 1) = — 0.0343
8(1)2

Updating the weights using Eq. 3.24:

wp = 0.0904 — 0.01 x —0.0343 = 0.0907

w; = 0.0904 — 0.01 x —1.3043 =0.1034

wy = —0.1883 — 0.01 x —0.0343 = —0.1879

Similarly, all other datasets were processed, completing one epoch. Table 3.26
presents the results for the epoch 1.

Table 3.26 Results at epoch 1

Dataset | TEM | HUM | y; | pi % % % o ] [O))

1 1 30 0 [0.961 | 0.9608 0.9608 | 28.8250 | 0.0904 | 0.0904 | —0.1883
2 38 1 110966 | —0.0343 | —1.3043| —0.0343|0.0907 | 0.1034 | —0.1879
3 1 18 0 |0.040 | 0.0396 0.0396 0.7130 | 0.0903 | 0.1030 | —0.1950
4 8 13 0 |0.165| 0.1651 1.3207 2.1462 | 0.0887 | 0.0898 | —0.2165
5 46 50 0 |0.001| 0.0014 0.0622 0.0677 | 0.0887 | 0.0892 | —0.2172
6 23 16 1 10.208 | —0.7916 | —18.2058 | —12.6649 | 0.0966 | 0.2713 | —0.0905
7 5 26 0 10289 | 0.2889 1.4445 7.511210.0937 | 0.2568 | —0.1656
8 47 17 0 | 1.000 | 0.9999 | 46.9959| 16.9985|0.0837|—0.2131 | —0.3356
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7= 0.0837 + (=0.2131 x TEM) + (—0.3356 x HUM)
= 0.0837 + (—0.2131 x 10) + (—0.3356 x 5) = —3.7253

pi = H_% = Heﬁ = 0.0235 indicating unsafe plant (based on the threshold of
0.5).

3.8 K-Nearest Neighbours

KNN stores all the datasets and classifies new ones built on distance functions
(Alfeilat et al., 2019; Modaresi et al., 2018; Uddin et al., 2022). Distance from
the testing dataset to each training dataset can be computed using Eq. 3.25 (Madhuri
et al., 2021):

1/p

DX, X)) = | D | —xyl" (3.25)
j=1

where X (x1, x2, X3 . ..Xx,) are testing datasets, X;(x;i, Xp2, X;3 . ..X;;) are training
datasets (i = 1toN), n is the number of features, p is the Minkowski metric,
and N is the number of training examples. It is aimed to predict the class of the
testing dataset X using the training datasets. KNN does not require training. The
entire dataset is presented to the algorithm, and new predictions are made based on
distance measures. Then, the most suitable class is selected for the training dataset
among K-nearest neighbours to the testing dataset.

The advantages are fewer parameter requirements and no impact of adding or
removing datasets.

Numerical problem 3.12. The dataset presented in Table 3.27 is related to flood
occurrence and is characterized by two input variables, DNS and ET. Employ KNN
technique. Identify the closest K-nearest neighbours for DNS of 9 and ET of 13.

Solution:

KNN operates on an elementary principle. The closest K-neighbours decide the class
of a new dataset. The newer dataset (9-unit DNS and 13-unit ET) will be classified
as flooded since the three closest datasets to it are of the positive class when K = 3
(Fig. 3.11). A similar computation can be done for K = 4 or K = 5. However, one
or more values of K may provide optimal results.

To verify the above claim, the Euclidean distance (p = 2 in Eq. 3.25) between
training and the testing dataset can be found, and the distances in ascending order
(Table 3.28).

Distance of (8.1, 14.2) from (9, 13)

VEI1-92+4(142-13)2 = 1.5
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Table 3.27 Datasets related to flood occurrence

Dataset DNS ET Did flood occur? Observed y;
1 24 10.2 No 0
2 12 54 Yes 1
3 4.5 16 No 0
4 7.6 20.3 Yes 1
5 9.3 14.5 Yes 1
6 4.9 7.8 Yes 1
7 8.1 14.2 No 0
8 43 4.5 Yes 1
9 32 12.4 No 0
10 5.5 5.5 Yes 1
11 7.2 11.2 Yes 1
12 4.5 8.5 No 0

Fig. 3.11 KNN-three nearest neighbours (Red: Non-flooded; Blue: Flooded)

As evident from Table 3.28, amongst the first three closest training datasets, 2 are
of the 1 class, i.e., flooded, and thus, the testing dataset is also assigned the class of 1.

Numerical problem 3.13. The dataset is related to Solar power plants linked to
renewal energy engineering (Table 3.29). Temperature (TEM) and humidity (HUM)
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Table 3.28 Distance of test
dataset from each training

dataset
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DNS ET Yi Distance
8.100 14.2 0 1.50
9.300 14.5 1 1.53
7.200 11.2 1 2.55
4.500 16 0 5.41
3.200 124 0 5.83
4.5 8.5 0 6.36
49 7.8 1 6.62
2.4 10.2 0 7.17
7.6 20.3 1 7.43
12 5.4 1 8.17
55 55 1 8.28
43 4.5 1 9.71

are the inputs, whereas the status of the plant is the output. Employ KNN technique.
Identify the closest K-nearest neighbours for TEM of 44 and HUM of 46.

Solution:

The closest K-neighbours decide the class of a new dataset. In this case, the new
dataset is 44-unit TEM and 46-unit HUM. To verify the above claim, the Euclidean
distance with p = 2 (Eq. 3.25) from the testing dataset (or new dataset) to every

Table 3.29 Dataset related to Solar power plants

Dataset TEM HUM Is the plant is safe? Observed y;
1 1 30 No 0
2 38 1 Yes 1
3 1 18 No 0
4 8 13 No 0
5 46 50 No 0
6 23 16 Yes 1
7 5 26 No 0
8 47 17 No 0
9 43 29 Yes 1
10 37 2 Yes 1
11 21 37 Yes 1
12 45 43 No 0
13 50 23 Yes 1
14 44 25 Yes 1
15 10 36 Yes 1
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dataset 45 43 0 3.16
46 50 0 4.47
43 29 1 17.03
44 25 1 21.00
50 23 1 23.77
21 37 1 24.70
47 17 0 29.15
10 36 1 35.44
23 16 1 36.62
5 26 0 43.83
37 2 1 44.55
38 1 45.40
1 30 0 45.88
8 13 0 48.84
1 18 0 51.31

training dataset can be estimated. Arrange the distances in ascending order (column
4: Table 3.30).

Distance of (45, 43) from (44, 46): \/(45 — 44)? + (43 — 46)> = 3.16

As evident from column 4 of Table 3.30, the first two closest training datasets, 2

are of the O class, i.e., unsafe, and thus, the testing dataset is also assigned the class
of 0.
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Revision Questions and Exercise Problems

3.1.

3.2.
3.3.

3.4.
3.5.
3.6.
3.7.

3.8.

3.9.
3.10.
3.11.

3.12.
3.13.
3.14.

3.15.
3.16.
3.17.

Table 3.31 Information
about datasets

One input layer (humidity, temperature, rainfall, wind speed, and road surface
temperature) and one hidden layer with one node exist. Input values are 0.18,
0.36, 0.54, 0.68, and 0.82. Assume weights between inputs and hidden node
as 0.34, 0.54, 0.64, 0.74, and 0.84. Compute output from the hidden layer
using the ReLU and hyperbolic tangent activation functions. Comment on the
output.

What is FFBP-ANN? Explain the philosophy behind the same.

Five inputs, A to E, with values of 3, 4, 6, 8, and 9, produce an output of 0.8. It
is suggested that one hidden layer be included with one node. Initial weights
between inputs and hidden are 0.2, 0.45, 0.65, and 0.85, whereas it is 0.4 in
the case of hidden to output. Establish a relationship using FFBP-ANN with
Sigmoid as the activation function. Show the computations for one epoch with
a learning rate of 0.24.

What is WNN? Explain the philosophy behind the same.

What is the decomposition principle employed in WNN?

What are the parameters that govern the WNN?

What are mother wavelets and their functions? Mention the names of three
mother wavelets.

Five datasets with two input variables (x; & x;) and one output (y) are related
to biomedical engineering (Table 3.31). Relate inputs and output utilizing
WNN.

What is SVR? Explain the philosophy behind the same.

What are the parameters that govern SVR?

What is the Kernel function? What types of kernels can be employed while
working on SVR?

What is a hyperplane in SVR?

What are the advantages and disadvantages of SVR?

Table 3.32 presents five datasets, with input (x) and output (y) in the highway
alignment framework. Establish a relationship between them using SVR.
What is ELM? Explain the philosophy behind the same.

What are the advantages and disadvantages of ELM?

Three datasets were developed experimentally, with three input variables
(x1, x2, x3) and one output variable (Yobs). Analyze the problem in the ELM
framework (refer to Table 3.33):

Dataset X1 X2 y

1 2 1 4
2 3 8
3 4 12
4 8 16
5 9 11 22
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Table 3.32 Information
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about datasets Dataset X Y
1 1.2 4.2
2 2.1 7.1
3 33 53
4 4.3 9.3
5 53 10.3
Table 3.33 Information about datasets
Dataset X1 X2 X3 Yobs
1 1.2 2.2 33 5.5
2 2.1 3.1 4.1 6.1
3 32 42 53 73
3.18. What is the physical significance of weights in LR?
3.19. What is the function of non-linear transformation in LR?
3.20. What is meant by epoch and iteration in the context of LR?
3.21. Mention one distinct advantage in LR that affects the accuracy of the outcome.
3.22. What is KNN? Explain the philosophy behind the same.
3.23. What is the physical meaning of K in KNN?
3.24. Does KNN require any training? Justify your response logically.

3.25.

3.26.

Mention one distinct advantage in KNN that affects the accuracy of the
outcome.

Solve the problem utilizing LR and KNN. Data is presented in Table 3.34.
You can assume suitable data, if any.

Advanced Review Questions

3.27.
3.28.

3.29.
3.30.
3.31.
3.32.
3.33.
3.34.
3.35.

Why is the activation function also termed as a transfer function?

Can you propose a new activation function and justify its utility over the
existing one?

What is over-fitting and under-fitting? Can you minimize the same?

What are discrete and continuous mother wavelets? Explain their suitability.
Why is LR preferred over linear regression for binary classification problems?
Is normalization of the dataset necessary?

What is the difference between feature scaling and normalization?

What is the concept of the lazy learner in KNN?

What is the basis for optimal K in the KNN? What is the implication of
choosing the small values of K?
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Table 3.34 Information about features and flooding status

Dataset DNS ET Vi Flooded?
1 2.8 10.8 1 Yes
2 12.6 5.8 0 No
3 4.8 16.8 1 Yes
4 7.8 20.8 0 No
5 9.9 14.8 1 Yes
6 6.9 8.8 0 No
7 8.8 16.2 0 No
8 4.8 4.8 1 Yes
9 3.8 12.8 1 Yes
10 6.5 5.8 1 Yes
11 7.8 11.8 0 No
12 4.8 8.8 0 No
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Chapter 4 ®)
Advanced Machine Learning Algorithms | ¢

4.1 Introduction

The chapter describes a few advanced ML algorithms specifically employed for
forecasting. They are Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), Long Short-Term Memory (LSTM), Bi-directional (Bi)-LSTM,
Gated Recurrent Unit (GRU), and possible hybridizations of these algorithms. The
chapter also discusses Boosting Algorithms, viz., Adaptive Boosting (AdaBoost),
eXtreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost).

4.2 Convolutional Neural Networks

CNN is established on the philosophy of local neural connectivity motivated by the
cognitive process of the animal visual cortex (Islam et al., 2022; Neu et al., 2022).
Figure 4.1 presents the architecture of CNN (Van et al., 2020). Details of CNN are
presented in Vogeti et al. (2024).

e Layer-I: The input layer feeds the data to the model. The space-specific and time-
specific details from the previous are utilized to correlate the observed variable.
Information about input variables at distinct times is the basis for components of
the matrix.

e Layer-II: The convolution layer which affects significantly feature extraction,
consisting of neurons ( features refer to the dimensionality of output feature maps
after applying convolution and pooling operations; neurons per layer determine
the capacity of the model to capture and represent data, the range is 1-256). It
has a convoluted matrix, a product of filter (or kernel), and input matrices. Filters
in a convolutional layer determine the number of unique features the layer can
detect, such as edges, textures, or complex patterns in the input data. Balancing
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Fig. 4.1 Architecture of
CNN

the number of kernels ensures sufficient feature detection capability. It is ensured
by starting with fewer kernels in the initial layers and increasing them gradually
in deeper layers. Related expression for ith data is expressed as (Eq. 4.1)

Noun Now

Ly m) =Y (usa1, mip-1() x Py p(0)) + Bias (4.1)

a=1 b=l

where [';(1, m) is the convolutional layer for ith data; 1 and m refer to the row and
column features of the convoluted matrix; Ny and New, respectively, the height
and width of the filter; &, ;,(i) represents the filter matrix element of ath row and
bth column for ith data; x denotes the dot product; and tj44—1, mt+b—1 (i) represents
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the input matrix element of (1 + a — 1)th row and (m + b — 1)th column for ith
data.

e Layer-III: The pooling layer is a down-sampling operation that reduces the dimen-
sionality of feature maps, thus decreasing computational complexity and mini-
mizing over-fitting. Max pooling (selects the maximum value in each pooling
window, preserving prominent features, and introducing spatial invariance) and
average pooling (computes the average value, retaining more contextual informa-
tion) are the frequently utilized types of pooling operations. This operation reduces
the number of learnable parameters by estimating the maximum or average value
of each row and captures the most pertinent features in the input layer (Eq. 4.2):

Ap; = avgli(l, m), wherel € Ngy and m € Now “4.2)

where avg I'j(1, m) represents the average pooled layer for ith data.

e Layer-IV: In a flatten layer, the pooled features are metamorphosed into a one-
dimensional vector and sent to the fully connected layer.

e Layer-V: In a fully connected layer, different features that were learned by the
convolutional, pooling and flatten layers are metamorphosed into a dense vector,
and their corresponding elements in this layer are expressed as (Eqs. 4.3-4.5):

¢l = wnApr + oo 4.3)
¢ = wiAp + wp (4.4)
¢ = w13Ap3 + o3 4.5)

where Cil, ciz, and §i3 represent the first, second, and third elements of the dense
one-dimensional vector of the fully connected layer; w;;, w2, @3 are the weights
associated with the elements of dense vector; and wg;, wg, wo3 are the biases
associated with the elements of dense vector.

e [Layer-VI: The last is the output layer (Eq. 4.6):

el

—_— (4.6)
> o et

c
yp,i -

where y; ; is the output element estimated for ith data; Ngy is the number of

Softmax units (if the Softmax function is employed); and ¢ and cic/ are compo-
nents of a dense, fully connected layer, and the loss function is computed. The
process continues until the termination criterion is achieved (Alzubaidi et al.,
2021). Figure 4.2 presents the workflow of CNN.



74

Fig. 4.2 Workflow of CNN
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Other parameters that govern the training process are batch size, activation func-
tion, learning rate, epochs, and dropout. The challenge in CNN is its rigid structure
for accommodating an adequate number of parameters, which are susceptible to

over-fitting.

Numerical Problem 4.1. Apply the CNN to relate input (prostate volume, age) and
output (risk factors for prostate cancer). Use the average pooling method. Refer to
Fig. 4.2 to understand the working steps of the problem.

Input matrix

Observed output matrix

X1 X2 0]
Dataset 1 2 0.5
Dataset 2 0.75
Solution:

Step 1: Compute I" using matrix multiplication of input with filters.

The I could be computed by matrix multiplication of the input matrix (1) with the
appropriate filter matrix (®) that is randomly generated.
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r = L X [
ra,n (1,2 L(1,1) L (1,2) ® (1,1) o (1,2)
r@e,n 2,22 L(2,1) 1(2,2) ® (2,1) D (2,2)

The convolutional layer of ith data is mathematically expressed as

Non Now

Tim) =Y ) (tsat, mebo1() X Pap(D))

a=1 b=1

The size of the I'j(1, m) is denoted by (New, Neg) and is computed as Noy =
N,w —Now + 1 and Noy = Ny — Noy + 1.
For the given problem, the randomly generated ® is multiplied by the t as follows:

L X 0]
04 0.6
6 4 0.6 0.4

In this case Njy = Nyw = Noyg = Now = 2.

The output matrix should have a size of 2. In this case, the size of convolution is
reduced to 1; thus, it is padded with zero elements. Thus, Npyy = 1 and Npy = 1 are
the width and height of the zero padding elements, which are added to find the size
of the I' and are computed as

Nrw = N,w — Now + Npw + 1
=2-24+14+1=2

Nryp = Nig — Nog + Npp + 1
=2-24+14+1=2.

The convolutional matrix size is (Nry, Nrgy) = (2,2)

I(1,1) = 4(0.4) +2(0.6) = 1.6 + 1.2 = 2.8

I'a,2) =4(0.6) +2(0.4)=24408 =32

I'@2,1) =6(0.4) +4(0.6) = 2.4 +2.4 = 4.8

'2,2) =6(0.6)+4(04) =3.6+1.6=5.2
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4.8 52

Step 2 Apply the average pooling (Ap) method over the I':

_28+32+48+52
- ; -

Ap

Step 3 Identifying two output variables by initializing the weights randomly through
a fully connected layer:

The weights wg;, w11, ®g2, and wy, are randomly initialized to obtain the output.
Consider wg; = w1 = 0.5
Consider wgy = wyp = 0.25

¢l =wi1Ap+ wo; =0.54) +0.5=2.5
G=wAp+ we = 0.25(4) +0.25 = 1.25.
Step 4 Final output computed utilizing the Softmax function:

The output elements obtained are transmitted through the Softmax layer, which
produces two units and is expressed as

5
yc — e—l
p,1 2111 egicn
In this case, the output elements computed are
e?d 12.182
¢ = = =0.7772
Yol T 25 16125 T 12182 + 3.4903
el® 3.4903
Ypo = = = 0.2228.

e2> el 12,182 + 3.4903

Step 5 Calculation of loss function and updation of parameters through back-
propagation of error using the chain rule:

E; =0, - YEJ =0.5-0.7772 = —-0.2772

E; = 0 —y,, = 0.75 — 0.2228 = 0.5272
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Minimization of the loss function is the prime objective. The parameters are
updated with the back-propagation algorithm until the termination criterion is
achieved.

Numerical Problem 4.2. Apply the CNN to establish a relationship between
confining pressure, tensile strength, and strength of intact rocks. Use the maximum
pooling method. Refer to Fig. 4.2 to understand the working steps of the problem.

Input matrix Observed output matrix
8 5 0.4
12 8 0.2

Solution:

Step 1: Compute I" using matrix multiplication of input with filters.

r = L X [}
I (1,1) I'(1,2) L(1,1) L(1,2) d (1,1) d (1,2)
2,1 I 2,2) L (2,1) 1(2,2) d(2,1) D (2,2)

The convolutional layer of ith data is mathematically expressed as

Non Now

il m) =" (ura 1, mip-1(0) x Pap(@))

a=1 b=1

The size of the I';(1, m) is denoted by (New, Nog) and are computed as Noyw =
NLW — Nq;W + 1 and Nq>H = N[H — Nq;H + 1.
For the given problem, the randomly generated ® is multiplied by the t as follows:

L X [}
8 5 0.55 0.45
12 8 0.45 0.55

In this case Ny = Nyw = Nog = Now = 2.

The output matrix should have a size of 2. In this case, the size of convolution is
reduced to 1; thus, it is padded with zero elements. Thus, Npwy = 1 and Npy = 1 are
the width and height of the zero padding elements added to find the size of the I" and
is computed as

Nrw = Nyw — Now + Npw + 1
=2-2414+1=2
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Nryg =Ny — Noy + Npg + 1
=2-2+1+1=2.

The I' is (Nrw, Nry) = (2,2)

I'(1, 1) = 8(0.55) + 5(0.45) = 4.4 +2.25 = 6.65

I(1,2) = 8(0.45) + 5(0.55) = 3.6 + 2.75 = 6.35

I'Q2, 1) = 12(0.55) + 8(0.45) = 6.6 + 3.6 = 10.2

I'(2,2) = 12(0.45) + 8(0.55) = 5.4 + 4.4 = 9.8

= 6.65 6.35
10.2 9.8

Step 2 Apply the maximum pooling (Mp) method over the I":
Mp = 10.2.

Step 3 Identifying two output variables by initializing the weights through a fully
connected layer:

The weights wg;, ®11, w2, and wyp are randomly initialized to obtain output
elements.

Consider wg; = w1 = 0.4

Consider wg; = wp = 0.3

2 = w1Mptwg = 0.3(10.2) + 0.3 = 3.36.

Step 4 The final output is computed using the Softmax function:

The output elements obtained are transmitted through the Softmax layer, which
produces two units and is expressed as

c
c e§i1
Yp,i =

e

In this case, the output elements computed are
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et48 88.2347
v = _ =0.754
P, et4 4 336 88.2347 4 28.7892
3.36 28.7892
v, = e _ = 0.246.
P, o448 | 336 88.2347 4 28.7892

Step 5 Calculation of loss function and updation of parameters through back-
propagation of error using the chain rule:

E, = yfxl -0, =0.754 - 0.4 = 0.354

E; =y5, — 0y = 0.246 — 0.2 = 0.046.

4.3 Recurrent Neural Networks

RNN (refer to Fig. 4.3) is a variant of ANN specifically developed to examine time
series data (Orojo et al., 2023). It possesses connections that facilitate the propagation
of information in the form of data from one time step to the subsequent one, in contrast
to conventional feed-forward neural networks. During each iteration, the algorithm
receives an input that modifies its internal state, which signifies the memory of
the network. This process enables the extraction of dependencies and trends in the
sequential data. It generates output based on preceding hidden state information.

Consider x;, A, andy, are input, hidden, and output states at time step t.
Computations of A; and y, are presented in Eqs. 4.7-4.8.

)\,[ = O’((,O)L X )\,[_] + wx X Xt + b)h) (4.7)

Y = c(ooy X A + by) (4.8)

where, w;, oy, and wy represent the weight matrices of hidden, input, and output
states; A, indicates previously hidden state information; b, and by represent the
bias for the hidden and output state; and o represents the activation function. During
training, the RNN learns weight matrices (wy, w;, wy) and the bias terms (b;, by)
by optimizing a specific loss function. One challenge with this algorithm is the
vanishing gradient, which diminishes over time. In this situation, it is challenging
for the network to seize long-term dependencies.
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Fig. 4.3 Architecture of RNN

4.4 Long Short-Term Memory

LSTM s a sub-category of RNN that utilizes memory blocks. These act as nodes in the
hidden layers and are traversed through gating units (Yuetal.,2019). It demonstrates a
more remarkable ability to seize long-term dependencies from a complex time series
(Horchreiter & Schmidhuber, 1997). It can overcome the problem of oscillating
weights and enormous computational time realized due to vanishing and exploding
gradients (Vogeti et al., 2024). LSTM architecture is presented in Fig. 4.4 (Van Houdt
et al., 2020).

i. Firstly, the network receives input information of x,_;, and X, at previous and
current time stamps t—1 and t, respectively. A,_; is the hidden state information
retrieved from (t—1). The forget gate decides the amount of information discarded
from t-1 and t, respectively. This information retention is done by combining
the product of o, and Ay, product of wg, and x,, and a bias bg,. A bias is added
to enhance the flexibility and training stability in handling the information flow
in the network. Application of activation function (o) produces values between
0 and 1. A value close to 1 (or 0) means most information from the previous
state is retained (or discarded). For example, a value of 0.4 indicates retention
of 40% of input information in the network. Information passing through the
forget gate (Eq. 4.9):

Forget gate(fg[) = G((l)fgxt + afghe1 + bfg). 4.9)
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Fig. 4.4 Architecture of LSTM (modified and adapted from Vogeti et al., 2024 under CC BY-NC-
ND 4.0 License)

ii.

iii.

The information that passes through the input gate establishes the new informa-
tion added further to the current memory state. At each time step, the algorithm
combines the product of ajy and Ay, product of wjs and x; and bj,. Further, the
activation function (o) is applied to this combination (Eq. 4.10):

Input gate(igt) = o(u)igxt + QjgAi—1 + big) (4.10)

where w;g, aig, and bjg are weight vectors at the current step, previous step, and
bias vector, respectively, at the input gate.

Further, the updation of memory cell states determines the information to be
added to the memory state of an LSTM. This process involves the calculation of
the new memory cell, |1/, which is similar to the forget and input gates having
weights (w,,, o) and bias (b, ) (Egs. 4.10-4.11). Function tanh is employed for
storing the information in the new memory cell ., at t to facilitate a quicker
convergence rate (Eq. 4.11):

New memory cell (,') = tanh(w,x + o, A1 +by,) 4.11)

where w,,, o, b,, are weight vectors at the current step, previous step, and bias
vector, respectively, at the cell.

Information passing through the final memory cell is (Eq. 4.12)

e = fgue +igwd (4.12)

Here, i describes new memory cells at time t — 1
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iv. The output gate manages the propagation of information from the recent cell to
the final state (Eqs. 4.13-4.14):

Information passing through the final hidden cell:

Ay = og, tanh(jL,) 4.13)

Information obtained through the output gate:
Output gate (0g,) = 6(wogX; + dtoghi—1 + bog) (4.14)

where wog, Ao, and by, are weight vectors at the current step, previous step,
and bias vectors at the output gate.

Figure 4.5 shows the workflow of LSTM. Batch size, layer node, number of nodes,
epochs, learning rate, and dropout exhibit their influence on the weights updated in
the gating units. An increase in the values of the LSTM layer node, learning rate,
and epochs positively affects the algorithm performance.

Numerical Problem 4.3. Rainfall, x; = (4,5,6) yields a runoff, y, = (1,1.5,2). Estab-
lish a relationship using LSTM with three hidden units A,_; = (1,2,3). Assume the
related weights appropriately. Refer to Fig. 4.5 for understanding the working steps
of the problem.

Solution:

Given, x; = (4,5,6); A1 = (1,2,3)
(AMo1, %) = (1,2,3,4,5,6)

Assume the weights . as (5,5,5).

Step 1 Random initialization of weights and biases for the gating units:

00000 —1
Input weight vector in forget gate wp, = | 56 7 8 9 10 |. Bias vector in forget gate
34567 8
1
b =12
3
111111
Input weight vector in input gate w;g = | 222222
333333

1
Bias vector in input gate b;, = | 1
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Fig. 4.5 Workflow of LSTM

1 11 1 11
Input weight vectorin cell statew,, = | 2 2 2 2 2 2
-3-3-3-3-3-3

Bias vector in cell state b, = | 1

0.25 0.25 0.25 0.25 0.25 0.25
Input weight vector in output gate w,g = | 0.10 0.10 0.10 0.10 0.10 0.10
0.50 0.50 0.50 0.50 0.50 0.50

0.75
Bias vector in output gate by, = | 0.90
0.50
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()"t—laxt) =

AN N AW =

Step 2 Flow of input information through forget gate layer fg, = o’ (wgy.(A—1, X() +
bfg)Z

o

(00000 —1 §

wrg(M—1,%) = 56789 10 4
34567 8

- 5

6

_(Ox1)+(0><2)_+E0><3)+(O><4)—|—(0><5)+(—1><6)
=] GxD+O6x2)+Tx3)+@8x4)+ (9 x5)+ (10 x 6)
L BxD4+@x2)+(5x3)4+6x4)+(7Tx5)+(8x6)

0+0+0+0+0-6 —6
=[5412+214+324+454+60 | = | 175
| 3+8+15+24+35+48 133
—6 1 =5
wr((Aer,x) +bg) = [ 175 |+ | 2 | = | 177
133 3 136
fg, = o' (wrg-(hi—1, X() + brg) where, 6'(X) = =
=5
Flow of input information through the forget gate layer fg, = o’ 177
136
[
I+e- (D
1
= He1—7]77
L Toe
[0.0069
= 1 (1)
L 1
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Step 3 Flow of input information through the input gate layer ig, = o' (wig.(A—1, X¢)
+ big):

1

111111 g

wig(aerx) = [ 222222 ||
1333333

5

6

‘(1><1)+(1xi);(lx3)+(1x4)+(1x5)+(1x6)
= 2xD+Cx2)+2x)+2x4)+2x5+2x6)
L BxD+Bx2)+Bx3)+Bx4)+@B x5 +@3x6)

[ 21
= |42
| 63
21 1 22
(Dig(()w—l, Xy) + big) =14 |+|1]|=]43
63 1 64
22
ig, :6/(mig()\t—l , Xp) + big) =d 43
64
[
14+e=22
— I
T 4e®
1
L 14+e*
[0.999
=1 1 (ii)
L 1

Step 4 Flow of updated information through cell state gate layer [I; = tanh
(ww()‘tfl» Xy) + bu):

111 1 11
op(h—tx) =2 2 2 2 2 2
-3-3-3-3-3-3

(@)Y R S O S
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IxDH+Ax2)4+ A x3)4+(1x4)+(1x5)+(1x6)
= CxD+C2x2)+2x3)+2x4)+2x5)+2x6)
_(—3><1)+(—3><2)+(—3><3)—|—(—3><4)—|—(—3><5)—|—(—3><6)

21
=| 42
| —63
21 1 22
o (o, x) +by) = | 42 [+ |1 |=| 43
—63 1 —62
e*—e™*

(i = tanh(w,,.(Ac—1, X,) + by,), where tanh(x) = e

2_ -2

€
22 e 1
t = tanh 43 = 243_—6_4; = 1 (lll)
—62 —(—62)
— e ~—¢ —
62 e‘62+e“‘(‘2) 1

Step 5 Computation of updated cell state information . = fg L—1 + ig it

Substitute Eqgs. (i), (ii), and (iii) for computing the final updated cell state information:

0.0069 5 0.999 1
we =fgi—1 +ig e = 1 5+ 1 -1
1 5 1 -1
1.0325
= 6 (iv)
4

Step 6 Flow of input information through the output gate layer Og, = 6'(®wog. (A1, X)
+ bog):

[0.25 0.25 0.25 0.25 0.25 0.25
wog (-1, %) = | 0.10 0.10 0.10 0.10 0.10 0.10 | -
| 0.50 0.50 0.50 0.50 0.50 0.50

[V, BEE SRS I SO

[(0.25 x 1) 4+ (0.25 x 2) + (0.25 x 3) + (0.25 x 4) + (0.25 x 5) + (0.25 x 6)
= (0.10 x 1) + (0.10 x 2) + (0.10 x 3) + (0.10 x 4) + (0.10 x 5) + (0.10 x 6)
| (0.50 x 1) + (0.50 x 2) + (0.50 x 3) + (0.50 x 4) + (0.50 x 5) + (0.50 x 6)
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5.25
= 2.10
10.50

5.25 0.75 6
(l)og()\tt—l, X[) + bog = 2.10 + 1090 | = 3
10.50 0.50 11

6

Ogt = O—I(wog()\l—ly Xt) + bog) =0 3

1+]e‘(‘
14¢—3
1
I+4e-11

[0.9975
= | 0.9526 )
| 0.9999

Step 7 Computation of hidden state information A, = Og, tanh ()
Substitute Egs. (iv) and (v) to calculate the hidden state information:

el0325_o—1.0325

[0.9975] 1.0325 7] 0.9975 e
A= | 0.9526 |tanh 6 =095 |-| =
[ 0.9999 | 4 | 0.9999 %
[0.99757 [ 0.775 [ 0.773
=10.9526 | - | 0.9999 | = | 0.9525
| 0.9999 | [ 0.9993 | 0.9992

Step 8 Calculate the loss function:

The predicted outputs are compared with the observed, and the loss function is
computed (Table 4.1).

Table 4.1 Loss function

Observed Predicted (i) Loss function
1)

1 0.773 0.227

1.5 0.9525 0.5475

2 0.9992 1.0008
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Numerical Problem 4.4. Relate building strength, x, = (0.5,0.75,1) and vulnera-
bility to earthquakes, y, = (0.1,0.25,0.4) using LSTM. Three hidden units A,_; =
(0.01,0.04,0.09) are suggested. Assume the related weights appropriately. Refer to
Fig. 4.5 for understanding the working steps of the problem.

Solution:

Given, x; = (0.5,0.75,1); A—; = (0.01, 0.04, 0.09)
(A—1, x¢) = (0.01, 0.04, 0.09, 0.5, 0.75, 1)
Assume the weights p—; as (3,3,3)

Step 1 Random initialization of weights and biases for the gating units:

00000 -5
Input weight vector in forget gate wg, = | 32104 10
4751715
1
Bias vector in forget gate bg, = | 1
1
111111
Input weight vector in input gate wjg = | 1 11111
111111
1
Bias vector in input gate bjg = | 0.5
1

1 1 1 1 1 1
Input weight vector in cell state w,, = | 0.5 0.5 0.5 0.5 0.5 0.5
-1-1-1-1-1-1

0.5
Bias vector in cell state b, = | 0.5
0.5

0.750.75 0.75 0.75 0.75 0.75
Input weight vector in output gate woe = | 0.20 0.20 0.20 0.20 0.20 0.20
1 1 1 1 1 1

0.65
Bias vector in output gate bog = | 0.70
0.40
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[0.01]
0.04
0.09
0.5
0.75

(A—1, Xp) =

Step 2 Flow of input information through forget gate layer fg, = o' (wge.(A—1, X¢) +

bfg)Z

wfg (A—1.Xt) =

0.01
- 04
00000 -5 889
3210410 ||
47517 1 '
[4751715 ] | =

1

[ (0 x 0.01) + (0 x 0.04) + (0 x 0.09) + (0 x 0.5) + (0 x 0.75) + (—5 x 1)
(3 x 0.01) + (2 x 0.04) + (1 x 0.09) + (0 x 0.5) + (4 x 0.75) + (10 x 1)
| (4% 0.01) + (7 x 0.04) + (5 x 0.09) + (1 x 0.5) + (7 x 0.75) + (15 x 1)

[ —s5
13.2
| 21.52

-5 1 —4
(0rg(hio1, X) +bg) = | 13.2 [+ ] 1] =] 142
21.52 1 22.52
—4
fg, = o (rg(he1, %) +brg) =0’ [ | 142
22.52
M1
Tte— 9
_ 1
- T+e—142
1
0.01799
= 1 ()
L1
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Step 3 Flow of input information through the input gate layer ig, = o' (wig.(A—1, X¢)
+ big):

0.01

(111111 g'gg
oigh-1,Xx)=[111111 0'5
111111 '

L 0.75

1

[ (1 x 0.01) + (1 x 0.04) + (1 x 0.09) + (1 x 0.5) + (I x 0.75) + (1 x 1)
= | (1x0.01)+ (1 x 0.04) + (1 x 0.09) + (I x 0.5) + (1 x 0.75) + (1 x 1)
| (1x0.01) + (1 x 0.04) + (1 x 0.09) + (1 x 0.5) + (1 x 0.75) + (1 x 1)

[2.39
=1 2.39
| 2.39
2.39 1 3.39
(wig(hot, x) +big) = | 239 |+ 0.5 | = | 2.89
2.39 1 3.39
3.39
ig, = o' (wig(hio1, X)) + big) =0"| | 2.89
3.39
g
_ 1
=| o™
1
[ e |
[0.9674 ]
= | 0.9473 (ii)
| 0.9674 |

Step 4 Flow of updated information through cell state gate layer X, = tanh
(ww()\t—l . Xp) + bu):

0.01

r 0.04
1 1 1 1 1 1
0.09

oy (A—1,%X) = | 050505050505 |- 05
-1 -1-1-1-1-1 :
- 0.75

1

(1 x 0.01) + (1 x 0.04) + (1 x 0.09) + (1 x 0.5) + (I x 0.75) + (1 x 1)
=1 (0.5 x 0.01) + (0.5 x 0.04) + (0.5 x 0.09) + (0.5 x 0.5) + (0.5 x 0.75) + (0.5 x 1)
| (=1 %0.01) + (1 x 0.04) 4+ (=1 x 0.09) + (=1 x 0.5) + (=1 x 0.75) + (=1 x 1)
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2.39
= 1.195
-2.39

2.39 0.5 2.89
(@p1,x) +by) =] 1.195 |+ | 05| = | 1.695
—2.39 0.5 —1.89

[It = tanh((ﬁu ()\,tfl, Xt) = bM)

789 289289
. 289 o289
lrt —tanh 1.695 _ 1695 _ o—1.695
- . - T695 1 1605
~1.89 egl,syj:f(fl.xu)
0.943
= 0.805 (iii)

2.97722 x 1075 |

Step 5 Computation of updated cell state information p = fg 1 + igLi.
Substitute Egs. (i), (ii), and (iii) for computing the final updated cell state
information:

0.017997 [3 0.9674 0.943
W = fge +igdl = 1 3|+ 09473 |- 0.805
1 3 09674 | | 2.97722 x 103
0.1005 0.9123 1.0128
w=| 3 |+ 0.7626 = | 3.7626 (iv)
3 2.8802 x 107 3

Step 6 Flow of input information through the output gate layer Og, = ¢'(wog. (A1, X()
+ bog):

0.01
_ 0.04
0.75 0.75 0.75 0.75 0.75 0.75
0.09
wog (Ai—1. %) = | 0.20 0.20 0.20 0.20 0.20 0.20 | - 0.5
1 1 111 ;
- 0.75

1

[(0.75 x 0.01) + (0.75 x 0.04) + (0.75 x 0.09) + (0.75 x 0.5) + (0.75 x 0.75) + (0.75 x 1)
= (0.20 x 0.01) + (0.20 x 0.04) + (0.20 x 0.09) + (0.20 x 0.5) + (0.20 x 0.75) + (0.20 x 1)
(1 x 0.01) + (1 x 0.04) + (1 x 0.09) + (1 x 0.5) + (1 x 0.75) + (1 x 1)

[ 1.7925
= 0478

| 2.39
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1.7925 0.65 2.4425
Wog(hi_1,X) +bog = | 0.478 |+ ] 070 | =| 1.178
2.39 0.40 2.79
2.4425
Og, = o' (wog(Ai—1, %) +bog) =0'| | 1.178
2.79
1
I
T+e 21
0.92
=| 0.7646 )
0.942

Step 7 Computation of hidden state information A, = Og, tanh () :
Substitute Eqgs. (iv) and (v) to calculate the hidden state information:

10128 _o—1.0128

0.92 1.0128 0.92 ST o~ T
A= 0.7646 |tanh| | 3.7626 | | = | 0.7646 | - | Sremrsrem
0.942 3 0.942 g
e’+e™’
0.92 0.767 0.7056
=10.7646 | - | 0.9989 | = | 0.7638
0.942 0.995 0.9373

Step 8 Calculate the loss function:

The predicted outputs are compared with the observed, and the loss function is
computed (Table 4.2).

Table 4.2 Loss function

Observed Predicted (k) Loss function
1)

0.1 0.7056 0.6056

0.25 0.7638 0.5138

0.4 0.9373 0.5373
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4.5 Bi-Directional-LSTM

Bi-LSTM (Fig. 4.6) is an improvised variation of LSTM competent in capturing
the past and future of a time series (Roy et al., 2022). It includes two LSTMs to
accomplish the forward and backward computations of the hidden vectors, Xt and )tt,

respectively (Eqgs. 4.15 and 4.16).

i = f(mlxl + wzit_l) (4.15)
A= f<m3xl + wSXH) (4.16)
The average outputs from both LSTMs are the basis for the forecast, og, (Eq. 4.17):

og, = f(wﬁ»[ + 036)1 + Bias) “4.17)

where w; is the weight for input to the forward layer; w3 is the weight for input to
the backward layer; w,, ws denote the weights for hidden-to-hidden layers; wy is the

Fig. 4.6 Architecture of Bi-LSTM (adapted from Deb et al., 2024 under CC BY 4.0 License)
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weight for forwarding to the output layer; and wg is the weight for backward to the
output layer (Deb et al., 2024).

4.6 Gated Recurrent Unit

GRU (refer to Fig. 4.7) has a relatively simplified architecture compared to LSTM,
resulting in fewer parameters and operations and making them faster to train (Shen
etal., 2018). It is based on updating and reset gates. The update gate helps decide the
amount of information that needs to be retrieved from the past information. On the
contrary, the reset gate establishes the basis for the amount of information that needs
to be forgotten. The helpful information is finally stored with the help of current
and final hidden states. The mathematical expressions for GRU are presented in
Eqgs. (4.18-4.21):

7= 0w, - (A1, X)) (4.18)

1 = o(w; - (hi_1, X()) (4.19)
A = tanh(w.(rA_1, X)) (4.20)
=1 —z)h1 + (zh) (4.21)

where z, presents the update gate information at time t; o is the activation function;
w, is the weight vector for the update gate; A;_; is the information of hidden state
at t—1; x; is the input information at t; r; is the information of the reset gate at t; w;
is the weight vector for the reset gate; A, and A present the current and final hidden
information at t; tanh presents the activation function; and  is the weight vector for
the current hidden state.

4.7 Hybridization of CNN, LSTM, RNN, and GRU
Algorithms

The primary idea behind hybridizing different algorithms is to utilize the strengths
of individuals to enhance simulating efficacy. Some of the possible hybridizations
are presented as follows:

The CNN-LSTM utilizes the strengths of CNN and LSTM to enhance simulating
ability. CNN is efficient at seizing high-dimensional spatial features of data (LSTM
does not have this capability) with the assistance of convolution filters. It is less
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Fig. 4.7 Architecture of GRU

competent to establish long-term temporal dependencies (LSTM has this capability,
which can be facilitated by memory and gating units). In this context, CNN-LSTM
architecture can efficiently consider spatiotemporal details of data.

The GRU-RNN tackles the challenge of vanishing gradient found in RNNs. They
can handle long-term interdependence in time series data by selectively updating
and resetting information. GRU output is fed into the RNN algorithm as input. The
output obtained from the RNN is the outcome of the hybrid algorithm.

The GRU-LSTM architecture combines GRU and LSTM units to capture and
process temporal dependencies in sequential data. The architecture begins with an
input layer that receives sequential data fed into the GRU layer. Further, the output
of GRU is fed into the LSTM architecture, which further passes through three gates
and generates output.

The RNN-LSTM algorithm is developed to handle mid- and long-term depen-
dencies of sequential data efficiently. RNN output is fed into the LSTM algorithm
as input. The output from LSTM can be considered as the outcome of the hybrid
algorithm.

The CNN-GRU efficiently handles both spatial and temporal dependencies of
sequential data. This architecture starts with a CNN layer to bring spatial features
from the input data. Further, this output is fed as input to the GRU layer. The output
from GRU can be considered as the outcome of the hybrid algorithm.

The CNN-GRU-LSTM architecture works similar to the mechanism of CNN-
GRU. It only differs with an LSTM layer added to CNN-GRU. The output obtained
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from CNN-GRU is further fed into the LSTM layer, and output from this is considered
the outcome of the hybrid algorithm.

The GRU-RNN-LSTM combines GRU with typical RNNs and LSTMs. GRU,
RNN, and LSTM effectively learn short- to long-term dependencies in the data (Ren
et al., 2022). The input data is first transmitted to GRU, which generates output and
is then fed into the RNN. Furthermore, the RNN output is input to the LSTM. The
output from LSTM can be considered as the outcome of the hybrid algorithm.

4.8 Boosting Algorithms

The principle behind these techniques is to construct an ensemble of Decision Trees
(DTs) to decrease the error. Three algorithms, namely, AdaBoost, XGBoost, and
CatBoost are described in this section.

4.8.1 Adaptive Boosting

AdaBoost selects features to improve algorithm prediction. It makes an ensemble out
of weak learners to increase performance (Aldrees et al., 2022; Ding et al., 2022).
The hardness of each training dataset is given as input such that newly constructed
trees group the tougher ones. Stump is one component in DT, and it is comprised of
one node and two leaves. Some of these stumps have a more significant weightage in
predicting data. Every succeeding stump corrects the errors of the previous stump.
Lastly, the prediction is (Egs. 4.22-4.23)

T
H(x) = sign (Z octht(x))> (4.22)
t=1
where
o = 1Log(1 - 8t> (4.23)
2 Et

where hi(x) is the prediction by tth weak classifier, o g & are the weight and
fractions of misclassifications by the tth classifier. Here, the Log represents the natural
logarithm.

Each sample is given a weight, D;(i). These are assumed to be equal initially,
whose sum is unity. After each iteration, this sample weight is updated based on
which samples were incorrectly classified. These are given a higher weight, which
dictates that they are more likely to appear in the next iteration of the bootstrapped
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dataset. The bootstrap method estimates quantities regarding populations by aver-
aging estimates from smaller data samples. Specifically, the samples are created by
selecting observations from a larger data sample and choosing them repeatedly. This
way, a given observation can appear in a sample more than once. The feature that
distinguishes the classes is selected as the first stump. Accordingly, the weightage
of the stump is established on its accuracy. Classified sample weights are (Eq. 4.24)

Dy (i)e b

DH—] (1) = Zi Dt(i)e—u‘y;h‘(Xi)

(4.24)

Then, a newer dataset of identical size as the original is randomly chosen by
repeating samples from the preceding dataset. Higher weightage samples will be
selected more often. Then, another iteration is carried out on this bootstrapped dataset,
and so on (Madhuri et al., 2021; Mishra et al., 2024).

Numerical Problem 4.5. Classify the datasets presented in Table 4.3 using AdaBoost.
Distance to Nearest Stream (DNS) and Evapotranspiration (ET) are features
considered. Consider Gini impurity as an attribute selection measure.

Solution:

An AdaBoost tree is created in much the same way a DT is made. The difference is
that AdaBoost uses stumps instead of full-blown DTs with several leaves. Consider
the stump as an example. After splitting the data based on a given value, how well the
condition splits the different data classes is noticed: positive class (+1) and negative
class (—1). Here (Fig. 4.8), DNS of 5.2 as a divider correctly classifies five out of
six flooded points [here, points and datasets are used interchangeably] and four out

Table 4.3 Dataset for the numerical problem

Dataset DNS ET Did flood occur? Observed y; In terms of AdaBoost
terminology

1 24 10.2 No 0 -1

2 12 54 Yes 1 1

3 4.5 16 No 0 -1

4 7.6 20.3 Yes 1 1

5 9.3 14.5 Yes 1 1

6 49 7.8 Yes 1 1

7 8.1 14.2 No 0 -1

8 43 4.5 Yes 1 1

9 32 124 No 0 -1

10 5.5 5.5 Yes 1 1

11 7.2 11.2 Yes 1 1

12 4.5 8.5 No 0 —1
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Fig. 4.8 Tree constructed using DNS at a value of 5.2

of six non-flooded points. In the left leaf, corresponding to Yes, it can be seen that
five training examples are flooded, and one is not inundated despite being classified
as flooded.

Similarly, on the right leaf, four out of six non-flooded points are correctly clas-
sified as Yes, and two are incorrectly classified as No. Many such dividers can be
examined to pick the one that best splits the classes. A node refers to collecting all the
datasets, and the leaves are the two groups of datasets formed based on a comparison.

Before the numerical problem begins, a recap of Gini Impurity is necessary. It is
calculated to determine how well a specific node in a DT differentiates between the
classes (flooded and non-flooded). For a given leaf, it is calculated as (Eq. 4.25)

Gini impurity = (1 — (fraction of positive examples)2 — (fraction of negative examples)z)

(4.25)

Suppose a leaf has eight training examples that belong to the positive class and
five training examples that belong to the negative class. In this case, the Gini impurity
index is calculated as

8\’ 5V
Gini impurity = (1 — (5 n 8) - (5 n 8) ) = 0.473

The weighted average of both leaves is taken to calculate the Gini impurity for
a node and is performed to captivate the splitting efficiency of both leaves. If both
leaves do an excellent job, their respective Gini impurities will be lower. Before
constructing the first stump, each training example is assigned an equal weight, and
the sum of the weights of all the training samples is 1 and can be placed next to the
training data as a new column (Table 4.4).

The sample weight indicates how likely a given training example will be selected
for the next tree that will be constructed; it does not impact the first tree built and
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Table 4.4 Initial sample weights and classes of the entire dataset

99

Dataset DNS ET Flooded (1)/non-flooded (—1) Sample weight
Yi
1 24 10.2 -1 5
2 12 54 1 5
3 45 16 -1 =
4 7.6 203 1 5
5 9.3 14.5 1 =
6 4.9 7.8 1 5
7 8.1 14.2 -1 =
8 43 45 1 =
9 32 12.4 -1 =
10 5.5 5.5 1 5
11 7.2 11.2 1 5
12 45 85 -1 5

serves as a starting point. To begin the construction of the first stump, find out which
of the two features, DNS or ET, separates the training example better. To do this,
evaluate the Gini impurity of both features. Before that, decide at which point each
feature will give the highest possible Gini impurity. To make this possible, arrange the
values for each feature in ascending order and consider splitting the data at the mean
of each pair of consecutive training examples. The means of each pair of consecutive
training examples are given in the midpoint column, and the datasets are split using
each value present in this column (Table 4.5).

Table 4.5 DNS in ascending

order

DNS Vi Midpoint
24 —1

32 —1 2.8
43 1 3.75
4.5 —1 4.4
4.5 —1 4.5
4.9 1 4.7
5.5 1 52
7.2 1 6.35
7.6 1 7.4
8.1 -1 7.85
9.3 1 8.7
12 1 10.65
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Fig. 4.9 Tree constructed using midpoint DNS at a value of 4.7

Take the example of the split made at midpoint 4.7 (refer to Fig. 4.9). There are
five points with a DNS of less than 4.7 and seven points with a DNS greater than or
equal to 4.7. The Gini impurity for each leaf can be computed.

6\ (1Y’

Gini impurity;q = [ 1 — <§> - (;) =0.245
1\2 4\ 2

Gini impurity o, = (1 - <§> — (g) ) =0.320

The Gini impurity for the node is the weighted average of the Gini impurities of
both leaves.

0.245 x 7 +0.320 x 5
Gini impuritypys_s ; = x 1+2 X2 ~0.276

Similarly, the Gini impurities are calculated at each midpoint for DNS (Table 4.6).

Midpoints 4.5 and 4.7 achieve the same lowest Gini impurity of 0.276. So, the
Gini impurity corresponding to DNS is 0.276. The process is repeated for ET (refer
to Fig. 4.10, Table 4.7):

Adding the calculation for the last row in Table 4.7 for clarity:

The split is done at the ET value of 8.15 (vide Table 4.7).

1\2
Gini impurity,; = (1 - <T> ) =0
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Table 4.6 DNS in ascending order—Gini impurity
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DNS Vi Midpoint Gini left Gini right Gini impurity
2.4 -1

32 -1 2.8 0.463 0.000 0.424
43 1 3.75 0.420 0.000 0.350
4.5 -1 44 0.444 0.444 0.444
4.5 -1 4.5 0.245 0.320 0.276
4.9 1 4.7 0.245 0.320 0.276
55 1 5.2 0.278 0.444 0.361
7.2 1 6.35 0.320 0.490 0.419
7.6 1 74 0.375 0.500 0.458
8.1 -1 7.85 0.444 0.494 0.481
9.3 1 8.7 0.000 0.500 0.417
12 1 10.65 0.000 0.496 0.455

Fig. 4.10 Tree constructed using DNS at ET of 8.15

(fraction of negative examples ignored since there are no negative examples)

6\ (5Y
G (S (5N oo
1n1 impurt ynght < (11) <ll>>

Thus, taking the weighted average:

0 x 1+ 0.496 x 11
Gini impuritypy_g ;s = —— +12 X~ 0.455
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Table 4.7 ET in ascending order—Gini impurity

ET Vi Midpoint Gini left Gini right Gini impurity
4.5 1

54 1 4.95 0.496 0.000 0.455
5.5 1 5.45 0.500 0.000 0.417
7.8 1 6.65 0.494 0.000 0.370
8.5 —1 8.15 0.469 0.000 0.313
10.2 -1 9.35 0.490 0.320 0.419
11.2 1 10.7 0.500 0.444 0.472
12.4 -1 11.8 0.480 0.408 0.438
14.2 -1 13.3 0.500 0.469 0.479
14.5 1 14.35 0.444 0.494 0.481
16 -1 15.25 0.500 0.480 0.483
20.3 1 18.15 0.000 0.496 0.455

The best Gini impurity obtained when splitting the training examples using ET
is 0.313 at a value of 8.15. Since DNS got a lower Gini impurity, it was decided
to construct the first tree using DNS (DNS split at 4.7 has the lowest Gini impurity
among the Gini impurities of both ET and DNS) (Fig. 4.11).

The total error (¢;) is the sum of the weights of the incorrectly classified samples.
All the samples here have the same weight of 1]—2

It is understood that two of them are incorrectly classified since, on the left leaf,
one training example is not a flooded point, and on the right leaf, one is a flooded
point. The point DNS = 8.1 and ET = 14.2 fall to the left leaf (predicted flooded) but

Fig. 4.11 The first tree constructed using DNS at DNS = 4.7
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are not flooded. The point DNS = 4.3 and ET = 4.5 fall to the right leaf (predicted
non-flooded) but are flooded. Other than these two points, the rest are correctly
classified. Thus, the total error &, = % + % = é. Then, the weight of this DT (or
stump) is calculated as (refer to Eq. 4.23)

1 1—¢ 1
o = ELog = ELog(S) = 0.805

&t

The notation for the classification of a training sample based on a single tree is
h,(x;), where x; is the ith training example at rth tree. The procedure is as follows:

(1) First, check the condition at the node (4.7 > 4.9), which is false; thus, move on
to the leaf on the right side (corresponding to No). [4.7 is the value obtained to
split the data since it had the least Gini impurity. Hence, comparing it with the
DNS value of 4.9].

(2) The classification No refers to a class of —1; thus, the training example is
classified as —1, which can be otherwise written as i (xg) = —1. (x¢ refers to
the point DNS = 4.9 and ET = 7.8). Here h;(x¢) refer to the first AdaBoost
tree, and the subscript near x refers to the sixth training example.

Now, update the sample weights based on how the initial classification was made
using Eq. 4.24, where h, (x;) is the prediction by the rth DT of observation x;. Equa-
tion 4.24 carries out the reduction of the sample weight of accurately classified
samples and the increase of the sample weight of inaccurately classified samples. If
substituted with # = 1, it refers to the first iteration of AdaBoost:

D, (i)e—ulyihl (Xi)

D, (i) =
2(1) Zi D, (i)e—ulyihl(xi)

The new sample weights are calculated using Eq. 4.24. Since the denominator is
the same for all the samples, it is first calculated independently. D (i) is assumed to
be é for all samples since this is the first AdaBoost tree constructed. o is already
calculated as 0.805.

For the leaf on the left in Fig. 4.9 (or even Fig. 4.11), six points are flooded (y; = +
1) and classified as flooded (h (x;) = + 1), thus contributing to the term 6¢(~0-803>x1x1)
There is also one point that is not flooded (y; = — 1), but is classified as flooded
(h; (x;) = + 1), thus contributing to the term e~%305*~1xD_For the leaf on the right
in Fig. 4.8 (or even Fig. 4.10), four points are not flooded (y; = — 1) and classified
as non-flooded (h; (x;) = —1), thus contributing to the term 4e(~0-805x=1x=1 There
is also one point that is flooded (y; = + 1), but is classified as non-flooded (h; (x;)
= —1), thus contributing to the term e(=0-305x1x=1)

The denominator Z D[(i)e_u‘yih‘(xi) — é [6e(—0.805><1>< 1) + e(—0.8()5><—1>< 1) +

i
e(704805><1><71) + 46(70.805><71><71).

The % is the sample weight, D, (i) [first iteration and assumed weight], which is
the same for all the samples at this stage. It is taken out as standard. In the first term,
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6e(~0-805x1xD) refers to the six examples in the left leaf which have been classified
correctly, with a weight of the DT (a,) calculated as —0.805 using Eq. 4.23. The
first one refers to y,, the class, and the second 1 refers to h;(x;). Itis the class as
predicted by the AdaBoost. Similarly, the other three terms are calculated. The above
simplifies to

1
3110 x 0.447 42 x 2.237] = 0.745

After completion of the denominator (typical for all samples, i.e., 0.745), the
numerator for each sample is calculated, and the new sample weight is updated
accordingly (using Eq. 4.24). For instance, take the first example in Table 4.6. It has
a DNS of 2.4, which, according to the constructed tree, is classified as No or —1, i.e.,
h;(x;) = — 1. Itis also the corresponding label —1, i.e., y; = — 1, which means it
is a non-flooded location. In h; (x;) = — 1, h; refers to the first AdaBoost tree, and
the subscript of x; refers to the first training example. The —1 signifies that it has
been predicted as non-flooded.

l1_26(—0.805><—l><—l) % % 0.447
Dy(1) =Dy(2) =Dy (4) =Dy(5) = = =0.05
2(1) 2(2) 2(4) 2(5) 0.745 0.745

The third example has a DNS value of 4.5, and according to our tree, it is classified
as —1,i.e., hj(x3) = — 1. However, the corresponding label is + 1,1i.e.,y; = + 1.
It means that our tree incorrectly classified a positive training example as negative.
This training example is incorrectly classified, so its sample weight is duly increased.

ﬁe(fo.sosnxfl)
D,(3) =D;(8) = ——=——=0.25
2(3) = D2 (8) 0745
Similarly, the rest of the sample weights are updated:

Le(70.805>< 1x1)

Dy(6) =Dy(7) =Dy (9) =D, (1) =Dy(12) =2 —0.05
7 (6) 2 (7) 2(9) »(11) »(12) 0745
%6(70.805x71><1) ]_12 % 2.237
D,(10) = = =0.25
0.745 0.745

In addition, verify whether the newly updated weights add up to unity, which they
do. The inference that can be made with the new weights is that correctly classified
training examples have been given less weight (0.05). In comparison, the incorrectly
classified training examples have been given a higher weight (25% chance). It ensures
that more training examples must be correctly classified in the bootstrapped dataset.

A dataset of the identical size as the original is constructed. The training examples
in the new dataset are chosen randomly according to their new sample weights.
Repetition of a training sample in the new dataset is allowed. Create another dataset
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of the identical size as the previous dataset of size 12. This new dataset is created by
randomly choosing from the original dataset. The sample weight is the probability
that a new dataset is selected from the old dataset.

Whenever a new dataset is picked, two previously incorrectly classified training
examples have a 25% chance of being selected. In comparison, the other training
samples have a 5% chance. It is the first iteration of AdaBoost, and similarly multiple
trees can be considered. The final prediction for each observation is predicted using
Eq. 4.26:

t=1

T
H(x) = sign (Z oclh[(x)) (4.26)

where H(x) represents the final prediction and h,(x) are the predictions by individual
trees.

Use Eq. 4.26 to classify them if given an unseen test example. The below
representation provides an idea of how unseen examples will be classified.

For example, if the point is DNS = 5 and ET = 5, calculate the probability based
on the first tree constructed using Eq. 4.26.

H(x) = sign(0.805 h¢(x)).

Traverse down the tree in Fig. 4.11. The DNS of our point is greater than 4.7.
Thus, this tree classifies it as flooded, h¢(x) = +1.

Therefore H(x) = sign( 0.805 x 1) =+ 1.

It means that our AdaBoost classifier of just one tree would classify it as positive,
i.e., flooded. As a note, the classification of AdaBoost after 50 trees was constructed,
which is generated using code (Fig. 4.12).

4.8.2 eXtreme Gradient Boosting

XGBoostuses tree pruning to minimize the loss function using multiple weak learners
(Osman et al., 2021; Wu et al., 2019). Examples are first classified such that identical
residuals are in the same cluster and later then branched off (refer to Fig. 4.13).
Detailed information about XGBoost is available from Madhuri et al. (2021), Mishra
et al. (2024), Deb et al. (2024).

A similarity score is used as an attribute selection measure in this context and
expressed (Eq. 4.27) as

> Residuali)2

Similarity Score =
Z[Pi’ X (1 - Pi/)] + AR

(4.27)
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Fig. 4.12 Classification by AdaBoost after 50 trees were constructed (Red: Non-flooded; Blue:
Flooded)

Here, Ag is termed as the regularization parameter. p;” is the prior probability esti-
mated for the ith training example (i = 1, 2, 3, ..n) in that branch. Appropriate p;’ is
assigned in the first iteration. The training examples are branched so that the infor-
mation gain is the maximum at each branch till it can reach a maximum number of
branches of the given tree. This gain is computed as Eq. (4.28).

Gain = Similarity Score o, + Similarity Scoreg;yy,, — Similarity Scoreg,, (4.28)

Cover (min_child_weight or minimal number of residuals in each leaf) is
computed as Z[pi’ X (1 - pi’)]. The leaf is taken out if the cover is less than the
minimum, and the tree (or branch) is pruned if the Tree Complexity Parameter (y) is
higher than the gain at a branch and is one form of regularization to make the process
more generalized. Larger Ar lower the gain, thereby making pruning flexible. Lastly,
output values (w) for all leaves are expressed as (Eq. (4.29))

w— > Residual; 4.29)

Z[Pi/ X (1 - Pi/)] + AR

The probabilities are fine-tuned in terms of Log of odds or Log odds (Eq. 4.30):
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Fig. 4.13 Architecture of XGBoost (adapted from Deb et al., 2024 under CC BY 4.0 License)

1og<1L) — Log odds. (4.30)
—p

The inverse of Eq. 4.30 is also used.
Another tree is added after each iteration. Accordingly, itis expressed as (Eq. 4.31)

Log new odds = Log old odds
+ Learning rate (Output Valueyee + Output Valueyeen + - - - + Output Valueyeen)

31

It can be observed from Eq. 4.31 that the output values from several trees
are considered together in updating the Log odds. The mechanism of calculating
Log odds and output values is demonstrated in the numerical example 4.6. Eventually,
XGBoost targets to minimize the objective function (Eq. 4.32):

. 1
O(y;. p; W) = ZL()’is p) + E)‘RWZ (4.32)

i=1

where loss function, L(yi, pi), is expressed in Eq. 4.33:
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L(y; p;) = [~yilog(p;) + (1 — yi)Log(1 —p;)] (4.33)

Numerical Problem 4.6. Classify the datasets presented in Table 4.8 using XGBoost.
Features considered are DNS and ET. The initial probability prediction for all values
is 0.5, and the learning rate is 0.3. Employ similarity score as an attribute selection
measure.

Solution:

The feature needs to be identified to initiate the construction of the tree. Like
AdaBoost, arrange the values for each feature in ascending order and consider split-
ting the data at the mean of each pair of consecutive training examples. The initial
probability prediction for all values is 0.5, on which the residuals can be calculated
(Table 4.9).

Splitting of the data is needed to start constructing the tree. It can be done at several
points. For example, based on ET, split the data at 8.15, which has four points less
than it and eight points above it (8.15 is the mean of the consecutive ET values 7.8
and 8.5). The middle point is constructed using these mean values (Table 4.10). The
gain is calculated at each point where the data is split (based on the middle point).
For example, split the tree at 9.35 (mean of 8.5 and 10.2). Before calculating the gain,
the similarity scores of the root node (comprising of the residuals of all the data, left
leaf and right leaf) can be computed. Ag is assumed to be zero for demonstration
purposes. The root node consists of all the points, whereas the left leaf consists of
the points less than the threshold chosen, and the right leaf consists of the points
more significant than the threshold.

Table 4.8 Datasets for the numerical problem

Dataset DNS ET Did flood occur? Observed y;
1 24 10.2 No 0
2 12 54 Yes 1
3 4.5 16 No 0
4 7.6 20.3 Yes 1
5 9.3 14.5 Yes 1
6 4.9 7.8 Yes 1
7 8.1 14.2 No 0
8 43 4.5 Yes 1
9 32 12.4 No 0
10 5.5 5.5 Yes 1
11 7.2 11.2 Yes 1
12 4.5 8.5 No 0
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Table 4.9 Residual probabilities and middle points of ET

ET yi Di Residual Middle point
Yi -Pi
4.5 1 0.5 0.5 -
5.4 1 0.5 0.5 4.95
5.5 1 0.5 0.5 5.45
7.8 1 0.5 0.5 6.65
8.5 0 0.5 -0.5 8.15
10.2 0 0.5 —-0.5 9.35
11.2 1 0.5 0.5 10.7
12.4 0 0.5 -0.5 11.8
14.2 0 0.5 —-0.5 13.3
14.5 1 0.5 0.5 14.35
16 0 0.5 -0.5 15.25
20.3 1 0.5 0.5 18.15
> Residuali)2

Similarity scoreg,, =

[plx (1=p)] +Ar
_(05+05... —0.5+0.5)°

=0.333
12(0.5 x 0.5) + 0
Similarit > Residuali)2
1milarity score; ., =
S[p/ x (1 =p/)] + i
_(05+05+05+05—0$2_18

5(0.5x0.5) + 0

> Residuali)2
Yoy x (1=p)] + ix
(—0.54+0.5—-0.5—-0.5+0.5—-0.540.5)*
- 7005 % 0.5) + 0

Similarity scoreg;yp, =

=0.143
After calculating the similarity scores, the gain can be calculated using Eq. 4.28.

Gain = Similarity Score; . + Similarity Scoreg;qy, — Similarity Scoreg,
=1.8+40.143 — 0.334 = 1.609

Similarly, the gain is calculated for both features at every point, as shown in
Tables 4.10 and 4.11.
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Table 4.10 Gain values of the first branch for ET

ET Vi Middle Left score Right score Root Gain
4.5 1 - - - - -
5.4 1 4.95 1.000 0.091 0.333 0.758
5.5 1 545 2.000 0.000 0.333 1.667
7.8 1 6.65 3.000 0.111 0.333 2.778
8.5 0 8.15 4.000 0.500 0.333 4.167
(Highest gain)
10.2 0 9.35 1.800 0.143 0.333 1.609
11.2 1 10.7 0.667 0.000 0.333 0.333
12.4 0 11.8 1.286 0.200 0.333 1.152
14.2 0 13.3 0.500 0.000 0.333 0.167
14.5 1 14.35 0.111 0.333 0.333 0.111
16 0 15.25 0.400 0.000 0.333 0.067
20.3 1 18.15 0.091 1.000 0.333 0.758
Table 4.11 Gain values of first branch for DNS
DNS Vi Middle Left score Right score Root Gain
24 0 - - - - -
32 0 2.8 1.000 0.818 0.333 1.485
43 1 3.75 2.000 1.600 0.333 3.267
4.5 0 4.4 0.333 1.000 0.333 1.000
4.5 0 4.5 0.333 1.000 0.333 1.000
4.9 1 4.7 1.800 3.571 0.333 5.038
(Highest gain)
5.5 5.2 0.667 2.667 0.333 3.000
7.2 1 6.35 0.143 1.800 0.333 1.610
7.6 1 7.4 0.000 1.000 0.333 0.667
8.1 0 7.85 0.111 0.333 0.333 0.111
9.3 1 8.7 0.000 2.000 0.333 1.667
12 1 10.65 0.091 1.000 0.333 0.758

The first tree is built using the split, which gives the highest gain at a DNS value
of 4.7, with a gain of 5.038, and the residuals are split, as per Fig. 4.14.

The leaves created can be further divided (Table 4.12), similar to how they were
separated earlier, based on a split that gives a maximum gain.

First, split the right leaf (arbitrarily). The points corresponding to the right leaf
are given in Tables 4.13-4.16. The split at which the highest gain is obtained for
these points is found by first calculating the gain at every possible split.
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Fig. 4.14 First branching of the tree (0.5 and —0.5 are the residuals; brackets denote the dataset

number)

Table 4.12 Points belonging

to the left leaf of the first DNS ET i
branch 24 10.2 0
4.5 16.0 0
43 4.5 1
32 12.4 0
4.5 8.5 0
Table 4.13 Gain values of the second branch (ET)
ET Vi Middle value Left score Right score Root Gain
4.5 1 - - - - -
8.5 0 6.5 1.00 4.00 1.80 32
10.2 0 9.35 0.00 3.00 1.80 1.2
12.4 0 11.3 0.33 2.00 1.80 0.533
16 0 14.2 1.00 1.00 1.80 0.2
Table 4.14 Gain values of the second branch (DNS)
DNS yi Middle value Left score Right score Root Gain
24 0 - - - - -
32 0 2.8 1.000 1.000 1.800 0.2
43 1 3.75 2.000 0.333 1.800 0.533
4.5 0 44 0.333 2.000 1.800 0.533
4.5 0 4.5 0.333 2.000 1.800 0.533
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Table 4.15 Gain values of the third branch (ET)
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ET Vi Middle value Left score Right score Root Gain
54 1 - - - - -

5.5 1 545 1.000 2.667 3.571 0.095
7.8 1 6.65 2.000 1.800 3.571 0.229
11.2 1 9.5 3.000 1.000 3.571 0.429
14.2 0 12.7 4.000 0.333 3.571 0.762
14.5 1 14.35 1.800 2.000 3.571 0.229
20.3 1 17.4 2.667 1.000 3.571 0.095
Table 4.16 Gain values of the third branch (DNS)

DNS Vi Middle value Left score Right score Root Gain
4.9 1 - - - - -

5.5 1 52 1.000 2.667 3.571 0.095
7.2 1 6.35 2.000 1.800 3.571 0.229
7.6 1 7.4 3.000 1.000 3.571 0.429
8.1 0 7.85 4.000 0.333 3.571 0.762
9.3 1 8.7 1.800 2.000 3.571 0.229
12 1 10.65 2.667 1.000 3.571 0.095

Fig. 4.15 Second branching of the tree

The split with the highest gain is made at an ET value of 6.5 (middle value), with a
gain of 3.2. It is observed that similar residuals end up in the same leaves (Fig. 4.15).
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Fig. 4.16 Complete branching of the tree

The tree may also be expanded on the right leaf using the same procedure. Gain
at each split is calculated as follows:

It so happened that the one negative class (0) point (DNS: 8.7, ET: 14.5; dataset
number 7) in this leaf occurs in the same place in ascending order for both features. It
means that all the scores for both features will be the same. Thus, the gain calculated
for both features is the same. Accordingly, DNS is arbitrarily picked. The split is
made at a DNS value of 7.85, with a gain of 0.762 (Fig. 4.16).

First, after going through the root node (which contained all the training exam-
ples), it is decided to split at DNS > 4.7 (at level 1). At this level, there are two leaves.
The leaf on the left contains five training examples, and the leaf on the right contains
7. It is found that the criterion by which both leaves could be split [ET > 6.5] and
[DNS > 7.85]. After splitting both leaves one more time, the status is level 2. At this
level, there are four leaves. It can be labelled as 1, 2, 3, and 4 from left to right. The
branching stops when the maximum tree depth parameter is reached (here, it is 2).

Eachleaf in atotal of four leaves is used to calculate its output value using Eq. 4.29.
The output value of the first leaf is (dataset number: 8; residual is 0.5)

> Residual; 05
e x (1=py)]+ rr 025

The output value of the second leaf is calculated as (dataset number: 1, 3,9, 12;
all residuals are —0.5)

2

W =

> Residual; _ —05-05-05-05
S[p/ x (1—p/)] +ar ~ 025+025+025+025

W =

The output value of the third leaf is (dataset number: 4, 6, 10, 11; all residuals are
0.5)
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> Residual; _ 05405+054+05
S[p/ x (1-p/)] +rr ~ 025+025+025+0.25

W =

The output value of the fourth leaf is (dataset number 2,5,7; residuals are —0.5,
0.5, and 0.5)

> Residual; -0.54+05+0.5

S x (L—p)] 7w 02540254025

W =

Now that the output values of each last leaf have been made, an update on the
estimated probability can be made. This process is done in terms of Log odds of the
probabilities. Equation 4.30 shows how Log odds are calculated.

log(L) = Log odds
I-p

Since the initial probability estimate of all the training points is 0.5, the Log odds
of all the training points are log(g%) = 0. The Log newodds are found by updating
them with the output values and learning rate of 0.3 (Eq. 4.31).

Log newodds = Log oldodds + Learning rate x Output Value

Develop knowledge (Table 4.17) using the tree created (refer to Fig. 4.16) and
assign an output value to each training example. Then, using the output value, the
Log odds are calculated. Furthermore, these are converted back into the form of
probability to receive the new estimates of the training examples using the following:

eLog newodds

Probability = (4.34)

1+ eLog newodds

Table 4.17 presents the updated probabilities. Figure 4.17 illustrates the results
after constructing 100 trees. It is noted that the newly predicted values are nearer to
the actual class of each training example.

The procedure mentioned above is for the first tree. Other trees are also constructed
by calculating new residuals using the newly estimated probability values.

If the class of an unknown point is to be tested, it is run through all trees
constructed, and using the output values given by each tree, the probability of the
new point is found. The below representation provides an idea of how XGBoost will
classify unseen examples.

For example, if it was given the training point with DNS and ET values as 5.0,
the process of how its value can be predicted using the first tree calculated can be
visualized (Fig. 4.16). DNS > 4.7 computes to true, so move to the right leaf of the
first level. DNS > 7.85 [in Table 4.16, the middle value of 7.6 and 8.1 is 7.85; hence
it is chosen since it has the highest gain] computes to false, so move to the second
level’s left leaf (Iabelled 3). The output value of the third leaf has been calculated as
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Table 4.17 Updated probabilities

Dataset | DNS |ET i | pi Log old |Leaves |Output |Lognew |Updated

odds value odds probability p;

1 2.4 102 |0 |05 |0 2 -2 —0.6 0.354

2 12 54 1 /05 |0 4 0.667 0.20 0.550

3 4.5 16 0 105 |0 2 -2 —0.6 0.354

4 7.6 203 |1 |05 |0 3 2 0.6 0.646

5 9.3 145 |1 |05 |0 4 -2 —0.6 0.354

6 4.9 7.8 1 /05 |0 3 2 0.6 0.646

7 8.1 142 |0 |05 |0 4 0.667 0.20 0.550

8 4.3 4.5 1 /05 |0 1 -2 —0.6 0.354

9 32 124 |0 |05 |0 2 -2 —0.6 0.354

10 55 55 1 105 |0 3 0.6 0.646

11 7.2 112 |1 |05 |0 3 2 0.6 0.646

12 4.5 8.5 0 |05 |0 2 -2 —0.6 0.354

Fig. 4.17 XGBoost—results after construction of 100 trees (Red: Non-flooded; Blue: Flooded)

two, as shown above. Then, use Eq. 4.31 to update the probability from 0.5 to a new

value.

Log newodds = Log oldodds + Learning rate x Output Value
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Expanding each term here:

1-0.5

Log newodds = log< ) +03x2=0.6

Then calculate the updated probability from the Log newodds Eq. (4.34)

eLog newodds 60'6

Probability = < = 0.645

l_l_eLog newodds 1+ el

Thus, based on the first tree, the points DNS = 5 and ET = 5 are estimated to
have a 0.645 chance of flood.

4.8.3 Categorical Boosting

CatBoost (Mehraein et al., 2022), a gradient boosting algorithm, is constructed on the
iterative framework of AdaBoost with the incorporation of (a) target encoding and
(b) gradient-based splitting (Fig. 4.18). Target encoding helps enhance the predictive
ability of the model while decreasing the vulnerability to over-fitting. Complimen-
tarily, gradient-based splitting optimizes tree splits directly with reference to the
gradient of the weighted error, leading to more efficient and accurate tree construc-
tion, especially on large datasets. Once the splits are identified, the iterative process
is similar to that of AdaBoost (Mishra et al., 2024).

Other algorithms in the boosting category are LGBoost and NGBoost (Duan
et al., 2020; Fan et al., 2019). Table 4.18 presents conceptual differences in Boosting
Algorithms (Mishra et al., 2024). Readers are advised to go through the relevant
sources to gain an adequate understanding of these algorithms.

Revision Questions and Exercise Problems

4.1 Discuss the philosophy behind CNN.

4.2 What are the filters that are commonly used in CNN?

4.3 Explain the architecture of CNN.

4.4 Explain the mathematical equation for the convolutional layer for ith data.

4.5 What is the pooling layer? What is average and maximum pooling?

4.6 What is the Softmax function layer? What is its use?

4.7 Whatis loss function? How is it going to help the efficacy of the ML algorithm?

4.8 What are the parameters governing CNN? According to you, which parameter
has a significant effect on the efficacy of the algorithm?

4.9 What are the purposes of the learning and dropout rates? Are they related? If
so, how?

4.10 Employ the CNN to establish a relationship between the input (traffic flow,

lane length) and output (congestion level). Use the maximum pooling method.
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Fig. 4.18 Tree formation in CatBoost (adapted from Mishra et al., 2024 under CC BY-NC-ND 4.0
License)

Table 4.18 Conceptual differences in boosting algorithms (adapted from Mishra et al., 2024 under
CC BY-NC-ND 4.0 License)

Features Algorithms
AdaBoost CatBoost LGBoost NGBoost XGBoost
Formation of Asymmetric | Symmetric | Asymmetric | Level-wise | Depth-wise
decision tree level-wise level-wise leaf-wise growth growth
growth growth
Splitting metliod | Greedy Greedy Gradient- Natural Histogram
splitting splitting based gradient based
method method One-Side
sampling
Handling No Yes No No No
categorical
features
Regularization | No Yes Yes Yes Yes
Memory Low High Low High Moderate
consumption
Feature Available Available Available Available Available
importance
Scalability Fast Moderate Fast Low Fast
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X1 X2 D
8 4 0.75
12 1.00

4.11 What is RNN? Explain briefly the mathematics behind the same.

4.12 What is the disadvantage of RNN that prompted the usage of LSTM?

4.13 What is the architecture of LSTM? Explain the mathematical philosophy in
detail.

4.14 How can LSTM exploration be utilized to capture long-term dependencies?

4.15 What is the meaning of signal in LSTM?

4.16 What are input, forget, and output gates? How do they differ in their
functionality?

4.17 What are final, new memory, and hidden cells? How do they differ in their
functionality?

4.18 What is the purpose of using the tanh function at the output gate of an LSTM?

4.19 What are the parameters of LSTM? Mention them with their specific
purpose. Which parameter significantly affects the outcome? Similarly, which
parameter has the most negligible influence on the outcome?

4.20 What is the physical meaning of weights in LSTM?

4.21 The problem is related to eye movement recognition. Here, the input is skin
temperature, x, = (5,6,7), and output is eye movement, y, = (2,3,4). Apply
LSTM with three hidden units, A,_; = (1,2,3) and u,—; = (5,5,5). Assume the
weights and parameters suitably.

4.22 Whatis the mathematical basis of GRU? Is it simpler than LSTM? If so, discuss
in what aspects?

4.23 What is the meaning of hybridization in ML algorithms? Do you think it will
improve performance compared to the individual algorithms?

4.24 What is the meaning of boosting in the ML framework?

4.25 Mention the names of three boosting algorithms. Compare them with three
salient features.

4.26 Whatis the meaning of correctly and incorrectly classified samples in boosting
algorithms? How are they going to affect the quality of output?

4.27 What is the meaning of a bootstrapped sampling?

4.28 What is Gini impurity? Can it have a value greater than 1?

4.29 A leaf has ten training examples that belong to the positive class (1) and six
training examples that belong to the negative class (—1). Assume suitable data,
if any compute Gini Index.

4.30 Is lower Gini impurity preferred or higher? Why?

4.31 What is the purpose of middle values in boosting-related problems? On what

basis can the weighted average of the Gini impurities be computed?
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4.32

4.33
4.34
4.35
4.36
4.37

4.38
4.39

4.40

441

Mention one distinct advantage and disadvantage in AdaBoost that affects the
accuracy of the outcome. What possible extensions can be explored to make
the algorithm more robust?

What are the residuals in XGBoost?

What is a similarity score and regularization parameter?

What is information gain, and how is it related to similarity scores?

What is the Tree Complexity Parameter?

What is the Logodds ? Is it related to probability? If yes, how is it related? If
the Logodds is 0.8, what is the probability?

What are the objective functions of boosting algorithms?

Mention one distinct advantage and disadvantage in XGBoost that affects the
accuracy of the outcome.

What possible extensions can be explored to make the boosting algorithms
more robust?

The problem is related to the stability of the foundation. Two features
are considered: effective vertical stresses and earthquake magnitude. Seven
different locations are the datasets. Classify the datasets using AdaBoost and
XGBoost (refer to Table 4.19).

Advanced Review Questions

4.42

4.43
4.44

4.45

4.46

4.47

Can you explore pooling methods other than average and maximum pooling?
If yes, how are they better than average pooling?

What is the physical significance of the height and width of filters in CNN?
What is meant by dense vector? What is the physical meaning of weights and
biases of dense vectors?

What is the purpose of termination criteria? Mention different types that can
be explored.

How do epochs impact the learning and dropout rates? Can any relationship
be established in this regard?

Is hyperparameter tuning necessary for improving the efficacy of algorithms?
Do you think the computational burden will increase with hyperparameter
tuning?

Table 4.19 Information about features and foundation status

Dataset | Effective vertical stresses Earthquake magnitude | y; Is foundation safe?
1 2.8 10.8 1 Yes
2 12.6 5.8 0 No
3 4.8 16.8 1 Yes
4 7.8 20.8 0 No
5 9.9 14.8 1 Yes
6 6.9 8.8 0 No
7 8.8 16.2 0 No
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4.48 Is the hybridization of CNN and LSTM the same as that of LSTM and CNN?
Can you elaborate on the same? In that case, how may architecture be changed?

4.49 How to determine optimum values in the case of support vector regression?

4.50 Can you suggest further hybridizations between ML algorithms (besides those
mentioned in this chapter)? If so, cite the basis of the same and the logical
advantages of the same over the standalone algorithms.

4.51 What is meant by bias? Does boosting algorithms reduce bias?

4.52 TIs using the learning rate in gradient boosting essential to get an optimum
output? Elaboration is suggested.

4.53 Can you develop a boosting algorithm that simultaneously minimizes compu-
tational complexity and facilitates accurate predictions?
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Chapter 5 ®
Fuzzy-Based Modelling Algorithms Gresho

5.1 Introduction

The chapter provides an insight into fuzzy logic-based approaches, namely, Fuzzifica-
tion and Defuzzification, Adaptive Neuro-Fuzzy Inference System (ANFIS), Fuzzy
Cognitive Mapping (FCM), Optimization, and its fuzzy extension. This chapter also
briefly discusses Fuzzy CNN and Fuzzy LSTM.

5.2 Fuzzification and Defuzzification

Crisp logic deals with conventional situations involving binary decisions. Exam-
ples include occurrence or non-occurrence and satisfactory or unsatisfactory. These
decision-making situations are uncommon in real-world problems may be due to
imprecise information. If information of this nature is used as input, the model
may yield imprecise outputs (refer to Fig. 5.1); for example, in Water Distribution
Networks (WDN), uncertainties associated with the cost of pipes, leakages, available
heads, pipe roughness, etc., impact the design.

Fuzzy logic is viable for considering uncertainty through membership functions
(MF). This process is called fuzzification (Shruti & Deka, 2020; Vasan et al., 2022). In
contrast, defuzzification translates the vague form into a crisp one. Related discussion
is as follows.

Two categories of MF exist for fuzzification purposes, i.e., (i) non-decreasing
infers more the better and (ii) non-increasing infers less the better. The application
generally guides the shape of MF. Information about selected MFs, namely, non-
linear, hyperbolic, and exponential for two categories, along with related equations,
are presented respectively in Figs. 5.2a, b, 5.3a, b, and 5.4a, b. Here, Z represents
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Fig. 5.1 Sources of uncertainty and their impact on output

the objective function, Z;, and Z; are the lowest and highest tolerance levels Z can
attain (Vasan et al., 2022). Also, Fig. 5.5a, b presents the triangular and trapezoidal-
shaped MFs (for the non-decreasing category), which are simple to understand and
easy to interpret.

Several approaches exist for defuzzification. Some of them are weighted average
and centre of gravity (Ross, 2021). Here, the centre of gravity is explained briefly
due to its flexibility, which caters to most situations. The mathematical basis of the
centre of gravity is (Eq. 5.1)

o 0 (X)2dz

 [im(X)dz oD

Fig. 5.2 a,b. Non-linear MF (Modified and adapted from Vasan et al., (2022) under CC BY-NC-ND
4.0 License)
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Fig. 5.3 a and b. Hyperbolic MF (Modified and adapted from Vasan et al., (2022) under CC
BY-NC-ND 4.0 License)

Fig. 5.4 a, b Exponential MF (Modified and adapted from Vasan et al., (2022) under CC BY-NC-
ND 4.0 License)
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Fig. 5.5 MF and corresponding equation for a triangular and b trapezoidal

Here, . (X) represents the equation of MF for the chosen line, and the defuzzified
value is Z*.

Numerical Problem 5.1. Rainfall measured using a non-recording rain gauge is
20 mm. However, after cross-verification, an error of 10% was found. Fuzzify rain
gauge reading to account for this error in the triangular MF framework.

Solution:

The measured rainfall is 20 mm.

The percentage of error is 10, i.e., 0.1.

Error =20 mm x 0.1 =2 mm.

In this context, the lowest and highest readings that are possible are 18 mm (20-2)
and 22 mm (20 + 2) (refer to Fig. 5.6).

In triangular MF, 20 mm is most likely, with a membership value of 1 (or even
less in some cases, depending on the perception of the expert).

Numerical Problem 5.2. In an educational institution, students participate in several
academic and non-academic activities. The institute may use student participation
data to facilitate their career progression opportunities. Students with a rating score
of 20 or less cannot be considered for career progression opportunities. Students
above 20 and below 50 are eligible for opportunities in average category companies,
whereas those above 50 and below 80 are eligible for good companies. Students with
scores above 80 will be considered for the best companies. Present the data in the
stepped MF framework. Assume supplementary data wherever applicable.
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Fig. 5.6 Triangular MF for the rainfall

Solution:

It is assumed that a person with a 20-rating score or less can be given a 0.1 member-
ship value, as they made some effort. However, they will not be eligible for career
progression opportunities. A membership value of 0.4 is proposed for those above
20 and below 50 rating scores; its value is 0.7 for those above 50 and below 80 rating
scores; it is suggested to be 0.9 for those above 80 (refer to Fig. 5.7).

Numerical Problem 5.3. The expert wants to understand the workability of the
machines in a factory. Machines working below 10 h are considered non-productive,
and machines working beyond 50 h are exceptionally productive. Draw a non-
linear MF with a membership value of 0.1 for non-productive and 1 for remarkably
productive. You can also provide linguistic ratings in between, such as moderately
productive, and represent it on the plot.

Solution:

Machines working less than 10 h are non-productive and are assigned a value of 0.1.
The logic is that it serves but does not meet the expectations of the expert. Machine
working 50 h and beyond is termed exceptionally productive. Hence, a membership
value of 1 is given. Here, consider 30 h for moderate productivity. You can also see
this information in the plot (Fig. 5.8).

Numerical Problem 5.4. The Air Quality Index (AQI) measures pollution levels.
An AQI of 100 or less is considered satisfactory, whereas an AQI of above 100 is
considered not advisable. Draw a suitable MF based on your perception.

Solution:

AQI of 100 or less is considered satisfactory and can be given a membership value
of 1. However, beyond 100, it is not advisable. Accordingly, a non-linear MF was
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Fig. 5.7 Stepped MF for the rating score of students

proposed. With the increase in AQI, membership value is decreasing, representing
not advisable [refer to Fig. 5.9].

Numerical Problem 5.5. Formulate non-decreasing exponential and hyperbolic MF
in utilizing wireless sensors effectively in a highway project. The highest and lowest
time sensors that can be used are 200 and 100 h. Take the value of S as 0.5.
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Fig. 5.8 Non-linear MF for the working hours of the machine

Fig. 5.9 Non-linear MF for the AQI
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Solution:
Exponential MF
675(175:2) — e_s
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5.3 Adaptive Neuro-Fuzzy Inference System

ANFIS simultaneously utilizes ANN and Fuzzy Inference System (FIS) (Alawad
et al., 2020; Karaboga & Kaya, 2019; Larrea et al., 2021; Sada & Ikpeseni, 2021).
It facilitates non-linear relationships, quick learning capability, adaptive inferences,
and effectively handles noisy and inconsistent data. It collects expert knowledge and
system-specific information that can be used to create fuzzy rules and MFs. Further,
it can provide an excellent initial approximation, improving the overall performance.

Takagi—Sugeno, a type 3 FIS (Takagi & Sugeno, 1985), is used for demonstra-
tion where outputs are a linear combination of constant and input variables. Lastly,
the weighted average of each rule outcome is determined. IF-THEN rules can be
visualized as follows.

Rule 1: TFxis A; AND yis B (antecedents), THEN f; = kjx+1;y+m; (consequent).
Rule 2: IF xis A, AND y is B, (antecedents), THEN f, = kox—+1y+m; (consequent).

Where x and y are the inputs in the crisp set, A; and B; are the linguistic labels, k; and /;
are consequent parameters, m; is a constant, and f; represents output MF. The typical
architecture of standard ANFIS is presented in Fig. 5.10. It comprises five layers of
interconnected nodes and the related discussion is explained below.
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Fig. 5.10 ANFIS architecture for two features, x and y [1, 2, 3, 4, 5 are layers denoting MF,
Multiplication, Normalization, Rule Functions, Summation]

Layer 1 (Fuzzification layer): Its primary role is determining the level to which a crisp
input variable corresponds to a specific MF. Each node in this layer is a square shape
(characterized by an adaptive node), and its output is expressed as (Egs. 5.2-5.3):

Op} = pua,(x);i=1,2 (5.2)

Opi = pup,();i =3,4 (5.3)

Here Op} is the output from the first layer; w4, (x), up, (y) are MF, respectively, for
fuzzy sets A; and B;. The only condition is that, p4,(x), wp,(y) be continuous and
piecewise differentiable. Changing the premise parameter would result in a different
curve for the MF. The general shapes of MF are Gaussian, Trapezoidal, or Triangular.
A typical Gaussian equation is presented (Eq. 5.4).

a, (x) = e_%(%)ZGeneralized Gaussian curve 5.4)

Here, a and c are the standard deviation and mean, respectively.

Layer 2 (Multiplication layer): Here, nodes comprise the product of the weight of
the premise parameters. It has a circle node (representing fixed node), and its output
is expressed as (Eq. 5.5):

0pi2 = w; = pa,(x) X g, (y) (5.5)

w; 1s firing strength of ith rule. Op[2 represents the output of the second layer.
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Layer 3 (Normalization layer): The mathematical representation of weight normal-
ization, ! is (Eq. 5.6):

w:

= — 5.6
=l =5 (5.6)

where, Opi3 represents the output of the third layer.

Layer 4 (Defuzzification layer): It converts fuzzy information into crisp information
using a defuzzification process. It consists of square nodes, and the resulting output
is characterized as (Eq. 5.7).

op} = oVf; (5.7)

where, Op; represents the output of the fourth layer.

Layer 5 (Output layer): This process can be mathematically described as (Eq. 5.8).

op; =Y ol'f; (5.8)

where, Opf represents the output of the fifth layer.

Consequent parameters are improved (with fixed antecedent parameters) all along
the forward movement, and the end output is determined. Later, the discrepancy is
back propagated to the first layer, and the antecedent parameters can be improved
using the chain rule (with fixed consequent parameters). Learning rate, dropout rate,
batch size, epochs, and shape of MF are a few parameters that govern the ANFIS
mechanism.

Chopra et al. (2021) critically summarized the advantages and disadvantages
of ANFIS. High computational time, handling a considerable size of inputs (more
than five), and large datasets are some challenges that affect the performance of
ANFIS. Over-fitting can occur in ANFIS if the neural network component is not
correctly regularized. These may require regularization methods such as weight decay
and dropout. Another possibility is to explore evolutionary algorithms for training
ANFIS. The workings of ANFIS are demonstrated using numerical problems.

Numerical Problem 5.6. The problem consists of inputs, Intelligence Quotient (1Q),
and Leave in Days (LD). Outputis Yield (Y). Data are presented in Table 5.1. Analyze
the problem in the ANFIS framework.

Solution:

All the data are assumed to be normalized. Low and high linguistic levels are proposed
for each input feature. Accordingly, four rules are formulated.
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Table 5.1 Dataset used for

ANFIS analysis Dataset 10 LD Y
1 104 2 4500
2 120 2 6000
3 134 1 7500
4 128 1 7000
5 130 2 6500
6 120 3 5500
7 110 2 5000
8 100 7 3500
9 110 3 4000

Rule R1: IF IQ is high AND LD is high, THEN Y is 35 x IQ — 100 x LD+ 1000.
Rule R2: IFIQ is high AND LD islow, THEN Y is 45 x IQ —450 x LD + 2000.
Rule R3: IFIQ islow AND LD islow, THEN Y is 35 x IQ — 500 x LD + 2000.
Rule R4: IFIQ is low AND LD is high, THEN Y is 30 x IQ — 100 x LD + 1000.

For the convenience of the readers, high and low are denoted as H and L. Accord-
ingly, IQ high, 1Q low, LD high, and LD low are now termed as IQy, IQ;, LDy,
and LDy, respectively.

x—cC 2 . . . . . .
Defining Gaussian MF: e~ 2(*%°)” with basic parameters for four linguistic ratings

1Q; : mean ¢ = 105; standard deviation a = 10.
IQy : c and a are 130 and 10.

LD; :canda are 1 and 2.

LDy : ¢ and a are 6 and 2.

Demonstration of ANFIS was done in detail for rule R1 and dataset 1 for better
understanding to the reader. All the results are presented in Tables 5.2, 5.3 and 5.4
for a comprehensive analysis of the numerical problem.

Layer I: Calculating the membership values for each input of the dataset

Membership value for input (/Q value of 104) for linguistic rating high (with ¢ and
x—c)2 —13 2
a are 130 and 10) is 2 (%) = =2 ("% )" = 0.034.
Similarly, the membership values for the remaining elements are computed based

on the Gaussian MF. These values for both features are shown in Table 5.2 (columns
34 for IQ & 6-7 for LD).

Layer 2: Firing strength of each rule

Firing strength of rule R1 for dataset 1: Membership of IQy multiplied by the
membership of LDy . Here, F and M are represented for firing and MF value.

F(IQu, LDy) = M(IQy) x M (LDy) = 0.0340 x 0.1353 = 0.0046
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Table 5.2 Membership values for /Q and LD for each dataset

Dataset Given 10y 101 Given LDy LDy,
(1 Value 3) (@) Value 6) @)
(2) (5)

1 104 0.0340 0.9950 2 0.1353 0.8825
2 120 0.6065 0.3247 2 0.1353 0.8825
3 134 0.9231 0.0149 1 0.0439 1.0000
4 128 0.9802 0.0710 1 0.0439 1.0000
5 130 1.0000 0.0439 2 0.1353 0.8825
6 120 0.6065 0.3247 3 0.3247 0.6065
7 110 0.1353 0.8825 2 0.1353 0.8825
8 100 0.0111 0.8825 7 0.8825 0.0111
9 110 0.1353 0.8825 3 0.3247 0.6065

Table 5.3 shows the firing strengths of each rule and each dataset (columns 2-5,
respectively, for each rule).

Layer 3: Computation of normalized firing strength of rule R1 for dataset 1

FQu, LDy)
St S =l FIQ.. LD,)
0.0046

~ 0.0046 + 0.0300 + 0.8781 + 0.1346
= 0.0044

N(Qn,LDy) =

Here, N represents normalization.

Table 5.3 Firing strengths of each rule for each dataset

Dataset 1Qy,LDy 10y,LDy, 101,LDy, 101,LDy
) (Rule R1) (Rule R2) (Rule R3) (Rule R4)
2) 3) 4 (5
1 0.0046 0.0300 0.8781 0.1346
2 0.0821 0.5352 0.2865 0.0439
3 0.0405 0.9231 0.0149 0.0007
4 0.0430 0.9802 0.0710 0.0031
5 0.1353 0.8825 0.0387 0.0059
6 0.1969 0.3678 0.1969 0.1054
7 0.0183 0.1194 0.7788 0.1194
8 0.0098 0.0001 0.0098 0.7788
9 0.0439 0.0821 0.5352 0.2865
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Table 5.4 Normalized firing strength of each rule for each dataset

Dataset 10y ,LDy 10y ,LDy, 101,LDy, 101,LDy
(D (Rule R1) (Rule R2) (Rule R3) (Rule R4)
(2 (3) “ (5)
1 0.0044 0.0286 0.8384 0.1285
2 0.0866 0.5647 0.3023 0.0463
3 0.0414 0.9427 0.0152 0.0007
4 0.0392 0.8933 0.0647 0.0028
5 0.1274 0.8307 0.0364 0.0056
6 0.2271 0.4242 0.2271 0.1216
7 0.0177 0.1153 0.7518 0.1153
8 0.0123 0.0001 0.0123 0.9753
9 0.0463 0.0866 0.5647 0.3023

Table 5.4 shows the normalized firing strengths of each rule and each dataset
(columns 2-5, respectively, for each rule)

Layer 4: Multiplying the firing strength of each rule with the corresponding
consequent part of that rule:

0,(IQy, LDy) =N (IQy, LDy) x Consequent(IQy, LDy)
=0.0044 x (35 x IQy — 100 x LDy + 1000)
=0.0044 x (35 x 104 — 100 x 2 4 1000)
=19.54

Layer 5: Summing up the predicted value O, from each rule and each dataset to get
the final predicted output P and presented in Table 5.5 (columns 2-5 for prediction
output for each rule). The total predicted output is given in column 6 of Table 5.5,
whereas observed output and discrepancy are shown in columns 7 and 8.

u=H v=H
P=Y%"%" 0,00, LD,) = 19.54 + 165.31 + 3890.18 + 503.72 = 4578.75

u=L v=L

Numerical Problem 5.7. Engine Power (EP) and Miles Per Gallon (MPG) are
influencing Fuel Consumption (FC) (Table 5.6). Analyze the problem in the ANFIS
framework.
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Table 5.5 Predicted outputs for each rule and each dataset

Dataset | IQy LDy | IQy LDy, | IQy LDy, | IQ;, LDy | Predicted | Observed | Discrepancy
(1) (Rule R1) | (Rule R2) | (Rule (Rule R4) | output output (observed—predicted)
) (3) R3) ) considering | O 8)
“4) allrules P | (7)
(6)
1 19.54 165.31 |3890.18 | 503.72 |4578.75 4500 —78.75
2 433.00 |3670.55 |1571.96 203.72 | 5879.23 6000 120.77
3 23143 | 7145.67 94.09 3.44 | 7474.63 7500 25.37
4 21090 |6530.02 386.91 13.27 | 7141.1 7000 —141.1
5 681.59 | 5773.37 202.02 26.32 | 6683.3 6500 —183.3
6 1112.79  |2566.41 |1067.37 522.88 |5269.45 5500 230.55
7 82.31 697.57 | 3646.23 472.73 | 4898.84 5000 101.16
8 46.74 0.34 24.60 |3218.49 |[3290.17 3500 209.83
9 210.67 484.96 | 2456.45 |1209.20 |4361.28 4000 —361.28
:;ll’ll; z‘:d iitiﬁ;‘gth O Dataset EP MPG FC
1 150 30 3100
2 120 25 400
3 180 20 6000
4 130 28 1500
5 110 22 200
6 90 18 10
7 200 22 6000
8 160 25 4000
9 120 15 750

Solution:

All the data are assumed to be normalized. Low and high linguistic levels are proposed
for each input. Accordingly, four rules are formulated.

RuleR1:IF EP ishigh AND MPG is high, THEN FC is 35 x EP —50x MPG +500.
Rule R2: IF EP is high AND MPG is low, THEN FC is 40 x EP — 150 x MPG +

2000.

Rule R3: IF EP is low AND MPG is low, THEN FC is 30 x EP — 100 x MPG +

1500.

Rule R4: IF EP is low AND MPG is high, THEN FC is 25 x EP —50 x MPG +800.

For the convenience of the readers, high and low are denoted as H and L. Accord-
ingly, EP high, EP low, MPG high and MPG low are now termed as EPy, EPy,
MPGy and MPGy, respectively.

x—=cC 2 . . . . . .
Defining Gaussian MF: e~ 2(*%)” with basic parameters for four linguistic ratings.
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EPy : mean ¢ = 160; standard deviation a = 20.
EP; : c and a are 120 and 20.
MPGy :cand a are 25 and 5.
MPG; : cand a are 18 and 5.

All the results are presented in Tables 5.7, 5.8 and 5.9 for a comprehensive analysis
of the numerical problem.

Layer 1: Calculating the membership values for each input of the dataset

Membership values for both inputs are shown in Table 5.7 (columns 3—4 for EP and
6-7 for MPG).

Layer 2: Firing strength of each rule

Table 5.8 shows the firing strengths of each rule for each dataset (columns 2-5,
respectively, for each rule).

Layer 3: Computation of normalized firing strength.

Table 5.9 shows the normalized firing strengths of each rule for each dataset (columns
2-5, respectively, for each rule).

Layer 4: Multiplying the firing strength of each rule with the corresponding
consequential part of that rule

Predicted outputs for each rule and each dataset are shown in Table 5.10 (columns
2-5).

Layer 5: Summing up the predicted value from each rule for each dataset to get the
final predicted output.

The total predicted output P is presented in column 6 of Table 5.10, whereas observed
output O and discrepancy are shown in columns 7 and 8. In the present case, as higher

Table 5.7 Membership values for EP and MPG for each dataset

Dataset Given value EPy EP; Given value MPGy MPGy,
(1) 2 (3) 4) (5) (6) (7)

1 150 0.8825 0.3247 30 0.6065 0.056
2 120 0.1353 1 25 1 0.3753
3 180 0.6065 0.011 20 0.6065 0.9231
4 130 0.3247 0.8825 28 0.8353 0.1353
5 110 0.044 0.8825 22 0.8353 0.7261
6 90 0.00219 0.3247 18 0.3753 1

7 200 0.1353 0.00034 22 0.8353 0.7261
8 160 1 0.1353 25 1 0.3753
9 120 0.1353 1 15 0.1353 0.8353
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Table 5.8 Firing strengths of each rule for each dataset

5 Fuzzy-Based Modelling Algorithms

Dataset EPy MPGpy EPy ,MPGy, EP; ,MPGy. EP; ,MPGy
(1) (Rule R1) (Rule R2) (Rule R3) (Rule R4)
) 3 “ (%)

1 0.5352 0.04942 0.0182 0.197

2 0.1353 0.05078 0.3753 1

3 0.3678 0.56 0.0102 0.0067

4 0.2712 0.044 0.1194 0.7372

5 0.0368 0.032 0.6408 0.7372

6 0.000822 0.00219 0.3247 0.1219

7 0.113 0.0982 0.000247 0.000284
8 1 0.3753 0.05078 0.1353

9 0.0183 0.113 0.8353 0.1353
Table 5.9 Normalized firing strength of each rule for each dataset

Dataset EPy ,MPGy EPyp ,MPGy, EP; ,MPG;, EP;,MPGy
€))] (Rule R1) (Rule R2) (Rule R3) (Rule R4)
) 3 “ (5

1 0.6692 0.0618 0.02276 0.2463

2 0.0867 0.0325 0.2404 0.6405

3 0.3893 0.5928 0.0108 0.0071

4 0.2314 0.0375 0.1019 0.6291

5 0.0254 0.0221 0.4429 0.5095

6 0.0018 0.0049 0.7222 0.2711

7 0.5337 0.4638 0.0012 0.0013

8 0.6405 0.2404 0.0325 0.0867

9 0.0166 0.1026 0.7581 0.1228

discrepancy values are observed, the process must be continued by changing the MF,
rules, and consequent equations until a satisfactory solution is achieved.

5.4 Fuzzy Cognitive Mapping

FCM is an approach that denotes expert knowledge in a graphical network format.
Nodes characterize concepts. Links symbolize association between concepts. They
are instrumental in formulating the concepts and their interconnections of the edges
between the nodes (Bakhtavar et al., 2021; Khanzadi et al., 2018; Papageorgiou &
Salmeron, 2013). Explanation of type of relationships with two concepts, CO;
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and COj, and the weight of interconnection between them, w;;, are presented in
Table 5.11. Related details are also presented in Fig. 5.11.

Activation level Al; for each concept CO; is estimated using the association
(Eq. 5.9).

N
AT =fLAL+ ) Al (5.9)
i=1,ij

All.’,AliH'l are values of CO; at iterations r and r + I; Alj’ is the value of CO; at
iteration r; wjis the weight of interconnection from CO; to COy; f is the barrier
function (Eq. 5.10)

Fig. 5.11 Pictorial representation of fuzzy cognitive maps

Table 5.11 Characteristics of concepts and weights

Nature Direction Remark

Positive Changes in the cause, CO; and effect, CO; take place in | w;; has a positive sign
(negative) | the same direction (opposite direction) (negative sign)

No relation | Not applicable Edge weight zero

* Range of weights are (—1, 1)
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1
f@ == (5.10)
where x and c are the input and steepness of f.

Unsupervised algorithms like Hebbian Learning (HL) improve the efficacy of
FCMs by minimizing the role of expert-based knowledge (Papageorgiou & Salmeron,
2013). The procedure for training FCM is as follows (Fig. 5.12):

Here, Differential Hebbian Learning (DHL) and Non-linear Hebbian Learning
(NHL) are presented, and detailed information about these is available from Papa-
georgiou and Salmeron (2013). In DHL, weights are updated at every iteration
(Egs. 5.11-5.12)

w

i [ o+ L BAITAAL = @) ), AL #0 S11)

Y o, AAll =0

Fig. 5.12 Training process of FCM
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where
AALL = Al — Al

r
Lo=[01- ] 5.12
11N (5.12)
L, is learning rate, N is a constant value to make sure that L, does not take
negative values during the iterative process while updating weights (Papageorgiou &
Salmeron, 2013).
In NHL, weights are updated at every iteration (Eq. 5.13)

o = f 4 LAl (A1} = sen(or) )AL ;) (5.13)
sgn(.) is the sign function. Updation of weights continues until the termination
criterion is satisfied.

Numerical Problem 5.8. There are three concepts: Terrain (1), Soil (2), and Runoff
(3). Concept 1 influence 2; 2 influence 3; 3 influence 1. There is a situation that
triggers concept 2. What will the effect of this situation be on all other concepts?
Solve using DHL. Refer to Fig. 5.13 and Table 5.12 for the details. Take the N value
as 100 and the steepness coefficient as 1.

The random weight matrix is presented in Table 5.12

The initial activation vector of the FCM would be:

A=1010]

Fig. 5.13 Input data for
FCM
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Table 5.12 Random weight

. Concept 1 2 3
matrix
1 0 0.5 0.3
2 —0.4 0 0.7
3 04 0.25 0
Solution:

Iteration r = 1:
The activation vector is updated using the following equation:

N
Ali”rl =f<All.’ + lZ;é'a)j,Alj’> [refer to Eq. 5.9].
i=1,i#f
f@) = = ¢ = I(given)
1
1 _ _ o s
Al =f(04+0x0+1x(—04)4+0x0.4) =f(—04) = 5o 0 = 0.4013

1
AL =f(+0x05+1x0+0x025 =/(1) = ;5 =0.311
=

1
ALl =FO+0x03+1x07+0x0)=F(0.7) = ——— = 0.6682
14797

Hence, the activation vector will be Al' = [0.4013 0.7311 0.6682].

Learning rate L, = [0.1 — =] = [0.1 — b5 ] = 0.0991 [iteration number r =
1, N = 100].

The weight matrix is updated using Eq. (5.11), presented here again for the ready
reference.

L { o+ L(AALAAL = f ), AAI #0 }
w

! . AALl =0
w}; =0+ 0.0991 x ( (0.4013 —0) x (0.4013 —0) — 0)
= 0.016 ~ 0 (rounded to zero as the comparison is against

the same concept and applies to all diagonal elements)

a)}2 =0.5+0.0991 x ((0.7311 — 1) x (0.4013 — 0) — 0.5) = 0.4398

a)b =0.340.0991 x ((0.6682 — 0) x (0.4013 — 0) — 0.3) = 0.2968
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ol = —0.4+0.0991 x ((0.4013 — 0) x (0.7311 — 1) — (=0.4)) = —0.3711
wly =0+ 0.0991 x ((0.7311 — 1) x (0.7311 — 1) — 0) = 0.0072 ~ 0

why = 0.7 +0.0991 x ((0.6682 — 0) x (0.7311 — 1) — 0.7) = 0.6128

wl; =0.4+0.0991 x ((0.4013 — 0) x (0.6682 — 0) — 0.4) = 0.3869

wl, =0.2540.0991 x ((0.7311 — 1) x (0.6682 — 0) — 0.25) = 0.2074

a)_%3 =040.0991 x ((0.6682 — 0) x (0.6682 —0) — 0) =0.0442 ~ 0

The updated weight matrix after iteration 1 is (refer to Table 5.13):
Iteration r = 2:

AI? =£(0.4013 + (0.4013 x 0) 4 (0.7311 x (=0.3711)) + (0.6682 x 0.3869))

1
=/ (0.3885) = g5 = 0.5959

Al% =£(0.7311 4 (0.4013 x 0.4398) 4 (0.7311 x 0) 4+ (0.6682 x 0.2074))

1
=/ (1.0462) = 5 = 0.7400

AlZ =£(0.6682 + (0.4013 x 0.2968) + (0.7311 x 0.6128) + (0.6682 x 0))

1

Hence, the activation vector will be Al? = [0.5959 0.7400 0.7747].
The learning rate for iteration 2 is [0.1 — 15| = [0.1 — 155] = 0.0982.
The weight matrix is updated which is as follows:

a)}l =0+ 0.0982 x ((0.5959 — 0.4013) x (0.5959 — 0.4013) — 0) = 0.00372 ~ 0

Table 5.13 Weight matrix

after iteration 1 Impact ! 2 3
1 0 0.4398 0.2968
2 —0.3711 0 0.6128
3 0.3869 0.2074 0
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@]y = 0.4398 +0.0982 x ((0.7400 — 0.7311) x (0.5959 — 0.4013) — 0.4398) = 0.3968
ol = 0.2968 +0.0982 x ((0.7747 — 0.6682) x (0.5959 — 0.4013) — 0.2968) = 0.2697
ol = —0.3711 4 0.0982 x ((0.5959 — 0.4013) x (0.7400 — 0.7311) — (—0.3711)) = —0.3345
@}y =04 0.0982 x ((0.7400 — 0.7311) x (0.7400 — 0.7311) — 0) = 0.0000077784 ~ O
wly = 0.6128 + 0.0982 x ((0.7747 — 0.6682) x (0.7400 — 0.7311) — 0.6128) = 0.5527
w}; = 0.3869 + 0.0982 x ((0.5959 — 0.4013) x (0.7747 — 0.6682) — 0.3869) = 0.3509
w}y = 0.2074 + 0.0982 x ((0.7400 — 0.7311) x (0.7747 — 0.6682) — 0.2074) = 0.1871

w%3 =0+ 0.0982 x ((0.7747 — 0.6682) x (0.7747 — 0.6682) — 0) = 0.001113 ~ 0

The updated weight matrix after iteration 2 is presented in Table 5.14.

Numerical Problem 5.9. Solve numerical problem 5.8 using NHL (refer to
Table 5.12). The learning rate is 0.001. Show computations for one iteration.

Solution:

Iteration r = 1:
The activation vector is updated

1
AL =fO+0x0+1x(—0.4)+0x 0.4) =f(—04) = T o cow = 04013
1
A =f(14+0x05+1x0+0x0.25) =f(1) = ——— =0.7311
14e 10

1
Al =f(04+0x034+1x0740x0)=£(0.7 = ——— =0.6682
1+€_0'7

Hence, the activation vector will be Al' = [0.4013 0.7311 0.6682].
The weight matrix is updated using Eq. 5.13

r+1 _ r r r T,
o = wp + LrAlj (Ali — sgn(wrij)Alj a)ij>

Table 5.14 Weight matrix

after iteration 2 Impact ! 2 3
1 0 0.3968 0.2697
—0.3345 0 0.5527

0.3509 0.1871 0
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w!; =0+40.001 x 0.4013 x (0.4013 — 0.4013(0)) = 0.00016 ~ 0

wly, = 0.5+ 0.001 x 0.7311 x (0.4013 — 0.7311 x 0.5) = 0.5

wly =0.3+0.001 x 0.6682 x (0.4013 — 0.6682 x 0.3) = 0.3001

wl; = —0.4+0.001 x 0.4013 x (0.7311 — (—)0.4013 x (—0.4) = —0.3998
wly =040.001 x 0.7311 x (0.7311 — 0.7311 x 0) = 0.00053 ~ 0

wl; = 0.7+ 0.001 x 0.6682 x (0.7311 — 0.6682 x 0.7) = 0.7002

!, = 0.4+ 0.001 x 0.4013 x (0.6682 — 0.4013 x 0.4) = 0.4002

wl, =0.25+0.001 x 0.7311 x (0.6682 — 0.7311 x 0.25) = 0.2504

a)§3 =0+ 0.001 x 0.6682 x (0.6682 — 0.6682 x 0) = 0.00045 ~ 0

The weight matrix after iteration 1 is (refer to Table 5.15):

5.5 Fuzzy Logic-Based Optimization

Optimization techniques play a significant role in engineering and management,
where there are recurrent phenomena of resource limitation and massive require-
ments. The perennial question among policymakers is how best to utilize the avail-
able resources with the existing constraints to maximize achievements (Loucks &
Beek, 2017). Components that govern the workflow of the optimization process are
described as follows:

e Decision variables (DV) are the variables set that controls the problem.
e The objective function (O) represents the goal of the problem.

Table 5.15 Weight matrix

after iteration 1 Impact ! 2 3
1 0 0.5 0.3001
2 —0.3998 0 0.7002
3 0.4002 0.2504 0
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e Constraints are the challenges that do not allow the objective to achieve its full
potential.

e Bounds: Allow the unknown decision variables to take on specific values within
a range.

e Representative solution techniques for obtaining the optimal solutions are
Linear Programming (LP), Non-linear Programming (Non-LP), and Quadratic
Programming (QP).

e Optimum output: DV obtained after optimization and related objective function

The process also involves extensive data collection, which may have to be refined
before using as input to the optimization model. A mathematical description is
presented in Table 5.16 with three DVs, x;, xp, x3, with an intent to demonstrate
chosen optimization techniques (Rao, 2013).

As discussed in Table 5.16, SS depends on O and CS in any optimization frame-
work. In a fuzzy context, these are expressed as (Gaur et al., 2015; Morankar et al.,
2016; Vasan et al., 2022) (Eq. 5.14):

mss = (o N pcs) (5.14)

Table 5.16 Example for demonstrating chosen optimization techniques
Non-LP QP

Non-linear and linear

Characteristic LP

Linear functions of

Objective function

DV

functions of DV

Quadratic and linear
functions of DV

Constraints Linear functions of Non-linear and linear Linear functions of DV
DV functions of DV
Mathematical Max/Min 1600 x; + Max/Min 1600 x% + Max/Min 1600 x% +

representation of O

1700 xp + 1800 x3

1700 x38 + 1800 x32

1700 x3 + 1800 x3 +
1800 x1 + 1900 x +
2000 x3

Mathematical
representation of
constraints (CS)

0.06 x; + 0.16 xp +
0.18x3 <6
x1 +x2 +x3 <400

0.06 x¥2 +0.16 x34x3
+0.12x3% <6

x%'g +x + x§'4 <400

0.06 x; + 0.16 xp +
0.12x3 <6
x1 +x2 + x3 <400

Bounds
[Assuming linear
variation of
bounds]

20 <x1 > 50
30 <x2 > 60
40 <x3 > 80

20 <x; > 50
30 <x > 60
40 < x3 > 80

20 <x1 > 50
30 <x2 > 60
40 <x3 > 80

Decision space
(SS), based on O
and CS

Global optimum
solution

It is likely the local (or global) optimal solution

Remarks

No uncertainty in parameters, objective function, or constraints is

considered
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WUss. o, es represent MF corresponding to SS, O, and CS. With several objec-
tive functions (1, 2, n) and constraints (1, 2, m), Eq. 5.14 can be transformed into
Egs. (5.15-5.16)

pss(X) = [ro1(X) N ne2X) N .. N pepX) N nes1 X)) N pwes2X) NN pwesm (0]
(5.15)

Here, AND denotes intersection (M), i.e., minimum (Morankar et al., 2013;
Zimmermann, 1991)

wss(X) = Min[po1(X), no2(X), ..., mon(X), tes1(X), mes2(X), ..., esm(X)]
(5.16)

The optimum solution is (Eq. 5.17)

wss(X) = Max[(uss(X)] (5.17)

Degree of satisfaction A, an auxiliary continuous variable, is introduced as an equiva-
lent optimization problem in the single objective framework (Eq. 5.18). The intention
is to identify a unique solution x*, which facilitates the optimum output (in this case
A) (Lence et al., 2017; Sasikumar & Mujumdar, 1998) (Egs. 5.18-5.21)

Max X\ (5.18)
subject to
noiX)y=x j=1,2,...,n (5.19)
HesiX)=r i=1,2,....m (5.20)
0<x<l1 (5.21)

In addition, all other case study-related constraints and bounds must be considered.

However, the intensity of high computational requirements in the case of tradi-
tional non-linear optimization techniques motivated the search for new approaches.
In this regard, evolutionary optimization algorithms have gained prominence for
solving complex problems (Reddy & Kumar, 2020) and are briefly discussed in
Chap. 6.

Numerical Problem 5.10. Four categories of machines are proposed to be installed
in a workshop where space is available for 15 machines. The lubricating oil required
for maintenance of each type of machine is 0.1 L (Here L is Litre), 0.2 L, 0.4 L,
and 0.1 L, whereas available is 4.5 L. The working capacity of one unit of each
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category machine for a day is 3, 5, 5, and 3 h. The minimum number of machines
expected to be installed is 1, 2, 4, and 2; the maximum is 2, 4, 5, and 7. Mention the
decision variables. Formulate the problem for maximization of the working capacity

of machines and solve it in an LP framework.

Solution:

Let my, my, m3, my are the number of machines proposed under four different

categories in a workshop and these are the decision variables.

Objective function is the maximization of the working capacity of machines termed

wcC

Subjected to:

Constraints

Bounds

Solution:

Max WC = 3my + 5my + 5msz + 3my

my +my +m3+my <15

0.1my + 0.2my + 0.4m3 + 0.1my < 4.5

<m <2
2<m =<4
4<m3<5
2<my <7

mp =1;

The optimal working capacity of machines is 63 h, my, = 4;

M3=I114=5
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Numerical Problem 5.11. Solve the following two objectives (maximizing the water
supply and minimizing aquifer loss) problem in a fuzzy non-linear optimization
framework.

Max z; = 320x; 4 440x; + 620x3 [maximizing the water supply]

Min z; = 6x; + 2x; + 33 [minimizing the aquifer loss]

subject to

0.2x1 + 0.28x; + 0.6x3 < 42
0.26x; + 0.44x, < 24
20 < x; < 44,
30<x <48

25 <x3 <45

Use non-linear MF with 8 = 3. Consider uncertainty in objective functions only.
Solution:

Maximization and minimization of each objective function provide higher and lower
limits, respectively (Columns 2-5 for individual higher and lower values for each
objective, Table 5.17).

The non-linear MF-based optimization model is as follows:

Max A

subject to

Table 5.17 Results of fuzzy optimization

Characteristics | Higher Lower | Higher Z, | Lower | Solution with non-linear MF (both
€))] VA VA 4) 7> objectives g = 3)
2) 3) (5) (6)

X1 41.53846 |20 41.53846 |20 20

X 30 30 30 30 42.72727

X3 42.15385 |25 42.15385 |25 35.38240

Objective 52,627.7 | 35,100 |435.69 255 (Maximum 47,137.09, minimum

function value 311.6)
Optimum degree of satisfaction A
=0.32388
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Z—7 1% [320x; + 440x, + 620x; — 351007
np(0) = | 22 | o | 22 A T 0T > 1
Zv — 71 52627.7 — 35100
Zuv —Z 7% [435.69 — (6x; + 2x> + 3x3) ]°
Ly (X) = U _ (6x; + 2xp + 3x3) >
Zu — 71 435.69 — 255

0.2x; + 0.28x, + 0.6x3 < 42
0.26x; + 0.44x, < 24
x1 > 205 x; < 44;
X2 > 30;xp <48
x3 > 25;x3 <45

Related results of Non-Linear Optimization are (Column 6 of Table 5.17):

e Maximum X is 0.32388, and the corresponding (xi, x,x3) values are (20,
42.72727, and 35.3824).

e The solution obtained by the fuzzy optimization problem is between the lowest
and highest values obtained by individual objectives (columns 2-5), representing
a compromise solution with the tradeoff of water supply and aquifer loss.

5.6 Fuzzy CNN, Fuzzy LSTM, and Fuzzy CNN-LSTM

Fuzzy CNN employs a fuzzy inference layer in place of a fully connected to integrate
the features more effectively (Lin & Jhang, 2022). The mathematical philosophy of
Fuzzy CNN till the flattened layer remains the same compared to CNN (Fig. 5.14).
The fuzzy inference layer is explained mathematically in terms of the symmetric
Gaussian membership function using linguistic terms (High, Medium, Low; H, M,
L). These fuzzified features are further used to create rules R. The initial member-
ship function iz, for gth output inference having feature maps py is calculated for

each input feature and directly used in the estimation of the output VJZf (Langeroudi
et al., 2022). Hereafter, combined weighted inference (z) is obtained through the
multiplication of weight (w) and inference () matrices. Further, the z is normalized
to get output. Note that the output changes when different activation functions are
considered. Back-propagation of the error is accomplished by improving the gradient
values (Hsu et al., 2020).

Fuzzy LSTM is an architecture of LSTM in a fuzzy framework (Li et al., 2020).
Fuzziness is incorporated through the fuzzy inference layer immediately after the
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Fig. 5.14 The architecture of fuzzy CNN

output of LSTM (Fig. 5.15). This type of incorporation is done to avoid disrupting
information flow between the forget, input, and output gates. These gates maintain the
balance between retaining helpful information and discarding irrelevant information.
Consequently, adding fuzziness between these gates potentially reduces the ability
of the algorithm to capture long-term dependencies. Therefore, applying fuzziness
after the output stage helps maintain model interpretability, handles uncertainties,
and ensures the LSTM’s core operations remain intact (Langeroudi et al., 2022).

The fuzzy inference layer mainly comprises fuzzy sets, u, tensor layer (77), rule
layer (R), and fusion layer (F'). i, R, and {J are the same as Fuzzy-CNN. The fuzzified
features obtained from the u forms 7;. After that, the rules are created on the features
and the . The final layer is the F' which employs three operations:

i. u and R are connected utilizing the concatenation operation and are character-
ized by F(u, R).
ii. It undergoes a linear transformation.
iii. Subsequently, a selected activation function is applied to achieve the desired
outcome.
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Fig. 5.15 The architecture of fuzzy LSTM (Modified and adapted from Vogeti et al., 2024 under
CC BY-NC-ND 4.0 License)

Extensive details of these techniques are available from Vogeti et al. (2024).
Fuzzy CNN-LSTM is an extension of CNN-LSTM in the fuzzy framework (Bao
etal., 2022).

Representative Software

ANFIS in MatLab perspective [https://www.mathworks.com/help/fuzzy/neuro-ada
ptive-learning-and-anfis.html, accessed on 07.04.2023].

Fuzzy Cognitive Mapping: Mental Modeler https://www.mentalmodeler.com/,
accessed on 07.04.2023].

LINGO handles Linear, Non-linear based optimization problems https://www.lindo.
com/index.php/products/lingo-and-optimization-modeling

Revision Questions and Exercise Problems

5.1 Differentiate crisp and fuzzy logic.

5.2 What are the causes of uncertainty?

5.3 What are the associated uncertainties in WDN?

5.4 What is an MF? What is its purpose?

5.5 What are fuzzification and defuzzification?

5.6 What are the possible shapes of MF?

5.7 What is the meaning of non-increasing and non-decreasing MF?

5.8 What is the significance of § in the context of non-linear fuzzy optimization?

5.9 What is the significance of S in the case of the exponential MF?
5.10 What is the mathematical philosophy of triangular and trapezoidal MF?
5.11 Discuss the Centre of gravity-based defuzzification method.


https://www.mathworks.com/help/fuzzy/neuro-adaptive-learning-and-anfis.html
https://www.mathworks.com/help/fuzzy/neuro-adaptive-learning-and-anfis.html
https://www.mentalmodeler.com/
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
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5.12

5.13

5.14

5.15

5.16

5.17
5.18
5.19
5.20
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Effective sunshine hours in the semi-arid zone are recorded as 30% of the
day. Later, it was found to have an error of 15%. Fuzzify in a triangular MF
framework.

Researchers measured the pressure ratio while designing a fuel cell air
compressor. The pressure ratios measured by three experts are 0.72, 0.76, and
0.80. Show them in a triangular MF framework. However, the coordinating
scientist wishes to have a unique value for design consideration. Discuss in
detail the possibility of unique value.

Risk analysis is an essential component of the stock market. However, risk
beyond a specific value may lead to inconvenience to investors. Keeping this
in view, formulate MF for the following data: risk up to 0.25 is agreeable; 0.25
to 0.3 is moderately risky, and beyond this, it is not advisable. Assume data
wherever applicable. Show the same in the appropriate MF framework.
Formulate non-decreasing exponential and hyperbolic MF for the data related
to energy management. The highest value of an objective function Z is 350,
whereas the lowest is 180. Take the value of exponential parameter S as 0.8.
In a transporation economics problem, monetary benefits play a significant
role and are expressed as 18x; + 8x,. Here, x; and x, are governing decision
variables. The highest and lowest values of the objective function are 200 and
140 units. The value of 8 is 3.4. Express the problem in the non-linear MF
format.

What is ANFIS?

How many layers exist in ANFIS? Explain their functionality in brief.

What is the mathematical expression of the Gaussian MF?

Analyze the given problem from an ANFIS perspective. Use the data from
Table 5.1.

IF IQ is high AND LD is high, THEN Y is 50 x IQ — 225 x LD + 1800
IF IQ is high AND LD is low, THEN Y is 38 x IQ — 590 x LD 4 1800
IF IQ is low AND LD is low, THEN Y is 55 x IQ — 600 x LD + 1560
IF IQ is low AND LD is high, THEN Y is 30 x IQ — 140 x LD + 600

5.21
5.22
5.23
5.24
5.25

5.26
5.27
5.28
5.29
5.30
5.31
5.32

What are the concepts and weights in the case of FCM?

What is the range of weights in the case of FCM?

What is an activation vector? What is its purpose?

What is the purpose of HL algorithms?

Is there a reduction in the dependency of FCM on expert’s knowledge using
HL algorithms?

Do HL algorithms fall under supervised or unsupervised approaches?

What are the different types of HL algorithms?

What are the parameters that affect learning rates in the case of DHL?

What is the significance of the learning rate in HL algorithms?

How does weight updation differ in DHL and NHL?

Which has the least computational complexity, DHL or NHL? Justify?
Three concepts, mental health MH, classroom factors CF, and socioeconomic
status SS, impact students’ behaviour. MH impacts CF; CF impacts SS; SS
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matrix

Table 5.18 Random weight Impact MH CF ss
MH 0 0.28 0
CF 0.5 0 0.6
SS 0.80 0.3 0

impacts MH. There is a situation that triggers the concept of MH. How will
this situation affect all other concepts? Solve using DHL and NHL. Table 5.18
shows a random weight matrix.

The initial activation vector is [1, 0, 0]. Assume suitable values while solving the
problem.

5.33

5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41

5.42
543
5.44
5.45

5.46
547

5.48

5.49
5.50

What is the physical interpretation of decision variables in the optimization
framework?

What is the philosophy of objective functions and constraints?

What is the difference between constraints and bounds?

What is the difference between output and optimum output?

What are the possible objective functions in the case of WDN?

What is the workflow while solving optimization problems?

What is the mathematical difference between LP and QP?

What is the mathematical difference between Non-LP and QP?

What is the necessity of fuzzy optimization? How is it different from crisp
optimization?

On what parameters does decision space depend?

What is an auxiliary variable in the context of fuzzy optimization?

What is the degree of satisfaction? What is its purpose in the case of fuzzy
optimization?

Can the degree of satisfaction be considered as an objective function in fuzzy
optimization? Discuss in detail.

Do you prefer a higher degree of satisfaction or a lower one?

What is the range of degree of satisfaction? What is the physical significance
ifitis 1?

Formulate an optimization problem in a fuzzy optimization framework using
non-linear MF with 8 = 6, exponential MF with S = 0.8, and hyperbolic MF
from your domain of interest. Consider uncertainty in objective functions only.
You are expected to take three decision variables and two objective functions
with maximization in nature. You can think of keeping three constraints.
What is the difference between fuzzy CNN and CNN? Discuss in detail.
What is the difference between fuzzy LSTM and LSTM? Discuss in detail.

Advanced Review Questions

5.51
5.52

Can you identify four situations in which MF can be employed?
Mention one situation in your domain of interest to discuss unquantifiable,
non-obtainable, incomplete information. Relate with examples.
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5.53 Relate hyperbolic and exponential MF with one example in your domain of
interest.

5.54 Can you propose two new MFs with corresponding mathematical equations?

5.55 Do you prefer a triangular or trapezoidal MF? Why?

5.56 Several defuzzification methods exist. Analyze and compare the same.

5.57 What is FIS? Does it work on a rule-based platform? If yes, expand your
answer. If not, explain the logic of the same.

5.58 How Mamdani and Sugeno FIS differ? Explain mathematically.

5.59 What is the purpose of antecedent and consequent parameters in FIS?

5.60 Discuss three case studies related to Mamdani FIS.

5.61 Discuss how Mamdani’s approach can be facilitated in any programming
platform.

5.62 Discuss three case studies related to ANFIS.

5.63 Discuss in detail how ANFIS can be facilitated in any programming platform.

5.64 How does FCM help the decision-making process in your research area?
Discuss with related case studies.

5.65 Mention four examples of optimization in your research area. Also, mention
decision variables, objective functions, and constraints.

5.66 Are fuzzy optimization approaches capable of handling the uncertainty in the
data?

5.67 Discuss two case studies where fuzzy optimization was employed. Emphasize
the decision variables, objective function, constraints, and bounds.

5.68 Can you modify the existing architectures of Fuzzy LSTM and Fuzzy CNN?
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Chapter 6 ®)
Emerging Research Areas e

6.1 Introduction

The chapter discusses advanced topics, such as Blockchain, recent ML tech-
niques, Evolutionary Algorithms (EA), Al Tools, the Internet of Things (IoT),
Big Data, Decision Support Systems (DSS), Taguchi Design of Experiments, data
augmentation, and Cross-Validation. Related information is as follows:

6.2 Blockchain

Water is an indispensable commodity of life, and its conservation is necessary. In this
regard, scientific allocation of available water resources for drinking, farming, and
industrial purposes is required for efficient utilization. One of the most promising
approaches in this context is a Blockchain-based decentralized system that enables
peer-to-peer trading of tokenized water (Li et al., 2022a). This section discusses the
architecture of Blockchain, which comprises the application, consensus, network,
and data layers (Fig. 6.1) in the context of water resources.

6.2.1 Architecture of Blockchain

Application layer comprises three categories of individuals, i.e., users, prosumers (a
prosumer is a person who produces as well as consumes products), and administrators
can access this layer. The following are the functionalities:

e Trading request: It facilitates a user to request for purchasing, and other users can
negotiate prices for selling their water currency (1 water currency = X Rupee
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Fig. 6.1 Typical components of Blockchain

= 1 Litre (L) of permitted water usage). In this section, the currency and water
currency are used synonymously.

e Transaction request: It is a portal for users to request transactions through the
Blockchain.

e Block Explorer: It is a front end to view Blockchain data and all the transactions
stored.

e Wallet: It helps users store their credentials (public or private key pairs) for their
account transactions.

e User list: It is a front end where users can see a list of other active users and their
water currency balance.
User register: It is a portal for registering new users.
Contract payment is the amount the user pays to specific contracts, i.e., public,
private, or community, to receive water to their respective connections.

e Transaction validation: Every Blockchain protocol has a predefined set of transac-
tions that will be considered valid. In general, these are SenderKey, ReceiverKey,
and Amount.

Different access controls exist for various individuals, as discussed in Table 6.1.
The water currency Blockchain will allow three kinds of transactions to be written
in the Blockchain, which are described as follows:

Water currency creation: This transaction enables registering when a sufficient
amount of new water is available. They can only be considered valid and processed
when data obtained from sensors support the transaction.

Water currency transfer: It facilitates the transfer of water currency from one user to
another.
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Table 6.1 Information about various stakeholders’ access to different modules

Functionalities | Trading | Transaction | Block | Wallet | User | User Contract | Transaction
request | request explorer list | register | payment | validation

Stakeholders

Administrator | Yes Yes Yes Yes Yes | Yes Yes Yes

Prosumer Yes Yes Yes Yes Yes |No Yes Yes

User Yes Yes Yes Yes Yes | No No No

Water currency consumption: It indicates the water consumed by households,
industry, farming, or other purposes. Water suppliers or local authorities and their
respective smart contracts perform these kinds of transactions to register the amount
of water consumed in the Blockchain.

The receiver field indicates where the water is consumed so that the water supplier
can release the water to that connection after noticing that transaction. After that, the
corresponding supplier for Meter_ID will release X litres of water to that connec-
tion. Any complex implementation can be performed using these three elementary
transactions. Now, considering the balance of a user-type node in the system, unspent
transaction output will be

Balance = X Currency bought — ¥ Currency sold — X Currency consumed
For the Prosumer or Administrator, it will be

Balance =X Currency bought — X Currency sold + ¥ Currency produced

— X Currency consumed.

The consensus layer determines the type of methods, like Proof of Work (PoW),
Proof of Stake (PoS), and Proof of Elapsed Time (PoET)) used by all the nodes to
accept a single Blockchain state all across the network and are explained as follows:

PoW: A group of nodes called miners takes a bunch of transactions from the pool
and then forms a block. They must solve a computational hashing puzzle to add their
block to the Blockchain network by competing with other miners. The miner unrav-
elling the puzzle first will add their block to the chain, and everyone will accept that
block. Consequently, they will be rewarded for doing so by the Blockchain protocol.
However, after completion of the process, when a new block gets introduced to the
Blockchain, all the miners need to start from scratch to find the appropriate Nonce
(or, it can be said that, answer to the new puzzle as the last hash changes to the hash of
the recently added block header). This results in the generation of ‘Orphan Blocks,’
the blocks generated by miners who cannot win the contest, which means that only
one miner’s work becomes useful, whereas others get wasted. In addition, the diffi-
culty level of that computational puzzle is decided by the network’s difficulty, which
keeps increasing over time, making mining more and more challenging. Transactions
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related to Blockchain will be even higher in the water management context, so PoW
is not a feasible solution.

PoS: One node is arbitrarily selected to add to the block in the Blockchain. Still, the
chance of getting chosen is proportional to the amount of stake the node holds in
the Blockchain token. It means that any stakeholder owns S out of 100 tokens in the
network. They have an S% chance of signing the next block. So, the coins behave
as collateral, and when a participant or node is selected to validate a transaction,
they win a reward. Some variants of this algorithm work similarly, such as Proof
of Coinage. This consensus allows a node to validate and add a block based on its
share in the Blockchain network of tokenized assets. However, this approach cannot
be followed for water management as it has few limitations. Firstly, it can lead to
the scenario where water-rich regions or communities will have more control over
the network than those with less, which is unacceptable in the case of water rights
distribution. As a note, PoS and PoW are reward-driven consensus. However, no
such reward is possible in the Blockchain network of tokenized water. Hence, such
consensus cannot be applied to water management using Blockchain.

PoET is a Blockchain consensus algorithm preventing high resource utilization.
Selecting the next network participant to add to the block is ensured randomly under
the Trusted Execution Environment (TEE). Thus, there is no waste of computational
resources or dependency on the stake of the participant to establish byzantine fault
tolerance. TEE randomly generates a waiting time for each node, and the first node
completing its waiting time will be allowed to be added to the network block. Here,
the fairness of the randomness of the algorithm is ensured by a protected hardware
environment. However, it also has a few limitations. First, it does not support openness
as much as PoW or PoS because certification is required to join a PoET network.
The second limitation is it does not reward the node for adding a block to the chain.
So, the private participant has no incentive to make their computational resource
available to the network.

The network layer takes care of communication between nodes of the Blockchain
system. It will use the internet and can be quickly established using frameworks like
Hyperledger.

The data layer defines information that will be stored inside the Blockchain. For
example, if the block capacity is 4, four transactions per block can be implemented.

Some of the benefits of a Blockchain are:

e [tis an immutable ledger that cannot be altered and tampered with. This aspect is
ensured by cryptography, which links the small storage units called blocks. This
linkage depends on the data stored in the block. Any attempt to alter the data will
break the link or chain, making tampering evident. It can build systems with the
inclusion of trust. Any stakeholder can see the transactions and transfers related
to water from anywhere. Water thefts will be traceable, at least from well-known
water resources that are linked with the system through sensors. An immutable
ledger and the suitable facility to explore block data will allow every end user to
make the right decision in a peer-to-peer exchange so that no one unfairly benefits
from access to more information.
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The smart contract is a self-executed undertaking between the seller and buyer.
These contracts run on the Blockchain network and can perform tasks previously
done by a centralized authority. The decentralized character of Blockchain ensures
the automatic and speedy execution of contracts without intermediaries.

e [oT, linked with Blockchain, can benefit authorities by allowing them to allocate
and make appropriate decisions as they will provide precise data. Water usage,
wastage, and quality can be monitored and made available to the relevant stake-
holders. It starts from the first block, and if all the transactions are considered,
the user ends up in the same state as other users or nodes. This deterministic
nature helps nodes reach a consensus and approve new transactions. Data can be
linked with smart contracts, making contracts more effective in their respective
functions.

e Water needs tokenization to create a decentralized management system and a
prosumer market. The virtual representation of water is represented by water
currency. Here, X depends on water availability in that particular region, type
of usage, and previous usage, such as household or industrial. Depending on
the water intake and availability in the area, every household is granted some
water for usage in the form of water currency. Industries can also purchase water
currency from authorities or community harvesting facilities to pay their water
supply bills. Individuals with high water requirements can buy this currency at a
lower cost than the authorities provide. Sellers will be rewarded economically for
their conservation efforts.

However, the limitations of Blockchain are high energy consumption and time,
which is required to achieve consensus in its implementations (Sriyono, 2020; Xia
et al., 2022). The philosophy behind Blockchain is demonstrated in the context of
water management, followed by a numerical problem.

6.2.2 Water Management Ecosystem

Here, real-life scenarios are presented to understand how this system can be
implemented and might work on the ground level (refer to Fig. 6.2). In Fig. 6.2,

e The entity in purple is the state government board, considered administrator (type
3 category).

e Entities in red are local governance, and pink is a prosumer (both are type 2
categories).

e Yellow, green, and grey are household [H], farm, and industry users, respectively
(type 1 category).
The blue elements in the diagram are the water bodies [pond, river, and harvest].
Dotted lines define local area borders, squared or circular lines represent metered
water connections, and arrows indicate transaction flow.
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Fig. 6.2 Water management ecosystem

e Document icon pen represents the contracts (C1, C2, C3, C4) and prosumer
contract (PC1).

Now understand the functioning of the system step by step, which is as follows
(refer to Fig. 6.2):

1. First, the state authority is the administrator-level authority and is solely respon-
sible for adding all the other entities in the system, including prosumers. Every
prosumer-type authority has a water reservoir of its own. For example, the munic-
ipal corporation has a pond and a river shared with the panchayat nearby. In the
case of shared water resources, a predefined agreement on the water distribution
of that resource should exist. P1 is a prosumer and has a water harvesting facility.

2. When water intake is observed via IoT devices, the water currency creation
transaction is registered by the respective authority having that resource or having
a share in that resource.
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SenderKey: ProducerKey, ReceiverKey: ProducerKey, Amount: Z

3.

For every entity with water currency and being a prosumer type, the user releases
smart contracts for different users through which they can buy currency by paying
them in X. Here, the municipal corporation released contract 1 (C1) for household
usage and prosumer P1, C2 for industrial use, and C3 for cooperation with another
municipal corporation. Panchayat released contract C4 for farming usage. P1
also has a water transport facility and reached a contract agreement with industry
users, creating a prosumer contract (PC1).

Terms in the smart contract can be different depending on the policy of the local
authority. Various local authorities deploy smart contracts (like C1, C2, and C3
by the municipal corporation, C4 by the panchayat, and PC1 by prosumer P1) to
structure their rates and usage regulations. They can be defined in their respective
contracts.

For ease of understanding of the reader, C1 can be as follows for demonstration
purposes,

In C1, users will be charged ¥ X1 per 1 currency for water usage of 0 to 20 L, a
day per person in the house.

X X2 per 1 currency will be charged for water usage of 20 to 50 L a day per person
in house.

¥ X3 per 1 currency for water usage of more than 50 L a day per person in the
house.

Now, every user is mapped by the water supplier (that can either be the local
authority or any producer) to the contract they need to use to purchase water
currency from them. For example, Households H1, H2, and H3 use contract C1.
Although there can be a case where the contract will be the same, water supply
might come from different sources depending on convenience. H1 and H2 receive
water from the pond, but H3 gets water from the river. Also, contracts carry the
data of users who are allowed to access it.

In this ecosystem, industry users have two contracts available, C2 and PC1, and
they can choose to utilize any, depending on the terms and conditions, which can
maximize their monetary benefits.

Having a transport network, municipal corporations can also establish more
contracts like C3 with other authorities. This is how water can be directed from
abundance to water-scarce areas.

Now, if a user H1 wants Y litres of water and according to their state of usage,
water costs him ¥ X per currency or litre.

e They will buy Y water currency from the C1 contract by paying ¥ X x Y.
Then, the municipal corporation will initiate the following transaction.

SenderKey: MunicipalKey, ReceiverKey: H1Key, Amount: Y

Then, H1 can spend that currency to get the water by performing water usage
transactions.
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SenderKey: H1Key, ReceiverKey: HI_METER_ID, Amount: Y

9. Users can also perform peer-to-peer water transfers. If H1 has reached a slot of
% X3 per litre, and user H2 has got into the X2 slab, where X3 > X2, then

e User H1 will buy water currency from H2 at some cost if X2 < cost < X3.
e [f HI buys W litres of water from H2 at some decided cost, they pay W x
cost to H2, and H2 initiates the following water currency transfer transaction.

SenderKey: H2Key, ReceiverKey: H1Key, Amount: W

e Similar transactions can be performed by other households (like H3).
e Even if H5 belongs to other local governing authority areas, peer-to-peer
transactions between H1, H2, H3, and H5 can also be enabled.

Ultimately, this can lead to more cooperation contracts between local authorities to
ensure better water distribution. Further, this system will reward users economically
and encourage less water usage and conservation. The proposed decentralized system
is expected to improve water management, which means that the new system should
be cost-effective for consumers and equitable water distribution among the people.

Numerical problem 6.1. Table 6.2 presents a hypothetical water distribution
system’s monthly water consumption (column 2). Compare the centralized system
(Water bill @ ¥ 200 for unlimited consumption) and Blockchain, i.e., decentralized
system (refer to Table 6.3). Table 6.3 presents a metered water supply with the new
charges. The new tariff was to reduce the cost for families using less than 11,000 L of
water only to X 55 and charge more to households with more water usage (depending
on the slabs). Discuss critically related aspects.

Solution:

Centralized System

Water bills (based on consumption) were presented in column 3 of Table 6.2 for
each household. Here, the average household is charged ¥ 225.90, and the average
monthly water consumption is 28080 litres.

Blockchain

See how the Blockchain can improve the situation using peer-to-peer transactions.
It works on tokenizing water into water currency and an open market. Below are the
salient points:

(1) Household 1 will trade water currency equivalent to 1100 L of water, with
Household 12 providing him the water currency for anything between ¥ 7 and
8 so that their usage falls below 25,000 L.

(2) Household 2 will trade water currency promising 5400 L of consumable water
to Household 6 for anything between ¥ 7 and 9.

(3) Household 3 will trade 10,300 tokens to Household 8 between ¥ 8 and 9.

(4) Similarly, Household 7 sells 600 L of water currency to Household 10.

(5) Household 9 also sells 2400 L worth of water currency to Household 10.
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Table 6.2 Details of household numbers, water consumed per month, and water bill

Household number (1) Water consumed (litre per month) (2) Water bill ) (3)
1 22,500 157.5
2 18,200 127.4
3 36,000 288
4 42,000 336

5 9900 49.5
6 55,400 498.6
7 14,100 84.6
8 60,300 542.7
9 12,600 75.6
10 28,000 224
11 0 0

12 26,100 208.8
13 54,500 490.5
14 13,700 82.2
15 27,900 2232

Table 6.3 Details of cost and lower and upper bounds of water usage

Charges in ¥ per 1000 L | Consumption lower bound (litre | Consumption upper bound (litre
per month) per month)

5 0 11,000

6 11,000 15,000

7 15,000 25,000

8 25,000 50,000

9 50,000 00

(6) Household 11 will sell 4500 L of water rights to Household 13, 2700 L of water
rights to Household 14, and 2900 L worth of water currency to Household 15.

See the impact of introducing only eight peer-to-peer interactions in the system
(Table 6.4).

Figure 6.3 presents water usage for the month after trading water rights to optimize
the slot-bound utilization. Also, the average water usage is the same, but the standard
deviation becomes 15,425.91 L, which was 18,190.62 L in the centralized scenario.
It means that households have made better use of their water rights. The distribution
has become fairer.

Figure 6.4 presents related water bills. The average cost of a household just after
a few peer-to-peer interactions has decreased to X 206.33, which is ¥ 19.57 less than
the previous, so 15 households have saved a combined ¥ 293.55. The water is not
consumed equally, but the low-consumption households have generated monetary
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Table 6.4 Details of house numbers and water usage per month

6 Emerging Research Areas

Household number (1) Water usage in litres per month (2) Water bill ) (3)
1 22,500 4 1100 = 23,600 165.2
2 18,200 + 5400 = 23,600 165.2
3 36,000 4 10,300 = 46,300 370.4
4 42,000 336

5 9900 49.5

6 55,400-5400 = 50,000 400

7 14,100 4 600 = 14,700 88.2

8 60,300-10,300 = 50,000 400

9 12,600 + 2400 = 15,000 90

10 28,000-600-2400 = 25,000 175

11 0+ 4500 + 2700 4 2900 = 10,100 50.5
12 26,100-1100 = 25,000 175

13 54,500-4500 = 50,000 400

14 13,700-2700 = 11,000 55

15 27,900-2900 = 25,000 175
Average water use 28,080 206.33

Fig. 6.3 Comparison of water usage in centralized and decentralized distribution systems
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Fig. 6.4 Comparison of water bills in centralized and decentralized distribution systems

benefits from their water currency. For example, if Household 2 has traded water
currency promising 5400 L of consumable water to Household 6 for ¥ 8.5 per kilo
litre of water, it costs X 7. It has generated 5.4 x (8.5 -7) =X 8.1 of monetary benefit.

Also, the local authority spent ¥ 200 per household. However, it generates I
206.33 (not X 225.90), lower than before. It can be stated that a decentralized system
is worthier than a centralized system.

The average cost decreases, distribution becomes fairer, and the low-consumption
household generates revenue by trading their water rights. The effect of such an
intangible system is that the households will be more aware of their water usage.
Figure 6.4, related to monetary benefit, may seem small, but remember that peer-to-
peer interaction is performed only between 15 households. Implementing the system
on lakhs of users, including industrial and commercial, will significantly impact
society.

6.3 Recent ML Techniques

6.3.1 Federated Learning

Almost all the ML algorithms work with a central learning philosophy, where
data collected will be in one place and used for training. In Federated Learning
(FL), a secured distributed learning framework, individual client (or user) edge
devices train the given ML model parallelly (and locally) without moving data to
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a central computing facility. This is to respect data privacy and regulations within
the individual entities. Also, decentralized computation, generalization, scalability,
and transfer of only encrypted processed parameters make the collaborative process
more reasonable, robust, and adaptive (Banabilah et al., 2022; Wen et al., 2022).

In a nutshell, individual devices train the models on the data available to them and
send the parameters, such as weights, etc., in an encrypted format to a central server.
It aggregates these comprehensively and transmits them back to the individual for
further training until the model reaches the optimal state, terming it as a global model
(Gupta & Gupta, 2023; Maroua, 2024).

FL is classified into three categories established on data distribution, which is as
follows:

Horizontal or sample-based FL: Features used for the evaluation remained the
same for all the individuals. However, datasets will be different for each entity. For
example, two banks collect information on the customers (two different datasets).
However, the information on features they collect from the customers is the same.

Vertical or feature-based FL: Different features and some overlapping datasets
define this FL. For example, a person with the name X takes a bank loan [defined
with features (p, g, r)] and invests it at another place [defined with features (s, t, u)].
When working on tax purposes, the name of person X is identified by the first set
of features in one place and the second set of features in another place. Here, there
is an overlap in the name. If required, these two sets of features can be combined to
make it a complete dataset for person X.

Transferred FL: It is almost similar to vertical feature-based FL except for a small
sample space.

Points to Be Noted

There is no control over the quality of the data sent by individual devices.

There is likely an imbalance of data while training by individual entities. It means
there is no minimum threshold of datasets for training, and it will vary depending
on the data available with individual entities.

e Datasets transmitted by each device are anticipated to be independent. Their distri-
bution is expected to be identical. These requirements may not be feasible in most
situations.

e Edge devices may be heterogeneous.

Some of the areas where potentiality exists are medical research, finance, or
organizations.

6.3.2 Neural Architecture Search

Most of the architectures in deep learning are developed using trial and error
approaches, which consumes considerable time. However, there is no guarantee
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that the architecture developed is optimal and suitable to the chosen problem
(Chitty-Venkata et al., 2023).

Neural Architecture Search (NAS) is one of the algorithms that made inroads into
this domain of finding logical architectures based on robust mathematical frame-
works. NAS is employed by a number of researchers (Elsken et al., 2019; Poyser &
Breckon, 2024). It works on three following principles:

Search space: Possible architectures that can be studied. Earlier knowledge of
architecture may ease the search space.

Search strategy: Mechanism of identifying the best-performing architecture from
search space. Some of the search strategies include EA, Random Search, and
Bayesian Optimization.

Performance evaluation of search strategy: Estimating the efficacy of search
strategy.

6.3.3 Miscellaneous Techniques

There are a number of ML techniques that have a lot of potential to be applied to
real-world problems. A list of those techniques with related references is provided
in Table 6.5 for the benefit of readers.

Table 6.5 Additional techniques falling under advanced aspects of ML techniques

Topic (in alphabetical order) References

Autoencoders Chen and Guo (2023), Li et al. (2023a),
Berahmand et al. (2024), Qian et al. (2022)

Auto ML Salehin et al. (2024), Baratchi et al. (2024), Singh
and Joshi (2022), Vaccaro et al. (2021)

Capsule Networks Patrick et al. (2022), Haq et al. (2023), Pawan and
Rajan (2022), Mazzia et al. (2021)

Deep Q Networks Jain et al. (2022), Huang (2020), Talaat (2022)

Explainable Artificial Intelligence: Ali et al. (2023), Naser (2021), Tantithamthavorn

and Jiarpakdee (2021), Ghosh et al. (2024), Love
et al. (2023)

Generative Adversarial Network Aggarwal et al. (2021), Gonog and Zhou (2019),
Lee (2023), Nayak et al. (2024), Jozdani et al.
(2022)

Graph Neural Networks Khemani et al. (2024), Zhou et al. (2020), Corso

et al. (2024), Besharatifard and Vafaee (2024), Sun
et al. (2023)

Neural Network Pruning and Quantization | Liang et al. (2021), Zhang et al. (2022), Alqahtani
et al. (2021), Cai et al. (2023a)

Neural Style Transfer Singh et al. (2021), Cai et al. (2023b), Li et al.
(2020a)
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6.4 Evolutionary Algorithms

EAs are rapidly expanding their role in Al and allied fields, and most of them are
motivated by the behaviour of living beings or nature. They are most flexible and
can easily handle the challenges experienced by traditional algorithms, like complex
constraints, local optima, and high dimensional non-linear problems. These situations
are prevalent in real-world planning problems, where near-optimal solutions suffice.
However, one bottleneck is that almost all algorithms are parameter-dependent.
Sometimes, it is arduous to identify the precise values of these parameters that best fit
the chosen problem. These algorithms are classified mainly into several categories.
However, two salient categories are briefly discussed here.

Biologically inspired EA consist of a population comprising a number of individ-
uals, each characterizing a search point in the feasible solution space. The workflow
starts with random initialization of population, selection, recombination, and muta-
tion, and the process continues through several generations. The fitness of all the
individuals is estimated. Individuals with worthier fitness are combined to create
new individuals who may have better fitness than the previous generation. This
activity continued until there was no change in fitness value in the successive gener-
ations (Reddy & Kumar, 2020). A sample structure is shown in Fig. 6.5. Two major
factors that hinder the successful evolution process are selective pressure and popula-
tion diversity. Reddy & Kumar (2020) provided detailed information about handling
these challenges.

Behaviourally Inspired Swarm Intelligence (SI)-based algorithms are established
on socio-cognition, which can be applied to unravel different optimization tasks.
They are also population-based and similar to EA. However, mutation and recom-
bination are not part of this scheme. The members of a swarm work without any
guidance and have stochastic behaviour. They utilize resources competently through
collective group intelligence. A significant characteristic is self-organization, which
facilitates the evolution of global-level responses employing local-level interactions.
The system is randomly initialized with a population of individuals. These are then
evolved over a number of generations by capturing the insect’s social behaviour to
determine the optimal (Reddy & Kumar, 2020). Several excellent papers on meta-
heuristics and related topics are available. Representatives are presented in Table 6.6
for the benefit of readers.

Several benchmarking functions are available for utilization in algorithms
mentioned in Table 6.6 to evaluate their performance for single-objective and multi-
objective optimization problems (Hellwig & Beyer, 2019; Piotrowski et al., 2023;
Volz et al., 2023). Later, suitable among these can be employed to unravel real-world
challenging problems, which will increase policymakers’ confidence in possible
implementation.

Representative test functions employed in the single objective optimization
category are Ackley’s, Bohachevsky, Booth’s, Bukin N.6, Colville, Drop wave,
Easom, Eggholder, Goldstein-Prince, Griewank, Holder Table, Matyas Function,
Michalewicz, Rastrigin, Rosenbrock (Banana), Schaffer N.2, Schwefel, Shekel,
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Fig. 6.5 The basic structure of an EA (Adapted from Reddy & Kumar, 2020 under CC BY- 4.0
License)

Shubert, Six Hump, Camel Back, Sphere (Molga & Smutnicki, 2005; Surjanovic &
Bingham, 2013). In the case of multiobjective optimization, the ZDT test suite, which
comprises six different test problems, is employed by a number of researchers (Zitzler
et al., 2000). These problems consist of two objectives, constraints and bounds.

Note that these are representative test functions. Some others also exist. Readers
are encouraged to study those for a better understanding.

6.5 Large Language Model (LLLM)-Based Generative Al

LLM-based generative Al has the potential to simulate human-like dialogues and
interactive, high-quality, and much more (https://www.elastic.co/what-is/large-lan
guage-models). Several related Al tools exist for the mentioned functionality and are
presented in Table A.1 of Appendix A.


https://www.elastic.co/what-is/large-language-models
https://www.elastic.co/what-is/large-language-models
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Table 6.6 Representative reference(s) where the EAs were discussed

Name of the optimization algorithm topic

Representative reference(s) where the technique is
discussed in detail

Archimedes Dhal et al. (2023), Fang et al. (2023), Hashim et al.
(2021)

Artificial Algae Turkoglu et al. (2022), Uymaz et al. (2015)

Artificial Bee Colony Xiao et al. (2023), Zhao et al. (2022)

Bacterial Foraging

Chen et al. (2020), Guo et al. (2021)

Bat

Gagnon et al. (2020), Gandomi and Yang (2014),
Shehab et al. (2023)

Biogeography

Sang et al. (2021), Wei et al. (2022)

Black Hole

Abualigah et al. (2022a), Deeb et al. (2022)

Chicken Swarm

Wang et al. (2023a), Liang et al. (2023), Zhang
et al. (2023), Zouache et al. (2019)

Crow Search

Askarzadeh (2016), Hussien et al. (2020)

Cuckoo Search

Mohamad et al. (2014), Xiong et al. (2023)

Elephant Clan

Jafari et al. (2021)

Elephant Herding

Li et al. (2020b)

Equilibrium Elmanakhly et al. (2021), Faramarzi et al. (2020),
Yang et al. (2022a)
Fish Swarm Pourpanah et al. (2023), Tan and Mohammad-Saleh

(2020)

Gravitational Search

Mittal et al. (2021), Rashedi et al. (2009), Yang
et al. (2022b)

Grey Wolf

Mirjalili et al. (2014), Pan et al. (2021), Wang and
Li (2019)

Harmony Search

Kim (2016), Wang et al. (2023b)

Henry Gas Solubility Hashim et al. (2019), Li et al. (2022b), Mohammadi
et al. (2022)
Honey Badger Hashim et al. (2022)

Imperialist Competitive

Abdollahi et al. (2013), Bernal et al. (2017),
Hosseini and Al Khaled (2014)

Indicator Garcia et al. (2021), Yuan et al. (2022), Li et al.
(2023b)

Jellyfish Search Chou and Molla (2022), Chou and Truong (2021),
Manita and Zermani (2021)

Krill Herd Bolaji et al. (2016), Wang et al. (2019), Gandomi

and Alavi (2012)

Learner performance-based behaviour

Rahman and Rashid (2021)

Meta-Heuristic

Abdel-Basset et al. (2018), Alorf (2023), Khanduja
and Bhushan (2020), Rajwar et al. (2023),
Rajalakshmi and Kanmani (2022), Velasco et al.
(2024), Wong and Ming (2019)

(continued)
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Table 6.6 (continued)

Name of the optimization algorithm topic | Representative reference(s) where the technique is
discussed in detail

Moth Flame Mirjalili (2015), Nadimi-Shahraki et al. (2023a),
Sahoo et al. (2023), Shehab et al. (2020)

Mountain Gazelle Abdollahzadeh et al. (2022)

Mountaineering Team Faridmehr et al. (2023)

Multiverse Benmessahel et al. (2020), Mirjalili et al. (2016)

Red Fox Potap & Wozniak (2021)

Reptile Search Abualigah et al. (2022b), Khan et al. (2023), Sasmal
et al. (2024)

Salp Swarm Duan et al. (2021), Hegazy et al. (2020), Mirjalili
etal. (2017)

Sand Cat swarm Kiani et al. (2023), Wu et al. (2022), Seyyedabbasi
& Kiani (2023)

Shuffled frog leaping Maaroof et al. (2022), Zhao et al. (2024)

Social Spider Feng et al. (2022), Yu and Vok (2015), Zhao et al.
(2017)

Spider Monkey Agrawal et al. (2023)

Swarm Intelligence Brezocnik et al. (2018), Tang et al. (2021),
Figueiredo et al. (2019)

Symbiotic Organisms Search Ezugwu & Prayogo (2019), Cheng & Prayogo
(2014), Gharehchopogh et al. (2020)

Teaching—Learning Gomez Diaz et al. (2022), Xu et al. (2022)

Teamwork Dehghani & Trojovsky (2021)

Walrus Han et al. (2024)

Whale Mirjalili & Lewis (2016), Nadimi-Shahraki et al.
(2023b), Rana et al. (2020)

Wild Horse Naruei & Keynia (2022), Zheng et al. (2022)

One of the most prominent tools in this category, the Chat Generative Pre-Trained
Transformer (ChatGPT), is discussed in detail for the benefit of the readers. It is
established on Deep Neural Network (DNN) architecture with unsupervised pre-
training initially and later supervised fine-tuning.

The latest version in this series, GPT 4.0, provides improved Natural Language
Processing (NLP) abilities, handling large datasets, more extended consecutive
outputs, and contextual inferencing, resulting in an engaging conversation. Its flex-
ibility to provide relevant information in any domain, including coding tasks and
correcting program errors, makes ChatGPT unique (Ray, 2023). Dempere et al.
(2023) studied the effect of ChatGPT on higher education, Foroumandi et al. (2023)
on hydrology and earth sciences, Huang & Tan (2023) on scientific communication
and Nikolic et al. (2023) on assessment of engineering education.
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A comparison of ChatGPT and Google Bard is made by McGowan et al. (2023) for
the psychiatry literature search context and Cheong et al. (2023) for patient education
material for obstructive sleep apnoea. Furthermore, Agarwal et al. (2023) applied
ChatGPT, Bing, and Bard to develop reasoning-based questions in the domain of
Medical Physiology, and Lim et al. (2023) in the context of trauma nerve laceration
patients. The strengths and limitations of ChatGPT are discussed in detail.

Strengths

1. Itsaves considerable time and improves productivity. Relevant lengthy keywords
with a focussed domain help explore ChatGPT to its full potential. Otherwise, it
may give some output that may not be related to your query.

2. Diverse content can likely be generated with similar keywords, which may
provide a broader view to the user.

Limitations

1. Limited exposure of ChatGPT for a specific query for which it was not trained
may result in inaccurate or incomplete output.

2. The resulting output may not be authentic, necessitating a further investigation
before utilization.

3. There is arisk of plagiarism for generated content. It is always advisable to verify
the generated content with plagiarism-related software.

4. A graphical visualization facility is not available at present. This means that
considerable effort is required to understand the intricacies of the results and
possible inferences.

5. Memory may become exhausted during the processing of a large amount of
conversations and other related tasks.

In summary, disrupting users’ creative thinking processes, skill sets, and expres-
sion abilities is a significant concern. However, limiting Al tools is not the solution,
and a trade-off is necessary (Nah et al., 2023; Ray et al., 2024; Roumeliotis &
Tselikas, 2023). The impact of these Al tools on society must also be studied holisti-
cally. Most of the strengths and limitations mentioned in ChatGPT are also applicable
to some of the tools mentioned in Table A.1. Remarks in Table A.1 are based on the
limited understanding of the tools by the authors of the book. Readers are strongly
advised to verify thoroughly before working on any tool.

6.6 IoT, Big Data, and DSS

IoT is a network of objects established with sensors and devices and has connectivity
capabilities. It has gained much prominence due to its strength to monitor data in real
time. It empowers them to gather and swap data over the internet for further modelling
applications. It also provides flexibility to make quick decisions and understand risks
and vulnerabilities. This, in turn, helps assess proactive and predictive maintenance
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requirements, which minimize downtime. The architecture comprises four layers:
sensing, network, data processing, and application. Relevant information is as follows
(Jena, 2023):

1. The sensing layer is the first layer for gathering data from various sources. It
consists of sensors and other measuring devices to collect information, such as
the number of vehicles, temperature in a lake, pollution at a given location, etc.

2. The network layer connects with the sensing layer with wireless or wired
communication protocols. Its primary function is to facilitate information sharing
between devices in the IoT structure.

3. The data processing layer collects data from the devices using software and hard-
ware components and processes it for further analysis. One example is using
data in Al, EA, and other models where their outcomes provide insights to
decision-makers.

4. The application layer is the user interface layer.

In IoT and similar data acquisition procedures, large volumes of data will be contin-
uously generated from various sources, termed Big data (Kaplinski et al., 2016). Big
data analysis is helpful for process improvements, predicting long-term trends, and
many more. However, the following challenges remain to utilize generated data to
the fullest extent (Thayyib et al., 2023):

e Data quality: Available data are expected to be of good quality without incon-
sistencies and errors. This may not be possible sometimes due to multiple data
sources. For example, land use information is retrieved from satellite images,
water quality is acquired from sensors, and reservoir inflows are collected from
conventional measuring devices. There must be efficient data integration and veri-
fying mechanisms, which are expected to save the analyst’s time. In this context,
sensors and other data-acquiring devices are to be calibrated to create confidence
in the measurement system.

e Data privacy: There is a likelihood that data may be leaked, stolen, or manipulated
during the transmission stage, which may lead to erroneous outcomes from the
modelling. Encryption and cyber security are some measures that can be explored
to minimize the impact.

e Human resources: The requirement of skilled experts for big data analytics is a
bottleneck. It can be overcome by training the human resources to be focused and
sustainable.

e Data storage: Cost-effective processing of ever-growing data is a perennial
challenge. One of the solutions may be to use cloud facilities.

As mentioned earlier, the data generated from the procedures are valuable inputs
to DSS and assist policymakers in a complex, data-driven environment. Its adapt-
ability to technology, data analysis, and models is an added advantage driven by the
following components (Alamanos et al., 2021; Alshami et al., 2023; Gheibi et al.,
2023).
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e Models: They are crucial in decision-making. They will be helpful in fore-
casting outcomes for different possible scenarios expected to yield multi-faceted
decisions.

e User interface: A window through which policymakers interact with the DSS.
It consists of data visualizations in graphical format, dashboard, and query
interfaces.

e Knowledge-based system: Domain-specific knowledge provided by the expert
and resulting rules developed by the analyst guide the decision process.

e Decision process: It depends entirely on previous components for formulating
logic that drives decisions.

However, in most DSSs, almost all the components mentioned here are involved in
successful decisions. The involvement of experts is of paramount importance, as they
can identify whether the decision was implemented and the effects of the decision
are as expected after implementation. The feedback mechanism is an essential and
inevitable task that facilitates continuous improvement of DSS over time.

6.7 Taguchi Design of Experiments

Taguchi’s approach, a statistical method for the design of experiments, became promi-
nent due to the advantage of identifying factors and levels among the available that
contribute significantly to the outcome (Ginting & Tambunan, 2018; Kacker et al.,
1991). This process also substantially enhances the efficacy of ML algorithms in the
context of parameter tuning and selecting only relevant factors and levels (Li et al.,
2024). It has two working principles: an orthogonal array and a signal-to-noise (S/N)
ratio. Before moving forward, a brief introduction of terminology helps to understand
the philosophy of the Taguchi approach.

Factor: Variable, feature, or parameters.
Response: Outcome.

Levels: Discrete values of factor(s) between lowest and highest values (for example,
20 and 100). Researchers can divide the range into any number of levels depending
on the problem requirement and computational resources available. For example,
levels can be 20, 40, 60, 80, 100 (representing five levels) and denoted respectively
as1,2,3,4,5.

Suppose a researcher is considering five factors and two levels. In that case,
23, i.e., 32 simulation runs, are required to thoroughly study the chosen problem
(Table 6.7), which is termed a full factorial design. Sometimes, these are manageable
for conducting simulation runs.

However, if there are six factors and four levels, the runs required is 4% ie.,
4096, which is impractical for performing the simulation. This means that with an
increment in levels and factors, the number of runs will increase.
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6.7 Taguchi Design of Experiments

Table 6.7 Full factorial design

Run
1*

Feature 5

Feature 4

Feature 3

Feature 2

Feature 1

4*

10

11

12

13"
14
15

16*
17
18
19
20
21

22*
23"
24
25

26"
27"
28

29

30
31

32

Part of an orthogonal array, Lg

s
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In these types of situations, an orthogonal array, a downsized or fraction of full
factorial design, plays a significant role. It is a two-dimensional matrix. Column
denotes employed factors, whereas row denotes simulation runs with information
of levels for the employed factors. For the problem of 2 features and 5 levels, an
orthogonal array is Lg. It means eight simulation runs, which is a substitution for 32
runs. It reduces computational requirements and is scientifically validated (Cimbala,
2014; Fraley et al., 2024). (*) repesrents Orthogonal Array in Table 6.7.

The S/N ratio is a measure to understand the efficacy of each simulation run in
the context of smaller being better (in case of cost), larger being better (in case of
benefit), or nominal being the best. These situations are based on the chosen criteria.

In summary, the following are the steps.

1. Identify the relevant factors, number of levels (corresponding values for each
factor), and orthogonal array.

2. Execute the simulation for the number of rows in the orthogonal array and

analyze.

Computation of S/N ratio.

4. Identify key levels of factors and further analysis.

et

A detailed procedure of Taguchi with a demonstrative example is provided by
Ginting & Tambunan (2018). Frey (1998) provided excellent information about
orthogonal arrays.

You can find the number of research papers associated with the combined applica-
tion of the Taguchi approach and ML. Representative applications where the Taguchi
approach is part are optimization of the hybrid cooling array and LSTM (Li et al.,
2024), Hydrogen separation and decision tree (DT), SVM and ensemble method
(Chen et al., 2024), and Smart manufacturing systems and ML (Nejati et al., 2024).

6.8 Data Augmentation

It is the process of adding artificial data when available real-world data is too small
(or not available) or too costly to acquire for training purposes of ML algorithms. It
is a known fact that ML algorithms require large amounts of diverse data to bring
meaningful inferences.

If added scientifically, there is likely a chance of improved generalization, mini-
mization of over-fitting, and improved accuracy. One of the ways is to modify
the original real-world data with minor changes. Another way to synthetically
generate high-quality data is by using generative adversarial networks, variational
autoencoders, deep neural networks, neural style transfers, or similar algorithms.

You can find a number of applications of data augmentation in healthcare (Garcea
etal., 2023; Goceri, 2023), Finance (Ranjbaran et al., 2023), Water Quality (Mahlathi
etal., 2022), Power Sector (Chen et al., 2021), and more. Representative data sources
are available in Table A.2 of Appendix A.
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6.9 Cross-Validation

Here, the model is executed on the number of sub-datasets (or folds). One of the folds
is used for validation, whereas the remaining folds are for training. Iteratively, the fold
used for validation changes, and accordingly, the remaining folds are employed for
training (Madhuri et al., 2021). Accordingly, performance measures can be computed
for each iteration, and the average performance measure is used as the basis to
understand the model efficacy. It is also one of the approaches to make the model
more generalized without over-fitting (it is a challenge in the ML model, where it
performs well for training and is unsatisfactory on the testing data).

There are also a number of approaches in this category, such as Holdout validation,
K-fold cross-validation, and more. In the case of K-fold, it aggregates results from
various chosen training and testing datasets and shows an unbiased picture of the
algorithm performance on a given dataset.

Tougui et al. (2021) employed cross-validation techniques for diagnostic appli-
cations, Kaliappan et al. (2023) for Early Detection of Intrauterine Fetal Demise,
whereas Kee et al. (2023) for Smart and Lean Pick-and-Place Solution.

Revision Questions and Exercise Problems

6.1 What is the functionality of Blockchain?
6.2 What is the difference between a centralized and decentralized system?
6.3 What are smart contracts?
6.4 What are the features of immutability in Blockchain? How are these going to
help or accelerate the decentralized process?
6.5 What are blocks and nodes in the water management ecosystem?
6.6 What may be the function of the stakeholders in the Blockchain process?
6.7 How does IoT help the Blockchain process?
6.8 What is tokenization in Blockchain?
6.9 What is water currency?
6.10 What are the benefits of Blockchain? Discuss critically.
6.11 What is the purpose of consensus algorithms? What are popular consensus
algorithms?
6.12 How do PoW and PoS differ?
6.13 Who are miners?
6.14 What is the computational process of adding the block to the Blockchain?
6.15 What is meant by a puzzle in the Blockchain process?
6.16 What is meant by reward and hash?
6.17 What is Nonce?
6.18 What is POET? Mention a few limitations of implementing PoET.
6.19 Discuss the architecture of Blockchain.
6.20 Whatis the difference between water currency creation, transfer, and consump-
tion?
6.21 What is FL? What are the various steps in this modelling technique?
6.22 What is NAS? Explain mathematical philosophy.
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6.23
6.24

6.25
6.26

6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35

6 Emerging Research Areas

List some of the techniques that are in the advanced category of ML techniques.
List some of the techniques that are in the advanced category of optimization
techniques.

What are the meta-heuristic optimization algorithms?

What are different swarm intelligence methods? On what mathematical basis
were they developed?

What is meant by Al tools?

What is the purpose of ChatGPT?

What is IoT? How does it help to improve the data collection process?

How are IoT and Big Data related?

What is a DSS? How many components are part of it?

What are the advantages and disadvantages of a DSS?

What is Taguchi’s design of experiments?

What is data augmentation? In what situations can it be used?

What is cross-validation?

Advance Review Questions

6.36
6.37
6.38
6.39
6.40
6.41
6.42

6.43
6.44

6.45

6.46

Discuss two case studies related to Blockchain.

Discuss the potential applications of Blockchain in engineering.

Do you think Blockchain is suitable for water resources in developing
countries? If yes or no, justify the same.

How do you select the suitable algorithm for your domain of interest? What
are the criteria you use for this purpose?

What is the meaning of self-adaptive? How does it work? Mention four case
studies where a self-adaptive mechanism was employed.

Is there any possibility to relate ML and optimization algorithms? If yes,
discuss it critically. If no, provide the reason why it is not possible.

Can you mention the name of any algorithm universally applicable to all
situations?

Discuss four case studies related to IoT in your domain of interest.

Do you think DSS applies to Al in the present scenario? Critical discussion is
highly suggested, preferably with examples.

Is there any possibility that DSS can be developed in a fuzzy context? If so,
how they can function?

Are you encouraging Al tools to mimic human logic? Discuss the same in detail
in the context of literature review, examination, and syllabus preparation.
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Chapter 7 ®)
Case Studies Gedar

7.1 Introduction

The present chapter provides brief information about representative case studies
related to Machine Learning, Fuzzy Inference Systems, Neuro-Fuzzy Inference
Systems, Fuzzy Cognitive Mapping, Fuzzy Cluster Analysis, optimization, fuzzy
extensions, and many more, demonstrating the potential of these techniques in various
domains. In addition, areas of further research work are also part of this chapter.

The chosen research papers are organized into Civil, Chemical, Mechanical, Elec-
tronics and Computer Science Engineering, and Management (Fig. 7.1) and presented
in Tables 7.1, 7.2, 7.3, 7.4, and 7.5, respectively.

The first column in each table provides information about the authors. The second
column briefly discusses the application, techniques, and performance measures. The
third column focuses mainly on case studies and data sources. The fourth column
presents remarks/inferences for a comprehensive view of the research work. Wher-
ever the number of inputs or outputs is more in the studied research paper, information
about a smaller number of inputs and outputs is only presented. It is represented as
inputs (representative) or outputs (representative).

The full paper can be accessed if the institution has a journal subscription or the
journal is in the open-access category. Note that a very brief description is provided
in this chapter based on the authors’ understanding of the work, which may not be
logical sometimes. Readers are strongly advised to study the paper before applying
it to their research work or further learning. In addition, several state-of-art review
papers on the topics are presented in the appendix. Notations were expanded when-
ever they appeared for the first time in the text. Later, only notations were given to
minimize repetition. In addition, notations were presented at the start of the book for
a comprehensive understanding of the reader.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 199
K. Srinivasa Raju and D. Nagesh Kumar, Artificial Intelligence and Machine Learning
Techniques in Engineering and Management,
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Table 7.2 Case studies related to Chemical Engineering
Author(s) (1) Application, techniques, and | Case study, data Remarks/inferences,

performance measures
employed (2)

source (3)

(C))

Fang et al.
(2022)

Prediction of chemical
toxicity

RF, MLR

R2

1792 experimental
toxicants towards
Tetrahymena
pyriformis

Inputs: 9 in number
Output: Chemical
toxicity

RF performed well

Al-Wahaibi et al.
(2023)

Fault identification in
chemical processes

Local Global scale CNN,
CNN, CNN-LSTM,
multiscale CNN, Global
Feature CNN, ANN, Fisher
Discriminant Analysis
Fault Diagnosis Ratio,
Precision, Fl1-score, TPR,
FNR

Fault diagnosis,
benchmark
Tennessee Eastman
process dataset,

52 (includes 11
manipulated
variables); 20
simulations

Inputs: The image is
transformed from
multivariate
time-series data
Outputs: Fault
classification

Local Global scale
CNN is the best

Theisen et al.

Digitization of chemical

1005 flowsheets

Inputs: Process flow

(2023) process flow diagrams diagrams
Pixel-based search Outputs: 47 classes
algorithm, Faster R-CNN considered for drawing

styles of unit
operations

The proposed
approach performs
better

Zhang et al. Industrial process fault An acid gas GRU-enhanced deep

(2023b) diagnosis absorption process, | CNN is the best for
GRU-Enhanced Deep CNN, | Benchmark two case studies

Deep CNN, GRU
Fault Diagnosis Time, FPR,
Fault Diagnosis Rate

Tennessee Eastman
process

Xu et al. (2023)

Batteries health state
CNN-LSTM-Skip
algorithm, CNN-LSTM, one
more algorithm

RMSE, R?, MAE

NASA (18,650
lithium-ion
batteries),

Oxford battery aging
datasets (8 Kokam
lithium-ion
batteries),

Inputs: Current,
voltage, sampling
time, IC curve,
temperature, Base
model

Output: Battery health
state

For Oxford datasets:
An additional feature
is accumulated
capacity
CNN-LSTM-Skip
algorithm performs
better than the
remaining two

(continued)
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Table 7.2 (continued)

7 Case Studies

Author(s) (1)

Application, techniques, and
performance measures
employed (2)

Case study, data
source (3)

Remarks/inferences,

(C))

Nogueira et al.
(2023)

Prediction of NOx and CO,
emissions

RF, SHAP, PCA, Factor
Analysis, Independent
Component Analysis

R2

Experimental testing
with different
operating conditions
Six-cylinder
compression-ignition
engine with gas
natural modes, dual
fuel, diesel

40 samples

Inputs: Fuel rail
pressure, substitution
ratio, air—fuel
equivalence ratio, start
of injection

Outputs: Emissions,
Brake thermal
efficiency, filter smoke
number

RF is found to capture
the relationship

efficiently
Zafari & Ghaemi | CO; capture optimization Experimental data Inputs (representative):
(2023) Radial Basis Function Reaction rate constant,
(RBF), ANN, Buckingham amine concentration,
Pi theorem, Response CO; concentration,
Surface Methodology total pressure, CO;
(RSM) partial pressure, CO>
MSE, R2, Average Absolute diffusion coefficient in
Relative Error (AARE) gas phase and liquid
phase, thickness of gas
film
Output: Mass transfer
flux
RBF is the best
Yang et al. Graphene oxide membrane | 72 Graphene oxide Inputs: Interlayer
(2023) optimization sheets obtained spacing between the
GA-BPANN, RF, SVM, during 2017-2021 graphene oxide sheets,
BPANN Operation pressure,

R2, MAE, MAPE, MSE,
RMSE

roughness and
thickness of graphene
oxide layer, zeta
potential

Outputs: Water flux
and rejection
GA-BPANN is the best

Ge et al. (2023)

Detection of heavy metal
pollutants

Terahertz spectroscopy,
SVM, Deep SVM, DNN
Precision, Accuracy,
F1-score, Recall

180 experimental
datasets

Deep SVM is superior
to SVM and DNN

(continued)
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Table 7.2 (continued)
Author(s) (1) Application, techniques, and | Case study, data Remarks/inferences,
performance measures source (3) “4)
employed (2)
Zarei et al. Removal efficacy of Experimental setup | Inputs (representative):
(2023) hydrogen Sulphide Concentration of
MLR, SVM hydrogen sulphide in
R?, RMSE, Efficacy the biogas stream input
to the biofilter
Output: HS removal
efficiency
SVM results are
tallying with
experimental data
Qian et al. Prediction of Urban Gas 4477 datasets Inputs: Pressure, price,
(2023) Consumption humidity, temperature,

CatBoost hybridized with
(Phasor PSO, Artificial Bee
Colony, Satin Bowerbird
algorithm, Battle Royale
Optimizer, GWO, Fruit Fly
Optimization Algorithm,
Urban Gas Consumption)
RMSE, MAPE, MAE, RAE,
R2, Normalized MSE

wind speed

Output: Urban gas
consumption
Catboost-Phasor PSO
had the best
performance

Godwin et al.
(2023)

Combustion performance
prediction of
ethanol-powered spark
ignition engine

ANN, Ensemble Least
Squares Boosting ML
techniques

R?, RMSE, MSE, MAE

Experimental
datasets

Inputs: Brake-specific
fuel consumption,
engine load

Outputs: Exhaust gas
temperature,
hydrocarbons,

brake thermal
efficiency, carbon
dioxide, carbon
monoxide, nitrogen
oxides under different
operating situations
Ensemble Least
squares boosting ML
is the best compared to
ANN

(continued)
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Table 7.2 (continued)

7 Case Studies

Author(s) (1)

Application, techniques, and
performance measures
employed (2)

Case study, data
source (3)

Remarks/inferences,

(C))

Ahmadi et al.

MAPE

Flash separator fuzzy
(2020) dynamic modelling
Mamdani FIS

Knowledge base and
experimental setup

Inputs: Feed
temperature, feed
pressure, outlet gas
pressure, outlet liquid
pressure, feed-molar
fraction

Outputs: Gas molar
fraction, separator
temperature, separator
level, separator
pressure, liquid molar
fraction

The proposed number
of rules is 552

The linguistic
composition variable
method is used to
decrease rules to 7150

Dubey et al.
(2023) adsorption
ANFIS

Modelling for Cr (VI)

SSE, MSE, RMSE, R?

Experimental-based

Inputs: Stirring rate
and time, initial
concentration, contact
time, dosage, pH
Output: Cr (VI)
Adsorption

ANFIS can simulate
the experimental data

Morone et al.
(2021) waste flows

Valorization of organic

FCM using ANN

National analysis to
understand the
Italian waste system
Experts interaction

Economic and
financial strategies and
improvement in
collection systems
yield positive effects
on the outcomes

Liu et al. (2022) | Prediction of ozone
Evidential Reasoning
(ER)-FCM, Real-coded
GA-FCM, PSO-FCM,
NHL-FCM, Simple Average
model-FCM, Weighted
Average model-FCM,
Majority Voting model-FCM
MAE, MSE, RMSE,
Friedman, and Nemenyi

tests

Data from Fuyang
City and Lanzhou
City

Causes: CO, NO3,
SO,, temperature and
humidity

Effect: Prediction of
O3 trend

ER-FCM achieves
relatively better
prediction accuracy

(continued)
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Table 7.2 (continued)
Author(s) (1) Application, techniques, and | Case study, data Remarks/inferences,
performance measures source (3) “4)
employed (2)
Xue et al. (2018) | Cluster analysis of Japanese | Classification of 462 | Cluster fuzziness is 2
pollutant release and transfer | chemicals 15 chemical features

register to understand
release and toxicity

comprise releases and
toxicities

characteristics Classified into 5
FCMe clusters
Xie and Beni Index, FCMe classified
Partition coefficient effectively
Jafarzade et al. | Modelling Cadmium in 51 sampling Inputs: Dissolved
(2023) groundwater resources locations, 158 water | solids,
ANFIS-FCMe, ANFIS-SC | samples at electroconductivity,
R2, Sum of Square Error Neyshabur city, turbidity, pH
(SSE), RMSE Central desert of Iran | Output: Cadmium
availability
ANFIS-FCMe is
slightly better than
ANFIS-SC
Zhang et al. Prediction of hybrid Experimental Inputs: Density,
(2023¢) nanofluids datasets thermal conductivity

ANFIS-SC, Grid
Partitioning, FCMe
MSE, MAE, MAPE, R%, WI

ratio, specific heat
capacity, dynamic
viscosity ratio
Output:
Thermophysical
properties of hybrid
nanofluids containing
multiwalled carbon
nanotubes and oxide
nano-sized materials
Optimal grid
partition-ANFIS is
better than other
ANFIS approaches in
modelling thermal
conductivity and
specific heat

(continued)
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Table 7.2 (continued)

7 Case Studies

Author(s) (1) Application, techniques, and | Case study, data Remarks/inferences,
performance measures source (3) “4)
employed (2)

Elshenawy et al. | Fault detection and Numerical example: | 41 process

(2022)

diagnosis strategy

PCA, KNN, PCA-KNN,
FCMe, FCMe-KNN
Fault detection and alarm
rates, Precision, Accuracy

Tennessee Eastman
chemical process
600 samples

measurements and 11
manipulated variables
are employed

16 faults are
recognized as step
changes

FCMe-KNN approach
reduced the
computational cost
The optimum cluster
size was identified
based on indicators

Leite et al.
(2023)

Adiabatic styrene reactor
optimization
Generalized DE

Experimental and
related studies

Analyzed single and
multiobjective (three
objectives)

Pareto sets were
obtained for different
reactor configurations
The effect of the steam
ratio on reactor
efficacy was studied

Cortez-Gonzalez

Process optimization

Five benchmark

Dynamic self-adaptive

et al. (2023) DE, Aspen one functions technique supported
Weighted function and by DE is the best
dynamic self-adaptive
techniques

Zhang et al. Application potentiality of | Tests on 18 The self-adaptive

(2021b) multiobjective dynamic DE | numerical model performed

with parameter self-adaptive
strategies

Other algorithms that
coupled to multiobjective
DE are: Non-dominated
Sorting Genetic Algorithm
(NSGA-II) and GWO,
Self-adaptive Mutation
Operator, Ranking-based
Mutation Operator,
Individualized-Instruction
TLBO Inverted generational
distance, Spread

experiments and
benchmark functions
and 3 biochemical
processes

better than the 5
competitors

(continued)
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Table 7.2 (continued)
Author(s) (1) Application, techniques, and | Case study, data Remarks/inferences,
performance measures source (3) “4)
employed (2)
Bietal. (2023) | Discrimination technique of | 114 types of biomass | Inputs: Biomass ash

biomass slagging tendency
PSO-DNN, RNN, LSTM
F1-score, Accuracy, Recall,
Precision, Spearman
correlation analysis

obtained from
various sources are
the datasets

content (%) and 13
types of chemical
elements

Output: Slagging type
PSO-DNN is the best

Wang et al.
(2022b)

Potentiality of RF, MLP,
SVM, PSO, GB for
hyperparameter tuning
process;

NSGA-II-based
multiobjective optimization;
a number of multicriteria
deicision-making techniques
R

Two case studies,
combustion process
in a power plant and
supercritical water
gasification process

An integrated
framework is helpful
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Table 7.3 Case studies related to Mechanical Engineering

7 Case Studies

Author(s) | Application, techniques, and | Case study, Remarks/inferences, (4)
(@) performance measures data source (3)
employed (2)
Zhang & | Modelling from the image of | 200 datasets of | CNN precisely acquired the particle
Yin (2021) | particles to mechanical biaxial tests information
characteristics generated Bi-LSTM captured impacts of
CNN, Bi-LSTM using the relative density and particle
MAE, MAPE, MSE 2-dimensional | morphology on global mechanical
discrete behaviour of granular materials
element
method; 600
images
Wan et al. | Prediction of power load Two thermal | Inputs: Temperature, pressure,
(2023) LSTM, CNN-LSTM, power (stream | flow-related features
CNN-LSTM-Attention-based | turbine) units; | Output: Short-term power load
mechanism Daily CNN-LSTM-Attention mechanism
Pearson Correlation operation data | is the best
Coefficient (PCC), MAE, of 250
MAPE, RMSE dimensions
from a steam
turbine unit,
Zhejiang
Province,
China
Abbaskhah | Horizontal axis wind turbine | Data from Inputs: Pitch angle, rotation speed,
et al. optimization numerical wind speed, dimpled or original
(2023) CNN, MLP simulation blades
MSE, MAE, SSE, R? Output: Torque, thrust
MLP and CNN are performing
better
Ranawat Blockage detection in The LSTM performance is superior to
et al. centrifugal pump experimental | Bi-LSTM and others in terms of
(2023) Bi-LSTM, LSTM, SVM, facility, 10 accuracy
SVM-Grid Search different pump
Optimization, conditions;
SVM- Bayesian 5000 samples
Optimization, XGBoost
F1-score, Accuracy, Recall,
Precision
Tian et al. | The remaining effective life | Datasets Spatial correlation and temporal
(2023) of turbofan engine prediction | correspond to | attention-based LSTM performance

Spatial correlation and
temporal attention-based
LSTM, number of related
algorithms (variations)
RMSE, Score

two different
turbofan
engine
simulations

is the best

(continued)
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Author(s) | Application, techniques, and | Case study, Remarks/inferences, (4)
(@) performance measures data source (3)
employed (2)
Yuan et al. | Prediction of mechanical Experimental | Input: Stress
(2023) behaviours of nitrile setup Output: Strain
butadiene rubber materials Stress—strain relationships of rubber
Self-adaptive PSO-ANN, materials with various hardness and
ANN-Levenberg—Marquardt, loading rates are studied
ANN-Gradient Descent, Self-adaptive PSO-ANN is the best
PSO-ANN, WGAN
MSE, R?, RMSE
Liuetal. | Composition design of Experimental | Inputs: Number of alloys
(2023) high-performance copper setup Output: Performance of copper
alloy alloys
ANN-GA ANN-GA demonstrated good
MSE agreement with experimental
output
Zhou et al. | Fault diagnosis Data of Fuzzy regular least squares twin
(2023) Fuzzy regular least squares bearing fault | SVM algorithm has good
twin SVM extended to a diagnosis generalization and anti-outlier
multiclassification algorithm ability; it also has higher reliability
of fault diagnosis
Ding et al. | Fuel cell air compressor 264 Inputs: Corrected speed and
(2023) performance prediction Experimental | pressure ratio
BPANN optimized by GA datasets Output: Corrected flow rate
and SVM, GA-BPANN-SVM GA-BPANN-SVM showed a good
MAE, MAPE, RMSE, R? performance than others
Gao et al. | Noise recognition of moving | 5 datasets The accuracy of the fused
(2023) parts in the sealed cavity from UCI technique is higher than that of
Fused ML-based on public datasets | traditional stacking
CatBoost, XGBoost, LR; (266,196
XGBoost, CatBoost, RF, DT, | samples), 5
LR, XGBoost-LR, noise datasets
CatBoost-LR (14,731
Accuracy, Recall, Precision, | samples) from
Fl1-score, AUC-ROC PIND devices
Xiang Prediction of metal tubes Datasets of Inputs: Tube process and geometric
et al. bending performance 6061 parameters related to pressure die
(2024) Parameters—weight-adaptive | aluminium Outputs (representative): Short-axis
CNN, VGG, ResNet, tubes, variation rate, wall-thickening,
Densenet; RF for ranking the | experimental | thinning ratios
input parameters; ABAQUS, | verification Parameters—weight-adaptive-CNN

Latin Hypercube Sampling
R?, MAPE, WI, NSE

performed best

(continued)
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Table 7.3 (continued)

7 Case Studies

Author(s) | Application, techniques, and | Case study, Remarks/inferences, (4)
(@) performance measures data source (3)
employed (2)
Cagil et al. | Prediction of vibration of a 2074 Inputs: x-axis and y-axis (m/s2),
(2023) diesel engine experimental | NH3 additive rate, engine speed (m/
MLR, ANFIS datasets s), RMS (m/s2)
R2, MSE, MAE, RMSE Output: Vibration magnitude
computed with z-axis (m/s?)
ANFIS is the best
Sundar & | Thermal performance factor | Experimental | Inputs: Volume of concentration,
Mewada of nanofluids setup Reynolds number
(2023) MLP-ANN, ANFIS Output: Thermal and frictional
RMSE, MSE, R? entropies, thermal performance
factor, energy efficiency
ANFIS is the best
Zare et al. | Wind energy deployment Wind energy | 26 criteria belong to 6 groups, i.e.,
(2022) pathways deployment in | economic, political, technological,
FCM-based approach Iran social, legal, and environmental.
Data mainly Interlinkages between them are also
through discussed
surveys 4 possible scenarios
10 logistic terms to define positive
and negative relationships among
criteria
Pereira Impacts of energy-change Portugal Analyzed the role of FCM and
et al. FCM—System Dynamic system dynamic approach
(2020) Approach
Tung et al. | Voronoi structures Experimental | Voronoi structures optimized by the
(2023) optimization setup GA enhanced strength, stiffness,
GA, Finite Element and toughness values by ~30%
Simulation
Song et al. | Layout of wind farm Various data | Adaptive granularity learning
(2023) Adaptive Granularity sources to distributed PSO solves the problem
Learning Distributed PSO, replicate effectively

Yawed Gaussian Wake, and
Wake Merging Models

realistic wind
farm
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Table 7.4 Case studies related to Electronics and Computer Science Engineering
Author(s) (1) Application, techniques, and Case study, data Remarks/inferences,
performance measures source (3) 4)
employed (2)
Nayak et al. Hand gesture recognition 5 hand postures of | The Memetic Firefly
(2021) Memetic Firefly technique with | 12 users technique with
LGBoost, NB, Linear LGBoost is superior
Regression (LiR), Stochastic to that of others
Gradient Descent, Linear and
Quadratic Discriminant
Analyzer, RF, DT, KNN,
LGBoost, GB, Adaboost,
Firefly Technique with
LGBoost
Precision, Accuracy, Fl-score,
Recall, AUC-ROC
Takahashi et al. | Data supplement for 200 recordings for | Created 300 artificial
(2022) brain—computer interface each subject data from 60 real-data

system CNN-LSTM and an
Electroencephalogram, empirical mode
CNN-LSTM, Common Spatial decomposition
Pattern, Fully connected ANN process improved
with features, extraction, electroencephalogram
Empirical mode decomposition pattern recognition
Kilincer et al. | Comprehensive intrusion Laboratory-based | LGBoost is the best

(2022)

detection environment

GB, LGBoost, XGBoost,
Catboost, AdaBoost, KNN, NB,
MLP, DT, Extra Tree Algorithm
Accuracy, Recall, Precision,
F1-score

Detection datasets

Kosar & Activity recognition Daily and sports The present study is
Barshan (2023) | LSTM, 1D and 2D CNN, 1D activities, UCIHAR | compared with other
and 2D CNN-LSTM dataset published articles.
2D-CNN-LSTM is
superior to other
employed techniques
Rajeshkumar Smart office automation 8421 face images in | The accuracy range of

et al. (2023)

Faster R-CNN-based face
recognition with IoT, VGG-16,
SVM, Deep CNN, and two
more algorithms

Accuracy, Specificity,
Sensitivity

RGB format

Faster R-CNN is
superior

(continued)
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Table 7.4 (continued)

7 Case Studies

Author(s) (1) Application, techniques, and Case study, data Remarks/inferences,
performance measures source (3) 4)
employed (2)

Tan et al. (2023) | Microarchitecture-level fault Simulation Saca-FI mechanism

injection environment
Saca-FI, CIFAR-10 CNN,
LeNet-5, VGG-16
Reliability-associated
architectural vulnerability
factor

analysis: CIFAR-10
CNN with Cifar-10
dataset, LeNet-5
with MNIST
dataset, VGG-16
with ILSVRC-2012
dataset

helps assess
vulnerability aspects
and construct reliable
systolic array-based
CNN accelerators

Khan et al. Malware detection IoT Malware Squeezed-Boosted
(2023) Squeezed-Boosted dataset Boundary-Region
Boundary-Region Total images 3959 | Split-Transform-CNN
Split-Transform-CNN, MLP, (Benign ware 2486 | is performing well
SVM, AdaBoost and Malware 1473) | than others
Accuracy, Precision,
Sensitivity, Mathews
Correlation Coefficient,
F1-score, AUC-ROC
Menaka & Edge system recommendation | Kaggle online Hybrid CNN-LSTM
Samraj (2023) | for cloud service providers web-based captured the process
Hybrid CNN-LSTM repository effectively

Adedeji (2023) | Energy consumption prediction | Battery electric An extensive survey
Multifunctional ANN, vehicle as a case on electric vehicles is
Multioutput inverse function study also part of the paper
ANN 9 inputs and 9 outputs
MSE, MAE, RMSE The accuracy of
multifunctional ANN
is greater than that of
multi-output inverse
function ANN
Muruganandam | Prediction of K-barriers for Synthetic data DL-based
et al. (2023) intrusion detection using Monte Carlo | feed-forward ANN is
DL-based Feed-Forward ANN, | simulation and better than the

GRNN, RF, and one more
algorithm, Monte Carlo
Simulation, Binary Sensing
Model, Mersenne Twister
random number generator
RMSE, R?

related approaches

remaining techniques
that were applied

(continued)
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Table 7.4 (continued)
Author(s) (1) Application, techniques, and Case study, data Remarks/inferences,
performance measures source (3) 4)
employed (2)
Cao et al. Prediction of power load Electricity Load Improved XGBoost
(2023) Improved XGBoost with a Diagrams based on | with a Random Grid
Random Grid Search and data of 370 Search and Windowed
Windowed Mechanism, sub-stations from | Mechanism predicted
LGBoost, XGBoost, RF, January 1, short-term power load

LGBoost-XGBoost,
CNN-LSTM

Symmetric MAPE, MAE, PCC,
RMSE, MAPE, Median
absolute error, Cosine
similarity, One-Way ANOVA

2011-January 1,
2015, Portugal
EMC, UKDALE,
REFIT datasets

effectively

Anbarasu et al.
(2020)

Maximum power point tracking
of the grid-integrated solar
system

ANFIS-based Fractional Order

Intensive and
operative data
developed based on
the voltaic cell

Improved
ANFIS-based
controller is more
efficient than regularly

Proportional Integral Derivative | model employed controllers
Controller
Percentage error
Dong et al. Recognition of eye movement | Soft Inputs:
(2021) Soft multifunctional electronic | multifunctional Electrooculogram,
skin, ANFIS electronic skin sweat signals, skin
PCA mechanism temperature
gathered the Output: Eye
Electrooculogram, | movement
temperature, and Integrating ANFIS
hydration data, 200 | with a soft,
datasets multifunctional
electronic skin
mechanism can solve
eye movement
tracking problems
Chen et al. Ventricular arrhythmia 32 healthy subjects | FCMe facilitates the
(2022a) classification from the PTB prediction of a
3-dimensional phase space Diagnostic prospective

diagram, FCMe

Fl1-score, Sensitivity, Accuracy,
Specificity, FPR, Discovery,
Negative rates, Positive and
Negative Predictive Values

Database; 32
arrhythmic subjects
from the CU
Ventricular
Tachyarrhythmia
database

arrhythmia before it
happens, and its
category

(continued)
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Table 7.4 (continued)

7 Case Studies

Author(s) (1) Application, techniques, and Case study, data Remarks/inferences,
performance measures source (3) 4)
employed (2)

Kumar et al. Arrhythmia detection from Benchmark datasets | Coupled FCMe and

(2023) electrocardiogram signals DNN are superior
Coupled FCMe and DNN, RF, compared to other
LR, KMe, Gaussian Naive employed techniques
Bayes, KNN, SVM, DT, CNN for arrhythmia
Feature Extractor detection
Recall, Precision, F1-score,
Accuracy

Tyagi & Jha Wireless sensor network Simulation studies | 27 rules are

(2023) FCMe-based indices formulated

Energy-centric reputation
index, internodal distance,
relevance index method, degree
of the node, distance to the sink

Ma et al. (2023)

Complex contact phenomena
Self-optimized ANN, GA-
Sequential Quadratic
Programming-ANN, GA-ANN
MSE

Simulation studies

GA-sequential
quadratic
programming-ANN is
better than the
remaining models

Chandraetal. | Higher ensured life span of IoT | Experimental setup | Improved GA-fast
(2023) in 5G network non-dominated sorting
GA, Improved GA-Binary achieves a higher
ACO, Improved GA- Fast lifetime and lower
Non-Dominated Sorting computation time
Network Simulator-2
Remaining nodes’ longevity,
Computing time, Energy
efficiency
Zhuang et al. Cooperative spectrum sensing | Simulation Symmetrized
(2023) Siegel distance-based Fusion modelling Kullback-Leibler
Strategy, DE-cooperative divergence-based DE
Spectrum Sensing, is the best
Symmetrized Kullback—Leibler
divergence-based DE
Narayanan K-barrier count intrusion Monte Carlo PSO-ANN produced
et al. (2023) detection system Simulation-based | 90% intrusion

PSO-ANN, existing DT, NB,
Monte Carlo Simulation
Number of invasions, RZ,
RMSE, Accuracy, Precision

synthetic datasets,
University of
California ML
repository

detection accuracy
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7.2 Further Research Work

No algorithm can be universally employed for all real-world problems. An in-depth
understanding of problem-specific knowledge may help to achieve faster and more
efficient solutions to a real-world planning problem.

The following potential research areas are identified based on the extensive studies
by the authors (including critical analysis of chapters 2—6 in this book). They can be
implemented in any domain of engineering, science, and management, which are as
follows:

1. Study the applicability of existing Al algorithms to various domains to ascertain
their potentiality.

2. Developing new algorithms that efficiently handle non-linear, non-convex, non-
differentiable, and multi-modal functions and comparing them with the existing
algorithms is a potential research area.

3. Many researchers have developed several evolutionary algorithms. However,
few algorithms are only frequently applied to a specific domain. In addition,
hybridization of multiple algorithms is another potential area of research.

4. Extending Al and EA into the fuzzy-based uncertain framework is a promising
research area.

5. Identifying optimal parameter values in Al algorithms is a significant concern
and has enormous potential. EA plays a major role in this direction.

6. Many researchers employed ANFIS, which is partially established on ANN
philosophy. The application of DL in the ANFIS framework is a promising
research area that can be explored.

7. FCM can be trained with more algorithms, such as HL and EA, to improve its
applicability to real-world situations.

8. Hybridization of Blockchain, FIS, and EA is another research area highly suitable
for societal-related challenges.

Representative books and journals related to Al are available in Appendix B and
will benefit readers of the book for enhanced understanding on the topic.

Revision Questions and Exercise Problems

7.1 Compile case studies related to FIS, ANFIS, and FCM and provide salient
conclusions.

7.2 What are the salient observations made while studying case studies related to
ML?

Advance Review Questions

7.3 Analyze research papers published in domains mentioned in this chapter related
to ANFIS, FIS, and FCM. Present five research areas that are suitable for further
work.

7.4 Discuss six recently published research papers on ML and their fuzzy exten-
sions in chemical, mechanical, and computer science domains. What are
the techniques applied, and how was hyperparameter tuning made for the
parameters?
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Appendix A
Representative Al Tools and Data Sources
Related to AI

Table A.1 presents insight into representative Al tools. Table A.2 presents representa-
tive data sources that may be useful while working on Al algorithms. The reader will
also find several other tools and datasets (other than those mentioned in Table A.1
and. A.2) from various sources that can be explored.
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Appendix A: Representative Al Tools and Data Sources Related to Al

Table A.1 Insight of representative Al tools

Name of Al tool Webpage link Salient remarks”
Content generation
ChatGPT https://chat.openai.com/ It is a chatbot that responds to user
queries appropriately and creates
content and other applications
Google Bard Al https://bard.google.com/u/1/ It is a chatbot that responds to user
chat queries appropriately and assists in
https://bard.google.com/u/1/faq | translating languages, creating
content, and interacting with other
Google applications
Open Al Playground | https://platform.openai.com/pla | It is a conversational chatbot that
yground facilitates a wide range of tasks. It
https://gpt3demo.com/apps/ope | mainly focuses on technical research
nai-gpt-3-playground and development, allowing users to
experiment with various ML
algorithms and fine-tune them using
custom datasets. It is highly beneficial
in developing ML-based applications
The New Bing https://www.microsoft.com/en- | It is a chatbot that allows users to
us/edge/features/the-new-bing? | generate text, letters, and code. It also
form=MT00D8 provides in-depth answers and
summarizes information
Perplexity https://www.perplexity.ai/ It is a chatbot and search engine that

provides comprehensive solutions to
user queries with the help of NLP and
ML

Jasper chat

https://www.jasper.ai/chat

It facilitates a conversational
environment, similar to a coworker or
Al assistant. It does not require much
knowledge to apply prompts
efficiently. It allows many threads to
explore different topic-related queries
at a time

Chatsonic

https://writesonic.com/chat

It is a chatbot that can deliver
conversational human-like responses
to user queries and instantly help
identify the frame of words to express
ideas, develop information for
advertising commercials, and get
digital marketing plans

Claude

https://claude.ai/login?return
To=%2F

It is trained on the most recent
real-time data, enabling it to respond
to current events

Llama

https://www.llama2.ai/

It is a chatbot that provides
appropriate responses to user queries

Pi (Personal Al)

https://pi.ai/talk

It provides users access to
high-quality conversation

(continued)
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https://platform.openai.com/playground
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https://gpt3demo.com/apps/openai-gpt-3-playground
https://www.microsoft.com/en-us/edge/features/the-new-bing%3Fform%3DMT00D8
https://www.microsoft.com/en-us/edge/features/the-new-bing%3Fform%3DMT00D8
https://www.microsoft.com/en-us/edge/features/the-new-bing%3Fform%3DMT00D8
https://www.perplexity.ai/
https://www.jasper.ai/chat
https://writesonic.com/chat
https://claude.ai/login%3FreturnTo%3D%2F
https://claude.ai/login%3FreturnTo%3D%2F
https://www.llama2.ai/
https://pi.ai/talk
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Name of Al tool

Webpage link

Salient remarks®

Quora Poe

https://poe.com/

It utilizes advanced techniques in NLP
and ML to quickly and effectively
address user queries by exploring the
extensive information repository
accessible on Quora

DialoGPT

https://huggingface.co/docs/tra
nsformers/model_doc/dialogpt

It is trained with causal language
modelling on conversational data.
Influential at response generation in
open-domain dialog systems

Character Al

https://beta.character.ai/

It is a chatbot that adopts natural
language models to respond similarly
to experts. Users can simultaneously
design characters to interact with
fictitious, historical, and celebrity
personalities, gaining various
perspectives

Replika

https://my.replika.com/signup/
subscription

It is an interactive and personalized
chatbot

Chai AI (Chai = chat
+ AI)

https://www.chai-ai.com/

It provides a text communication
platform with AI chatbots. It is
available on both Android and iPhone

Operating System (i0S)

YouChat https://you.com/search?q=Is+ It offers a prompt through which users
You.com+on+WhatsApp%3F& | can make a search query. As a result,
fromSearchBar=true&tbm=you | the system provides the user with an
chat&cid=c2_c2dc3872-c6f9- | Al-generated response and webpage
4119-a1d5-256902cf7aa0 links for verification

Users can also explore images, videos,
news articles, maps, and other relevant
content

Copy Al https://app.copy.ai/projects/342 | It is a writing tool that uses ML to
54106?tool=chat&tab=results produce various forms of content,
https://www.elegantthemes. such as blog headlines, emails, social
com/blog/marketing/copy-ai media material, and website copy

Frase https://www.frase.io/tools/ai- It is a content generation tool that

content-generator/

allows users to research, write, and
optimize the content quickly and
effectively

Fireflies.ai

https://fireflies.ai

It is a generative Al that uses ChatGPT
to schedule meetings. It also generates
transcripts and summaries for Zoom,
Google Meet, and Microsoft Teams

(continued)


https://poe.com/
https://huggingface.co/docs/transformers/model_doc/dialogpt
https://huggingface.co/docs/transformers/model_doc/dialogpt
https://beta.character.ai/
https://my.replika.com/signup/subscription
https://my.replika.com/signup/subscription
https://www.chai-ai.com/
https://you.com/search%3Fq%3DIs+You.com+on+WhatsApp%3F%26fromSearchBar%3Dtrue%26tbm%3Dyouchat%26cid%3Dc2_c2dc3872-c6f9-4119-a1d5-256902cf7aa0
https://you.com/search%3Fq%3DIs+You.com+on+WhatsApp%3F%26fromSearchBar%3Dtrue%26tbm%3Dyouchat%26cid%3Dc2_c2dc3872-c6f9-4119-a1d5-256902cf7aa0
https://you.com/search%3Fq%3DIs+You.com+on+WhatsApp%3F%26fromSearchBar%3Dtrue%26tbm%3Dyouchat%26cid%3Dc2_c2dc3872-c6f9-4119-a1d5-256902cf7aa0
https://you.com/search%3Fq%3DIs+You.com+on+WhatsApp%3F%26fromSearchBar%3Dtrue%26tbm%3Dyouchat%26cid%3Dc2_c2dc3872-c6f9-4119-a1d5-256902cf7aa0
https://you.com/search%3Fq%3DIs+You.com+on+WhatsApp%3F%26fromSearchBar%3Dtrue%26tbm%3Dyouchat%26cid%3Dc2_c2dc3872-c6f9-4119-a1d5-256902cf7aa0
https://app.copy.ai/projects/34254106%3Ftool%3Dchat%26tab%3Dresults
https://app.copy.ai/projects/34254106%3Ftool%3Dchat%26tab%3Dresults
https://www.elegantthemes.com/blog/marketing/copy-ai
https://www.elegantthemes.com/blog/marketing/copy-ai
https://www.frase.io/tools/ai-content-generator/
https://www.frase.io/tools/ai-content-generator/
https://fireflies.ai
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Name of Al tool Webpage link Salient remarks”
Summarization
Elicit https://elicit.org/ It summarizes papers, extracts data,
and synthesizes findings of the
research papers to make an effective
literature survey
PopAl https://www.popai.pro/?utm_ It helps prepare presentations, flow
source=google&utm_medium= | charts, coding answers, prompt
YM_popai&utm_campaign= generators, educational and
0801&utm_term=in&utm_con | professional writing
tent=general_others&gclid=Cj0
KCQjwmvSoBhDOARIsAK6a
V7iAGthMYOg560dIDXaPY
T46j1aKYOtXzs4K6KWHQJ
ZsiSTSHI2-ElcaAhymEALw_
wcB
Learnt.ai https://learnt.ai/ It majorly helps in content
development by using appropriate
prompts. Very useful for education
purposes
Socrat.ai https://socrat.ai/ It utilizes Google’s Al and search
technologies to facilitate the
connection between students and
educational resources available on the
Internet
Coding related
GitHub Copilot X https://github.com/enterprise/ It assists users with various
trial 7ref_cta=free%2520trial& | coding-related tasks and helps fix bugs
ref_loc=banner&ref_page=blog | in code
Amazon https://aws.amazon.com/cod It helps users overcome code-relevant
Codewhisperer ewhisperer/resources/#Getting_ | errors and also provides valuable
started/ solutions
Paraphrasing
Wordtune https://app.wordtune.com/edi It aids in rephrasing text, generating
tor/documents/1e3272fc-b967- | citations, summarizing long
4e75-a4b4-45167t926d3d paragraphs into key sentences,
checking grammar, and detecting
plagiarism
Prepostseo https://www.prepostseo.com/ It is a web-based program that allows
content optimization, plagiarism
detection, Paraphrasing, etc.
Quillbot https://quillbot.com/settings? Paraphrasing tool, Grammatical
menu=plan checker
Spinbot https://spinbot.com/ Paraphrasing tool, Grammatical

checker

(continued)


https://elicit.org/
https://www.popai.pro/%3Futm_source%3Dgoogle%26utm_medium%3DYM_popai%26utm_campaign%3D0801%26utm_term%3Din%26utm_content%3Dgeneral_others%26gclid%3DCj0KCQjwmvSoBhDOARIsAK6aV7iAGfhMYOg56odIDXaPYT46jlaKYOtXzs4K6KWHQJZsiSTSHl2-EIcaAhymEALw_wcB
https://www.popai.pro/%3Futm_source%3Dgoogle%26utm_medium%3DYM_popai%26utm_campaign%3D0801%26utm_term%3Din%26utm_content%3Dgeneral_others%26gclid%3DCj0KCQjwmvSoBhDOARIsAK6aV7iAGfhMYOg56odIDXaPYT46jlaKYOtXzs4K6KWHQJZsiSTSHl2-EIcaAhymEALw_wcB
https://www.popai.pro/%3Futm_source%3Dgoogle%26utm_medium%3DYM_popai%26utm_campaign%3D0801%26utm_term%3Din%26utm_content%3Dgeneral_others%26gclid%3DCj0KCQjwmvSoBhDOARIsAK6aV7iAGfhMYOg56odIDXaPYT46jlaKYOtXzs4K6KWHQJZsiSTSHl2-EIcaAhymEALw_wcB
https://www.popai.pro/%3Futm_source%3Dgoogle%26utm_medium%3DYM_popai%26utm_campaign%3D0801%26utm_term%3Din%26utm_content%3Dgeneral_others%26gclid%3DCj0KCQjwmvSoBhDOARIsAK6aV7iAGfhMYOg56odIDXaPYT46jlaKYOtXzs4K6KWHQJZsiSTSHl2-EIcaAhymEALw_wcB
https://www.popai.pro/%3Futm_source%3Dgoogle%26utm_medium%3DYM_popai%26utm_campaign%3D0801%26utm_term%3Din%26utm_content%3Dgeneral_others%26gclid%3DCj0KCQjwmvSoBhDOARIsAK6aV7iAGfhMYOg56odIDXaPYT46jlaKYOtXzs4K6KWHQJZsiSTSHl2-EIcaAhymEALw_wcB
https://www.popai.pro/%3Futm_source%3Dgoogle%26utm_medium%3DYM_popai%26utm_campaign%3D0801%26utm_term%3Din%26utm_content%3Dgeneral_others%26gclid%3DCj0KCQjwmvSoBhDOARIsAK6aV7iAGfhMYOg56odIDXaPYT46jlaKYOtXzs4K6KWHQJZsiSTSHl2-EIcaAhymEALw_wcB
https://www.popai.pro/%3Futm_source%3Dgoogle%26utm_medium%3DYM_popai%26utm_campaign%3D0801%26utm_term%3Din%26utm_content%3Dgeneral_others%26gclid%3DCj0KCQjwmvSoBhDOARIsAK6aV7iAGfhMYOg56odIDXaPYT46jlaKYOtXzs4K6KWHQJZsiSTSHl2-EIcaAhymEALw_wcB
https://www.popai.pro/%3Futm_source%3Dgoogle%26utm_medium%3DYM_popai%26utm_campaign%3D0801%26utm_term%3Din%26utm_content%3Dgeneral_others%26gclid%3DCj0KCQjwmvSoBhDOARIsAK6aV7iAGfhMYOg56odIDXaPYT46jlaKYOtXzs4K6KWHQJZsiSTSHl2-EIcaAhymEALw_wcB
https://www.popai.pro/%3Futm_source%3Dgoogle%26utm_medium%3DYM_popai%26utm_campaign%3D0801%26utm_term%3Din%26utm_content%3Dgeneral_others%26gclid%3DCj0KCQjwmvSoBhDOARIsAK6aV7iAGfhMYOg56odIDXaPYT46jlaKYOtXzs4K6KWHQJZsiSTSHl2-EIcaAhymEALw_wcB
https://www.popai.pro/%3Futm_source%3Dgoogle%26utm_medium%3DYM_popai%26utm_campaign%3D0801%26utm_term%3Din%26utm_content%3Dgeneral_others%26gclid%3DCj0KCQjwmvSoBhDOARIsAK6aV7iAGfhMYOg56odIDXaPYT46jlaKYOtXzs4K6KWHQJZsiSTSHl2-EIcaAhymEALw_wcB
https://learnt.ai/
https://socrat.ai/
https://github.com/enterprise/trial%3Fref_cta%3Dfree%2520trial%26ref_loc%3Dbanner%26ref_page%3Dblog
https://github.com/enterprise/trial%3Fref_cta%3Dfree%2520trial%26ref_loc%3Dbanner%26ref_page%3Dblog
https://github.com/enterprise/trial%3Fref_cta%3Dfree%2520trial%26ref_loc%3Dbanner%26ref_page%3Dblog
https://aws.amazon.com/codewhisperer/resources/%23Getting_started/
https://aws.amazon.com/codewhisperer/resources/%23Getting_started/
https://aws.amazon.com/codewhisperer/resources/%23Getting_started/
https://app.wordtune.com/editor/documents/1e3272fc-b967-4e75-a4b4-45167f926d3d
https://app.wordtune.com/editor/documents/1e3272fc-b967-4e75-a4b4-45167f926d3d
https://app.wordtune.com/editor/documents/1e3272fc-b967-4e75-a4b4-45167f926d3d
https://www.prepostseo.com/
https://quillbot.com/settings%3Fmenu%3Dplan
https://quillbot.com/settings%3Fmenu%3Dplan
https://spinbot.com/
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Table A.1 (continued)

Name of Al tool Webpage link Salient remarks”
Word Al https://wordai.com/ Paraphrasing tool
Speedwrite https://speedwrite.com/creati Paraphrasing tool
ve-app
Anyword https://anyword.com/paraphras | Paraphrasing tool
ing-tool/
Hypotenuse Al https://www.hypotenuse.ai/ Paraphrasing tool
Edit pad https://www.editpad.org/tool/ Paraphrasing tool
Paraphrasing Tool paraphrasing-tool
Good Content https://www.semrush.com/goo | Paraphrasing tool
dcontent/paraphrasing-tool/
ProWritingAid https://prowritingaid.com/par Paraphrasing tool
aphrasing-tool
SpinnerChief https://www.spinnerchief.com/ | Paraphrasing tool
DupliChecker https://www.duplichecker.com/ | Paraphrasing tool
article-rewriter.php
Elsa speak https://elsaspeak.com/en/inf It helps to improve pronunciation and
English-speaking skills
Virtual Assistant™
Murf Al https://murf.ai It helps as a voice generator,
eliminating the entire process of
manually generating voiceovers and
enabling users to produce human-like
responses quickly
Siri https://www.apple.com/in/siri/ | It helps to send texts and make calls
Cortana https://www.microsoft.com » It is a personal productivity assistant in
en-us > cortana Microsoft 365 and helps users achieve
more outcomes with less effort
Cleo https://web.meetcleo.com It facilitates financial-related

budgeting, saving, and building credit

Amazon Alexa

https://alexa.amazon.com

It offers customers natural voice
experiences in a more intuitive way

Google Assistant

https://assistant.google.com

It helps to handle the schedules, set
reminders, manage the schedule,
manage the smart home, and do many
more things

# Remarks were taken from the relevant sources to convey the functionalities better

## Many Al-based personal assistants (virtual assistants) work on mechanisms such as NLP to
take text and voice commands. They can handle many activities similar to humans. For example,
making telephone calls, scheduling meetings, creating text messages, setting reminders, calling
taxis, managing workflow, reading the text, etc. These are expected to automate monotonous and
time-consuming activities, making humans focus on essential tasks


https://wordai.com/
https://speedwrite.com/creative-app
https://speedwrite.com/creative-app
https://anyword.com/paraphrasing-tool/
https://anyword.com/paraphrasing-tool/
https://www.hypotenuse.ai/
https://www.editpad.org/tool/paraphrasing-tool
https://www.editpad.org/tool/paraphrasing-tool
https://www.semrush.com/goodcontent/paraphrasing-tool/
https://www.semrush.com/goodcontent/paraphrasing-tool/
https://prowritingaid.com/paraphrasing-tool
https://prowritingaid.com/paraphrasing-tool
https://www.spinnerchief.com/
https://www.duplichecker.com/article-rewriter.php
https://www.duplichecker.com/article-rewriter.php
https://elsaspeak.com/en/inf
https://murf.ai
https://www.apple.com/in/siri/
https://www.microsoft.com
https://web.meetcleo.com
https://alexa.amazon.com
https://assistant.google.com
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Table A.2 Representative data sources

Data source

Link

Brief remarks

Kaggle

https://www.kaggle.com/dat
asets

263,555 free public datasets (as
per the website) that can be used
in Al and allied fields, namely,
computer science, education,
classification, computer vision,
data visualization, pre-trained
models, and many more
Representative datasets include
customer shopping trends,
consumer behaviour and
shopping habits, credit card
fraud detection, global food
price inflation, and heart attack
risk prediction

Data Flair

https://data-flair.training/
blogs/machine-learning-dat
asets/

70 + ML Datasets are part of
this website. Some of the related
datasets are Mall Customers,
Iris, MNIST, The Boston
Housing, Fake News Detection,
SOCR data—Heights and
Weights, Parkinson, Titanic,
Uber Pickups, Chars74k, Credit
Card Fraud Detection, Chatbot
Intents, Al-generated Faces, and
many more

DataONE

https://www.dataone.org/

It is a community-driven
program giving avenues to data
across multiple member
repositories in the domain of
earth and environment

DataPortals

https://dataportals.org

Detailed list of open data portals

Datasetlist.com

https://www.datasetlist.com

A list of ML datasets is
available

Macgence

https://macgence.com/

It can design a customized
Al-based data collection
program that addresses the
needs of various applications

Microsoft datasets

https://www.microsoft.com/
en-us/research/tools/?

An index of datasets, software
development kits, and other
open-source codes created by
Microsoft researchers is
available. In addition, the
website maintains a collection
highlighting some of the tools

(continued)
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Data source

Link

Brief remarks

Mendeley Data

https://data.mendeley.com/

It is a free and cloud-based
repository. Data can be stored,
shared, and accessed anywhere

Dept. Mechanical Engg.,
Faculty of Engineering and
Design, University Bath,

https://researchportal.bath.ac.
uk/en/organisations/depart
ment-of-mechanical-engine
ering/datasets/

Website provided datasets
related to various domains

Fraunhofer IPT and the
Fraunhofer FFB

https://www.bigdata-ai.fraunh
ofer.de/s/datasets/index.html

ML datasets from the
production environment
compiled by the Fraunhofer:
IPT (https://www.ipt.fraunhofe
r.de/) and the Fraunhofer FFB
(https://www.ftb.fraunhofer.de/)

V7 labs

https://www.v7labs.com/blog/
best-free-datasets-for-mac
hine-learning

65 + free datasets for ML.
Representative datasets include
Open Dataset Aggregators,
Public Government, Finance
and Economics, Images for
Computer Vision, Natural
Language Processing, Data
Visualization, Audio Speech,
and Music

MIT Libraries

https://libguides.mit.edu/eecs/
mldata

Electrical Engineering &
Computer Science: Data
sources for Al and ML

Electrical and Computer
Engg., Grainger College of
Engg., University of Illinois
Urbana-Champaign

https://experts.illinois.edu/en/
organisations/electrical-and-
computer-engineering/dat
asets/

Website provided datasets
related to various domains

Electronic Engineering,
University of York, Faculty
of Sciences

https://pure.york.ac.uk/portal/
en/organisations/electronic-
engineering/datasets/

Website provided datasets
related to various domains

Electronic and Electrical
Engg., Faculty of Engg.,
University of Strathclyde,

https://pureportal.strath.ac.uk/
en/organisations/electronic-
and-electrical-engineering/dat

Website provided datasets
related to various domains

Glasgow, UK asets/

iguazio https://www.iguazio.com/ The website provided 13 free
blog/best-13-free-financial-dat | financial datasets for ML
asets-for-machine-learning/

iMerit https://imerit.net/blog/20-best- | The website provided 20
finance-economic-datasets- financial and economic datasets
for-machine-learning-all-pbm/ | for ML

data.world https://data.world/datasets/fin | The website provided 1096

ance

finance-related datasets



https://data.mendeley.com/
https://researchportal.bath.ac.uk/en/organisations/department-of-mechanical-engineering/datasets/
https://researchportal.bath.ac.uk/en/organisations/department-of-mechanical-engineering/datasets/
https://researchportal.bath.ac.uk/en/organisations/department-of-mechanical-engineering/datasets/
https://researchportal.bath.ac.uk/en/organisations/department-of-mechanical-engineering/datasets/
https://www.bigdata-ai.fraunhofer.de/s/datasets/index.html
https://www.bigdata-ai.fraunhofer.de/s/datasets/index.html
https://www.ipt.fraunhofer.de/
https://www.ipt.fraunhofer.de/
https://www.ffb.fraunhofer.de/
https://www.v7labs.com/blog/best-free-datasets-for-machine-learning
https://www.v7labs.com/blog/best-free-datasets-for-machine-learning
https://www.v7labs.com/blog/best-free-datasets-for-machine-learning
https://libguides.mit.edu/eecs/mldata
https://libguides.mit.edu/eecs/mldata
https://experts.illinois.edu/en/organisations/electrical-and-computer-engineering/datasets/
https://experts.illinois.edu/en/organisations/electrical-and-computer-engineering/datasets/
https://experts.illinois.edu/en/organisations/electrical-and-computer-engineering/datasets/
https://experts.illinois.edu/en/organisations/electrical-and-computer-engineering/datasets/
https://pure.york.ac.uk/portal/en/organisations/electronic-engineering/datasets/
https://pure.york.ac.uk/portal/en/organisations/electronic-engineering/datasets/
https://pure.york.ac.uk/portal/en/organisations/electronic-engineering/datasets/
https://pureportal.strath.ac.uk/en/organisations/electronic-and-electrical-engineering/datasets/
https://pureportal.strath.ac.uk/en/organisations/electronic-and-electrical-engineering/datasets/
https://pureportal.strath.ac.uk/en/organisations/electronic-and-electrical-engineering/datasets/
https://pureportal.strath.ac.uk/en/organisations/electronic-and-electrical-engineering/datasets/
https://www.iguazio.com/blog/best-13-free-financial-datasets-for-machine-learning/
https://www.iguazio.com/blog/best-13-free-financial-datasets-for-machine-learning/
https://www.iguazio.com/blog/best-13-free-financial-datasets-for-machine-learning/
https://imerit.net/blog/20-best-finance-economic-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/20-best-finance-economic-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/20-best-finance-economic-datasets-for-machine-learning-all-pbm/
https://data.world/datasets/finance
https://data.world/datasets/finance
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