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Editorial

Recent Progress in Computational and Data Sciences for
Additive Manufacturing

Tuhin Mukherjee 1,* and Qianru Wu 2

1 Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
2 Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, School of Electrical & Automation

Engineering, Nanjing Normal University, Nanjing 210023, China; qrwu@nnu.edu.cn
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Additive manufacturing (AM), often referred to as 3D printing, is a preferred tech-
nique for producing components that are challenging to manufacture through conventional
methods. This approach facilitates the direct fabrication of complex parts in a single step
from a 3D digital model. Today, AM components are widely utilized across various sectors,
including healthcare, aerospace, the automotive industry, energy, the marine sector, and
consumer products [1]. Examples of such components include custom medical implants tai-
lored to individual patients, aero-engine parts, intricate geometries with internal channels,
lattice structures, and materials designed with location-specific chemical compositions,
microstructures, and properties [2]. The materials used include metals, polymers, ceramics,
and composites. Among these, metal and alloy printing is advancing most rapidly due
to its growing applications, high demand, and ability to produce specialized, functional
parts. Various AM techniques are employed based on the material, geometry, and com-
plexity of the desired component [3]. For instance, powder bed fusion (PBF) and directed
energy deposition (DED) are commonly utilized for metallic parts. These processes in-
volve melting fine layers of powder or wire feedstocks using high-energy sources like
lasers, electron beams, or electric arcs, followed by solidification to form the final part.
Similarly, different processes are used in the industry for printing polymers, ceramics, and
composite materials.

In AM, a reduction in defects, maintaining geometric consistency, and control of
microstructure and mechanical properties cannot be achieved by time-consuming and
expensive experimental trials because of the involvement of many variables with a large
parameter window. Physics-based computational models are often used as an alternative.
Figure 1 provides a few examples of using such models in AM. However, the evolution of
microstructures, properties, and defects depends on many complex physical processes, and
the mechanistic understanding of many of these processes is not fully developed. The use
of data science techniques such as machine learning can automate several steps, including
process monitoring, defect detection, sensing, and process control, and can help in the
selection of appropriate processing conditions to improve structure and properties. This
would minimize the need for human intervention and significantly improve the process
efficiency, productivity, and part quality, and reduce materials and energy waste and cost.

Topics in this Special Issue include applications of modeling and machine learning for
the novel design of additively manufactured products, additive manufacturing processes,
alloy design, tailoring microstructures, customized mechanical and chemical properties,
improved creep resistance, fatigue life, and serviceability, reducing defects and residual
stresses and distortion. The scope of this Special Issue also includes all AM processes for
alloys, ceramics, and polymers.

Materials 2025, 18, 1177 https://doi.org/10.3390/ma18051177
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Figure 1. Results from mechanistic models of metal additive manufacturing showing (a) 3D tempera-
ture and velocity fields during directed energy deposition, (b) grain structure during directed energy
deposition that matches with experimental data, (c) 3D residual stress distribution during directed
energy deposition, and (d) evaporative flux of alloying elements such as Cr and Al during powder
bed fusion. These figures are owned by the authors.

Topics in this Special Issue include applications of modeling and machine learning for
the novel design of additively manufactured products, additive manufacturing processes,
alloy design, tailoring microstructures, customized mechanical and chemical properties,
improved creep resistance, fatigue life, and serviceability, reducing defects and residual
stresses and distortion. The scope of this Special Issue also includes all AM processes for
alloys, ceramics, and polymers.

This Special Issue contains a total of 12 articles including 11 research articles [4–14]
and a review paper [15] on the applications of process monitoring, modeling, and statistical
analysis in metal additive manufacturing. The 11 research articles uniquely contribute to six
distinct areas: (i) the prediction of temperature fields, (ii) keyhole and molten pool geometry
calculations, (iii) the estimation of part geometry, (iv) the determination of part surface
characteristics, (v) defects and anomaly detection, and (vi) the prediction of mechanical
properties, as discussed below.

Sajadi et al. [7] and Fagersand et al. [9] explore computational approaches for pre-
dicting temperature fields in metal AM. Sajadi et al. [7] introduce a physics-informed
online learning framework for real-time temperature prediction in metal AM using physics-
informed neural networks (PINNs). By integrating physics-based inputs and loss functions,
the model adapts dynamically to unseen process conditions, demonstrating superior perfor-
mance in critical regions like the heat-affected zone and melt pool. The approach highlights

2
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the role of hyperparameters, such as learning rate and batch size, in optimizing perfor-
mance for diverse conditions. Fagersand et al. [9] use deep learning, specifically multilayer
perceptrons (MLPs), to predict temperature history in wire arc additive manufacturing of
aluminum bars. Training on finite element simulations, their models achieve low error rates
under baseline conditions but show reduced accuracy for new process parameters, particu-
larly varying scanning speeds. Together, these studies emphasize data- and physics-driven
frameworks for the prediction of temperature fields during metal AM.

Wu et al. [5] and Dong et al. [10] use deep learning techniques for predicting molten
pool and keyhole geometries. Wu et al. [5] focus on DED, developing surrogate models
based on recurrent neural networks (RNNs) like LSTM, Bi-LSTM, and GRU to predict
melt pool characteristics. Their models achieve high accuracy, with an R2 of 0.98 for peak
temperature prediction and over 0.88 for melt pool geometry. Dong et al. [10] investigate
laser PBF, using a computer vision tool leveraging the BASNet deep learning model to
segment keyhole morphologies from X-ray images. Achieving average accuracies of 91.24%
for the keyhole area and 92.81% for the keyhole boundary shape, this tool automates the
labeling process, enabling faster and more reliable analysis of keyhole dynamics. Together,
these studies identify the potential of deep learning to reliably predict molten pool and
keyhole geometries during metal AM.

The article by Hermann et al. [11] introduces a novel decision-making workflow to
optimize process parameters for laser DED. Acknowledging the limitations of current
analytical, numerical, and machine learning methods in predicting optimal parameters,
the authors propose a Gaussian Process Regression (GPR) model. This model predicts the
geometry of single DED tracks based on input parameters while incorporating uncertainty
quantification (UQ). By leveraging UQ and expert user knowledge, the workflow facilitates
the inverse task of identifying parameter sets that minimize deviations between desired
and actual track geometries. The GPR model, trained and validated using 379 experimental
track cross-sections, demonstrates its efficacy through two illustrative test cases. This
approach reduces reliance on trial-and-error experimentation, enabling a more systematic
and user-centric method to achieve precise track geometries in laser DED process.

Zhou et al. [6] investigate the use of laser DED for repairing structural aluminum alloys.
The study addresses challenges such as uneven material flow and defects caused by unequal
powder particle size. A multiscale, multiphysics model integrating discrete element and
finite volume methods is developed to analyze the fluid dynamics and thermal behavior of
the molten pool during the repair process. Additionally, a macroscale thermomechanical
model evaluates stress evolution and verifies the structural integrity of deposited layers.
Mengesha et al. [14] explore the surface hardness and scratch resistance of electroless nickel
plating on additively manufactured composite components. Using K-means clustering and
Taguchi’s design of experiments, the study quantifies scratch widths and evaluates their
relationship to hardness levels. Enhanced characterization through SEM imaging improves
analysis accuracy, highlighting the potential of Ni-plating for improving surface properties
in industrial applications.

Sinha et al. [8] address the challenge of gas porosity in laser PBF. By combining
mechanistic modeling and experimental data, the authors propose a dimensionless gas
porosity index to predict and mitigate pore formation. Tested against independent data,
the index achieves 92% accuracy for alloys like stainless steel 316, Ti-6Al-4V, Inconel 718,
and AlSi10Mg, with AlSi10Mg being the most prone to porosity. A gas porosity map is
developed for practical process optimization. In contrast, Khan et al. [13] focus on defect
detection in metal AM through machine learning and optical tomography (OT). Using
layer-wise OT imaging, a Random Forest Classifier identifies anomalies, validated against
CT data. The model achieves a 99.98% detection accuracy, correlating with 79.40% of

3
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CT-detected defects. Together, these studies advance defect mitigation in AM through
mechanistic modeling and machine learning.

The studies by Pazireh et al. [4] and Scime et al. [12] explore data-driven methodolo-
gies to predict the mechanical properties of AM parts. Pazireh et al. [4] investigated the
effects of toolpath patterns, geometries, and layering on the mechanical properties of DED
parts. Using finite element simulations, a linear mixed-effects model, principal component
analysis, and self-organizing map clustering, they identify important relationships be-
tween process parameters and residual stresses, strains, and mechanical properties. Scime
et al. [12] focus on qualifying laser PBF parts using in situ sensor data, integrating powder
bed imaging, machine health metrics, and laser paths. Machine learning models trained on
over 6000 tensile specimens predict tensile properties with a 61% error reduction compared
to non-data-driven approaches. Both studies underscore the importance of leveraging
machine learning and data analysis to predict mechanical properties in AM parts.

This Special Issue of “Materials” attracted numerous submissions, and the final publi-
cation consists of 12 high-quality peer-reviewed articles. In addition to highlighting exciting
advancements, the articles in this Special Issue identified several contemporary scientific,
technological, and economic challenges that require immediate attention. They emphasized
the need for future research and development to enable the production of high-quality
parts in a cost-effective way. It is evident that work in these critical areas of AM, especially
focusing on modeling and machine learning, is still in its early stages, and needs further
research and development.

Author Contributions: The authors had equal contributions. All authors have read and agreed to
the published version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.
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Monitoring, Modeling, and Statistical Analysis in Metal
Additive Manufacturing: A Review

Grant A. Johnson 1,2, Matthew M. Dolde 1,2, Jonathan T. Zaugg 1,2, Maria J. Quintana 1,2,3 and Peter C. Collins 1,2,3,4,*

1 Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA;
grantajo@iastate.edu (G.A.J.); mdolde@iastate.edu (M.M.D.); jzaugg@iastate.edu (J.T.Z.);
mariaqh@iastate.edu (M.J.Q.)

2 Ames National Laboratory, Ames, IA 50011, USA
3 Center for Advanced Non-Ferrous Structural Alloys (CANFSA), USA
4 Center for Smart Design and Manufacturing, Iowa State University, Ames, IA 50011, USA
* Correspondence: pcollins@iastate.edu

Abstract: Despite the significant advances made involving the additive manufacturing (AM) of
metals, including those related to both materials and processes, challenges remain in regard to the
rapid qualification and insertion of such materials into applications. In general, understanding the
process–microstructure–property interrelationships is essential. To successfully understand these
interrelationships on a process-by-process basis and exploit such knowledge in practice, leveraging
monitoring, modeling, and statistical analysis is necessary. Monitoring allows for the identification
and measurement of parameters and features associated with important physical processes that
may vary spatially and temporally during the AM processes that will influence part properties,
including spatial variations within a single part and part-to-part variability, and, ultimately, quality.
Modeling allows for the prediction of physical processes, material states, and properties of future
builds by creating material state abstractions that can then be tested or evolved virtually. Statistical
analysis permits the data from monitoring to inform modeling, and vice versa, under the added
consideration that physical measurements and mathematical abstractions contain uncertainties.
Throughout this review, the feedstock, energy source, melt pool, defects, compositional distribution,
microstructure, texture, residual stresses, and mechanical properties are examined from the points of
view of monitoring, modeling, and statistical analysis. As with most active research subjects, there
remain both possibilities and limitations, and these will be considered and discussed as appropriate.

Keywords: additive manufacturing; monitoring; modeling; statistics

1. Introduction

In the last couple of decades, the additive manufacturing of metallic materials has been
the subject of significant research and investment, including considerable growth in the
number of manufacturing systems available commercially and the development and growth
of AM methods. There have been numerous research initiatives and activities adding to the
available literature that have enabled the wider community to develop new understandings
regarding the differences in processing and material state [1–3] between AM materials
and traditionally manufactured ones (e.g., casting, welding, forging). Increasingly, new
monitoring and computational modeling methods for AM processes, which permit the
capture of qualitative and quantitative data as part of a “digital thread” for advanced
manufacturing, are being developed and disseminated [4]. Tables 1 and 2 show a summary
of the state of the art of monitoring and modeling different variables and characteristics of
AM parts.

Materials 2024, 17, 5872. https://doi.org/10.3390/ma17235872 https://www.mdpi.com/journal/materials6
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Table 1. Summary of state of the art on monitoring different variables and build characteristics of
additive manufacturing methods.

AM Method

Variable/Characteristic Monitored

Feedstock
Processing
Parameters Melt Pool Chemistry Defects

Residual
Stress and
Distortion

Microstructure
and Texture

Mechanical
Properties

Laser PBF A B A B A A B B
Electron Beam PBF A B A B A A X X
Laser Powder DED B B B B A A B X

Laser Wire DED X B B X X B X X
Electron Beam Wire DED B B B X A B X X

WAAM B A A X A A B B

Note: A = Commonly studied, B = Limited research, X = No publications.

Table 2. Summary of state of the art on modeling different variables and build characteristics of
additive manufacturing methods.

AM Method

Variable/Characteristic Modeled

Feedstock
Processing
Parameters Melt Pool Chemistry Defects

Residual
Stress and
Distortion

Microstructure
and Texture

Mechanical
Properties

Laser PBF A A A B A A A A
Electron Beam PBF A A A B A A A A
Laser Powder DED B A A B B B B A

Laser Wire DED B A B B B A B B
Electron Beam Wire DED B B B B B A A B

WAAM B A A B B A A A

Note: A = Commonly studied, B = Limited research.

Several alloys have dominated research activities and the industrial use of AM parts
(e.g., titanium alloys, superalloys, aluminum alloys, refractory-based alloys, steels, and
stainless steels) [5–9]. Given the governing thermophysical properties of the metals (e.g.,
melting point, boiling point, coefficient of thermal expansion, thermal conductivity, density,
reflectivity), and their significant variability (e.g., thermal conductivity can range from
<0.1 to ~4.0 W/cm·K), along with the details of the energy sources and deposition systems
(e.g., wavelengths of lasers, beam profiling, scanning strategy), the various combinations
of materials and deposition systems can either result in depositions that are “feasible”
(i.e., high-quality builds) or “infeasible” [10,11]. If the alloying elements in a material
system are incompatible with the processing physics, the parts can have high levels of
defects, including defects that either appear during deposition or evolve/appear during
post-deposition thermal treatments. In an extreme case, the build may not be possible
to produce, experiencing material failures, such as delamination or cracking at length
scales corresponding to the line-by-line or layer-by-layer processing length scales. Research
continues to mitigate deleterious defects in materials with prints that are generally thought
to be “infeasible” [12], thus enabling the AM of new and existing alloy systems; e.g., for
some high-strength aluminum alloys that are susceptible to solidification cracking, the
addition of inoculants has been successful in promoting homogeneous nucleation to limit
solidification cracking [13]. Recognizing that deposition feasibility is an important concept,
some researchers are directly studying feasibility over multidimensional compositional
spaces, rapidly identifying interesting alloy pathways, and providing a key concept to
enable future gradient materials [14].

For this review paper, the monitoring, modeling, and statistical analysis methods for
AM of metallic materials are classified according to two distinct perspectives, namely (i) the
processing methods and (ii) the material states that are produced. Overviews of these
perspectives are shown in Figure 1. The processing of AM (Figure 1a) encompasses a—the
feedstock (i.e., powder, wire), b—the energy source (i.e., laser, electron beam, plasma arc),
and c—the melt pool (including spattering and vapor plume). By changing any of these
processing aspects, the final material state of the part (Figure 1b) will change accordingly.
The material state includes d—defects, e—compositional distribution, f—microstructure and
texture, and g—residual stress and distortion and their influence on mechanical properties.
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For monitoring, modeling, and statistical analysis, Figure 1 will be evaluated in depth
individually. These evaluations will look like “heat maps” to elucidate perceived strengths
and weaknesses on the same color scale—light to dark, respectively. For example, Figure 2
for monitoring considers the relative number of papers related to monitoring each aspect of
processing and material state found in the literature. Figure 3 is similar to Figure 2, such
that the color is relative to what has been modeled most and least frequently, while also
taking into account the accuracy of the state-of-the-art models and simulations. Figure 4
evaluates the availability of data for each aspect of processing and material state, which can
be captured through monitoring techniques and used to validate models and simulations.

In the context of this review paper, monitoring (Figure 2) is meant to imply real-time
monitoring during the process, which can be difficult to define in a way that is either
accepted broadly or applied easily. Of importance, we consider monitoring based upon the
physics permitted and not any existing constraint of engineering systems; i.e., we consider
what may be possible, rather than being limited to what exists. For the purposes of this
review, the term “monitoring” is defined as (i) the use of measurement devices of varying
modalities to (ii) obtain quantitative measurements that are spatially and temporally
registered and that record (iii) interpretable signals of meaningful physical phenomena
associated with the process and/or material state that (iv) significantly impact the quality
of the material subsequent to the deposition and which, when aggregated, (v) have the
potential to form a critical detail recorded in a digital thread (the term digital thread is one
of two terms (the other term is a digital twin) that arises from the richness of the digital
transformation associated with Industry 4.0. Digital twin refers to the concept of obtaining
an exact replica of a part where, for each voxel (volume element), the manufacturing and
material state attributes would be known and tied to a specific part—1:1. Digital thread
refers to not only the lifetime of a part (i.e., the physical object is likely to deviate from the
digital twin during service) but opens the door for statistical treatments of multiple parts).
Such a digital thread could be used for quality control prior to placing a part into service,
lifetime management for parts during service, or as information to support next-generation
materials, processing, and design. Monitoring AM processes is important to ensure the
quality of manufactured parts by rejecting those with an excessive number or type of
defects (e.g., porosity, distortion, lack-of-fusion defects) before they are inserted into service
and subjected to operational conditions (e.g., forces, stresses, temperatures) [10,15,16]. With
the number of interdependent variables in AM, monitoring different features of the build
process is a logical, though largely aspirational, goal.

Figure 1. Schematic of an additive manufacturing process, separated into (a) processing and (b) material
state, showing a—feedstock (powder, wire), b—energy source (laser or electron beam), c—melt pool,
spattering and vapor plume, d—defects (spherical porosity, lack of fusion defects), e—compositional
distribution, f—microstructure and texture, and g—residual stresses and distortion.
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Figure 2. Schematic of an additive manufacturing process, separated into (a) processing and (b) mate-
rial state, with an emphasis on monitoring, showing a—feedstock (powder, wire), b—energy source
(laser or electron beam), c—melt pool, spattering and vapor plume, d—defects (spherical porosity,
lack of fusion defects), e—compositional distribution, f—microstructure and texture, and g—residual
stresses and distortion.

Figure 3. Schematic of an additive manufacturing process, separated into (a) processing and (b) ma-
terial state, with an emphasis on modeling, showing a—feedstock (powder, wire), b—energy source
(laser or electron beam), c—melt pool, spattering and vapor plume, d—defects (spherical porosity,
lack of fusion defects), e—compositional distribution, f—microstructure and texture, and g—residual
stresses and distortion.

Figure 4. Schematic of an additive manufacturing process, separated into (a) processing and (b) ma-
terial state, with an emphasis on statistics (or availability of data for statistical analysis), showing
a—feedstock (powder, wire), b—energy source (laser or electron beam), c—melt pool, spattering and
vapor plume, d—defects (spherical porosity, lack of fusion defects), e—compositional distribution,
f—microstructure and texture, and g—residual stresses and distortion.

Modeling and integrated computational materials engineering (ICME) is considered
an increasingly important aspect of AM and is currently being used to predict the mi-
crostructure and properties of a part before building one [17–23]. Modeling (Figure 3)
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is a form of abstraction, and in the materials science discipline, it normally consists of
mathematical relationships that are used to define how the material state reacts given spe-
cific processing conditions. Modeling how processing parameters influence the resulting
material state and properties helps to ensure a proper understanding of the physics that
exists during AM processing and that the manufactured parts have the desired properties.

Statistics have been used in the analysis of monitoring and modeling results to aid
in interpreting correlations between processing and material state (Figure 4). By statisti-
cally analyzing these additively manufactured parts, manufacturers can have increased
confidence that the parts they make are meeting or exceeding the specifications set by
design or standards. In a survey, up to 47% of manufacturers reported that having a lack
of confidence in the quality of additively manufactured parts was enough reason to not
pursue this form of manufacturing [24]. The use of statistical methods and uncertainty
quantification tools can help identify critical manufacturing signatures that are important
to monitor and model. For processing, leveraging statistics helps ensure confidence that
monitored data are both reasonable and representative. By statistically refining monitoring
data, improving models to further understand the material state and resulting materials
properties should be possible and result in increased confidence that the final parts are
made as expected [25,26].

Important to all three components of this review paper (monitoring, modeling, and
statistical analysis) are the concepts of length and time scales. The operating physical
processes in the variably sized process zones span across length scales (10−9 to 10−1 m)
and operate both during processing as well as following deposition (i.e., continued crack
propagation in parts with high degrees of residual stress), and thus, time scales are also
spanned (10−8 to 10+7 s).

This paper is organized under two broad primary sections: Section 2 is on processing,
and Section 3 is on material state. Relevant subsections to each primary section, such as
“Feedstock” (Section 2.1), are then described. Embedded in each subsection are details
associated with the state-of-the-art in monitoring, modeling, and statistical analysis.

2. Processing in Additive Manufacturing

Additive manufacturing processes use computers to control the delivery of both the
material feedstock and a quantity of energy into a position that is co-registered in time
and space. Under the right conditions (e.g., sufficient energy density, thermophysical
properties), the energy and feedstock combine to create a molten pool, whose interaction
with the environment and realization of other complex physics results in the Material State
(Section 3). Thus, in this section, we consider (Section 2.1) Feedstock and Environment;
(Section 2.2) Energy Source and Thermal Distributions; and (Section 2.3) Melt Pool, which
includes a discussion of the vapor plume as it is integrally coupled with the dynamics of
the molten pool.

2.1. Feedstock and Environment

In fusion-based AM processes, such as powder bed fusion (PBF), powder-blown di-
rected energy deposition (DED), and wire-fed based additive manufacturing approaches,
including wire arc additive manufacturing (WAAM) and electron beam additive manu-
facturing (EBM), the feedstock is either powder or wire. This feedstock and base material
then undergo highly localized fusion events (melting and solidification) that add material,
volume by volume, to form the finished part (Figures 1a and 2a). The PBF process starts
by spreading a layer of powder onto a build plate (or a previous layer) to be selectively
melted using either a laser or an electron beam as the energy source. Another AM process,
DED, uses wire or powder that is fed into the focal point of a laser or electron beam.

While the objective regarding monitoring associated with this review paper is to focus
on digital means of in situ monitoring, we will briefly note the classical methods of ex situ
characterization and quantitative measurements of the starting material that will be used in
the process. Classically, powder is characterized using a variety of techniques to assess its
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size, shape, density, and flowability. Typically, these techniques involve samples for optical
or electron imaging, weight distributions using sieves, time-based techniques to determine
mass flowrates, and geometrical measurements such as the angle of repose [27–32]. In both
powder and wire, bulk chemical analysis and surface chemical analysis can be performed.

2.1.1. Feedstock and Environmental Monitoring

The in situ monitoring of feedstock (Figure 2a) can be conducted but is not currently
widely implemented. In principle, powder-based feedstock can be monitored using var-
ious methods. For example, one in situ monitoring technique uses optical techniques to
image the powder during or following powder spreading [33]. These images can provide
information regarding potential powder oxidation from differences in the color of the
particles [34], cross-contamination also using color differences [35], uneven layer thickness
using image intensity as a surrogate of a semi-insulating layer of variable thickness [36],
and any machine issues or defects caused by the spreader [37] or anomalously large parti-
cles or other large debris. Recent work by Tan et al. [38] suggests that it may be possible
to use principal component analysis to infer the quantitative signatures of conventional
particle attributes (e.g., density, friction, interparticle forces) through measurements of
the “avalanche” angle of powder against the powder spreader, which could be used as a
continuous convolutional term of some of these fundamental metrics, typically measured
externally in batches. Beyond these optical techniques, limited research has explored the
use of eddy current measurements to monitor discontinuities in the feedstock layer [39].

Contrary to powder bed-based AM techniques, which provide spatially resolved
information that could be used to correlate the powder to be processed with the process
zone/material state, the monitoring of feedstock presents greater challenges for DED
processes, as any correlation must be made through a time-resolved measurement of
incoming material that is captured by the molten pool at some incremental time step later.
Further complicating powder-blown DED techniques is the fact that only a fraction of the
incoming powder is captured by the molten pool. Despite these challenges, researchers
have demonstrated that the flow of powder can be monitored as it is blown into the
melt pool using high-speed optical imaging systems [40]. Powder-based DED processes
have the potential to record optical snapshots of powder within the powder feed system,
including angles of repose or when the powder is entering the powder feed mechanism.
Using such images, it would be possible to obtain information related to size, morphology,
roughness, oxidation, or cross-contamination from limited analysis areas, i.e., the surfaces
of volumes of powder [41]. Powder mass flow has also been studied using in-line acoustic
measurements [42]. In certain materials systems and processing conditions where there
is sufficient contrast for the modality of information in the images (e.g., light) and depth
of information in the images, high-speed imaging of the powder flow approaching and
interacting with the melt pool could have a sufficient resolution such that properties of
the powder can be extracted (e.g., morphology, surface quality, particle size) [43]. The
limitations include difficulties when the melt pool temperatures and emissivity prevent
quantitative interpretable information from being collected.

While wire-based AM techniques do not enjoy as wide a variety of in situ monitoring
techniques as powder-based systems, some techniques do exist. Optical monitoring of
the wire can be conducted at the point where the wire feedstock enters the melt pool. Of
particular interest to some researchers is the degree of wire deflection [44], as deflection is
reported to be directly coupled with the tendency to form defects or achieve dimensionally
accurate parts. However, beyond these techniques, there is limited literature available
that describes the monitoring of wire feedstock for wire-based processes. The lack of
research does not negate the importance of the subject. For example, a recent thesis by Ng
Chi-Ho [45] demonstrated that the presence of surface contaminates (e.g., soaps used in
wire drawing) could result in defects in additively manufactured builds, indicating that the
chemical analysis of incoming wire could be an important parameter to monitor. Similarly,
other researchers have indicated that internal defects within wires might lead to defects in
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the deposition. Looking forward, in this review, we suggest that an opportunity space exists
to conduct research and development activities to monitor the wire using, for example, ul-
trasonic testing, optical imaging, instruments to monitor shape, and/or techniques capable
of chemical analysis such as X-ray fluorescence (XRF) to detect composition anomalies.

In structural metals, the composition of the depositions is known to have a significant
effect on the resulting microstructure, properties, and performance [46–48]. When AM
approaches are adopted, the deposition composition will invariably differ from the “cer-
tificate of composition” that is associated with the material feedstock. The chemistry will
change due to capture/alloying from contaminates or impurities carried by the feedstock
(e.g., the soaps in the wire drawing mentioned previously), preferential evaporation [47],
or ingestion of gases present in the chamber atmosphere (e.g., moisture, oxygen, nitrogen).
Further, the atmospheric conditions may have an effect on material feed and build quality
in other ways, such as altering powder flowability in powder bed systems, which can lead
to predicting or inferring powder or part quality [49]. Thus, it is plausible that an important
aspect would be to monitor the atmosphere within the build chamber and, if possible, the
vapor plume (described in Section 2.3). Table 3 presents common monitoring techniques for
each variable or characteristic discussed in this review, along with a rating for the amount
of data collected for future use in modeling and statistical analysis.

Table 3. List of common monitoring techniques and the available data coming from these techniques.

Label Description Monitoring Technique * References Data Availability ** References

a Feedstock
PBF1, DED2, and WAAM2:

optical monitoring,
compositional measurements

[34–37,42,44] XX [50–52]

b Energy source

Laser6; electron beam5; wire
arc1,3: multi-sensor electrical

monitoring systems
Heat flow1: NIR, thermal,

and thermocouple

[53–60] XXX [61–65]

c Melt pool

Melt pool1,3: optical,
thermal, X-ray

Vapor plume1,4: optical
and chemical

Spatter1,4: optical and thermal

[66–91] XXX [92–95]

d Defects
Optical1,3, Thermal1,3,
X-ray1,3, Acoustic1,3

[90,96–105] XX [63,106,107]

e
Compositional

distribution
LIBS-based systems on vapor
plume2, ultrasonic/acoustic6

[82,84,108–110] X [111,112]

f Microstructure IR2 and ultrasonic2 [113–118] XX [111,115]

g
Residual Stress
and Distortion

Residual stress2: ultrasonic
Distortion1,3: optical/DIC and

displacement sensor
[119–128] X [125,129,130]

h
Mechanical
Properties

Machining forces5,
ultrasonic5,6, or acoustic6

[131–137] X [25,138]

* The availability of monitoring a parameter or characteristic is represented by 1—common in laboratory scale,
2—limited in laboratory scale, 3—common in commercial scale, 4—limited in commercial scale, 5—limited
research, 6—potential applications but not commonly researched. **: The X-XX-XXX denotes a ranking of the
amount of data that can be gathered from in situ monitoring techniques: X—limited data gathered, XX—medium
amount of data gathered, XXX—large amounts of data gathered.

2.1.2. Feedstock Modeling

As with monitoring, the two most common AM feedstocks that are modeled are
powder and wire (Figures 1a and 3a). Approaches associated with wire modeling are often
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inherited partially from welding practices. Welding and AM share similar physics, so the
overlap in concepts and models is understandable.

Arguably the most extensive effort, and thus most complete software that is avail-
able for certain aspects of powder modeling, is an extension of LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator), which was created at Sandia National
Laboratory [139]. The extension is known as LIGGGHTS (LAMMPS Improved for General
Granular and Granular Heat Transfer Simulations) [140]. LIGGGHTS uses the discrete
element method (DEM) to model the motion of particles [141] and is combined with com-
putational fluid dynamics (CFD) to include the flow of surrounding liquid. This modeling
technique gives the ability to model powder particle movement during raking and is
a start to modeling complex interactions in the feedstock (Figure 5). DEM models will
often use one of the following functions to describe contact mechanics: Hertzian, Johnson–
Kendall–Roberts, or Derjaguin–Muller–Toporov [142,143]. The main difference between
these models is how the cohesion is modeled. LIGGGHTS has been used to determine the
powder flowability in DED [144]. LIGGGHTS has also been used to model how irregular
powder can influence its flowability properties during AM [141], as well as modifying the
surface finish during powder spreading in PBF [145]. In addition to LIGGGHTS, there are
other software that have been developed for the purpose of modeling and simulating parts
of the AM process and material state. These are shown in Table 4 in addition to common
model formulations.

Figure 5. Discrete element model (DEM) simulation of additive manufacturing powder rake over
time. Reprinted with permission from [141].

Wire AM techniques have also been modeled. However, this modeling has been
primarily performed by the welding community. Adapting and modifying these models
to AM may be possible for the techniques that use wire as feedstock. Many of the models
related to wire techniques include more information related to the energy source; therefore,
most of the models will be discussed later. However, as these models have matured over
the years, more complicated and realistic models have been created. One example is a
model of a twin-wire gas metal arc welding (GMAW) process [146]. For this process, two
wires are used in the welding process. In welding, and therefore in AM, using two or
more feedstocks is of some interest, especially in alloys that have significant changes in
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microstructure and properties with changes in feedstock to control local properties in AM
(e.g., duplex stainless steels [147]), and thus, these additional model developments are of
benefit to the wider AM community.

Table 4. List of modeling formulations and some software for AM.

Label Description Formulation Software References

a
Feedstock: powder feed,
raking, and wire feeding

Discrete element method (DEM) with
computational fluid dynamics (CFD);

numerical models
LIGGGHTS [140]

b Energy source
Numerical models;

finite element method (FEM) for
deformation AM processes

N/A [148–150]

c Melt pool

FEM or finite volume method (FVM)
CFD; material point method (MPM);

numerical models;
lattice Boltzmann method

AdditiveFOAM, ExaMPM,
TruchasPBF

[151–154]

d Defects CFD; numerical models N/A [11,155]

e Composition variation Numerical models N/A [156–158]

f Microstructure

Kinetic Monte Carlo (KMC); cellular
automata (CA); phase field (PF); Potts

model; CALPHAD
Scheil-Gulliver model;

numerical models

AMCAFE, AMPE, ExaCA,
MEUMAPPS-SS

[14,159–167]

g Residual stress FEM See Table 5 [22]

2.1.3. Feedstock Statistics

Collecting, storing, and using the spatially- and temporally-rich data from process
monitoring is computationally expensive. In an unconstrained processing environment,
researchers might desire to store very large quantities of data and, as noted for the case of
monitoring feedstock, could record high-speed optical images of all the powder entering
the system (Figures 1a and 4a). One can conceive that a sophisticated real-time image
analysis program might then automatically detect size, morphology, and inhomogeneities.
While this is lacking in the literature, and thus represents an aspirational possibility, once
collected, it is necessary to consider the probabilities and statistics of such measurement [52].
For certain measurements, it is possible to leverage statistical descriptors that exist, such
as particle size distribution (PSD) values of D10, D50, and D90 for the powder feedstock,
where the designation (e.g., D10) signifies that 10% of the total powder is finer than the
corresponding size (e.g., D10 of 15 µm indicates that 10% of the powder is finer than
15 µm). However, a single measurement of PSD for a well-mixed powder sample will
invariably differ from the PSD for powder following a period of time where free-settling
can occur [168] and thus will likely differ from the PSD of in situ measurements, where
the integrated PSD over time (i.e., a PSD(t)) should approach measurements for a lot of
powder. Similar time variabilities are expected for other property metrics, such as sphericity.
However, in principle, it should be possible to develop a time-dependent model based
upon powder flow, size, density, shape, free settling, etc., apply assumptions about the
distributions of the model parameters (e.g., Gaussian or log-normal for powder size), and
develop statistics associated with the dynamics of the feedstock [50,51]. To the authors’
awareness, such work has not been conducted for the dynamics of powder flow.

Another critical component to characterizing and analyzing the feedstock is absorptiv-
ity. Since factors such as the powder size distribution have an impact on absorptivity, direct
measurement is difficult [169]. In a study concerning the measurements of absorptivity of
metallic powder, two different PSD models were created, and changing the distribution
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from a Gaussian to a bimodal distribution made a significant difference in the measured
absorptivity [24]. Further complicating the issue, the absorptivity of a single layer of
spherical particles is higher than a flat surface, as incoming light can be scattered by the
spheres followed by various interactions with other particles, effectively creating multiple
scattering events. Therefore, if a piece of the as-built material or a small batch of the powder
is taken aside for absorptivity testing, two different results could be obtained. This issue
highlights just how important statistics are and how, if neglected or used inappropriately,
the information gathered from monitoring or used in modeling can be markedly off from
the ground truth.

2.2. Energy Source and Thermal Distributions

Common fusion-based AM processes use a laser beam, electron beam, or an electrical
arc as energy sources (Figure 1a). The energy source is not only the main contributor to
the overall heat input into the system but is also the one that is easiest to monitor and
dynamically control as part of the process (the other heat source would be associated
with enthalpies of reactions and phase transformations). The primary energy source is
responsible for fusing the feedstock and enabling a stable melt pool. The accurate control
of the incident power and shape of the energy source are important, as their control enables
the process to be optimized, thereby increasing the repeatability of the process and the
attending properties of the additively manufactured components.

Similar to feedstock materials, considering the classical approaches to measuring
attributes of the energy source is useful. Regarding lasers, their power at various points
along a beam path can be measured using a thermopile. Such data can be used to develop
calibration curves, confirm incident power prior to/following depositions, or diagnose
the “health” of AM systems. Similarly, certain operators may wish to record the profile
of their beam prior to and/or after depositions. In such instances, beam profilers can be
used. Regarding electron beams, their power can be either calculated using the settings or
measured more accurately using, for example, a Faraday cup. The latter is preferred when
aspects of the electron guns, such as apertures, are subject to evolution/drift/degradation
over time.

2.2.1. Energy Source Monitoring

By using certain optical components, including particular configurations of beam
splitters and/or partially reflective mirrors, collecting laser power dynamically during
a deposition is possible (Figure 2a). Under certain manufacturing conditions, operators
may wish to monitor the shape of a beam and could adopt beam splitters or partially
reflective mirrors to monitor the shape of the incident beam. Published research on direct
energy source power monitoring is limited or non-existent for laser and electron beams.
Measurements in electron beams mostly fall in the category of voltage differences between
the electron source and the grounded build plate [170] or currents in lenses that can
be correlated with the positions of the beam. Research on monitoring the arc in wire
arc processes is far more mature since the technology is derived from welding. Multi-
sensor setups to monitor multiple parameters of the arc are currently used in laboratory
systems [54] as well as in commercial systems [55]. These setups involve monitoring
the voltage, current, sound, radio frequency, and temperature of the arc [54]. Acoustic
monitoring during AM builds has shown to be effective for defect detection in multiple
systems, but experimentation to detect other processing parameters such as laser power
has been explored only in laboratory settings [53].

While monitoring the energy source can provide quantitative information regarding
the energy entering the process zone, only a fraction of the incident energy is available to the
material to undergo the necessary thermophysical processes (e.g., fusion for liquid-based
AM) to achieve the desired material state. The general categories of energy loss are known
and include (i) energies that are lost through inefficiencies of “coupling” between the energy
source and the material, such as reflection and scattering from the incoming material and/or
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scattering/absorption in a plume above the substrate; and (ii) energies that are lost due
to traditional heat transfer balances, including conduction, convection, radiation, and the
thermodynamics of phase transformations. The heat flow during an AM build can influence
the final microstructure and properties [171,172]; thus, from the perspective of the material
state, it is arguably more important to conduct in situ monitoring of the temperature
distributions (e.g., gradients, time-dependent heat flows) than the energy of the system.
In situ monitoring approaches for heat flow include the use of thermocouples [56,172]
to monitor the temperature at specific locations over a period of time. Thermocouple-
based temperature monitoring can take place at the build plate [57], close-to-the-line
depositions [58], or even within a deposition by inserting (i.e., “harpooning” [173]) the
thermocouple into the melt pool or directly depositing on top of the thermocouple [174].
Infrared (IR) imaging and pyrometers can measure the temperature of the current layer
as well as previous sections of the build [59,60]. Monitoring the build temperature for
PBF can be accomplished after the rake of a layer of new powder and can help estimate
the layer quality while also monitoring the temperature at specific areas [36]. Table 3
presents common monitoring techniques for each variable or characteristic discussed in
this review, along with a rating for the amount of data collected for future use in modeling
and statistical analysis.

2.2.2. Thermal Modeling

The complex thermal gyrations associated with AM that exist as a result of the repet-
itive motion of the energy source relative to previous built material represents a unique
challenge when seeking to understand and describe a thermal history, which has an effect
on the material state and therefore the properties. There are several methods that are used
to model the spatially and temporally dependent thermal histories, ranging from simple
heat source models (Figure 3a) to more complex finite element method (FEM) models
(Table 4) [175].

The first models for the heat flow of a moving heat source in welding were presented
by Rosenthal [148]. These equations provided a starting point for refinement by several
researchers in the welding community over many years [149]. Other numerical models
have been developed for many types of arc welding methods, including gas tungsten arc
welding (GTAW) [176] and plasma arc welding [177]. However, many of these models can
be modified and used for new applications, such as different AM processes.

Heat source models are often used in conjunction with mechanical models to optimize
welding parameters for different alloys and predict distortion [178,179]. For example,
Chen et al. [150] used CFD and finite volume method (FVM) models to predict the weld pool
and thermal dynamics during welding, which further enabled the prediction of optimized
weld parameters such as arc current and speed for different thicknesses and materials.

In these multi-physics models, one of the key parameters is the functional forms of the
energy distributions, which will vary by the nature of the energy source. Several common
energy distributions exist, such as Gaussian, top hat, and inverse Gaussian. The shape
of the laser can influence the solidification structure of the alloy by changing the thermal
gradients, interfacial velocities, and thermal gyrations [180].

2.2.3. Energy Source Statistics

Monitoring aspects of the energy source is critical to understanding the conditions the
material experiences, but as energy sources vary from system to system, the actual data
record may seem not to be transferrable from machine to machine, a problem that can be
overcome using a combination of dimensional and statistical analysis [61]. To describe
the energy source more accurately between machines, the energy density is used [63–65],
which is a convolution of the power of the energy source and the volume of the melt
pool (Figure 4). Figure 6 shows a general relationship between the characteristic material
temperature and the energy density required for manufacturing each material. This figure
was developed by collecting experimental details from more than 100 papers across all types
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of additive manufacturing processes and materials classes. As the reader might surmise,
few of the papers from which these data have been extracted present their experimental
settings as energy densities. However, each contained sufficient details regarding exposure
time (e.g., speed or time), energy input, and volume processed to extract a nominal energy
density. The authors recognize the exceptional variability that such an analysis of research
papers incorporates. However, despite the uncertainty, it is noteworthy that this correlation
is not only valid for metal-based AM but seems to be general for all variants of additive
manufacturing. This general trend provides a good first step for what processing variables
should be chosen to additively manufacture different materials, regardless of the system
used. However, it is possible to extend beyond this simple relationship by, for example,
performing a dimensional analysis on the processing inputs that can further abstract the
AM process. An example of this approach as applied to SLM has been demonstrated in [61].

Figure 6. Ashby-like diagram of volumetric energy density versus characteristic material temperature
for various material types categorized by color. Recreated with permission from [181].

Convoluting energy source variables such as power, shape, and speed can result in
higher-order dimensionless variables. By listing all the process variables in a system and
systematically combining them into new dimensionless input variables, the total input
variables needed will decrease (by the total amount of fundamental dimensions in the
system) [61]. By representing the inputs in this new way, the number of supposed process
variables needing to be tested to provide a whole picture can be decreased. Without
dimensional analysis, two research groups with different source power limits would not be
able to replicate experiments between them effectively. However, by manipulating other
dimensional process variables, the two groups demonstrated that they could effectively
circumvent this power difference by achieving similar dimensionless variables by now
having the same system [62]. This would allow for a research lab with an EBPBF and
another lab with an LPBF system; while having completely different energy sources, they
could still maintain similar build conditions by targeting similar higher-order variables
such as energy density, even though their process variables are quite different.

Another method for optimizing process parameters involves the creation of code
surrogates [182]. As opposed to running full simulations, these code surrogates are both
faster and less complex than simulations and thus are ideal for rapid and broad testing
to identify regions of viability and not necessarily completely replace simulations. A case
study evaluated using code surrogates in AM [182]. From a small data set, the most
promising surrogate code, a Gaussian process (GP) code surrogate, was able to predict the
region of viable energy densities that most closely matched the region of viable energy
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densities made from a much larger data set [182]. Using this GP code surrogate could
be a beneficial approach to finding a region of viable process parameters, cutting down
computation time, and allowing researchers to obtain samples faster.

2.3. Melt Pool

Fusion-based AM depends on a heat source melting the feedstock and forming a
molten pool of material (Figure 1a) that solidifies upon cooling. However, prior to solidifi-
cation, there are physical attributes and dynamics associated with the melt pool that are
of interest to those who seek to control the process and material state. Among the most
important physical parameters and dynamics are (i) the physical shape of the molten pool,
including both what lies above the deposition plane that is governed by wetting and what
lies below the deposition plane that is governed by heat transfer, thermal gradients, and
interface motion; (ii) dynamics associated with a keyhole (if present), including keyhole
collapse; and (iii) dynamics associated with convection and the capture/retention of defects
within the liquid.

Notably, not all of these attributes and/or dynamics are quantifiable using existing
techniques. Even classical measurement techniques, such as the measurement of wetting
angle or velocity of solid–liquid interfaces, are often limited to analogs [183–185] rather
than the direct measurement of the materials of interest. Some limited ex situ techniques
can be used for the direct measurement of the melt pool. Optical or electron imaging can
detect the melt pool size and shape depending on the alloy.

2.3.1. Melt Pool and Vapor Plume Monitoring

Whereas for feedstock and energy sources, brief discussions of existing measurement
techniques are merited, there is little “classical” work on melt pool size. Thus, there exists
a robust body of modern and emerging peer-reviewed work on melt pool monitoring
(Figures 2a and 7 and Table 3) in the literature, as it represents an area of active research
by many groups [66,71,81,98,186–188]. Not only do many commercial AM systems have
melt pool detection and monitoring systems [189], but research groups have developed
and integrated their own monitoring techniques into a wide variety of systems. Optical
monitoring is the most common approach for both laboratory and commercial systems,
as it can be deployed using low-cost complementary metal oxide semiconductor (CMOS)
cameras mounted coaxially or off-axis [66,67]. An analysis of optically monitoring the
melt pool can include detection methods to separate the melt pool from solidified material,
spatter (or small amounts of liquid material ejected from the melt pool), and other sources
of optical emissions [66,76]. As the data sets are large, new approaches for automated
image processes and quantitative analysis range from simple pixel intensity segmenta-
tion [190] to machine learning or neural networks for the automatic detection of melt pool
boundaries [68]. In addition to the low-cost CMOS camera detectors, high-speed imag-
ing is also used for melt pool monitoring in multiple laboratory systems [191], although
there is a concurrent increase in the size of the data sets and a decrease in ease/speed of
data processing.

Thermal and IR-based sensing techniques are also widely explored to conduct melt
pool monitoring. Thermal imaging is used in both on- and off-axis monitoring configu-
rations, identical to optical imaging [69,70]. Melt pool size determination is based on the
liquidus-solidus transition point and determining if the temperature of a particular pixel or
cluster is above or below this transition point [71]. Thermal monitoring data can be used to
train machine learning models that are subsequently used to simulate melt pool properties
and automatic liquid–solid boundary detection models, as will be discussed later [72]. A
limitation associated with thermal and IR sensors is the accuracy of the calibrations to
relate the intensity of a pixel cluster with known transition temperatures (e.g., solidus,
liquidus). There is also the potential complication of metal vapor plume gases coating
optics or other monitoring components [113]. Along with traditional thermal imaging that
measures surface temperature during the AM process, emerging work on the use of X-ray
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radiography to monitor the sub-surface temperatures and melt pool dimensions during
deposition has been conducted [192].

Figure 7. Examples of monitoring melt pool and vapor plume. (a) Vision-based in situ monitoring
results of melt pool detection in LBPF, (b) effect of scan speed on vapor plume in LBPF, the scan
direction is indicated by the red arrow. Figure 7a is reprinted from [66] under Creative Commons
Attribution License (CC BY); Figure 7b is reprinted from [188] under Creative Commons Attribution
License (CC BY).

X-ray-based monitoring techniques are emerging in the AM space. These techniques
allow for the real-time viewing of phenomena such as powder mixing within the melt
pool [74], the liquid–solid boundary [193], and the evolution of spatter [73]. X-ray backscat-
ter detection can also be used for monitoring the melt pool as well as the plume and spatter
during a deposition [75]. However, these methods are limited by the depth of the X-ray,
the resolution desired, the richness (size) of the data, and the geometry of the parts being
deposited. Thus, these X-ray-based techniques more widely provide in situ data to better
understand the governing physics and develop accurate models rather than necessarily
providing real-time in situ process monitoring.

Methods other than optical, thermal, and X-ray-based imaging for monitoring the
melt pool of AM processes are not as well studied but can still be useful. Ultrasonic
measurements can detect melt pool dimensions due to the sharp decrease in the shear
modulus and density in the liquid phase [77]. Eddy currents and radio frequency emissions
have also been studied for melt pool monitoring [75].

During fusion-based AM processes, after melting the metallic feedstock (both powder
and wire), the material continues to heat, and if the evaporation temperature is reached or
exceeded, evaporation occurs, forming a vapor plume [194]. Continued heating can cause
the metal vapor to become plasma and be added to the plume [194]. The infrared imaging of
the plume in PBF processes has been used to support the development of statistical studies
to detect melt pool instabilities [78]. Optical imaging is also a popular technique for moni-
toring the vapor plume during a build and has been studied in multiple systems [79–81].
The plume, consisting of vaporized metal from the melt pool (Figure 7b) [188], provides a
physically relevant foundation upon which other advanced monitoring techniques for the
chemical composition of the build have been developed, including, notably, laser-induced
breakdown spectroscopy techniques (LIBS). This monitoring method has been used for
detecting specific elements during laser-based AM builds [82–85]. Schlieren imaging is an
optical imaging technique that can monitor density gradients and flow in gases. Schlieren
imaging can be used to monitor the shielding gas flow as well as processing by-products
and evaporation during the AM process [195]. Optical emission spectroscopy is a similar
technique for monitoring the vapor above a deposition that can be used for monitoring the
melt pool, surface, and subsurface conditions [86].
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Spatter in AM is the ejection of material from the fusion zone. Spatter can consist
of liquid droplets ejected from the melt pool or unmelted feedstock that is blown away
from the melt pool zone [87,196]. Optical monitoring with image thresholding to classify
spatter during a build has been carried out in multiple systems [81,87,88]. Optical imaging
often uses image processing to determine the location of the spatter. The optical imaging of
spatter patterns can be used to calibrate models to predict spatter locations and distributions
in future builds [91]. X-ray imaging can give higher resolution monitoring of the spatter, as
the optical emissions of the melt pool and plume do not need to be segmented out from
the image for the analysis [197]. X-ray-based spatter monitoring has been conducted in
multiple laboratory AM setups [89,90]. Optical imaging is also used to monitor spatter
patterns to validate models [91].

Many of these monitoring techniques, including optical and thermal imaging, can be
integrated and optimized using techniques such as machine learning, genetic algorithms,
artificial intelligence, and others to aid in the analysis of the large amounts of data generated
during monitoring, reduce the time required for such analysis, and provide predicted
information for future decisions. One example is a study using a deep learning-based
approach to create a model to analyze the melt pool in an LPBF system [198]. Other authors
have reportedly used integrated imaging combined with a neural network to monitor the
melt pool either using optical or thermal methods in DED systems [199,200].

2.3.2. Melt Pool Modeling

As stated earlier, there have been significant advancements in the understanding of
melt pools in AM via in situ studies, including X-ray imaging of thin sheets [201,202], which
have provided essential information for melt pool modeling (Figures 3a and 8) [18]. Several
methods and software packages exist that can model melt pools (Table 4), and they often
use FEM or FVM for CFD, e.g., Flow-3D [203]. Flow-3D, a commercially available software
package, can model and simulate melt pools to elucidate the influence of processing
parameters on defects [155]. Other models for melt pools include smoothed particle
hydrodynamics (SPH) [204], which can also be used to help with defect modeling [155].
FEM and similar modeling methods are particularly well suited for heat flow because of
energy source–material interactions and are commonly used to simulate and study the
complex thermal histories associated with AM processes [205–209].

ExaAM, an effort of the U.S. Department of Energy’s Exascale Computing Project
(ECP), has created several software packages for AM modeling [210]. The models and
software packages that have been created are intended to be integrated together, as seen in
Figure 8, which is an integrated thermal and solidification simulation. A few software pack-
ages from ExaAM are especially well-suited to simulate and study the melt pool, including
AdditiveFOAM, Truchas/TruchasPBF, and ExaMPM [151–153,211]. AdditiveFOAM is built
on OpenFOAM [154] and uses CFD to calculate fluid flow and heat transfer in the melt
pool and to simulate the solidification but does not include microstructural evolution and
is limited to the liquid-to-solid phase transformation. Similarly, Truchas, made for casting
solidification simulations, and its powder bed fusion counterpart TruchasPBF use FVM
CFD to model thermal histories in AM. The thermal histories simulated in AdditiveFOAM
and TruchasPBF can then be used to simulate grain structures through an ICME framework
when connected to a microstructure model. This will be discussed in Section 3.3. Another
interesting bit of code that has been developed by the ECP project is ExaMPM. ExaMPM
uses the material point method (MPM), a variant of the particle-in-cell (PIC) method [153].
ExaMPM is able to resolve the physics and dynamics associated with the complex interac-
tions found in melt pools, including those between and among solid, liquid, vapor, and
powder. One exciting possibility is the inclusion of interactions between the laser and
matter. This software is intended to be able to model many of the complex interfaces found
in AM melt pools (Table 4).
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Figure 8. Integrated thermal profile (left column) and solidification (right column) model at 327 µs
(a,b), 674 µs (c,d), and 967 µs (e,f). Reprinted with permission from [18].

As mentioned previously, the interaction of the energy source with the feedstock and
substrate material can often lead to dynamic and competitive phenomena, such as vapor-
ization in a plume or ejection of molten material, known as spatter. Since these phenomena
are difficult to model and simulate directly, creating simplified models that ignore certain
details of the physics to ascertain the result rather than the process is useful [157,212].
One example of a simplification of complicated physics in the energy source–feedstock
interaction is the use of the Langmuir equation [156] to describe vaporization and gettering
(solute loss and pickup) [19,213,214]. Models of metal constituent vaporization can be tied
to thermal models to estimate material and solute loss in AM builds [158]. Other events that
result from the dynamic nature of the melt pool in AM include the formation of a keyhole,
as well as material ejection [215–217]. These events can lead to chemical differences in the
build as a result of process variations [218,219].

2.3.3. Melt Pool Statistics

The use of statistics to analyze aspects of AM processes, such as the melt pool, can
involve both the quantification of the uncertainties associated with monitoring data, as well
as the validation of models (Figure 4a) [92–94]. Sensitivity analyses consider the various
sources of uncertainty that accumulate from a model and how these various sources
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contribute to the overall uncertainty. Sensitivity analyses of differing AM processes have
shown that small changes to machine settings have a considerable effect on the overall
result [220]. With the use of thermal cameras to monitor the size of melt pools, sensitivity
analyses can inform on which parameters vary the size of the melt pool, which in turn can
help validate models [95].

Understanding which elements may preferentially vaporize during an AM process, as
well as their relative rates of loss, enables the prediction of the composition of the final build.
One study [214] created a model of how much aluminum would evaporate during the
Ti-6Al-4V build. Sensitivity analysis was completed on this model as a first step to ensure
the total error in model predictions was not greater than the expected results. This was a
novel and better approach than was standard at the time, but the model had to be validated
with the previous evaporation of aluminum in titanium data. Using a monitoring technique
such as LIBS to measure vaporized elements in the plume of the sample could better inform
these models, though few researchers have attempted to integrate LIBS directly into an AM
system. Further sensitivity analyses could be conducted to understand how varying the
process variables (and by extension the melt pool) can influence preferential evaporation.

Gathering statistics from spatter has been accomplished through monitoring the
plume [221]. Using a support vector machine or SVM (a form of supervised learning
algorithm), variations of the plume frame to frame from an inline infrared camera are
tracked. When large variations are present, the material is likely in an unstable state (e.g.,
spattering, keyholing). By training this SVM on the monitored data from earlier in the build
on whether the spatter has occurred, the model can predict not only when the spatter occurs
but also the potential creation of defects if the spatter lands back on a susceptible surface.
One interesting example of the interplay between monitoring, modeling, and statistics is
exemplified by new research into the use of electromagnetic techniques to monitor the
plume and spatter. By aggregating spatter data from cameras and considering particle
statistics, a new model has been developed, supporting the theory that new instrumentation
can be deployed.

One emerging technology that leverages statistical methods is the detection of spatter
in real time. A maximum-entropy double-threshold image processing algorithm that is
based on a genetic algorithm (MEDTIA-GA) has been used to recognize spatter from moni-
toring data, and its results were compared to three other traditional threshold segmentation
methods (Otsu’s method, the triangle threshold segmentation algorithm, and K-means
clustering algorithm) [222]. The processing time (and thus the computational overhead)
of this novel GA approach was, at worst, an order of magnitude lower than these other
methods. The MEDTIA-GA method has also demonstrated an ability to not succumb to
segmentation errors such as noise sensitivity, spatter conglutination, and spatter omis-
sion [222]. Emerging statistical methods like these are instrumental to both improving
confidence in obtained data and making statistical analysis more approachable by reducing
computational costs.

3. Material State of Additively Manufactured Materials

The term “material state” of a component is related to the concept of material state
awareness (MSA), which is defined as the “digitally enabled reliable nondestructive quan-
titative materials/damage characterization regardless of scale” [1–3]. From a traditional
materials science perspective, this includes but is not limited to the following attributes:
composition, solute distributions, microstructure (phases, their size, distribution, and corre-
lations), crystallographic texture, and the presence of defect structures (e.g., dislocations,
porosity, interfaces, cracks) across all length scales and couples to more macroscopic non-
traditional materials science attributes, such as surface roughness and the shape/topology
of the part or component. Each of these attributes (both microscopic and macroscopic)
is informed in part or completely by the processing and can have large effects on the
properties and performance of the material.
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It is worth briefly considering how these aspects of the material state influence the
properties of the material. Here (Figure 9), we introduce properties in a manner somewhat
analogous to Maslow’s hierarchy of needs [223], where, as we proceed from the most
foundational design properties (e.g., elasticity and plasticity) to the properties that become
critical when materials are put into service (e.g., fracture, fatigue), we correlate them with
the most critical aspects of the microstructural state.

Figure 9. Hierarchy of mechanical properties with associated critical microstructural features (based
on Maslow’s hierarchy of needs [223]).

From this type of hierarchical map, we can begin to understand the process-structure-
property correlations. For example, additive manufacturing can produce a wide variety of
defects depending on the processing parameters. Defects can result from extremes in the
energy source (e.g., laser power that is either too low or too high), which cause abnormalities
in the melt pool, such as keyholing and balling [11,155,224]. Excessive residual stresses
originate from the complex thermal gyrations and can cause cracking [206,225–227] either
during the build or during relaxation in periods of time (e.g., weeks) following deposition
and can have a deleterious effect on many critical mechanical properties, including ductility
and fatigue [15,228], even though strength may be increased due to Taylor hardening [138].
Further, residual stresses can lead to distortion and can be very spatially dependent due to
complex thermal histories [225,227,229]. While it is tempting to assert that the composition
of the part is set by (or equivalent to) the certified composition of the feedstock, through
previous discussions in this paper, it is emphatically noted that since AM is a dynamic
process, extreme processing conditions can change the composition locally or globally.
These compositional changes can further influence the local and overall properties of the
material [219]. The microstructure can also have a marked effect on the properties of a
material. Given that the microstructure of any arbitrary material is strongly influenced
by its thermal history, it follows that the energy source and melt pool represent the most
important corresponding processing parameters in AM [20,210,230]. Collectively, these
interrelated material state attributes govern the properties (discrete measurements) and
performance (statistical distributions of properties) of the material. Therefore, while the
mechanical properties are not normally included in the material state, they have been
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added to this section in this review. Therefore, monitoring and modeling AM builds is
important while considering and analyzing the data created statistically to understand how
the material state develops during AM and what the resulting material state will be.

3.1. Defects

As with most engineered materials (except, for example, materials with engineered
porosity levels), the presence of defects is generally considered to be undesirable, attributing
to a general reduction in many properties including mechanical, electrical, and thermal.
The AM process can result in a variety of defects, some of which are not found in materials
produced using other processes. The defects commonly found in AM (Figure 1b) include
porosity, lack-of-fusion defects, delamination, cracking, and balling [231].

Defects within AM can be detected and measured post-deposition through both
destructive and non-destructive evaluation (NDE) techniques. Common measurement
methods include X-ray imaging, ultrasonic testing, and microscopy [232]. Standards
exist for some types of flaw characterizations and techniques for detecting them using
NDE, including X-ray computed tomography, eddy currents, acoustic emission, and X-ray
backscatter [233]. Classic metallographic characterization is useful for evaluating some
types of defects such as lack-of-fusion (LOF) defects, spherical porosity, and hot cracking.
Depending on the length scale, these defects are detectable and may be quantitatively
measured using either optical or electron imaging techniques.

3.1.1. Defect Monitoring

Monitoring defects within AM is, quite appropriately, an active area of research, as
their presence can greatly diminish the properties of the final part (Figure 2b). Monitoring
and detecting aspects of these defects (e.g., location, size, type) during a build and devel-
oping strategies for the mitigation/elimination/repair of defects are important aspects of
ensuring part quality. Setups that are common for in situ process monitoring techniques of
a build are similar to those for defect detection within the material state. The coaxial imag-
ing of the melt pool can map porosity volume and location using a trained convolutional
neural network, which can then be confirmed using X-ray computed tomography (CT) [96].
High-speed optical signatures during a build can be correlated with ex situ characterization
of defects [97]. Optical imaging has been used to monitor balling [98] and detect spatter
and holes in a PBF build [99]. Optical emission spectroscopy has been used in some studies
for porosity monitoring [100].

Defects including porosity, LOF defects, delamination, and cracking all include either
a separation of the layers in a build or the build not being fully dense. As the thermal
conductivity of these voids, whether internally under vacuum or entrapped gas, is sig-
nificantly lower than the surrounding material, measurable differences in the thermal
signatures are observed. Thermal imaging has been successful in detecting defects by
showing discontinuity in thermal signatures [234,235]. Multiple sensor setups have been
developed using a combination of optical and thermal imaging techniques for the purpose
of monitoring builds for defect detection [236].

The use of X-ray imaging for defect monitoring is an emerging detection method
that typically uses X-rays produced from a synchrotron. While using a synchrotron is not
feasible for most commercial applications and systems, as the samples need to be very
thin, research has been conducted using this technique to show the physics associated
with the formation of different types of defects, such as keyholing or entrapment in low-
temperature regions of the molten pool (Figure 10) [237]. The high-speed X-ray imaging
of the keyhole threshold and morphology has been studied [101]. Research into keyhole
porosity monitoring using a synchrotron has shown ground truth observations with high
resolution [102].
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Figure 10. In situ X-ray imaging showing defect formation and melt pool outline detection in LPBF.
Figure is reprinted from [237] under Creative Commons Attribution License (CC BY).

Spattering can cause defects in a build such as not fully reintegrating to the melt pool,
creating uneven thickness for subsequent layers, and changing the composition of the part,
as the spatter can have a high oxygen content [90]. Spatter monitoring for the purpose
of defect detection has been successful using high-speed optical imaging during a PBF
process [103].

As mentioned in Section 2.3, techniques such as machine learning, genetic algorithms,
and artificial intelligence have aided the analysis of melt pools during AM processing. In
addition, these techniques have aided in the detection of defects and certain characteristics
such as origin, size, and morphology. One study captured and processed high-speed optical
imaging, including the signatures of the spatter. Another example is the MEDTIA-GA
algorithm, mentioned in Section 2.3.3, which was used to automatically detect spatter
signatures [222]. Other examples include machine learning combined with artificial neural
networks [238], convolutional neural networks [239], support vector machines [240], and
tree algorithms [241] to detect defects during printing. Multi-sensor setups have been
shown in LPBF systems to identify defect formation using a deep convolution neural
network (CNN) [242]. Monitoring the bead dimensions of a deposition can be paired with
neural network models such as a dimensionless artificial neural network (DI-ANN) to be
used for defect monitoring in a DED system [243].

Acoustic monitoring, a common non-destructive evaluation technique, uses a sensor to
pick up generated elastic waves in a material. Acoustic monitoring setups have been shown
in multiple laboratory settings. A study using acoustic monitoring has shown success
in detecting LOF defects within a build along with high-speed imaging and photodiode
data [244]. Acoustic monitoring of defect events during a build was performed and then
correlated to the type of defect [104]. For example, acoustic signatures from cracks have
been monitored successfully during a build [105]. Table 3 presents common monitoring
technique defects.

3.1.2. Modeling Defect Formation

The most common defects within metal AM builds are LOF defects, keyholing, and
spherical pores. Keyholing can be avoided by ensuring the combination of the power
source and speed (and thermophysical properties of the material) are such that the energy
density does not lead to excessive vaporization [224]. However, energy densities that are
too low can also result in the generation of other defects [107]. Within a single AM process
such as LPBF, even the laser scanning strategy can change the amount of spherical defects
present [218]. Due to the thermal physics and fluid dynamics of the melt pool, as well as
the thermal gradients and viscosity of the liquid, pores can become trapped. Spot scan
strategies have differing melt pool morphologies, which result in the retention of fewer
spherical defects. Thus, modeling the physics of the melt pool is inherently important
to the prediction of porosity (Figures 3b and 11) [155], as the thermal gradient present
(driving force for pore movement by convective flows) is outweighed by the drag, resulting
in pores that are not able to rise to the surface and be eliminated. Such modeling has been
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conducted with a moderate degree of success [245] by abstracting the shape of the melt
pool to have one “depth” parameter, but due to the three-dimensional morphology of melt
pools, using more complex shape parameters, as well as including diffusion of heat from
previous passes, can produce results that are closer to reality [224].

Figure 11. Finite volume method (FVM) model of melt pool with keyholing and pore formation
over time (a) t = 2.395 ms, (b) t = 2.4 ms, (c) t = 2.415 ms, (d) t = 2.43 ms, (e) t = 2.445 ms, (f) t = 2.45 ms,
(g) t = 2.455, (h) t = 2.47 ms, and (i) t = 2.495 ms. Figure is reprinted from [155] under Creative Com-
mons Attribution License (CC BY).

3.1.3. Defect Statistics

The statistics associated with the defects (Figure 4b), including the conditions under
which they form, their formation frequency, and their geometric metrics (i.e., size, proximity,
and location), are necessary to predict the performance of any given part [63]. Considering
the potential quantity of parts that could be manufactured for industrial application, proper
statistical treatments enable the systematic study and implementation of strategies to
reduce/eliminate defects, design topologies/shapes to meet the expected service demands
(e.g., mechanical loads) [106], or even classify parts as “acceptable” or “reject” based upon
monitoring signatures, especially once paired with machine learning algorithms [239].
These methods are necessary due to the variability that metal additive manufacturing is
subjected to. For instance, one case study looked at the repeatability of an SLM printing
process and found it to be acceptable under the guidelines of engineering standards for
dimensional and geometrical analysis [246]. However, a large-scale industrial study [247] of
manufactured tensile samples found that nearly two percent of samples, though nominally
geometrically similar, failed catastrophically. These failures were correlated with parts
in which there were clusters of LOF defects whose configuration significantly degraded
the structural integrity of the test coupons. The Beese Research Group [248–251] has
published pioneering research that incorporates full stress triaxiality and the Lode angle
parameter to develop models to understand how defects (and defect clusters) interact with
the design/topology of the part to understand deformation and failure. Regarding in situ
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quality control, the probability of some attribute of defect formation (e.g., size, number,
location) can be correlated with whether an anomalously poor property might be expected,
and thus, the part should be categorized as a failed part prior to use [245,252,253]. After
studying the concentration of defects within a build process, a probabilistic simulation,
such as a Monte Carlo simulation, could be run to determine the percentage of parts that
match differing thresholds for the probability of success/failure [224].

Notably, such statistical approaches can incorporate data from modeling, measure-
ments, or a hybrid of both data types. For example, in situ monitoring in combination
with a machine learning algorithm could be used to set thresholds for differing variables
such as defect size, location, and the density of the defects being detected. This has been
demonstrated by optimizing the energy density of prints to minimize the formation of
defects such as pores, lack of fusion defects, and keyholes [254–256]. This combination
could also statistically determine when enough defects are in proximity to one another for
catastrophic failure to occur during printing or during operation.

3.2. Compositional Distribution

In metals and alloys, the chemical composition has a very significant effect on the me-
chanical, electrical, thermal, and physical properties. Thermal processing and solidification
can lead to chemical segregation within a part [253]. Further, in additive manufacturing,
different elements have different propensities to evaporation (or gettering), leading to
selective loss (or gain) of elemental species, resulting in compositions (Figure 1b) in the
build that differ from the feedstock input [257].

Classic ex situ approaches to measuring the composition of AM samples include
energy dispersive spectroscopy (EDS), X-ray fluorescence (XRF), inductive coupled plasma
(ICP), or X-ray diffraction (XRD). These techniques are often limited to some degree. For
example, EDS, XRD, and ICP are often destructive. Similarly, EDS and XRD require
particular details to be met for each specimen, whether it is a polished surface (EDS) or
size/flatness (XRD).

3.2.1. Elemental Monitoring

The elevated temperatures in the melt pool can cause substantial metal vaporiza-
tion [217]. Monitoring chemistry then becomes important for understanding and predicting
the compositional distribution in the build during printing (Figure 2b, Table 3). As men-
tioned previously, LIBS is a characterization method based on detecting a light spectrum
of metallic vapor (Figure 12) [82]. A study using a custom in situ LIBS setup monitored
varying compositions of WC in a NiFeBSi matrix [82]. This study showed direct LIBS
measurements at the melt pool as well as post-deposition trailing for the cladding head
on the hot but solidified metal. Optical emission spectroscopy (OES) is similar to LIBS
where the vapor is monitored and different light wavelengths are calibrated to different
elements, but in traditional LIBS, the solid is directly ablated to vapor, while OES can be
calibrated to monitor the metal going from the solid to liquid phase (melting) and liquid to
solid phase (evaporation) [110]. For example, the vaporized metal composition has been
monitored using laser-induced plasma emission spectroscopy during a Ti-Al binary AM
build, showing the Al content at different locations [84]. Using OES, the preliminary results
showed that differences in composition in a Ni-based alloy could be measured [110]. Other
research involving OES monitoring was conducted in a Cr and tool steel system [258].

Although the most promising in situ monitoring techniques for compositional analysis
are based on LIBS or OES, alternative technologies have been explored. For example,
researchers have demonstrated that a mass spectroscopy-based technique can measure the
ejecta and atmosphere near the melt pool [108]. Using custom setups, energy-dispersive
XRF has been shown to monitor Cr and Ni in the vapor produced during an LPBF pro-
cess [109]. In the future, AM processes using an electron beam could use existing electron
microscopic techniques, including either an in situ EDS detector or a backscatter detector
to monitor the composition of the deposition with either a wide area averaging or spatially
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resolving compositional fluctuations within the build. Some other characterization tech-
niques such as acoustic or ultrasonic testing could be applied to in situ monitoring setups
if the composition varied enough to influence the elastic properties of the alloy.

Figure 12. Schematic of laser-induced breakdown spectroscopy (LIBS) to optimize data collection of
composition and temperature. Figure is reprinted from [82] under Creative Commons Attribution
License (CC BY).

3.2.2. Modeling Composition

As O’Donnell et al. [219] showed, processing parameters can lead to changes in the
local or overall composition of an AM build. Therefore, understanding how the energy
source and processing parameters influence the composition is important. As stated in
Section 2.3, there have been efforts to understand vaporization and gettering using the
Langmuir equation [19,156,213,214]. While this equation has been used to identify and
understand trends in compositional changes based on thermal histories [158], it has not
been applied to understand how processing parameters can influence the local composition
of a build (Figure 3b). The thermal [259,260], solidification [219,261], and mechanical
properties [219,262] of a material can change with changing composition. Understanding
and modeling compositional changes as a result of the processing parameters may improve
the accuracy of future models of AM parts that seek to understand local microstructure
and properties.

3.2.3. Statistics of LIBS Data

Accurately identifying the composition of local areas within a part is inherently useful
to ensure the part is built to specification [111,112]. As mentioned, the primary in situ
monitoring method used to obtain this data is LIBS. To analyze LIBS data in real time, how-
ever, spectra from the samples need to be generated, and characteristic peaks for differing
elements need to be found and deconvolved, which can be nontrivial. Similar confidence
intervals could be generated, as was mentioned for feedstock analysis, but another method
could be implemented to reduce the computation time of deconvolving peaks. Using
prior data of spectra from both the pure elements, as well as binary or higher-component
alloy standards, independent regions of each element can be flagged [263]. The intensities
associated with the spectra of the pure elements can be compared to the intensities of the
standards, permitting the creation of a function that maps spectral signatures with the
composition of the measured specimens. Further, a machine learning algorithm might be
developed to ingest real-time LIBS data, then use this heuristic to not only analyze spectra
faster but also provide information regarding statistics of specimens over builds. With
even minimal updates to this methodology or computational power, this would be close to
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achieving real-time analytical speeds that would allow the full compositional distribution
of data throughout the build process (Figure 4b).

3.3. Microstructure and Texture

The microstructure of metal parts made using fusion-based AM processes can be vastly
different from traditionally manufactured materials and can vary significantly between
different processes. The microstructure is often set by the solidification rate and the
thermal gradient, which are governed by the equation R = (1/G)(∂T/∂t), where R is
the solidification velocity, G is the thermal gradient, and ∂T/∂t is the cooling rate. The
microstructure can also evolve over time after solidification due to phase transformations
and heat accumulation.

Measuring and characterizing the microstructure of AM samples is commonplace.
Optical and electron microscopy, XRD, and EBSD are all methods used to image and
measure the microstructure of a sample post-deposition. Sample preparation techniques
are important for all of these methods in order to ensure accurate results. Microstructural
measurements can include the phases present, fraction of the phases present, grain or
feature size, grain or feature geometry, and texture (Figure 1b).

3.3.1. Microstructural Monitoring

The microstructure of an AM build governs the material properties [138,264–267].
Owing to various reasons (e.g., practicality, time, chemical handling, technological limita-
tions), most monitoring techniques cannot directly observe the microstructure of a build
(Figure 2b, Table 3). In addition to the most obvious limitations associated with imple-
menting “traditional characterization” in situ—for example, the difficulties of polishing,
chemically etching, and imaging a microstructure to mimic optical microscopy—any mi-
crostructure that could be revealed from a surface characterization technique may not
necessarily correspond to the microstructure at that precise location following the comple-
tion of an arbitrary build. Indeed, microstructures are known to evolve due to remelting
and subsequent thermomechanical gyrations, phase transformations, and microstructural
evolutions. Despite these difficulties, there exists a strong base of knowledge from the
casting and welding communities, as well as arising from computational efforts, to pro-
vide the materials scientist guidelines to set their process parameters to affect particular
material states. For example, for the thermal gradient (G = |∇T|) and solidification rate
(R = (1/G)(∂T/∂t)), interfacial velocity can be used to predictably set processing con-
ditions to either promote columnar grains exhibiting texture or equiaxed grains without
texture [268–271]. Even with this knowledge, the aforementioned issues lead to most moni-
toring techniques targeted at observing the microstructure using indirect measurements
to classify the microstructure of an in situ build. Thermal imaging has been used in a
few laboratory setups to observe the build and calibrate thermal data to microstructural
formation and evolution. For example, in an electron beam PBF system, IR thermal imaging
was used successfully to observe the build and the thermal gradients and match the IR
intensity data to the microstructure at different locations in the final part [113]. A system
using a combination of sensors including an IR camera was able to monitor melt pool
temperature, real-time cooling rates, and thermal maps and then, using this data, was able
to create a closed-loop system to control the microstructure by controlling the cooling rate
of the deposition [114]. Similar approaches have been used for general microstructural
details such as grain size based on melt pool size and other thermal characteristics of an
AM build [115,118]. Ultrasonic inspection techniques enable the inference of details of
microstructures, such as an assessment of the phases present, their fraction, grain sizes, and
whether the crystallographic texture is present, as differences in each result in attending
variations in the measured signals, and, when anisotropy is present, result in directionally
dependent responses, including in the wave attenuations [116,117]; however, acoustic
waves are generally interpreted in a more general or bulk manner rather than a site-specific
manner. Perhaps the most direct method is an emerging approach based upon spatially
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resolved acoustic spectroscopy (SRAS) [131–134], which has been applied to the surfaces
of additively manufactured specimens, demonstrating that it is possible to spatially map
texture from as-deposited surfaces [272]. Similarly, for hybrid variants of AM, there is
a possibility to use force feedback machining to map grains [135–137], though there are
several engineering challenges to deploying this at the time of this paper.

3.3.2. Modeling the Material State

The execution of complex models of different AM processes requires multiple iterations
of calculations at a wide range of time or length scales, from predicting local thermal history
to simulating the effects of residual stress. However, errors and uncertainties can transfer
and compound rapidly between each of a series of integrated computations. Therefore, a
methodology to quantify the error in models and ensure the models’ validity is necessary.
A group has created such a process as a part of the Exascale Additive Manufacturing
project (ExaAM) [273] (Table 4). Upon modeling the deposition of an AM sample using
their Frontier Exascale Computer, select regions were chosen to predict their properties,
and experimental samples were made to compare to the simulation results. After running
their uncertainty quantification algorithm, they predicted that their compounded error
should not be statistically significant, which, if correct, would help validate their model.
Comparing experimental data to their simulations showed that they correctly predicted that
the error was not statistically significant. While this scale of computing remains limited to
only a few machines, their computing power makes quantifying errors in models possible,
and as technology continues to mature, the accessibility by more researchers to such
machines should increase. Further, once a limited number of highly complex simulations
are executed, it is possible to develop and use simpler, surrogate approaches. While new
models are being developed constantly, standardizing how the data are created and stored
is important. One way that this can be conducted is by using the software DREAM3D.
Created as a data pipeline to support the reconstruction of serial-section experiments in
the earliest days of 3D materials characterization, DREAM3D expanded into software that
may be used to build synthetic microstructures, generate surface meshes, and help with
microstructural quantification [274]. There are other methods that store microstructural
data, such as electron backscatter diffraction (EBSD) data and the statistical analysis of
grains and their size and texture. There is extensive software available for visualizing EBSD
data, such as the MTEX toolbox for MATLAB [275].

Regarding the foundational details of AM microstructures, there is much to build upon,
as primary solidification microstructures have been studied for many decades (Figure 3b).
There is a solid basis for knowledge related to solidification structures and their relation to
processing parameters for traditional manufacturing methods such as casting and welding.
A portion of this knowledge can be readily applied to AM. For example, one crucial aspect
that determines the microstructure, as mentioned in the Monitoring subsection, is the G/R
ratio. At low G/R ratios, equiaxed grain growth is often observed, whereas at high G/R
ratios, columnar grain growth is found [167,276]. The G/R ratio can change the overall
microstructure of a part, as seen by Dehoff et al. [271]. Solidification speeds can also change
the microstructure within layers, known as the columnar to equiaxed transition (CET). The
CET is a phenomenon where the solidification structure starts as columnar growth and ends
as epitaxial growth, forming equiaxed grains [277]. Another important factor that governs
the microstructure is the thermodynamic stability of phases. Some common AM alloys are
inherently two-phase alloys, such as α/β titanium alloys and nickel superalloys [16,138].
Other alloys can form deleterious phases at intermediate temperatures, such as stainless
steels [278]. Therefore, it is common to see CALPHAD and solidification models, such as
Scheil-Gulliver models, intertwined with other microstructural models to serve as a basis
for how a microstructure evolves in a dynamic process [14,279].
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There are several ways that the solidification and microstructure of AM can be modeled.
The most common types of models are those based upon kinetic Monte Carlo (KMC),
cellular automata (CA), or phase field approaches (PF) (Figure 8) [18,175,280]. In general,
PF has the best ability to connect to thermodynamics and kinetics in real life but is also
the most computationally intensive of the three models. KMC uses randomness to model
microstructural growth and is not very computationally intensive but is hard to connect
back to physical representations. CA offers a compromise on both fronts, as it can connect
to real life through its model formulation and is often not as costly as PF models. This
compromise is the reason that CA has become one of the most popular methods for
solidification modeling in recent years [165,281–283]. Texture is commonly modeled using
CA and PF for AM, with recent introductions of texture modeling with KMC [175]. As
with many models, it is common to see experimental validation of models that are created
and reiteration of experiments with data that is gleaned from simulations. One example
is the modeling, simulation, and experimental validation of a Ti-xW binary alloy and its
solidification structure [284,285].

Several codes have been created to model and simulate AM microstructures from
ExaAM. These microstructure codes are ExaCA, AMPE, Tusas, and MEUMAPPS-SS. These
codes use a variety of model types and have unique microstructural aspects that they are
designed for. ExaCA is a CA code that simulates grain growth [160]. CA is a relatively
simple model to implement and has relatively low computational cost using one of several
mathematical formulations, such as finite element (FE) and finite difference (FD) [175].
AMPE and Tusas are PF codes that are designed for simulating subgrain microstructural
features during solidification by solving systems of partial differential equations [161–163].
MEUMAPPS-SS (Microstructure Evolution Using Massively Parallel Phase-field Simulation
for Solid State) is a PF code written originally in Fortran that was converted into C++ and
focuses on simulating solid-state transformations that occur as a result of the complex
thermal histories seen in AM [164]. The US Naval Research Laboratory (NRL) has also
created AMCAFE, a CAFE (Cellular Automata Finite Element) model to simulate the
solidification in AM [165]. The model has been validated using a laser PBF 316L build.

Kinetic Monte Carlo microstructure models have also been made for AM [159]. SP-
PARKS (Stochastic Parallel PARticle Kinetic Simulator) was created at Sandia National
Laboratories to pioneer a way to model microstructure. SPPARKS has modules specifically
for AM applications and uses the spin-based Potts model by introducing probabilities to
change the spin [286,287]. While KMC can simulate texture, SPPARKS cannot. As AM parts
are highly textured, leading to anisotropic properties [288], the modeling and simulation
of texture formation and evolution becomes important. Of the above codes that are men-
tioned, ExaCA and AMCAFE also are capable of simulating texture in AM. However, there
is ongoing research to extend texture modeling to more methods, such as Monte Carlo
(MC). For example, Pauza et al. [166] used an MC Potts model to model texture in additive
manufacturing using Inconel 718 [165].

3.3.3. Microstructural Statistics

Predicting the microstructure of any as-built part relies on having detailed knowl-
edge of relevant aspects of the selected AM process conditions, as well as the material
used [111]. An aspirational goal is to integrate monitoring data and modeling to predict
local microstructure, its evolution, and, consequently, local and global properties, and
performance (Figure 4b). Such a goal has been realized to different degrees of success in
which researchers have integrated thermal models and physical processes such as evapora-
tion and microstructural evolution to predict microstructure and have used sensor data to
calibrate the models [115,213,289,290]. An example of a more fully integrated workflow is
the ExaAM project that has produced multiple different models targeted towards metal
AM processes, one of which is aimed towards predicting local microstructure; however, the
problem that exists in all models, i.e., verification, remains reliant on the use of statistics,
thus requiring additional computational resources. One open area of potential research
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is the use of statistical methods to understand the uncertainty and fidelity of difference
monitoring approaches when implemented into AM systems.

3.4. Residual Stresses and Distortion

Residual stresses and distortion are inherent in AM processes (Figure 1b). The complex
thermal histories that exist spatially and temporally within and among layers can lead to
complex stress states. Distortion is a direct cause of these residual stresses, leading to the
deformation of the material from the intended shape of a part due to the thermal stresses
that exist during the manufacturing process.

Classic approaches to residual stress measurements use techniques such as XRD,
neutron diffraction, ultrasonic techniques, and measuring relaxed strain through the hole
drilling method [291]. Traditional measurement techniques use a powdered sample or a
polished surface on bulk material or are semi-destructive to the sample. Depending on
the level of stress within a sample, measuring geometric features or final dimensions can
show distortion.

3.4.1. Monitoring of Distortion and Residual Stress

The line-by-line, layer-by-layer nature of metallic-based AM necessarily means that
the material experiences gyrating thermal gradients and cyclic heating and cooling. Such
gyrating thermal gradients and cyclic thermal cycles result in complex residual stresses
that impact the mechanical properties of the final part (Figure 2b), such as strength and
fatigue life, and can lead to cracking or distortion [225,226,229]. Efforts to minimize or
control residual stresses in AM usually involve preventing steep temperature gradients by
preheating the build/deposition/powder bed or applying different scan strategies [225].
Residual stress can be characterized using both destructive and NDE techniques. Some NDE
techniques involve diffraction-based methods such as XRD, by measuring beam broadening
that indicates lattice distortion of the crystal structure of the material and determining
dilation in any direction. However, the need for a perfect stress-free control sample to
obtain baseline lattice spacing is difficult during an AM process leading to diffraction-based
methods being less suitable than other residual stress monitoring techniques, such as
ultrasonic measurements [127]. Ultrasonic monitoring includes a variety of methods in
multiple systems [119] and is viewed by many as a more viable approach to monitoring
residual stresses than diffraction-based methods. If the residual stresses are large enough,
the part can experience significant distortion, and under extreme cases can fracture or
fail while still attached to a build plate. This correlation between distortion and residual
stress provides a basis for monitoring distortion using approaches such as digital image
correlation (DIC) [292]. Distortion measurements can use single-point laser displacement
sensors (LDS) or full-field (2D or 3D DIC) imaging to monitor the distortion of the build
or build substrate (Figure 13) [120–122,128]. Distortion measurements based on DIC use
multiple points on a sample, tracking their relative displacements to provide distortion
information in at least two dimensions, though more advanced 3D systems have been used
to monitor the build plate during steel cladding tests [123]. Further, a system has been
developed to show the full-field displacement of a laser cladding system using a partially
fixed build substrate allowing distortion [124]. Distortion has been evaluated, as each new
layer has been deposited [125]. Importantly, the natural inconsistencies on the surface of
a DED build were used to show the full-field strain of a thin wall [126], as opposed to
the typical DIC approaches, which require the application of artificial, stochastic speckle
patterns. For monitoring, residual stress distortion-based systems are more widely studied
and are the most feasible of the current sensing technologies (Table 3).
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Figure 13. Experimental distortion detection setup used in a laser AM setup. Figure is reprinted
from [120] under Creative Commons Attribution License (CC BY).

3.4.2. Modeling and Understanding Residual Stress and Distortion

There are a multitude of reasons to model and predict distortion and residual stress,
ranging from (i) the desire to produce a part in as near to net shape as possible, (ii) the
desire to avoid post-deposition stress relief [293] treatments, and (iii) the need to miti-
gate/eliminate risks associated with sudden fracture/failure events.

There has been significant research in the last decade to create models that pre-
dict residual stress and distortion (Figures 3b and 14) [227]. FEM is commonly used
to model residual stress and distortion due to its common use for mechanical models.
Since residual stress is a result of the large thermal gradients in AM, models require ther-
mal information derived from heat source models [128,179,294], which were discussed
in Section 2.2 [225–227,229,295]. Over time, these models have developed more complex-
ity, considering phase transformations that can negate significant amounts of residual
stress [178,296]. There are several commercially available software packages that estimate
the residual stress and distortion of AM parts (Table 5) [297–304].

Figure 14. Modeling of residual stress in an additively manufactured sample at different layers.
Figure is reprinted from [227] under Creative Commons Attribution License (CC BY).
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Table 5. Commercially available AM modeling software packages in alphabetic order.

Name Company Modeled Features References

3DEXPERIENCE Dassault Thermal profile and stresses [297]

Additive Print ANSYS Distortion and residual stress [298]

Amphyon Oqton
Thermal profiles, distortion,

and residual stress
[299]

COMSOL
Multiphysics

COMSOL
Coupled

thermomechanical models
[300]

GENOA 3DP AlphaSTAR Defects and distortion [301]

Netfabb Autodesk Thermal profiles and distortion [302]

Simufact
Additive

Hexagon
Thermal profiles, distortion, and

residual stress
[303]

Sunata Atlas 3D Thermal profiles and distortion [304]

3.4.3. Statistics of Distortion and Failure Prediction

The statistical approaches available for predicting distortion are very immature
(Figure 4b). Such immaturity is due, in large part, to the nature of distortion and its
strong dependence on not only process parameters and thermal gradients but also how
those thermal gradients couple with the part topology through the full 3D stress and strain
tensors [129,296,305]. It is essential to recall that residual stress is not an average singular
value but depends upon lattice distortion gradients in the object. Thus, residual stress is
not even directly tied to dislocation densities, though this is erroneously assumed at times.
A part can have a very high dislocation density (and thus strength) but have few if any
gradients in the dislocation densities. Conversely, steep gradients can exist in parts with
lower average dislocation densities. Thus, residual stress is the descriptor of a spatially and
directionally varying metric, and statistical approaches are less well developed, resulting
in an increase in the quantity of data and complexity of the analysis [125,129,130].

With these difficulties noted, there are opportunities. Residual stress can often be
reduced to an “average” or “maximum” residual stress within a part. Under such treatment,
the application of many existing statistical approaches is appropriate. It is likely that the
incorporation of modeling, including full FEA analysis with stress triaxiality and Lode
parameter angle, will result in the most useful information that might then be analyzed
using various statistical approaches. Conversely, a new statistical method has been recently
leveraged that relies on building a Bayesian model from small sample builds to inform
the in-plane deviation from distortion of new parts [306]. As most AM builds can be
abstracted to simpler two-dimensional cross-sections, this model studied the distortion
seen in differing cross-sections to inform a predictive model that could be applied to more
geometrically complex shapes to see how much in-plane deviation would be found in final
builds. This method is limited to individual cross-section analyses, so distortion in the
build direction can go unseen but can be a powerful tool when paired with other techniques.
In principle, if the training data are large enough, eventually there could be a machine
learning algorithm made that takes in that data and suggests how the part’s geometry
should be altered ahead of time so that the distortions are either minimized or lead to
correct geometry in the final build.

3.5. Mechanical Properties

One of the important performance metrics for metallic parts made using fusion-based
AM processes is the mechanical properties. Metal AM parts often have a vastly different
material state and therefore different properties than wrought or cast parts. Some of the
important mechanical properties are the (i) tensile properties, including yield strength,
ultimate tensile strength, and ductility; (ii) fatigue properties, which are related to both
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the rough surfaces produced by AM processes as well as the residual stress; and (iii)
fracture toughness.

Measuring the mechanical properties of metal AM samples is commonplace in ma-
terials characterization. The ex situ testing of AM samples can be conducted to obtain
elastic and plastic properties, strength, hardness, toughness, and impact resistance. There
are many standards for measuring the mechanical properties of metal samples with a
wide range of instruments [307–315]. Most classical testing methods are destructive or
alter the sample in some way, so most measurement techniques are not suitable for in
situ monitoring.

3.5.1. Monitoring of Mechanical Properties

A primary objective in the manufacturing of any arbitrary part is that the mechanical
properties meet the design properties. Given the complexity and multi-scale nature of the
process, it may be necessary to use a variety of in situ monitoring techniques to develop
sufficient information to predict properties. Most of these systems monitor an aspect of
the build that will affect the final properties (e.g., the melt pool stability, thermal gradients,
defects, feedstock, and composition). Ultimately, monitoring information should be used to
inform models to predict mechanical properties. Intriguingly, some mechanical properties
would be possible to monitor during a build. For example, acoustic methods may be
used to measure elastic modulus. However, even the use of acoustics for determining
elasticity is not without difficulties, as the existence of thermal gradients during deposition
necessarily means the elastic properties vary significantly throughout the part and are
time-dependent. Similarly, hybrid additive/subtractive approaches have the potential to
infer other mechanical properties by measuring machining forces [135,136]. However, this
too is likely to be, at best, a time- and temperature-dependent surrogate measurement
technique. Thus, in the main, there are no techniques to directly measure properties during
deposition (Table 3).

3.5.2. Modeling of Mechanical Properties

As noted previously, research from the welding community has provided a critical
foundation for many models, including, in some cases, the mechanical behavior. While
these models are generally empirical in nature, the fact remains that the mechanical proper-
ties often important to welding are also important to AM applications, such as yield and
tensile strength, ductility, and impact toughness. Many of these models are based on the
microstructure of the samples. These models are generally highly dependent on the mate-
rial. For example, duplex stainless steel’s impact toughness depends on the phase fraction
of austenite, which is dependent on the thermal history [288,316]. Other microstructural
features influencing properties are composition, inclusion content, and acicular ferrite con-
tent in high-strength low alloy (HSLA) steels [276]. Similar to welding research, empirical
relationships have been investigated for AM materials, such as Ti-6Al-4V [138]. These
relations often consider the composition and microstructure of each material class.

The finite element method (FEM) has emerged as a preferred method for modeling
solid mechanics. Therefore, many codes developed for predicting and modeling mechanical
properties are based on FEM. One type of FEM that is prominent to local properties is crystal
plasticity FEM (CPFE). CPFE uses slip as the primary mechanism for stress compensation,
taking the form of dislocations. CPFE has been applied to many different microstructures
and materials, and there are a variety of constitutive models that can be used in CPFE [317].

As a part of ExaAM, two codes, developed specifically for use in AM, are ExaConstit
and Diablo [318,319]. ExaConstit is a crystal plasticity FEM code using a Newton–Raphson
scheme. ExaConstit takes the microstructure data from the codes mentioned in Section 3.3
and thermal history data from the codes mentioned in Section 2.2. Diablo is a code intended
to be the first step in the ExaAM workflow and provides the initial thermal history with
additions of various constitutive models for mechanical behavior [210,305,319,320].
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Since there are many features of the microstructure spanning many length scales that
influence the properties of a material (grain size, porosity, phases, precipitates, and compo-
sition) [7,17,138], the integration of several models is necessary to gain an understanding
of how the process influences many of these aspects. Model integration can help build
a picture of the part to inform material property predictions [17–23]. This is, in essence,
the reason for the advent of ICME, which assists with manufacturing parts with well-
understood properties by taking several models that work on several length scales and can
be used to create an informed simulation of a build and its properties. See Tables 4 and 5.

3.5.3. Statistics of Mechanical Property Models

Modeling and predicting mechanical properties, such as yield strength, often involves
the creation of a constitutive equation, as has been the case for AM Ti-6Al-4V for exam-
ple [25,26,47,138]. The variables that compose such constitutive equations are, by definition,
variables associated with the material state, such as composition, texture, phase fractions,
or dislocation densities, and continuing to improve monitoring efforts will only better
inform models such as these. One novel approach to determining statistical information,
such as “design allowables”, used these constitutive equations and their statistical distri-
butions to predict, probabilistically, cumulative distribution functions, not breaking the
constitutive model. This methodology, called distribution translation and rotation (DTR),
has been shown to be effective in calibrating yield strength models for AM Ti-6Al-4V [25],
and, as long as constitutive equations are made for their corresponding properties, could
be extended for use in calibrating models for other mechanical properties built via other
manufacturing methods.

4. Summary

This paper has reviewed the monitoring, modeling, and statistics associated with
additive manufacturing of metallic systems. Throughout, the case has been made to con-
sider multiple interrelationships, including (i) the importance of considering monitoring,
modeling, and statistics concurrently; (ii) the importance of considering additive manufac-
turing from the perspective of both the process and the material state; and, (iii) the complex
interdependencies that exist between and among aspects of the process (e.g., energy, feed-
stock, plume) and material state (e.g., composition, phase fraction). The three pillars of this
paper—monitoring, modeling, and statistical analysis—are summarized briefly below.

Monitoring can be used to (i) help determine the presence of defects that would make
the part unusable for operating conditions, (ii) provide data to optimize future parts, and
(iii) provide information to create models that represent a specific aspect or characteristic
of the part. By carefully considering the signals that may be naturally generated from the
location being monitored, one can not only determine which technique is most appropriate
to deploy but also suggest integrating techniques that are either used in other manufactur-
ing sectors or new techniques entirely. New computational techniques used for monitoring
in AM, based on machine learning or genetic algorithms, are proving to be valuable tools
to analyze large data sets and provide quality assessments of the builds as well as inform
statistical models. While some monitoring techniques have a level of maturity that can
be easily applied to both laboratory and commercial systems (e.g., optical monitoring of
melt pool and defects, or heat flow), others are considered emerging technologies (e.g.,
feedstock or distortion-focused monitoring), or only suitable for specific experiments and
development efforts (e.g., synchrotron).

Modeling offers a way to understand the complex mechanisms that exist within AM
processes. There are many models that have been used for AM. The first models that were
created that are applicable to AM are moving heat source models. These have increased in
complexity over the years and now can be extremely complex and thorough finite element
models. The other part of AM processing that is modeled is the melt pool to understand
how the energy source interacts with the feedstock and base material. These processing
models are useful to understand how processing influences the material state. Therefore, to
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understand the material state better, models have been created that demonstrate the for-
mation of defects, compositional variations, microstructure, residual stress, and distortion.
Understanding how defects form from melt pool interactions and thermal histories that
result in high residual stress is an important part of AM research, and models can assist
with this research. Microstructure is influenced by thermal history. Residual stresses and
distortion have been consistently researched. However, more research is needed to create
better-informed models for future builds. Commercial software is available that models
residual stress and distortion, especially for production manufacturing. Modeling is often
performed with the intention that the information gathered can be used to understand the
properties and performance of the material. Therefore, with validation, these models are
useful to understand how properties are impacted, leading to the leverage of integrated
computational materials engineering (ICME) to create well-informed builds quickly.

The statistical treatment of data, including the emerging in situ monitoring data
associated with AM processes, is not only necessary to better understand the process and
develop a fundamental understanding of the physics in operation but is also improved
by integrating data into and from models. The process of better collection and better use
of collected data creates a positive feedback loop where improved monitoring techniques
help improve models, and improved models suggest what else needs monitoring. Data
from monitoring processes can be used to better understand the system, as well as establish
statistical methods such as confidence intervals to estimate how closely the monitoring data
could be representative of the ground truth. As the real-time data analysis of monitoring
increases, the use of machine learning to identify failed prints prematurely presents itself
as both a time and material cost savings. For the modeling side, statistics can be used
to bolster mathematical models to calibrate mechanical properties models of additively
manufactured parts. The efforts behind model-informed qualification are pointing the way
to approaches to accelerate the adoption of AM processes to manufacture parts for a variety
of applications.

Each of these different threads has been treated relative to the process and the material
state. However, there are only a few large research activities that seek to integrate subject
matter expertise across the three domains covered by this paper. This gap arises largely due
to the competition between requisite technical depth to advance each discrete approach
(e.g., new sensor packages integrated into physical systems, computational algorithms, and
physical architecture for on-board modeling incorporating real-time signals, accelerating
AI/ML approaches) and the need to think broadly about the fundamental interdisciplinary
nature of the problem. New research will be achieved by teams containing subject matter
expertise that is only possible by working across research organizations.
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Abstract: In metal additive manufacturing (AM), precise temperature field prediction is crucial
for process monitoring, automation, control, and optimization. Traditional methods, primarily
offline and data-driven, struggle with adapting to real-time changes and new process scenarios,
which limits their applicability for effective AM process control. To address these challenges, this
paper introduces the first physics-informed (PI) online learning framework specifically designed
for temperature prediction in metal AM. Utilizing a physics-informed neural network (PINN), this
framework integrates a neural network architecture with physics-informed inputs and loss functions.
Pretrained on a known process to establish a baseline, the PINN transitions to an online learning phase,
dynamically updating its weights in response to new, unseen data. This adaptation allows the model
to continuously refine its predictions in real-time. By integrating physics-informed components, the
PINN leverages prior knowledge about the manufacturing processes, enabling rapid adjustments
to process parameters, geometries, deposition patterns, and materials. Empirical results confirm
the robust performance of this PI online learning framework in accurately predicting temperature
fields for unseen processes across various conditions. It notably surpasses traditional data-driven
models, especially in critical areas like the Heat Affected Zone (HAZ) and melt pool. The PINN’s use
of physical laws and prior knowledge not only provides a significant advantage over conventional
models but also ensures more accurate predictions under diverse conditions. Furthermore, our
analysis of key hyperparameters—the learning rate and batch size of the online learning phase—
highlights their roles in optimizing the learning process and enhancing the framework’s overall
effectiveness. This approach demonstrates significant potential to improve the online control and
optimization of metal AM processes.

Keywords: physics-informed neural networks; metal additive manufacturing; online learning;
real-time modeling; temperature field prediction

1. Introduction

Metal additive manufacturing (AM) introduces a paradigm shift in the field of manu-
facturing technologies, significantly enhancing adaptability across a range of sectors such
as aerospace, biomedical engineering, and defense [1]. The capacity of this technology to
construct detailed, tailor-made 3D configurations through sequential layer deposition not
only enables the realization of mass customization but also facilitates the fabrication of
components with reduced mass, optimized material consumption, and expedited prototype
development [2].

Central to understanding and optimizing metal AM processes is the Parameter–
Signature–Quality (PSQ) model, which explains the complex relationships between the
settings of the manufacturing process (Parameters), the observable effects during the pro-
cess (Signatures), and the characteristics of the final product (Qualities). The PSQ model
serves as a critical framework, clarifying how variations in process parameters influence
the physical and mechanical properties of the final product through changes in process
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signatures [3–5]. This relationship is key to ensuring that the manufacturing process yields
parts that conform to predefined quality and performance standards, allowing for precise
control over the variables to achieve the desired outcomes [6].

Temperature emerges as a vital signature in this framework, with its management and
prediction being fundamental to the integrity and quality of AM parts [7,8]. In metal AM,
the rapid heating and cooling cycles lead to significant temperature fluctuations within the
substrate and deposited layers, affecting part quality and integrity through stress, distortion,
and microstructural changes [9,10]. Temperature variations can also cause defects such as
porosity due to trapped gas bubbles, a lack of fusion from insufficient melting, and surface
rugosity from thermal gradients. Non-uniform cooling rates can lead to heterogeneous
microstructures and low ductility, compromising mechanical properties. Additionally,
trapped inert gas bubbles can form due to improper shielding gas flow or high scanning
speeds, further degrading part quality. These defects have been widely reported in the
literature [11–14]. In addressing these challenges, real-time or near-real-time temperature
prediction models are essential. They enable the dynamic adjustment of process parameters
based on thermal feedback, thus enhancing thermal management and reducing defects for
improved precision and quality of the final product [15].

Therefore, the capability to monitor and control temperature directly influences PSQ
dynamics, impacting thermal signatures and, consequently, the structural and material
properties of manufactured components. In improving control over the AM process, these
developments not only fulfill specific application requirements but also push the limits of
manufacturing efficiency and product innovation in AM.

There has been extensive study on offline, data-driven approaches for thermal modeling
in metal AM. Offline, or batch learning, is a method where models are trained on a complete
dataset before deployment, without updating or learning from new data during operation.
These studies have explored various methodologies for predicting temperature distributions
and their effects on the final product’s quality, relying on historical data and computational
simulations to inform their predictions. For instance, research by Pham et al. [16] developed a
feed-forward neural network surrogate model to accurately predict temperature evolution
and melting pool sizes in metal bulk samples fabricated using the directed energy deposition
(DED) process. In another work, Mozaffar et al. [17] developed a recurrent neural network
(RNN)-based model to predict the thermal history of manufactured parts. Utilizing a consid-
erable amount of data produced by the Finite Element Method (FEM), this model is adept
at forecasting temperature fields both on the surface and within the interior of fabricated
parts. Moreover, in [18], Le et al. used FEM data from five processes with different currents
and voltages to train a neural network for temperature prediction at mesh points, using
coordinates, travel speed, and current as inputs. The model, demonstrating over 99% accuracy,
can predict temperature histories in new cases.

Adding to these conventional approaches, physics-informed neural networks (PINNs),
as introduced by Raissi et al. [19], have emerged as a novel machine learning paradigm
by integrating physical laws, typically described by partial differential equations (PDEs),
directly into the neural network architecture. Notable implementations include the study
by Zhu et al. [20], which utilized PINNs for temperature and melt pool dynamics in Laser
Powder Bed Fusion (LPBF), and the research by Xie et al. [21], focusing on temperature
prediction in DED. Additionally, Jiang et al. [22] demonstrated the effectiveness of PINNs in
melt pool temperature predictions with limited training data. These instances underscore
the potential of PINNs to improve predictive accuracy and computational efficiency in
metal AM by employing physical principles, especially when faced with sparse data.

However, both traditional offline models and PINNs face shortcomings that limit their
practicality within the evolving domain of metal AM. A shared challenge is their limited
adaptability to real-time manufacturing variations, frequently leading to discrepancies
between predicted outcomes and the dynamics of actual processes. These approaches
struggle to generalize across the diverse AM processes characterized by different materi-
als, geometries, and process parameters. Additionally, data-driven models require large
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training datasets, which are often not available in manufacturing. Meanwhile, PINNs,
despite leveraging physical laws for prediction, typically focus on narrow segments of
the AM process, which curtails their overall utility. Lastly, these models often require
extensive computational resources and processing time for training, which can impede
swift decision making critical for optimizing AM processes in real time. For example,
the processing time reported in [17] reached 40 h, rendering it impractical for scenarios
requiring real-time control.

Other approaches, such as analytical or numerical methods, can address some of
these limitations but still have their challenges. Recently, Yang et al. [23] implemented an
analytical model with three different heat sources to predict melt pool dimensions and
temperature distributions. Their study effectively analyzed the effects of laser processing
parameters and material thermophysical properties on the temperature field and melt pool
size, offering valuable insights into the intricate thermal behavior in metal additive manu-
facturing. However, analytical models lack real-time adaptability and cannot incorporate
dynamic process variations.

Online learning, a branch of machine learning, updates model parameters dynamically
with the arrival of new data, presenting a flexible alternative to conventional offline ap-
proaches. This method ensures that the model stays relevant and accurate through real-time
adaptation and is more efficient due to its reduced memory storage needs [24]. Unlike batch
learning, which requires access to the entire dataset for training, online learning processes
data incrementally, removing the need for substantial data storage. The benefits of online
learning are evident across various fields. For example, Yang et al. [25] designed an online
deep learning model for the continuous monitoring of train traction motor temperatures,
adjusting the model’s structure in response to new data. Wang et al. [26] proposed a com-
bined method that leverages offline learning’s predictive capabilities with online learning’s
adaptability for the real-time control of deformable objects.

In the realm of metal AM, the application of online learning is emerging. Ouidadi et al. [27]
applied online learning for real-time defect detection in Laser Metal Deposition (LMD), using
transfer learning and adaptive models like K-means and self-organizing maps to enhance
quality control by updating predictions with incoming data. Mu et al. [28] developed an
online simulation model for Wire Arc Additive Manufacturing (WAAM) that employs neural
network techniques to adapt predictions based on live data, showcasing an improvement
over conventional models. Despite these advances, a significant gap exists in the specific
application of online learning for thermal modeling within metal AM. In one of the first
attempts at surrogate modeling in this context, our recent study [29] proposed an online
thermal field prediction method using artificial neural networks for thermal field mapping
and a reduced-order model (ROM) for thermal field reconstruction, demonstrating its ef-
fectiveness in various experiments and simulations. However, this study is limited to thin
wall structures, which restricts its applicability to more complex geometries in metal AM.
Additionally, the method requires multiple pyrometers that need to be moved as new layers
are added, increasing the complexity and potential for measurement errors.

To the authors’ best knowledge, this study is the first to explore physics-informed
online learning for thermal modeling in metal AM, marking a pioneering step into this
research area. Our approach improves upon the existing state-of-the-art approaches by
offering dynamic adaptability to real-time data, enhanced predictive accuracy, and greater
flexibility and generalizability across different settings. Furthermore, it reduces the need
for extensive sensor setups, addressing practical challenges in the field.

To this end, this paper introduces a framework that integrates a physics-informed
neural network (PINN) with transfer learning and online learning to address the challenges
of thermal modeling in metal AM. At its core, this methodology leverages real-time temper-
ature field data alongside heat boundary conditions to accurately predict 2D temperature
fields at future timestamps for processes previously unseen and for which no prior data are
available before training. This novel approach is distinguished from prior methods by its
dynamic adaptability to a wide array of AM scenarios, including variations in geometries,
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deposition patterns, and process parameters. This adaptability significantly improves the
precision and utility of thermal field modeling in metal AM. Our PINN approach offers
several unique advantages, including the following:

1. Real-Time Adaptability: The PINN approach can quickly adapt to new data in real
time, allowing for immediate updates and predictions during the manufacturing pro-
cess. This is vital for applications requiring rapid decision making and adjustments.

2. Faster Computation Times: Neural networks, once trained, can perform predictions
much faster than traditional numerical simulations. This speed advantage is crucial
for the real-time monitoring and control of the AM process.

3. Continuous Learning: The PINN framework can continuously learn and improve
from new data, enhancing its predictive accuracy over time. This capability allows
the model to become more robust and reliable with ongoing use.

4. Utilizing Process Data: The PINN model leverages data gathered directly from the
manufacturing process, allowing for more accurate and context-specific predictions.
This use of real-time process data helps tailor the model to the specific conditions
of and variations in the ongoing AM process, further enhancing its applicability
and precision.

The organization of the rest of this paper is as follows. Section 2 introduces the physics-
informed online learning framework tailored for real-time temperature field prediction.
Section 3 outlines the data generation and model implementation strategies. Section 4
discusses the results, emphasizing the framework’s capabilities and exploring potential
limitations. Finally, Section 5 concludes this paper, summarizing the contributions and sug-
gesting future directions for enhancing the adaptability and precision of thermal modeling
in metal AM.

2. Methodology

In this section, we delve into the development of the proposed physics-informed online
learning framework aimed at the prediction of 2D temperature field in metal AM processes.
The framework consists of two distinct phases. Initially, an offline learning phase is conducted,
where a PINN, incorporating a neural network with physics-informed modifications, is trained
on a dataset from a previously conducted metal AM process. This initial phase enables the
PINN to grasp the fundamental patterns and dynamics inherent in AM thermal processes,
creating a robust foundation of knowledge for subsequent real-time data exposure.

In the online learning phase, this pre-trained PINN serves as the base model for
dynamic adaptation to an unseen process, for which data are acquired in real time. The
integration of Synaptic Intelligence (SI) [30] and an adaptive learning rate helps maintain
and apply previously acquired knowledge as the PINN adapts to new data from different
AM processes. This setup enables the PINN to dynamically update its weights through
online gradient descent [31] in response to new information, demonstrating its flexibility
and prompt response to temperature changes in the new process.

The PINN’s architecture consists of three core components: the neural network,
physics-informed (PI) input, and a PI loss function. It employs a series of thermal images
to predict the 2D temperature field at future time steps, which capture the 2D temperature
fields of the currently deposited layer of the manufactured part, along with a PI input
that includes heat input characteristics. More precisely, the model inputs a sequence of
w thermal images spanning from timestamps (n− w) to (n) and the process’ heat input
characteristics. It uses these data to forecast the thermal image (i.e., 2D temperature field)
at the timestamp (n + i). Here, w represents the window size of input data, capturing a
specific range of thermal imaging, and i denotes the hyperparameter indicating the future
timestamp targeted for prediction, focusing on the evolving thermal conditions of the
currently deposited layer. Figure 1 presents an overview of the proposed framework.

It is worth mentioning that while thermal imaging provides valuable temperature
distribution data, its absolute values can be unreliable due to the non-linearity of gray
body emissions in high-temperature metals. This challenge can be mitigated by incorpo-
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rating a pyrometer for calibration or using two synchronized sensing devices at different
wavelengths to calculate temperature based on emissions using Planck’s Law [32]. Addi-
tionally, hyperspectral thermal imaging and two-wavelength pyrometry can offer accurate
temperature distributions without needing emissivity adjustments [33].

We will further elaborate on the proposed framework in the following sections:
Section 2.1 delves into the components of the PINN; Section 2.2 discusses the pretraining
phase, highlighting how the model is prepared using historical AM data; finally, Section 2.3
covers the online learning phase, detailing the adaptation of the pre-trained PINN to new,
real-time AM processes.
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Figure 1. Schematic of the two-stage framework for online 2D temperature prediction in metal AM.
Both stages leverage physics-informed components based on process parameters and material to
guide the PINN: initially through training on previous AM thermal patterns, and subsequently
through updates with real-time thermal images.

2.1. Proposed Physics-Informed Neural Network

The PINN used in our framework is designed to integrate real-time data with physics-
based constraints, enabling accurate predictions of thermal fields in metal additive man-
ufacturing This specialized neural network incorporates convolutional long short-term
memory (ConvLSTM) layers and convolutional layers into the model’s architecture. It also
includes an auxiliary input for process heat flux information, represented as a 2D matrix
(i.e., PI input), and integrates a boundary condition (BC) loss term into the overall loss
function (i.e., PI loss). Each component is essential for accurately predicting the thermal
field by leveraging both data-driven insights and physics-informed constraints. In Figure 2,
the proposed PINN—which comprises three key components, the neural network, PI loss,
and PI input—is presented.
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Figure 2. PINN with its components: the neural network, PI input, and PI loss.

54



Materials 2024, 17, 3306

2.1.1. Neural Network Architecture

The architecture of the neural network is designed to capture the complexities of
thermal field prediction within the domain of metal additive manufacturing. Central to this
architecture are the convolutional long short-term memory (ConvLSTM) layers, which can
simultaneously process spatial and temporal information, making them an ideal choice for
tasks addressed in this paper, where 2D thermal images serve as inputs, and the goal is to
predict a 2D temperature distribution evolving over time. The choice of CNNs and RNNs
over ANNs is due to the need to handle both spatial and temporal dependencies in image
data, which is critical for accurate thermal field prediction. To complement the ConvLSTM
layers, the architecture also includes traditional convolutional layers. These layers specialize
in extracting spatial features from each thermal image, identifying intricate patterns and
temperature distributions essential for constructing an accurate predictive model. This
architecture is superior because it leverages the strengths of both CNNs for spatial feature
extraction and RNNs for temporal sequence modeling, leading to more precise and reliable
predictions. Together, these neural network components form a powerful and efficient
architecture designed to tackle the challenges of predicting thermal fields in the dynamic
environment of metal AM processes.

2.1.2. Physics-Informed Input

In our framework, the Physics-Informed (PI) input is incorporated to infuse the model
with physics-based information regarding the heat input of the manufacturing process,
thereby enabling the model to capture the intricate relationship between process parameters
and the resultant temperature field. This addition ensures that the neural network can
access a richer set of data that reflect the underlying physical processes, enhancing its
ability to make better predictions. We chose the laser heat flux as the PI input. This
parameter serves as a quantifiable measure of the energy intensity and distribution as the
laser interacts with the material, which is vital for understanding the thermal dynamics
involved in the process. The laser heat flux represents a critical factor that influences key
thermal phenomena, including the melting and solidification processes and the creation of
thermal gradients within the layer currently under fabrication.

The process of accurately estimating the laser heat flux is a cornerstone in enhancing
our model’s predictive accuracy. In the literature, laser heat flux is modeled in different
modes, namely point heat source, Gaussian surface heat source, and Gaussian body heat
source [23]. Building on this foundation, we utilized a Gaussian surface heat flux model [34]
to facilitate a nuanced representation of how the laser’s energy is dispersed across the
material layer. This model incorporates critical factors such as laser power (P), the radius of
the laser beam (rbeam), and the material’s absorptivity (η) to create a comprehensive picture
of the energy input:

qlaser(x, y) = − 2ηP

πr2
beam

exp

(

2d2

r2
beam

)

(1)

This equation calculates the heat flux (i.e., qlaser) at each point (x, y) on the material’s
surface, based on the distance d from the laser center, effectively mapping out the spatial
energy profile imposed by the laser. The precision in capturing this energy distribution is
critical for simulating the thermal dynamics during the additive manufacturing process
accurately. It allows our model to predict the resulting temperature fields with sufficient
fidelity, considering how variations in laser settings or material properties could impact
the thermal environment within the layer being printed. Figure 3 illustrates an instance of
laser application on a surface, modeled using the Gaussian surface heat flux, along with its
corresponding qlaser matrix.
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Figure 3. An example of Gaussian surface heat flux on a surface (left) and its corresponding qlaser

matrix (right).

2.1.3. Physics-Informed Loss

In our PINN, the PI loss function is essential to reflecting the physical laws governing
the system. The PI loss is designed to specifically enforce boundary conditions, which are
critical for accurately modeling thermal processes in metal additive manufacturing.

Boundary conditions dictate how surfaces of a part interact with their environment,
influencing heat transfer mechanisms such as conduction, convection, and radiation, which
are crucial for predicting temperature fields during manufacturing. Figure 4 showcases
the three heat transfer mechanisms considered in our problem. The PI loss minimizes the
residual of the physical equations at these boundaries, improving the network’s adherence
to physical constraints and ensuring that predictions are both statistically accurate and
physically plausible.

By penalizing deviations from these physical laws, our model’s reliability is bolstered.
For the problem of predicting the 2D temperature field of the currently deposited layer, the
specific boundary condition for the top surface is mathematically expressed as follows:

−k
∂T

∂n
= hc(T − Tamb) + σε(T4 − T4

amb) + Qlaser (2)
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Figure 4. The boundary conditions used in the physics-informed loss function for a DED process,
illustrating the heat transfer mechanisms, including heat from the laser, heat conduction to the layer
below, convective heat loss, and radiative heat loss.

In this equation, T denotes the matrix of the 2D temperature fields, representing the
temperature distribution during the manufacturing process captured by thermal images.
This equation encompasses several heat transfer mechanisms: The term −k ∂T

∂~n calculates
the conductive heat flux through the surface, with~n denoting the normal direction outward
from the surface. This term accounts for interlayer heat conduction in the normal direction
(z-axis or interlayer direction). hc is the convective heat transfer coefficient, modeling
heat loss caused by air or fluid motion over the surface. Radiative heat loss is given by
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σǫ(T4− T4
amb), where σ is the Stefan–Boltzmann constant, and ǫ is the emissivity, indicating

energy lost as radiation based on the fourth power of the temperature difference between
the surface and ambient air. Qlaser represents the heat input from the laser, crucial for
the melting and fusing of material layers. Figure 4 illustrates the boundary conditions
used in the physics-informed loss function. Constants k, hc, σ, and ǫ are set based on
the values for the materials used in the simulation, derived from the material data in the
simulation software.

Given the boundary condition, the residual for the boundary condition can be de-
fined as

RPI(T) = k
∂T

∂~n
+ hc(T + Tamb) + σǫ(T4 − T4

amb) + Qlaser (3)

The PI loss, LPI , is computed as the mean squared error of the residuals across N
thermal images:

LPI =
1
N

N

∑
i=1

R2
PI(Ti) (4)

The total loss function for the PINN, which includes both the data-based loss (LData)
and the physics-informed loss (LPI), is weighted to balance the contribution from each
component. The weights for each loss term, wPI for LPI and wD for LData, are established
during the training process. This involves observing and adjusting the impact of each loss
term to ensure that they contribute equally to the overall loss. The combined loss function
is expressed as follows:

LTotal = wPI LPI + wDLData (5)

Here, wPI and wD denote the weights assigned to the PI loss and data loss, respectively.
These weights are proportionally set to balance the scale between two terms in the loss
function, contributing to the improved training robustness of the model.

It is worth mentioning that the physical principle in Equation (2) cannot capture all the
complex phenomena involved. The physics incorporated have some limitations. Firstly, it
does not account for the intricate nature of heat transfer in the porous material ahead of the
heat source, or fully capture the dynamics of the initial layers. Additionally, the assumption
of a semi-infinite plate may not accurately reflect the physical realities at the metal powder
size resolution. However, our approach is open to incorporating more detailed physics
equations, which will strengthen the technology as a general method in future studies.

2.2. Offline Learning Stage

In the offline learning stage, our framework trains a PINN on data from a completed
metal AM process. This training integrates physics-based inputs and loss functions tailored
to the specific material properties and heat input characteristics of the process, equipping
the model with an understanding of the underlying thermal dynamics. This comprehensive
preparation sets a solid foundation for the model’s subsequent application in the online
learning stage.

The PI loss function in our framework incorporates material properties—the thermal
conductivity (k) and convection heat transfer coefficient (hc), determined by the materials
used in the process. These properties are crucial for enforcing realistic boundary behaviors
for accurate thermal modeling. Additionally, heat input parameters such as laser power (P),
beam radius (rbeam), and material absorptivity (η), are integrated into a physics-informed
input that characterizes the laser heat flux.

As the model transitions to the online learning phase, it requires the careful manage-
ment of model updates to ensure that new data do not drastically alter the neural network’s
established weight configurations. It is essential to maintain the network’s fundamental
knowledge from the offline learning phase, enabling it to adjust to new data while pre-
serving its accuracy and ability to predict temperature fields as taught by historical data.
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Synaptic Intelligence addresses this by evaluating the significance of each weight relative
to the tasks mastered previously. This evaluation is captured mathematically by omega
values (Ω), which highlight weights that are key to the model’s prior tasks and should
therefore be conservatively adjusted with incoming data.

Ωi =
∑t gi,t∆wi,t

(∆wi)2 (6)

Here, Ωi is the omega value for weight i, gi,t is the gradient of the loss with respect to
weight i at time t, ∆wi,t is the change in weight i at time t, and ∆wi is the total change in
weight i over the training period. To streamline computation and avoid potential issues
like division by zero, an approximation is used:

Ωi ≈∑
t

g2
i,t (7)

This approach posits that the importance of weight is indicated by the sum of its
gradients’ magnitudes over time, implying that weights with consistently significant
gradients are more important for the model’s function than otherwise.

Incorporating these omega values into the online learning phase allows the model to
adjust weight importance flexibly, integrating new data while maintaining the core insights
gained previously. The careful balance between incorporating new information and pre-
serving valuable existing knowledge improves the model’s adaptability and performance
across varied additive manufacturing scenarios.

2.3. Online Learning Stage

In the online learning phase, the primary objective is to predict the temperature field
for a new, previously unseen metal AM process that may exhibit characteristics different
from the process used during the offline learning stage. This phase is crucial for allowing
the model to transition smoothly from utilizing foundational knowledge to integrating
new insights, thus maintaining accuracy and adaptability during the dynamic conditions
of AM processes. A critical aspect of this phase involves updating the PI input and PI loss
function to incorporate new process characteristics as they are encountered. For instance,
modifications in laser power, material properties, or beam radius require adjustments to
the PI input that captures the laser heat flux and the PI loss terms that enforce adherence
to new boundary conditions and material behaviors. By dynamically adapting these
PI components to reflect new process characteristics, the model effectively incorporates
updated knowledge, enhancing its accuracy and adaptability across different AM setups.

In this phase, the PINN, previously trained during the offline learning stage, serves as
the initial model. Its weights are updated in real time as new data from the ongoing process
are received. The PINN employs online gradient descent (OGD) to dynamically adapt to
new data. This method allows for immediate adjustments to the model’s parameters, en-
hancing its ability to refine predictions continuously as new information becomes available.
The mathematical expression for updating the weights through OGD is shown below:

wt+1 = wt − α∇L(wt, xt, yt) (8)

where wt and wt+1 represent the weights before and after processing the new data point,
respectively. The learning rate, α, determines the step size for the update, and∇L(wt, xt, yt)
is the gradient of the loss function relative to the weights for the current data point xt and
its target value yt.

The loss function used during this phase includes components for data loss (Ldata), PI
loss (LPI), and Synaptic Intelligence (SI) loss (LSI):

Ltotal = wDataLdata + wPILPI + wSILSI (9)
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where LSI is specifically formulated as

LSI = ∑
i

Ωi(∆wi)
2 (10)

Here, wData, wPI, and wSI are the weights that are determined during the training
process to maintain a balanced scale among the various terms in the loss function. Ωi

quantifies the importance of each weight i in the neural network, reflecting its role in prior
tasks learned by the model. The term ∆wi measures the change in weight i due to new
data, and squaring this change (∆wi)

2 aims to minimize large shifts in critical weights,
thus preserving essential knowledge and mitigating catastrophic forgetting. This strategic
formulation ensures that the model not only adapts to new data but also retains accuracy
and stability in predictions by balancing novel learning with the preservation of previously
acquired knowledge.

Additionally, we adjust the learning rate dynamically, starting with a lower value
to prevent drastic parameter shifts when limited data are available. This conservative
approach maintains model stability. As more data are integrated and the model adapts, we
increase the learning rate to accelerate learning and enhance adaptability, ensuring that the
model remains responsive to new information while preserving its accuracy.

3. Data Generation and Model Implementation

In this section, we outline the dataset generation using simulations, emphasizing
the distinct characteristics of these simulations. We utilized finite element simulations
with ANSYS software, specifically the Workbench AM DED 2022 R2 module, to create
the training and testing datasets for our online learning framework. We conducted a
total of four simulations, varying materials, geometries, deposition patterns, and process
parameters to evaluate the framework’s generalizability under diverse conditions.

These simulations standardized the pass width and layer thickness at a consistent
1 mm. Materials such as 17–4PH stainless steel and Inconel 625 were chosen for their
prevalent use and unique properties pertinent to our study. Geometrically, cylinders and
cubes were explored for their common industrial applications, and three distinct deposition
patterns were investigated to further assess the framework’s flexibility.

For process parameters, we defined two distinct scenarios: one with a deposition speed
of 10 mm/s and a higher laser power, and another at 6 mm/s with a lower laser power.
Our thermal analysis incorporated factors such as thermal conductivity, convection, and
radiation, maintaining substrate and ambient temperatures at a constant 23 °C. Activation
temperatures were set at 2000 °C for the lower laser power and 2400 °C for the higher laser
power, noting that the simulation abstracts from directly modeling the laser’s heat flux.
Our study focused on multi-layer fabrications, where each layer follows the same printing
pattern and geometry. This approach was chosen to systematically investigate the thermal
behavior and ensure consistency across layers. The number of layers for these processes
were 10, 10, 9, and 8. An overview of different simulated processes A–D is illustrated in
Table 1.

Although only four simulations were conducted, they were deliberately designed to
encompass a range of characteristics, including variations in material types, geometries,
deposition patterns, and laser parameters. This diversity was intended to validate the
transferability of knowledge from one process to another. The boundary conditions for these
simulations were carefully chosen to replicate realistic metal AM processes. Specifically,
we considered factors such as thermal conductivity, convection, and radiation, while
maintaining constant ambient conditions. Despite these efforts, simulation data cannot
fully capture the complexities and variabilities of actual AM processes, such as unforeseen
environmental factors and material inconsistencies. Future work should extend the number
of simulations and incorporate experimental data to enhance the reliability and applicability
of the findings.
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Table 1. Illustrations of four simulated processes. In the geometry and deposition patterns, the
solid lines indicate the deposition geometry, and the dashed lines indicate the direction of the
laser scanning.

Process A Process B Process C Process D

Material 17-4PH Stainless
Steel

17-4PH Stainless
Steel

17-4PH Stainless
Steel

Inconel 625

Process
Temperature

2400 °C 2000 °C 2000 °C 2000 °C

Travel Speed 10 mm/s 6 mm/s 6 mm/s 20 mm/s

Number of
Layers

10 10 9 8

Geometry and
Deposition

Pattern

Each simulation produced datasets capturing transient temperature values at each
timestamp, from which approximately 16,000 input–output pairs per simulation were
extracted for training and validation. These pairs consist of sequences of the 2D temperature
field for the currently deposited layer as inputs, with the outputs representing the 2D
temperature field of the same layer for the subsequent timestamp.

The model was implemented in TensorFlow. We constructed a neural network with six
ConvLSTM layers and four convolutional layers, each utilizing 20 filters. This network was
pre-trained using data from the simulated processes, with a learning rate set to 10−5. The
pretraining phase employed three previous timestamps (w = 3) to predict the temperature
field five seconds ahead (i = 50). Upon completing pretraining, both the model’s parame-
ters and the omegas for each parameter were saved. These omegas indicate the importance
of the weights in retaining learned knowledge, which is vital for the subsequent online
learning phase.

In the online learning stage, the architecture remains unchanged, and the pre-trained
model, equipped with the saved weights, is introduced to streaming data from a new
process simulation.

Based on the insights from Section 4, the learning rate is dynamically adjusted through-
out the phase, starting at 5 × 10−8 and incrementally increasing to 5 × 10−5 to better
accommodate learning from the dynamic, real-time data. While setting wData to 1, the
regularization parameter wSI is set to 10−5 to balance the scales of the data loss (LData)
and the Synaptic Intelligence loss (LSI), ensuring harmony between adapting to new in-
formation and preserving essential insights from previous learning. Similarly, wPI is set
to 10−15 to align the physics-informed loss (LPI) with the other terms in the loss function,
maintaining consistency across the model’s evaluation criteria. This calibration supports
the neural network to be effectively trained on the fly with the new process data, ensuring
the model’s continuous adaptation and robustness in predicting temperature fields across
varied additive manufacturing scenarios.

4. Results and Discussion

To evaluate the real-time adaptability of our online learning framework to new data,
we carried out a sequence of experiments. We designated Process A (Table 1) as the baseline
dataset for the offline learning phase, creating a foundational knowledge base for the model
to understand the standard thermal patterns of metal AM processes. We then transitioned
to the online learning phase, progressively introducing datasets from Processes B, C, and D
(Table 1). Each dataset represented a unique scenario and varied incrementally from the
parameters of Process A.
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The experimental processes were strategically designed to evaluate the performance
of the online learning framework under various scenarios: Process B mirrored Process
A, differing only in specific operational parameters to test the model’s sensitivity to such
changes under controlled conditions. Process C presented a greater challenge by varying
not only the process parameters but also the deposition patterns, assessing the model’s
adaptability to both thermal and process changes. Process D, introducing a change in
geometry and material, represented the most significant departure from the initial setup,
testing the model’s ability to adapt predictions to new structural contexts.

To evaluate the model’s performance, we used the Mean Absolute Error (MAE) and
Mean Absolute Percentage Error (MAPE). The mathematical representations for these
metrics are as follows:

MAE =
1

n×m

n

∑
i=1

m

∑
j=1
|Yij − Ŷij|, (11)

MAPE =
100%
n×m

n

∑
i=1

m

∑
j=1

∣

∣

∣

∣

∣

Yij − Ŷij

Yij

∣

∣

∣

∣

∣

. (12)

In these equations, Yij and Ŷij denote the actual and predicted temperature values
for each element in the 2D temperature field, respectively, with n and m representing the
number of rows and columns in the temperature matrix. The individual errors calculated
using these metrics provide insights into the precision at each data point, while the overall
error for the validation dataset, obtained by averaging these individual errors, offers an
evaluation across the entire dataset.

4.1. Performance of Physics-Informed Online Learning

The performance evaluation of the physics-informed (PI) model during the online
learning phase involves a structured training procedure. The dataset from each process—B,
C, and D—was split such that the first 80% of data were used incrementally as the training
set, allowing the model to continuously update and refine its predictions. The remaining
20% of the data serve as the validation set, used to assess the model’s predictive accuracy
and to validate its generalization capability on unseen data.

The model’s ability to process new batches of data swiftly is a significant advantage,
particularly in real-time applications. On average, updating the model with a new batch of
data takes just 0.21 s on Compute Canada’s infrastructure using a single NVIDIA Tesla T4
GPU. This demonstrates the framework’s efficiency and practical utility in scenarios where
rapid data processing and immediate decision making are crucial.

In Figure 5, the MAPE and MAE are illustrated, providing clear visual indicators of
the model’s performance across various stages of the learning process. These metrics are
plotted against the percentage of process data that were incrementally introduced to the
model, which are represented on the x-axis. The y-axis, meanwhile, displays the values of
the MAPE or MAE, indicating the model’s error rate at each stage of data integration.

For Process B, the initial spike in the MAPE suggests an adjustment period as the model
adapts to changes in process parameters. As more data are processed, a steady decrease in
error is observed, highlighting the framework’s capacity to learn and refine its predictions
based on closely related baseline conditions. In contrast, Process C, with its introduction
of new deposition patterns in addition to varied process parameters, starts with a higher
MAPE. This underscores the complexity introduced by the new material properties and
deposition strategies. However, the subsequent decline in the MAPE indicates effective
model adaptation to these complexities, showcasing its ability to manage multi-faceted
changes in AM processes.

Process D shows an initially high MAPE, reflecting the challenge of accommodating
a new material and geometric configuration, but this quickly improves as the model
assimilates more data and fine-tunes its predictions to the altered geometry. Despite
Process B’s closer resemblance to Process A, the modeling for Process D results in lower
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errors than for Process B. This could be attributed to the circular deposition patterns in
Processes A and B, which may complicate thermal management due to surface curvature
affecting heat conduction and convection, thereby posing greater modeling challenges than
the uniform cubic geometry of Process D. We utilized multi-layer simulations to capture
the cumulative thermal effects and inter-layer interactions, which are crucial for accurate
temperature predictions and process optimization. However, we recognize the importance
of analyzing more complex geometries and their impact on thermal predictions, which will
be considered in future work.
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Figure 5. Comparative analysis of MAPE and MAE across processes B, C, and D.

4.2. Comparison of Proposed Framework with Machine Learning Framework

In this study, we conducted a comparative analysis between the physics-informed (PI)
online learning framework and a data-driven approach. As outlined in Section 2.1, the PINN
model that is used in the PI framework incorporates three main components: the neural
network architecture, physics-informed (PI) inputs, and physics-informed (PI) loss function.
In contrast, the data-driven model used for comparison utilizes the same neural architecture
but excludes the PI components, focusing solely on data-centric learning methods.

To ensure a comprehensive evaluation, we assessed the performance of both the PI
and data-driven frameworks across two critical areas: the entire temperature field of the
layer being deposited and specifically within the Heat-Affected Zone (HAZ) and melt pool
area. The HAZ is a crucial region in metal AM processes, characterized by the surrounding
material of the weld or melt pool that experiences thermal cycling without melting. This
zone is drastically influential in microstructural changes due to thermal exposure, which
can significantly impact the mechanical properties and integrity of the final product [35].
The accurate identification and management of the HAZ and melt pool are essential for
ensuring the quality of manufactured components.

The literature indicates that the identification of the HAZ in AM processes typically
involves sophisticated methods such as thermal imaging, metallurgical analysis, and com-
putational modeling. In our study, the HAZ is defined as the region where the temperature
exceeds a specific threshold that modifies the microstructure. For materials like 17–4PH
stainless steel and Inconel 625, the HAZ temperature thresholds are set at 1050 °C [36] and
960 °C [37], respectively, reflecting their unique thermal characteristics. These established
thresholds facilitate the analysis of both the HAZ and melt pool, which is crucial for the
comparative evaluation of the frameworks in our study.

Figure 6 presents the MAPEs of both the PI and data-driven frameworks as they
predict temperature fields across the entire deposited layer (upper row), the melt pool, and
the surrounding HAZ (lower row). In Process B, the PI framework consistently outperforms
the data-driven model, exhibiting lower errors when predicting the temperature field for
future timestamps as it continuously integrates new data. However, for Processes C and
D, despite the PI model initially showing lower error rates—thanks to the incorporation
of physics-based knowledge during training—the data-driven model achieves a slightly
lower MAPE in the latter half of the process. This shift can be attributed to the additional
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requirements imposed by the physics-informed constraints in the PI model, which slightly
decelerates error reduction.

Regarding the specific areas of the HAZ and melt pool, the PI framework maintains
superior performance throughout the online learning process, consistently presenting lower
error rates compared to its data-driven counterpart. Notably, the disparity between the PI
and data-driven models is more noticeable at the beginning of the online learning phase
when less data are available. This underscores the significant advantage of incorporating
prior physical knowledge into the neural network, which enhances initial model guidance
and prediction accuracy at the early stages. It is important to note that the error rates for
both models are generally higher in the HAZ and melt pool areas. This increased error is
due to the more complex thermal behavior in these zones, influenced by phenomena such
as steep thermal gradients, rapid solidification rates, and varied material properties at high
temperatures. These factors complicate the thermal dynamics, making accurate predictions
more challenging [20].
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Figure 6. Comparative MAPE of physics-informed and data-driven models across Processes B, C,
and D.

The comparative analysis between the PI and the data-driven frameworks is further
elucidated by examining their respective outputs against the ground truth provided by
simulations. Figure 7 illustrates the predicted temperature fields for both the PINN and
data-driven models alongside the simulated “true” temperature distributions for process C.

In the provided examples, both the PI and data-driven frameworks align variably with
the simulation results, with most predicted temperatures differing by less than 20 °C from
the simulated temperature. Near the melt pool, discrepancies increase, though the PI model
generally approximates simulated values more closely, especially around critical areas like
the HAZ and melt pool itself. This precision is indicative of the PINN’s ability to incorporate
physical laws into its predictions of complex phenomena in metal AM processes.

The figure also displays the absolute difference panels, which quantify the discrep-
ancies between the predictions and the simulations. These discrepancies highlight areas
where the models struggle to capture the exact thermal behaviors, potentially due to the
intricate dynamics within the melt pool and HAZ that are challenging to model precisely
with data-driven approaches alone.

The “HAZ + Melt Pool MAPE” images further provide a focused view of the error
distribution within the HAZ, emphasizing the regions where the predictions deviate most
significantly from the observed data. This detailed error analysis is critical for refining the
models and for understanding the specific conditions under which each model may require
further tuning or additional data to enhance the accuracy.

In these comparisons, the PI framework consistently outperforms the data-driven
framework, particularly in critical areas such as the HAZ and melt pool, where precise
temperature knowledge is crucial for ensuring the quality and integrity of the manufactured
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parts. This superiority of the PI framework is especially significant when considering that
the provided examples are outputs at a stage where only 80% of the data from the new
process have been integrated into the models, as indicated in Figure 6. It is noteworthy that
the PI framework’s performance advantage becomes even more pronounced when less
data are available, underscoring its robust capability to effectively utilize physical laws to
predict complex phenomena with limited input data. This makes the PI model particularly
valuable in the early stages of new process integration, where data scarcity can often hinder
accurate modeling. Additionally, the PI framework’s integration of physical principles
allows it to maintain a high prediction accuracy across various conditions and complexities
of the AM processes, providing a reliable and efficient tool for process optimization and
control. This reliability is crucial for applications where obtaining extensive training data
is impractical or time-consuming, thus ensuring consistent quality and performance in
real-world manufacturing scenarios.

Figure 7. Comparative top view of temperature fields for Process C, showing framework predictions
alongside simulation results with physics-informed predictions on top and data-driven predictions
below.

4.3. Effect of Varying Learning Rates

This section evaluates the impact of different learning rate strategies on the perfor-
mance of the PI framework during its online learning stage. As the model transitions from
pretraining on a previous process’s data to incremental data from a new process, selecting
an optimal learning rate strategy becomes critical for managing adaptability and accuracy.

We explore three main learning rate strategies: constant, linear increasing, and lin-
ear decreasing. A constant learning rate strategy provides a stable update mechanism
throughout the learning process, suitable for environments where data properties do not
vary significantly. A linear increasing learning rate strategy allows the model to start with
cautious adjustments and progressively increase its responsiveness as it adapts to the new
data. Conversely, a linear decreasing learning rate strategy enables the model to initially
make broad updates and gradually refine these adjustments to focus on detailed patterns.

Figure 8 illustrates the MAPEs for these strategies, showcasing how each one impacts
model accuracy over the training period.
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The constant learning rate was set at 5× 10−5, a value carried over from the offline
learning stage to provide a baseline of stability. In the increasing learning rate strategy, the
learning rate began at a much lower value, 5× 10−8, intentionally chosen to demonstrate
the effect of gradually adapting the learning rate on the model’s performance. This strat-
egy proved particularly beneficial as it allowed the model to adjust more significantly as
its confidence in the new data increased, leading to a consistent reduction in error rates
throughout the training process. By gradually increasing the learning rate, this approach
helps prevent stagnation, ensuring that the model remains dynamic and responsive as it
encounters new and increasingly complex data. This calibration of learning rate adjust-
ments fosters a more gradual adaptation to new data, enabling the model to evolve its
learning strategy in sync with the unfolding complexities of the process. On the other
hand, the decreasing learning rate started at 5× 10−5, aiming to quickly assimilate broad
patterns before reducing the rate to 5× 10−8. However, this approach occasionally resulted
in higher error rates in training, indicating that a high initial rate might compromise the
model’s ability to adapt to new complexities as they arise.
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Figure 8. Comparison of learning rate strategies on PINN performance.

The analysis indicates that the choice of learning rate strategy and its initial setting
plays an important role in the model’s ability to adapt to new data. Among the strategies ex-
amined, the increasing learning rate strategy not only facilitated better initial learning with
minimal risk of error escalation but also allowed for enhanced adaptability and precision
as the complexity of the data increased. This strategy’s success underscores the importance
of a dynamic learning rate adjustment in environments where data characteristics are
expected to evolve substantially, such as in metal AM.

4.4. Effect of Varying Batch Sizes

In this section, we explore the impact of varying the batch sizes of new online data
on the performance of the PI online learning framework, specifically focusing on batch
sizes of 2, 4, 8, 16, and 32. The batch size is a critical hyperparameter in machine learning
that determines the number of training examples used in one iteration to calculate the
gradient during the model training process. This parameter significantly influences both
the computational efficiency and the convergence behavior of the training algorithm.

Figure 9 illustrates the MAPE for different batch sizes across Processes B, C, and D.
This visualization helps assess how the batch size impacts model accuracy and learning
dynamics during the online training phase. The results reveal that as the batch size increases,
there is a noticeable stabilization in error reduction throughout the online learning process.
Larger batch sizes tend to smooth out the learning updates due to the averaging of gradients
across more data points. This aggregation diminishes the influence of outliers and reduces
the variability of weight updates, leading to a more consistent and gradual decrease in
error rates.

Moreover, larger batch sizes offer computational advantages, particularly for real-time
applications. Processing larger batches can utilize computational resources more efficiently,
potentially speeding up the training process since fewer updates are required per epoch.
However, this comes with the caveat that the model must wait for the entire batch of
data to be collected and processed before proceeding with an update. This requirement
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can introduce delays in scenarios where data are being gathered incrementally, such as
in real-time monitoring or streaming applications. Hence, there is a trade-off between
computational speed and update latency that needs to be carefully managed to optimize
real-time performance.
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Figure 9. Impact of batch size on model performance across Processes B, C, and D.

In conclusion, the choice of the batch size is a decision that balances several factors,
including error stability, computational efficiency, and responsiveness to new data. Larger
batches may be preferable for scenarios where computational speed is crucial and data are
abundant, but they require careful consideration of the delay in model updates.

4.5. Discussion on Geometry and Multi-Layer Fabrications

We utilized multi-layer simulations with consistent geometries across layers to cap-
ture the cumulative thermal effects and inter-layer interactions, which are important for
accurate temperature predictions and process optimization. This approach allowed us to
systematically investigate thermal behavior and ensure consistency in our predictions.

Geometrical variations, such as changes in the shape and size of the printed part, sig-
nificantly impact the thermal distribution due to differences in heat conduction, convection,
and radiation pathways. Complex geometries can result in non-uniform thermal fields,
leading to localized areas of higher or lower temperatures that can affect material proper-
ties and structural integrity. The accumulation of heat in certain areas can cause thermal
stresses and deformations, making it important to predict these thermal fields accurately.
Understanding and predicting these thermal variations are important for refining and
optimizing the printing path to ensure uniform temperature distribution, reduce thermal
stresses, and improve the overall quality of the final product.

Analyzing more complex geometries and varying geometries across layers is valuable
for fully understanding their impact on thermal behavior and inter-layer interactions. This
knowledge will enhance the model’s applicability and provide a more comprehensive
understanding of metal AM processes.

5. Conclusions

In this paper, we introduce the first physics-informed (PI) online learning framework
specifically designed for temperature field prediction in metal additive manufacturing
(AM), utilizing a physics-informed neural network (PINN). This innovative framework
integrates a PINN that includes three main components—a neural network architecture,
physics-informed inputs, and physics-informed loss functions. Initially, the PINN is pre-
trained on a known process during the offline learning stage to establish a foundational
model. It then transitions to the online learning stage where it continuously adapts to new,
unseen process data by dynamically updating its weights.

Our results demonstrate the robust performance of the PI online learning framework
in predicting temperature fields for unseen processes, effectively handling various man-
ufacturing conditions. Particularly notable is its superior performance over data-driven
counterparts in predicting temperatures in critical areas such as the Heat-Affected Zone
(HAZ) and melt pool. These regions are vital for the overall quality and structural integrity
of the manufactured parts, highlighting the importance of precise temperature predictions
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in these areas. The PINN’s integration of physical laws and prior knowledge provides a
distinct advantage, enabling more accurate predictions under diverse conditions. Addi-
tionally, our analysis of key operational parameters—including the learning rate and batch
size of the online learning process—reveals their roles in optimizing the learning process,
further enhancing the framework’s effectiveness.

The key contributions of this study are as follows:

1. Online Learning and Prediction: This study is potentially the first attempt to apply
online learning for the real-time modeling and prediction of temperature fields in
previously unseen AM processes. This pioneering effort represents an advancement
toward adaptable manufacturing technologies.

2. Physics-Informed Integration: We incorporated heat boundary conditions into our
framework as the physics-informed loss function, and heat input characteristics as
physics-informed input within the neural network. This integration significantly
increases the prediction accuracy and reliability.

3. Framework Generality: Our methodology proves highly versatile, demonstrating
effectiveness across a diverse range of AM conditions. It can accommodate changes
in process parameters, materials, geometries, and deposition patterns, showcasing an
essential step toward a universally adaptable AM framework.

4. Improvement in Predictive Accuracy and Process Adaptability: By integrating real-
time data with PINNs, this research enhances the predictive accuracy and adaptability
of thermal models in metal AM. The framework’s dynamic adaptation to new data and
varying conditions ensures precise temperature predictions, improving quality and
consistency in AM processes. This advancement over existing methods enables more
accurate and reliable thermal modeling, supporting the development of adaptable
and efficient AM technologies.

In conclusions, this study represents a pioneering effort in applying physics-informed
online learning to metal AM, offering significant improvements in predictive accuracy
and operational efficiency. Looking ahead, experimental data from actual metal AM
processes can be integrated to enhance the physics-informed machine learning framework.
The incorporation of real-world data is expected to improve the accuracy of the model’s
predictions by capturing the complex and nuanced behaviors of AM environments. We
will also consider more complex geometries and varying geometries across layers in future
work to further refine our predictive capabilities.
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Abstract: Wire-arc additive manufacturing (WAAM) is a promising industrial production technique.
Without optimization, inherent temperature gradients can cause powerful residual stresses and
microstructural defects. There is therefore a need for data-driven methods allowing real-time process
optimization for WAAM. This study focuses on machine learning (ML)-based prediction of tempera-
ture history for WAAM-produced aluminum bars with different geometries and process parameters,
including bar length, number of deposition layers, and heat source movement speed. Finite element
(FE) simulations are used to provide training and prediction data. The ML models are based on a
simple multilayer perceptron (MLP) and performed well during baseline training and testing, giving
a testing mean absolute percentage error (MAPE) of less than 0.7% with an 80/20 train–test split,
with low variation in model performance. When using the trained models to predict results from FE
simulations with greater length or number of layers, the MAPE increased to an average of 3.22% or
less, with greater variability. In the cases of greatest difference, some models still returned a MAPE of
less than 1%. For different scanning speeds, the performance was worse, with some outlier models
giving a MAPE of up to 14.91%. This study demonstrates the transferability of temperature history
for WAAM with a simple MLP approach.

Keywords: additive manufacturing; WAAM; machine learning; neural networks; temperature his-
tory; finite element method

1. Introduction

Additive manufacturing (AM) of metals is known as a promising technology for a wide
range of industrial applications. In general, AM involves the production of components
through the melting of precursor material, called the feedstock, by a powerful, localized
heat source based on information from a computer-aided design (CAD) file [1]. AM
has certain advantages over conventional subtractive manufacturing techniques such as
grinding or milling; it produces less wasted material, can create more complex shapes, and
offers reduction in lead time [2,3]. Customization of the manufacturing process is much
easier with AM, as there is no need to create custom tooling or molds [4]. Wire-arc AM
(WAAM) is a particular form of AM derived from welding, where the feedstock is a metal
wire and the heat source is a welding arc [5–7]. Compared with other AM techniques like
powder-bed-based methods, WAAM offers faster deposition rates and larger part size, at
the expense of a reduced ability to create complex designs and reduced surface quality [7].
There are many potential industrial applications of WAAM, such as for aluminum parts
for aerospace applications, steel bars for construction, or large parts like propellers and
rudders for use in shipbuilding [3,8–11].

Today, there are still challenges which limit the spread of the AM of metals for in-
dustrial application. The powerful localized heat source used causes steep temperature
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gradients, which in turn cause significant residual stresses in the material. These stresses
can further lead to cracking and distortion, reducing the quality of the manufactured
parts [12–14]. The rapid heating and cooling can also result in pore defects, which result
in parts with lower tensile strength and greater susceptibility to fatigue [15]. To mitigate
this, postprocessing with heat treatment to reduce the residual stress and reduce porosity is
necessary [15,16]. The cycles of rapid heating, cooling, and reheating is unique to metal AM,
and since it is a young technology compared with conventional manufacturing techniques,
the exact relationship between process parameters and the resulting mechanical properties
is not yet known [14,17]. However, it is well established that the temperature distribution
during AM affects the residual stresses, with a more uniform distribution resulting in
stresses of lower magnitude [17–21]. A greater understanding of the WAAM process in
general and the temperature distribution specifically is therefore needed if widespread
industrial application is to become a reality. A potential aid here is a digital twin (DT),
which is defined as “a digital representation of a production system or service” [22]. A DT
could be used to predict properties like temperature and residual stress distribution before
the AM procedure is performed, integrate measured data for real-time prediction, and even
alter the manufacturing process based on results from the digital model [23,24]. DT models
are believed to greatly increase the viability of metal AM for industry [24,25].

One tool which can be used to model AM is finite element (FE) simulation. FE
simulations can model various AM processes with a high degree of accuracy and give
insight into the temperature evolution during production as well as the resulting residual
stress profile [16,26,27]. However, FE simulation has a major drawback: it is slow and
computationally expensive, often requiring hours or days to obtain results. Real-time
prediction of temperature evolution is therefore impossible with an FE model alone. For
this reason, surrogate models, simplified alternatives to numerical simulations, are being
explored as an option [28]. Many researchers have investigated the possibility of using
machine learning (ML) to create surrogate models, with the ultimate goal of achieving
real-time prediction while retaining good accuracy [29,30]. Many different ML methods
have been explored, with varying degrees of complexity.

Mozaffar et al. [31] developed a surrogate method for determining the thermal
history during directed energy deposition (DED), a subset of AM processes which includes
WAAM, as a function of process parameters. Their surrogate model used a recurrent
neural network (RNN), with its inputs being an engineered feature for the tool path,
deposition time, laser intensity, and current layer height. To aid with process optimization
for powder-bed-based methods, another major subgroup of AM, Stathatos et al. [32]
created a multilayer perceptron (MLP)-based model for predicting temperature evolution
and density. The model consisted of several neural networks in sequence—one main
network for determining the temperature and additional “rider” networks for predicting
other properties that depend on the temperature. As input, the main network in their
model took in information about the laser path and past temperatures, and they applied it
to data from a simulation of a laser following a random path.

More recently, there have been many more studies performed using a variety of differ-
ent ML methods. Ness et al. [33] created data-driven models for temperature prediction
using the extra trees algorithm. Extra trees is in the decision-tree family of algorithms,
and their model utilized several engineered features, including the distance between the
node and the heat source and the power influence of the heat source [34]. They applied
their models to FE-simulated AM depositions of aluminum alloy, with varying deposition
patterns and power intensities, to investigate how well the models would perform when
applied to another system with a different pattern or intensity. Their results showed that
while the models worked well for prediction on the training system, with a mean abso-
lute percentage error (MAPE) of less than 5%, transferability to different systems gave
worse results, with the MAPE ranging from around 5 to 25% [33]. Le et al. [35] applied
an MLP-based method to model temperature distribution in the WAAM of 316L steel
using FE simulations. As input features, they used the heat input, node coordinates, and
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time. Even with these relatively simple inputs, they were able to obtain good prediction
accuracy with their model for WAAM-deposited multilayer bars. Xie et al. [36] used a
hybrid physical/data-driven method, a physics-informed neural network (PINN), to model
the three-dimensional temperature field during the DED of bars of nickel–chromium alloy.
Their model used an approximation of the partial differential equation for heat conduction
during the process for the physics-informed part and the laser power and scanning speed,
time, and coordinates as input for the data-driven part. The data were obtained from
FE simulations of deposition of single-layer and multilayer bars. They found that they
were able to achieve high-accuracy prediction with a smaller amount of data than purely
data-driven models require. Wacker et al. [37] used two kinds of neural network models to
predict the resulting accuracy and distortion for multilayer parts produced by WAAM. The
training data were obtained experimentally through WAAM performed on steel. The first
data-driven model used only the welding parameters as inputs, while the second model
also included recursive parameters from the output.

Our overarching goal is to construct a comprehensive dataset for WAAM. This dataset
will facilitate real-time predictions of the thermal history of WAAM-produced components,
regardless of their shape or size, once the component design is finalized by CAD and
fundamental process parameters are selected. We refer to this predictive capability as
transferability, meaning that we can transfer the thermal history from known components
to new and unknown ones. In this study, we used MLP models to test the transferability
for WAAM production of different thin rectangular bars. MLP models were chosen over
RNNs, which are by definition more appropriate for a time-series prediction [38]. We
wanted to evaluate the feasibility of simple MLPs as an alternative, since they are very
simple to implement and train. Additionally, if simple MLPs are found to perform well
at predicting WAAM temperature history, more advanced RNN-based models will be
expected to perform even better.

We performed 40 FE simulations of different WAAM processes with varying bar
lengths, numbers of deposition layers, and scanning speeds. Unlike the MLP models used
by Le et al. [35], our MLP models used only the current time and past temperatures of
the node as input. The MLPs were trained on data from one of the FE simulations and
were tested on data from other simulations with different parameters. In Section 2, we
discuss how the FE simulations were conducted and how the MLPs were set up. Then, in
Section 3 we present the results of testing the transferability using the MLP models. Finally,
in Section 4 we sum up our conclusions and present some future perspectives.

2. Materials and Methods

2.1. FE Simulation

The overall flow of this study is illustrated in Figure 1. First, FE simulations of WAAM
deposition of aluminum bars were performed using the FE software Abaqus 2019 [39]. The
output data were then postprocessed by taking data from every fourth timestep; this was
done to limit data size. For each node in the deposited bar, the current elapsed time, current
temperature, and temperature at the last five timesteps were recorded. A total of 40 different
simulations were performed. Each FE simulation consisted of a rectangular substrate onto
which a rectangular bar was deposited. A transient heat transfer analysis was used, with
the Abaqus AM module used to simulate the deposition of material and movement of the
heat source. The heat source was modelled as a Goldak heat source, also called a double
ellipsoid heat source [40,41]. We used the Abaqus implicit solver, Abaqus/Standard, with
linear 8-node heat transfer elements (DC3D8). Most of the simulations were performed
with a fixed timestep of 0.025 s. For the systems with a scanning speed different from
0.015 m/s or with 7 to 9 layers, automatic timesteps were used instead, with a maximum
and starting value of 0.025 s and a minimum of 10−6 s. The initial as well as the ambient
temperature was 20 ◦C.

The deposited bar varied both in length and in number of layers, while the substrate
length was equal to the length of the deposited bar plus an additional 5 cm at both ends. The
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substrate height and width, as well as the width and height of each deposited layer, were the
same across all simulations. The parameters are summed up in the Supplementary Material
in Table S1. Figure 2a shows a visualization of the FE model for a one-layer system, and
Figure 2b depicts one of the four-layer systems. The deposited material was 2319 aluminum
alloy. The properties of this material, such as melting point, density, etc., and the process
parameters used were taken from FE simulations performed by Ness et al. [33].

Figure 1. A flowchart of the work performed in this study. FE simulations were performed to
generate data, and the postprocessed data were used to train and test MLP models.

(a)

(b)

Figure 2. A visualization of two of the FE models: (a) a one-layer model, and (b) a four-layer model.

2.2. Neural Networks

The postprocessed data obtained from FE simulation were then used to train a number
of ML models. The models were based on an MLP, a relatively simple model in the
neural network family [42]. The MLPs were created and trained using the Python package
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Pytorch [43]. For the loss function, we employed a modified version of L1 loss, called
smooth L1 loss. It is defined as follows:

Smooth L1 loss =

{

1
2β (yi − xi)

2 if |yi − xi| < β,

|yi − xi| − β
2 otherwise.

(1)

Here, yi − xi is the difference between the prediction and the true value at timestep
i, and β is a parameter. We choose a value of β = 1. Smooth L1 loss is more robust than
standard L1 loss while avoiding the greater sensitivity to outliers inherent to L2 loss [44].
The MLPs had six input values: The current time and the node temperature at the last
five timesteps. For output, they returned a single value, the current temperature. They
consisted of two hidden layers, each containing 64 nodes, with a rectified linear unit (ReLU)
activation function [42]. Minibatch gradient descent was used, with the batch size initially
set to 64. The number of epochs was initially set to 5. An overview of all the parameters
used is shown in Table 1. The chosen values for the hyperparameters were determined
through trial and error. Extensive optimization of the MLP hyperparameters is beyond the
scope of this study.

Table 1. A list of the parameters and functions for the MLP models used in this study.

Parameter Chosen Value

Loss function Smooth L1 loss
β 1

Activation function ReLU
Learning rate 0.002

Nodes in hidden layer 64
Batch size 64–960

Number of hidden layers 2
Number of epochs 5–8

2.3. Baseline Model Performance

To obtain a baseline performance for the MLP models, training and testing was
performed on data from each of the FE simulations. The size of each dataset was large,
ranging from 6.5 × 105 to 2.5 × 107 data points. A train/test split of 0.8/0.2 was used,
i.e., 80% of data were used for training, and the remaining 20% were reserved for testing.
Due to the large size of the datasets used, we deemed it sufficient to use an 0.8/0.2 split
instead of cross-validation. The dataset was randomly shuffled before applying the split.
The metric used to evaluate the performance was the MAPE, which is defined as follows:

M =
100%

n

n

∑
i=1
|yi − xi

xi
|. (2)

Here, M is the MAPE, n the sample size, yi the ith predicted value, and xi the corre-
sponding true value. Four groups of FE simulations were considered: one consisted of
one-layer bars of varying lengths; one of four-layer bars of varying lengths; one with bars
of length 0.96 m with different numbers of layers; and one with four-layer bars of length
0.96 m with different scanning speeds. An illustration of the four groups and how the FE
simulations in each group differ is shown in Figure 3. From here, we will refer to them as
Groups 1 through 4. The data were rescaled between 0 and 1 before training, based on the
highest value observed in each group of the FE simulations, so that the data for each model
trained on FE simulations in the same group were rescaled the same way. Data from one
node in the center of the bottom layer were also excluded from the training dataset; the
data from this node were instead used to test model prediction on sequential data from a
single node. To begin with, the viability of the MLP models was tested by using trained
models to predict the temperature evolution of the one-layer systems in Group 1. Figure 4a
shows the training and testing MAPEs for MLP models applied to each of the nine Group 1
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systems. An overview of the systems and their bar lengths is shown in Table 2; while the
testing MAPE shows more variation than the training MAPE, it is lower than 0.4% in all
cases and still close to the training MAPE. This suggests that overfitting is not a significant
issue in the one-layer case.

Figure 3. An illustration of the four groups of FE systems considered in this study. (a) illustrates the
group with one-layer bars of different length, (b) the group with four-layer bars of different length,
(c) the group with bars of length 0.96 m with different numbers of layers, and (d) the group with
four-layer bars of length 0.96 m with different scanning speeds.

Next, to examine the effect of randomness on model performance, four additional sets
of nine MLP models were created. The models in each set were trained and tested on one
of the Group 1 systems in the same way as before, except the models in each additional
set had a different initial seed. Figure 4b shows the resulting testing MAPEs, where the
Model Set A models are the same as used in Figure 4a, and the Model Sets B through E are
the new models. As can be seen, the randomness does have an effect on the resulting test
accuracy, though the MAPE is below 0.5% in all the cases shown.

(a)
Figure 4. Cont.
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(b)
Figure 4. (a) The training and testing MAPEs for nine MLP models, each trained and tested on one of
the FE systems in Group 1. (b) The testing MAPEs for five sets of nine MLP models, each trained and
tested on one of the Group 1 systems. The models in each set had the same initial seed.

Table 2. The bar length of each system considered in Group 1.

System Bar Length (m)

1 1.2
2 1.8
3 2.4
4 3.0
5 3.6
6 4.2
7 4.8
8 5.4
9 6.0

When the MLP models are used to predict the temperature evolution in another
system, in principle, the whole dataset can be used for testing. To check how the MLP
performance changes when fewer testing data are used, tests were performed with an MLP
model which was trained on System 1. We used the model to test System 2 and System 9,
using progressively fewer data, going from 100% to 10% of the dataset. For each test, the
data were randomly shuffled in five different ways. In both cases, we found that there
was a slight deviation in model performance when only 10% of the test data were used.
When using 20% or more of the test data, the difference in performance from the 100%
case was negligible. We chose to use 20% of the dataset for cross-system testing as well as
same-system testing for the sake of consistency.

Next, the MLPs were tested on the three groups of multilayer systems to explore if their
performance would be different in the multilayer cases. Training and testing MAPEs were
compared in the same manner as for Group 1. The results are shown in the Supplementary
Material, in Figure S1 for Group 2, Figure S2 for Group 3, and Figure S3 for Group 4.
The testing MAPE is generally close to the training MAPE, with one exception in the
varying-scanning-speed case, as seen in Figure S3a. Here, for scanning speed 0.035 m/s,
the training MAPE is 0.17% and the testing MAPE is 0.61%. Still, the overall error is low, at
less than 0.7% for all the models considered. We conclude that the MLP models show good
performance in the multilayer cases as well.
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3. Results and Discussion

As stated in the Introduction, the ultimate purpose of our ongoing efforts is to develop
a digital platform that is able to predict the temperature history of WAAM-produced
components with any geometry (shape and size) for a given material and a set of process
parameters. Three key parameters were identified and studied independently, namely, the
bar length, the number of deposited layers, and the scanning speed. The effects of these
three parameters on the transferability are reported first, in Sections 3.1–3.3, respectively.
In Section 3.4, we take a closer look at the temperature evolution of single nodes in systems
from Groups 2 and 4 to check how the MLP temperature predictions compare to the real
temperatures from the FE simulations. Finally, in Section 3.5, we show the results of further
study on the effect of batch size in order to investigate the source of a particularly large
error found in the different-scanning-speed case.

3.1. Transferability for Bars with Different Lengths

As observed in Section 2.3, the MLP models have a good baseline performance. The
next step is to use the MLP models to test the transferability of the thermal history among
FE systems in the four groups. This was undertaken by using trained MLP models to
test data from different FE systems in the same group. Here, we present the results for
transferability in Groups 1 and 2, which consist of FE systems with one-layer and four-layer
bars of different lengths, respectively.

The bar lengths of each of the Group 1 systems are shown in Table 2. Three sets of
MLP models were created—one set was trained on System 1, the second trained on System
5, and the third trained on System 9. Each set consists of 5 models, and each of the five
models has a different random seed that was set before the training process, for a total of
15 MLP models. This process is illustrated in Figure 5. Figure 6a shows the resulting testing
MAPEs for the models trained on System 1, Figure 6b the MAPEs for models trained on
System 5, and Figure 6c the MAPEs for models trained on System 9. The MLP models in
each set are labelled A through E. A negative length difference means the training system
is longer than the test system, while a positive length difference means the opposite, as
illustrated in Figure 6d. As expected, the test accuracy is good when the difference in length
between the training and testing systems is small. A small growth in error is observed
when the bar length of the testing system becomes progressively shorter than that of the
training system. When the test system bar length becomes progressively longer than that
of the training system, the error growth is much greater. For the models trained on System
1, shown in Figure 6a, the average MAPE for testing on System 1 is 0.17%. This increases
to an average of 3.22% for testing on System 9. The difference in MAPE for the models in
each set increases as well—the standard deviation in MAPE is 0.024% for System 1 and
increases to 1.43% for System 9. The models trained on System 1 are able to achieve good
prediction, with a MAPE of less than 3% when the length difference is 3 m or less. We
created more MLP models to train on System 1, each with a different initial seed, to see
if any of them would exceed this value. A total of 15 additional models were made for
each set, giving each set a total of 20 models. These extra models were only used to test
data from Systems 6 and 9. The MAPEs from these tests are shown in the Supplementary
Material, in Table S2 for System 6 and Table S3 for System 9. Including the five models
shown in Figure 6a, this resulted in an average MAPE of 1.02% with a standard deviation
of 0.70%; the highest MAPE found was 2.60%. For System 9, an average MAPE of 2.95%
and standard deviation 1.59% were obtained. In addition, two of the additional models
were found to yield a MAPE of less than 1%.

The models trained on the other Group 1 systems do not show as high an error.
Figure 6b shows that for models trained on System 5, the largest positive length difference
of 2.4 m results in a low MAPE, at less than 2% for all Models A through E. The average
MAPE increases from 0.12% for baseline testing to 1.05% for testing on System 9. The
difference between the baseline case and testing on System 1 is very small, with testing on
System 1 giving an average MAPE of 0.14%. Models trained on System 9, the system with
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the longest bar length, show a similar small increase in error as length difference increases.
The results are shown in Figure 6c; the average MAPE goes from 0.12% with a standard
deviation of 0.04% in the baseline case to 0.25% with a standard deviation of 0.11% when
tested on System 1.

Figure 5. An illustration of the transferability testing process. Groups of five MLP models are trained
on data from selected FE simulations, and the trained models are subsequently used to test data from
each of the simulations.

Next, the Group 2 systems were examined. The eleven systems and the associated bar
lengths are shown in Table 3. Three sets of five trained MLP models were tested on data
from each of the eleven systems, like in the Group 1 case. Figure 7a shows the resulting
MAPEs for models trained on System 1 from Group 2, Figure 7b the MAPEs for models
trained on System 6, and Figure 7c the MAPEs for models trained on System 11. Cross-
testing with the other Group 2 systems shows a similar trend as for Group 1. When the
length difference is small, or when the training system is larger, the error remains low. We
observe that a small length difference leads to a much greater difference in accuracy than
what was found in the Group 1 case. For instance, a length increase of 1.2 m in the Group
1 case results in an average MAPE of 0.24%, while for Group 2, the same increase gives
an average MAPE of 3.18% with a standard deviation of 2.74%. Taking a closer look at
Figure 7a, the MAPE remains below 3% for the five models shown for training on System 1
and testing on System 7, with a length difference of 0.72 m. Like in the Group 1 case, more
examples were obtained by training 15 additional models with different seeds on System 1
and applying them to System 7. The results are shown in Table S4 in the Supplementary
Material. Here, one of the models returned a MAPE of 3.25%, though all the others gave a
MAPE of less than 3%. The average MAPE in this case was 0.88%. The additional models
were also tested on System 11, with results shown in Table S5; this gives an average MAPE
of 2.27% and a standard deviation of 2.2465%, with nine of the models returning an error
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of less than 1%. In Figure 7b, the MAPE shows a slight increase as the test system length
decreases and a larger increase as the test system length increases compared to the training
system. This is comparable to what is observed in Figure 6b. With System 11 as the training
system, shown in Figure 7c, the increase in error as test system length shrinks is very small.
The average MAPE goes from a baseline value of 0.11% to 0.14% for testing on System 1.

(a)

(b)

(c)
Figure 6. Cont.
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(d)

Figure 6. The testing MAPE for MLP models applied to all nine Group 1 systems. (a) Models were
trained on System 1. (b) Models were trained on System 5. (c) Models were trained on System 9.
Models A through E differ in initial seed before training. (d) Definition of the difference in length, ∆L.

(a)

(b)
Figure 7. Cont.
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(c)
Figure 7. The testing MAPE for MLP models applied to each of the eleven Group 2 systems. (a) The
models were trained on System 1. (b) The models were trained on System 6. (c) The models
were trained on System 11. The models A through E in each case differ only in the initial seed set
before training.

Table 3. The bar length of each system considered in Group 2.

System Bar Length (m)

1 0.48
2 0.60
3 0.72
4 0.84
5 0.96
6 1.08
7 1.20
8 1.32
9 1.44

10 1.56
11 1.68

To better understand how the models perform during tests with both low and high
error rates, testing was performed on temperature data from single nodes using Model
B from Figure 6a and Model C from Figure 7a. The nodes were located in the middle of
the first deposition layer, in the position labelled Node B in Figure 8, and were taken from
Systems 1 and 9 from Group 1 and Systems 1 and 11 from Group 2. All of the temperature
data for each node were used, and the data were ordered by timestep instead of being
shuffled. The resulting temperature predictions for the Group 1 systems are shown in
Figure 9, compared with the real temperatures as taken from the FE data. Temperature
predictions for the Group 2 systems compared with the real temperatures are shown in
Figure 10. For both situations, the difference in predicted temperature evolution between
the baseline and cross-system predictions is clear to see: the predicted temperatures in
both Figures 9b and 10b deviate from the real temperature during the later parts of the
simulation. For all the temperature predictions, there is also noticeable error at the peaks,
particularly the first peak.
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Figure 8. The locations of the single nodes examined in this study. The substrate is not pictured.

(a)

(b)
Figure 9. (a) Comparison of the real temperature and the temperature predicted by Model B from
Figure 6a for a single node in System 1 from Group 1. (b) Comparison for a single node in System 9
from Group 1.

In summary, for FE simulations with different bar lengths, the increase in MAPE with
length is greater for four-layer systems than single-layer systems. The standard deviation
is also consistently greater for Group 2. In both Figures 6a and 7a, it can be seen that MLP
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models which show good performance at moderate length difference tend to perform better
at greater length difference as well. Next, we test transferability for the other groups of
FE systems.

(a)

(b)
Figure 10. (a) Comparison of the real temperature and the temperature predicted by Model C from
Figure 7a for a single node in System 1 from Group 2. (b) Comparison for a single node in System 11
from Group 2.

3.2. Transferability for Bars with Different Numbers of Layers

The third group of systems investigated was Group 3, which consisted of multilayer
bars with different numbers of layers, ranging from 2 to 10. For the Group 3 systems, the
length of each deposited layer was kept constant at 0.96 m. A total of nine such systems
were simulated, including one which was also part of Group 2. A list of the Group 3
systems is shown in Table 4. Figure 11a shows the results from cross-system testing using
models trained on System 1, Figure 11b for models trained on System 5, and Figure 11c for
System 9. Similar trends to the ones observed in Figure 6 and Figure 7 can also be seen here,
though the increase in MAPE is much smaller, reaching a maximum value of around 1.2%
when one of the models trained on System 1 is used to test System 9. Two of the models
show limited error growth, while Model B shows a slightly decreasing error. A total of
15 additional models were trained on System 1 and tested on System 9 to further examine
model performance. The results are shown in Table S6 in the Supplementary Material.
With these results included, the average MAPE for prediction of System 9 is 0.66%, with
a maximum value of 4.02%. This is better than the average MAPEs that were found for
prediction of System 9 from Group 1 using models trained on System 1 from Group 1 and
for prediction of System 11 from Group 2 using models trained on System 1 from Group
2. Figure 11b shows that Models B and E perform worse as the number of layers of the
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test system increases, while the other models do not. In Figure 11c, we observe a marginal
increase in error as the difference in number of layers increases. For both Figure 11b,c, the
MAPE remains very small at less than 0.5%.

Table 4. The FE systems in Group 3 and the number of deposited layers in each.

System Number of Layers

1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

Single-node prediction was also performed. Model A from Figure 11a was used to
predict temperature evolution in a single node from System 1 and System 9 from Group 3,
located in the Node B position as shown in Figure 8. The resulting temperature evolutions
are compared with the real temperatures in Figure 12. The error in predicted temperature
when the model is tested on the 10-layer System 9 is lower than was observed in Figure 10b,
but a slight error is again observed during the later parts of the deposition process.

(a)

(b)

Figure 11. Cont.
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(c)

(d)

Figure 11. The testing MAPEs for MLP models applied to each of the nine Group 3 systems.
(a) Models were trained on System 1. (b) Models were trained on System 5. (c) Models were
trained on System 9. Models A through E in each case differ only in the initial seed set before training.
(d) Definition of the difference in number of layers, ∆layer.

3.3. Transferability for Bars with Different Scanning Speeds

The last group of FE simulations considered was Group 4, which consisted of 13 four-
layer bars with the same length of 0.96 m but with different scanning speeds. Table 5 shows
the scanning speed for each of the Group 4 systems. Figure 13a shows the MAPE for cross-
system testing with Group 4 systems when models are trained on System 1, Figure 13b
the MAPE for models trained on System 4, and Figure 13c the MAPE for models trained
on System 13. Here, we observe a greater increase in MAPE when a model trained on a
system with a slower scanning speed is tested on a system with a faster speed; the MAPE
still remains good when tested on a system with a similar scanning speed. Figure 13a
shows that the models all give a MAPE of less than 1% at a difference in scanning speed
of 0.015 m/s. When used to test System 13, which has a 0.035 m/s faster scanning speed
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than the training system, the errors ranges from 2 to 5%. In Figure 13b, however, it can be
seen that one of the models has a radically different error growth than the others, namely,
Model C. The other models all have approximately the same error growth, giving a MAPE
of between 2 and 3% when testing on System 13. Figure 13c shows a general decrease in
error up to a difference of about 0.02 m/s; further differences lead to a slight increase in
error, though the error still remains lower than 0.5%. In order to see if this trend would
hold, 15 additional models with different initial random seeds were trained on System
4 and tested on System 13. The MAPEs are shown in Table S7 in the Supplementary
Material. None of these additional models gave a higher MAPE than Model E’s error of
3.03%, leaving Model C’s MAPE of almost 15% a clear outlier. The average MAPE for all
20 models is 2.88%.

(a)

(b)

Figure 12. The temperature evolution of single nodes predicted by Model A from Figure 11a compared
with the real temperature evolution from the FE simulation. In (a), the node is from System 1 from
Group 3; in (b), the node is from System 9 from Group 3.

When examining the temperature evolution of single nodes from Group 4 systems
using Model C from Figure 13b, we found a different trend than was observed in single-
node predictions for Groups 1 through 3. Like in the previous cases, the nodes were taken
from the Node B position shown in Figure 8. The results are shown in Figure 14a for a
single node from System 4 and Figure 14b for a node from System 13, and in the latter
case, the temperature evolution shows a large divergence between the first and second
temperature peaks. Interestingly, this error disappears after the second peak, and there are
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no visible errors during the later parts of the simulation. Additional single-node tests for
Model C on System 13 were performed; these are presented in Section 3.4.

Table 5. The FE systems in Group 4 and the scanning speed of each.

System Scanning Speed (m/s)

1 0.01
2 0.01125
3 0.01375
4 0.015
5 0.01625
6 0.0175
7 0.01875
8 0.02
9 0.025
10 0.03
11 0.035
12 0.04
13 0.045

(a)

(b)

Figure 13. Cont.
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(c)

(d)

Figure 13. The MAPEs for MLP models trained on (a) System 1, (b) System 4, and (c) System 13 from
Group 4 and tested on each system in Group 4. Models A through E differ only in initial seed before
training. (d) Definition of the difference in scanning speed, ∆v.

(a)
Figure 14. Cont.
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(b)

Figure 14. Comparison of real temperature and temperature predicted by Model C from Figure 13b
for (a) a single node from System 4 from Group 4, and (b) a single node from System 13 from Group 4.

3.4. Temperature Evolution of Single Nodes

To investigate the error observed in Section 3.3 further, we performed additional
single-node temperature predictions for System 13 from Group 4. Nine different nodes
from System 13 were used, labelled Nodes A through I, in the positions illustrated in
Figure 8. Nodes A and C were positioned 0.025 m from each end of the bar, and Node B
was positioned in the center, all in the first layer. Node B’s position was the same as the
single nodes examined in the previous sections. Nodes D through F and G through I were
positioned at those same horizontal locations, but in layers 2 and 3, respectively. Models
A and C from Figure 13b were used to test the single-node data to compare the poorly
performing Model C with a model that performs better. The results for testing on data
from Node B are shown in Figure 15a, while the results for Node A and Nodes C through I
are shown in Figures S4 through S11 in the Supplementary Material. From the figure, we
observe that the temperature evolution predicted by Model A shows the same trend as
Model C but with a smaller error between the first two temperature peaks. In both cases,
the error disappears after the second peak. In Figures S4–S11, showing the results from
prediction on Nodes A and C through I, this error is present for all predictions between the
first and second peaks. For the nodes near the bar edges, there is also a prediction error
between the second and third peaks. This error is present regardless of whether the node is
in the first or second layer. We see that the prediction during the first peak varies between
overshooting and undershooting the actual temperature.

Additional single-node predictions were examined in System 11 from Group 2 as
well to compare the results with those found for Group 4. The nodes were placed and
labelled as in the previous case, illustrated in Figure 8. Models A and C from Figure 7a
were used. The resulting temperature predictions for Node B are shown in Figure 15b,
where Model A shows the same trend as Model C but with a lower error. Results for
Nodes A and C through I are shown in Figures S12 through S19 in the Supplementary
Material. These figures all show the same trend of predicted temperature diverging from
the real temperature during later parts of the simulation, with Model C displaying greater
divergence than Model A.

From these results, we observe that the MLP model predictions are consistent for
different nodes in the same FE system. There is a clear difference in how the prediction
errors are distributed in models used on the Group 4 system compared to models used on
the systems from Groups 1 through 3. This could be the reason the particularly high error
observed in Figure 13b does not appear for any of the tests performed on the Groups 1
through 3 systems. We also observe that for Group 4, the discrepancy between the predicted
and real temperature disappears after peak two or three.
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(a)

(b)

Figure 15. (a) The temperature evolution over time for Node B in System 13 from Group 4 as predicted
by Model C from Figure 13b compared with the real temperature evolution. (b) The temperature
evolution over time for Node B in System 11 from Group 2 as predicted by Model C from Figure 7a
compared with the real temperature evolution.

3.5. Effects of Batch Size

One potential cause of the particularly high error observed in Section 3.3 is overfitting;
while the baseline tests in Section 2.3 do not show a high error, it is possible that a small
degree of overfitting in a model could become more prominent when the model is used
to test data from substantially different FE simulations. Thus far, the batch size was set to
64. One way to reduce overfitting is to increase the batch size, which lowers the amount of
times the MLP weights are updated during training. To explore the effect of batch size on
the models used thus far, additional MLP models were created with the same properties as
previously described, except for batch size and number of epochs. The batch size for these
additional models was set to 640, ten times larger than the batch size of 64 used for the
previous models. The number of epochs for the additional models was determined through
preliminary testing. For the models trained on Group 1 systems, the number of epochs
was kept at five, while for the models trained on other systems, it was increased to eight.
Figure 16a shows the MAPE when batch-size-640 models trained on System 1 from Group
1 are tested on the other Group 1 systems, similar to Figure 6a. Figure 16b shows the MAPE
for batch-size-640 models trained on System 1 from Group 2 and tested on other Group 2
systems, as in Figure 7a. Comparing each of the figures, the batch-size-640 models appear
to perform better overall than the previously examined batch-size-64 models. It is also clear
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from the figures that there is no guarantee that any given model which performs well at a
given seed and low batch size will give good performance with a higher batch size, as seen
with the two Model Es trained on Group 1, Model 1, in Figures 6a and 16a. Additional tests
were performed with 15 additional batch-size-640 models with different random seeds
for both the Group 1 and the Group 2 systems. The models were trained on System 1
from Group 1 or Group 2 and then used to test System 9 from Group 1 or System 11 from
Group 2, respectively. The resulting MAPEs are shown in the Supplementary Material,
the Group 1 results in Table S8 and the Group 4 results in Table S9. From these tables,
we see that the performances of Model E in Figure 16a and Model B in Figure 16b, while
particularly high, are not outliers. In the Group 1 batch-size-640 case, including results
from the additional models led to an average MAPE of 1.83% with standard deviation
1.11% for testing on System 9. For the Group 2 batch-size-640 case, an average of 1.51%
with standard deviation 1.54% was found for testing on System 11. For both sets, this is
an improvement over the average errors obtained using batch size 64. In the case of the
largest length differences, for the models trained on System 1 from Group 1, there were five
models with a MAPE of less than 1%, while for models trained on System 1 from Group 2
there were nine, though there were also several models with a MAPE just above 1%.

(a)

(b)

Figure 16. (a) The MAPEs for MLP models which were trained on System 1 from Group 1 and used
to test each of the Group 1 systems. (b) The MAPEs for MLP models which were trained on System 1
from Group 2 and used to test each of the Group 2 systems. The models have a batch size of 640, and
Models A through E differ only in initial seed before training.
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We examined the Group 3 and Group 4 cases in the same fashion. Figure 17a shows
the MAPE for five batch-size-640 models trained on System 1 from Group 3 and tested
on each of the other Group 3 systems. Here, all the models show decreasing error as
exhibited by Model B in Figure 11a. Figure 17b shows the MAPE for five models trained
on System 4 from Group 4. All of these models show error growth comparable to the
nonoutlier results in the batch-size-64 case. A total of 15 additional batch-size-640 models
were trained on System 1 from Group 3 and 15 more on System 4 from Group 4 to further
examine performance when testing on System 9 from Group 3 and System 13 from Group
4, respectively. The results are shown in Tables S10 and S11 in the Supplementary Material.
Including these additional results, the average error for testing on System 9 from Group 3
is 0.32%, with a maximum error of 2.32%, showing improved results compared to those
obtained using models with batch size 64. The MAPEs for prediction on System 13 from
Group 4 do not show any outlier behavior. The average MAPE with batch-size-640 models
is 1.96%, again lower than for the batch-size-64 models. Even if the outlier, batch-size-
64 Model C, is removed, the average MAPE is still largest for the batch-size-64 models
at 2.25%.

(a)

(b)

Figure 17. (a) The MAPEs for MLP models which were trained on System 1 from Group 3 and used
to test each of the Group 3 systems. (b) The MAPEs for MLP models which were trained on System 4
from Group 4 and used to test each of the Group 4 systems. The models have a batch size of 640, and
Models A through E differ only in initial seed before training.

We observe that for all four groups of FE systems, batch-size-640 models return a
lower average MAPE than the batch-size-64 models. For Groups 1 and 3, batch size
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640 resulted in more models with a highest MAPE of less than 1% than with batch size 64.
The improvement in performance, as well as the lack of any outliers among the batch-size-
640 models trained on System 4 from Group 4, could be due to reduced overfitting. To
further explore the effect of increasing batch size, additional tests were performed using
models with a range of different batch sizes. A total of 25 sets of four models with batch
sizes 120, 240, 480, and 960 were trained on System 4 from Group 4, and tested on System
13 from Group 4. Each set had a different initial seed for its models. The resulting MAPEs
are shown in Figure 18a. A total of 2 of the 100 models do indeed result in much higher
errors than the rest—1 model with batch size 120 and 1 with batch size 960, showing that
higher-batch-size models can also give unusually high errors. Table 6 shows the maximum
MAPE, average MAPE, and variance for each batch size. For batch sizes 120 and 960, two
variations of the results are shown, both including and excluding the outlier values. The
variance is naturally much higher for the groups containing these outliers. When they are
excluded, a slight decrease in both average and maximum MAPE is observed.

Additional MLP models were also created for the Group 1 systems to compare with
the results for Group 4. A total of 25 similar sets of four models with the same batch sizes
as for the Group 4 case were trained on System 1 from Group 1 and tested on System 9
from Group 1. The results are shown in Figure 18b. Here, there is a much greater spread
of values compared to what is observed for Group 4. There are also no extreme outliers
observed compared to what is seen in Figure 18a. Table 7 shows the mean and variance of
the MAPE as well as the maximum MAPE for the models by batch size. For batch sizes 480
and 960, all of these values are lower than for the groups of lower-batch-size models.

Table 6. The average MAPE, standard deviation of the MAPE, and maximum MAPE for the models
shown in Figure 18a, by batch size. For batch sizes 120 and 960, the results are shown both with and
without the outlier value.

Batch Size Average MAPE (%) Std. Dev. (%) Max MAPE (%)

120 2.42 1.40 9.00
120 (without outlier) 2.15 0.29 2.77

240 2.10 0.34 2.72
480 2.00 0.25 2.64
960 2.42 2.20 12.93

960 (without outlier) 1.98 0.25 2.37

Table 7. The average MAPE, standard deviation for the MAPE, and maximum MAPE for the models
shown in Figure 18b, by batch size.

Batch Size Average MAPE (%) Std. Dev. (%) Max MAPE (%)

120 3.19 1.66 6.38
240 3.55 1.60 7.09
480 2.27 1.20 4.79
960 1.71 0.87 4.05

It appears that the Group 4 case is particularly vulnerable to extreme spikes in error,
and these can occur unpredictably—models with different number of batches or a different
initial seed behave consistently. The Groups 1, 2, and 3 cases, in contrast, do not seem to
exhibit this—at least not in the cases studied. The error vulnerability appears to be related
to how the MLP models perform when predicting results in the first and second valleys
between peaks in temperature, as described in Section 3.4. Though the models tend to
perform well in the Group 4 case, care should be taken to check each particular model
before it is used, even if the batch size is set to an optimal value.
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(a)

(b)
Figure 18. The MAPEs for different sets of four MLP models with different batch sizes. (a) The
models were trained on System 4 from Group 4 and tested on System 13 from Group 4. (b) The
models were trained on System 1 from Group 1 and tested on System 9 from Group 1.

4. Conclusions

In this study, we performed 40 FE simulations and used the simulation data to train and
test multilayer perceptron (MLP) models for predicting temperature evolution. Our goal
for this study was to investigate the transferability of thermal history in wire-arc additive
manufacturing (WAAM) by using a simple MLP model which takes past temperature
history and time as input. Particular attention was paid to situations where high error was
found to occur, and additional MLP models were created for further testing when necessary.
We have shown that, with proper precautions taken, the simple MLP-based model explored
in this study is able to predict temperature evolution in finite element (FE) simulations with
different bar lengths, numbers of layers, or scanning speeds. When a trained model is used
to test data from FE systems with shorter bar lengths, fewer layers, or slower scanning
speeds, the MLP models consistently result in a small error. A slight growth in error is
observed as the difference from the simulation used for training increases, but the mean
absolute percentage error (MAPE) remains less than 0.5% for one-layer systems of different
lengths and four-layer systems with different scanning speeds, and less than 0.3% for
four-layer systems of different lengths and systems with different numbers of layers and a
bar length of 0.96 m.

When a trained model is used to test simulations with longer bar lengths, more layers,
or faster scanning speeds, low error is still observed when the difference in length, number
of layers, or speed is small. As the difference increases, the average MAPE increases as
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well, as does the variation in model performance due to randomness. In the groups of
one-layer and four-layer bars of different lengths and bars with different numbers of layers
and a length of 0.96 m, we were still able to identify models which yielded a MAPE of
less than 1% in the cases of greatest difference. For four-layer bars with different scanning
speeds, testing on data from a system with a faster scanning speed can in a few cases
result in unusually high error. The difference in error shows more natural variation in the
variable-length and variable-layer cases.

The performance of a given model is observed to be consistent for an increasing
difference in length, number of layers, or scanning speed. Models which show a relatively
low error growth when tested on an FE system with a certain difference from the training
system tend to also give relatively low error when tested on an FE system with a greater
difference. Similarly, if the model shows a relatively high error when applied to a system
with a certain difference, it tends to give a high error when applied to systems with greater
difference. Therefore, it is possible that the performance of a given model can be predicted
through preliminary testing before the model is applied.

Increasing the batch size from the initial value of 64 to 640 was found to result in
overall better results, though increasing the batch size of a particular model does not
guarantee it will perform better. Of course, the optimal values for the batch size and
number of epochs depends on how many data points are used for training. We found
that the particularly high errors obtained with some of the models trained on four-layer
systems with different scanning speeds could be found in models with both small and large
batch sizes, suggesting that these errors are not caused by overfitting. From single-node
considerations, we observe that this increase in error comes from the model performance
between the first and second passes of the heat source; this is not the case for the other
multilayer systems.

In the future, we plan to continue the systematic study by creating recurrent neural
network (RNN)- and physics-informed neural network (PINN)-based models and compar-
ing their performance to the MLP models studied in the current work. We will examine
whether the same patterns that were found in this work also appear when different models
are used. We will also perform simulations of WAAM deposition of two-dimensional
plates and once again compare how different models perform for these cases. Another
possible candidate for further study is the effect of varying other process parameters, like
laser power.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma17030742/s1, Figures S1–S3: Comparison of training and testing MAPE as well as testing
MAPE for models with different initial seeds for System 1 from Group 2, System 1 from Group 3,
and System 1 from Group 4, respectively; Figures S4–S11: Single-node predictions on System 13 from
Group 4 performed using Models A and C from Figure 13b; Figures S12–S19: Single-node predictions
on System 11 from Group 2 performed using Models A and C from Figure 7a; Table S1: FE model
parameters, Tables S2–S11: MAPEs for tests performed with additional models.
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Abbreviations

The following abbreviations are used in this manuscript:

AM Additive manufacturing
WAAM Wire-arc additive manufacturing
DED Directed energy deposition
CAD Computer-aided design
DT Digital twin
ML Machine learning
MLP Multilayer perceptron
ReLU Rectified linear unit
RNN Recurrent neural network
PINN Physics-informed neural network
FE Finite element
MAPE Mean absolute percentage error
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Abstract: In directed energy deposition (DED), accurately controlling and predicting melt pool char-
acteristics is essential for ensuring desired material qualities and geometric accuracies. This paper
introduces a robust surrogate model based on recurrent neural network (RNN) architectures—Long
Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit (GRU). Lever-
aging a time series dataset from multi-physics simulations and a three-factor, three-level experimental
design, the model accurately predicts melt pool peak temperatures, lengths, widths, and depths
under varying conditions. RNN algorithms, particularly Bi-LSTM, demonstrate high predictive
accuracy, with an R-square of 0.983 for melt pool peak temperatures. For melt pool geometry, the
GRU-based model excels, achieving R-square values above 0.88 and reducing computation time by
at least 29%, showcasing its accuracy and efficiency. The RNN-based surrogate model built in this
research enhances understanding of melt pool dynamics and supports precise DED system setups.

Keywords: directed energy deposition; surrogate model; recurrent neural network; melt pool charac-
terization; thermal history

1. Introduction

Directed energy deposition (DED) is an additive manufacturing (AM) technique for
metals that creates parts by melting metal feedstocks with concentrated thermal energy [1,2].
Compared to the laser powder bed fusion process, DED is more cost-efficient and capable
of producing parts with greater efficiency and adaptability [3]. These remarkable character-
istics make DED an attractive option for rapid prototyping, manufacturing functionally
graded materials, and repairing high-value components [4]. Specifically, DED excels in
repairing worn or damaged components, thereby extending the service life of industrial
and aerospace equipment by restoring structural integrity and functionality [5]. Over the
last decade, DED’s usage has expanded in the defense, manufacturing, and automotive
industries [6]. For instance, DED has been employed to repair airfoils in airplane engines [7].
The DED market size is projected to reach more than USD 700 million by 2025 [8]. Despite
DED’s advantages over other AM techniques, challenges remain in minimizing defects dur-
ing printing. Factors contributing to defect generation include gas entrapment, insufficient
melting, and unstable melt pool generation [9,10]. Comprehending the thermal behavior
and melt pool generation in relation to process parameters is essential for reducing defects
during DED printing [11].

In DED, the melt pool is defined as the regime where metal particles are melted during
laser–material interaction, generating an orbicular droplet [2,12]. Within the molten pool,
the thermal distribution plays a crucial role in defining the microstructure and defects

Materials 2024, 17, 4363. https://doi.org/10.3390/ma17174363 https://www.mdpi.com/journal/materials98



Materials 2024, 17, 4363

of the manufactured part [13]. In the case of a small molten pool, a relatively reduced
thermal distribution can result in inadequate adjacent melt pools’ overlap, leading to the
lack of fusion defects [14]. Additionally, an irregular molten pool caused by elevated energy
density can cause keyhole formation, leading to substantial material vaporization [15,16].
The dense plasma plume results in a recoil force on the molten material which leads to
gas entrapment, creating defects [17,18]. Attaining and monitoring optimal thermal dis-
tribution is essential for an appropriate melting flow within the molten pool [19]. DED
often encounters non-uniform thermal distribution along with rapid heating and slow cool-
ing cycles, developing anisotropic microstructures, characterized by porosity and uneven
grains [20]. The uneven grains affect the mechanical properties negatively [21,22]. For the
DED process, the thermal distribution within the molten pool can be monitored using
sensors such as thermocouples, IR cameras, and pyrometers. IR camera, in combination
with image processing, was applied to observe thermal distribution within the melt pool.
Comparatively reliable results were obtained at a 100 kHz sampling rate as well as 20 µm
resolution [23]. In addition, the IR camera and pyrometers can monitor radiation from
moving bodies and capture thermal distribution without surface contact, thus assisting in
situ monitoring of the DED process [24]. On the other hand, thermocouples are flexible and
resource-effective compared to other sensing devices. However, direct contact is required
for thermocouples, which limits their usage [25].

To predict molten pool thermal distribution, researchers have explored multi-physics
and machine learning-based approaches [26,27]. In multi-physics techniques, FEM and
analytical methods have been elaborated. On the one hand, an extensive multi-physics FEM
model may provide reliable results on the verge of computational [28]. On the other hand,
a simplified FEM model faces limitations owing to incomplete multi-physics involved in
simulation analysis [29,30]. Furthermore, the accuracy of the FEM model is also affected
by factors such as element type, initial and boundary conditions, and meshing size [29].
In addition, the analytical techniques utilize multi-physics equations solved based on
the initial and boundary conditions, simulating the thermal distribution and melt pool
formation in the DED process [31]. These methods are unreliable due to mass and volume
variation with time and uncertainties involved in DED processes.

Machine learning (ML)-based approaches have demonstrated significant advantages in
modeling the intricate thermal distributions and melt pool formations essential to Directed
Energy Deposition (DED), achieving solid accuracy and efficiency [32]. These approaches
significantly reduce the high costs associated with extensive experimental procedures
in research and development and alleviate the burden of lengthy computational times
typically required by traditional simulation methods [33]. ML-based models are fundamen-
tally data-driven, analyzing the relationship between each process parameter, like laser
power, scanning speed, powder feed rate, and its outputs, such as thermal distribution and
mechanical properties [34]. The data for training these models are usually collected from
experiments or simulations, and the predictive insights provided by ML models greatly
enhance the scalability of applications across various scenarios [35]. Various ML algorithms,
such as SVM, clustering, and artificial neural networks, have been utilized to predict melt
pool characteristics [36,37]. In addition, the defects of printed parts can be detected by
predicting the melt pool dimension [38]. Despite these advancements, the dynamics of
melt pools pose complex challenges. Primarily, the acquisition of large, robust datasets
necessary for training these models is prohibitively expensive and time-intensive [39].
Additionally, current research inadequately addresses the sequential nature of melt pool
dynamics, highlighting a critical need and understanding for more sophisticated appli-
cations of recurrent neural network (RNN) algorithms. Furthermore, the computational
demand and memory requirements of these models also need optimization to enhance
their reliability and robustness.

To address these challenges, this research introduces a pioneering RNN-based sur-
rogate model designed specifically to predict both the thermal history and the geometric
characteristics of melt pools in DED. The comprehensive framework that incorporates a

99



Materials 2024, 17, 4363

factorial design of experiments, multi-physics modeling, refined data processing, and rigor-
ous surrogate model training, evaluation, and comparison are proposed for this research.
This innovative approach deepens the understanding of complex melt pool dynamics and
significantly advances the operational capabilities of DED systems. It marks a substantial
progression in the field, enhancing the precision and efficiency of ML-based surrogate
models and facilitating their practical application in optimizing DED processes.

2. Methodology

The method used to develop the robust machine learning-based surrogate model for
predicting melt pool thermal history and characteristics is presented in Figure 1. The process
begins with the design of experiments, focusing on various parameters such as geometry,
material, laser power, scanning speed, and hatch spacing. This is followed by multi-physics
modeling, which includes finite element (FE) simulations and thermal modeling with
temperature-dependent material properties. Key data points such as melt pool peak tem-
perature and dimensions are extracted for building the surrogate model. In this research,
the surrogate model is machine learning-based, employing multiple machine learning algo-
rithms including Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM),
Bidirectional Long Short-Term Memory (Bi-LSTM), and Gated Recurrent Unit (GRU) to
ensure accurate predictions of melt pool thermal history and dimensions. The evaluation
and comparison of each algorithm are based on R-square values, Root Mean Square Error
(RMSE), and Mean Absolute Error (MAE), ensuring robust model performance. A detailed
description of each section is provided in the following content.

Figure 1. Proposed flow chart of current research.

2.1. Design of Experiments

In this research, a factorial design of experiments (DOE) is employed, involving three
factors, each at three different levels. This methodical approach is designed to thoroughly
investigate the interactions and effects of the variables on the outcomes. The chosen factors,
critical to the Directed Energy Deposition (DED) process, include laser power (W), scanning
speed (mm/s), and hatching space (%). Specifically, the laser power varies between 600
and 1000 watts, the scanning speed ranges from 2 to 6 mm per second, and the hatching
space is adjusted from 40% to 60%. These parameters are selected based on their significant
influence on the melt pool thermal distribution. A total of 27 experimental runs are
conducted to explore the full factorial space, providing a comprehensive understanding of
the process dynamics. The schematic detailing these experiments and their configurations
is depicted in Figure 2.
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Figure 2. Factorial design of experiments.

In this research, Ti-6Al-4V is utilized as both the substrate material and the powder.
Figure 3 depicts the simulation setup and the laser tool path, featuring a substrate thickness
of 6.35 mm. This design incorporates four vertical single laser tracks that run from top to
bottom. The total width of the deposit varies from 4.4 mm to 5.6 mm depending on the
hatching space, with a length of 15 mm and a thickness of 0.5 mm. The red-colored line
indicates that the laser is active, while the purple dashed line signifies that the gantry is
moving to the next track and the laser is turned off. In this setup, cantilever clamping,
shown in green, extends from the left end to 20 mm. Table 1 details the process parameters
for the factorial design of experiments, while Table 2 presents the complete design used for
the subsequent multi-physics simulation analysis.

Figure 3. Tool path and simulation setup.

Table 1. Summary of process parameters.

Process Parameters (Unit) Values

Laser Power (W) 600, 800, 1000
Scanning Speed (mm/s) 2, 4, 6
Hatching Space (%) 40, 50, 60
Laser Beam Size (mm) 2
Layer Thickness (mm) 0.5
Thermal Properties Shown in Figure 4
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Table 2. The twenty-seven-run design of experiment for multi-physics simulation.

Run Laser Power (W) Scanning Speed (mm/s) Hatch Space (%)

1 600 2 60
2 600 2 50
3 600 2 40
4 600 4 60
5 600 4 50
6 600 4 40
7 600 6 60
8 600 6 50
9 600 6 40
10 800 2 60
11 800 2 50
12 800 2 40
13 800 4 60
14 800 4 50
15 800 4 40
16 800 6 60
17 800 6 50
18 800 6 40
19 1000 2 60
20 1000 2 50
21 1000 2 40
22 1000 4 60
23 1000 4 50
24 1000 4 40
25 1000 6 60
26 1000 6 50
27 1000 6 40

Figure 4. Thermal properties of Ti6Al4V [40].

2.2. Multi-Physics Simulation

After designing the experiments, each of the 27 runs was simulated in Abaqus CAE us-
ing the AM Modeler plug-in. For the thermal simulation, temperature-dependent material
properties of Ti6Al4V were used, as shown in Figure 4.

To perform the calculation of thermal distribution during laser and material deposition,
3D heat conduction equation was employed over the domain shown as T(x, y, z, t) while
incorporating appropriate initial and boundary conditions as shown in Equation (1) [41,42].

ρC
∂T

∂t
=

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

+ Q (1)

where ρ is density, C is specific heat, T is temperature, t is time, k is thermal conductivity,
and Q is heat flux in the form of laser heat source. To calculate heat loss due to convection,
Newton’s law cooling was employed as shown in Equation (2) [41,42].
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qconv = h(T − Tenv) (2)

where h is convective coefficient which is 30.0 (W/m2·K4), T is shown as temperature at
any given time on the surface of the substrate, and Tenv is room temperature which is
25.0 ◦C. Heat loss due to radiation is calculated using the Stephen–Boltzmann radiation
law as shown in Equation (3) [41,42].

qrad = ǫσ
(

T4 − T4
env

)

(3)

where ǫ is known as emissivity and its value is taken as 0.8, σ represents the Stephen–
Boltzmann constant with a value of 5.67× 10−8 W/m2·K4. For body heat flux, Goldaks’s
double ellipsoid heat distribution is used as shown in Equation (4) [42,43].

Q =
6
√

3Pη

abc
√

π
exp

(

−3x2

a2 −
3y2

b2 −
3(z + Vst)2

c2

)

(4)

where P is power in Watts, η is the efficiency of laser absorption and taken as 0.6, a and b
values are taken as 1 and 2 mm, c for both front and back are taken 1 and 2 mm, respectively.
Vs is the scan speed with which the laser moves in the z-direction.

2.3. Data Generation and Extraction

After solving all the given designs of experiments, data were extracted from each
of the ODB files using a Python script. Two types of data were extracted: maximum
temperature and melt pool dimensions. Therefore, separate scripts were used for each type.
For example, run number 27 is shown in Figure 5a during material deposition and analysis.

For the maximum temperature, the highest temperature value was extracted for each
increment from each frame as shown in Figure 5b during Run27 simulation. The same
concept was applied to extract and calculate the melt pool dimensions. For each successful
increment solved during the analysis, all nodal locations in all directions with values equal
to or above 1605 ◦C were extracted. Once extracted for the specific increment, the location
with the highest value in length was subtracted from the location with the lowest value of
length, essentially providing the relevant dimension. The same method was employed for
extracting the melt pool length, width, and depth as shown in Figure 5c.

Figure 5. Thermal simulation during material deposition of Run27 as shown in (a), maximum
temperature value extraction (b) and melt pool dimension (c).
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2.4. Machine Learning Models

After extracting data from finite element simulations, four machine learning algo-
rithms—Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM), Bidi-
rectional Long Short-Term Memory (Bi-LSTM), and Gated Recurrent Units (GRUs)—are
prepared to build a surrogate model for predicting the thermal history and dimensions of
the melt pool. Both the accuracy and computational time of these algorithms are considered
to construct a robust machine learning-based surrogate model. The subsequent sections
describe each algorithm’s advantages and mathematical concepts.

2.4.1. Extreme Gradient Boosting (XGBoost)

XGBoost is recognized as one of the most effective applications of gradient-boosted
decision trees [44]. Explicitly proposed to augment memory utilization and leverage
hardware computational power, XGBoost significantly reduces accomplishment time while
enhancing performance compared to other ML algorithms. The core concept of boosting
involves sequentially constructing sub-trees from an original one, where each successive
tree aims to lessen the errors of the preceding one. This iterative method updates the
prior residuals, thereby minimizing the error of the cost function. Let us assume a dataset
illustrated as [44]

D = {(xi, yi) | xi ∈ R
m, yi ∈ R}. (5)

Here, m, xi, and yi are the feature dimensions and the samples’ (i) responses, respectively.
In addition, n represents the sample number (|D| = n). The forecasted output (yi) for an
entry (i) is as follows [44]:

yi =
K

∑
k=1

fk(xi), fk ∈ F. (6)

In the above Equation, fk represents a standalone tree within F, and fk(xi) indicates the
projected result from the ith trial and kth tree. The objective function (L) is written as [44]

L =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk). (7)

By minimizing the actual function (L), the regression tree model functions ( fk) are attained.
The loss function (l(yi, ŷi)) assesses the differentiation between estimated (ŷi) and real
outputs (yi). So, the term Ω is applied to prevent the overfitting issue by correcting the
model intricacy, explained as [44]

Ω( fk) = γT +
1
2

λ‖w‖2. (8)

Here, γ as well as λ are regularization factors, T and w are designated as the number and
score of the leaf, respectively. A Taylor series expansion with the second degree can be
applied to estimate the target function. We assume that Ij = {i | q(xi) = j} is an insistence
set of leaf j having q(x) as a permanent configuration. The optimum weights w∗j of j and
the subsequent quantity are estimated as [44]

w∗j = −
gj

hj + λ
. (9)

L∗ = −1
2

T

∑
j=1

(

∑i∈Ij
gi

)2

∑i∈Ij
hi + λ

+ λT. (10)

Here, the first- and second-order gradients for L are represented by gi and hi, respectively. L
can be applied as a quality index of the tree (q) so that the model is outstanding if the
score is lower. It is not possible to consider the whole tree structure at a time. An excellent
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algorithm should resolve the challenge by initiating from an individual leaf and iteratively
increasing branches. We assume that the right and left instance nodes are represented by
IR as well as IL, respectively. Considering I = IR ∪ IL, the loss reduction can be written as
following the split [44]:

Lsplit =
1
2

[

(

∑i∈IL
gi

)2

∑i∈IL
hi + λ

+

(

∑i∈IR
gi

)2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]

− γ. (11)

The XGBoost model employs numerous simple trees and assigns scores to leaf nodes during
the splitting process.

2.4.2. Long Short-Term Memory (LSTM)

LSTM networks, an advanced type of recurrent neural networks, effectively address
long-range dependencies in sequence data, crucial in scenarios like directed energy deposi-
tion processes. Characterized by three distinct gates—input, forget, and output—LSTMs
manage information flow, selectively retaining or discarding data to precisely learn depen-
dencies. The input state (it) decides which new information to incorporate into the cell
state (ct) and candidate state (c̃t), enabling the model to update its memory with relevant
data. The forget gate ( ft) selectively removes irrelevant information from the cell state to
maintain the model’s focus on pertinent data through time. The output gate (ot) controls
the flow of information from the cell state to the next layer or time step, determining what
part of the hidden state (ht) is used to compute the output and pass to next iteration.

This architecture mitigates gradient vanishing and exploding issues, enhancing ro-
bustness and accuracy in predictive models and making LSTM ideal for capturing complex
thermal and mechanical interactions in additive manufacturing. The LSTM architecture
is shown in Figure 6. The operator ‘×’ denotes pointwise multiplication, and ’+’ denotes
pointwise addition. The mathematical framework of LSTMs is presented in [45].

Forget gate:
ft = σ(W f hht−1 + W f xxt + Pf · ct−1 + b f ) (12)

Input gate:
it = σ(Wihht−1 + Wixxt + Pi · ct−1 + bi) (13)

c̃t = tanh(Wchht−1 + Wcxxt + bc̃) (14)

ct = ft · ct−1 + it · c̃t (15)

Output gate:
ot = σ(Wohht−1 + Woxxt + Po · ct + bo) (16)

ht = ot · tanh(ct) (17)

Here, W f , Wi, Wc, and Wo are the weights of each input. The xt, ht, and yt are represented
as input, hidden state (recurrent information), and output concerning time. Furthermore,
the ft is the forget cell starting from 0, Pf , Pi, and Po are the peephole weights for ft, input,
and output gates. The ct denotes the LSTM cell state, and bi, b f , bc̃, and bo are the biases.
Figure 7 shows the architecture of the series of LSTM structures.
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Figure 6. Architecture of LSTM algorithm.

Figure 7. Series of LSTM architecture.

2.4.3. Bidirectional Long Short-Term Memory (Bi-LSTM)

Bi-LSTM networks enhance traditional LSTM by processing data both forwards and
backwards, enriching sequence context understanding. This dual-path approach not only
boosts predictive accuracy in tasks like outcome prediction in directed energy deposition
but also captures nuanced temporal dynamics from both past and future contexts. Despite
their increased computational demands and potential for overfitting with small datasets,
Bi-LSTMs remain valuable for thoroughly analyzing thermal and mechanical properties
in AM. Leveraging LSTM strengths, they effectively manage long-term dependencies and
mitigate gradient issues, providing a robust model for complex material behaviors. The Bi-
LSTM architecture is defined in Figure 8, and the LSTM block within this architecture
follows the structure shown in Figure 6. The mathematical expression is given in [45].

f L
t = σ(WL

f hhL
t−1 + WL

f xhL−1
t + bL

f ) (18)

iL
t = σ(WL

ihhL
t−1 + WL

ixhL−1
t + bL

i ), (19)

c̃L
t = tanh(WL

c̃hhL
t−1 + WL

c̃xhL
t−1 + bL

c̃ ), (20)

cL
t = f L

t · cL
t−1 + iL

t · c̃L
t , (21)

oL
t = σ(WL

ohhL
t−1 + WL

oxhL
t−1 + bL

o ) (22)

hL
t = oL

t · tanh(cL
t ). (23)
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yt = W→hy ht + W←hy ht + by (24)

Here, hL
t represents the output of the hidden state in the (L)th layer at time t. Equa-

tion (24) shows the output of architecture, where W→hy denotes the weight of the forward
pass, W←hy indicates the weight of the backward pass, and by signifies the bias of the output.

Figure 8. Architecture of Bi-LSTM algorithm.

2.4.4. Gated Recurrent Units (GRUs)

GRUs offer a streamlined alternative to LSTMs and Bi-LSTMs, ideal for modeling
thermal histories in directed energy deposition. By employing just two gates—the reset
and update gates—GRUs enhance computational efficiency and reduce model complex-
ity, making them well-suited for scenarios with limited data or computational resources.
The reset gate determines how much past information to forget. In contrast, the update
gate decides how much of the current input should be incorporated, allowing the model
to handle time dependencies dynamically. Although GRUs may struggle with extremely
long dependencies, their ability to efficiently process sequential data without significant
computational overhead keeps them highly relevant for improving predictive models in
AM. Based on Figure 9, the following mathematical model has been proposed for GRU [45]:

Reset gate:
rt = σ(Wrhht−1 + Wrxxt + br), (25)

Update gate:
zt = σ(Wzhht−1 + Wzxxt + bz), (26)

h̃t = tanh(Wh̃h(rt · ht−1) + Wh̃xxt + bh̃), (27)

ht = (1− zt) · ht−1 + zt · h̃t. (28)

Here, Wr, Wz, and Wh̃h are the weights, and br and bz are the biases.
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Figure 9. Architecture of GRU algorithm.

2.4.5. Model Evaluation

In the model evaluation part, the performance of the surrogate model is assessed
using several statistical metrics to ensure accuracy and reliability. These metrics include
R-squared (R²), which measures the proportion of variance in the dependent variable that
is predictable from the independent variables; Root Mean Square Error (RMSE), which
provides the standard deviation of the prediction errors or residuals; and Mean Absolute
Error (MAE), which represents the average magnitude of the errors in a set of predictions,
without considering their direction. The mathematical formulas are presented as follows:

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − y)2 (29)

RMSE =

√

1
n

n

∑
i=1

(yi − ŷi)2 (30)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (31)

Here, yi are the observed values, ŷi are the predicted values, and y is the mean of
the observed values. Additionally, the computation time of the training model is also
considered a factor in evaluating model performance.

3. Results and Discussion

3.1. Data Pre-Processing and Model Training

The data used to build the surrogate models for melt pool peak temperature and
melt pool dimension in this research originated from 27 runs of multi-physics modeling,
employing a three-level, three-factor factorial design of experiments. A total of 54,956
data points were extracted. For the melt pool peak temperature model, data points that
did not reach the melting point of Ti-6Al-4V (1605 ◦C) or exceeded (3200 ◦C) were ex-
cluded. The vaporization point of Ti-6Al-4V is 3040 ◦C, but melt pool peak temperatures
occasionally exceed this threshold. To accommodate most conditions during deposition,
temperatures above the vaporization point were also considered. After cleaning, the dataset
contained 38,867 peak temperature points, with 28,683 allocated for training and 10,184 for
testing. The training and testing sets accounted for 73.8% and 26.2%, respectively. Figure 10
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displays the training features: time, x position, y position, z position, laser power, scanning
speed, and hatch space. Figure 11 depicts the training label for melt pool peak temperature.
A detailed and clear description of the training label is shown in Figure 12. The peak
temperature dramatically increases when the laser is on and drops when it is off. Each run
consists of four tracks, and fluctuations occur during the movement in each track.

Figure 10. Training Features of melt pool peak temperature model.

Figure 11. Training Label of melt pool peak temperature model.
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Figure 12. Training label of Run10 in melt pool peak temperature model.

Regarding the melt pool dimension model, 27,772 data points were collected because
data on melt pool dimensions are extracted only when the border of the melt pool exceeds
1605 ◦C, as described in Section 2. These points are divided into 20,182 (72.6%) for training
and 7590 (27.4%) for testing. The features and labels are shown in Figure 13. In the melt
pool dimension model, time (s), laser power (W), scanning speed (mm/s), hatching space
(%), and peak temperature (◦C) are considered as features, while melt pool length, width,
and depth (mm) are considered as labels. After removing outliers, such as extremely high
and low thermal histories, 19 runs of data remain: 14 runs are designated for training
and 5 runs for testing. To mitigate the impact of disproportionately large values among
the process parameters and training features, normalization is applied in the data pre-
processing stage. The details of the data for the two surrogate models, the melt pool peak
temperature model, and the melt pool dimension model are described in Table 3.

With regard to model training, the grid search method is applied to find the proper
hyperparameters. For the XGBoost algorithm, the tree depth is set to five to avoid over-
fitting, with a learning rate of 0.01 to ensure steady convergence. The objective is defined
as ‘reg:squarederror’ to minimize squared errors in regression tasks. L1 regulariza-
tion (reg_alpha) is applied at 0.01 to promote parameter sparsity, and L2 regularization
(reg_lambda) is set at 1 to reduce weight extremes. Both subsample and colsample_bytree

are maintained at 0.8, allowing the model to learn from 80% of data and features, respec-
tively, to prevent overfitting. The evaluation metric used is ‘rmse’, measuring prediction
accuracy. Training involves 10,000 rounds, optimizing learning against computational de-
mands. In terms of RNN algorithms, the hyperparameters for all LSTM, Bi-LSTM, and GRU
algorithms are unified to ensure a fair comparison among the models. The sequence length
of data is set to 10, batch size to 64, dropout rate to 0.25, hidden dimension to 100, number
of layers to 2, learning rate to 0.001, and number of epochs to 100.
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Figure 13. Training features and labels of melt pool dimension model.

Table 3. Summary of training and testing data of surrogate models.

Model Training Data Testing Data Training Size Testing Size Features Labels

Melt Pool Peak
Temperature

Run2-4, Run10-13,
Run15-18, Run24-26

Run1, Run5, Run14,
Run23, Run27

28,683 10,184

Time,
Position X, Y, Z,
Laser Power,
Scanning Speed,
Hatch Space

Melt Pool Peak Temperature

Melt Pool
Dimension

Run2-4, Run10-13,
Run15-18, Run24-26

Run1, Run5, Run14,
Run23, Run27

20,182 7590

Time,
Peak Temperature,
Laser Power,
Scanning Speed,
Hatch Space

Melt Pool Length,
Melt Pool Width,
Melt Pool Depth

3.2. Melt Pool Peak Temperature Model

In this section, four different algorithms—XGBoost, Bi-LSTM, LSTM, and GRU—are
applied to this research. To compare the pros and cons of tree-based versus RNN algo-
rithms, the predicted results by XGBoost and Bi-LSTM are presented together in one figure.
In terms of comparing the complexity of RNN algorithms, the results of LSTM and GRU are
displayed together in another figure. Additionally, two specific runs, Run1 (Laser Power:
600W, Scanning Speed: 2 mm/s, Hatching Space: 60%) and Run27 (Laser Power: 1000 W,
Scanning Speed: 6 mm/s, Hatching Space: 40%), are extracted and analyzed to facilitate a
detailed comparison and enhance clarity. A comprehensive comparison of predictions by
four algorithms is also included in this section.

Figure 14 depicts the comparison of Run1 among actual values and predicted values
by Bi-LSTM and XGBoost. It shows that the melt pool peak temperatures predicted by
Bi-LSTM closely match the actual peak temperatures. The results from XGBoost also
demonstrate reasonably good prediction performance. However, in Run27, the predictions
by XGBoost significantly deviate from the actual peak temperatures, especially in the
second and third tracks, where the predictions have more fluctuation and are higher than
the actual values. In contrast, the results from Bi-LSTM closely align with the actual values,
demonstrating the robustness of the model built using the Bi-LSTM algorithm, as shown
in Figure 15. In terms of the other two algorithms, LSTM and GRU, both achieve good
predictions that closely fit the actual values. In the first track of Run1, both predictions
are slightly lower than the actual values, yet the remaining predictions demonstrate good
performance, as depicted in Figure 16. In Run27, shown in Figure 17, except for the fourth
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track, where the predictions are slightly lower than the actual values, most of the results
closely match the actual values.

Figure 14. Run1: actual peak temperature versus prediction by Bi-LSTM and XGBoost.

Figure 15. Run27: actual peak temperature versus prediction by Bi-LSTM and XGBoost.

All predicted temperatures versus actual temperatures scatter plots are shown in
Figure 18. It demonstrates that the predicted values by XGBoost are relatively less accurate
than those produced by RNN algorithms. Most of the predicted results by RNN algorithms
closely match the red line, which has a slope of one, indicating that the predictions are both
accurate and robust. To compare the performance of the four algorithms, Table 4 reveals
that the Bi-LSTM model has the highest accuracy, longest computational time, and greatest
memory usage. Although XGBoost performs well in terms of computational time and
memory usage, its accuracy is not robust enough to predict melt pool peak temperatures
reliably. The accuracy of the LSTM and GRU models is similar; however, the computational
time and memory usage of the GRU model are lower than those of the LSTM model by
20.7% and 5.4%, respectively. In conclusion, the Bi-LSTM model provides the most accurate
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results, while the GRU model offers comparable accuracy with lower computational time
and memory usage.

Figure 16. Run1: actual peak temperature versus prediction by LSTM and GRU.

Figure 17. Run27: Actual peak temperature versus prediction by LSTM and GRU.

Table 4. Evaluation and comparative analysis: melt pool peak temperature model.

Algorithms R-Square RMSE MAE
Computation

Time (s)
Memory

Usage (GB)

XGBoost 0.852 0.0550 0.0382 16.67 0.747
LSTM 0.979 0.0178 0.0126 238.60 2.41

Bi-LSTM 0.983 0.0153 0.0101 290.25 5.24
GRU 0.978 0.0179 0.0129 189.30 2.28
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Figure 18. Actual peak temperature with predictions from four algorithms.

3.3. Melt Pool Geometry Model

In this section, three surrogate models are presented: melt pool length, width, and
depth, respectively. To clarify the comparison, results from Run23 and Run14 are extracted
for discussion. Additionally, the overall results of the four algorithms are compared using
scatter plots and a comprehensive table in the subsequent contents.

3.3.1. Melt Pool Length Model

In Run14 and Run23, the Bi-LSTM model consistently outperforms the XGBoost model
in predicting melt pool length. As depicted in Figure 19, the Bi-LSTM model demonstrates
superior accuracy in predicting higher melt pool lengths, particularly for data points
from 5700 to 5800. Moreover, towards the end of Run14, from data points 6300 to 6700,
the Bi-LSTM model shows significantly less fluctuation compared to the XGBoost model,
indicating its enhanced stability under varying conditions. In Figure 20, although the
XGBoost model accurately predicts the melt pool lengths for data points from 3400 to 3750,
the overall performance of the Bi-LSTM model remains more consistent and aligned with
the actual length.

114



Materials 2024, 17, 4363

Figure 19. Run14: Actual length versus prediction by Bi-LSTM and XGBoost.

Figure 20. Run23: Actual length versus prediction by Bi-LSTM and XGBoost.

Regarding the LSTM and GRU models, the GRU model exhibits less error in predict-
ing longer melt pool lengths, as evident in Figure 21 for data points from 5700 to 5800.
Throughout the remainder of Run14, both models achieve commendable accuracy in fitting
the actual length. In Run23, despite both models displaying a similar trend in capturing
the actual values, the LSTM model exhibits greater deviations from the actual lengths
compared to the GRU model, as illustrated in Figure 22. This result suggests that while
the LSTM model is generally reliable, the GRU model may offer better consistency and
precision under certain conditions.

The comparison of overall predictions among four algorithms is presented in a scatter
plot. Figure 23 demonstrates that the melt pool lengths predicted by the RNN algorithms
are more accurate than those predicted by the XGBoost algorithm. Notably, when the
melt pool length exceeds 2 mm, predictions from the XGBoost model deviate significantly
from the ideal fit, resulting in decreased accuracy. Table 5 summarizes the evaluation and
comparative analysis of the melt pool length models. Although the XGBoost algorithm
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impresses with its computation time and memory usage, its accuracy needs improvement.
In terms of RNN algorithms, the GRU and Bi-LSTM models perform better. In particular,
the GRU model not only achieves the highest R-square value but also requires the least
computation time and memory usage among all RNN algorithms. Compared to the Bi-
LSTM model, the GRU model’s computation time and memory usage are lower by 44%
and 51%, respectively, making it the most suitable candidate for predicting melt pool length
in this research.

Figure 21. Run14: actual length versus prediction by LSTM and GRU.

Figure 22. Run23: actual length versus prediction by LSTM and GRU.
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Figure 23. Actual length versus predictions from four algorithms.

Table 5. Evaluation and comparative analysis: melt pool length model.

Algorithms R-Square RMSE MAE
Computation

Time (s)
Memory

Usage (GB)

XGBoost 0.698 0.1031 0.0629 16.22 0.269
LSTM 0.888 0.0539 0.0412 76.23 1.37

Bi-LSTM 0.902 0.0501 0.0369 120.55 2.65
GRU 0.903 0.0503 0.0381 67.75 1.30

3.3.2. Melt Pool Width Model

In the melt pool width model, Figures 24 and 25 illustrate the predictions made by the
Bi-LSTM and XGBoost algorithms for Run14 and Run23, respectively. Those scatter plots
show a notable variance in accuracy between the algorithms. For Run14, particularly from
data point 5500 to 5900, and in Run23 from data point 3100 to 3400, the predictions by the
XGBoost model significantly exceed the actual width, highlighting its lower accuracy com-
pared to the Bi-LSTM model. The Bi-LSTM model more consistently aligns with the actual
measurements, particularly in complex segments where the melt pool width fluctuates.
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Figure 24. Run14: actual width versus prediction by Bi-LSTM and XGBoost.

Figure 25. Run23: actual width versus prediction by Bi-LSTM and XGBoost.

Figures 26 and 27 showcase the performance of the LSTM and GRU models for Run14
and Run23, respectively. Both models exhibit similar trends and achieve commendable
accuracy in fitting the actual widths in Run14, with the GRU model slightly outperforming
the LSTM. Notably, in Run23, while neither model perfectly replicates the fluctuation
observed in the actual width measurements, they successfully capture the broader trends.
The GRU model consistently demonstrates a slight edge over the LSTM in terms of align-
ment with the actual data across both runs, indicating its robustness in modeling the melt
pool width.

The overall predictive performance of four algorithms is displayed in a scatter plot
for comparison, as shown in Figure 28. The RNN algorithms, particularly Bi-LSTM and
GRU, exhibit superior performance in predicting sequential data such as melt pool width,
evidenced by their close alignment with the ideal fit line. Both models display similar
commendable accuracy, effectively capturing the sequential dependencies within the data.
In contrast, predictions by the XGBoost algorithm are notably more dispersed, indicating
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less accuracy. This dispersion becomes especially pronounced when the actual width
exceeds 2 mm, where XGBoost predictions significantly deviate from the ideal fit. Table 6
summarizes the comparison among all algorithms, highlighting that the Bi-LSTM model
achieves the highest R-square value. However, the GRU model offers comparable accuracy
with lower computation time and memory usage—40% and 51% less than the Bi-LSTM
model, respectively—demonstrating its greater robustness.

Figure 26. Run14: actual width versus prediction by LSTM and GRU.

Figure 27. Run23: actual width versus prediction by LSTM and GRU.
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Figure 28. Actual width versus predictions from four algorithms.

Table 6. Evaluation and comparative analysis: melt pool width model.

Algorithms R-Square RMSE MAE
Computation

Time (s)
Memory

Usage (GB)

XGBoost 0.752 0.0963 0.0762 16.95 0.371
LSTM 0.946 0.0418 0.0313 86.26 1.37

Bi-LSTM 0.952 0.0399 0.0293 128.70 2.65
GRU 0.951 0.04 0.0291 76.73 1.30

3.3.3. Melt Pool Depth Model

In the melt pool depth model, the XGBoost model displays a surprising parity with the
Bi-LSTM model in terms of performance in Run14, especially noticeable at the start where
XGBoost surpasses Bi-LSTM in accuracy, as shown in Figure 29. In contrast, during Run23
as depicted in Figure 30, although the overall trends of both models align closely with
the actual depth measurements, the XGBoost predictions show greater deviations from
the actual values, suggesting less consistency compared to the Bi-LSTM model. This
indicates that while XGBoost can match the performance of Bi-LSTM in certain scenarios,
its performance can be less reliable in others.
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Figure 29. Run14: actual depth versus prediction by Bi-LSTM and XGBoost.

Figure 30. Run23: actual depth versus prediction by Bi-LSTM and XGBoost.

Regarding the LSTM and GRU models, their performance in predicting melt pool
depth is commendably consistent, exhibiting similar trends. Both models closely align
with the actual values, demonstrating their effectiveness in capturing sequential data
characteristics. In Run14, although the predictions start slightly below the actual values,
both LSTM and GRU adjust quickly and maintain a good match throughout the data range,
as shown in Figure 31. Run23 shows a slight divergence in the predictions from both
models, especially in the latter half, where the LSTM model exhibits more deviation than
the GRU model, yet both still maintain a general adherence to the trend of actual depth
values, as illustrated in Figure 32.

The scatter plots of predictions by all four algorithms are presented in Figure 33. Un-
like the melt pool peak temperature and other geometric models, no single model exhibits
particularly strong performance. All models deviate from the ideal fit, especially when pre-
dicting maximum and minimum melt pool depths. For a more comprehensive comparison
and analysis, Table 7 reveals that the XGBoost model has the shortest computation time and
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lowest memory usage, but relatively lower accuracy. Additionally, the GRU model boasts
the highest R-square value and has lower computation time and memory usage—29% and
50% less, respectively, compared to the Bi-LSTM model—highlighting the reliability and
robustness of the GRU model.

Figure 31. Run14: actual depth versus prediction by LSTM and GRU.

Figure 32. Run23: actual depth versus prediction by LSTM and GRU.
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Figure 33. Actual depth versus predictions from four algorithms.

Table 7. Evaluation and comparative analysis: melt pool depth model.

Algorithms R-Square RMSE MAE
Computation

Time (s)
Memory

Usage (GB)

XGBoost 0.751 0.0892 0.0555 20.20 0.344
LSTM 0.871 0.0479 0.0360 97.69 1.44

Bi-LSTM 0.881 0.0476 0.0359 120.19 2.72
GRU 0.885 0.0420 0.0293 85.43 1.37

4. Conclusions

This study developed a recurrent neural network (RNN)-based surrogate model to
predict melt pool characteristics, such as peak temperature, length, width, and depth,
in directed energy deposition (DED) processes. By integrating a three-level, three-factor
design of experiments and multi-physics simulation data into an LSTM, Bi-LSTM, and GRU
framework, the model demonstrates exceptional predictive accuracy for sequential melt
pool data under varied processing conditions. The research also presents a comprehensive
evaluation and comparative analysis of surrogate models built with different algorithms.
Key contributions of this research include:
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• Robust Model Architecture: Employed advanced RNN architectures—LSTM, Bi-
LSTM, and GRU—to effectively capture the sequential and dynamic behavior of melt
pools in DED processes.

• High Predictive Accuracy: Achieved an R-square of 0.983 for melt pool peak temper-
ature predictions using the Bi-LSTM algorithm. Demonstrated superior performance
in melt pool geometry predictions:

– Melt pool length: R-square of 0.903 with the GRU algorithm.
– Melt pool width: R-square of 0.952 with the Bi-LSTM algorithm.
– Melt pool depth: R-square of 0.885 with the GRU algorithm.

• Efficiency and Robustness: The GRU-based surrogate model outperformed other
algorithms in terms of accuracy, computation time, and memory usage, showing a
reduction of at least 29% in computation time and 50% in memory usage, highlighting
the model’s efficiency and robustness.
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Abstract: In laser powder bed fusion processes, keyholes are the gaseous cavities formed where laser
interacts with metal, and their morphologies play an important role in defect formation and the final
product quality. The in-situ X-ray imaging technique can monitor the keyhole dynamics from the
side and capture keyhole shapes in the X-ray image stream. Keyhole shapes in X-ray images are then
often labeled by humans for analysis, which increasingly involves attempting to correlate keyhole
shapes with defects using machine learning. However, such labeling is tedious, time-consuming,
error-prone, and cannot be scaled to large data sets. To use keyhole shapes more readily as the input
to machine learning methods, an automatic tool to identify keyhole regions is desirable. In this paper,
a deep-learning-based computer vision tool that can automatically segment keyhole shapes out of
X-ray images is presented. The pipeline contains a filtering method and an implementation of the
BASNet deep learning model to semantically segment the keyhole morphologies out of X-ray images.
The presented tool shows promising average accuracy of 91.24% for keyhole area, and 92.81% for
boundary shape, for a range of test dataset conditions in Al6061 (and one AliSi10Mg) alloys, with
300 training images/labels and 100 testing images for each trial. Prospective users may apply the
presently trained tool or a retrained version following the approach used here to automatically label
keyhole shapes in large image sets.

Keywords: keyhole; laser powder bed fusion; deep learning; image segmentation

1. Introduction

Laser powder bed fusion (LPBF), also known as selective laser melting (SLM), is
currently one of the most common metal additive manufacturing (AM) techniques [1,2].
During the LPBF process, a focused laser will shoot onto the powder bed selectively and
make powders melt, merge, and solidify to build up a part based on the CAD (computer-
aided design) model [3]. Using in-situ X-ray imaging to monitor the process, previous
studies have found that high intensity of the laser will result in vaporization of the material,
which will lead to recoil pressure that pushes the molten metal in the melt pool to create a
vapor cavity, named a ‘keyhole’ [4,5]. In the process and along the printing path, the keyhole
experiences inconsistent recoil pressure, surface tension, and Marangoni force, leading to
severe and random fluctuations [6,7]. Sometimes, fluctuated keyholes will collapse, and
the vapor will be partially trapped inside the melt pool, resulting in undesirable porosity
in the final product [4,8].

Many studies have been made to find correlations between the keyhole morphology
revealed in the X-ray imaging and the generation of keyhole-induced pores [9,10], with
an eventual goal of reducing defects. Due to the complex dynamics of the LPBF process,
there is great interest in in-situ data-driven methods to study the defect formation
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mechanisms [11,12]. As a popular approach to observe the dynamics in the LPBF process,
in-situ X-ray imaging can be captured at a frame rate of over one million frames per
second, generating enormous keyhole morphology images, and creating a huge potential
for data-driven studies with keyholes. However, these studies are greatly constrained by
a limited quantity of well-characterized keyhole morphology data, which typically needs
to be labeled by humans. More specifically, sufficient data for machine learning-based
pore prediction for many types of LPBF systems, conditions, and alloys, will require
very large efforts to label keyhole morphologies unless accessible automatic tools that
can segment the keyholes are developed. Several automatic tools have recently been
explored in previous works: Pyeon et al. developed a non-machine learning-based
semi-automatic keyhole region extraction tool [13], and Zhang et al. tested several
semantic segmentation and object detection models and compared the performances of
extracting keyholes and pores at the same time [14]. However, the filter developed by
Pyeon et al. was only tested with clean images without metal powder, and models tested
by Zhang et al. segment both keyholes and pores in the same classification. In addition,
while the boundary is the most important feature in the keyhole morphology, previously
proposed methods are not designed to have high segmentation boundary accuracy and
be validated against datasets from different experiments. Therefore, considering the
increasing need for keyhole segmentation for large X-ray imaging databases, we here
develop an automatic keyhole segmentation tool with high accuracy for both area and
boundary and test against datasets with powders from different experiments.

In this paper, a deep-learning-based semantic segmentation tool that is capable of
automatic segmentation of keyholes in X-ray images with accurate boundaries was devel-
oped. This tool is composed of a filter that standardizes, normalizes, and cleans the X-ray
images, and an implementation of BASNet, a Boundary-Aware Segmentation network,
that predicts semantic labels [15]. Without any human inputs, this tool only requires users
to run algorithms with their X-ray images, which significantly accelerates the keyhole
morphology labeling process and enables the possibility of data-driven analysis with a
large quantity of morphology data. In the following, the implementation of the method
will be illustrated, the performance of the tool will be quantified, and the mechanism and
limitation of the method will be discussed at the end. This work was conducted with data
derived from different experiments at multiple different times, but the tool provided in this
study will likely need to be refit for systems with significant differences from those studied
here. However, such refitting can likely be performed quickly through transfer learning,
i.e., by starting from the weights in this paper. Development of similar segmentation tasks
for X-ray imaging, like segmenting melt pools or spatters in the LPBF process, could also
be accelerated by transfer learning from the present model.

2. Methods

The workflow of the whole segmentation process is shown in Figure 1: Raw X-ray
images are processed with a designed filter and then fed into the segmentation network,
which outputs the semantic labels. The segmentation network needs to be previously
trained by filtered images and ground truth labels in the training set.

Figure 1. A flowchart illustrating the keyhole segmentation process pipeline.
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2.1. Raw Images

Data used in this study were acquired by using in situ X-ray imaging on LPBF pro-
cesses at the beamline 32-ID-B of the Advanced Photon Source at Argonne National Labora-
tory. During experiments, the ytterbium fiber laser generated a laser beam and was directed
by a galvo scan head toward the metal powder and substrate. While the laser was melting
the material, the scanning area was penetrated by X-ray simultaneously, and the shapes of
keyholes and pores were projected and converted to visible light by a scintillator, which
was recorded by a high-speed camera with a frame rate of 50 kHz [4]. There are 8 X-ray
imaging data sets in this work and they were acquired by 8 separate experiments, each with
different processing parameters, as shown in Table 1. The experiments were performed
with Al6061 in 7 cases and AliSi10Mg in one case. Each data set has 400–500 frames, and
50 of those were labeled in each data set and used in this study. In total, there are 3416 im-
ages in the 8 data sets from which 1441 images have a visible keyhole, and 400 images with
visible keyholes were labeled for training and testing. The remaining 1975 images show no
keyholes since the laser in the LPBF process was not on or in the field of view at the time of
imaging, and are not used in the testing and training of this paper.

Table 1. Samples and processing parameters of in situ X-ray imaging experiments.

Experiment Material Nanoparticle Substrate Power (W)
Scan Speed

(m/s)

1 Al6061 10%vol TiC Printed 385 0.3
2 Al6061 10%vol TiC Printed 385 0.4
3 Al6061 / Printed 443 0.4
4 Al6061 / As-cast 500 0.2
5 Al6061 / Printed 500 0.4
6 Al6061 / As-cast 500 0.4
7 Al6061 / As-cast 500 0.4
8 AlSi10Mg / As-cast 500 0.5

2.2. Filtering

There are two major goals when filtering the raw images: (1) standardize images to be
acceptable for the segmentation network as inputs, and (2) normalize and clean the image
by reducing the differences between datasets and removing stationary obstructions. The
filter is built using MATLAB R2023b based on the schematics shown below in Figure 2 and
described below.

700 × 500

Figure 2. Flowchart illustrating filtering procedures. The subtracted image is rescaled for better rep-
resentation in the following image, no re-scaling was involved in the “Subtract” and “Binarize” steps.

To meet the requirements of the network, all images need to be at the same resolution,
a fixed size, and in the same format. In our case, all images are converted into uint 8, with a
size of 700× 500 pixels, and in PNG format. This step is known as “Standardize”.

In different experiment setups, X-ray images will have different brightness, contrast,
and sometimes stationary obstructions overlapping with the keyhole area. These factors
greatly hinder the segmentation of keyholes. To alleviate these factors, a concurrent subtrac-
tion step is designed, and the detailed mechanism will be covered in the Discussion section.
For each image, the sum of previous N frames of images is calculated, and the current
image is subtracted by the average of previous N frames, where N is a tunable parameter
for each dataset, and here 40 previous images are used. This step is termed “Subtract”.
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To further normalize the images, greyscale images are converted into black and white
(binary) images. The images are binarized with a threshold of 0.5. The global average value
of all pixels in the whole image is calculated, pixels with a value above the average are
marked as 1, and pixels with a value below average are marked as 0. This step is “Binarize”.

With these three steps, any raw X-ray images can be transformed into the format used
for training and can be input into our training model. Please check the GitHub repository
in the Supplementary Material to find a specific implementation of these steps.

2.3. Segmentation Network Training

Before the filtered images are fed into the segmentation network, the network needs
to be trained by filtered training images and corresponding ground truth labeling. The
ground truths are labeled manually using MATLAB R2023b Image Labeler app, with pixels
assigned as 1 in the keyhole region and pixels assigned as 0 in the background, exported
with the same resolution, size, and format as training images, creating a binary label for
each corresponding image. In this study, experiments/datasets 3 to 8 were picked as
training datasets, and their corresponding ground truth labels were picked as the training
set, with 50 images and labels for each of the 6 datasets, and 300 images and labels in total.

In this study, we chose the Boundary-Aware Segmentation Network (BASNet) devel-
oped by Qin et al. as the semantic segmentation network [15]. The BASNet model was
trained at a batch size equal to 1, and 70 epochs, leading to 21,000 iterations in total, and
the trained model can be found in the GitHub repository in the Supplementary Material.
The model appeared to be well-converged by this number of epochs and the loss curve can
be found in the Results and Discussion section. The source code for training was modified
to add a testing step with datasets 1 and 2 after each epoch, where the model was tested
to generate the labels for images in datasets 1 and 2. The labels were compared with the
ground truths and the testing losses for these two datasets were also calculated after each
epoch of training. Convergence on testing loss was also observed, with more details in the
Results and Discussion section.

2.4. Deep Learning Segmentation on Test Data

Experiments/datasets 1 and 2 were picked as the testing datasets for the segmentation
model, and the ground truth was labeled in advance as a comparison to prediction. Filtered
X-ray images for datasets 1 and 2 were fed into the trained BASNet model to generate
predicted labels, which need to be binarized to convert the label from gradient to binary
images. The sample X-ray image, its predicted label, and comparisons with ground truth
are shown in Figure 3.

 

Figure 3. Sample X-ray image, its predicted label, and comparisons: (a) raw image; (b) filtered image;
(c) predicted label; (d) overlay of predicted label and ground truth, where predicted label is in red,
ground truth is in blue, intersection is overlapped as purple (Since there are not much unmatched
predicted label and ground truth, red and blue area are barely visible for the given images); (e) overlay
on filtered image; (f) overlay on raw image; (g,h) overlay on raw images for other two frames in
testing dataset 1; (i,j) overlay on raw images for two frames in testing dataset 2.
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Testing on data from different experiments can allow for evaluation of the actual
performance of this tool when prospective users implement this tool to acquire keyhole
morphology on their own X-ray images. The performance of this model on testing datasets
will be quantified in the Results section.

3. Results

3.1. Training and Loss Function

The BASNet model adopts a predict-refinement structure, where the input image
first passes through a predict module (encoder–decoder) and then a residual refinement
module to finally generate the segmentation. The segmentation generated by the refinement
module is the final output of the model, and there are 7 “side outputs”, or intermediate
outputs, which are the outputs of every stage of the decoder in the predict module, and
are also the inputs of their upcoming stage. The loss function for optimization of BASNet
takes the summation of loss values of all final outputs and 7 side outputs generated along
the network, which is named “summation loss”. While this is useful for training, the
performance a user cares about is the loss from the final output, which is named “final
output loss”, as that is what will be used in applications. Both training summation loss
and the final output loss for the training and test data were recorded at the end of each
epoch, shown in Figure 4 below. As the training loss curve shows in Figure 4a, the model
gradually converged to a low and consistent summation loss value as training proceeded.
The model also performed nearly as well on test datasets, which also gradually converged
to a low loss value along with the training loss. During training, the final output loss for
the training datasets and test datasets was also calculated and is shown in Figure 4b below.
The convergence of the training and test datasets onto low loss values indicates the high
accuracy of segmentation of the trained model on both training and test datasets.

 

Figure 4. Recorded loss curve for BASNet training process for training datasets (experiment 3–8), test
dataset 1 and 2, from 0 epoch to 70 epochs: (a) training and testing data loss curve for summation
loss; (b) training and testing data loss curve for final output loss.

3.2. Testing and Performance Matrices

To evaluate the performance of the tool, by comparing with the predicted label and
ground truth, two matrices are calculated to quantify the segmentation accuracy of the pipeline:
intersection over union (IoU) and boundary F-score (BF-score) (both defined below). Both IoU
and BF-score are in the range [0, 1], an IoU closer to 1 means a better match in area, and a
BF-score close to 1 means a better match on the boundary [16]. These two metrics are calculated
based on the predicted label and ground truth for all images in both testing datasets 1 and 2,
based on Equations (1) to (4) below, where PL and PLB stand for the model-predicted label
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and its boundary, and GT and GTB stand for the ground truth label and its boundary, which
represents the actual keyhole region. In the IoU calculation, the intersection area and union area
of the predicted label and ground truth are calculated, and a ratio of intersection over union that
is close to 1 shows both successful coverage of the actual keyhole area by the model predicted
labeling and little overestimation of the actual keyhole area by the predicted labeling. In the
BF-score calculation, precision represents the percentage of the model-predicted boundary
that matches the actual keyhole boundary, and high precision means the model predicted
a more correct boundary. Recall represents the percentage of the actual keyhole boundary
that is predicted correctly by the model-predicted boundary, and high recall indicates more
actual keyhole boundary is successfully predicted by the model. The BF-score is calculated
by the multiplication over the sum of the precision and recall times by 2, and a score close to
1 indicates both high precision and recall by the model prediction. In Equations (2) and (3),
the threshold is set for the maximum distance between two boundaries is 1 pixel, meaning
that any portion of the boundary that exceeds 1 pixel distance from the other will not count in
the numerator. This is a demanding criterion, representing just a fraction of a percent of the
dimensions of the filtered images, which in this study are 700 by 300 pixels.

IoU = (Area Intersection of PL and GT)/(Area Union of PL and GT) (1)

Precision = (Portion of PLB with distance to GTB within the threshold)/(Full PLB) (2)

Recall = (Portion of GTB with distance to PLB within the threshold)/(Full GTB) (3)

BF-score = 2 × (Precision × Recall)/(Precision + Recall) (4)

As shown in Table 2 below, IoU and BF-score are high and close to 1 for both datasets 1
and 2 for run 1, which means that this method successfully segments out the keyhole region
in test datasets. Considering IoU, this method is on the same level as other segmentation
tools proposed in previous works, and a high BF-score further validates the segmentation
accuracy on the boundary [14]. The same tool is later tested using cross-validation, with
three more runs trained and tested as Table 3 below. The IoU and BF-score for cross-
validation are also shown in Table 2, with most testing datasets showing similar values for
both matrices, with an average IoU of 0.9124 and average BF-score of 0.9281, suggesting that
this tool is very accurate for random 75% training/25% test splits. However, the proposed
tool might also encounter segmentation errors, as testing dataset 3 for run 2 shows relatively
lower IoU and BF-score values, which will be further covered in the Discussion section.

Table 2. IoU and BF-score for cross validation with 6 training sets and 2 testing sets, 4 runs in total.

Run Testing Dataset IoU BF-Score

1 1 0.9381 0.9514
1 2 0.8923 0.9098
2 3 0.8333 0.8603
2 4 0.9321 0.9421
3 5 0.9195 0.9352
3 6 0.9190 0.9351
4 7 0.9130 0.9313
4 8 0.9518 0.9595

Average 0.9124 0.9281
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Table 3. Cross validation training and testing datasets assignments.

Run Dataset 1 and 2 Dataset 3 and 4 Dataset 5 and 6 Dataset 7 and 8

1 Test Train Train Train
2 Train Test Train Train
3 Train Train Test Train
4 Train Train Train Test

4. Discussion

We constructed a pipeline for keyhole region semantic segmentation in in-situ LPBF X-
ray Imaging. The whole pipeline consists of two main components, a filter that standardizes,
normalizes, and cleans raw datasets, and deep learning segmentation labels the keyhole
region from the filtered images. In different experiment setups, X-ray images have different
brightness, contrast, and sometimes stationary obstructions overlapping with the keyhole
area. These factors greatly hinder the segmentation of keyholes.

Therefore, the intuition of the design of the filter part in the pipeline is to manage
all training data in a consistent fashion, so as to reduce the effects of attributes of the
datasets on the prediction of keyhole segmentation. From the eight raw datasets used
in this experiment, images from four datasets have a dimension of 712× 512 pixels, and
images from four other datasets have a dimension of 896× 448 pixels, all in TIF format.
Theoretically, having images with different sizes should still be applicable for training, as
there is a rescaling step in the training algorithm, but a consistent size and file format will
make image labeling and manipulation much easier. Hence, the designed Standardize step
converts all images into 700× 500 pixels and PNG format.

As shown in Table 4, raw images from different datasets have vastly different bright-
ness and contrast values, and the differences can be mitigated with the Subtract and the
Binarize step to normalize images from all datasets. Firstly, the Subtract step greatly reduces
the differences by subtracting the average image of the whole dataset, leaving only the
features of each image relative to the dataset. Then, the differences are further alleviated
by the Binarize step, which reduces the greyscale difference across different datasets by
turning the image into black and white, which will have contrast of 1.

Table 4. Average brightness and average contrast value for raw, subtracted, and binarized images for
all images in 8 datasets. For each image, brightness is calculated by the mean of all pixels’ value over
the white value (255 for uint 8), and contrast is calculated by the range of pixels’ value (maximum −
minimum) over the white value. Values from all 50 images for each dataset are averaged.

Dataset
Average Brightness Average Contrast

Raw Subtracted Binarized Raw Subtracted Binarized

1 0.5852 0.0079 0.0363 0.8034 0.4820 1.0000
2 0.5802 0.0091 0.0374 0.7496 0.4958 1.0000
3 0.0131 0.0001 0.0314 0.0278 0.0155 1.0000
4 0.0113 0.0001 0.0275 0.0255 0.0129 1.0000
5 0.0131 0.0001 0.0328 0.0288 0.0156 1.0000
6 0.5841 0.0097 0.0350 0.7833 0.5260 1.0000
7 0.0115 0.0001 0.0215 0.0264 0.0119 1.0000
8 0.5876 0.0083 0.0389 0.7503 0.4261 1.0000

Despite brightness and contrast, stationary obstruction also greatly hinders the seg-
mentation of keyholes, especially when they are spatially overlapped with the keyhole
area. These obstructions are stationary and are affiliated with a particular dataset, which
yields inconsistent X-ray images across different datasets and influences the prediction of
the keyhole area. As shown in Figure 5, the obstruction can also be resolved with the Sub-
traction step, as the subtraction value shown in Figure 5b contains the stationary patterns,
and stationary obstructions can be removed for subtracted and binarized images, as shown
in Figure 5c–e. Note that the deep learning model segmentations described below with
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just the Standardize step and just the Subtract step were also tried, but the model did not
perform well and failed to identify the keyhole region in most frames.

For the deep learning segmentation, BASNet utilizes a hybrid fusion loss function to
achieve training supervision of prediction on multiple levels: pixel level, patch level, and
map level, instead of barely relying on IoU, which could lead to insufficient prediction of
structural properties on the patch level. Along with the prediction-refinement structure,
BASNet is capable of semantic segmentation for boundary-sensitive cases like the detailed
morphology in keyhole segmentation. The boundary prediction performance is further
validated with the BF-score in the Results section. Other popular models like UNet and
Deep LabV3+ were also tried in the pipeline, but they all failed to map the boundary in
most cases even when with a high IoU score [17,18].

 

Figure 5. The Subtract step in the filter removes a stationary obstruction affiliated to the dataset: (a) a
standardized image with the obstruction inside the keyhole; (b) the subtraction value as an image,
average of 40 previous images in the same dataset, containing the obstruction; (c) the subtracted
image, where the obstruction is removed by the Subtract step; (d) the rescaled subtracted image for
visualization; (e) binarized image, the output of the filter, with no obstruction.

However, the proposed tool may also encounter segmentation errors, like run 2
testing dataset 3 mentioned in the Results section. Two failed segmentation examples are
shown in Figure 6, where in the first example (Figure 6a,b), BASNet predicts no keyhole
region, resulting in an IoU and BF-score of less than 0.1. In the second example, shown in
Figure 6c,d, BASNet failed to predict the “tail” of the keyhole region. As shown in Figure 6e,
a small number of similar errors contribute to the relatively low average IoU and BF-score,
while in most cases, BASNet can accurately label the keyhole region. These errors could
be attributed to the small keyhole size of dataset 3, which leads to inconsistency in the
prediction area with other datasets. Consistency can potentially be achieved by adding a
cropping module in the filter or introducing more training data with similar sizes to reduce
the effect of keyhole size on the prediction of BASNet. In addition, another factor behind
segmentation errors is the fuzzy imaging background for dataset 3, which results in unclear
keyhole region contour of the filtered images. Further fine-tuning of the filter parameter N
could potentially improve the clarity of the image with a distinct keyhole boundary.

134



Materials 2024, 17, 510

 

Figure 6. Segmentation errors in run 2, testing dataset 3: (a) overlay of the predicted label and ground
truth of a failed segmentation example, no label is predicted by BASNet (predicted label in blue,
ground truth in red, intersection in purple); (b) overlay on the input filtered image; (c) another failed
segmentation example, where the “tail” of the keyhole region is missed by prediction; (d) overlay on
the input filtered image; (e) histogram of the distribution of tested images in testing dataset 3 in run 2
regarding two evaluation matrices (Number of images with respect to BF-Score in blue, IoU in red,
and overlapped in darker orange). Blue area in (a–d) is barely visible because there is little predicted
area that is not ground truth.

So far, the current algorithm cannot process X-ray images with significant differences
in experiment setups, and re-training might be needed for prospective users to implement
the algorithm. In the future, more training images will be labeled to further optimize this
algorithm and to enhance the versatility and robustness of the model.

5. Conclusions

In this study, a deep-learning-based segmentation tool that is capable of automatic
segmentation of keyhole morphology in X-ray images with a filter and a trained network
pipeline was developed. This tool is validated, with an average IoU of 0.9124 and an
average BF-score of 0.9281 on X-ray images from different experiments, proving its high
accuracy both in area and boundary, with cross-validation of 300 training and 100 testing
images/labeling for each trail.

This work illustrates a repeatable approach for prospective users to automatically
generate massive keyhole morphology data with high accuracy on area and boundary from
X-ray images. Sufficient morphology data will support developing data-driven analysis of
LPBF processes to further improve the quality of additively manufactured products.

Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/WilliamDongSH/KeyholeSeg, Computer Source Code S1: MATLab filter for keyhole
segmentation; Computer Source Code S2: MATLab checker for keyhole segmentation accuracy
performance; Computer Source Code S3: Modified BASNet code with loss visualization and logging;
Computer Source Code S4: Trained BASNet model.
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Abstract: Laser-based directed energy deposition using metal powder (DED-LB/M) offers great
potential for a flexible production mainly defined by software. To exploit this potential, knowledge of
the process parameters required to achieve a specific track geometry is essential. Existing analytical,
numerical, and machine-learning approaches, however, are not yet able to predict the process
parameters in a satisfactory way. A trial-&-error approach is therefore usually applied to find the best
process parameters. This paper presents a novel user-centric decision-making workflow, in which
several combinations of process parameters that are most likely to yield the desired track geometry
are proposed to the user. For this purpose, a Gaussian Process Regression (GPR) model, which has
the advantage of including uncertainty quantification (UQ), was trained with experimental data
to predict the geometry of single DED tracks based on the process parameters. The inherent UQ
of the GPR together with the expert knowledge of the user can subsequently be leveraged for the
inverse question of finding the best sets of process parameters by minimizing the expected squared
deviation between target and actual track geometry. The GPR was trained and validated with a
total of 379 cross sections of single tracks and the benefit of the workflow is demonstrated by two
exemplary use cases.

Keywords: machine learning; Gaussian Process Regression; directed energy deposition; single track
geometry; uncertainty quantification; user-centric decision making; expert knowledge

1. Introduction

Manufacturing companies face the challenge of ever shorter development and prod-
uct life cycles and individualized products [1–3]. Software-defined manufacturing is an
approach that enables flexible and reconfigurable systems and is therefore able to handle
these challenges [4]. The successful implementation of software-defined manufacturing
requires production systems that are as flexible and universal as possible [5] and that
are sufficiently defined via software so that they can flexibly adapt to changing specifi-
cations [6,7]. Laser-based directed energy deposition with metal powder (DED-LB/M)
offers such a flexible process, as it can be used for coating, welding, repairing and additive
manufacturing without major change in hardware [8–10]. To weld single DED tracks, which
are the basis of all mentioned applications, powder is transported to the process zone and
the laser beam melts both powder and workpiece leading to a metallurgic bonding [11–13].
The geometry of the DED tracks and the corresponding height of the produced layers are
influenced by the process parameters such as velocity v, laser power P, powder flow rate ṁ
and the diameter dL of the laser beam on the surface of the workpiece. These parameters
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are all specified and adjusted via software. However, finding suitable process parameters
to achieve the required track geometry for each application is currently a highly manual
process relying on the individual process knowledge of the operator. Defining the geometry
and process parameters in the software layer without performing prior experiments may
yet offer a promising step towards software-defined manufacturing. Therefore, models that
enable the prediction of the process parameters that yield the desired track geometry are
essential for implementing a software-defined workflow.

Physics-based models provide valuable information about the formation of single
tracks in DED. Ahsan and Pinkerton [14], for example, propose an analytical-numerical
model to predict the geometry of single tracks, El Cheikh et al. [15] analytically describe the
geometry of single DED tracks, Gao et al. [16] established a three-dimensional numerical
model to predict the single track geometry and temperature distribution for single-tracks,
Huang et al. [17] developed a physics-based process model for the prediction of the ge-
ometry of single tracks and multi-layer deposition and Zhang et al. [18] developed a
three dimensional transient model for evolving temperature fields of thin walls. Despite
their undeniable added value, none of the aforementioned models can represent the full
complexity of the process. For instance, thermophysical properties are assumed to be
constant in Ahsan and Pinkerton [14] and Huang et al. [17], heat convection is neglected in
Huang et al. [17], the influence of molten pool fluid and the heat loss caused by vaporiza-
tion of powder is ignored in Gao et al. [16], the heat that is incorporated into the melt-pool
by the powder is neglected and assumptions about the catch efficiency of the powder
are made in Zhang et al. [18], the absorption coefficient is determined experimentally in
El Cheikh et al. [15] and some input values for the simulation such as the intensity profile
of the laser in Gao et al. [16] are prone to some uncertainty. That is why physics-based
models lose predictive accuracy in consideration of the process variability [19].

In recent years, data-driven models are becoming increasingly popular for performing
such tasks as they are less computationally expensive and do not require that assumptions
be made about the underlying physical process [20]. Hereby, deterministic models such as
artificial neural networks [21–28] or Regression trees (RT) [24,29] are for example applied
to predict the track geometry as a function of the process parameters in DED. However,
deterministic models cannot provide uncertainty quantification (UQ), which is crucial for
reliable additive manufacturing due to the various sources of uncertainties in additive
manufacturing [30–33]. Probabilistic machine learning models such as Gaussian Process
Regression (GPR) [34,35] can account for this UQ and have been applied in laser powder bed
fusion (LPBF) to predict the melt pool geometry [36–41] or in DED to predict the mechanical
properties [42], the component height [43], the geometry of single tracks [44,45], or melt
pool geometry [46,47] based on the process parameters. The inverse problem, i.e., the
determination of a suitable process to produce the desired track geometry, can principally be
solved by combining the regression model with an optimization algorithm. In this context,
GPR may be combined with a global optimization algorithm, for example, to minimize
distortion in fused filament fabrication (FFF) [48], to optimize the microstructure in electron
beam melting (EBM) [32], to reduce the surface roughness and the geometric deviation in
LPBF, or to optimize the parameters with respect to the mechanical properties in DED [49].
Mondal et al. [50] trained a GPR model with simulation data for predicting the melt
pool geometry as a function of laser power P and velocity v, and performed a Bayesian
optimization to determine the optimal parameter combination to keep the geometry of the
melt pool at a suitable value.

However, with an increasing number of considered process parameters, different sets
of parameters may lead to the same processing results. Therefore, we include the prediction
uncertainty of each combination of process parameters as well as expert knowledge when
selecting the best parameters to manufacture a desired track geometry. Thus, this paper
presents a novel workflow to select multiple parameter combinations that are most likely to
yield the desired track geometry in DED. This is achieved by combining a GPR-model with
an optimization algorithm that identifies multiple suitable sets of process parameters based
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both on the deviation from the targeted geometry of the single tracks as well as on the
uncertainty of the prediction. The consideration of several possible parameter combinations
allows the user to select the process parameters that best suit the application in question and
make an informed decision on how to manufacture the component. Section 2 introduces
the workflow on a general level, highlighting the interaction between the building blocks.
Section 3.1 describes how the experimental data are obtained, while Section 3.2 introduces
the GPR model. The data are subsequently used in Section 4 to validate the workflow, give
exemplary applications, and discuss quantitative results apparent in the given DED process.

2. Prediction Workflow

As schematically shown in Figure 1, the workflow to determine suitable processing
parameters consists of three main elements:

• Regression models
• Identification of optimal process parameters
• Application

Figure 1. Workflow for finding optimal process parameters.

The manufacturing of the component takes place in the application layer that is
displayed at the bottom of Figure 1. Based on the requirements from the application, the
user defines the targeted geometry of a single track and the constraints on the process
parameters. The targeted track geometry results from the geometry of the component
(usually a CAD-part), and the constraints on the process parameters are mostly given
by the limits of the given machine. In return, the application layer requires information
about the optimal process parameters that lead to the targeted track geometry in order
to be able to perform the toolpath planning. The toolpaths and process parameters are
stored in a numerical control (NC) code that is readable by the machine and that enables
manufacturing of the component. The probabilistic regression models that are displayed
at the top of Figure 1 are essential to identify the required process parameters. These
models predict the geometry of single tracks based on the process parameters and offer
an uncertainty quantification (UQ) of the prediction. Parts of the available data, which are
described in Section 3.1, were used to train the models and the rest of the data were used to
test the performance of the models.

To answer the inverse question of finding optimal process parameters for a given
targeted geometry, we implemented the optimization workflow that is displayed in the
middle of Figure 1. Finding the optimal set of process parameters to achieve a specific track
geometry may be a trade-off between accuracy and uncertainty. This choice depends on
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whether one prefers a precise prediction with tight tolerances but a high uncertainty or a
less accurate prediction that is fulfilled with a higher probability. While both accuracy and
uncertainty could be kept as separate optimization goals, we incorporate them into a single
measure of optimality. The expected squared deviation d2

exp between the predicted values
y(x) of a geometric property (such as height, width or melting depth) of the track obtained
with a set x of processing parameters (e.g. laser power, beam diameter, velocity and powder
flow rate) and the targeted value z of each geometric property can be expressed by

d2
exp(x) = E

[

||y(x)− z||2
]

= Var[y(x)] + ||ȳ(x)− z||2. (1)

Using the approach of GPR, the predicted values y(x) are subject to a Gaussian prob-
ability distribution with the expected value ȳ(x). The value of d2

exp(x) is then minimized
in order to identify the optimal process parameters. As we want to identify multiple
sets of process parameters at different parameter ranges, we use Newton optimization in
combination with a multistart strategy. The step size ∆x of the Newton algorithm is limited
to ensure that the algorithm converges to the closest local minimum and the multistart
strategy augments the probability that all relevant local minima are identified during the
optimization. The process parameters x are varied within the constraints on the search
space as given by the user (depending on the used machine) with a step size that is varied
based on the hyperparameters of the GPR models. The process parameters corresponding
to the identified local minima are subsequently delivered to the application layer, which
allows the parameters that best suit the application to be selected.

The principle of the identification of the most promising processing parameters and
the involved quantities are illustrated by Figure 2.

Figure 2. Fictional illustration of the approach. (Top): expected values ȳ(x) (blue), variation of y(x)

as given by the 95% confidence interval (black dotted) and targeted value z (green dashed). (Bottom):
expected squared deviation d2

exp(x) in relation to the targeted value z.

The stars in the upper diagram represent the training data, which are obtained from
experiments. The GPR then yields the expected values ȳ(x) (blue, top graph) and the
variation of y(x), as represented by the 95% confidence interval (black dotted). The green
dashed line represents the targeted value z. The red dashed lines mark the local minima
of the expected squared deviation d2

exp (x) defining the most promising sets of processing
parameters xa,b. At the local minimum a, the expected value ȳ(xa) equals the targeted value
z, but the variance of y(xa) is larger than at the local minimum b, where the expected value
ȳ(xb), however, does not correspond exactly to the desired value z. Hence, although the
certainty of the predicted value ȳ(xb) is higher at the local minimum b, the application of
the corresponding processing parameters xb is expected to result in a value y(xb) slightly
larger than the target z. Conversely, this means that the expected value ȳ(x) at the local
minimum a is more accurate but has a higher uncertainty compared to the one obtained
at the minimum b. Both minima are, however, of similar quality with respect to the
expected squared deviation d2

exp(x). Depending on whether uncertainty or accuracy is
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more important and depending on which of the processing parameters better suit the
application in question, the user may either select local minimum a or b. The choice of
a local optimization with multistart instead of a global optimization such as Bayesian
optimization or Upper Confidence Bound (UCB) enables the identification of multiple sets
of suitable process parameters at different parameter ranges and allows the user to select
the set of parameters that best suits the application in question.

3. Materials and Methods

To apply the described workflow, the regression models were trained with and tested
on experimental results. Section 3.1 describes the experimental set-up and Section 3.2
describes the details of the regression models and how they were trained.

3.1. Experimental Data

To collect the necessary data for the training of the regression models for the different
geometrical features of the DED welding tracks, a total of 379 single tracks were produced
on a 10 mm thick plate of AlMg3 using different process parameters. Some of the tracks
are exemplarily shown on the left in Figure 3. The DED-LB/M was performed on the
five-axis laser machine TruLaser Cell 3000 using the 4 kW disk laser TruDisk4001 with a
wavelength of 1030 nm and a beam parameter product of 4 mm×mrad, a laser light cable
with a diameter of 100 µm and the optics focusLine Professional all from TRUMPF Laser-
und Systemtechnik GmbH, Ditzingen, Germany. The AlSi10Mg powder from Carpenter
Additive (CA), Widnes, UK, with particle diameters ranging from 45 to 107 µm, was fed
using a vibratory feeder from Medicoat AG, Mägenwil, Switzerland and a helium gas flow
with a flow rate of 10 L/ min. The multijet nozzle from TRUMPF Laser- und Systemtechnik
GmbH, with seven jets arranged coaxially around the laser beam was used as a powder
nozzle and Argon with a flow rate of 12 L/ min used to shield the process zone from the
atmosphere. The powder was melted by a defocused laser beam with a focus diameter of
200 µm and a variable diameter dL on the surface of the substrat. Cross-sections of the DED
tracks were prepared by cutting, grinding, polishing and etching with a water solution
containing 10% sodium hydroxide.

The depth dw, the width w and the height h of the tracks were measured from the
resulting cross-sections, as displayed on the right in Figure 3, by means of an optical
microscope. The laser power P, the mass supply rate ṁ of the powder, the diameter dL
of the laser beam on the surface, and the velocity v have a significant influence on the
geometry of the resulting track and were therefore varied over a wide range and in variable
steps: P between 1 and 4 kW in 16 steps, ṁ between 0 and 42 g/min in 21 steps, dL between
1 and 2 mm in 4 steps and v between 0.75 and 20 m/min in 14 steps. Each combination of
parameters was repeated at least three times, resulting in a total of 379 single tracks.

Figure 3. Picture of multiple separate DED tracks (left) and microscopical image of a cross section of
a single DED track (right) .

3.2. Training of Regression Models

Since the identification of optimal process parameters described in Section 2 is based
on the probability of producing the targeted track geometry, a prediction model with
built-in uncertainty quantification is required. The specific mathematical tool employed
in this work is Gaussian Process Regression (GPR), which is capable of quantifying the
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uncertainty. We trained one regression model to predict the width w, one for predicting
the height h and one for the prediction of the depth dw of a single track. The models use
the laser power P, the mass supply rate ṁ, the velocity v and the beam diameter dL as
the relevant processing parameters. A fraction of 80% of the acquired experimental data
was randomly selected to train the models using k-fold cross-validation with five folds.
The use of k-fold cross-validation enables a more robust model, which is less sensitive to
the sampling of the data and the specification of the prior [51]. The remaining 20% of the
data were used to test the performance of the data-driven models. All the repetitions of
the experiments with the same set of processing parameters were kept in the same control
group to make sure that the test data set only contained parameter combinations that the
models were not trained on before. We integrated linear basis functions into our models
because we assume that a linear trend of the mean-function can be continued to some extent
when extrapolated at the boundaries of our experimental domain. For this, we used the
same approach as described in ([34], Section 2.7) where the dependant variable y(x) of the
regression model, which is the predicted track geometry in our application, is modelled by

y(x) = f (x) + q(x)T β. (2)

Here, q(x) contains the linear basis functions and β the corresponding coefficients, which
are determined from the data. The function f (x) denotes the prediction of a Gaussian
process at the parameter vector x with a zero mean-function and a squared exponential
kernel k, which is defined by

k(xi, xj) = σ2
f exp

[

−1
2

d

∑
m=1

(xj,m − xi,m)
2

(lm)2

]

(3)

for two input vectors xi and xj and their elements xi,m and xj,m in the dimension m. For our
application the input vector x contains the processing parameters and has d = 4 dimensions
(P, ṁ, dL, v). The hyperparameters of the kernel k, i.e., the length scales lm and the signal
variance σ2

f are determined from the data. Homoscedastic noise is assumed. Therefore,
the corresponding covariance matrix C is defined by

Cij = k(xi, xj) + σ2δij, (4)

where δij is the Kronecker delta and σ2 is the noise variance. The predicted mean f̄ (x) and
the variance Var[ f (x)] of the prediction are calculated by

f̄ (x) = kTC−1t (5)

Var[ f (x)] = c− kTC−1k, (6)

where the scalar c = k(x, x), the vector k has the elements k(xn, x) for n = 1, . . . , N and
the vector t contains the measured target values at the input points xn. N represents the
number of data points used to train the models. The data are normalized in the input space
and in the output space before training the models.

4. Results and Discussion

To show that the workflow described above can be successfully applied to predict
the processing parameters required to produce the desired geometry of single tracks in
DED-LB/M, we applied our workflow and regression models to the previously described
test data. The predictive quality of the models as a function of the process parameters
is discussed in Section 4.1. Section 4.2 is then devoted to the inverse problem of finding
optimal process parameters. The workflow is found to yield plausible results and we show
how the user can interact and profit in realistic scenarios.
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4.1. Analysis of Regression Models

For each quantity of interest, i.e., track-width, track-height, and track-depth, a separate
Gaussian process was trained with the input parameters laser power P, mass supply rate ṁ
of the powder, laser beam diameter dL and velocity v. The resulting length scales lm,
which are determined via automated relevance determination (ARD), show the influence
of the input parameters on the respective output quantity, whereby a small length scale
indicates possible changes in output even for small changes in input. The coefficients β

of the linear model in Equation (7) provide information about the offset and the linear
trends regarding the influence of the input parameters on the respective output quantity.
The mean-absolute-error (MAE) between the mean value ȳ(x) of the prediction and the
corresponding value ytest(x) of the test data set as well as the coefficient of determination
R2, which is calculated by

R2 = 1− ∑(ytest(x)− ȳ(x))2

∑(ytest(x)− ȳtest)2 , (7)

were used as a measure to evaluate the accuracy. Hereby, ȳtest is the average value of the test
data set. The resulting numerical values are summarized in Table 1. The expected prediction
errors that arise for track-width w, track-height h and track-depth dw are tolerable for most
applications. The two values R2 and MAE only consider the mean prediction of the models
and therefore enable comparison to other deterministic models. However, in the following,
we present capabilities that are exclusive to the probabilistic paradigm.

Table 1. Optimal hyperparameters and accuracy of the GPR models.

σ
lm per Predictor
(P/ṁ/dL/v)

β: Coefficients of Linear
Basis (1/P/ṁ/dL/v)

R2 MAE

w 0.08 1.05/0.03/1.05/0.15 [2.06/0.31/0.08/0.09/−0.65] 0.89 0.11 mm
h 0.04 1.62/0.25/1.95/0.05 [0.53/0.03/0.45/−0.01/−0.48] 0.88 0.04 mm
dw 0.02 1.17/0.04/1.90/0.17 [0.52/0.13/−0.05/0.04/−0.13] 0.91 0.04 mm

For the discussion of the influence of the process parameters on the processing result,
Figure 4 exemplarily shows the predicted dependence of the width (in red), the height
(in blue), and the depth (in green) of the tracks on the laser power. All other parameters
are kept constant: v = 2 m/min, dL = 2 mm and ṁ = 2 g/min. The pale-colored areas
represent the 95 % confidence intervals around the predicted values (solid lines).
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Figure 4. Dependence of the predicted track geometry on the applied laser power for v = 2 m/min,
dL = 2 mm and ṁ = 2 g/min.
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The track width and track depth both increase steadily with increasing laser power.
This can be explained by an increase of the volume of the melt pool. The height of the track
does not change significantly. The fact that the product of the track width and the height
increases despite the constant powder flow rate indicates that increasing the laser power
yields an increased powder efficiency. The laser power that was applied in the training data
mostly ranged between 2000 W and 3400 W. This is why the uncertainties of the predictions
are lower in this range of laser power and increase significantly when the predictions are
made for laser powers above or below this range.

4.2. Identification of Optimal Process Parameters

4.2.1. Multiple Local Minima

The proposed optimization approach is able to find multiple sets of optimal process
parameters corresponding to the local minima of the expected squared deviation. This
allows the user to select the parameter combination that best fits a given application.

To illustrate how our optimization routine identifies these local minima, we exemplar-
ily defined a targeted geometry with w = 2.5 mm, h = 0.45 mm and dw = 0.6 mm. In the
optimization procedure the process parameters were varied with equidistant steps that
correspond to one non-standardized length scale of the GPR process, i.e., ∆P = 936 W,
∆dL = 0.33 mm and ∆v = 0.35 m/min. The mass supply rate ṁ of the powder was adapted
in a way that the mass per distance remains constant at 2.1 g/m. These initial parameters
yield the different local optima listed in Table 2. They are sorted from the lowest to highest
expected squared deviation and are also provided to the user in this way.

Table 2. Identified process parameters when searching for local minima of the expected
squared deviation.

No. P [W] ṁ [g/min] dL [mm] v [m/min] d2
exp [mm2]

a 2836 3.0 1.3 1.5 0.014
b 2815 3.3 1.8 2.0 0.027
c 2669 1.6 1.6 1.0 0.060
d 3399 3.1 1.0 2.3 0.064
e 2173 2.1 2.3 1.0 0.071
f 2173 2.0 1.5 1.0 0.076
g 3054 7.3 2.1 4.0 0.082
h 2965 7.3 2.3 3.9 0.083

The corresponding predicted track geometry is shown in Figure 5 together with the
95% confidence interval. The black dashed lines represent the targeted values. It is evident
that there is more than one set of process parameters leading to the targeted geometry and
that the combination of the multistart with our optimization algorithm is able to identify
these suitable sets of process parameters. A comparison with a gridsearch optimization
revealed that our optimization identifies all interesting local minima.

By proposing several sets of suitable processing parameters, we provide the user
with sufficient information to asses which process parameters best suit a given application.
For our exemplary target geometry, local optimum a, cf. Figure 5, exhibits the smallest
expected squared deviation and the expected depth and height are significantly closer
to the targeted value as compared to local optimum b. When the height and the depth
of a track are critical for the application, the user will most likely opt for the parameter
set a. If multiple local minima are of similar quality the user may also consider further
criteria for the selection of process parameters based on his or her expert knowledge: higher
velocities may be preferred for economic reasons or lower laser power may be preferred
when dealing with heat sensitive parts.
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Figure 5. Predicted track geometry for the different local minima listed in Table 2.

4.2.2. Optimal Process Parameters at Different Velocities

In many industrial applications, certain cycle times and thus velocities have to be
achieved in order to be economical [52]. In the following, we therefore demonstrate how our
workflow can be used to find the optimal processing parameters at a given velocity using an
exemplary targeted track geometry of w = 2 mm, h = 0.45 mm and dw = 0.5 mm and perform
the optimization for ten different fixed velocities from 2 to 20 m/min. The parameters that
are most likely to yield the targeted geometry at the given velocity are listed in Table 3.

Table 3. Optimal process parameters with lowest expected squared deviation at different velocities.

v [m/min] P [W] ṁ [g/min] dL [mm] d2
exp [mm2]

2 1856 3.2 2.0 0.018
4 2188 8.4 2.0 0.014
6 2684 12.6 2.0 0.028
8 3329 16.8 1.1 0.020
10 3867 21.0 2.0 0.025
12 3647 25.1 2.8 0.087
14 4000 29.2 2.7 0.095
16 4000 33.6 3.0 0.130
18 4000 37.7 3.0 0.251
20 4000 42 3.0 0.457

The mean of the predicted geometries (coloured circles connected by dashed lines),
including their 95% confidence interval (pale-couloured areas) for these parameters, are
displayed in Figure 6. The targeted geometry is indicated by the black dashed lines.
The predictions match the target reasonably well with an expected squared deviation of
less than 0.03 mm2 up to a velocitiy of 10 m/min. For higher velocities, the prediction
quality deteriorates both in closeness to the targeted value and certainty for all three
geometrical features, cf. Figure 6. The increased uncertainty observed for all three geometric
characteristics at feedrates above 10 m/min is due to the low number of training data in
the range of these identified parameter combinations. The mean of the predicted track
width deviates downwards from the targeted value for feedrates above 12 m/min and the
mean of the predicted track depth for velocities above 16 m/min. These observations are
consistent with those of [53], where it was observed that a maximum laser power of 4 kW is
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insufficient to weld tracks with a width of 2 mm up to velocities of 20 m/min and that both
the maximum track width and track depth decrease for velocities above 10 m/min due to
the limited laser power. The information about the processing parameters, the uncertainty
of the prediction, and the deviation from the targeted geometry enables a user to make an
informed decision regarding the economic stipulations and quality requirements.
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Figure 6. Predicted track geometry for the optimal process parameters listed in Table 3.

5. Conclusions

In conclusion, it was shown that the combination of an optimization workflow and
expert knowledge with probabilistic regression models such as GPR enables us to predict
the process parameters needed to achieve a specific track geometry for laser-based directed
energy deposition using metal powder (DED-LB/M). The validation with a large number
of individual tracks revealed a good agreement between the test data and the predictions
of the regression models. The usefulness and applicability of the proposed workflow
for a user to make an informed decision on optimal process parameters as well as for
receiving optimal process parameters at different velocities has been demonstrated with
two exemplary targeted geometries of a single track. The proposed workflow thus provides
a promising step towards software-defined manufacturing.

Even though the potential of that workflow has been shown, further investigation
may be undertaken. The models are so far only applied to isolated welding tracks on a
plane sample. A generalization of the models towards more complex geometric scenarios
may enable a much wider range of uses. This incorporates many new challenges, such
as the detection and the addition of other relevant parameters and effects such as heat
accumulation. The latter challenge may be tackled by the integration of uncertainty-aware
temperature predictions, as proposed by Sideris et al. [20]. Furthermore, to get closer to an
efficient industrial application, the generation of the data for this data-based model can be
automated to make it less time-consuming. The combination of automated and optimized
selection of parameters with automated data acquisition allows for quick training of the
model and a rapid adaption of the workflow to new circumstances such as the use of
different alloys. Bayesian optimization or upper-confidence bound (UCB), both of which
merge the mean and variance of a prediction, may be used in order to design a data-efficient
adaptive experimental design. One possibility to adapt the model to new environments is
to train only the deviation from the old model instead of training the model from scratch.
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The following abbreviations are used in this manuscript:
GPR Gaussian Process Regression
RT Regression tree
UQ Uncertainty quantification
DED Directed energy deposition
DED-LB/M Laser-based directed energy deposition using metal powder
LPBF Laser powder bed fusion
FFF Fused filament fabrication
EBM Electron beam melting
CAD Computer aided design
ARD Automatic relevance determination
MAE Mean absolute error
v Velocity
P Laser power
ṁ Powder flow rate
dL Laser beam diameter on the surface of the substrate
d2

exp Expected squared deviation between prediction and target value
z Target value of geometry characteristic
y(x) Prediction performed with the GPR model
dw Depth of of a single DED track
w Depth of a single DED track
h Height of a single DED track
R2 Coefficient of determination
q(x) Vector with linear basis functions
β Coefficients of linear basis
k Kernel of GPR model
lm Length scale
σ2

f Signal variance

δij Kronecker delta
ytest Measured values in the test data set
ȳtest Mean value of ytest
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Abstract: Laser-based direct energy deposition (DED-LB/M) has been a promising option for the
surface repair of structural aluminum alloys due to the advantages it offers, including a small heat-
affected zone, high forming accuracy, and adjustable deposition materials. However, the unequal
powder particle size during powder-based DED-LB/M can cause unstable flow and an uneven
material flow rate per unit of time, resulting in defects such as pores, uneven deposition layers,
and cracks. This paper presents a multiscale, multiphysics numerical model to investigate the
underlying mechanism during the powder-based DED-LB/M surface repair process. First, the worn
surfaces of aluminum alloy components with different flaw shapes and sizes were characterized and
modeled. The fluid flow of the molten pool during material deposition on the worn surfaces was
then investigated using a model that coupled the mesoscale discrete element method (DEM) and the
finite volume method (FVM). The effect of flaw size and powder supply quantity on the evolution of
the molten pool temperature, morphology, and dynamics was evaluated. The rapid heat transfer and
variation in thermal stress during the multilayer DED-LB/M process were further illustrated using a
macroscale thermomechanical model. The maximum stress was observed and compared with the
yield stress of the adopted material, and no relative sliding was observed between deposited layers
and substrate components.

Keywords: laser direct energy deposition; surface repair; aluminum alloy; multiscale simulation;
molten pool; thermal stress

1. Introduction

Aluminum alloys are a crucial group of materials in the aerospace and automotive
fields owing to their outstanding specific stiffness and strength [1,2]. However, flaws such
as wear, cracks, and holes are unavoidable after a continuous external load, which under-
mines their reliability in servicing conditions and can sometimes result in fatal fractures.
Compared with the cost of direct disposal or replacement of whole parts, surface repairs
of the compromised parts has always been an attractive alternative choice. Traditional
surface repair methods, including casting and forging, rely on producing an entire replace-
ment body at local places, which is time-consuming and expensive [3]. The alternative
solution, e.g., metal patching on the damaged surface, can only be a temporary backup
in an emergency with the sacrifice of property consistency and the introduction of extra
weight [4].
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Laser-based direct energy deposition (DED-LB/M), often also referred to as laser metal
deposition (LMD), laser cladding (LC), or laser welding (LW), utilizes a laser source to heat
the powder or wire feedstock material to form a molten pool deposited and cooled down
on the substrate, and is a promising choice for the surface repair of compromised parts [3].
However, defects such as pores, unevenly deposited layers, and cracks are always present
during the powder-based DED-LB/M process due to the rapid heating and cooling and
the non-uniform powder particle stream. The complex physical phenomenon during the
powder-based DED-LB/M process can be observed by an in situ high-speed camera [5]
or via X-ray imaging [6] for molten dimensions. The heat or temperature field has also
been directly [7] or indirectly [8] captured by a suitable monitoring setup. Nevertheless,
such expensive testing facilities only provide researchers with data regarding the ongoing
phenomenon and with limited information on the underlying physics. Computational
simulation provides an insightful method to reveal the complicated physics inside the
molten pool and resolve the mechanism that produces defects during the powder-based
DED-LB/M process [9].

To investigate the fluid flow inside the molten pool during the powder-based DED-
LB/M process, the challenge is to suitably capture the interaction between the discrete-
based non-uniform powder feeding stream and the continuum-based molten pool. Wang
et al. [10,11] and Bayat et al. [12] applied the discrete phase method (DPM) to simplify the
supplied metal powder as Lagrangian particles and restored the physical mass, thermal
energy, and kinetic energy exchange during the powder-based DED-LB/M process by
using FLOW-3D software (https://www.flow3d.com/). The physical shape of powder
particles and the interaction between laser and metal powder are neglected by setting
the temperature of the deposited Lagrangian particles before entering the molten pool as
their liquidus temperature. Sun et al. [13] coupled DPM with the volume of fluid (VOF)
to capture the interactions between the powder stream and molten pool and adopted the
enthalpy–porosity method to account for phase change. By assigning the powder particles
to their liquidus temperature, as granted by the nature of the coupled method, the powder
particles can transform from a discrete phase to a continuous phase when they are injected
at the local molten pool surface. The fluid in the regions where the powder was injected
was captured by a downward flow and a reduction in temperature. Good agreements
between the simulation model and experiments were obtained.

Considering the dynamic behaviors, physical size, and shape of the delivered powder,
it is appropriate and more convincing to employ the discrete element method (DEM) to
model the powder-based DED-LB/M process [14]. Aggarwal et al. [15] developed the
coupled DEM and finite volume method (FVM) to investigate the interactions between
the molten pool and the impacting powder particles. It was observed that the momentum
introduced by the impacting powder particles outweighs the Marangoni effect, thereby
stimulating the melting of the metal in the molten pool, which is in contrast to past findings.
The obtained morphology of the molten pool and temperature fields were verified by
the conducted experimental measurements. Khairallah et al. [16] employed the ALE3d
multiphysics code to develop a high-fidelity mesoscale numerical model for the powder-
based DED-LB/M process. It was predicted that the laser absorptivity would stay around
0.4 regardless of variations in process parameters. Although the high-fidelity nature of
mesoscale molten pool simulation contributes to its accurate spatial and temporal results,
the huge computational burden limits the situations in which it can be applied.

In addition to the above models of fluid flow, the rapid heat transfer and variation
in thermal stress accompanied by the molten pool have also been studied. Srivastava
et al. [17] developed a thermomechanical model for the arc-based DED process to quantify
the residual stresses and deformations of the produced components. Stender et al. [18]
employed a heat source to heat the activated elements of composite materials at each
time step. The temperature and topology of the materials are then transferred to a solid
mechanics analysis, allowing for the computation of displacement and stress fields. Li
et al. [19,20] focused on calculating the thermal history at the macroscopic scale and
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directly used it for thermomechanical resolution without considering local thermal histories.
Bresson et al. [21] systematically defined the spatiotemporal boundaries at each layer and
the modeling strategies of the heat source’s initial and boundary conditions. This approach
was used to determine the position of porosity and calculate the thermal history, which is
crucial for understanding the formation of residual stresses and deformation generated
during the DED-LB/M process.

Existing computational studies on DED-LB/M have been primarily focused on the
additive manufacturing (AM) aspect to layer material up, with limited attention on the
surface repair aspect to restore flaws such as holes and cracks. This paper aims to fill
the research gap in the multiscale and multiphysics simulation of the coaxial-powder-
based DED-LB/M technology for surface repair or remanufacturing. A mesoscale coupled
DEM-FVM model and a macroscale thermomechanical coupled model are established to
illustrate the temperature field, velocity field, and pressure field variations in the molten
pool, analyze the morphology evolution of the molten pool, evaluate the repair effectiveness
of different-sized surface defects, and reveal the formation mechanisms of pores or uneven
deposited layers and of residual stress and deformation during the DED-LB/M surface
repair process.

2. Physics during the Powder-Based DED-LB/M Process

The physical phenomenon involved in the powder-based DED-LB/M process starts
with the laser heat source (e.g., a Gaussian laser beam)-induced thermal radiation on the
delivered metal powder and the rapid melting and formation of a molten pool, shown in
in Figure 1. Within the molten pool, thermal radiation, heat diffusion, and evaporative
heat dissipation occur simultaneously. The molten pool and the surrounding air generate a
dynamic flow of multiphase fluid. The flow of the molten pool is influenced by surface
tension, mushy zone drag forces, and the Marangoni effect. As the laser scans over the
region, the molten pool rapidly cools and solidifies, forming a deposit track. The stability
of the molten pool during the powder-based DED-LB/M process affects the surface quality
and internal structure of the deposited layer. Multiple deposit tracks form a deposit layer,
and the deposit layers stack on top of each other to create the final deposit surface. During
the powder-based DED-LB/M process, the material is built up layer by layer, with each
layer being radiatively heated by the laser heat source. Heat conduction occurs within
the material, resulting in rapid temperature increases and decreases. The material also
undergoes repeated heating and cooling, leading to the formation of significant temperature
gradients, thermal stresses, and thermal deformations within the material.

tt

ff
ff

ff

ff

ff

 

Figure 1. Physical processes of the laser-based direct energy deposition (DED-LB/M) process.

The physical processes involved in the interaction between laser and metal powder
can be divided into four scales based on the desired research objectives. At the nanoscale
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or grain scale (<0.001–0.01 mm), the growth process of metal grains and the resulting
internal grain structure can be studied based on the computed temperature field. At the
mesoscale or powder scale (0.01–1.0 mm), a model considering particle morphology and
size distribution can calculate the transportation and deposition processes of particles. By
combining computational fluid dynamics with multiphysics analysis, the morphology and
flow conditions of the molten pool can be studied, and the detailed morphology and internal
porosity of the molten track can be predicted. The macroscale can be further divided into
two levels: the scanning spacing scale (0.1–10 mm) and the part scale (1–250 mm). In terms
of the scanning spacing scale, the deposition processes of individual scan tracks can be
studied. Through thermomechanical coupling analysis, the evolution conditions, including
temperature fields, stress fields, and deformation fields, during the deposition process can
be obtained, allowing for the investigation of thermal stresses and deformations on the
surface of the substrate part and between deposit layers. At the part scale (1–250 mm),
the surface deposition process of large-sized components is considered. Similarly, with
the aid of thermomechanical coupling analysis, the stress and deformation distribution
of the parts, molten tracks, as well as between deposit layers during the powder-based
DED-LB/M process can be studied.

This work will focus on the numerical simulation of the molten pool multiphysics
fields at the mesoscale and a thermomechanical analysis at the macroscale during the
surface repair of substrate components using the powder-based DED-LB/M technique. By
accessing the numerical results, an evaluation based on the adopted process parameters
will be presented.

3. Coupled DEM-FVM Modeling of the Molten Pool

Before establishing the numerical model for the molten pool flow process, it is neces-
sary to reasonably simplify the complex physical process to ensure efficiency. This model
will adopt incompressible Newtonian fluid laminar flow [22], neglect mass loss caused
by metal vaporization [23], and disregard the influence of volume changes due to metal
density variations [23]. The specific implementation process of the simulation is as follows.

3.1. Mathematical Modeling

The process of forming, flowing, and cooling a molten pool involves multiphysics
fluid flow. The entire process is governed by the continuity equation, momentum con-
servation equation, and energy conservation equation. To fully account for the various
physical factors affecting the molten pool during the powder-based DED-LB/M process, a
two-phase fluid flow model is employed. Since the studied fluid is assumed to be incom-
pressible, and the mass loss induced by gasification is ignored, the continuity equation in
the computational domain becomes Equation (1):

∇·u = 0 (1)

The finite volume method (FVM) is applied to track the metal–gas interface in the
two-phase fluid flow model. The equations governing the law of element volume ratios for
the metal and gas phases are Equations (2) and (3):

∂α1

∂t
+∇·(α1u) = 0 (2)

α1 + α2 = 1 (3)

where t represents time, and α1 and α2 represent the elemental volume ratio of the gas
phase and the metal phase, respectively. When α2 = 0, the region is fully occupied by the
gas phase, while when α2 = 1, it means that the region is fully occupied by the metal phase.
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The α2 value ranges from 0 to 1 and accounts for the metal–gas interfacial region. According
to the value of α2, the unit normal vector n at the gas–metal interface is derived as follows:

n =
∇α2

|∇α2|
(4)

The curvature κ at the metal–gas interface is calculated as:

κ = −∇·n (5)

The momentum conservation equation for the two-phase fluid flow domain is ex-
pressed as follows:

ρ
∂u

∂t
+ ρ(u·∇)u = −∇P + µ∇2u + ρg + Smom (6)

among which:
ρ = α1ρ1 + α2ρ2 (7)

µ = α1µ1 + α2µ2 (8)

where ρ, ρ1, and ρ2 are the density of the mixed gas and metal phase, the density of
the gas phase, and the density of the metal phase, respectively. µ, µ1, and µ2 represent
the dynamic viscosity of the mixed gas and metal phase, dynamic viscosity of the gas
phase, and dynamic viscosity of the metal phase; P is the pressure; and Smom indicates
any remaining momentum source terms, which include three components, as shown in
Equation (9):

Smom = Sb + Sm + (fsn + fst + Pr)|∇α1| (9)

where Sb is the buoyancy force, Sm is the mushy zone drag force used to characterize the
fluidity discrepancy induced by liquid–solid phase transition, Pr is the recoil pressure
due to metal evaporation, and fsn and fst are the surface tension and Marangoni effect at
the interface between the liquid metal and gas, respectively. The term |∇α1| is used to
incorporate the surface forces into the volume forces.

The buoyancy force Sb is considered using Boussinesq approximation [24], expressed
as given in Equation (10):

Sb = ρgβ
(

T − Tre f

)

(10)

where g is the acceleration due to gravity, β refers to the thermal expansion related to the
buoyancy force, T is the temperature, and T_ref is the reference temperature, typically set
as the liquidus temperature. The drag force in the mushy zone Sm(mushy) is calculated as
follows [20]:

Sm(mushy) = −C

[

(1− fl)
2

fl
3 + Cm

]

u (11)

fl =











0 i f T < Ts
T−TS
TL−TS

i f TS ≤ T ≤ TL

1 i f T > TL

(12)

where C is a constant; its value is set to be large enough to ensure that the velocity decreases
to zero when the local region fully solidifies. Typically, it is set to 105 or larger. fl is the
liquid fraction of the metal phase, T is the temperature, and TL and TS represent the liquidus
temperature and solidus temperature of the metal phase, respectively. Cm is a custom small
value used to avoid singularity in the mushy region during the calculation of the drag force.
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The recoil pressure Pr acts normal to the local free surface, which is calculated as a function
of the liquid surface temperature, defined as follows [21,22]:

Srecoil = 0.54Paexp

(

Lv M(T − TV)

RTTV

)

(13)

where Pa is the ambient pressure, TV is the vaporization temperature of the metal phase, Lv

is the latent heat of vaporization, M is the molar mass, and R is the universal gas constant.
The surface tension Sm(tension) can be obtained using a continuous surface force (CSF)
model [23]:

fsn = σκn (14)

where σ is the surface tension coefficient. The Marangoni effect fst can be expressed as
follows [23]:

Sm(Marangoni) =
dσ

dT
[∇T − (n·∇T)n] (15)

where the coefficient dσ
dT represents the rate of variation in the surface tension with respect

to temperature.
The energy conservation equation can be expressed as:

∂ρceT

∂t
+∇·(ρuceT) = ∇·

(

k∇T
)

+ Sh (16)

where ce is the equivalent specific heat capacity, and the calculation formula can be ex-
pressed as:

ce =

{

α2

(

c2 +
L f

TL−TS

)

+ α1c1 TL < T < TS

α1c1 + α2c2 T ≥ TL or T ≤ TS

(17)

where c1 and c2 represent the specific heat of the gas phase and the metal phase, respectively;
L f is the latent heat of fusion; and k is the thermal conductivity of the mixed gas and metal
phase. The expression for k is:

k = α1k1 + α2k2 (18)

where k1 and k2 represent the thermal conductivities of the air phase and metal phase,
respectively. The last term, Sh, represents the additional heat source terms applied to
the surface of the molten film. It can be expressed as a combination of convective heat
dissipation Sc, radiative heat dissipation Sr, vaporization heat dissipation Sv, and Gaussian
beam heating Sl [23]:

Sh = (Sc + Sr + Sv + Sl)|∇α1| (19)

where the term |∇α1| is used to incorporate the surface heat dissipation terms into the
volume heat dissipation:

Sc = hc(T − Ta) (20)

Sr = kBε
(

T4 − T4
a

)

(21)

Sv = −ϕ
Lv M√

2πMRT
Paexp

[

Lv M(T − Tv)

RTTv

]

(22)

Sl =
2ηPlaser

πr2 exp

(

−2
(z− z0 − vt)2 + (x− x0)

2

R2

)

(23)

Here, hc is the convective heat transfer coefficient; Ta denotes the ambient temperature; Pa

is the atmospheric pressure; kB is the Stefan–Boltzmann constant; ε is the surface emissivity;
ϕ is the evaporation coefficient, typically 0.82 [25]; Lv is the latent heat of vaporization; Tv

is the vaporization temperature; η is the metal laser absorption coefficient; Plaser is the laser
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power; r is the laser spot radius; x and z are the horizontal coordinates of the beam center
during laser movement; x0 and z0 are the initial horizontal plane coordinates of the beam
center; and v is the speed at which the laser moves along the z-axis.

3.2. Numerical Implementation

ANSYS 2022 R1 Fluent was used to simulate the molten pool during the powder-based
DED-LB/M process in this work, which provides a suitable way to program corresponding
user-defined functions for the temperature-dependent materials’ properties and source
terms in the governing equations. The CT scan results, which indicated the flaw size
distribution on an aluminum alloy component, are shown in Figure 2a. To facilitate the
numerical computation, a specific location on the component was selected and simplified
as a flat aluminum alloy plate with dimension of 14 × 7 × 2 mm, shown in Figure 2b. The
air phase was also included in the numerical model and placed at the top of the metal plate
to capture the interaction between the molten pool and the surrounding air. According to
the CT-scanned flaw size, equivalent defects were created on the metal plate surface, with
spherical diameters of 0.1, 0.5, and 0.9 mm and uniformly distributed along the deposit
track. It is assumed that the required powder for deposition had already been delivered to
the part surface before the high-energy laser beam was applied. The model considered a
gravitational acceleration of 9.81 m/s2 (in the negative y-axis direction). The laser beam
was assumed to irradiate the particle surface along the vertical direction (in the negative
y-axis direction) and scan along the positive z-axis from the origin. The direct coupled
DEM/FVM was employed to simulate the interaction between laser beam and powder
particles. The DEM was used to calculate the initial positions and particle size information
after particle delivery, shown in Figure 2c. This information was then transferred to the
fluid computational domain as initialization data for the particle material, depicted in
Figure 2d. The FVM was employed in the subsequent fluid dynamics calculations to
capture the metal–air interface position, shown in Figure 2e.

ffi 𝑃௟௔௦௘௥ 𝑟 𝑥 𝑧𝑥଴ 𝑧଴𝑣

 

Figure 2. Roadmap for the coupled DEM-FVM modeling of the molten pool.

The simulation of the powder delivery process was performed using the EDEM 2020
software. The physical shape of the delivered metal powder is defined as spherical, and
their size distribution follows a normal distribution. The average particle size is 80 µm. The
minimum particle size is 50 µm, and the maximum particle size is 110 µm. The material
properties of both the metal particles and the metal substrate in the model include the
Poisson ratio set to 0.334, the density set to 2700 kg/m3, and Young’s modulus set to
6.67 × 1010 Pa. The interaction coefficients between particle–particle and particle–substrate
were defined as well. The restitution coefficient was set to 0.75, the static friction coefficient
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to 0.3, and the dynamic friction coefficient to 0.01. To simulate the powder delivery process,
6000 particles were first generated above the metal plate and then fell freely under gravity.
The calculations revealed that the powder particles uniformly fell onto the metal plate
surface, resulting in a powder thickness of 0.2 mm after 0.06 s, shown in Figure 3a. All
spherical flaws on the surface were fully filled with the delivered powder particles. The
majority of particles had velocities less than 6.53 × 10−3 m/s, indicating that the powder
transport had been completed, depicted in Figure 3b.
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Figure 3. Simulation results of particle dynamics. (a) Particle positions and size distribution;
(b) particle velocity distribution.

The FVM simulation of the molten pool involves various aspects such as meshing
of the computational domain, material selection, boundary condition and processing
parameter settings, control of the numerical solver, etc. Regarding meshing, a fine mesh
was adopted at the metal–air interface, where the molten pool is generated, shown in
Figure 4. To ensure the feasibility of capturing essential physics in the laminar flow of the
molten pool, the smallest mesh size was set to 0.02 mm while the largest mesh size was
set to 0.8 mm. This took the minimal flaw size of 0.1 mm into consideration, as well as the
largest geometry size of 14 mm. The tetrahedral element was adopted for the meshing,
resulting in a total 14,549,170 elements in the model. The material parameters of the air
and adopted aluminum alloy (AlSi10Mg) in the simulation are listed in Tables 1 and 2. The
processing parameters for the FVM model included a laser spot diameter of 3.5 mm, laser
power Plaser of 1600 W, scanning speed of 2160 mm/min, and scanning spacing of 1.2 mm.
For the boundary conditions, the bottom and side surfaces of the metal plate were defined
as adiabatic and non-slip walls. The top and side surfaces of the air were set as pressure
outlets with a static pressure of 0. The loading of the heat and momentum source terms
was implemented using Fluent’s User-Defined Function (UDF). The calculations employ
a dynamic time step with an initial time step of 1 × 10−8 s, and the total physical time
considered in the simulation is 0.24 s.
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Figure 4. Meshing condition in the computational model.
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Table 1. Material properties of air.

Symbol Definition Value

ρ1 Density of gas phase (kg·m−3) 1.225
c1 Specific heat of gas phase (J·kg−1·K−1) 1006.43
k1 Thermal conductivity of gas phase (W·m−1·K−1) 0.0242
µ1 Dynamic viscosity of gas phase (kg·m−1·s−1) 1.7894 × 10−5

Table 2. Material properties of aluminum alloy.

Symbol Definition Value

Ts Solidus temperature (K) 890 [26]
TL Liquidus temperature (K) 929 [26]
Tv Vaporization temperature (K) 2743 [26]
µ2 Liquidus dynamic viscosity (kg·m−1·s−1) 0.00223exp(12200/8.3144T) [27]

ρ2
Solidus density (kg·m−3) 2719

Liquidus density (kg·m−3) 2828− 0.3636T

c2
Solidus specific heat (J·kg−1·K−1) 798.85 + 0.3324T + 9× 10−5T2 [26]

Liquidus specific heat (J·kg−1·K−1) 1220 [26]

k2
Solidus thermal conductivity (W·m−1·K−1) 124.66 + 0.0561T + 1× 10−5T2 [26]

Liquidus thermal conductivity (W·m−1·K−1) 61 [26]
L f Latent heat of fusion (J·kg−1) 3.83 × 105 [26]
Lv Latent heat of vaporization (J·kg−1) 1.087 × 107 [26]
hc Convective heat transfer coefficient (W·m2·K) 10
σ Surface tension coefficient (kg·s −2) 0.914− 0.00035(T − 890) [28]
R Universal gas constant (J·mol−1·K−1) 8.314
kB Stefan–Boltzmann constant (W·m−2·K−4) 5.67 × 10−8

η Laser beam absorptivity 0.35 [29]
M Molar mass (kg·mol−1) 0.026982
ε Surface emissivity 0.3

3.3. Result Analysis

The morphology of the molten pool and the evolution of the temperature field at
different time points are illustrated in Figure 5. The computation reveals that surface flaws
of 100 µm and 500 µm are successfully repaired. However, the surface flaw of 900 µm is not
successfully repaired, resulting in a depression. The failure at the larger flaw size position is
mainly due to an insufficient powder feed rate. A significant amount of unmelted particles
and a rough surface are observed at the starting position of the laser scan. This can be
attributed to inadequate energy absorption at the starting position, making it difficult to
form a fully developed molten pool. The formation of the molten pool occurs around 0.01 s
and stabilizes at around 0.2 s, forming a semi-ellipsoidal shape. Certain localized regions
within the molten pool experience an excessive temperature gradient and fluid flow, which
affects the deposition stability and leads to residual porosity within the deposit layer.

Figure 6 demonstrates the effects of increased powder layer thickness (or powder feed
rate) to 0.4 mm on the deposition and repair outcomes. The results indicate that with the
increased powder layer thickness, the surface flaws of various sizes disappear. However,
this improvement comes at the cost of material loss on the substrate surface, leading to
irreversible damage to the part dimensions. The thicker powder layer carries a larger
amount of molten material along the scanning direction and eventually forms a hump,
making it challenging to successfully repair surface flaws on the plate and even causing
damage to the part. Therefore, it is crucial to use an appropriate powder feed rate and
laser processing parameters to achieve a stable molten pool, smooth deposited layer, and
effective repair of surface flaws.
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Figure 5. Morphology and temperature field evolution of the molten pool during the powder-based
DED-LB/M process.
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Figure 6. Comparison of repair qualities with different layer thicknesses or powder feed rates.
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4. Coupled Thermostructural Modeling of the Deposit Layers

4.1. Mathematical Modeling

The surface repair process using powder-based DED-LB/M refers to the first or
second deposit layers. To compute thermal stress and deformation of the deposit track,
a macroscale coupled thermostructural simulation is employed. The general form of the
governing equation for the thermal conduction during the powder-based DED-LB/M
process is presented as follows:

K(T)·
(

∂2T

∂x2 +
∂2T

∂y2 +
∂2T

∂z2

)

+ F =
∂H(T)

∂t
(24)

where K(T) is the temperature-dependent material’s thermal conductivity, T is the current
temperature, F is the heat flux, t is time, and x, y, and z are the spatial directions. H(T)
is the temperature-dependent enthalpy, representing the latent heat evolution by phase
transformation effect.

When T ≤ Ts,

H(T) = ρ

∫ T

T0

CpdT (25)

When Ts ≤ T ≤ Tl ,

H(T) = ρ

∫ Ts

T0

CpdT + ρL f

(

T − Ts

Tl − Ts

)

(26)

When T > Tl ,

H(T) = ρ

∫ Ts

T0

CpdT + ρL f + ρ

∫ T

Tl

CpdT (27)

where Tl is the liquidus temperature, Ts is the solidus temperature, ρ is the density, Cp is
the specific heat, L f is the latent heat of melting, and T0 is the room temperature, assumed
to be 22 ◦C.

Structural analysis was used to compute residual stresses, which is generated by the
strains corresponding to thermal expansion, contraction caused by temperature variation,
and the nonelastic strains resulting from plastic deformation. The total strain increment
vector can be expressed via the superposition of elastic, plastic, and thermal components,
in the following form:

∆εtol
ij = ∆εe

ij + ∆εth
ij + ∆ε

p
ij (28)

where ∆εe
ij is the elastic strain increment, ∆εth

ij is the thermal strain increment, and ∆ε
p
ij is

the plastic strain increment. The resulting stress increments are calculated via increments
in elastic strain as follows:

∆σij = Dijlm∆εe
ij (29)

where E is Young’s modulus, v is Poisson’s ratio, and Dijlm is the elastic stiffness tensor
provided by Hook’s law:

Dijlm =
E

1 + v

[

1
2

(

δilδjm + δlmδij

)

+
v

1− 2v
δijδlm

]

(30)

where δ is the Dirac function.
Combining Equation (27) with Equation (28) yields:

∆σij = Dijlm

(

∆εtol
ij − ∆εth

ij − ∆ε
p
ij

)

(31)

where ∆εth
ij = αδlm∆T, and α and ∆T are thermal expansion coefficient and temperature

increment, respectively.
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For the purpose of data mapping, the structural analysis utilizes the same mesh as the
thermal analysis but with modified element and material properties. Material properties
that vary with temperature are employed.

4.2. Numerical Implementation

ANSYS 2022 R1 Workbench was used to simulate the deposit layer during the powder-
based DED-LB/M process in this work, which offers a suitable platform to perform both
thermal and mechanical analysis and the data transfer between them. As depicted in
Figure 7, the macroscale coupled thermostructural simulation employed the same metal
plate, with a dimension of 14 × 7 × 2 mm, for consideration. The flaws with sizes of
0.1, 0.5, and 0.9 mm were incorporated on the plate’s surface as well. The actual metal
deposit layer is assumed to be a finite element layer to ensure computational efficiency.
The deposition process involved two layers, where deposit layers 1 and 2 were represented
as finite element layers. The layers were incrementally added using the element birth
and death method. A moving Gaussian heat source was applied for heat conduction in
each finite element layer. The simulation incorporated direct coupling between thermal
and structural mechanics, with the temperature field acting as a thermal load applied to
subsequent structural analysis.

 

tt

Figure 7. Roadmap of coupled thermostructural simulation of the powder-based DED-LB/M process.

The establishment of this numerical model involves meshing, material property set-
tings, boundary conditions, process parameters, and control of the computation process.
The model employed mesh refinement at the locations of the surface defects on the metal
plate to capture significant temperature and stress gradients. The minimum mesh size was
set to 0.01 mm, while the maximum grid size was set to 0.4 mm. The computational domain
was meshed using the tetrahedral elements, resulting in a total of 281,861 grid cells. Both
the deposit material and the metal plate material are AlSi10Mg, and their thermodynamic
material properties, varying with temperature, were obtained from the material library of
ANSYS, shown in Figure 8.
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The boundary conditions of the coupled thermostructural model were set so that
the thermal convection with air was applied on the surface of the metal plate, and a
fixed support was imposed on the bottom surface of the component. On the surfaces of
each deposit layer, a Gaussian heat source moving in the positive Z-axis direction was
defined using the Ansys Parametric Design Language (APDL) language. The processing
parameters adopted were exactly the same as those of the coupled DEM-FVM model, where
the diameter of the laser spot is 3.5 mm, the laser power is 1600 W, the scanning speed
is 2160 mm/min, and the absorption coefficient of the metal material to laser energy is
0.35. For the thermal calculation, the initial temperature is set to 22 ◦C. The calculations are
performed using a dynamic time step approach, with an initial time step of 3 × 10−3 s, a
minimum time step of 3 × 10−4 s, and a maximum time step of 3 × 10−2 s.

 

tt

Figure 8. Temperature-dependent parameters of the aluminum alloy.

4.3. Result Analysis

Figure 9 illustrates the temperature field variation during the powder-based DED-
LB/M process. The analysis reveals that the maximum temperature gradually accumulated
as each layer is deposited. The maximum temperature was concentrated at the scanning
position of the laser beam, conforming to the Gaussian distribution characteristic of the
energy. During the first deposit layer, the entire surface and interior of the deposit layer
reached a temperature above the melting point, allowing for the formation of a sufficiently
molten pool for repairing the component. The depth of the molten pool was sufficient to
cover surface flaws of 0.1 mm and 0.5 mm, but it was insufficient to cover surface flaws with
a depth of 0.9 mm. During the second deposit layer, the entire surface and interior of the
deposit layer reached a temperature above the melting point, ensuring interlayer bonding.
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tt

Figure 9. Evolution of temperature distribution during the powder-based DED-LB/M process.

Figure 10 illustrates the variation in the von Mises stress field during the powder-based
DED-LB/M process. The analysis reveals that the maximum von Mises stress occurred at
the bottom surface of the metal plate in the first deposit layer, measuring 236.86 MPa. As
the second layer was deposited, the maximum von Mises stress decreased to 184.76 MPa,
below the yield stress of the material, indicating that issues such as cracking are unlikely
to occur during the deposition process. During the second deposit layer, the maximum
von Mises stress appeared at the interfacial region between layers. No significant stress
concentration was observed at the locations of the component’s flaws, demonstrating the
feasibility of utilizing the powder-based DED-LB/M for surface repair of an aluminum
alloy component.
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Figure 10. Evolution of von Mises stress distribution during the powder-based DED-LB/M process.

The deformation field evolution during the powder-based DED-LB/M process is
shown in Figure 11. The simulation results show that the maximum deformation gradually
accumulated throughout the deposition process, and it reached its maximum value at the
end of the second deposit layer (0.179 mm). The maximum deformation always occurred
at the surface of the deposit layer and within the spot radius of the laser beam. This was
attributed to the rapid temperature increase and thermal expansion of the material. No
relative sliding resulting from deformation was observed at the surface flaw locations of
the metal plate, indicating the reliability of the powder-based DED-LB/M process.

165



Materials 2024, 17, 3559

 

 

ffi

 

Figure 11. Evolution of deformation condition during the deposition process.

5. Conclusions

Both a mesoscale coupled DEM-FVM model of the molten pool and a macroscale
coupled thermostructural model of the deposit layer for the powder-based DED-LB/M
process were developed. The software ANSYS 2022 R1 Fluent and Workbench were
employed to perform the mesoscale and macroscale simulations, respectively. The gradient
grid size was applied to resolve tiny features for both the mesoscale (0.02 to 0.8 mm)
and the macroscale models (0.01 to 0.4 mm). The computational time for the mesoscale
coupled DEM-FVM model was 15 h, while that for the macroscale coupled thermostructural
model was 12 h. The feasibility of repairing surface flaws using powder-based DED-LB/M
technology was demonstrated, and the detailed conclusions are listed below:

(1) Micropores and bumping accompany the powder-based DED-LB/M process due to
the extensive flow of the molten pool, and larger surface flaw sizes tend to result
in an uneven deposit layer due to insufficient material supply. However, too much
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powder feed on the surface will lead to agglomeration of the molten materials along
the scanning direction and severe damage of the metal base plate.

(2) The maximum von Mises stress is far less than the yield stress of the adopted material,
and no stress concentration exists during the powder-based DED-LB/M process. The
total deformation will accumulate during the powder-based DED-LB/M process, and
maximum deformation always occurs within the laser beam spot. No relative sliding
phenomenon is observed between deposit layers.

The proposed multiscale model on the powder-based DED-LB/M for the surface re-
pair of aluminum alloys would be necessary for a CAM engineer and machine operator to
virtually validate and optimize the processing parameters before the actual manufacturing.
Future work is expected to consider the mass loss caused by metal vaporization and the
volume changes due to metal density variations to further increase the validity of the pro-
posed mesoscale coupled DEM-FVM model of a molten pool. The thermal stresses during
the surface repair of typical curved surfaces should be investigated using the established
macroscale coupled thermostructural model. The effects of processing parameters such
as laser absorptivity, laser scanning speed, and spot radius on the surface repair quality
of the aluminum alloy component should also be studied. Simultaneously, a systematic
experiment to verify the numerical model and reveal some new phenomena during the
powder-based DED-LB/M process is expected. This experiment will likely use an in situ
high-speed camera or X-ray imaging.
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Abstract: Additively manufactured metal components often have rough and uneven surfaces, ne-
cessitating post-processing and surface polishing. Hardness is a critical characteristic that affects
overall component properties, including wear. This study employed K-means unsupervised machine
learning to explore the relationship between the relative surface hardness and scratch width of
electroless nickel plating on additively manufactured composite components. The Taguchi design of
experiment (TDOE) L9 orthogonal array facilitated experimentation with various factors and levels.
Initially, a digital light microscope was used for 3D surface mapping and scratch width quantification.
However, the microscope struggled with the reflections from the shiny Ni-plating and scatter from
small scratches. To overcome this, a scanning electron microscope (SEM) generated grayscale images
and 3D height maps of the scratched Ni-plating, thus enabling the precise characterization of scratch
widths. Optical identification of the scratch regions and quantification were accomplished using
Python code with a K-means machine-learning clustering algorithm. The TDOE yielded distinct
Ni-plating hardness levels for the nine samples, while an increased scratch force showed a non-linear
impact on scratch widths. The enhanced surface quality resulting from Ni coatings will have signifi-
cant implications in various industrial applications, and it will play a pivotal role in future metal and
alloy surface engineering.

Keywords: unsupervised machine learning; K-means clustering; additive manufacturing; nickel
plating; hardness; scratch test

1. Introduction

Machine learning (ML) has received a great deal of attention recently, particularly as a
result of recent developments in the field of deep learning [1,2]. Artificial intelligence has
become a central focus across various research fields and in additive manufacturing, like
engineering disciplines [3–6], as it offers a unified framework through which to integrate
intelligent decision making into numerous fields [7,8]. There are several forms of additive
manufacturing, such as binder-jetting-based metal additive manufacturing (BJAM). In this
study, we focused on stainless-steel and bronze composite samples that were manufactured
using the binder-jetted method [9]. Binder jetting is a 3D printing process that involves the
deposition of an adhesive binding agent onto thin layers of powdered material. The printer
head moves over the build platform depositing binder droplets, and it then prints each
layer in a way that is not dissimilar to 2D printers that print ink on paper. After each layer
is complete, the powder bed moves downward, and the printer spreads a new layer of
powder onto the build area. The process goes on layer by layer until all parts are complete.
After printing, the parts are in a green, or unfinished, state, and they require additional
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post-processing before they are ready to use. Often, the operator adds an infiltrating
substance to improve the mechanical properties of the parts. The infiltrate substance is
usually bronze in the case of metal 3D prints [9,10]. The BJAM process has a significant
scope of improvement with the application of ML and deep learning [11,12]. The further
advancement of AM is critically dependent on the post-processing of completed parts and
the use of ML in solving problems.

While BJAM and other additive manufacturing processes have been widely used for
rapid prototyping [13,14], some of its constraints revolve around reliability and control [15,16].
Compared to subtractive manufacturing procedures, AM creates objects with poor surface
smoothness [9,17]. As produced, surface quality has a negative effect on the tribological
behavior of printed parts. It is well understood that rough surfaces tend to experience faster
wear compared to smooth surfaces [18,19]. Therefore, it becomes crucial to thoroughly
investigate and regulate the surface roughness of AM parts via different approaches to deal
with interior and exterior surface quality [20]. The study and control of surface roughness
in AM components are essential in order to enhance their durability, reduce wear, and
improve overall performance. By understanding and managing the surface roughness,
it is possible to optimize the tribological characteristics and extend the lifespan of AM
parts [21]. In the context of BJAM, coatings are indispensable for maintaining integrity in a
reactive environment. Due to the use of soft and hard materials, a binder-jetted part may
be susceptible to corrosion and may display non-uniform mechanical properties. Hence,
a protective coating, depending upon the end use, may be a necessity when utilizing
BJAM parts.

Among various coatings, electroless nickel coating has been widely applied and
studied for conventional engineering components. Electroless nickel plating has been
extensively studied with various plating baths so as to identify the optimal conditions for
achieving desired qualities such as corrosion resistance, wear resistance, and hardness.
Through systematic experimentation and analysis, researchers have aimed to identify the
ideal parameters and bath compositions that can lead to electroless nickel coatings with
excellent performance in terms of corrosion resistance, wear resistance, and hardness.
These efforts contribute to the development and application of electroless nickel plating
as a reliable surface treatment method for enhancing the functional properties of various
materials [22,23].

In this research, we explored electroless nickel coatings for BJAM parts. The major
challenge was experienced in analyzing the hardness of nickel coating via the standard
scratch test process. A standard method for determining surface hardness using scratch
testing involves running a diamond stylus across the coated surface while applying in-
creasing force until adhesion failure is observed [24]. In the study, it was observed that
the surface of the Ni-plated samples exhibited minor scratches, which posed challenges
when aiming to accurately capture 3D images with a light microscope. The highly reflective
surface resulted in an oversaturation and lens reflection artifacts in the images, making
it difficult to quantify scratch widths effectively. To overcome this limitation, scanning
electron microscopy (SEM) was employed to generate a 3D height map of the area, thus
providing a higher resolution for measuring scratch widths. To address this challenge
in the postprocessing of BJAM parts, we applied ML. ML algorithms have proven valu-
able in addressing various problem-solving tasks such as regression, classification, and
forecasting [25]. ML can be broadly categorized into four types based on the learning
approach used: supervised, unsupervised, semi-supervised, and reinforcement learning.
In unsupervised ML, the algorithm predicts outputs without any explicit supervision, and
it relies on unlabeled datasets. One prominent approach in unsupervised ML is clustering,
which involves extracting natural groups from data based on their similarities [26,27].
The K-means algorithm is the most well-known and often-used unsupervised clustering
method [28]. The K-means cluster seeks to determine the centroid of each cluster and assign
the data points to the nearest centroid. The centroid is the arithmetic mean of all the points
belonging to the cluster [29]. It iteratively calculates the cluster centroids repeatedly, and
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adjusts the parameters until a negligible change is observed [30]. There is no need for a
training dataset since it is a type of unsupervised ML, and computation is conducted on
the real dataset [31].

To the best of our knowledge, for the first time, we explored the application of the
K-means ML approach to successfully analyze the scratch on electroless nickel films coated
on BJAM. To automate the analysis process and extract scratch data from the images
and height maps, a Python script was originally developed. The script utilized the K-
means algorithm, an unsupervised machine learning method, to segment and identify
the scratches. Applying the K-means algorithm meant that the scratch data could be
effectively extracted, thus allowing for a quantitative analysis and characterization of the
scratches. The outcomes of this study demonstrated the utility of unsupervised machine
learning techniques, such as the K-means algorithm, in addressing challenges encountered
in materials science. By leveraging these methods, researchers can overcome limitations in
traditional image analysis approaches and obtain valuable insights from complex surface
data, such as scratch measurements.

2. Materials and Methods

The focus of this paper is on the application of ML-based image analysis approaches
for successfully studying scratches that are created on nickel-coated BJAM samples. The
BJAM samples used in this study were manufactured by the ExOne® (Huntington, PA,
USA). The stainless-steel 420 powder was shaped with a binder jet 3D printer that was
made by ExOne®. Binder jetting works by spreading powder into a layer, and an inkjet
printhead is used to selectively deposit a binder into the layer of powder. As the process
proceeds, the powder and binder are layered to form a 3D shape in the powder bed. The
average particle size is between 15 and 30 microns, and the binding agent is a polymer. The
print is then heated to 200 ◦C to evaporate the solvent from the binder. Once dried, the parts
are removed from the powder bed and set up for post-processing. The post-process consists
of adding the part to a crucible filled with a measured amount of bronze alloy. The crucible
with the part and bronze is heated to around 1100 ◦C for 1–2 h, which allows the bronze to
melt and infiltrate the porous stainless-steel print. Infiltration is driven by the wetting of
the molten bronze and the steel, the surface tension of the molten bronze, and the resulting
capillary forces between the stainless-steel particles. Once solidified, the resulting part is a
stainless-steel and bronze metal-matrix composite, which is approximately 60% stainless
steel and 40% bronze by volume. In the follow-up SEM and EDS analyses with Phenom XL
SEM purchased from Nanoscience®, (Phoenix, AZ, USA), we observed elemental analysis
results that were specific to how many 420 stainless-steel powder particles were present
in the imaging area, as well as the variation in the shape and size of each particle. Hence,
due to the limitation of EDS in providing consistent results, we report on the percentage of
stainless steel and bronze based on the manufacturing process.

Importantly, this paper is mainly about post-manufacturing surface property im-
provement where the surface properties of BJAM is a critical factor. As a part of post-
processing, we developed an empirical model targeting the smooth surface morphology
of several micron-thick nickel depositions on nine binder-jetted 420 stainless steel/bronze
components. The electroless plating solution was acquired from the Surface Technology
Incorporated® company. The experiment plan for nine samples was based on the Taguchi
design of experiment, which enables the study of multiple variables and their levels in
fewer experiments when compared to the experimental plan where one variable is varied
at a time [32]. In this investigation, there were four factors with three levels each. The
plating bath solution’s phosphorus levels consisted of low (1–4%), medium (6–9%), and
high (10–13%). The temperature levels included low (recommended −10 ◦C), medium
(recommended), and high (recommended +10 ◦C). For low and medium phosphorus, the
recommended temperature was set at 90 °C, while for high phosphorus, it was 85 °C. The
surface cleaning preparation factor encompassed three levels: organic solution cleaning,
plasma cleaning, and chempolishing. Chempolishing-based surface finishing details are
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published elsewhere [17]. The plasma was produced by 100 W of RF power, at a 30 SCCM
Ar flow rate, and at 320 mTorr pressure to etch the binder-jetted samples isotropically.
Plasma cleaning was done with SPI Plasma Prep II (West Chester, PA, USA). The fourth
factor, plating thickness, also comprised three levels. We targeted depositing at 20, 30, and
40 µm thicknesses, which were determined from the manufacturer-provided data sheet
for the three plating solutions. Table 1 depicts the L9 orthogonal array and each sample’s
name ID, which are utilized in the discussion section when referring to each sample.

Table 1. The L9 orthogonal array of the nine experiments for investigating nickel plating.

Exp. Run Phosph. Level Temp. (◦C) Surface Prep.
Thickness

(µm)
ID

1 Low 85 Organic 20 OC1
2 Low 95 Plasma 30 PC1
3 Low 105 Chempolish 40 CP1
4 Medium 85 Plasma 40 PC2
5 Medium 95 Chempolish 20 CP2
6 Medium 105 Organic 30 OC2
7 High 75 Chempolish 20 CP3
8 High 85 Organic 30 OC3
9 High 95 Plasma 40 PC3

After completing the nickel-plating process as per the plan mentioned in Table 1,
scratch testing was performed with a Taber Scratch tester®. Scratch geometry analysis
is a critical step in determining the toughness of films, and the surface hardness of the
composite samples was evaluated by varying the scratch load gradually from 8 N to 15 N.
The samples were divided into three groups based on their surface preparation. In general,
the trend observed in the graphs indicates that, as the scratch load remains constant, the
hardness tends to decrease as the scratch width becomes deeper and wider. This implies
that a deeper and wider scratch shows a low surface hardness. Moreover, the relationship
between scratch width and applied scratch load is directly proportional, meaning that,
as the applied load increases, the scratch width also increases. However, it is important
to note that the increase in scratch width is non-linear, suggesting that the relationship
between load and width may not be strictly linear. However, since nickel plating makes
the surface quite shiny, it became difficult to determine the scratch depth and width profile
accurately from an analysis of the optical images. We developed a solution to this problem
by relying on the SEM images of the scratches, which produced better depth contrast. The
SEM images were visually marked for the location of the scratch, and the K-means machine
learning algorithm was applied. The following section describes the K-means algorithm
adopted in this study.

K-means clustering is an iterative method that aims to divide a dataset into a prede-
termined number, K, of distinct clusters or subgroups based on their attributes. The goal
is to create clusters that are as dissimilar from each other as possible while making the
data points within each cluster as similar as possible. The process begins by randomly
assigning K centroids, which serve as the initial center points for the clusters, as shown in
Figure 1b. Each data point in the dataset is then assigned to the cluster with the nearest
centroid based on a chosen distance metric, typically the Euclidean distance, as shown in
Figure 1c. This assignment step ensures that data points are allocated to the group that
is closest to them in terms of attribute similarity. After assigning all the data points to
clusters, the algorithm recalculates the centroids of each cluster by computing the mean
(arithmetic average) of all the data points within the cluster. This updating step adjusts the
centroids’ positions to reflect the clusters’ new center points based on the reassigned data
points, as shown in Figure 1d. The algorithm iterates between the assignment and update
steps until convergence is reached. Convergence is determined by assessing whether there
has been a substantial change in the centroids compared to the previous iteration. If the
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centroids remain largely unchanged, or if the maximum number of iterations is reached,
the algorithm terminates. To determine whether a data point belongs to a particular cluster,
the algorithm compares the distance between the data point and the centroid of that cluster.
Centroid of the cluster is shown by the red and black “x” for two groups in Figure 1b–d. If
the distance is less than a certain threshold, which is often represented by the within-cluster
sum of squares or a cost function, the data point is assigned to that cluster. Throughout the
iterations, the algorithm strives to minimize the cost function by adjusting the positions of
the centroids. This process leads to the formation of well-defined clusters that are distinct
from each other, with reduced variability within each cluster. The data points within each
cluster become more homogeneous or similar to each other in terms of their attributes.
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Figure 1. K-means clustering process illustration: (a) row data, (b) random initializing centroids to
represent the center of a cluster, (c) for each data point, calculate its distance to each centroid and
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data points assigned to each cluster and repeat until convergence.

In K-means clustering, the hyper-parameter K is predetermined before the training
process begins. The letter “K” represents the number of clusters that the algorithm aims to
create. This value is typically determined based on prior knowledge or domain expertise.
The objective function in K-means clustering involves minimizing the total within-cluster
sum of squares, also known as inertia or distortion. The objective function can be mathe-
matically expressed as follows:
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where J is the objective function, and k and n are the numbers of clusters and cases,
respectively. X is the case i, and C is the centroid for cluster j. The term in absolute value is
known as the distance function.

The number of clusters in the K-means method represent the moving centroids within
the data. The elbow method helps determine the optimal number of clusters by evaluating
the distortion or inertia for the different values of “K”. The elbow point shown in Figure 2,
where the distortion begins to reduce linearly, is chosen as the ideal number of clusters.
This method ensures a balance between capturing the right data structure and avoiding
overfitting.
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3. Results and Discussion

The surface hardness of the composite samples was evaluated by conducting a scratch
test, where the scratch load was gradually increased from 8 N to 15 N. The continuous and
highly reflective films did not exhibit noticeable micropores. The samples were divided
into three groups based on their surface preparation. In general, the trend observed in the
graphs indicated that, as the scratch load remains constant, the hardness tends to decrease
as the scratch width becomes wider. This implies that a wider scratch shows a low surface
hardness. Moreover, the relationship between scratch width and applied scratch load is
directly proportional, meaning that, as the applied load increases, the scratch width also
increases. However, it is important to note that the increase in scratch width is non-linear,
suggesting that the relationship between load and width may not be strictly linear.

The process of quantifying the scratch width is depicted in Figure 3. In Figure 3b,
the shaded area represents the region identified as the scratch. To accomplish this, an
individual performed the shading manually using basic image editing software, such as
Microsoft Paint. Since the image is in grayscale, consisting of shades of black and white, a
K-means clustering algorithm was employed to separate the darker scratched area from
the rest of the image. The K-means clustering algorithm is a technique used to partition
data into distinct clusters based on their similarity. In this case, it was applied to the
grayscale image to create two clusters: one representing black and one representing white.
By analyzing the intensity values of the pixels in the image, the algorithm assigned each
pixel to one of the two clusters based on its similarity to either black or white.

After the K-means clustering was performed, the resulting clusters provided the coor-
dinates of the pixels within the image that belonged to the black cluster, which represented
the scratched area. These coordinates were then utilized to identify the corresponding
region on the SEM height map, which provides three-dimensional information about the
sample’s surface. Figure 3c illustrates the scratch area on the SEM height map. By using
the coordinates obtained from the K-means clustering, the scratched region was precisely
located and delineated by a boundary line. This enabled a visual representation of the
boundaries of the scratch. Finally, in Figure 3d, a more detailed view of the scratch limits is
depicted on the contour plot produced by the Phenom XL SEM 3D reconstruction software.
The boundary line clearly indicates the extent and shape of the scratch, thereby provid-
ing a comprehensive understanding of the scratch width and its specific location on the
sample’s surface.
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Figure 3. SEM images of the Ni-plated composite surface. (a) Raw image obtained using a full
backscatter detector (BSD), (b) shaded section used to differentiate between scratches and Ni-plating,
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contour map of the height map obtained from SEM with a scratch mask for quantifying scratch width.

Once the scratch width data were obtained, they were grouped according to the sur-
face cleaning preparations, as shown in Figure 4. The data were divided into three groups:
the first group consisted of samples that underwent chempolishing surface-cleaning prepa-
ration, the second group comprised samples that were prepared with organic cleaning, and
the third group included samples that were prepared with plasma cleaning. In Figure 4a,
the first group is depicted, which contains three samples that underwent chempolishing
surface preparation. The CP1 sample shows a scratch width in the ~80–~100 µm range as
the load increased from 8 to 12 N. Around 13 N, the scratch width varied, indicating the
appearance of more burrs along the scratch contour, thus causing significant jaggedness.
Further increase in the load brought the scratch width into the short range (Figure 4a). ML
scratch analysis was effective in observing an increase in the average scratch width for the
CP2 samples that were subjected to an increasing load (Figure 4a). The average scratch
width increased marginally from 60 to 80 µm as load increased 8 to 11N; after that, the
load scratch width fluctuated between ~60 to ~100 µm with a large standard deviation
that showed the change in material response from a smooth plastic transformation to more
burs along the scratch profile. Interestingly, for the 15 N load, a non-uniformity in scratch
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width was observed, similar to CP1 (Figure 4a). A similar trend was also observed for
CP3 as the scratch load increased from 8–15 N. However, for the CP3 sample, the starting
average scratch width was around 120 µm for 8 N. This study suggests that the nickel
plating hardness on the CP2 sample was around two times more than the plating hardness
of the CP3 sample (Figure 1a). By comparing CP1, CP2, and CP3 data, it becomes clear that
a significant and clear transition in failure mode occurs between the 12–14 N load range.

The effect of different plating parameters was also studied on the organically cleaned
sample (OC group) in Figure 4b. The OC1 sample showed a rather quick jump in average
scratch width from the average ~85 µm to the ~120 µm range; the OC1 scratch width
remained rather consistent for most of the load range. For the 15 N load, the scratch width
was quite non-uniform and appeared with a large variation (Figure 4b). Similarly, the OC2
sample followed the trend observed with OC1. However, the starting scratch width was
significantly lower than that observed on OC1. Interestingly, for OC3, the scratch width
increased gradually up to 11 N from the ~90 µm to ~120 µm range; after that, the scratch
width kept increasing. It appears that for the OC samples, the scratching mechanism was
altered in the early stage when compared to the CP samples.

In the case of plasma-treated samples (PC1–3), scratch widths were analyzed. The
PC1 sample showed an average scratch width in the ~70 to ~100 µm range as the load
increased from 8 to 14 N (Figure 4c). Interestingly, the scratch widths for the PC2 samples
increased linearly as the load increased from 8 to 15 N, and the smallest variation was
observed in this sample. For the PC3 sample, the scratch width roughly increased with
the load. This large variation was attributed to the chempolishing impact on surface
morphology because chempolishing can selectively etch one of the components of the
BJAM part, thus resulting in a rougher surface. The CP2 samples exhibited a lower average
scratch width when compared to CP1 and CP3. This meant that the CP2 samples that had
a medium phosphorous (P) nickel coating applied were harder. The CP3 samples showed a
significantly larger scratch width with high scattering. It is possible that the nickel coating
quality varied significantly when a high-P nickel coating was attempted. Moving on to
Figure 4b, the second group represents the three samples that underwent organic cleaning
preparation. It is noteworthy that, unlike chempolishing, the organic cleaning process
did not impact the BJAM sample surface. Due to better surface smoothness, there was, in
general, less scattering. Mid-P nickel coating produced a ~70 µm scratch width, which
was nearly 30% lower than the low- and high-phosphorous nickel coatings (Figure 4b).
On average, this group was the second hardest, with OC2 (the second organically cleaned
sample) showing a high surface hardness that was quite close to the PC2 (the second plasma
cleaning) sample. Figure 4c displays the third group, which comprises the samples that
underwent plasma cleaning preparation. Plasma cleaning isotopically cleaned the BJAM
sample to render a smoother surface. As a result, in general, there was less scattering in the
scratch width data. The PC2 samples showed a ~60 µm scratch width, which was clearly
more severe than the PC1 samples where low-P solutions were used for Ni coating. Notably,
PC2—which represents a combination of a mid-phosphorus level, a temperature 10 degrees
lower than the recommended value, and optimal time parameters—demonstrated the
highest hardness among all of the samples and had the smallest scratch width. Based
on these ML-enabled findings, it is recommended to utilize plasma and organic cleaning
methods when aiming for a harder surface. The plasma cleaning method, particularly
represented by PC2, resulted in the hardest surface, while the organic cleaning method,
particularly represented by OC2, showed a relatively high surface hardness comparable to
PC2. Therefore, for applications where a harder surface is desired, the utilization of plasma
and organic cleaning methods is recommended based on an analysis of the scratch width
and surface hardness data.
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4. Conclusions

The K-means unsupervised ML algorithm was employed to address the challenges
associated with optically obscure scratches on nickel-plated AM samples. In this context,
the samples were prepared using the L9 orthogonal array TDOE methodology. Due to
the nature of Ni-electroless plating, some of the samples exhibited a shiny appearance,
making them difficult to analyze accurately when using a digital light microscope. This
was primarily due to issues such as light saturation and reflection. To overcome this,
SEM was utilized to generate grayscale images and corresponding 3D height maps of the
scratched Ni-plating surfaces. Subsequently, the K-means ML clustering approach was
applied to visually detect the scratch areas within the SEM images. Through this approach,
it was observed that the TDOE methodology resulted in distinct levels of Ni-plating
hardness for each of the nine samples. Furthermore, as the scratch force increased, the
scratch widths exhibited a non-linear increase, thus highlighting the complex relationship
between applied force and scratch width. Our image analysis capabilities highlighted
that mid-P nickel coating produced harder coating when compared to low- and high-P
content-based nickel coatings. This study also showed that the chempolishing treatment
on BJAM produces a higher roughness that impacts the uniformity and quality of nickel
coatings. Our research suggests that surface preparation must be chosen with great care to
target the specific attributes of electroless nickel coatings, and microscopic high-resolution
SEM images should be considered for an adequate understanding of the morphologies
that evolve due to interacting parameters. A scratch width analysis with a Taguchi design
of experiment should be focused on specific properties. The CP2, PC2, and OC2 samples,
where the medium-phosphorous solution was used, appeared to yield harder coatings. Our
ML-enabled scratch width analysis was able to capture the differences in various factors
leading to the differences in scratch widths and deviations. The difference in standard
deviations at each load for each sample category was reflective of the difference in the
surface microstructure after different processing techniques and electroless nickel coatings
were applied. The K-means clustering approach utilized in this work was able to capture
the variation in load. The demonstrated methodology of combining SEM imaging, K-means
clustering, and scratch width quantification offered a practical solution in surface analysis
when faced with obstacles such as optically obscure scratches. In future work, different
clustering and ML approaches may be applied to analyze scratch widths.

Author Contributions: The manuscript was written by B.N.M.; A.C.G. conducted the experiments,
performed the K-means analysis, and collected the data. W.D. reviewed and gave feedback about
the analysis and on paper refinement. K.L.K. provided equipment support and analysis evaluation.
A.E. provided stainless-steel and bronze composite samples that were produced via the binder-jetted
method, as well as contributed to the results analysis. Lastly, P.T. supervised, provided guidance, and
oversaw the work. All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge funding support for this course from the National Science Foundation-
CREST Award (Contract # HRD-1914751), the Department of Energy/National Nuclear Security
Agency (DE-FOA-0003945), and the NASA MUREP grant (80NSSC19M0196). This manuscript
has been authored, in part, by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US
Department of Energy (DOE). The publisher acknowledges the US government’s license to provide
public access under the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-
plan, accessed on 17 September 2023).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available upon reasonable request.

Acknowledgments: We appreciate Lucas Rice’s input about the testing protocol. This research was
prepared under the MECH 500 Research Methods and Technical Communication course taught by
Pawan Tyagi and teaching assistant Wondwosen Demisse in the Fall of 2022.

178



Materials 2023, 16, 6301

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the result.

References

1. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2019, 29,
102–127. [CrossRef] [PubMed]

2. Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. 2020, 9, 381–386.
3. Jiang, J. A survey of machine learning in additive manufacturing technologies. Int. J. Comput. Integr. Manuf. 2023, 36, 1258–1280.

[CrossRef]
4. Parsazadeh, M.; Sharma, S.; Dahotre, N. Towards the next generation of machine learning models in additive manufacturing: A

review of process dependent material evolution. Prog. Mater. Sci. 2023, 135, 101102. [CrossRef]
5. Xames, D.; Torsha, F.K.; Sarwar, F. A systematic literature review on recent trends of machine learning applications in additive

manufacturing. J. Intell. Manuf. 2022, 34, 2529–2555. [CrossRef]
6. Mondal, B.; Mukherjee, T.; DebRoy, T. Crack free metal printing using physics informed machine learning. Acta Mater. 2022, 226,

117612. [CrossRef]
7. Pattnaik, P.; Sharma, A.; Choudhary, M.; Singh, V.; Agarwal, P.; Kukshal, V. Role of machine learning in the field of Fiber

reinforced polymer composites: A preliminary discussion. Mater. Today Proc. 2021, 44, 4703–4708. [CrossRef]
8. Cearley, D.; Burke, B.; Searle, S.; Walker, M.J. Top 10 strategic technology trends for 2018. Top 2016, 10, 1–246.
9. Demisse, W.; Xu, J.; Rice, L.; Tyagi, P. Review of internal and external surface finishing technologies for additively manufactured

metallic alloys components and new frontiers. Prog. Addit. Manuf. 2023, 1–21. [CrossRef]
10. Ilogebe, A.B.; Waters, C.K.; Elliot, A.M.; Shackleford, C. Morphology of binder-jet additive manufactured structural amorphous

metal matrix composites. Int. J. Eng. Sci. 2019, 8, 15–24.
11. Onler, R.; Koca, A.S.; Kirim, B.; Soylemez, E. Multi-objective optimization of binder jet additive manufacturing of Co-Cr-Mo

using machine learning. Int. J. Adv. Manuf. Technol. 2022, 119, 1091–1108. [CrossRef]
12. Zhu, Y.; Wu, Z.; Hartley, W.D.; Sietins, J.M.; Williams, C.B.; Yu, H.Z. Unraveling pore evolution in post-processing of binder jetting

materials: X-ray computed tomography, computer vision, and machine learning. Addit. Manuf. 2020, 34, 101183. [CrossRef]
13. Roscoe, S.; Cousins, P.D.; Handfield, R. Transitioning additive manufacturing from rapid prototyping to high-volume production:

A case study of complex final products. J. Prod. Innov. Manag. 2023, 40, 554–576. [CrossRef]
14. Almaraz, A.; Estrada, D.; Rajabi-Kouchi, F.; Burgoyne, H.; Mansoor, N.; Koehne, J. Additive Manufacturing for the Rapid Prototyping

of Economical Biosensors; Boise State University: Boise, ID, USA, 2023.
15. Nys, N.; König, M.; Neugebauer, P.; Jones, M.J.; Gruber-Woelfler, H. Additive Manufacturing as a Rapid Prototyping and

Fabrication Tool for Laboratory Crystallizers—A Proof-of-Concept Study. Org. Process. Res. Dev. 2023, 27, 1455–1462. [CrossRef]
16. Venturi, F.; Taylor, R. Additive Manufacturing in the Context of Repeatability and Reliability. J. Mater. Eng. Perform. 2023, 32,

6589–6609. [CrossRef]
17. Tyagi, P.; Goulet, T.; Riso, C.; Stephenson, R.; Chuenprateep, N.; Schlitzer, J.; Benton, C.; Garcia-Moreno, F. Reducing the roughness

of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Addit.

Manuf. 2019, 25, 32–38. [CrossRef]
18. Townsend, A.; Senin, N.; Blunt, L.; Leach, R.K.; Taylor, J.S. Surface texture metrology for metal additive manufacturing: A review.

Precis. Eng. 2016, 46, 34–47. [CrossRef]
19. Hebert, R.J. Viewpoint: Metallurgical aspects of powder bed metal additive manufacturing. J. Mater. Sci. 2016, 51, 1165–1175.

[CrossRef]
20. Dillard, J.; Grizzle, A.; Demisse, W.; Rice, L.; Klein, K.; Tyagi, P. Alternating chempolishing and electropolishing for interior and

exterior surface finishing of additively manufactured (AM) metal components. Int. J. Adv. Manuf. Technol. 2022, 121, 8159–8170.
[CrossRef]

21. Kato, K. Wear in relation to friction—A review. Wear 2000, 241, 151–157. [CrossRef]
22. Balaraju, J.; Narayanan, T.S.; Seshadri, S. Electroless Ni–P composite coatings. J. Appl. Electrochem. 2003, 33, 807–816. [CrossRef]
23. Loto, C. Electroless Nickel Plating—A Review; Springer: Berlin/Heidelberg, Germany, 2016.
24. Stallard, J.; Poulat, S.; Teer, D. The study of the adhesion of a TiN coating on steel and titanium alloy substrates using a multi-mode

scratch tester. Tribol. Int. 2006, 39, 159–166. [CrossRef]
25. Chernyavsky, D.; Kononenko, D.Y.; Han, J.H.; Kim, H.J.; Brink, J.v.D.; Kosiba, K. Machine learning for additive manufacturing:

Predicting materials characteristics and their uncertainty. Mater. Des. 2023, 227, 111699. [CrossRef]
26. Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [CrossRef]
27. Greene, D.; Cunningham, P.; Mayer, R. Unsupervised learning and clustering. In Machine Learning Techniques for Multimedia: Case

Studies on Organization and Retrieval; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; pp. 51–90.
28. Ding, C.; He, X. K-means clustering via principal component analysis. In Proceedings of the Twenty-First International Conference

on Machine Learning, Banff, AB, Canada, 4–8 July 2004.
29. Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. 2013, 1, 90–95.
30. Sinaga, K.P.; Yang, M.-S. Unsupervised K-Means Clustering Algorithm. IEEE Access 2020, 8, 80716–80727. [CrossRef]

179



Materials 2023, 16, 6301

31. Cohn, R.; Holm, E. Unsupervised Machine Learning Via Transfer Learning and k-Means Clustering to Classify Materials Image
Data. Integr. Mater. Manuf. Innov. 2021, 10, 231–244. [CrossRef]

32. Brent, D.; Saunders, T.A.; Moreno, F.G.; Tyagi, P. Taguchi Design of Experiment for the Optimization of Electrochemical Polishing
of Metal Additive Manufacturing Components. In ASME International Mechanical Engineering Congress and Exposition; American
Society of Mechanical Engineers: New York, NY, USA, 2016. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

180



Citation: Sinha, S.; Mukherjee, T.

Mitigation of Gas Porosity in

Additive Manufacturing Using

Experimental Data Analysis and

Mechanistic Modeling. Materials 2024,

17, 1569. https://doi.org/10.3390/

ma17071569

Academic Editor: Francesco Iacoviello

Received: 5 March 2024

Revised: 20 March 2024

Accepted: 26 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Mitigation of Gas Porosity in Additive Manufacturing Using
Experimental Data Analysis and Mechanistic Modeling

Satyaki Sinha and Tuhin Mukherjee *

Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; satty51@iastate.edu
* Correspondence: tuhinm@iastate.edu

Abstract: Shielding gas, metal vapors, and gases trapped inside powders during atomization can
result in gas porosity, which is known to degrade the fatigue strength and tensile properties of
components made by laser powder bed fusion additive manufacturing. Post-processing and trial-
and-error adjustment of processing conditions to reduce porosity are time-consuming and expensive.
Here, we combined mechanistic modeling and experimental data analysis and proposed an easy-
to-use, verifiable, dimensionless gas porosity index to mitigate pore formation. The results from
the mechanistic model were rigorously tested against independent experimental data. It was found
that the index can accurately predict the occurrence of porosity for commonly used alloys, including
stainless steel 316, Ti-6Al-4V, Inconel 718, and AlSi10Mg, with an accuracy of 92%. In addition,
experimental data showed that the amount of pores increased at a higher value of the index. Among
the four alloys, AlSi10Mg was found to be the most susceptible to gas porosity, for which the value
of the gas porosity index can be 5 to 10 times higher than those for the other alloys. Based on the
results, a gas porosity map was constructed that can be used in practice for selecting appropriate sets
of process variables to mitigate gas porosity without the need for empirical testing.

Keywords: laser powder bed fusion; 3D printing; convective flow; buoyancy; Stokes law; gas porosity
index; stainless steel 316; Ti-6Al-4V; Inconel 718; AlSi10Mg

1. Introduction

Laser powder bed fusion (LPBF) additive manufacturing is capable of printing 3D parts
of a wide variety of steels and alloys of nickel, titanium, and aluminum for the aerospace,
healthcare, automotive, and energy industries [1–5]. A laser beam selectively scans closely
packed layers of powders and creates a molten pool, which after solidification, forms the
part. Gas bubbles can originate inside the molten pool from shielding gas, metal vapors,
and gases trapped inside powders during atomization [1]. If these gas bubbles are unable to
escape from the molten pool before solidification, they can result in gas porosity inside the
printed parts [6,7]. Gas porosities can significantly degrade the tensile [8–13] and fatigue
properties [14–17] of parts. For example, the presence of porosity can increase the plastic
strain during the tensile test to the point where additional plastic deformation is restricted
to a smaller cross-sectional area or a region that was not work-hardened [11]. Because of
this, tensile properties, such as ultimate tensile strength, are significantly reduced. Porosity
is also a determining factor in the case of fatigue performance, as it can serve as a site for
the initiation of fatigue cracks [14–17]. Therefore, mitigation of gas porosity is needed to
improve the mechanical properties, reliability, and serviceability of metallic parts made
by LPBF.

Several attempts have been made to mitigate gas porosity in LPBF parts (Table 1) using
experimental techniques [18–25], mechanistic modeling [26–34], and machine learning [35–41].
However, experimental trial-and-error to adjust many process variables for reducing gas
porosity is expensive and time-consuming. In addition, this trial-and-error approach does
not always guarantee achieving an optimized set of process variables. Post-processing
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techniques [19,21,23], such as hot isostatic pressing, can reduce porosity but significantly
add cost. Numerical models [26–34] have been developed to predict the formation of gas
porosity by capturing the underlying physics. However, these models are computationally
intensive and often difficult to use in real time. Machine learning models [35–41] can be
used in real-time; however, they are often unable to capture the important physical factors
causing porosity and need a large volume of high-quality data for a reliable prediction.
Thus, the existing approaches (Table 1) using experimental, modeling, and machine learn-
ing methods are inadequate to reduce gas porosity in LPBF. Therefore, what is needed and
currently unavailable is an integrated theoretical and experimental framework that can
identify all important physical factors causing gas porosity and combine them in a com-
prehensible manner to predict and control the pore formation in LPBF of diverse metallic
materials. This article aims to address that need.

Table 1. Several existing approaches to reduce gas porosity in LPBF [18–41].

Approach Alloy Example Ref.

Experimental
approach

SS 316
Porosities were eliminated by changing energy density guided by X-ray CT,

Optical Microscopy, and Archimedes method.
[16]

SS 316
Porosities were successfully removed by wire electrical discharge

polishing-based post-processing.
[17]

SS 316
Adjustment of the process variables such as point distance, exposure time, and

layer thickness during experiments lowered porosity.
[18]

Ti6Al4V
Laser post-processing decreased gas pores which was confirmed by

micro-CT examination.
[19]

Ti6Al4V
Gas pores were eliminated by post-process hot isostatic pressing at different

temperatures and pressures.
[20]

AlSi10Mg
A low temperature (350 ◦C) hot isostatic pressing minimized gas porosity in

the manufactured parts.
[21]

Inconel 718
To reduce the gas porosity, different heat-treatment procedures including

aging treatments were used.
[22]

Inconel 718
Gas porosities were prevented by implementing a high-energy-intensity laser

beam that resulted in a larger molten pool.
[23]

Mechanistic
modeling approach

SS 316
Gas pores were eliminated by identifying appropriate conditions through

thermodynamic calculations and genetic algorithms.
[24]

SS 316
To reduce gas porosities laser power was varied guided by

mechanistic modeling.
[25]

SS 316
Porosities were successfully removed by varying the volumetric energy

density assisted by a numerical model.
[26]

SS 316
A calculation scheme was introduced that included normalized enthalpy and

powder absorptivity measurements to decrease porosity.
[27]

Ti6Al4V
Process maps were introduced that utilized normalized energy density to

reduce porosity.
[28]

Ti6Al4V
A dimensional analysis helped to reduce porosity and explained variability in

defect behavior.
[29]

AlSi10Mg
A molecular dynamics analysis showed that decreasing the hydrogen content

and maximizing the cooling/heating times reduced porosity.
[30]

AlSi10Mg
Thermal history and graph theory helped to identify appropriate conditions to

reduce porosity.
[31]

AlSi10Mg
Dynamics and mechanisms of pore motion were simulated using a

multi-physics model to identify conditions for pore reduction.
[6]

Inconel 718
A modeling technique was used that coupled laser powder interaction to

examine spatter interaction and decreased porosity.
[32]
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Table 1. Cont.

Approach Alloy Example Ref.

Machine learning
approach

SS 316
A novel approach using thermography and deep learning was used to

anticipate and reduce local porosity.
[33]

SS 316
Improved Regression along with Convolutional Neural Networks were used

to reduce porosity.
[34]

Ti6Al4V
A deep learning architecture was employed using heat signals to predict and

minimize porosity.
[35]

Ti6Al4V
A deep learning technique was used for porosity reduction and monitoring

that used Convolutional Neural Networks.
[36]

AlSi10Mg
Effective reduction efforts were aided by porosity-type classification through

machine learning.
[37]

AlSi10Mg
Porosity was reduced through the use of Convolutional Neural Networks that

were trained using the molten pool data.
[38]

Inconel 718
Defect detection in SEM pictures was automated by deep learning, which

promoted stochastic development and lowered porosity.
[39]

Here, mechanistic modeling and experimental data analysis were combined to predict
and control gas porosity during LPBF of stainless steel 316, Ti-6Al-4V, Inconel 718, and
AlSi10Mg that are commonly used in the aerospace, automotive, healthcare, and energy
industries. First, the important physical factors that impact the formation of gas porosity
were calculated for a broad range of processing conditions. The computed results were
rigorously tested against independent experiments. The results were aimed at providing
a detailed, comprehendible scientific insight into the pore formation in LPBF. We used
the modeling and experimental data to derive a verifiable, user-friendly, dimensionless
gas porosity index to predict both the occurrence and amount of gas pores in LPBF parts.
Finally, we constructed a process map to help engineers select appropriate processing
conditions to mitigate gas porosity. The process map can also provide an in-depth scientific
understanding of the effects of LPBF processing conditions on porosity formation. Although
the results reported here are for the LPBF process, the methodology can be extended to
mitigate gas porosity in laser and electron beam-directed energy deposition as well as in
wire arc additive manufacturing processes.

2. Methodology

In this work, a combined approach (Figure 1) of using mechanistic modeling and
analysis of experimental data on the occurrence of gas porosity in LPBF parts of various
common alloys was used. First, a mechanistic model [42,43] of the LPBF process was
tested, calibrated using experimental results, and used to compute temperature fields
and molten pool geometry. Then, experimental data [44–60] on porosity during LPBF of
stainless steel 316, Ti-6Al-4V, Inconel 718, and AlSi10Mg were collected from the literature.
The results from the well-tested model were used to derive and calculate a gas porosity
index corresponding to all experimental cases. The mechanistic model, calculation of
the gas porosity index, and collection and analysis of experimental data are explained in
detail below.
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Figure 1. A schematic representation of the methodology used in this work. A combined approach
of using mechanistic modeling and analysis of experimental data was implemented to derive and
use a gas porosity index for predicting and controlling gas porosity during LPBF of common alloys.
The pictures inside the “Experimental data” box are adapted from [7,61,62]. Figures taken from
open-access articles [7,61] are under the terms and conditions of the Creative Commons Attribution
(CC BY) license. The figure taken from [62] is under the permission obtained from Elsevier.

2.1. Assumptions

The following simplifying assumptions were made for the mechanistic model to make
the calculations of temperature and molten pool geometry tractable:

(1) The laser beam moves at a constant speed in the same direction on a straight path rela-
tive to the substrate. The model assumed a quasi-steady state of heat conduction [1,43]
where the coordinate along the scanning direction was transformed [1] to capture the
effect of scanning speed.

(2) The laser beam energy was assumed to be focused at a point on the upper surface of
the deposit and was applied at a uniform rate [1,43]. It was assumed that the width of
the substrate is significantly larger than the track width, and the substrate is much
thicker than the depth of the molten pool [1].

(3) The effects of the convective flow of molten metal, mainly driven by the spatial
gradient of surface tension and buoyancy [1,63] on temperature fields were neglected.
Heat losses from the surface through convection and radiation [1] were disregarded.

(4) Thermophysical properties of alloys were considered to be temperature-independent.
(5) The values of the laser absorptivity were assumed to be constant for a given alloy, even

though it is expected to be somewhat influenced by other factors such as processing
parameters, the presence of oxide and other surface impurities, surface roughness,
and gas composition above the molten pool [64].

(6) Only conduction mode [2,3] LPBF was considered. Therefore, gas bubbles from
unstable keyholes and resulting keyhole porosities [65,66] are not within the scope of
this work.

(7) Effects of gas dissolution [1] in the liquid metal controlled by activity and partial
pressure of gas were ignored by assuming the nucleation of gas bubbles on the
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solidifying interface. The bubble size was estimated by a pressure balance that
ignored the effects of the coalescence of bubbles.

The results from the mechanistic model were compared with a multi-physics, 3D,
transient heat transfer and fluid flow model of LPBF to prove that the assumptions are
valid. The comparison results are reported in the Supplementary File.

2.2. Calculations of Temperature and Molten Pool Geometry

A mechanistic model of LPBF was used to compute the temperature distributions and
the molten pool dimensions using process variables such as laser power, scanning speed,
and preheat temperature, as well as alloy properties such as density, thermal conductivity,
and specific heat as inputs. The thermophysical properties [2,3,67] of the alloys used in the
model are reported in the Supplementary File. Under the same processing conditions, the
molten pool shape and size for different alloys can significantly vary depending on these
properties [42]. The temperature (T) at any location of the part can be expressed as [43,68]:

T = T0 +
Q

2π ke f f ξ
exp[−V(ξ + x)

2αe f f
] (1)

where T0 indicates the initial or preheat temperature, Q is the laser power absorbed, ke f f

is the effective thermal conductivity of the powder bed, V is the scanning speed, αe f f is
the effective thermal diffusivity of the powder bed, ξ is the distance from the laser beam
axis, and x represents the coordinate along the scanning direction. The effective powder
bed thermophysical properties depend on the properties of both the metal powders and
shielding gas [2]. The shielding gas trapped between the closely packed powders and the
powder bed’s packing efficiency determine the effective thermo-physical properties of the
packed powder bed [69]. The traditional solution of heat conduction equation was based
on the properties of solid materials [70]. However, in this work, we modified the solution
by considering the effective powder bed properties (Equation (1)). The effective thermal
diffusivity (αe f f ) of the powder bed in Equation (1) is represented as [3]:

αe f f =
ke f f

Cpe f f ρe f f
(2)

where ke f f is the effective powder bed thermal conductivity (Equation (1)). Cpe f f and ρe f f

are the effective specific heat and density of the powder bed, respectively. The effective
properties are represented as [3]:

ke f f = ksη + kg(1− η) (3)

Cpe f f =
((ρsηCps) + (ρg(1− η)Cpg))

ρsη + ρg(1− η)
(4)

ρe f f = ρsη + ρg(1− η) (5)

where η is the powder bed packing efficiency. In Equations (3)–(5), the suffix ‘s’ and ‘g’
represent the property values for the solid alloy and shielding gas, respectively. The ther-
mophysical properties [2,3,67] of solid alloys and shielding gas [3] and packing efficiency
are reported in the Supplementary File.

From the computed temperature field (Equation (1)), the dimensions of the molten
pool were extracted by tracking the solidus isotherms of alloys. Calculated temperature
and molten pool dimensions were used to derive and compute a gas porosity index for
predicting and controlling gas porosity in LPBF, as discussed below.
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2.3. Gas Porosity Index and Its Calculations

High-speed imaging [7] of both fusion welding and additive manufacturing processes
has revealed that the gas bubbles formed inside the molten pool can result in porosity. For
example, Figure 2 shows the presence of gas bubbles inside the molten pool. Gas porosities
occur if the gas bubbles are unable to escape out of the molten pool before solidification.
Therefore, the time needed for a gas bubble to rise and escape out of the molten pool and
the solidification time of the pool are two key time factors affecting the formation of gas
porosity. Here, the gas porosity index ( τ) was defined as the ratio of the time to rise of the
gas bubble (TR) to the time to solidify (TS) of the molten pool as:

τ = TR/TS (6)

ff𝜏) 𝑇ோ 𝑇ௌ
τ 𝑇ோ 𝑇ௌ⁄

 

tt

τ

ff

𝑇ௌ

Figure 2. In situ high-speed synchrotron X-ray images showing the formation and dynamics of gas
bubbles during directed energy deposition of a nickel-based superalloy. Side views of the molten
pool are shown. (a) Gas bubbles inside the molten pool. (b) Gas bubbles are escaping from the molten
pool. The figure is adapted from [7]. Figures are taken from an open-access article [7] under the terms
and conditions of the Creative Commons Attribution (CC BY) license.

A high value of τ indicates that a gas bubble takes a long time to escape from the
molten pool before solidification resulting in a high susceptibility to gas porosity. The
index also captures the effects of process variables and alloy properties on porosity [71–73].
The two aforementioned times were calculated based on the results from the mechanistic
model as explained below. A sample calculation of the gas porosity index is provided in
the Supplementary File.
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2.3.1. Calculation of Time to Solidify

Time to solidify (TS) indicates the time required for the solidification of the liquid
metal pool and can be represented as:

TS=
L

V
(7)

where L is the pool length estimated using the mechanistic model and V is the scanning
speed. The time to solidify decreases at a higher scanning speed. This is because an increase
in the scanning speed reduces the pool size, and the pool takes less time to solidify.

2.3.2. Calculation of Time to Rise

Time to rise (TR) indicates the time needed for a gas bubble to rise and escape out of
the molten pool and can be written as:

TR=
D

ue
(8)

where the depth of the pool (D) was computed using the mechanistic model. ue is the
escape velocity of the gas bubble. The calculation assumes that the nucleation of gas bubbles
occurs on the solidifying interface near the bottom of the molten pool. It is well-known
in the casting and fusion welding literature [74] that the velocity of a gas bubble inside
a liquid depends on the size of the bubble. Therefore, we first calculated the size of the
bubble by performing a pressure balance inside the liquid metal and used that to estimate
the escape velocity as discussed below.

Calculation of Gas Bubble Size by Pressure Balance

The pressure inside a stable gas bubble (Pi) is equal to the sum of the surface tension
pressure (Ps) and the liquid pressure (Pl) as [75]:

Pi = Ps + Pl (9)

Surface tension pressure (Ps) is given by [75]:

Ps =
2σ

r
(10)

where σ is the surface tension of the molten alloy and r is the radius of a spherical gas
bubble. The liquid pressure (Pl) is represented as a summation of the atmospheric pressure
(Pa) and the pressure due to the height of the liquid (ρgD) as:

Pl = Pa + ρgD (11)

where ρ, g, and D are the density of the liquid metal, the acceleration due to gravity, and
pool depth. For a tiny pool in LPBF, ρgD is negligible. Therefore,

Pl = Pa (12)

By using Equation (9) and the ideal gas law, the value of the radius of a spherical gas
bubble (r) can be calculated as:

4
3

πr3
[

Pa +
2σ

r

]

= RT (13)

where R is the universal gas constant and T is the solidus temperature of an alloy.
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Escape Velocity of Gas Bubbles

Since the density of gas is much lower than that of the molten liquid, gas bubbles
tend to rise inside the liquid pool due to the buoyancy. For small Reynolds numbers, the
rising velocity of gas bubbles can be represented by the Stokes law [74]. Here the flow of
the molten metal is assumed to be laminar with a low Reynolds number. Therefore, the
approximate rising velocity of spherical bubbles called the Stokes velocity (us) is given
by [76]:

us =
2
9

r2∆ρg

µ
(14)

where r is the radius of the gas bubble calculated using Equation (13), ∆ρ is the difference
in density between the gas and the molten liquid, g is the acceleration due to gravity, and µ
is the viscosity of the liquid. The possibility of bubbles escaping from the fusion zone is
increased by the low liquid viscosity and large bubble radius [76].

It is well known [1] that the convective flow of liquid metal is mainly driven by the
spatial gradient of surface tension (Marangoni effect) and buoyancy. High-speed imaging
has shown that the Marangoni effect on the gas bubble dynamics is important only near
the pool surface [77]. However, a gas bubble often nucleates near the bottom surface,
where buoyancy may play a more crucial role [78]. Because of the greater dominance of the
buoyancy force, we compute the convective velocity [79] as:

uc =
√

gβ∆TD (15)

where g is the acceleration due to gravity, β is the coefficient of volumetric expansion, ∆T is
the temperature gradient, and D is the depth of the pool computed using the mechanistic
model. This convective velocity of liquid metal accelerates the escape velocity of the
gas bubbles. Therefore, the escape velocity of gas bubbles (ue) is the summation of two
aforementioned velocities [76] as:

ue = uS + uc (16)

The value of the escape velocity is used in Equation (8) to estimate the time to rise of
the gas bubble.

2.4. Data Collection and Analysis

A total of 93 sets of data on gas porosity formation for four alloys at various processing
conditions were collected from the literature [44–60]. Among the 93 sets of data, 60 cases had
gas pores and 33 cases were without experimentally detected gas pores. The mechanistic
modeling was performed for all 93 cases to calculate the gas porosity index. Using this data,
the gas porosity index was tested for the four alloys and the range of variables provided in
Table 2. The Supplementary File contains the values of all variables corresponding to the
93 experimental cases for which calculations were performed.
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Table 2. Range of process parameters and thermophysical properties of alloys.

Parameters Range

Laser power (W) 30–331

Scanning speed (mm/s) 50–3400

Pool length (micron) 149–2298

Pool width (micron) 64–664

Time to rise (ms) 5.15–69.75

Time to solidify (ms) 0.18–29.34

Thermal conductivity (W/m-K) 28.1–113.0

Specific heat (J/Kg-K) 409.6–2894.2

Viscosity (Kg/m-s) 0.0013–0.007

Surface tension (N/m) 0.82–1.82

3. Results and Discussion

3.1. Comparison of Molten Pool Geometry of Four Alloys

Both the time needed for a gas bubble to rise and escape out of the molten pool and the
solidification time of the pool that determines the gas porosity (Section 2.3) are significantly
affected by molten pool dimensions. Since different alloys exhibit a wide variety of molten
pool geometries [64], it is important to compare them under the same processing conditions.
Figure 3a–d shows the computed temperature distribution on the deposit top surface for
the four common alloys. The region surrounded by the isotherm of solidus temperature
represents the molten pool. The fusion zone is enclosed by the liquidus isotherm of an alloy.
The sky-blue area between the liquidus and solidus isotherms in each figure represents
the mushy zone. The laser beam scans from the left to the right direction. Therefore, the
molten pool is elongated in the opposite direction of the scanning direction.
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Figure 3. Computed temperature fields and molten pool geometries on the deposit top surface during
LPBF of (a) Stainless steel 316, (b) Ti-6Al-4V, (c) Inconel 718, and (d) AlSi10Mg using 300 W laser
power and 1250 mm/s scanning speed. The results correspond to the location of the laser beam axis
at (0,0). The scanning direction is from left to right (along the positive length axis) in all figures. In
each figure, the values of the isotherms can be read from the corresponding contour legends.

The different shapes of the molten pool are due to the variation in the thermophysical
properties of the four alloys. The molten pools for SS 316, Ti-6Al-4V, and Inconel 718 exhibit
a tear-dropped and elongated shape due to rapid scanning. The molten pool for AlSi10Mg
is elliptical (Figure 3d) because the heat distribution is nearly uniform in all directions,
attributed to its high thermal diffusivity. Consequently, it has a large width and a short
length. This elliptical pool has the largest volume compared to the molten pools of the
other three alloys. In addition, the temperature inside the AlSi10Mg molten pool is the
lowest among the four alloys due to its very high thermal diffusivity. Ti-6Al-4V shows
a larger liquid pool (Figure 3b) than SS 316 (Figure 3a) because of its lower density. In
addition, a larger difference between the liquidus temperature and solidus temperature of
Inconel 718 results in a very elongated mushy zone and molten pool (Figure 3c). Although
Ti-6Al-4V and Inconel 718 exhibit similar pool sizes, the temperature inside the molten
pool of Ti-6Al-4V is higher due to its lower density than Inconel 718.

Figure 4 compares the calculated and experimentally measured [45] track width of
stainless steel 316 deposits made by LPBF at different laser powers and scanning speeds.
The proximity of the data points to the 45◦ line indicates that the computed results agree
well with the experiments. The track width for each condition was measured five times
along the track, and an average value was reported. The error bars represent the standard
deviations. The RMSE value of the prediction is 35.2 microns, which is very similar to the
average of the error bars present in the experimental data (27.7 microns). It indicates that
the error in prediction is heavily influenced by the uncertainties in the measurement. In
addition, several simplifying assumptions in the calculations (Section 2.1) have also con-
tributed to the error. The reasonably good match between the computed and experimental
results gives us the confidence to use the mechanistic model to compute the gas porosity
index for different alloys and processing conditions.
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Figure 4. Comparison between the calculated and the experimentally measured [45] track width of
stainless steel 316 deposits made by LPBF at different laser powers and scanning speeds. The RMSE
value for the experimental width and calculated width is 35.2 microns. The average of the error bars
present is calculated as 27.7 microns.

3.2. Prediction of Porosity Using Gas Porosity Index

A gas porosity index (τ) is an easy-to-use, verifiable, and dimensionless indicator
(see Section 2.3) that can predict gas porosity defects. There are two main utilities of the
gas porosity index. First, it can predict if porosity will form or not under a given set of
processing conditions for a particular alloy. Second, if porosity forms, the gas porosity
index can provide an approximate quantitative idea of its amount. These two utilities are
discussed below.

Figure 5 analyzes the values of the gas porosity index for the 93 experimental cases
(see Section 2.4) for four alloys. The values of the gas porosity index are provided in
the Supplementary File. We noticed that the gas porosity index values of the four alloys
vary widely, primarily due to the differences in their thermophysical properties and pool
dimensions (Figure 3). For an easy comparison, we put all values of the gas porosity
index on a consistent scale by standardizing the values. For standardization, the difference
between each value and the minimum value is divided by the range of the index value for
each alloy. The figure shows that the gas porosity index can accurately delineate the cases
with pores from the cases where no pores were observed experimentally with an accuracy
of 92%. The threshold value delineating the two cases is an essential point of reference for
figuring out if the manufactured parts have porosity or not. Three optical micrographs
that correlate to particular data points in the figure demonstrate the usefulness of the gas
porosity index in accurately predicting the occurrence of gas porosity. The results show
that the proposed methodology is consistent with the independent experiments conducted
at various processing conditions using different LPBF machines and materials. Using the
index, it is possible to identify the appropriate combination of the process variables to
minimize porosity.
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Figure 5. Gas porosity index to predict porosity in LPBF. The figure displays the index values for the
93 experimental cases. The index values are standardized to plot the data for all alloys under the
same scale. The threshold value which delineates the pore and no pore cases is shown by a horizontal
dashed line. Three optical micrographs [45] with the presence and absence of pores for LPBF of
stainless steel 316 are shown corresponding to three experimental data points. The micrographs are
taken from an open-access article [45] under the terms and conditions of the Creative Commons
Attribution (CC BY) license.

If porosity is expected to form, the gas porosity index can provide an approximate
quantitative idea of its amount. Figure 6 shows that the part density decreases as the
amount of porosity increases at a higher value of the gas porosity index. In the figure,
the percentage of density is plotted instead of porosity because the part density is a
more intuitive parameter and easy to measure during experiments. The top right optical
micrograph corresponds to a part having a density of 99.5%, which indicates that the part
has low porosity, consistent with its gas porosity index value of about 23.09. In contrast,
the other optical micrograph shows a density of about 93.39% and a higher gas porosity
index of 30.26.
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Figure 6. Variation in the volume percentage of density in stainless steel 316 parts made by LPBF
with the computed gas porosity index. The reported density values [45] are the average of five
measurements and the error bars represent the standard deviation of it. Two optical micrographs [45]
with different amounts of pores for LPBF of stainless steel 316 are shown corresponding to two data
points of gas porosity index. The micrographs are taken from an open-access article [45] under the
terms and conditions of the Creative Commons Attribution (CC BY) license.

This result has important implications for manufacturing processes that depend on
attaining accurate part densities. In order to reduce the likelihood of porosity in the
finished product, the result emphasizes the significance of predicting the gas porosity
index. Manufacturers can optimize their process conditions to obtain desired part densities
and improve overall product quality and performance without any time-consuming and
expensive trial-and-error.

3.3. Relative Susceptibility of Alloys to Gas Porosity

The gas porosity index provides a quantitative scale for estimating and comparing
the relative vulnerabilities of different alloys to gas porosity. Figure 7a compares four
commonly used alloys based on their relative susceptibility to gas porosity under a given
set of processing conditions. A long, elongated, tear-drop-shaped molten pool for Inconel
718 (Figure 3) allows the gas bubbles a long time to escape. Thus, Inconel 718 is less
vulnerable to gas porosity. In contrast, gas bubbles need a long time to escape from a
deep, hemispherical pool of AlSi10Mg. Thus, AlSi10Mg is the most susceptible to gas
porosity among the four alloys. The high vulnerability of AlSi10Mg to gas porosity has
been experimentally observed by many researchers [80,81]. For example, the inset in
Figure 7a shows an optical micrograph [82] of an AlSi10Mg part made by LPBF. The part
contains a very high amount of porosity that may lead to part rejection. For a different
set of experiments [83] on the LPBF of AlSi10Mg, the gas porosity index values were
calculated and reported in Figure 7b. A reduction in the ultimate tensile strength was found
for the parts with high porosity, as indicated by a large value of the gas porosity index.
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The insets show the optical micrographs [83] of the samples containing different amounts
of porosity. This result shows that the gas porosity index can also be beneficial to help
engineers improve tensile properties by minimizing gas porosity. In addition, the index can
be used to construct process maps for shop floor usage to reduce porosity in LPBF parts, as
discussed below.

ff

 

ff
ff

Figure 7. (a) Relative susceptibilities of four commonly used alloys to gas porosity evaluated by the
computed values of the gas porosity index during LPBF using 300W laser power and 1250 mm/s
scanning speed. The inset shows an optical micrograph [82] of an AlSi10Mg part made by LPBF
containing a significant amount of gas pores. The micrograph is taken from [82] with permission
from Elsevier. (b) A reduction in the ultimate tensile strength of AlSi10Mg parts made by LPBF due to
the presence of gas porosity. The insets show the optical micrographs [83] of the samples containing
different amounts of porosity. The plot is made based on the experimental data reported in [83] where
heat input was varied to produce parts with different amounts of porosity. Corresponding values of
the gas porosity index were calculated. The micrographs are taken from a thesis [83] available in the
public domain.
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3.4. Gas Porosity Map

The calculated values of the gas porosity index for different processing conditions
and alloys can be utilized to construct gas porosity maps. These maps can indicate the
optimum process windows for mitigating gas porosity. Figure 8a shows a gas porosity map,
where the contour values represent the magnitude of the gas porosity index during LPBF
of stainless steel 316. It is evident that high laser power and slow scanning are beneficial
for reducing porosity. In contrast, rapid scanning can lead to fast solidification, resulting in
the entrapment of gas bubbles and porosity.

ff

 

tt

Figure 8. (a) A gas porosity map showing the variations in gas porosity index with laser power and
scanning speed during LPBF of stainless steel 316. (b,c) Two micrographs [45] indicate the presence
and absence of porosity for the corresponding conditions in (a). The micrographs are taken from an
open-access article [45] under the terms and conditions of the Creative Commons Attribution (CC
BY) license.

Two micrographs (Figure 8b,c) have been provided to test the map against experimen-
tal results [45]. If a laser power of 350 W and a scanning speed of 800 mm/s (Figure 8b) are
used, then a dense part is obtained with almost no porosity with a gas porosity index of
17.05. In contrast, a laser power of 275 W and a scanning speed of 1800 mm/s result in a
part (Figure 8c) that contains porosity and a gas porosity index of 20.61. This validates the
gas porosity map for stainless steel 316 within the range of the process parameters consid-
ered in this work. Such maps, when rigorously verified against independent experimental
results for various alloys and a wide range of processing conditions, can be made available
for real-time prediction of pore formation on the shop floor.

4. Summary and Conclusions

In this work, a combination of mechanistic modeling and experimental data analysis
was implemented to derive an easy-to-use, verifiable, dimensionless gas porosity index.
The index captured the effects of both process parameters and important alloy properties
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and included several dominant physical factors causing gas porosity. The results were
tested for commonly used alloys: stainless steel 316, Ti-6Al-4V, Inconel 718, and AlSi10Mg.
Below are the important findings:

(1) The integrated theoretical and experimental framework identified all important
physical factors causing gas porosity. The dimensionless gas porosity index, which is the
ratio of the time taken by a gas bubble to escape the molten pool to the time required to
solidify the molten pool, delineated the experimental cases with pores from the cases where
porosities were not observed with an accuracy of 92%. Higher values of the index indicate
that the gas bubbles need a longer time to escape from the molten pool, which increases
their susceptibility to gas porosity. Experimental data proved that the number of pores
increased at a higher value of the gas porosity index.

(2) Gas bubbles need more time to escape from a larger molten pool. Among the
four alloys studied in this work, AlSi10Mg has the largest molten pool under the same
processing conditions because of its lowest density. Thus, AlSi10Mg is the most vulnerable
to gas porosity among the four alloys. The values of the gas porosity index for AlSi10Mg
are 5 to 10 times higher than those for the other alloys. The high susceptibility of AlSi10Mg
to gas porosity has also been experimentally observed and reported in the literature. In
contrast, an elongated molten pool allows more time for the gas bubbles to escape before
they solidify. Inconel 718 exhibits the longest molten pool among the four alloys because it
has a large difference between the liquidus and solidus temperatures. Thus, among the
four alloys, Inconel 718 is the least susceptible to gas porosity.

(3) The gas porosity process map constructed here showed that for a particular alloy,
less heat input at low laser power and fast scanning resulted in a small pool that solidified
rapidly, prevented the gas bubbles from escaping, and made the part prone to gas porosity.
These process maps, when rigorously tested against experiments, can be made available for
shop-floor usage by selecting appropriate processing conditions to reduce porosity without
the need for experimental trials.
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Abstract: Metal additive manufacturing (AM) is a disruptive production technology, widely adopted
in innovative industries that revolutionizes design and manufacturing. The interest in quality control
of AM systems has grown substantially over the last decade, driven by AM’s appeal for intricate,
high-value, and low-volume production components. Geometry-dependent process conditions in
AM yield unique challenges, especially regarding quality assurance. This study contributes to the
development of machine learning models to enhance in-process monitoring and control technology,
which is a critical step in cost reduction in metal AM. As the part is built layer upon layer, the
features of each layer have an influence on the quality of the final part. Layer-wise in-process
sensing can be used to retrieve condition-related features and help detect defects caused by improper
process conditions. In this work, layer-wise monitoring using optical tomography (OT) imaging
was employed as a data source, and a machine-learning (ML) technique was utilized to detect
anomalies that can lead to defects. The major defects analyzed in this experiment were gas pores
and lack of fusion defects. The Random Forest Classifier ML algorithm is employed to segment
anomalies from optical images, which are then validated by correlating them with defects from
computerized tomography (CT) data. Further, 3D mapping of defects from CT data onto the OT
dataset is carried out using the affine transformation technique. The developed anomaly detection
model’s performance is evaluated using several metrics such as confusion matrix, dice coefficient,
accuracy, precision, recall, and intersection-over-union (IOU). The k-fold cross-validation technique
was utilized to ensure robustness and generalization of the model’s performance. The best detection
accuracy of the developed anomaly detection model is 99.98%. Around 79.40% of defects from CT
data correlated with the anomalies detected from the OT data.

Keywords: machine learning; random forest; quality inspection; laser powder bed fusion; process
monitoring; optical tomography; computerized tomography; gas pores; lack of fusion

1. Introduction

In the late 1980s, additive manufacturing technology emerged as a manufacturing tool
for application prototypes [1]. Since then, the AM industry has experienced remarkable
growth due to its layer-by-layer manufacturing process, which allows for the production
of products with complex shapes and various materials [2]. Hence, it plays an important
role in many fields, such as aerospace, manufacturing, and automotive. The AM market’s
expected annual growth in the next five years is projected to surpass 20%, as stated in an
industrial insight report from Wohlers’s associates in 2020 [3]. Despite significant benefits,
quality issues affect the advancement of additive manufacturing technology [4]. One of
the key technological challenges to overcome in AM is limited process predictability and
repeatability [1].
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Metal additive manufacturing techniques using laser powder bed fusion (L-PBF)
nowadays provide the highest repeatability and dimensional precision for part production
and have thus been extensively investigated in both industry and academia. To manufacture
a component, L-PBF methods typically employ the following steps: (1) A layer of metal
powder of a specific thickness is placed over the machine’s build plate; (2) a laser beam
selectively melts the required region within the powder layer; (3) the build plate slides
down, and a fresh layer of powder is put onto the build plate. Layer by layer, this procedure
is repeated until the part production is complete. The present approach in AM quality
assurance is to analyze the component after it is created using computed tomography,
which is extremely costly and time-consuming [5]. According to Seifi et al. [6], statistical
qualification of AM components based on destructive materials testing may be unacceptably
expensive and take over a decade to complete, which is unfeasible, given the tiny batch
sizes and time necessary for manufacturing. If defects could be detected in situ, quality
assurance costs in metal AM could be reduced significantly.

Porosity is one of the most important defects to avoid, especially for components that
require high tensile strength and fatigue resistance. Porosity in L-PBF components can
be caused by inadequate melting (i.e., lack of fusion), pre-existing gas holes in metallic
powders from the gas-atomizing manufacturing process, and trapping of gas pores during
AM processing [7]. Lack of fusion defects in the laser powder bed fusion process refers
to irregular and elongated-shaped anomalies that can vary in size from 50 µm to several
millimeters. On the other hand, gas pores in L-PBF are spherical in shape and typically
range in size from 5 µm to 20 µm [8]. Process anomalies within a layer, which might yield
defects such as pores and lack of fusion defects, are closely related to the occurrence of local
temperature changes [9]. Optical monitoring data in the form of intensity recordings can
reveal these process anomalies which possibly precede defect genesis. Current monitoring
systems however produce huge amounts of data that are typically processed only after
completion of the printing process.

The introduction of in-situ process monitoring allows for the tracing of defects through-
out the process. Process monitoring may be classified into three categories in principle.
The first is melt pool monitoring, which monitors the melt pool and its surroundings. The
molten pool’s size and temperature characteristics provide information on the process’s
stability and the occurrence of local flaws. The second category examines the entire layer in
order to discover defects in various sections of each layer. After scanning, the temperature
distribution and surface are observed. The geometric development of the build from slice
to slice is considered as the third category [10].

Each of the aforementioned methods generates vast quantities of image data, and the
time needed to analyze such large datasets is substantial. Consequently, conducting in-situ
data analysis for monitoring purposes in additive manufacturing is currently impractical
due to extended processing times. However, a specific branch of artificial intelligence
(AI) called machine learning offers a potential solution by enabling rapid and dependable
analysis of image data [11]. Process monitoring with the application of ML especially
convolutional neural networks (CNN) and random forest classifiers has been utilized
successfully for defect detection during the AM process. Baumgarti et al. [2] used in-situ
layer-wise images captured by a thermographic camera during the L-PBF process to detect
defects using convolutional neural networks. Delamination and uncritical splatters were
detected with an accuracy of 96.08%. Grad CAM heat maps were plotted to identify defects.
Kwon et al. [12] illustrated the use of CNN for laser power prediction utilizing in-situ
layer-wise meltpool images acquired by a high-speed camera during the L-PBF process.
The developed CNN model can predict laser power values, which can be utilized to identify
problematic positions in AM products without requiring destructive inspections.

ML has grown in popularity in recent years because of its exceptional performance in
data tasks such as classification, regression, and clustering [13]. Machine learning is de-
scribed as computer programming that uses sample data and prior knowledge to maximize
a performance criterion [14]. Aside from the traditional application of making predictions
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through data fitting, the scientific community is exploring new and innovative approaches
to integrate ML methods into additive manufacturing. Precise identification, analysis, and
prediction of defects hold immense promise in expediting the production of metal AM
structures that are both solidly constructed and devoid of defects [15]. Mohr et al. [1] used
thermography and optical tomography images for in-situ defect detection during the L-PBF
process. A layer-wise OT image is captured using an off-axis CMOS camera, which is
similar to the monitoring system utilized in this paper (Section 2.2). CT scans were used
to assess the outcomes of OT and thermographic imaging. Only significant defects, such
as the lack of fusion void clusters, performed well when compared with the CT data. But
for pore detection which is one of the major part defects in additive manufacturing, only
0.7% OT pores and Micro-CT pores overlapped, but 71.4% of thermography anomalies
and Micro-CT pores overlapped. For high-quality predictions, ML models require huge
training data sets. Due to the high experimental costs, there are restrictions in generating
sufficient OT data. As a result, it is ideal to employ a machine learning technique capable
of developing an anomaly detection model with a small amount of training data [16]. As
a result, there is a need to improve the resolution of the OT system or employ new pore
detection approaches using ML techniques for better correlation with micro-CT pores,
which is one of the main goals of this research.

The main challenges of developing high-quality machine learning algorithms are
Limited data for training, high computational costs, and the lack of generalization to new
materials and geometries. The utilization of L-PBF encompasses a wide range of materials
and intricate geometries. Nevertheless, the development of machine learning algorithms
that can generalize effectively across diverse materials and geometries has a significant
challenge. This difficulty arises from the distinct behaviors and characteristics exhibited
by each material and geometry, necessitating substantial data and model adaptation. The
issue at hand is addressed through the utilization of a traditional machine learning method,
specifically the random forest classifier. This choice is made due to its ability to overcome
the challenge without necessitating a large volume of training data, unlike more widely
used machine learning techniques such as convolutional neural networks [17].

The significance of advancements in data processing algorithms in the field of AM
monitoring becomes evident when considering their potential broad impact and applicabil-
ity. Integrating these algorithms into various monitoring and control systems can enhance
process repeatability. This integration can also lead to a reduction in post-processing and
non-destructive testing, resulting in cost-effective quality assurance. Conventional qual-
ity control methods in L-PBF often involve time-consuming post-processing inspections.
However, the utilization of machine learning algorithms can automate the defect detec-
tion process by analyzing real-time sensor data and identifying patterns associated with
defects [18]. This enables faster and more efficient defect detection, facilitating prompt
corrective actions and minimizing the need for extensive post-processing inspections. Ul-
timately, machine learning offers the ability to swiftly analyze and process in-situ data
in L-PBF, thereby enabling accelerated defect detection, real-time monitoring, process op-
timization, and adaptive control. These advantages collectively contribute to improved
efficiency, reduced post-processing requirements, and enhanced overall quality in the L-PBF
process [2]. This study aims to contribute to process repeatability and quality assurance
through the development of a machine learning algorithm for rapid and reliable anomaly
detection leading to defects from monitoring data.

Process invariance and optical noise in the generated OT images make it difficult
to identify anomalies. When the amount of data is low for image segmentation random
forest technique can be used which is a conventional ML approach. Yaokun Wu and
Siddharth Misra [19] demonstrated that RF models outperform neural network approaches
in terms of noise tolerance. P. Rajendran et al. [20] also used a random forest classifier
to segment brain tumors from MR brain images with an accuracy of 98.37%. In this
paper, the focus is on the application of machine learning using optical monitoring data to
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identify anomalies and validate the detected anomalies using defects obtained using the
µCT technique.

2. Materials and Methods

2.1. Material Data

The experiment is conducted on an EOS M 290 laser powder bed fusion machine
(L-PBF). A cylindrical metal specimen is built with a diameter of 10 mm and 15.30 mm
in length. It consists of 255 layers with a layer thickness of 60 µm. The powder material
used is EOS Titanium Ti64, which has a chemical composition corresponding to ASTM
F1472 [21] and ASTM F2924 [22]. For additional details regarding the physical, chemical,
and thermal properties of the powder, please refer to EOS GmbH [23]. The volume rate
and part density of the powder material is 5 mm3/s and ≈4.41 g/cm3. The operating gas is
argon which has a flow rate of approximately 0.6 mbar. The optics of the OT system are
designated so that the camera’s field of view corresponds to the size of the platform.

2.2. In-Situ Monitoring by Optical Tomography

In-situ monitoring of the L-PBF process is carried out using the optical tomography
technique. The OT system used in this study was developed by Electro Optical Systems,
(EOS GmbH, Krailling, Munich, Germany) and is known as the EOSTATE-Exposure OT
system. During laser powder bed fusion processes powder is melted and three types of
emissions are emitted back from the surface such as plasma radiation, thermal radiation,
and laser reflection [24]. All radiation with a specified bandwidth is captured by the OT sys-
tem. Figure 1 shows the schematic overview of the EOSTATE-Exposure OT system. It uses
high-resolution CMOS (Complementary metal oxide semiconductor) cameras developed
by Exceltas PCO GmbH, which capture signals in the visible and near-infrared spectral
range using a band pass filter at 900 nm. The OT system records radiation signals that are
proportional to the radiation intensity emitted from the area of the specimen imaged onto
the respective pixel element, and are integrated over the entire layer exposition. The basic
working principle of this OT system is detailed in [25]. The camera and optics specifications
of the OT system are illustrated in Table 1.

Figure 1. A schematic overview of EOSTATE-Exposure OT system (EOS GmbH).
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Table 1. Technical specifications of the EOSTATE-Exposure OT system.

Specifications Values

Spectral range 887.5 nm–912.5 nm
Camera resolution 2560 × 2160 pixels

Objective lens 8 mm
Frame rate 10 fps

Spatial resolution 125 µm/Pixel
Data interface USB 3.1

EOSTATE-Exposure OT generates two types of images: integral gray value images
formed by combining a sequence of images (approximately 100) during the platform’s
exposure per single layer, and maximum gray value images formed by taking the maximum
intensity value of each pixel during the entire layer exposition. Figure 2 shows the integral
optical tomography Figure 2a and maximum optical tomography Figure 2b for the 100th
layer of the specimen under normal process conditions. The intensity values in Figure 2 are
digital values (DV) which are induced by a combination of overlapping scanning strategies,
energy increase, and change in temperatures at the building platform. These intensity
values range dynamically for different layers and go up to a value of 40,000 DV. Thus to
generate a machine learning model it should be normalized to a scalable range [0–255].
Figure 3 shows the normalized integral OT Figure 3a and maximum OT Figure 3b for the
100th layer of the specimen under normal process conditions. These images capture process
variances and possible effects of defects. It also helps in analyzing the homogeneity and
stability behavior of the build process. Integral OT images are considered for developing an
ML model, as featured in these images are more discrete compared to maximum OT images.

(a) (b)

Figure 2. EOSTATE Exposure optical tomography images for the 100th layer under normal process
conditions: (a) Integral OT image (b) Maximum OT image.

(a) (b)

Figure 3. Normalized OT images for 100th layer under normal process conditions: (a) Normalized
integral OT image (b) Normalized maximum OT image.
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2.3. Generation of Artificial Defects by Reducing Laser Power

In real-world scenarios, it can be challenging to obtain a sufficient amount of data that
contains a wide range of naturally occurring defects. Through the deliberate introduction of
defects, a meticulously controlled dataset can be produced, encompassing a diverse range
of defect types, sizes, and distributions. This allows for more comprehensive training of the
machine learning model. This dataset is instrumental in training a machine learning model
capable of accurately identifying both artificially induced defects and naturally occurring
defects that may exhibit similar characteristics. Consequently, the model’s capacity to
generalize and effectively detect various types of defects in real-world scenarios is enhanced.
To summarize, the deliberate introduction of artificial defects in the laser powder bed fusion
process proves to be a beneficial strategy for training and assessing machine learning models
designed for defect detection [1]. This practice allows for the creation of controlled datasets,
enhances the model’s ability to generalize, facilitates accurate performance evaluation, and
enables targeted experiments that contribute to a deeper understanding of defect detection
in additive manufacturing processes.

In-situ monitoring defects are induced in a cylindrical metal part by applying different
processing parameter values at a specific layer height and specific regions called regions
of interest (ROI) during the building process. Except for these specific regions, the entire
built job is printed with standard process parameters, utilizing a laser wavelength ranging
from 1050–1090 µm and a laser beam diameter of 100 µm. At ROI laser power is reduced
to 80 watts for four layers, and the laser scan speed and hatch distance are the same as
in the standard parameters. Figure 4 shows a normalized integral OT image at the 101st
layer height showing ROIs with potential defects due to the reduction of laser power at
those specific regions highlighted inside a black box [ROI]. These regions with changes in
intensity can be interpreted as anomalies that are caused by changes in temperature and
energy density [26]. The entire printed cylinder consists of a total of 8 sections with ROIs in
four layers each. Figure 5 shows the isometric view of post-processed CT specimen along
with defects caused due to reduced laser power.

Figure 4. Normalized Integral OT image for layer 101 with induced artifacts.

The anomalies after detection have to be investigated for potential defects. After
completion of the L-PBF process, the built-in cylinders were post-processed and examined
using the micro-computerized tomography technique. The majority of defects are gas pores
and lack of fusion, ranging from 30 to 540 µm in diameter. An algorithm is developed to
correlate anomalies from OT data with defects from CT data to prove the potential of the
optical monitoring system in identifying defects during L-PBF processes.
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Figure 5. Isometric view of CT specimen along with defects.

2.4. Proposed Model: Random Forest Classifier

Random Forests is an effective machine learning methodology for classification and re-
gression, and it may also be used for image segmentation when training data is limited [27].
RF classifiers have been successfully used for various biomedical image segmentation pur-
poses and this approach can be utilized for defect detection in the additive manufacturing
process. Gas pores and lack of fusion, the most critical defects in AM, are considered in
this study.

The pre-processing outcomes of optical tomography images revealed that the inten-
sity values of artificially generated defects when normalized, fell within the range of
140 to 170 DV. Interestingly, this range closely aligns with that of non-defect regions, which
poses a challenge for image segmentation using histogram-based segmentation, watershed
segmentation, or any other direct image segmentation technique. The Random Forest
Algorithm is based on the theory of ensemble learning. Ensemble learning is a broad
Machine Learning meta-approach that aims to enhance predictive performance by mixing
predictions from many models. In layman’s terms, it entails fitting many model types to
the same data and then using another model to find the optimum approach to combine
the predictions. As a result, the Random Forest Algorithm aggregates predictions from
decision trees and chooses the best prediction among those trees [28]. Random Forest is
defined as a classifier that comprises some decision trees on various subsets of a given
dataset and takes the average to enhance that dataset’s prediction accuracy. Instead of
depending on a single decision tree, the algorithm considers the prediction out of each tree
and anticipates the ultimate approach that relies on the majority vote of predictions [28].

A Random forest segmentation (RF_Segm) model for pore detection was developed
using OT images and ground truth labels. 100 OT images were considered for training
the segmentation model. Ground truth labels were generated for these 100 OT images
using the Apeer Annotate platform. The segmentation approach consists of two steps:
feature extraction and classification of the derived feature vectors for each pixel in the OT
image dataset. The Random Forest classifier was trained to associate certain attributes with
each pixel in the OT image dataset. The segmentation workflow includes the following
sequential steps:
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2.4.1. Image Preprocessing

Preprocessing is an important step prior to feature extraction. It includes RGB to
grayscale image conversion and image normalization. Due to the dynamic range of in-
tensity distribution of optical tomography images, it is critical to normalize to minimize
non-uniform lighting issues. The normalized images are shown in Figure 3. The normal-
ization method determines the mean and variance of an image, reducing the disparity in
illumination. Normalization f (x, y) is formulated as in Equation (1) [29]

g(x, y) =
f (x, y)−M f (x, y)

σf (x, y)
(1)

where f (x, y) is original image, M f (x, y) is the estimation of mean of original image and
σf (x, y) is the estimation of the standard deviation.

2.4.2. Feature Extraction

Feature extraction is the process of establishing a set of necessary features, or image
characteristics, that form the core element and, when expressed in an efficient or compre-
hensible manner, provide the necessary information for analysis and segmentation [30]. A
total of 42 feature extractors were generated for training an RF_Segm model. General edge
detection operators like Sobel, Prewitt, Roberts, and Canny are used as feature extractors.
Other than that Gabor filters, Gaussian blur, median filters, and pixel intensity values of
the OT images are used to extract features for generating the segmentation model.

Gabor Filter

One of the most well-known feature extraction methods is the Gabor filter. It is
made up of wavelet coefficients for various scales and orientations, which makes these
features resistant to rotation, translation, distortion, and scaling [31]. In this study, 32 Gabor
filters with different orientations and scales were created with a kernel size of 9 × 9. Gabor
is a convolutional filter representing a combination of Gaussian and sinusoidal terms.
The Gaussian component provides the weights and the sine component provides the
directionality. It has excellent localization properties in both the spatial and frequency
domains. In the spatial domain, it is a Gaussian-modulated sinusoid, and in the frequency
domain, it is a shifted Gaussian. It is represented in Equation (2) [31]:

g(x, y, σ, θ, λ, γ, φ) = exp
[−x′2 + y′2γ2

2σ2

]

exp
[

i
[2πx′

λ
+ φ

]]

(2)

x′ = x cos θ + y sin θ (3)

y′ = −x sin θ + y cos θ (4)

In Equations (3) and (4) x and y are image coordinates and other parameters which can
be varied to generate different Gabor filters are σ, θ, λ, γ, and φ. σ is the standard deviation
of the Gaussian envelope. θ is the orientation of the filter. γ describes aspect ratio, γ = 1 for
circular shape, γ < 1 for elliptical shape. φ is the phase offset.

Gaussian Blur

The Gaussian blur feature is obtained by blurring an image using a Gaussian ker-
nel and convolving the image. It functions as a non-uniform low-pass filter, preserving
low spatial frequency while reducing image noise and insignificant details. A Gaussian
function [32] is formulated as in Equation (5).

G(x) =
1√

2πσ2
e−

x2 + y2

2σ2 (5)
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where x and y are the image coordinates and σ is the standard deviation of the Gaussian
distribution. A Gaussian kernel with a standard deviation of 3 and 7 is used to generate
feature extractors.

Edge Detection Algorithms

Sobel, Prewitt, and Scharr are first-order derivative techniques of edge detection that
can be used for feature extraction from OT images. The Sobel operator enhances the edges
of an image by performing a 2-D spatial-gradient operation on it. The operator is made
up of a pair of 3 × 3 convolution kernels that are applied individually to an image to
create approximate gradients for each pixel for identifying edges in vertical and horizontal
directions. The Prewitt operator finds edges when pixel intensities abruptly fluctuate. It
recognizes edges in both the horizontal and vertical axes. Scharr is a filtering method that
uses the first derivatives to locate and emphasize gradient edges [33].

Median Filter and Pixel Intensity

A median filter was applied to minimize the amount of noise in the stack of two-
dimensional OT images. It is a non-linear digital filter used to smooth images which keeps
the edges intact. In addition to all of these image filters, the pixel intensity value of each
pixel from the OT image is employed as a feature for segmentation.

2.4.3. Training Random Forest Classifier

Compilation of all feature vectors from the extractors for the selected pixels to create the
training and testing data set. By including randomness in training samples and combining
the output of various randomized trees into a single classifier, the Random Forest addresses
the overfitting and generalization problems. The training samples are down-sampled to
improve random tree dependency and reduce training time.

The random forest classifier is trained to identify anomalies from the optical tomogra-
phy images. Random forest is a pixel-wise segmentation technique where feature extractors
are applied on each and every pixel from the OT dataset. A total of 100 images were used
for training the model. 100 ground truth labels were manually created by segmenting
the anomalies using Apeer Annotate (A free open-source platform from ZEISS) platform.
Figure 6 shows the OT images and corresponding ground truth labels for a few images used
in the training. The blue-colored regions in the OT images are labeled as anomalies which
will be evaluated later with the pores from the CT data. It is evident that the objective is
to detect particular blue-colored regions within the image, posing challenges when em-
ploying direct image segmentation techniques. The OT images with no anomalies should
predict empty gray-scale images. The resolution of a single OT image and mask label is
217 × 217 pixels. So a single OT image consists of 47,089 pixels. As previously described,
there are 40 feature extractors, resulting in a total of (47,089 × 40) feature values generated
for a single image.

Figure 6. A few OT images and corresponding ground truth labels used in training.
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2.4.4. Performance Evaluation on Test Dataset

On the test dataset, the performance of the trained classifier is evaluated. 90% images
from the dataset are used for training and the remaining 10% are used for testing. This
split is achieved by train_test_split function from sklearn (open source Python library) [34].
The training dataset consists of a total of 47,089 × 90 which is 4,238,010 pixels for training
(4,238,010 pixels of OT images and 4,238,010 pixels of mask labels). Similarly, the testing
dataset consists of 47,089 × 10 which is 470,890 pixels for testing and validating the devel-
oped RF_Segm model. The models are developed for 10, 50, 100, and 1000 estimators to
evaluate the prediction accuracy. Training and testing were carried out on the CPU with
Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz processor with 32 GB RAM.

To ensure that the developed RF_Segm models are not overly dependent on a specific
split of the data. Additionally, cross-validation experiments were conducted on one of
the RF_Segm models (100 estimators) to ensure the robustness and generalization of the
proposed random forest model. The popular K-fold cross-validation technique was used to
evaluate the performance of the model in a more rigorous manner. In this approach, the
dataset is divided into K equal-sized folds. The model is trained and tested K times, with
each fold acting as a test set once and the remaining K-1 folds serving as training. This
procedure ensures that the model’s performance is evaluated across many data subsets [35].

2.5. Evaluation Using Computed Tomography

Micro-computed tomography is a technique for creating three-dimensional (3D) rep-
resentations of objects by acquiring multiple X-ray images along an axis of rotation and
applying algorithms to reconstruct a 3D model [36]. An industrial 3D micro CT scanner
was used to inspect the specimen. Micro CT allows for a comprehensive, non-destructive
assessment of the porosity embedded inside AM specimens. The principle of computed
tomography is explained in [37]. CT scanning allows for the detection of internal defects
in AM parts, including voids, porosity, and cracks. This is achieved by the use of X-rays,
which are able to penetrate the part and create a 3D image of the internal structure [38]. The
images produced by CT scanning can be used to identify any defects or anomalies in the
part. The CT scanner used in this research is located in IABG, Ottobrunn, Germany. It was
equipped with a 225 KV micro focus X-ray source and a focal spot size of less than 5 µm
and a voxel size of 5 µm with pixel flat panel detector DXR-500L. It has a scanning voltage
of 160 kv. The total number of projections is 1440 with a total of 3 frames per projection.
The free version of MyVGL which is developed by volume graphics was used to extract
layer-wise CT images from the specimens. Additionally, the Register_CT algorithm was
created in Matlab programming, employing affine transformation methods to map the
coordinates of the extracted CT images onto the optical monitoring images.

2.6. Performance Metrics

The performances of the RF_Segm model with a varying number of estimators were
evaluated using various performance measures, such as confusion matrix, accuracy, dice
coefficient, precision, recall, and intersection-over-union. The confusion matrix, often
referred to as the error matrix, is represented as a matrix that characterizes how well a
machine learning model performs when evaluated on a test dataset as shown in Figure 7.

Where TP denotes true positives and is the number of pixels correctly segmented
as pores, TN denotes true negatives and is the number of pixels correctly segmented
as background, and FP denotes false positives and is the number of pixels incorrectly
segmented as pores. FN stands for false negatives and represents the number of pixels that
were missed. Accuracy is defined as the proportion of correct estimations to total appraisals.
It is concerned with the data set’s quality and defects [39], which is defined as follows:

Accuracy =
TN + TP

TP + FP + TN + FN
(6)
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The dice coefficient calculates the overlapping pixels between the predicted segmenta-
tion pixels and the ground truth pixels as follows [40]:

Dice Coe f f =
2× TP

2× TP + FP + FN
(7)

Precision, also known as sensitivity, is defined as the fraction of pore pixels identified as
true-positive pixels in relation to all pixels in an OT image classified by the RF_Segm model,
which is defined as follows [40]:

Precision =
TP

TP + FP
(8)

The recall is calculated as the proportion of true positive pixels classified by the
RF_Segm model vs. pixels labeled by manual labeling, and it is expressed as follows [40]:

Recall =
TP

TP + FN
(9)

Intersection over Union (IoU), also known as the Jaccard Index, is defined as the area
of intersection between the predicted segmentation map A and the ground truth map B,
divided by the area of union between the two maps, and ranges between 0 and 1 [40].

IoU = J(A, B) =
| A ∩ B |
| A ∪ B | (10)

Figure 7. Understanding the confusion matrix [41].

3. Results and Discussion

3.1. Anomaly Detection Using Random Forest Classifier

In this section, the outcomes of employing a random forest classifier for detecting
artificially generated anomalies in the L-PBF process are outlined. First, a summary of the
performance metrics and prediction time analysis obtained from the random forest seg-
mentation models is presented. This is followed by an elaborate analysis and interpretation
of the results. The findings underscore the proficiency of the random forest classifier in
anomaly detection during the L-PBF process, elucidating the pivotal factors that impact
its performance.

Performance metrics are utilized to assess the effectiveness of RF_Segm models. Four
models are developed with 10, 50, 100, and 1000 number of estimators. The performance
of developed anomaly detection models on the test data is evaluated using metrics such
as Dice coefficient, precision, recall, accuracy, and intersection over union. These metrics
are presented in Table 2, which is detailed in Section 2.6. The RF_Segm model with
1000 estimators demonstrated superior metric values. The highest achieved accuracy
Equation (6) was 99.98%, indicating the overall accuracy of the model’s predictions. A
remarkable IoU score of 71.08 indicated the degree of overlap between the predicted
segmentation and the ground truth segmentation. A Dice coefficient of 0.8309 was attained,
reflecting the similarity between the predicted and ground truth OT image segmentations.
For the RF_Segm model with 1000 estimators, a precision of 0.7705 and a recall of 0.9018

210



Materials 2023, 16, 6470

were achieved. These values indicate a minimal number of false negatives compared to
false positives, ensuring comprehensive anomaly detection.

Table 2. Performance metrics for RF_Segm model with different number of estimators.

Number of Estimators Dice Coeff Precision Recall Accuracy [%] IOU Score

10 0.7068 0.6489 0.7760 96.96 54.66
50 0.7952 0.7334 0.8660 97.96 65.87

100 0.8200 0.7604 0.8899 99.67 69.50
1000 0.8309 0.7705 0.9018 99.98 71.08

The dataset was divided for training (90% dataset) and testing (10% dataset) (Section 2.4.4).
To ensure the generalization of the model performance on data splitting, one of the de-
veloped anomaly models that is RF_Segm model with 100 estimators was considered for
the cross-validation experiment. The data was divided into 10 folds (K = 10), splitting the
data into the same shape of 90% training, and 10% testing as used in generating all the
anomaly detection models. This approach guarantees that each data point appears in the
test set exactly once, reducing the influence of the initial split on model evaluation. Figure 8
shows the plot of metric classification accuracy against each fold. This graph offers a visual
depiction of the model’s performance variability across various folds. It illustrates that the
model consistently achieves accuracies within the range of 99.77% to 99.79% across all ten
folds, affirming its suitability for different data splits.

Figure 8. Cross-validation classification accuracy is indicated by the red line across folds for the
RF_Segm model with 100 estimators

The confusion matrix (Section 2.6) was calculated for each fold, offering a compre-
hensive view of the model’s performance in terms of true positives, true negatives, false
positives, and false negatives. Specifically, the confusion matrix was computed for the test
dataset for each fold, encompassing a total of 470,890 pixels. This approach provides a
more accurate evaluation of the model’s performance on the test dataset.

Subsequently, an average confusion matrix was generated by computing the pixel-
wise average (mean) of the individual confusion matrices obtained from all 10 folds of
the cross-validation. This average representation consolidates the results and offers a
comprehensive view of the model’s overall performance.

Figure 9 visually presents the matrix representation of the average confusion matrix.
In this matrix, ‘0’ denotes the number of pixels that do not have any anomalies, whereas
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‘1’ reflects the number of pixels with anomalies. This illustration provides valuable in-
sights into the model’s performance, allowing us to comprehend its consistency in making
accurate and inaccurate predictions, and aids in identifying patterns of errors.

The analysis of the average confusion matrix reveals a predominance of non-anomalous
pixels, with a count of ≈467,043 as true positives, accurately identified by the model. Ad-
ditionally, ≈2829 pixels are correctly recognized as true negatives. On the other hand,
there are ≈363 pixels falsely predicted as anomalies (false positives) and ≈653 pixels that
are actual anomalies but incorrectly predicted as non-anomalies (false negatives). These
numbers highlight the model’s strengths and areas for improvement, providing essential
metrics to evaluate its performance.

Figure 9. Average confusion matrix: Consistency and performance overview of the RF_Segm model
with 100 estimators.

Further analysis of developed models should consider the detection time to strike
a balance between precision and detection speed. The time required for training (90%
dataset), testing (10% dataset), and prediction time for a single image of the random forest
models with different numbers of estimators are tabulated in Table 3. It can be seen that
as the number of estimators gets bigger, so does the time required for training, testing,
and anomaly prediction time. The prediction time for an anomaly detection model is
of significant importance in the L-PBF process. Low prediction time signifies the timely
identification of anomalies, improves process efficiency, minimizes costs, enables real-time
monitoring, optimizes resource allocation, and facilitates scalability. These combined factors
result in improved productivity, decreased defects, and enhanced quality control within
L-PBF manufacturing. A prediction time of 40 ms was achieved for the model with 1000
estimators. This detection time goes better with the performance metrics of the RF_Segm
model with 1000 estimators when compared to other developed models. Further, if the
number of estimators is increased, a point of diminishing returns is reached. At this point, a
marginal improvement in performance becomes smaller and does not justify the additional
computational resources and time required for training and predicting anomalies.

Table 3. Time required for Training and Testing the RF_Segm model.

No. of Estimators Training (sec) Testing (sec) Prediction Time/Image (sec)

10 100 01 0.011
50 501 02 0.012
100 1115 04 0.014

1000 10,564 35 0.04
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In all the generated ML models, a total of 40 feature extractors were utilized in construct-
ing the RF_Segm models. The importance of each feature and the selection of optimal features
for model training were deemed crucial. This process, known as Feature Selection in machine
learning, involves the removal of less relevant features, thereby simplifying the model, re-
ducing overfitting, and improving computational efficiency [42]. Feature selection based on
feature importance contributes to enhancing the model’s performance and interpretability.
The feature importance diagram, as depicted in Figure 10, illustrates the relative importance of
each feature for different estimators. This diagram offers valuable insights into the significance
of individual features in the segmentation of anomalies in OT images. Notably, the original
pixel values of OT images, Gaussian filter, Median filter, and Gabor24 feature extractors exhibit
the highest importance values, indicating a strong relationship with the segmentation label.
Overall, the feature importance diagram in the random forest segmentation model provides
valuable insights for feature selection, understanding data relationships, model interpretation,
error detection, and guidance for future data collection endeavors.

Figure 11 shows the anomaly prediction from OT images for different RF_Segm models
developed with different numbers of estimators. In Figure 11, Images A and B are the OT
images with artificially induced anomalies and image C is the OT image under normal
process conditions. It can be seen that the RF_Segm model with 1000 estimators gives better
prediction with respect to models with a lesser number of estimators.

Figure 10. Feature importance diagram for a different number of estimators.

Figure 11. Anomaly prediction in sample optical tomography images (A–C) utilizing RF_Segm
models with diverse estimator counts.
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3.2. Correlation of OT Anomalies with CT Defects

The anomalies detected by the RF_Segm model were evaluated with defects detected
in the CT data. Examination of the CT scans revealed the presence of gas pores and a
lack of fusion defects in the printed cylinder. These defects exhibited sizes ranging from
5 to 300 µm. Based on their sizes and shapes, the defects were categorized accordingly.
Defects with a spherical shape and sizes below 20 µm were designated as gas pores, while
irregularly shaped defects measuring between 20 µm and 300 µm were classified as lack of
fusion defects [15].

The correlation of OT anomalies and CT defects is carried out using image registra-
tion techniques. This technique reduces spatial ambiguity and enables data comparison.
Data from different imaging modalities that had varying acquisition setups and spatial
resolutions, particularly in the build direction, were overlaid using image registration. It
was crucial to emphasize that, in comparison to CT data, which were gathered after the
production process, optical monitoring data were acquired during the printing process.
Because of this OT data does not account for shrinkage or other deformations that occur
after the completion of the building process [1].

An essential part of the registration procedure was the transformation selection. It
determines how a certain image is deformed to match the shape of another image dataset.
The affine transformation was used to map CT data image coordinates to the OT data
image coordinates system. Affine transformation is a type of geometric transformation
that combines translation, rotation, similarity, and shear mapping. The developed image
registration algorithm called Register_CT as explained in Section 2.5 was used to register
the CT image dataset onto the OT monitoring dataset.

Following the successful registration of CT defects onto the OT images, an algorithm
was devised for 3D reconstruction using the mapped dataset. The surface rendering
module in Matlab was employed to generate a visual representation of the printed cylinder.
Figure 12 displays the 3D rendered topography, illustrating the mapping of CT defects onto
the OT anomalies. In the figure, blue regions indicate OT anomalies, red regions depict CT
defects, and gray color represents the outer geometry of the printed cylinder. Remarkably,
approximately 79.4% of CT defects overlapped with the OT anomalies, indicating a strong
correlation between the two datasets.

Figure 12. 3-Dimensional rendered surface with overlap of CT defects with detected anomalies.

4. Conclusions

In conclusion, the implemented conventional ML algorithm indicates outstanding
abilities in detecting process anomalies within the specified range of intensity values. The
experiment was carried out using an EOS M 290 L-PBF machine using EOS Titanium Ti64
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as material. Random forest segmentation models were created for a variety of estimators,
including 10, 50, 100, and 1000. The RF_Segm model with 1000 estimators obtained an
astounding 99.98% accuracy while keeping a fast prediction time of 40 ms. The reported
instabilities were analyzed using defects identified using the CT approach to test the al-
gorithm’s robustness. 79.4% of the defects identified in the CT data correlated with the
anomalies reported by the optical monitoring system, which is promising. This finding
emphasizes the proposed random forest segmentation model’s potential for quality inspec-
tion during L-PBF procedures, outperforming current CT correlation standards in in-situ
anomaly identification.

Furthermore, the developed model showcases remarkable efficiency in terms of com-
putational costs, which stands as a significant advantage in utilizing the random forest
classifier for anomaly detection model development. Despite the limited training data,
consisting of only 100 OT images with corresponding ground truth labels, a segmentation
model with an accuracy of 99.98% was successfully created. The model’s training process
also offers a notable advantage in terms of time requirements. Merely approximately 3 h
of computational training was necessary to construct the RF_Segm model with 1000 esti-
mators. This aspect enhances its efficiency and ensures optimal utilization of resources. It
is worth highlighting that the model effectively identifies artificially induced defects with
reduced laser power parameters and establishes a correlation with defects detected in the
CT data.

This paper presents the successful detection of anomalies utilizing the RF_Segm model
in the context of in-situ anomaly detection in L-PBF. The anomalies detected in this study
were subsequently evaluated and identified as gas pores and lack of fusion defects using
the CT technique. These two types of defects are known to significantly impact the fatigue
life of printed parts in the L-PBF process. By effectively identifying and characterizing
these critical defects, the RF_Segm model contributes to quality assurance and reliability
improvement in additive manufacturing processes. The findings of this study highlight
the potential of the developed model in enhancing the overall structural integrity and
performance of L-PBF-produced components.

In summary, the developed random forest segmentation model, integrated with the
optical monitoring system, exhibits exceptional accuracy, swift prediction time, and strong
correlation with CT data. Its potential for quality inspection during L-PBF processes
demonstrates its efficacy in detecting anomalies and ensuring manufacturing integrity.
Further research and validation on larger datasets are warranted to fully exploit the model’s
capabilities and advance anomaly detection in L-PBF processes.

5. Concluding Remarks

The research has demonstrated the effectiveness of machine learning algorithms in the
realm of anomaly detection, particularly in the context of EOS Titanium Ti64 produced by
the EOS M 290 L-PBF machine. The developed ML algorithm has showcased remarkable
performance, achieving an accuracy rate of 99.98% in identifying anomalies within specified
intensity ranges. Notably, it outperforms conventional CT standards, underscoring its
potential for enhancing quality assurance processes in the additive manufacturing industry.

Part defects such as gas pores and lack of fusion defects were successfully identified
through CT data analysis. which was further correlated with detected anomalies which
gave a remarkable correlation accuracy of 79.4%. This underscores the promising capability
of optical monitoring systems in enhancing the quality assurance procedures for laser
powder bed fusion processes.

Looking ahead, our focus is on the future prospects of integrating machine learning
with optical monitoring techniques to further enhance quality assurance in L-PBF processes.
Envisioning the utilization of CNN models for faster anomaly detection, harnessing a
comprehensive dataset of over 2000 real-time images. Our ongoing efforts will be directed
toward improving model robustness and enhancing detection accuracy, paving the way for
more reliable and efficient quality control in additive manufacturing.
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The following abbreviations are used in this manuscript:

AM Additive Manufacturing
OT Optical Tomography
ML Machine Learning
µCT Micro-Computerized Tomography
EOS Electro-Optical Systems
IABG INDUSTRIE ANLAGEN-BETRIEBS GESELLSCHAFT
IOU Intersection-Over-Union
L-PBF Laser Powder Bed Fusion
CNN Convolutional Neural Network
CMOS Complementary metal-oxide-semiconductor
DV Digital Values
ROI Regions Of Interest
RF_Segm Random Forest Segmentation
RGB Red Green Blue
3D Three Dimensional
KV Kilo Volts
TP True Positives
TN True Negatives
FP False Positives
FN False Negatives
µm Micrometer
ms Millisecond
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Abstract: The purpose of this study is to investigate the effects of toolpath patterns, geometry types,
and layering effects on the mechanical properties of parts manufactured by direct energy deposition
(DED) additive manufacturing using data analysis and machine learning methods. A total of twelve
case studies were conducted, involving four distinct geometries, each paired with three different
toolpath patterns based on finite element method (FEM) simulations. These simulations focused
on residual stresses, strains, and maximum principal stresses at various nodes. A comprehensive
analysis was performed using a linear mixed-effects (LME) model, principal component analysis
(PCA), and self-organizing map (SOM) clustering. The LME model quantified the contributions of
geometry, toolpath, and layer number to mechanical properties, while PCA identified key variables
with high variance. SOM clustering was used to classify the data, revealing patterns related to stress
and strain distributions across different geometries and toolpaths. In conclusion, LME, PCA, and
SOM offer valuable insights into the final mechanical properties of DED-fabricated parts.

Keywords: direct energy deposition; machine learning; principal component analysis; self-organizing
maps; linear mixed-effects models

1. Introduction

Direct energy deposition (DED) additive manufacturing (AM) is an advanced man-
ufacturing process used for repairing damaged parts, adding features, and building new
parts from 3D model data on a metal additive basis. This process involves joining materials
in a stack-by-stack and layer-by-layer manner, with the initial material stock being either
in powder or wire form [1]. During the additive process, material is added and energy is
applied (laser, beam, arc) to form the melting zone. As the deposition follows the prede-
fined toolpath, the already-built beads solidify as they cool down to lower temperatures,
a process that can be tracked and observed using image-filtering tools [2]. The thermal
diffusion within the part during the build and cooling-down processes has a significant
impact on the intrinsic residual stresses, strains, and distortions of the material [3]. The
thermal history and temperature gradients have a microscopic impact on the material’s
strength through grain formation, which is affected by these temperature gradients [4]. As
stresses and strains within fabricated parts vary significantly with temperature gradients, it
is essential to pay attention to process parameters [5], geometry [6], and deposition toolpath
patterns [7] that affect the temperature history of the built parts.

High fabrication costs, random errors, instability, and significant computational de-
mands in DED necessitate leveraging big data from tests and simulations. Data analysis
can help identify the root causes of part quality abnormalities in DED manufacturing,
although correlation may be low within post-process data, necessitating in-situ tracing of
fusion phenomena [8]. Machine learning has shown promising results in gaining stable
fabrication in the laser-directed energy deposition [9]. Convolutional neural networks
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(CNNs) have demonstrated potential for developing a predictive model based on a large
dataset of real-time image processing to control DED manufacturing [10]. Li et al. collected
experimental data from a DED study to predict grain boundary tilt based on thermal
gradients, crystal orientation, and the Marangoni effect using an artificial neural network
(ANN) structure [11]. The analytical model obtained from a trained ANN provides a valid
and fast prediction of grain growth behavior in DED parts.

Machine learning can also recognize patterns, correlations, and dependencies between
geometrical and mechanical properties of DED-fabricated parts. A defect classification was
proposed by Patil et al. for DED processes [12]. Xu et al. [13] proposed a hybrid approach
combining deep learning and mixed-effect modeling, where the random effect accounts for
mean temperature variations for real-time defect detection. Unsupervised clustering has
also been used in the research [14] to categorize the geometries based on the accuracy of
the manufacturing quality.

The toolpath and geometry types have shown an inter-coupled effect on the qualities of
DED-fabricated parts [3]. A clustering approach used in [15] investigated stress-distortion
feature-based analysis of multiple geometries to determine local point assignments to
clusters. This approach provided insight into the physical similarities among edge and
internal locations of the observations. However, the aforementioned clustering approach
did not account for toolpath effects when generating the FEM-based simulation data.

In the current research, we conducted a statistical analysis across four different geomet-
ric shapes, each paired with three distinct toolpath patterns (resulting in twelve separate
case studies). The goal was to investigate the impact of toolpath patterns, geometry types,
and layering effects on mechanical properties, with a particular focus on residual stresses
and strains. Analyses were performed on finite element (FEM) simulation data, which
includes element birth and death in a multilayer, multi-track DED physics setting. All node
data were extracted. Directional residual stresses, strains, and maximum principal stresses
were chosen as the physical features of concern. A correlation analysis was conducted to
determine how these features are related. The analysis was applied to the entire dataset as
well as to datasets for each geometry and toolpath separately. Then, the linear mixed-effects
model was investigated to consider the toolpath pattern, geometry type, and layering
effect as fixed variables on the local nodes’ data (the observations), with the observations
treated as random variables. The linear mixed-effects (LME) model determines the contri-
bution of each fixed variable to the mechanical properties. A principal component analysis
(PCA) determines what features have the highest variance and are more informative in
DED-processed data. The results are followed by a self-organizing map (SOM) clustering
approach to compare the thin and thick longitudinal and transverse wall data at different
layers to see how the toolpath and geometry create similar properties within various parts
and deposition patterns.

2. Materials and Methods

The case studies, material, and analysis methodology are described in this section.

2.1. Case Studies

Four distinct geometries, each with three separate deposition toolpath patterns, are
analyzed in this study. The geometries include a cross-type, a 3-step plate, a 5-step plate,
and a rectangle with a hole. For each geometry, three toolpaths are examined: one-way
longitudinal, longitudinal zigzag, and one-way transverse. The term “longitudinal” refers
to the longitudinal direction of the parts. Figure 1 shows the geometries considered for the
research. The schematic of the toolpath on each geometry is depicted with three colored
arrows corresponding to the coordinate system. In total, 12 distinct case studies are consid-
ered. Hereafter, the x-axis refers to the longitudinal direction, and the y-axis refers to the
transverse direction. The APlus add-on from CAD/CAM Mastercam software (Mastercam
2025, V27.0.6876.0) [16] was used to generate the laser metal AM toolpath NC files. All the
case studies have the same substrate with a dimension of 90 (mm) × 60 (mm) × 7 (mm).
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The materials for this study are 316L stainless steel (SS) and A36 steel for the clad and the
substrate, respectively.

(a) Geom 1 (b) Geom 2

(c) Geom 3 (d) Geom 4

(e) The coordinate system
Figure 1. The geometries considered for this research include a cross-type, a 3-step plate, a 5-step
plate, and a rectangle with a hole, with dimensions in millimeters. The red arrows represent the
one-way longitudinal toolpath, the blue arrows represent the longitudinal zigzag toolpath, and the
black arrows represent the one-way transverse zigzag for each geometry.

The process parameters of the fabrications are presented in Table 1. In the present
study, the term “overlapping” pertains to the region of interlocking between two beads (or
two tracks).

Table 1. Process parameters used for the simulations.

Parameter Data

Laser power 1000 W

Deposition speed 9.1 mm/s

Number of layers 5

Bead width 2 mm

Bead height 1 mm

Bead overlap 23%

The FEM simulation data with bilinear elastoplastic modeling were used as the basis
for data analysis in this research. The element birth and death technique, utilizing ANSYS
APDL (2023 R2) programming, was employed to activate deposition elements according
to the toolpath pattern. A Python script was developed to read the NC files and mesh
element data. Then, in the pre-processing step, the order of the activated elements and
their corresponding IDs were determined. Once the elements were ordered, the APDL
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programming added each element individually to mimic the deposition physics. The mesh
size for the DED process is determined by the beads’ width and depth, adopting a strategy
where each element representing the melt zone is activated on an individual basis. The
width of each element reflects the bead’s non-overlapped area, ensuring that the bead count
across the depositions matches the number of deposition tracks extracted from the NC
files from APlus software (an Add-Ons of Mastercam). Note that the validity of the FEM
model was assessed through a comparison with experimental measurements and a study
by the authors in [17]. The results of [17] show that the model accurately captures the stress
gradients aligned with the actual physics at the corner sides of the model where heat diffu-
sion is well represented. However, the middle of the model may exhibit an overprediction
of residual stress due to an overestimation in the thermal model, yet the stress gradient
pattern remains similar to the actual physics. There are limitations in simplifying the model
as the material overlap cannot be addressed with the FEM simulations.

The simulations were conducted on the Digital Resource Alliance of Canada cloud ac-
counts, each equipped with 128 GB RAM and 8 CPU cores. Processing and post-processing
of all cases took several weeks. An ANSYS post-processing APDL script was developed
to extract data for all nodes within the range of simulation sub-steps. The data for all the
FEM nodes were stored in a dataset. The current study focused on statistical and machine
learning analyses of the data to gain deeper insight into the physics by interpreting the
data. These analyses were applied using Python scripts. In the following subsections, the
statistical and machine learning methods used in the study are introduced.

2.2. Correlation Analysis

Correlation measures how closely variables or dataset features approximate linear
functions. The relationship between two features will always be higher if it is closer to some
linear function, so the linear correlation between them will be stronger, and the correlation
coefficient will be greater in absolute value.

Considering a dataset with two features: ~x and ~y, each with n number of observations,
the “Pearson” correlation coefficient is measured by the following:

r =

n

∑
i=1

(xi − x̄)(yi − ȳ)

√

n

∑
i=1

(xi − x̄)2
n

∑
i=1

(yi − ȳ)2

(1)

where x̄ and ȳ are the mean values of the features:

x̄ =

n

∑
i=1

xi

n
(2)

ȳ =

n

∑
i=1

yi

n
(3)

The Pearson correlation values, r (Equation (1)), range between −1 and 1, and as the
absolute value increases, the correlation between the two features rises.

2.3. Linear Mixed-Effects Model

LMEs are used for regression analyses involving dependent data when data are
collected and summarized in groups. The statsmodels [18] implementation of LME is
primarily group-based, meaning that random effects must be independently realized for
responses (observations) in different groups.

Some specific linear mixed-effects models are as follows [18]:
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• Random intercepts models: In these models, all responses within a group are addi-
tively shifted by a value that is specific to the group.

• Random slopes models: The responses in a group follow a conditional mean trajectory
that is linear in the observed covariates, with both slopes (and possibly intercepts)
varying by group.

• Variance components models: The levels of one or more categorical covariates are
associated with draws from distributions. These random terms additively determine
the conditional mean of each observation based on its covariate values.

The coefficients of these models may vary according to the grouping variables used
to describe the relationship between the response variable and the independent variables.
The mixed-effects model consists of two parts, fixed effects, and random effects. Generally,
fixed-effects terms represent linear regression, while random effects represent randomly
selected experimental units.

The random coefficients are defined as follows:

Yij = β0 + β1Zij + γ0i + γ1iZij + ǫij (4)

where Yij is the jth measured response (observation) for subject (group) i, and Zij is the
covariate for this response. The “fixed effects parameters”, β0 and β1, are shared by all
subjects, and the error term ǫij is independent of the parameters and distributed with
a mean of zero. The “random effects parameters”, γ0i and γ1i, also follow a bivariate
distribution with a mean of zero.

The statsmodelsMixedLM treats the entire dataset as a single group to include crossed
random effects in a model. The variance components in the model are used to define
models with various combinations of crossed and non-crossed random effects. The variable
ǫij is the normal error with zero means and the values are independent both within and
between groups. The detailed procedure can be found in [19].

2.4. Principal Component Analysis

PCA is a machine learning technique for dimensionality reduction that converts a
large dataset into a smaller one by transforming the primary features into new features,
called principal components, which are combinations of the primary ones. The first few
principal components typically retain most of the information from the larger dataset. PCA
decomposes a multivariate dataset into a set of successive orthogonal components that
explain the maximum amount of variance [20]. Using the singular value decomposition
(SVD) of the data to project them to a lower-dimensional space, linear dimensionality
reduction is performed. The input data are centered but not scaled for each feature before
applying the SVD.

Given a dataset X, with n samples (observations or records) and p features (attributes),
the jth principal component can be shown by the following:

PCAj = wj1X1 + wj2X2 + · · ·+ wjiXi + · · ·+ wjpXp (5)

where Xi is the ith feature of the dataset X and wji is the weighting (loading) of the jth
principal component of the ith feature. As shown in Equation (5), the principal components
are a linear combination of the primary features. The loadings can be found using the
eigenvectors of matrix Σ, where we have the following:

Σ = XTX (6)

2.5. Self-Organizing Map

A self-organizing map (SOM) is a neural network unsupervised learning method. This
method learns to classify input vectors according to how they are grouped in the input
space. Neighboring neurons in the self-organizing map learn to recognize neighboring
sections of the input space. Thus, SOM methods learn both the distribution and topology of
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the input vectors they are trained on. Distances between neurons (clusters or best-matching
units (BMUs)) are calculated from their positions with a distance function. In this neural
network, all neurons within a certain neighborhood of the winning neuron (BMU) are
updated, using the Kohonen rule [21]. The weight vector (~w) of neuron (BMU) ij in the
iteration (epoch) t is updated as follows:

~wt
ij = ~wt−1

ij + ηt−1 f t−1
(

~x− ~wt−1
ij

)

(7)

where ~x is the input vector, η is the learning rate, and f is the neighborhood distance
function. The details of the algorithm are found in [22].

3. Results and Discussion

3.1. Correlation Analysis

A primary investigation into the interaction between geometry and toolpath on the
residual mechanical properties of DED-built parts is based on the correlation between
multiple variables, such as stresses and strains. Normal residual stresses, maximum and
minimum principal stresses, and total directional strains are selected from the four geome-
tries, each analyzed under three separate toolpath scenarios. The maximum and minimum
residual stresses are considered as they play a crucial role in determining the impact of
deposition direction on stresses [23]. The correlation heat map of the concatenated data for
all the case studies (12 scenarios) is presented in Figure 2. Recall that the x-axis corresponds
to the longest length of the shapes and y denotes the transverse direction. The maximum
principal stress and the longitudinal residual stress (σxx) have the highest correlation, 0.73,
implying the highest dependency of the optimum toolpath on the longitudinal direction.

Figure 2. Heat map of the correlation between normal stresses, principal stresses, and total strains for
the entire dataset (four geometries, each with three toolpaths).

The results of the entire dataset, including the geometries and the toolpaths, indicate
that the longitudinal residual stress has a high correlation with maximum principal residual
stress, which significantly impacts the optimum toolpath selection. Figure 3 displays the
correlation between features for each geometry individually, incorporating all toolpaths for
each geometry. The results show that the step-type geometries (Geom 2 and 3) demonstrate
a high correlation between the principal and longitudinal and transverse stresses. It implies
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that a combination of deposition directions would result in the possible optimum toolpath
selection for these geometries. The rectangle part with a big hollow in the middle with thin
walls (Geom 4) represents the lowest correlation between the directional stresses and the
maximum principal stresses.

(a) Geom 1 (b) Geom 2

(c) Geom 3 (d) Geom 4
Figure 3. Heat map correlation normal stresses, principal stresses, and total strains for each geometry
with three toolpaths.

Similarly, the correlation between features for each toolpath individually, incorporating
all geometries, is shown in Figure 4. The toolpath directional stresses are highly correlated
with the maximum residual stress. For both the longitudinal one-way and longitudinal
zigzag toolpaths, the x-axis residual stresses show a strong correlation with the maximum
residual stress. In contrast, the transverse toolpath exhibits a high correlation between the
transverse (y-axis) residual stress and the maximum principal stress.

The results reveal that—for thin parts—longitudinal depositions are the determining
factor in forming residual stresses, whereas thick parts are affected by both longitudinal
and transverse directions. Additionally, the results indicate that the deposition direction
generates the highest residual stress in that specific direction.

225



Materials 2024, 17, 5127

(a) Longitudinal one-way toolpath. (b) Transverse toolpath.

(c) Longitudinal zigzag toolpath.
Figure 4. Heat map correlation normal stresses, principal stresses, and total strains for each toolpath
with four geometries.

3.2. Linear Mixed-Effects Model

The data reviewed so far indicate that the final mechanical properties of DED-manufactured
parts depend on the toolpath, geometry type, and layer. To quantify the contributions
of each factor (geometry type, toolpath pattern, and layer number) to the mechanical
properties (e.g., residual stresses and strains), a linear mixed-effects model is used. This
model considers the fixed effects (geometry, toolpath, and the DED-built layer number)
on the random effects (distributed data on the parts). In this context, the random effect
refers to the individual local nodes for all the case studies. For this purpose, the “MixedLM”
module from the “statsmodels. f ormula.api” library [18] of the Python language was used
to fit the model. The dependent variables are as follows: σxx, σyy, σpr,max, ǫt,x, and ǫt,y. All
the data from the 12 case studies were concatenated into a unique dataset as two additional
features of the toolpath pattern, and the geometry types were added to the observations of
each data node from the FEM data. The fitting model results for each variable are presented
in Tables 2–6. The intercept (reference) case is geometry 1 with the longitudinal toolpath.
In comparison with the intercept case, the rest of the case studies are statistically analyzed.

The Coef. parameter in Table 2 for the intercept represents the estimated mean value
of σxx when all other variables are at their reference levels, with the remaining rows
showing deviations from the intercept. Geometries 2 to 4 all show decreased levels of σxx;
however, geometry 3 does not display significant change compared to the reference (Geom
1, Longitudinal) as the p-value (0.147) is above 0.05. All coefficients except geometry 3 are
statistically significant at the 0.05 level, as indicated by P > |z| values less than 0.05. Only
the zigzag pattern appears to have higher stress compared to the reference case. Since the
group variance is low (0.003), minimum variation occurs between groups, indicating that
most variability in σxx is explained by fixed effects rather than random effects. The layer,
zigzag pattern, and geometry 2 have the highest impacts on σxx, respectively.
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Table 2. Mixed linear model regression results for variable σxx.

Model: MixedLM Dependent Variable: Q(σxx(MPa))
No. Observations: 36,971 Method: REML
No. Groups: 10,206 Scale: 42,248.3905
Min. group size: 1 Log-Likelihood: −249,340.2347
Max. group size: 4 Converged: Yes
Mean group size: 3.6

Coef. Std.Err. z P > |z| [0.025 0.975]

Intercept (“Geom 1,Longitudinal”) 394.452 3.257 121.115 0.000 388.069 400.836
C(Geometry,Treatment)[T.2] −36.367 3.127 −11.610 0.000 −42.436 −30.297
C(Geometry, Treatment)[T.3] −4.609 3.220 −1.450 0.147 −10.980 1.642
C(Geometry, Treatment)[T.4] −9.010 3.113 −2.894 0.004 −15.111 −2.910
C(Toolpath, Treatment)[T.Trans] −37.963 2.612 −14.537 0.000 −43.082 −32.845
C(Toolpath, Treatment)[T.Zigzag] 12.185 2.643 4.610 0.000 7.005 17.365
Q(“Layer”) −38.673 0.658 −58.774 0.000 −39.962 −37.383
Group Var 0.003 0.940

Table 3. Mixed linear model regression results for variable σyy.

Model: MixedLM Dependent Variable: Q(σyy(MPa))
No. Observations: 36,971 Method: REML
No. Groups: 10,206 Scale: 31,461.3621
Min. group size: 1 Log-Likelihood: −244,834.7612
Max. group size: 4 Converged: Yes
Mean group size: 3.6

Coef. Std.Err. z P > |z| [0.025 0.975]

Intercept (“Geom 1,Longitudinal”) 211.383 2.937 71.963 0.000 205.626 217.141
C(Geometry, Treatment)[T.2] 47.009 2.708 17.359 0.000 41.702 52.317
C(Geometry, Treatment)[T.3] 77.948 2.785 27.990 0.000 72.490 83.406
C(Geometry, Treatment)[T.4] 7.887 2.694 2.927 0.003 2.606 13.167
C(Toolpath, Treatment)[T.Trans] −18.807 2.747 −7.861 0.000 −23.606 −14.008
C(Toolpath, Treatment)[T.Zigzag] 15.695 2.489 6.306 0.000 10.817 20.573
Q(“Layer”) −21.713 0.582 −37.327 0.000 −22.853 −20.573
Group Var 1770.261 0.969

Regarding variable σyy, as presented in Table 3, geometries 2 and 3 have the greatest
impact, with increased levels of σyy at 47.0 and 77.9 (MPa), respectively. The effects of the
layer and toolpath are lower compared to the impact of geometry. The P-values of all fixed
effects are below 0.05, indicating that these effects are significant. The larger group variance
(1770.2) compared to the previous model (σxx) suggests more variability between groups
in σyy compared to σxx. It suggests that the random effects (local data distribution) are
significant on σyy. A general comparison between the results of Tables 2 and 3 highlights
that geometry can have a positive effect on σxx and a negative impact on σyy. The layer has
a greater influence on σxx.

The results of Table 4 demonstrate that the geometry has the highest impact on σpr,max

compared to the toolpath, while the layer effect is predominant. The analyses of ǫt,x and
ǫt,y in Tables 5 and 6 show positive effects of geometries 2 to 4 on ǫt,x and negative effects
on ǫt,y compared to the intercept (reference), displaying behavior similar to that described
for the normal stresses.

227



Materials 2024, 17, 5127

Table 4. Mixed linear model regression results for variable σpr,max.

Model: MixedLM Dependent Variable: Q(σpr,max(MPa))
No. Observations: 36,971 Method: REML
No. Groups: 10,206 Scale: 27,322.7092
Min. group size: 1 Log-Likelihood: −241,291.6528
Max. group size: 4 Converged: Yes
Mean group size: 3.6

Coef. Std.Err. z P > |z| [0.025 0.975]

Intercept (“Geom 1,Longitudinal”) 504.901 2.619 192.757 0.000 499.767 510.034
C(Geometry, Treatment)[T.2] −33.269 2.515 −13.228 0.000 −38.199 −28.340
C(Geometry, Treatment)[T.3] 9.448 2.589 3.649 0.000 4.373 14.524
C(Geometry, Treatment)[T.4] 6.651 2.503 2.657 0.008 1.744 11.557
C(Toolpath, Treatment)[T.Trans] −16.531 2.486 −7.870 0.000 −20.648 −12.414
C(Toolpath, Treatment)[T.Zigzag] 13.096 2.128 6.155 0.000 8.926 17.266
Q(“Layer”) −34.261 0.529 −64.738 0.000 −35.298 −33.224
Group Var 0.000 0.734

Table 5. Mixed linear model regression results for variable ǫt,x.

Model: MixedLM Dependent Variable: Q(ǫt,x)
No. Observations: 36,971 Method: REML
No. Groups: 10,206 Scale: 0.0001
Min. group size: 1 Log-Likelihood: 118,013.0819
Max. group size: 4 Converged: Yes
Mean group size: 3.6

Coef. Std.Err. z P > |z| [0.025 0.975]

Intercept (“Geom 1,Longitudinal”) −0.006 0.000 −34.307 0.000 −0.006 −0.005
C(Geometry, Treatment)[T.2] −0.003 0.000 −23.181 0.000 −0.004 −0.003
C(Geometry, Treatment)[T.3] −0.003 0.000 −16.873 0.000 −0.003 −0.002
C(Geometry, Treatment)[T.4] −0.001 0.000 −6.942 0.000 −0.001 −0.001
C(Toolpath, Treatment)[T.Trans] −0.006 0.000 −41.419 0.000 −0.006 −0.005
C(Toolpath, Treatment)[T.Zigzag] −0.002 0.000 −15.916 0.000 −0.002 −0.002
Q(“Layer”) 0.003 0.000 86.830 0.000 0.003 0.003
Group Var 0.000 0.000

Table 6. Mixed linear model regression results for variable ǫt,y.

Model: MixedLM Dependent Variable: Q(ǫt,y)
No. Observations: 36,971 Method: REML
No. Groups: 10,206 Scale: 0.0001
Min. group size: 1 Log-Likelihood: 121,398.0879
Max. group size: 4 Converged: Yes
Mean group size: 3.6

Coef. Std.Err. z P > |z| [0.025 0.975]

Intercept −0.017 0.000 −121.048 0.000 −0.018 −0.017
C(Geometry, Treatment)[T.2] 0.003 0.000 23.698 0.000 0.003 0.004
C(Geometry, Treatment)[T.3] 0.005 0.000 33.144 0.000 0.004 0.005
C(Geometry, Treatment)[T.4] 0.003 0.000 21.035 0.000 0.003 0.003
C(Toolpath, Treatment)[T.Trans] 0.006 0.000 50.564 0.000 0.006 0.006
C(Toolpath, Treatment)[T.Zigzag] −0.003 0.000 −27.517 0.000 −0.003 −0.003
Q(“Layer”) 0.002 0.000 74.192 0.000 0.002 0.002
Group Var 0.000 0.000

The similar statistical linear mixed-effects analysis of the toolpath and geometry on the
stresses and strains contrasts with the low correlation between the directional stresses and
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strains mentioned in the previous subsection. To gain a deeper understanding of whether
stress or strain can represent the variability in the local data, principal component analysis
(PCA) is utilized to identify the most important variables. PCA reduces the data features
while introducing new features composed of linear sums of the primary features. The
weighting factor of the primary features in the new features reveals which variables have
the highest variance. The results of the PCA analysis are described in the next subsection.

3.3. Principal Component Analysis

The PCA class from the Python scikit-learn library [24] was used for the PCA machine
learning analysis of the dataset of the current study. PCA was implemented to investigate
which variables among five—σxx, σyy, σpr,max, ǫt,x, and ǫt,y—show the highest variance and
are the most informative. Separate analyses were conducted for each geometry (including
all toolpaths) and each toolpath (including all geometries).

The results for the concatenated data of all longitudinal pattern geometries were
analyzed to gain an understanding of the “longitudinal scanning” pattern on the variability
of the mechanical properties in DED-fabricated parts. Figure 5 shows the scatter plot of the
data with two principal component vectors and the bar plot of the explained variance of the
data at the middle layer (layer 3). The explained variance of each component indicates how
informative the component is. The loading (weight) coefficients of the primary variables
for each new principal component variable of the longitudinal toolpath are presented in
Table 7. It should be noted that the reason the PCA component vectors are not exactly
orthogonal in the 2D plot is that they are projected from a higher-dimensional space (6D in
this case) onto a 2D plane.

(a) PCA components vectors (b) PCA components explained variances
Figure 5. PCA results of the one-way longitudinal pattern at the middle layer; (a) scatter data showing
two PCA component vectors; (b) variance of each new principal component.

Table 7. Loadings (weights) for each principal component—longitudinal toolpath pattern data.

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

σxx 0.81 0.14 0.26 0.23 −0.45

σyy −0.09 0.80 −0.51 −0.13 −0.28

σpr,max 0.41 0.31 −0.07 0.12 0.85

ǫt,x 0.20 −0.44 −0.79 0.34 −0.06

ǫt,y −0.36 0.21 0.17 0.89 −0.01

The results indicate that the first principal component, which accounts for 48% of the
information variance, is highly dependent on σxx, with a coefficient of 0.81. The second
highest variability belongs to σyy, which has a loading of 0.80 in the second component.
ǫxx and ǫyy contribute to the principal components with low impact as they mostly affect
the third and fourth principal components. Similarly, the variance of σpr,max has a lower
contribution than the normal residual stresses. While the maximum principal stress (σpr,max)
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suggests an optimal approach for toolpath selection, the normal longitudinal stress (σxx)
shows the highest variability at the observed nodes of the parts for the longitudinal pattern.
In contrast, the variances for the strains (ǫxx and ǫyy) are lower and negligible. Thus,
longitudinal stress should be a matter of concern when investigating the longitudinal
deposition for a longitudinal geometry.

Figure 6 shows the scatter plot of the data with two principal component vectors
and the bar plot of the explained variance of the data at the middle layer (layer 3) for the
transverse deposition pattern across all geometries. The loading (weight) coefficients of the
primary variables for each new principal component variable of the transverse toolpath are
presented in Table 8.

(a) PCA components vectors (b) PCA components explained variances
Figure 6. PCA results of the one-way longitudinal pattern at the middle layer; (a) scatter data showing
two PCA component vectors; (b) variance of each new principal component.

Table 8. Loadings (weights) for each principal component—transverse toolpath pattern data.

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

σxx −0.45 0.61 −0.51 −0.30 0.27

σyy 0.56 0.56 0.30 0.22 0.49

σpr,max 0.16 0.50 −0.13 0.26 −0.80

ǫt,x −0.62 0.08 0.28 0.72 0.12

ǫt,y 0.27 −0.25 −0.74 0.53 0.19

Regarding the data from the transverse deposition for all the geometries, the first
principal component has the highest weighting of −0.62 for the longitudinal normal strain
(ǫt,x) followed by the second-highest weighting of 0.56 for the transverse directional residual
stress σyy. Based on this evidence, the geometry shape type, specifically a longitudinal
geometry, accounts for a higher directional strain variance than the deposition direction
while the directional stress is mostly impacted by the deposition.

Figure 7 shows the scatter plot of the data with two principal component vectors
and the bar plot of the explained variance of the data at the middle layer (layer 3) for
the longitudinal zigzag deposition pattern of all the geometries. The loading (weight)
coefficients of the primary variables for each new principal component variable of the
transverse toolpath are presented in Table 9.
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(a) PCA components vectors (b) PCA components explained variances
Figure 7. PCA results of the one-way longitudinal pattern at the middle layer; (a) scatter data showing
two PCA component vectors; (b) variance of each new principal component.

Table 9. Loadings (weights) for each principal component—Zigzag toolpath pattern data.

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

σxx 0.69 −0.38 −0.16 0.27 −0.53

σyy 0.27 0.76 0.35 −0.24 −0.42

σpr,max 0.63 0.08 0.26 0.06 0.72

ǫt,x −0.05 −0.53 0.71 −0.45 −0.12

ǫt,y −0.22 0.05 0.52 0.82 −0.07

The PCA results of the longitudinal zigzag show that the directional stress in the lon-
gitudinal axis obtains the highest variance and the strains have lower variances compared
to the directional stresses. All the toolpath results demonstrate that the second-highest
variance occurs in the orthogonal direction of the deposition. This means that longitudinal
depositions result in the second highest variances of σyy, while transverse scanning results
in the second highest variance of σxx, based on the explained variances of the principal
components and the individual variable coefficients.

The scatter plots for each geometry, including all toolpaths and the related explained
variance bars, are presented in Figures 8–11. The corresponding weighting values are
presented in Tables 10–13. The thin geometries (Geoms 1 and 4) show that the highest
variance coefficient in the first principal belongs to σxx, while thick step walls show the
highest coefficient pertaining to σyy. Similar to the toolpath results, the strains contribute
to the principal components with low explained variance. It can be concluded that the
residual stresses should be the focus due to their high variances at the middle layers of the
DED parts, and the strains can be excluded from further multi-dimensional feature studies.

(a) PCA components vectors (b) PCA components explained variances
Figure 8. PCA component vectors and explained variance bars of geometry 1 at the middle layer.
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Table 10. Loadings (weights) for each principal component—-Geom 1 data.

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

σxx 0.81 −0.12 −0.35 0.18 −0.41

σyy 0.21 0.77 0.52 −0.08 −0.28

σpr,max 0.46 0.21 −0.05 −0.10 0.86

ǫt,x 0.20 −0.35 0.26 0.87 −0.11

ǫt,y −0.20 0.47 −0.73 −0.44 −0.09

(a) PCA components vectors (b) PCA components explained variances
Figure 9. PCA component vectors and explained variance bars of geometry 2 at the middle layer.

Table 11. Loadings (weights) for each principal component—Geom 2 data.

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

σxx −0.33 0.63 0.08 −0.41 −0.57

σyy −0.61 −0.29 −0.29 0.55 −0.40

σpr,max −0.55 0.43 −0.01 0.13 0.70

ǫt,x 0.45 0.52 −0.59 0.41 −0.06

ǫt,y 0.14 0.25 0.75 0.59 −0.13

(a) PCA components vectors (b) PCA components explained variances
Figure 10. PCA component vectors and explained variance bars of geometry 3 at the middle layer.

Table 12. Loadings (weights) for each principal component—Geom 3 data.

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

σxx −0.36 0.70 0.20 −0.37 0.45

σyy −0.64 −0.39 −0.21 0.39 0.50

σpr,max −0.63 0.21 0.06 0.16 −0.73

ǫt,x 0.25 0.56 −0.36 0.70 0.06

ǫt,y 0.07 −0.04 0.88 0.45 0.10
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(a) PCA components vectors (b) PCA components explained variances
Figure 11. PCA component vectors and explained variance bars of geometry 4 at the middle layer.

Table 13. Loadings (weights) for each principal component—Geom 4 data.

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

σxx −0.67 0.47 −0.36 0.13 0.44

σyy 0.55 0.61 0.33 0.02 0.46

σpr,max −0.06 0.63 −0.05 −0.28 −0.72

ǫt,x −0.33 −0.10 0.48 0.78 0.21

ǫt,y 0.36 −0.06 −0.73 −0.55 0.19

3.4. Self-Organizing Map Clustering

The local points dataset from all 12 cases was evaluated using six clusters. The data
were trained in Python using the MiniSom library [22], with a learning rate of 0.5 and
5000 iterations. The frequency of assigned observations (the FEM local nodes) to each
cluster after training the SOM is shown in Figure 12. Clusters 4 and 6 contain the highest
frequency of data, while cluster 3 has the fewest records (observations).

Figure 12. Structure of neurons (clusters) with the number of samples in each cluster for the lo-
cal dataset.

The weights of each feature in all the clusters (neurons) are presented in Figure 13.
The σxx stress has the highest weight in cluster 4 and σpr,max has the lowest contribution in
cluster 3. A visual consideration reveals that the weights of σpr,max are lower compared to
the rest of the features. Cluster 3 is mostly affected by ǫt,x, and cluster 6 is highly impacted
by σyy. Clusters 1 and 4 are predominantly determined by σxx and ǫt,x.
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Figure 13. Weight of SOM neural network for each cluster (neuron)—C1 to C6 indicate cluster
numbers from 1 to 6.

The features of the center of each cluster of the SOM results along with the defined
mechanical status are presented in Table 14. In the contour plots (Figures 14–17), the
color represented in each row corresponds to the cluster’s color. Cluster 3 (green color)
represents the low-stress and high-strain cluster, while Cluster 4 (purple color) represents
the high-stress and low-strain cluster.

Table 14. SOM cluster centers—the rows’ colors align with the contours plotted in the results.

Cluster Center σxx
Center

σyy
Center σpr,max

Center ǫt,x

(×103)
Center ǫt,y (×103) Status

1 385.29 49.29 421.18 5.18 −4.74 High σxx—Low Strain

2 280.36 66.24 355.53 −2.98 −18.75 High σxx—High Strain

3 80.19 79.80 245.09 9.89 −15.97 Low Stresses—High Strain

4 591.04 211.21 614.08 3.59 −15.90 High Stresses—High Strain

5 34.97 158.20 325.78 −10.61 1.25 Low σxx—High Strain

6 186.04 436.02 521.46 −5.26 −3.39 High σyy—Low Strain

The color of each row demonstrate the cluster color, later shown on the results.

Based on the clustering analysis, the SOM model evaluated the nodes of the FEM
results. Figure 14 illustrates the clusters each node is assigned to for geometry 1, encom-
passing three toolpath patterns at the middle layer (layer 3). It should be noted that the
longitudinal one-way and zigzag depositions start at X = 25 mm and Y = 0 mm, while the
transverse one-way deposition starts at X = 60 mm and Y = 20 mm. The transverse pattern
at the third layer (Figure 14b) shows that the intersection zone within the cross-type part
lies in a high directional σyy stress with low strains cluster (cluster 6). The two longitudinal
one-way and zigzag patterns (a, c) fall within the all-directional high stresses and high
strains cluster (cluster 4) at the intersection. Both clusters at the intersection are character-
ized by high strains. The corners are assigned to cluster 5, which represents low stresses
but high strains.

Figure 15 displays the clusters of each node for geometry 1 at the top surface (layer 5).
The longitudinal zigzag pattern has the higher portion of cluster 3 (the green color) that
represents the low-stress/low-strain category. The longitudinal one-way pattern exhibits
the high transverse stress σyy cluster assigned to the intersection area while the transverse
pattern outcomes a converse result, indicating a high longitudinal stress cluster (cluster 1)
at the intersection zone.
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A comparison of Figures 14 and 15 ascertains that the intersection might be optimized
with a toolpath at the middle layer while worsening at the top layer with the same toolpath.

(a) Geom 1 longitudinal pattern—layer 3. (b) Geom 1 transverse pattern—layer 3.

(c) Geom 1 zigzag pattern—layer 3.
Figure 14. Local data clustering results for geometry 1 with three different toolpaths at layer 3.

(a) Geom 1 longitudinal pattern—layer 5. (b) Geom 1 transverse pattern—layer 5.

(c) Geom 1 zigzag pattern—layer 5.
Figure 15. Local data clustering results for geometry 1 with three different toolpaths at layer 5
(top surface).

The cluster contours for the middle layer and the top layer of geometry 4 are depicted
in Figures 16 and 17. Note that the longitudinal one-way and zigzag depositions start
at X = −30 (mm) and Y = −15 (mm) while the transverse one-way deposition starts at
X = 30 (mm) and Y = −15 (mm). Both one-way and zigzag longitudinal patterns at layer
3 (Figure 16a,c) show that the top long wall, where the deposition ends, is predominantly
assigned to cluster 4 (the purple color, indicating high stresses and strains), which is less
favorable compared to the transverse deposition outcome (Figure 16b). In contrast, the
longitudinal patterns feature a low stress/strain cluster (the green color, Figure 17a,c) at the
top layer within the first longitudinal wall where the deposition starts, while the transverse
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deposition shows cluster 1 for the longitudinal wall. However, the transverse deposition
concludes in cluster 5 for the short transverse wall.

(a) Geom 4 longitudinal pattern—layer 3. (b) Geom 4 transverse pattern—layer 3.

(c) Geom 4 zigzag pattern—layer 3.
Figure 16. Local data clustering results for geometry 4 with three different toolpaths at layer 3.

(a) Geom 4 longitudinal pattern—layer 5. (b) Geom 4 transverse pattern—layer 5.

(c) Geom 4 zigzag pattern—layer 5.
Figure 17. Local data clustering results for geometry 4 with three different toolpaths at layer 5
(top surface).

4. Conclusions

This research provides a comprehensive analysis of the impact of toolpath patterns,
geometry types, and layering effects on the mechanical properties of parts fabricated
through DED additive manufacturing using LME, PCA, and SOM clustering. The outcome
shows the capability of the methods in quantifying and interpreting the contributions of
these factors to residual stresses and strains.

The results indicate that all geometry types, toolpath patterns, and layer numbers
significantly impact the distribution of mechanical properties. The toolpath had the highest
impact on the longitudinal residual stress, σxx, while the shape type had the most substantial
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effect on the transverse residual stress, σyy. The LME model demonstrated that the layering
effect is significant in all cases.

The PCA results further identified that the toolpath pattern has the greatest effect on
directional stresses, while the geometry type accounts for the most significant impact on
residual strains. It was also shown that residual stresses exhibit higher variance and are
more informative than residual strains.

The SOM clustering offers additional insights into the local distribution of stresses
and strains, highlighting regions within the parts where specific stress patterns are more
likely to occur. The SOM results, based on the mechanical property similarity of the cloud
nodes in the parts, suggest that while a toolpath may create a low stress/strain region at
one layer, it could deteriorate the mechanical properties at another layer.

Overall, this study underscores the importance of selecting appropriate toolpaths and
geometries in DED processes to enhance mechanical properties and reduce defects. The
methodologies used demonstrate significant potential in establishing a robust framework
for future studies aiming to optimize additive manufacturing processes through data-
driven analysis. The conclusions are summarized in Table 15.

Table 15. Summary of key insights and suggestions.

Factor Effect on Properties Suggestions

Toolpath Pattern Highest impact on longitudinal
residual stress (σxx)

Use longitudinal toolpaths to min-
imize longitudinal stresses, espe-
cially for thin geometries.

Geometry Type Highest impact on transverse
residual stress (σyy)

Step-type geometries need mixed
toolpaths for balancing stress dis-
tribution.

Layering Effect Significant across all mechanical
properties

Control layering thickness to mini-
mize internal stress buildup, espe-
cially in thick parts.
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Abstract: This article proposes a generalizable, data-driven framework for qualifying laser powder
bed fusion additively manufactured parts using part-specific in situ data, including powder bed
imaging, machine health sensors, and laser scan paths. To achieve part qualification without relying
solely on statistical processes or feedstock control, a sequence of machine learning models was trained
on 6299 tensile specimens to locally predict the tensile properties of stainless-steel parts based on fused
multi-modal in situ sensor data and a priori information. A cyberphysical infrastructure enabled
the robust spatial tracking of individual specimens, and computer vision techniques registered the
ground truth tensile measurements to the in situ data. The co-registered 230 GB dataset used in this
work has been publicly released and is available as a set of HDF5 files. The extensive training data
requirements and wide range of size scales were addressed by combining deep learning, machine
learning, and feature engineering algorithms in a relay. The trained models demonstrated a 61%
error reduction in ultimate tensile strength predictions relative to estimates made without any in
situ information. Lessons learned and potential improvements to the sensors and mechanical testing
procedure are discussed.

Keywords: laser powder bed fusion; tensile properties; machine learning; in situ monitoring

1. Introduction

As a new class of manufacturing processes, metal additive manufacturing (AM) [1]
holds significant promise for the rapid production of small-to-medium quantities of parts
with complex geometries and internal structures [2]. For industries producing safety-critical
components, part qualification is an integral step of any manufacturing process [3]. Qual-
ification frameworks for traditionally manufactured components typically fall into one
or more of the following paradigms: (1) destructive or nondestructive testing of a repre-
sentative sample of the larger population of manufactured components or of designated
coupons to detect process drift [4] (i.e., statistical quality control), (2) maintenance of a
robustly defined, in-control manufacturing process [5] (i.e., process qualification) combined
with a set of materials specifications for the feedstock or workpiece [6] (e.g., usage of A- and
B-basis allowables), and (3) non-destructive evaluation (NDE) [7,8] of the entire population
of manufactured components (i.e., part-specific qualification). Because these traditional
qualification approaches are often incompatible with additively manufactured components,
this work proposes a data-driven qualification framework that leverages in situ data to
directly predict localized static tensile properties.
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Laser-powder bed fusion (L-PBF) is a widely adopted metal AM process in which
a laser beam is used to melt powder feedstock into a stack of two-dimensional 2D cross-
sections of the intended part geometry [1,2]. Many current and anticipated business cases
for L-PBF components [2] are not compatible with traditional qualification paradigms. For
example, because one advantage of AM is its ability to make small production runs of
customized designs [2], many L-PBF designs are not produced in quantities conducive
to population-based qualification. Furthermore, as articulated by Seifi et al. [3], L-PBF’s
relative novelty, geometry-dependent process dynamics, and the nature of localized re-
solidification of the feedstock challenges many of the assumptions required to qualify the
process and materials in a way that is agnostic to part geometry. Finally, components
optimized for L-PBF often have complex internal geometries [2], rough surfaces [9], or are
manufactured with high atomic number alloys [10], complicating traditional post-build
NDE techniques [8].

Fortunately, the layer-wise nature of L-PBF, along with the incremental re-solidification
of discrete volumes within a layer, provide unique opportunities for in situ process mon-
itoring [11] because each sub-volume is directly observable at some point during the
manufacturing process. This facet of AM offers a significant advantage over many NDE
techniques, which struggle to spatially resolve flaws in three dimensions, particularly for
complex geometries. Such in situ data can also be used to construct a component digital
twin [12] of individual components. As defined by Grieves and Vickers [13], a component
digital twin is a virtual copy of its physical twin—a specific instance of a manufactured
component that can be simulated [14]. This work develops new models to convert in
situ data into localized material property predictions that could be used to instantiate a
component digital twin.

Critically, properties predicted by these models should be localized (i.e., valid for a sub-
volume of a component) so the models can be generalized to arbitrary component geome-
tries. Scime et al. [15] proposed combining deep learning (DL), machine learning (ML) [16],
and feature engineering [17] algorithms in an augmented intelligence relay (AIR) such that
each algorithm solves a sub-problem within the overall data workflow. Over the last decade,
the AM in situ process monitoring community has made significant strides in applying sig-
nal processing and computer vision techniques to both temporal [18–22] and spatial [23–27]
data for the purposes of anomaly and flaw detection. A growing number of researchers
are studying co-registered multi-modal sensor data stacks [28,29] and leveraging DL algo-
rithms to achieve pixel-wise anomaly and flaw segmentation [28,30,31]. Although rarely
generalized or presented in the context of a larger qualification framework, visualization of
in situ data [32], including its registration to ex situ measurements [33,34], is also relatively
common in the literature. In contrast, relatively little work has been reported regarding
direct property prediction for localized sub-volumes, which is the focus of this work.

Most tensile property measurement and prediction research reported in the litera-
ture [35] for metal AM is similar to that of Lavery et al. [36], which correlates tensile
measurements to laser processing parameters, post-build treatments such as hot isostatic
pressing (HIP), and porosity content measured post-build. Similarly, Kusano et al. [37]
extracted microstructural features from scanning electron microscopy (SEM) images of
L-PBF-processed Ti-6Al-4V and performed multiple linear regression to fit tensile property
prediction models to these feature vectors. Thematically similar, Hayes et al. [38] used
constitutive modeling to predict the yield strength of Ti-6Al-4V processed via directed
energy deposition (DED) based on microstructural features measured post-build. A related
area of research garnering significant attention is the prediction of fatigue life based on
flaw populations measured post-build using either x-ray computed tomography (XCT) of
the part or destructive microscopy of witness coupons. In one example of this approach,
Romano et al. [39] developed analytical models capable of predicting the fatigue properties
of L-PBF-processed AlSi10Mg.

When considering only studies that use in situ sensor data to inform material property
prediction models, the authors determined that most existing work has focused on polymer
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fused deposition modeling (FDM) processes, such as that performed by Zhang et al. [40].
Interestingly, Seifi et al. [41] performed DL analyses of melt pool thermal images to detect
flaws in DED-processed Ti-6Al-4V. The resulting data were then used to inform traditional
fatigue life models. Importantly, this approach required not only detecting the presence
and location of each flaw but also estimating their size. Bisht et al. [42] correlated the
relative occurrence of anomalies observed in on-axis photodiode data with the measured
plastic elongation of L-PBF-processed Ti-6Al-4V, thus demonstrating a potentially viable
approach that jumps directly from in situ data processing to localized property predictions.
Finally, among the most similar work is that of Xie et al. [43], which encoded in situ thermal
history measurements into engineered features and predicted local tensile properties for
thin-walled Inconel 718 DED components using a neural network trained on tensile data
from extracted tensile specimens.

This work uses a relay of machine-learned algorithms (Section 2.1) to predict local
static tensile properties based on in situ data for L-PBF components. Computer vision
techniques were used to process the in situ sensor data and to spatially register it to the
ex situ mechanical test results (Section 2.2). Localized property prediction required a be-
spoke build strategy (Section 2.6) and drove many of the decisions regarding specimen
geometry and post-processing methodologies. An extensive cyberphysical infrastructure
was implemented to enable robust spatial tracking of thousands of individual tensile spec-
imens (Section 2.7) and facilitate the public availability of the entire 230 GB Peregrine
v2023-11 dataset [44] used in this research. Neural networks were designed to first segment
anomalies apparent in the in situ sensor data (Section 2.3) and then to predict local tensile
properties based on human-engineered feature vectors (Section 2.10). Model validation
and testing performance results are presented in Sections 3.1 and 3.2, respectively. Ulti-
mately, the goal of the proposed approach is to support future qualification paradigms
that rely more heavily on the standardization of in situ sensor suites and validated algo-
rithms and less heavily on certification of “locked-down” manufacturing processes and
material specifications.

2. Materials and Methods

2.1. Experimental Conditions and Data Analysis Framework

Experiments were performed at the Manufacturing Demonstration Facility (MDF)
located at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. Specimens
were printed using stainless-steel (SS) 316L powder on a Concept Laser M2 (General Electric,
General Electric Additive, Cincinnati, OH, USA) L-PBF printer. The Concept Laser M2 had
two 400 W laser modules with overlapping fields of operation, and a compliant recoater
blade was used to spread the powder. Algorithms were developed in Python v3.7 with
relevant dependencies, including TensorFlow v1.13.1, OpenCV v3.4.1, and Scikit-image
v0.18.1. Computations were benchmarked on a desktop computer equipped with two
Quadro RTX 5000 (Nvidia Corporation, Santa Clara, CA, USA) graphical processing cards,
two 16-core 2.10 GHz processors, and 256 GB of volatile memory. The AM terminology
used in this document complies with ISO/ASTM 52900:2015 [1] where appropriate.

Because in situ data from L-PBF processes contain complex, multi-modal, contextually
dependent information [28,45], it is not easily interpreted solely by physics-based models or
human-designed heuristics. Therefore, the authors propose that machine-learned models
are the most viable approach for translating in situ data to localized property predictions.
Decomposing the data workflow into a relay enabled the use of both ML and DL models,
even when the ground truth tensile properties were expensive to collect. This is possible
because physics-informed decisions could be made at each interface throughout the re-
lay to reduce the complexity of the feature encodings, which must be learned from the
experimental data. For example, features encoding the laser scan vector length within a
sub-volume were explicitly designed rather than learned based on the a priori knowledge
that the scan length might affect solidification conditions [46] and, therefore, local material
properties. The use of a relay provided other advantages, including (1) computationally
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efficient translation of data across spatial size scales, (2) improved interpretability of prop-
erty predictions, (3) improved model generalizability, and (4) increased opportunities for
modularity within the framework.

Figure 1 depicts the implemented AIR, including elements developed in prior work
(blue) and downstream elements (magenta), which are beyond the scope of this paper.
Starting at N1, natively temporal data (i.e., laser scan order) were spatially mapped as
rasterized images for each print layer, while natively spatial data (i.e., visible-light images
of the powder bed) entered the AIR directly at N2. At N3, the in situ data streams and
design intent information (i.e., part geometry) were co-registered and placed into a common
coordinate system. At N4, a subset of the fused sensor data was processed by a DL image
segmentation model to produce an anomaly mask for each print layer. Training this
DL model (feedback loop between N4 and N3) occurred pixel-wise using approximately
180 million ground-truth classifications acquired via expert annotation [28]. Up to this
point in the relay, the spatial resolution of the data was on the order of 100 µm. At N5,
the print volume was demarcated into 1 mm super-voxels, defined here as a sub-volume
of a component for which local material property predictions can be made by the AIR.
Associated with each super-voxel are (1) an engineered feature vector encoding the in
situ sensor data, (2) anomaly segmentation metrics, (3) part geometry, and (4) proxy
representations of the local thermal history. Finally, an ML model was trained (feedback
loop between N6 and N5) using 6299 tensile tests to predict the local tensile properties at N6
based on the super-voxel feature vectors. The cyberphysical infrastructure that supported
the AIR is referred to as the digital platform, and it allowed the in situ and ex situ data to be
tracked as digital threads [15].

ff
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Figure 1. Graphical representation of the implemented AIR. This paper focuses on nodes N5 and
N6 (orange), leveraging prior work by the authors shown at nodes N1, N2, N3, N4, and N8 (blue).
Approximate spatial resolutions of data at each node are shown in red. Approximations for the
number of ground truth values required for each feedback loop are also shown in red. Key elements
of the digital platform that supported the implementation of the relay are shown in purple. The black
dashed line from N4 to N7 represents a possible alternate pathway for predicting localized properties.

While beyond the scope of this work, downstream elements of the AIR should be
considered to understand how the current research fits into the ultimate goal of achieving
part-specific qualification. For example, a component digital twin consisting of a canon-
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ical finite element model of the component could be instantiated at N7 using the local
material properties predicted at N6. This contrasts with traditional finite element meshes,
which typically use material properties derived from a statistical analysis of aggregated
historical data.

2.2. Multi-Modal Data Collection, Co-Registration, and Fusion

To enable local tensile property predictions, data from multiple in situ and a priori
sources were spatially mapped (N2) and co-registered (N3) within a common coordinate
system defined by the computer-aided design (CAD) model of each build. The CAD model
was first converted into the standard triangle language (STL) file format and sliced using
the Magics Image Build Processor (Materialise, Leuven, Belgium) into a set of binary layer
images (Figure 2a). Each binary image was globally thresholded to identify the locations of
the printed geometries, and a two-pass, 2.5D implementation of a standard 2D connected-
components algorithm [47] was performed to uniquely segment each printed part within
the 3D build volume. Each component was automatically assigned an identifier based
on its position within the 3D build volume, and this information was shared with the
digital platform, which generated a globally unique identifier. The universal coordinate
system was defined in reference to ISO/ASTM 52900:2015 [1], with the positive x-axis
oriented left–right from the perspective of the printer operator, the positive y-axis oriented
front–back, and the positive z-axis oriented vertically along the build direction. The powder
recoating and shield gas flow directions are parallel to the negative x-axis, as shown in
Figure 2c.

The original equipment manufacturer (OEM) quality monitoring (QM) coating [48]
camera captured two visible-light 5 mega-pixel (MP) images during each layer: one after
melting was complete and one after powder had been spread across the print bed. Because
this camera was mounted at an angle relative to the normal vector of the print bed, distorted
images were produced. To correct this distortion and transform the image data into the
common reference frame, a calibration pattern consisting of a 15 × 15 grid of cones with a
12 mm center-to-center spacing was printed and imaged (Figure 2b). The planar center of
each cone was automatically detected and used to calculate a homographic transformation
matrix using the least median of squares (LMedS) [49] method implemented by OpenCV.
To increase the contrast between the printed dots and the surrounding powder and to
facilitate the automatic detection of their centroids, multiple consecutive post-melt images
were background-subtracted, and their difference images were composited together. After
Gaussian blurring to further reduce noise, Otsu’s method [50] was used to threshold the
dot grid image. A connected-components analysis of the binary image enabled outlier dots
to be rejected based on size, aspect ratio, areal fill, and center-to-center distance criteria.
Finally, a bounding rectangle was fit to the dot grid to identify the four outer corner dots,
and each dot was matched to its presumed corresponding dot in the target dot pattern.

The transformed image was then cropped to a physical size of 245 × 245 mm, which
encompassed the printable area of the Concept Laser M2 and produced a calibrated image
size of 1842 × 1842 pixels with a spatial resolution of approximately 130 µm. The resolving
power of the camera setup ranged from 220 to 280 µm across the powder bed, as measured
using a USAF 1951 camera resolution target (Edmund Optics, Barrington, NJ, USA). The
registration error between the CAD geometries and the imaging data was estimated at
approximately 250 µm. To compensate for uneven lighting conditions over the print area,
a smoothed image of an anomaly-free powder spread was used to generate a lighting
correction mask. Figure 2c shows a fused representation of the two visible-light images
after the perspective and lighting corrections have been applied, along with the nominal
CAD geometry. Unless otherwise specified, all following images of the print area are in the
same coordinate system and have the same field of view as introduced in Figure 2c.
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Figure 2. (a) A binary image representing the nominal CAD geometry (white) for layer 650 (32.50 mm) of
build B1.2. (b) A raw, post-melt, QM coating layer image showing the printed calibration cone grid. The
raw images are affected by perspective and lens distortions and suffer from uneven lighting across the
print area. (c) A false-color image fusing the calibrated post-melt and post-spreading visible-light images
from layer 650 (32.50 mm) of build B1.2. The nominal CAD geometry is indicated by the green outlines,
and typical “keep-out” regions of the print area are marked in beige. Arrows indicate recoating and
shield gas flow directions. The dynamic range of the composite image has been modified to accentuate
features of interest, such as the horizontal streaks from the recoating mechanism.
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Unlike the inherently spatial visible-light images, the OEM log file recorded machine
health metrics temporally at sampling rates on the order of 5 Hz. The temporal log file
values used included (1) the total layer time measured in seconds, (2) the top and (3) bottom
argon flow rates measured in cubic meters per hour, (4) the oxygen percentage within
the build chamber, (5) the temperatures of the build plate and (6) bottom argon gas flow
measured in degrees Celsius, and (7) the gas ventilator flow rate measured in cubic meters
per hour. For the purposes of this work, these low-frequency temporal data were spatially
mapped by assigning the average of the values recorded over the duration of a given
print layer to that print layer. Laser scan path information was recovered from the OEM
QM Meltpool [48] system, which records laser location data at approximately 40 kHz in a
technical data management streaming (TDMS) file format (National Instruments, Austin,
TX, USA). Spatial mapping and registration of laser scan order data were achieved using
the methods described by Halsey et al. [51]. However, in the previously reported implemen-
tation, on-axis photodiode data were used to filter out the “skywriting” that occurs at the
laser beam turnaround points, as well as the “jump lines” between printed components. To
improve the reliability of this artifact removal process for this effort, skywriting detection
was instead performed using the laser travel vector to detect the turnaround points, as well
as an empirically derived travel duration to identify the surrounding turnaround region.
Similarly, jump lines were detected based on an empirically derived laser speed threshold.
Figure 3 shows a visualization of the laser scan path within a single layer of a build. The
QM Meltpool data used included the laser module and the laser scan path. Data from
the QM Meltpool on-axis photodiodes and melt pool cameras were not available for this
specific printer.
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Figure 3. A false-color image fusing the laser scan path information with the calibrated post-melt
visible-light image. The color map represents the time since the start of the layer, with darker blue
regions melted first and lighter yellow regions melted last. The laser stripe boundaries are clearly
visible as diagonal discontinuities in the color map. These data are from layer 650 (32.50 mm) of
build B1.2.

2.3. Powder Bed Anomaly Segmentation and Training Methodologies

While the CAD geometries, log file data, and laser scan path information were di-
rectly incorporated into the super-voxels at N5, the two visible-light layer images were
first processed by a dynamic segmentation convolutional neural network (DSCNN) DL
algorithm at N4. The DSCNN converted the high-dimensional multi-modal image data into
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a lower-dimensional embedding that encoded salient features across multiple size scales
in a latent space. That is, the DSCNN performed a semantic segmentation [52] task and
produced pixel-wise classifications of various anomalous and nominal L-PBF conditions.
Because the DSCNN architecture was previously reported by Scime et al. [28], only the
germane differences in its implementation are noted here.

Prior work demonstrated the DSCNN’s ability to classify a variety of powder bed
anomaly classes across multiple powder bed printer types [28]. Eight classes were identified
as potentially relevant to tensile property prediction, examples of which are shown in
Figure 4. The powder and printed classes represent the two nominal L-PBF conditions,
respectively, indicating the unfused and fused material. Recoater streaking generally occurs
when the recoating mechanism is either damaged or dragging debris across the powder bed
and is visually characterized as a long streak parallel to the recoating direction [53]. Edge
swelling appears as small regions of the part, typically corners and edges, elevating above
the spread powder layer. Although edge swelling is common in L-PBF, even under nominal
processing conditions, certain process parameter changes and local part geometries can
increase its occurrence [54,55]. Debris, in the context of this work, generally indicates
low energy density melt parameters prone to causing lack-of-fusion porosity [56]. Super-
elevation of large regions of the part above the powder layer can occur either as the result of
warping caused by residual thermal stresses [57] or improper powder dosing. Soot refers to
spatter particles [58] that have landed on the powder bed. For the imaging system used in
this work, soot generally manifests as clouds of dark particles. In the context of this work,
excessive melting indicates high energy density melt parameters prone to causing keyhole
porosity [59] and is visually characterized and labeled by a bubbling of the part surface.
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Figure 4. False-color images fusing the post-melt and post-spreading visible-light images of each
of the eight powder bed classes that were segmented by the DSCNN. The dynamic range of each
image has been modified to accentuate features of interest. Annotations are presented in yellow to
highlight the relevant sensor indications. Some classes have well-defined boundaries, such as edge
swelling and excessive melting, while others have nebulous boundaries, such as soot and debris, and
are delineated as entire regions during annotation.
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Ground truth training data for the DSCNN were collected through expert annotation
of 180 million pixels across 38 print layers sourced from 23 different Concept Laser M2
builds, all using SS 316L feedstock. For this task, annotators leveraged a purpose-designed
graphical interface incorporating image calibration, data fusion, dynamic range scaling,
standard drawing tools (e.g., brushes, lassos, flood fills), intensity thresholding options,
and ML-assisted annotation capabilities. While it is also possible to train the DSCNN
using ground truths collected from ex situ characterization (e.g., flaw detections from
XCT), this approach is beyond the scope of this work. The manual annotation procedure is
further described in Scime et al. [28], and example annotations and associated data can be
downloaded from the Peregrine v2021-03 [60] dataset.

Data augmentation was used to increase the size of the training set without requiring
the collection of additional ground truths [61]. The augmentation mechanisms applied
during training differed slightly from those reported in Scime et al. [28]; they consisted of
(1) global intensity shifts with magnitudes uniformly distributed between −15% and +15%
of the dynamic range of each image channel, (2) additive Gaussian noise distributions with
variances equal to 0.0001% and 0.001% of the dynamic range of each image channel, and,
new in this work, (3) spatial shifts of each image tile by up to 20 pixels in each direction.
The spatial shift augmentation technique was included to increase the total amount of
training data and to reduce artifacts at the edges of the tiles. The DSCNN was trained
with a cross-entropy loss function weighted by the inverse of the class frequencies as
specified by Equation (6) in Scime et al. [28]. Additional pixel-wise weights were applied to
disincentivize the optimization function from spatially expanding less common classes (e.g.,
edge swelling) at the expense of more common classes. This re-balancing was achieved by
increasing the weight of the ground truths for powder and printed pixels located near an
interface with a less common class. This weight adjustment, w, is given by Equations (1)–(3).

m =
MIN

(

0, Nall
Nint

)

− 1

φ
, (1)

b = 1−m, (2)

where φ is a saturation distance set at 1% of the image size, Nall is the total number of pixels in
the image, and Nint is the number of pixels closer to an interface than the saturation distance.

w(i, j) = m[MAX(1, φ− [D 1 ∪ D2](i, j))] + b, (3)

where w(i, j) is the interfacial weight adjustment at pixel (i, j), and D1 and D2 are the
distance transforms [62] for the combined powder and printed annotation masks.

Other noteworthy changes from [28] include the preservation of the native bit depth
(16 bits) of the visible-light images and the implementation of training early-stop [63]
criteria based on detecting a plateau in the epochal validation accuracy. Additionally, two
heuristics were applied to the segmentation mask produced by the trained DSCNN. The
first heuristic converted excessive melting segmentations further than 750 µm from the
CAD geometry to debris. This mitigates observed confusion between these classes and is
justifiable because excessive melting definitionally cannot occur beyond a melted part. The
second heuristic extends recoater streaking segmentations horizontally across the print area.
This is necessary because, although recoater streaking is readily apparent in the unfused
powder, it is generally difficult to observe over the top of a printed part. However, the
literature suggests that L-PBF recoater streaks often extend into the parts themselves [34],
especially when a compliant recoater is used. Specifically, this heuristic is triggered by
DSCNN recoater streaking segmentations with horizontal dimensions larger than 5 mm,
and only pixels initially classified by the DSCNN as either powder or printed material are
overwritten by the heuristic.
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2.4. Performance of the Dynamic Segmentation Convolutional Neural Network

The overall performance of the DSCNN architecture is extensively documented in
Scime et al. [28]. Table 1 reports the true-positive (TP) and false-positive (FP) validation
rates for the specific DSCNN model and training dataset used for the AIR. The significant
TP performance improvements (e.g., from 17.5% to 85.8% for soot) relative to those reported
by Scime et al. [28] are the result of the increased size of the training database and the
modified training procedures described above.

Table 1. The TP and FP validation performance metrics for the specific DSCNN model used. The
training and validation dataset splits are 90% and 10%, respectively. FP rates are typically higher for
spatially small classes owing to the chosen balance between the class-wise and interfacial boundary
loss weighting schemes.

Class TP (%) FP (%)

Powder 97.3 0.8
Printed 98.6 5.1

Recoater streaking 87.4 62.8
Edge swelling 95.1 34.2

Debris 95.9 26.2
Super-elevation 98.5 3.0

Soot 85.8 15.5
Excessive melting 94.8 72.2

Figure 5 shows an example of a segmented layer. Note that while heuristics were
enabled for Figure 5, they are not included in the validation metrics. The average DSCNN
inference time is 1.7 s, and the layer-wise connected-component analysis of the CAD
geometry is typically less than 2 s, depending on the geometry. Loading the visible-light
images into computer memory and performing the image calibration procedure may be
performed in parallel with DSCNN inference.

ffi

Figure 5. Pixel-wise segmentation results from the trained DSCNN for layer 650 (32.50 mm) from
build B1.2. Anomaly classes are indicated by color.
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2.5. Specimen Design

Four factors influenced the mechanical specimen design: (1) the material properties
of interest, (2) the importance of measuring representative material properties across
multiple as-printed part geometries, (3) the compatibility of the physical specimen size
with the computational constraints of the models, and (4) adherence to accepted material
characterization standards. First, tensile properties, including yield strength (YS), ultimate
tensile strength (UTS), uniform elongation (UE), and total elongation (TE), were selected
as prediction targets for this work. Whereas other material properties, such as fatigue
life, are expected to be comparatively more sensitive to processing anomalies [39], the
shorter testing cycles for room temperature static tensile tests enabled the collection of
many more ground truths. Additionally, static tensile properties were of interest for nuclear
power applications [64], and there is sufficient literature indicating that variations in L-PBF
processing conditions (e.g., geometric feature size, solidification conditions, and void-
type flaws) could induce variations in these properties [36,65–68]. Next, to maintain the
generalizability of the ML models to multiple component geometries and local thermal
histories, the tensile specimens were extracted from a set of larger as-printed geometries
instead of being printed in their final shape, as has been conducted in prior high-volume
tensile testing work by Roach et al. [65]. For clarity, specimens extracted from as-printed
parts will be referred to as samples throughout the remainder of this manuscript. Because
the spatial resolution of the ground truth tensile data was controlled by the size of the
specimen’s gauge section, the standard [69] subsize SS-J3 geometry shown in Figure 6 was
selected, as described in Appendix A.
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Figure 6. Key nominal dimensions of the SS-J3 tensile specimens. All values are in millimeters.

The SS-J3 samples were extracted from four different printed part geometries desig-
nated as SSJ3-A, SSJ3-B, SSJ3-C, and SSJ3-D, as indicated in Figure 7. The CAD models
of each geometry were adjusted to achieve as-printed dimensions as close as possible to
the reported nominal dimensions. The SS-J3 samples were distributed along the nominal
build direction with vertical center-to-center spacings of 19 mm. The SSJ3-A and SSJ3-B
geometries incorporated buttresses to increase part stiffness and maintain the dimensional
accuracy of the parts during printing, heat treatment, and machining. Note that while
the SSJ3-C and SSJ3-D parts produced samples with as-printed and machined surfaces,
the SSJ3-A parts produced samples with only as-printed surfaces, and the SSJ3-B parts
produced samples with only machined surfaces.

2.6. Build Design and Conditions

For all builds in this work, the nominal print layer thickness was maintained at 50 µm,
no preheating was performed, and argon was used as the shield gas. The feedstock was
TruForm (Praxair Surface Technologies, Indianapolis, IN, USA) SS 316L powder sourced
from a single lot. The manufacturer reported D10, D50, and D90 powder particle diameter
values of 20 µm, 31 µm, and 43 µm, respectively. The chemical composition of the virgin
powder, as reported by the manufacturer, is provided in Table 2.
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Figure 7. An isometric view of the CAD model for each of the as-printed SSJ3 part geometries
(top row), the 3D layouts of the SS-J3 samples relative to their corresponding printed part volumes
(middle row), and a top-down view of the part geometries (bottom row). The number of potential
samples and the nominal wall thickness for each geometry are given in the middle and bottom
rows, respectively.

Table 2. Chemical composition of the SS 316L powder lot as reported by Praxair. Values are given in
weight percent.

C Co Cr Cu Fe Mn Mo N Ni O P S Si Other

<0.005 0.08 17.01 0.00 Bal 1.29 2.48 0.01 12.67 0.03 <0.005 0.005 0.59 <0.1

The bulk regions of the SS-J3 samples were melted using the laser raster process
parameter sets defined in Table 3. The nominal parameter set was provided as the default
for SS 316L by Concept Laser, the best parameter was chosen to minimize porosity, the
lack-of-fusion parameter was known to produce significant lack-of-fusion (LOF) porosities,
and the keyhole parameter was chosen to induce keyholing pores. It was expected that the
varying energy densities and solidification cooling rates of these parameter sets would
result in substantially different as-printed microstructures and void-type flaw populations,
as shown in other work [67]. Table 3 also defines the soot parameter, which did not directly
melt any SS-J3 samples but was instead used to generate abnormally large quantities of soot
near some of the tensile samples, with the goal of introducing spatter-induced porosities
as observed by Schwerz et al. [23] and others. The default post-contour parameter set
provided by Concept Laser was applied with a laser beam power of 120 W, a laser beam
speed of 220 mm/s, and a laser spot size of 70 µm.

A total of five L-PBF builds were performed to generate 6299 SS-J3 tensile specimens
used in the feedback loop connecting N6 and N5. Additional builds were performed
for camera calibration, algorithm development, DSCNN training, process parameter de-
velopment, specimen design, heat treatment development, and specimen extraction and
tracking procedure development as described in [70]. Design requirements for the five
builds discussed in this work include (1) facilitating the extraction of thousands of SS-J3
tensile specimens from trackable locations, (2) capturing the range of process and part vari-
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ability expected to occur during L-PBF manufacturing, and (3) generating a range of local
tensile properties caused by various mechanisms hypothesized to correlate to signatures
observable in the available in situ sensor data. The number SS-J3 samples extracted from
each build and the variable build conditions which were expected to result in variable
tensile properties are summarized in Table 4.

Table 3. Laser raster parameter sets used across the tensile sample builds, as provided by Concept
Laser or determined through internal testing.

Parameter Set
Laser Beam
Power (W)

Laser Beam
Speed
(mm/s)

Hatch Spacing
(µm)

Nominal Laser
Spot Size (µm)

Stripe Width
(mm)

Scan Rotation
(Degrees/Layer)

Nominal 370 1350 90 130 10 67
Best 380 800 110 125 18 67
LOF 290 1200 150 50 18 67

Keyhole 290 800 70 125 18 67
Soot 290 1200 70 50 18 90

Table 4. Each build was designed to produce hundreds of SS-J3 tensile specimens which capture
representative process variation expected during L-PBF manufacturing. The number of samples and
the variable process conditions experienced by the samples for each build are summarized below.
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B1.1 503 X X X 0◦ 40 200 X
B1.2 2705 X X X 0◦ 40 200
B1.3 813 X X X X 30◦ 40 200 X
B1.4 694 X X X 0◦ X 25–40 200 X
B1.5 1584 X X X 0◦ 40 5–200 X X

Figure 8 shows an isometric view of each build, along with the part layout, process
parameter assignments, and laser module assignments. At a high level, B1.1 was designed
to produce baseline process conditions, B1.2 was designed to capture the effects of variable
laser raster processing parameters, B1.3 was designed to represent overhanging geometries,
B1.4 was designed to capture the effects of spatter particles and decreased argon gas flow,
and B1.5 was designed to capture the effects of recoater blade damage and powder short
feeds. Intermediate visualizations (N8) of the in situ data and DSCNN segmentation results
for each build are provided in Appendix B for additional context.

2.7. Sample Extraction and Tracking

The printed parts were first heat-treated while attached to their build plates to relieve
residual thermal stresses induced during printing [57]. Relieving these stresses reduced the
amount of distortion experienced by the parts during sample extraction, improving both
the dimensional tolerances of the specimens and the fidelity of the registration between
the tensile test results and the in situ data. Full heat treatment details are provided in
Appendix C.

Following heat treatment, the build plate and associated parts were bead-blasted to
remove oxide scaling and to provide clean touch-off surfaces to define the part origins for
the wire electrical discharge machining (EDM) operation. The parts were separated from
the build plate using an AQ750LH (Sodick, Yokohama, Japan) wire EDM and were then
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fixtured individually for SS-J3 sample extraction. The 3D locations of the SS-J3 samples
were predefined in a CAD model, and a tool path was generated using the ESPRIT 2021
(Hexagon, Stockholm, Sweden) computer-aided machining (CAM) software. This CAD
model was also sliced using the Magics Image Build Processor for registration with the
in situ data (Section 2.2). The parts were sectioned into sheets (Figure 9a), with each
individual SS-J3 specimen still attached via a single Table The samples were then manually
separated from the surrounding material and placed into individual bags labeled with a
quick-response (QR) code (Figure 9b). When scanned, each QR code linked the physical
sample to its unique identifier within the digital platform and allowed the retrieval of its
digital thread (Figure 9c). This cyberphysical infrastructure substantially aided the robust
tracking of the in situ and ex situ data associated with thousands of unique samples.

ff

ff tt
ff

 

tt

Figure 8. Each column shows the build layout for a given build. The top row contains isometric
views of each build after the print was completed. The middle row colors each part by the process
parameter set, with nominal, best, LOF, keyhole, and soot indicated by green, blue, purple, orange,
and yellow, respectively. The bottom row colors each part by the laser module, with the first laser
module indicated by black and the second laser module indicated by gray. Note that the yellow,
soot-generating parts in B1.4 are located upstream of the gas flow relative to the SS-J3 samples.

2.8. Tensile Testing Procedure

Tensile tests were performed using the ASTM E8/E8M [71] procedure with some
modifications to facilitate the high volume of testing. Testing was performed across two
load frames (TestResources, Shakopee, MN, USA) configured with 500 lbf static-rated load
cells calibrated as prescribed by ASTM E4 [72]. The width and thickness of each SS-J3 gauge
section were measured using calipers, while the length was assumed to be the nominal
value of 5 mm because of the difficulty of accurately measuring this dimension. Samples
were installed in a shoulder-loading tensile configuration, preloaded to a nominal load of
between 10 N and 50 N, and then continuously loaded under displacement control at a rate
of 0.5 mm/min (nominally 10% strain/min). The load and crosshead displacement were
recorded at a rate of 10 Hz until the SS-J3 specimen either fractured or the measured load
fell below 10 N. Representative engineering stress–strain curves from samples printed in
B1.2 are shown in Figure 10.
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Figure 9. (a) Example of SS-J3 samples partially extracted from an SSJ3-D part. Samples remain
attached to the sheets in a known configuration until they can be individually labeled. (b) Example
of a tested SS-J3 sample stored in a bag marked with a unique QR code. The QR code contains
information about the printer, build, parent part, and sample location such that it can be uniquely
tracked across the digital platform. (c) A screenshot of a web-based visual representation of the
digital thread for the tensile sample in (b). The digital thread provides a record of the operations
applied to a sample and its parent part, beginning with printing and ending with tensile testing.

Tensile properties were algorithmically calculated from the raw load-displacement
data. First, the curves were adjusted to account for crosshead displacement measured prior
to preloading by shifting the data origin to the initial load measurement and then removing
all measurements that were zero load or lower. Then, load and crosshead displacements
were converted to engineering stress and strain, respectively, using the initial dimensions
of the gauge section. The elastic linear region was identified using datapoints with stress
values between 5 and 50 MPa, and the YS was calculated using the canonical 0.2% offset
procedure. The UTS was defined as the maximum engineering stress measured during
testing, whereas UE was the engineering strain measured from yielding until the point of
maximum stress. The TE was defined as the total engineering strain measured from loading
until failure of the specimen. Any specimens with UTS values lower than 50 MPa were
considered failed tests and were rejected; the lowest non-rejected UTS value was 80 MPa.

2.9. Selected Tensile Test Results

Table 5 summarizes the range of tensile property values measured across the five
builds, along with reference properties from ASTM A240 [73] and for wrought SS 316L as
measured by Byun et al. [64] using similarly sized SS-J2 specimens. Byun et al. [64] also
report the effects of a comparable post-build stress-relief heat treatment on the static tensile
properties of additively manufactured SS 316L, observing a 46 MPa reduction in YS and
no significant differences in UTS, UE, or TE relative to the as-built condition. As desired,
the measured tensile properties span a wide range of values across the intentionally varied
processing conditions. The minimum YS, UTS, UE, and TE are substantially lower than
both the A240 specifications and the wrought properties, whereas the maximum values
exceed these baselines. To estimate an appropriate reporting precision for the measured
tensile values, the standard deviations were calculated for the non-surface SS-J3 samples
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extracted from the SSJ3-D part geometry printed with the BEST process parameters in build
B1.2. These samples were selected because they were expected to have the lowest true
variation in tensile properties, due to uniform thermal conditions and a low flaw density.
The measured standard deviations were 16.6 MPa, 15.6 MPa, 1.73%, and 2.92% for YS,
UTS, UE, and TE, respectively. Therefore, all tensile values are reported with precisions
of 10 MPa, 10 MPa, 1%, and 1%, chosen based on the nearest order of magnitude to the
corresponding standard deviation. The complete set of tensile results are available in the
Peregrine v2023-11 dataset [44].

ffi

ff ff

ff

Figure 10. Representative engineering stress–strain curves for four SS-J3 samples extracted from
four different SSJ3-D parts printed in B1.2. Each sample was printed with a different parameter
set, as indicated in the legend. The calculated values for YS, UTS, UE, and TE are reported next
to their corresponding curve. The SS-J3 specimens printed with the best and nominal parameters
demonstrate superior static tensile properties compared to the specimens printed with the keyhole
and LOF parameters. Strain was approximated by normalizing the crosshead displacement to the
nominal gauge length.

Table 5. Literature values compared to the range of measured YS, UTS, UE, and TE values observed
across all the samples.

Source YS (MPa) UTS (MPa) UE (%) TE (%)

ASTM A240 [73] 170 480 40 N/A
Wrought [64] 261 562 66.0 72.8

B1.1–B1.5 70–420 80–610 0–69 4–94

Figure 11 shows the mean tensile properties measured for the B1.2 samples extracted
from the four SSJ3-D parts, separated by the laser processing parameter set. As expected,
the samples printed with the best parameters have the highest tensile properties, followed
by the nominal samples. The samples printed with the LOF parameters have drastically
lower tensile properties, particularly for UE and TE, which are 56 and 71 percentage points
lower than the best values, respectively. Whereas the magnitudes of the keyhole UE and
TE values only experience relative reductions of 54% and 55%, respectively, compared to
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the corresponding BEST values, their standard deviations demonstrate relative increases of
410% and 240%, respectively. This observation suggests that bulk parts produced using the
KEYHOLE parameter set may be expected to have substantially increased local variation
in their elongation behavior throughout their printed volume as a result of the stochastic
formation of individual keyhole pores [59].

ff
ff

Figure 11. Mean tensile properties measured for all the B1.2 samples extracted from the four
SSJ3-D parts, separated by the laser processing parameter set. Each red error bar represents one
standard deviation.

Figure 12 shows the mean tensile properties measured for the nominal B1.1 samples
separated by the as-printed part geometry (i.e., SSJ3-A, SSJ3-B, and SSJ3-D) from which
the samples were extracted. The lowest tensile properties were observed for the SSJ3-A
thin wall geometry, for which all the extracted SS-J3 samples had two as-printed surfaces.
The highest tensile properties were observed for the SSJ3-B thin wall geometry, for which
all the extracted samples had only machined surfaces. Additionally, the SSJ3-B thin wall
is expected to have a different thermal history than the SSJ3-D blocks, which may result
in beneficial microstructural differences [66]. However, this has not been specifically
investigated for these samples.

Figure 13 shows the mean tensile properties measured across selected subsets from
builds B1.3, B1.4, and B1.5. Considering B1.3, the best overhang-adjacent surface (OAS) sam-
ples extracted from the SSJ3-B parts have substantially lower tensile properties compared
to the corresponding best bulk and top surface (BTS) samples. This indicates that printed
material immediately adjacent to an overhanging design feature can be expected to have
noticeably reduced tensile properties. Conversely, the nominal subset from B1.4 suggests
that the increased amount of soot does not substantially impact the static tensile properties
relative to the nominal data from B1.2. Similarly, comparing the nominal no-short-feed
(NSF) and nominal short-feed (SF) subsets from B1.5 indicates that the intentional powder
short feeds (caused by the reduction in dosing factor) had no significant impact on any of
the measured tensile properties. Further analysis of this large quantity of tensile data is
beyond the scope of this work.

2.10. Construction of the Super-Voxels

To allow an ML model (N6) to learn an accurate transfer function between the in
situ data and the tensile properties measured during testing, the in situ sensor data and
part geometry information were encoded into engineered feature vectors corresponding to
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discrete volumes designated as super-voxels (N5). The encoding was designed to contain
the information required for a generalizable ML model to make property predictions at
the super-voxel size scale. To this end, the printer’s build volume was demarcated into
a fixed grid of rectangular prisms, with each super-voxel measuring 1.0 × 1.0 mm in the
x-y plane and 3.5 mm along the z-axis. Several factors, including empirical measures of
model performance, were considered when determining an appropriate super-voxel size.
First, the super-voxels were sized to approximately match the volume of the SS-J3 gauge
sections, which were, in turn, sized based on the criteria enumerated in Section 2.5 and
Appendix A. Of secondary importance, computational memory restrictions placed a lower
bound on the super-voxel volume. Figure 14 shows a portion of a print layer divided into a
super-voxel grid, with super-voxels extending 70 layers in the vertical print direction.

ff
ff

Figure 12. Mean tensile properties measured for all the nominal B1.1 samples separated by the
as-printed part geometries. Each red error bar represents one standard deviation.

Figure 13. Mean tensile properties measured from several selected subsets of samples from builds
B1.3, B1.4, and B1.5. Each red error bar represents one standard deviation.

257



Materials 2023, 16, 7293
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Figure 14. Intersection of the fixed super-voxel grid with a set of CAD geometries (green lines). Only
super-voxels that overlap the CAD geometry are shown. Each super-voxel is 1 mm on a side and is
colored so that its boundaries with neighboring super-voxels are visible.

Each feature vector was composed of 21 engineered features calculated based on the
CAD geometries, pixel-wise DSCNN segmentations of the post-melt and post-spreading
visible-light layer images, sensor data recorded in the printer log file, and laser scan path
data. Each feature is enumerated, described, and justified in Appendix D. Figure 15 shows
six example feature maps for a sub-region of B1.2. The planar resolution of the geometry
information, DSCNN results, and laser scan path data was 130 µm (Section 2.2), which is
substantially smaller than the super-voxel size. Therefore, these pixel-wise values were first
averaged in the x-y plane to produce a single value per feature, per super-voxel, per layer.
To mitigate computational edge effects, only pixels contained within the CAD geometry
were considered in the planar averaging. Similarly, the vertical resolution of these features
and the log file data was equal to the 50 µm layer thickness. Therefore, averaging in the
vertical direction was accomplished with a sliding window filter with a stride equal to
the height of the super-voxels. For super-voxels intersecting the edges of the printed part
geometries, the averages are weighted proportionally to the number of pixels contained
within the intersection of the super-voxel and the CAD geometry at each layer.

As discussed in more detail in the following section, the training data for the tensile
property prediction model consisted of the feature vectors for valid super-voxels inter-
secting the SS-J3 gauge sections. Super-voxels were considered invalid if any in situ data
were missing or if less than 10% of their area overlapped with the gauge section of a
given SS-J3 sample. To improve training stability, the raw feature values are zero-center
normalized on [−1,1] based on the minimum and maximum values observed across the
combined training and validation dataset. Generally, the potential for an ML model to learn
meaningful discrimination between material volumes increases as the number of in situ
sensor modalities and engineered features increases. However, the total number of features
must be balanced with the challenges of performing enough experiments (Section 2.6) to
capture the expected variation across each feature axis.

2.11. Architecture and Training of the Property Prediction Model

The voxelized property prediction model (VPPM) implements a perceptron [74] ML
algorithm and was used to predict the local tensile properties at N6 based on the engineered
feature vectors described in Section 2.10. The ground truth training targets are the zero-
center normalized tensile measurements reported in Section 2.9. Perceptrons are shallow
neural networks [16] that have been successfully applied to a wide range of regression
problem sets. The perceptron is not necessarily the optimal ML model for this stage of
the relay, but it serves as a viable proof-of-concept because this work primarily focuses

258



Materials 2023, 16, 7293

on framework development, data collection, and feature engineering, leaving model opti-
mization for future publications. A separate VPPM was trained to predict each of the four
tensile properties: YS, UTS, UE, and TE. The perceptron architecture is reported in Table 6.
Along with the training procedure, the perceptron architecture is identical for each of the
VPPMs. The fully connected and dropout neural network layers used by the VPPM are
described in Krizhevsky et al. [75].

 

−

Figure 15. Normalized visualizations of six super-voxel features with brighter and darker regions,
respectively, indicating larger and smaller values. These super-voxels encode data from the keyhole
parts for layers 639 (31.95 mm) through 709 (35.45 mm) of B1.2. For ease of interpretation, super-voxels
not fully contained within the CAD geometry have been cropped. Note that the feature encoding
the distance from the part edge saturates in the center of the SSJ3-D part. Also note that the module
oxygen value is uniform for all super-voxels fully contained within the same layer range.

Table 6. VPPM perceptron architecture. Columns indicate the type of network layer, the number
of input channels (Ci), and the number of output channels (Co). The variable n f eats represents the
number of elements in the super-voxel feature vectors and is fixed at 21 for this work.

Layer Ci Co

Fully connected [75] n f eats 128
10% dropout [75] 128 128
Fully connected 128 1
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The VPPMs were trained using backpropagation [76] and the Adam optimizer [77]
with a loss function that minimized the L1 (i.e., absolute) error between the predicted values
and the ground truths. The kernel weights of both fully connected layers were initialized
from zero-centered normal distributions with a standard deviation of 0.1. Each VPPM was
trained using a mini-batch size of 1000 super-voxels and a learning rate of 1× 10−8, with
tests indicating that the model performance was insensitive to these hyperparameters. The
first and second exponential decay rates of the Adam optimizer were set at 0.9 and 0.999,
respectively, and the epsilon value was fixed at 1× 10−4.

The 6299 SS-J3 tensile samples available for training corresponded to 29,680 unique
super-voxel feature vectors, with an average of 4.7 super-voxels per SS-J3 gauge section.
The mini-batch size was 1000 super-voxels, with 20% of the data used for validation during
each repetition of a 5-fold cross-validation procedure [78]. Cross-validation was performed
to reduce the sensitivity of the model performance to the randomly determined split
between training and validation datasets. For each fold repetition, training proceeded until
the validation error plateaued. Bifurcation of the data into the training and validation sets
was performed sample-wise so that all super-voxels associated with the same ground truth
were assigned to the same set. Note the implication that the same ground truth target, i.e.,
measured SS-J3 tensile property value, is associated with multiple super-voxels, the exact
number of which depends on the intersection of the fixed super-voxel grid with the sample
geometry in 3D space. This condition caps the maximum possible model performance
and, in extremis, could cause instabilities in the training process because each ground
truth cannot be correlated to a unique feature vector. Therefore, minimizing the number of
super-voxels contained by each gauge section was a key computational consideration for
setting the appropriate super-voxel size. Ultimately, this limitation is dependent upon the
localizability of the ex situ testing data and is further considered in the Discussion section.
Although VPPM validation accuracy might be improved by calculating each feature vector
based on the totality of the SS-J3 gauge volume instead of for super-voxels on a fixed grid,
such an approach would not be representative of model test conditions (i.e., predicting
local properties for a printed component of arbitrary geometry) because the prediction
volumes would be differently sized, and certain edge effects (e.g., varying overlap between
the super-voxels and the part geometry) would not be accounted for in the training or
validation sets.

At model test time, each VPPM applied its learned weights and biases to each feature
vector, predicting a single value for each super-voxel that was then denormalized and
converted to real YS, UTS, UE, or TE units. For part qualification, it is valuable to identify
predictions that may be extrapolated instead of interpolated to ensure that human decision-
makers are involved whenever conditions exceed the scope of the models’ training. This
area of study is commonly referred to as out-of-distribution detection [79] and is a nontrivial
determination in high-dimensional space. For this work, a super-voxel was considered out-
of-distribution if the value of any one of the individual features was below the minimum
or above the maximum values observed for that feature within the training set. Although
this bounding heuristic is a necessary check, it is not strictly sufficient. A more sufficient
approach might consist of a clustering analysis [80] of the training set paired with an
empirically determined maximum acceptable distance between a new feature vector and
the observed clusters. However, advanced out-of-distribution detection methods are
reserved for future work. Computationally, any predictions for out-of-distribution super-
voxels were converted to not-a-number (NaN) values and were reported separately.

3. Results

3.1. Validation Performance

The primary performance metrics used to evaluate the VPPMs, and by extension, the
entire property prediction pipeline, were based on the root mean square (RMS) validation
errors averaged over five training folds. Because each gauge section contains several super-
voxels, multiple unique predictions were made for sub-volumes within each sample. These
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overlapping predictions were collapsed to a single value by calculating the minimum of
these predictions. Taking the minimum value provides a conservative estimate of the local
material properties, which best informs the part qualification process. Averaged over the
five folds, only 0.05% of super-voxels were considered out of distribution, indicating that
the training sets successfully captured the process variability observed in the validation set.

Table 7 reports the average RMS error and standard deviations for each VPPM trained
using the full set of 21 features. In relative terms, the RMS errors ranged between 7.1% and
13.2% of their corresponding observed property ranges. It is worthwhile to compare the
VPPM errors to the RMS error produced by naïvely predicting the average of the ground
truth property values observed across the entire dataset. Importantly, this comparison
demonstrates error reductions between 30% and 48% over the naïve approach, which
assumes average tensile properties throughout an entire L-PBF part, with the largest
improvement reported for the UTS predictions. Next, the total RMS error can be considered
as the summation of the intrinsic measurement error (i.e., aleatoric uncertainty) RMSEI

of the tensile test and the model error RMSEM−VPPM as shown in Equation (4), where
the intrinsic measurement error cannot be predicted by any model and is estimated by
calculating the standard deviation (equivalent to an RMS error in this situation) for the
subset of BEST SS-J3 samples extracted from the non-edge regions of the SSJ3-D part
produced in B1.2 (see Section 2.9 for justification). This intrinsic error is also a component of
the naïve RMS error (RMSEnaïve) as shown in Equation (5) and can, therefore, be separated
from both the VPPM and the naïve predictions. After separating the intrinsic error, the
relative reductions in the errors improve to 57%, 61%, 49%, and 46% for YS, UTS, UE,
and TE, respectively. Because this final metric considers both the distribution of the data
due to the process variation across the entire sample set and the spread associated with
intrinsic variations in the tensile testing procedure, the authors propose the use of this or
similar metrics when comparing these VPPM prediction results with those reported for
similar works in the future. Although this is beyond the scope of this work, a more rigorous
analysis of the summation of the error terms [81] may further improve the utility of such
performance metrics.

RMSEVPPM = RMSEI + RMSEM−VPPM (4)

RMSEnaïve = RMSEI + RMSEM−naïve (5)

Table 7. The mean and standard deviations of the 5-fold validation RMS errors for the full-featured
VPPM compared naïve predictions and the estimated intrinsic tensile measurement error. All table
entries are equivalent to RMS errors.

YS (MPa) UTS (MPa) UE (%) TE (%)

Full-featured VPPM 24.7 ± 1.0 38.3 ± 0.9 9.0 ± 0.3 11.9 ± 0.1
Naïve predictions 35.4 ± 1.4 74.2 ± 1.8 16.1 ± 0.4 19.7 ± 0.2

Reduction from naïve 10.7 38.9 7.1 7.8
Measurement error 16.6 15.6 1.7 2.9

To infer the relative importance of the different features, additional VPPMs were
trained using three subsets of the available features: the first set was composed of only the
CAD (Table A2) and scan path information (Table A5), the second set was composed of
only data from the printer log file (Table A4), and the third set was composed of only the
DSCNN segmentation results (Table A3). Comparing the results presented in Table 8 to
those in Table 7, it is apparent that the VPPMs with access to only the CAD information,
scan path information, and printer log file data have predictive powers comparable to the
naïve approach (Table 7). However, including these features in the full-featured VPPM
results in a minor reduction in the RMS errors relative to the VPPMs trained with the
DSCNN segmentations alone. To estimate the sensitivity of the model performance to the
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size of the training set, an ablation study was performed in which the size of the training set
was artificially reduced to 20% of the available data. As shown in Table 8, the RMS errors
remain essentially unchanged, suggesting that significantly fewer tensile tests could be
performed without negatively affecting the predictive capabilities. Reducing the size of the
training set below 20% was not explored in this work and will require careful consideration
to ensure that a representative sampling of the expected process variations is maintained.
Additional validation metrics may also be required to properly measure any increases in
the prediction error for relatively rare events and process conditions.

Table 8. Mean and standard deviations of the 5-fold validation RMS errors for each trained VPPM
under each set of ablated training conditions. The first row of Table 7, indicating the final VPPM
performance, is duplicated here for ease of reference.

Fraction YS (MPa) UTS (MPa) UE (%) TE (%)

Full-featured VPPM 1.0 24.7 ± 1.0 38.3 ± 0.9 9.0 ± 0.3 11.9 ± 0.1
CAD and scan path 1.0 35.4 ± 1.5 76.3 ± 2.1 16.9 ± 0.5 20.1 ± 0.2

Printer log file 1.0 34.4 ± 1.5 73.5 ± 1.9 16.8 ± 0.5 19.8 ± 0.2
DSCNN classifications 1.0 25.7 ± 1.0 40.6 ± 0.8 9.0 ± 0.3 12.2 ± 0.2

Full-featured VPPM 0.2 24.7 ± 1.0 38.4 ± 0.9 9.1 ± 0.4 12.2 ± 0.2

The following results use VPPMs that were trained using the full feature set from the
same representative fold iteration. Figure 16 plots curves similar in function to receiver
operating characteristics (ROC) curves [82] for each of the four VPPMs. The y-axis reports
the percentage of validation samples with RMS errors less than the error threshold, given
as a percentage of the observed validation range of the corresponding tensile value, on
the x-axis. For example, 81% of the validation samples have UTS RMS errors less than
8.0% of the observed validation range of 470 MPa. As suggested by the metrics above, the
UTS VPPM demonstrates the strongest predictive ability, whereas the UE and TE VPPMs
demonstrate the weakest performance. Interestingly, although the UE VPPM slightly
outperforms the TE VPPM at lower error thresholds, its relatively longer tail at higher error
thresholds suggests that a small number of samples have measured UE values that are
particularly difficult for the trained VPPM to predict accurately.

 

ff

Figure 16. Validation ROC-like curves for each of the four VPPMs, as indicated in the legend. The
y-axis reports the percentage of validation samples with RMS errors less than the error threshold
given on the x-axis. The RMS errors are reported as a percentage of the observed range of the
corresponding tensile value within the validation set.
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Figure 17 shows correlation plots for each of the four VPPMs for a selected validation
fold. In these plots, the x-axis reports the ground truth tensile measurement, and the y-axis
reports the predicted tensile property value. This representation of the validation accuracy
can be considered a 2D histogram, with the colormap representing the number of SS-J3
samples present in each bin. If all the VPPM predictions were correct, then only the bins
along the diagonal line (with a slope of unity) would be brightly colored. Note that the
ground truth YS and UTS measurements are primarily bimodal, whereas the UE and TE
measurements exhibit a substantially more uniform distribution of values spread across the
observed range. At the time of writing, the cause of this difference in distribution behavior
has not been determined.

 

tt

Figure 17. Normalized correlation plots showing VPPM predictions for YS, UTS, UE, and TE vs. the
corresponding measured ground truth values for a selected validation fold. The color map indicates
the number of SS-J3 samples present in each bin, with more brightly colored bins containing more
samples and the darkest bins containing no samples. If each VPPM performed perfectly, then all the
datapoints would lie on the diagonal dashed line with a slope of unity.

To focus on the outlying predictions, Figure 18 shows a scatter plot of predicted UTS
versus the ground truth values for a selected validation fold. Each datapoint represents a
single SS-J3 gauge section, and some are labeled with the automatically generated unique
identifier matching the sample’s physical QR code and tracked by the digital platform. If all
the UTS VPPM predictions were correct, then all the datapoints would lie on the diagonal
line with a slope of unity.
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Figure 18. Scatter plot showing the UTS VPPM predictions vs. the corresponding measured ground
truth values for a selected validation fold. Each datapoint represents a single SS-J3 sample tracked
by a unique identifier using the digital platform. The datapoints are colored by the source build as
identified in the legend. If the UTS VPPM performed perfectly, then all the datapoints would lie on
the diagonal dashed line with a slope of unity. Selected subsets of the outlying datapoints are marked
by letters enclosed by curly brackets and are discussed in the text.

Outlier set {a} represents a single tensile sample, designated as P3.S210, from build
B1.5 that is predicted to have a UTS of 540 MPa but has a measured UTS of 280 MPa. Sample
P3.S210 was extracted from the bulk region of an SSJ3-D part printed with nominal process
parameters. As shown in Figure 19, P3.S210 is surrounded by several other samples with
UTS values that are substantially lower than the rest of the printed part. Samples in this
group were not tested sequentially, so it is likely that this outlier represents real variation
in the printed material (as opposed to a tensile testing artifact) not properly modeled by
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the VPPM. Future investigation of the fracture surfaces may indicate the root cause of
this behavior.

Figure 19. Measured UTS values for 288 uniquely identified SS-J3 tensile specimens extracted from
an SSJ3-D part printed in B1.5, spatially registered to the corresponding CAD coordinate system.
For reference, test results are overlaid on top of the visible-light post-melt image captured for the
layer located in the center of their gauge sections. Within the color space, brighter samples represent
a higher measured UTS, and darker samples represent a lower measured UTS. Note the cluster of
relatively low UTS measurements highlighted by the red bounding box.

Outlier set {b} also represents a single tensile sample (P55.S14 from a nominal SSJ3-B
part printed in B1.4) that is predicted to have a UTS of 500 MPa but has a measured UTS of
240 MPa. In contrast to set {a}, the samples surrounding P55.S14 were all measured to have
much higher UTS values, including sample P55.S17, which is located at the same distance
from its closest soot generator and is expected to have a similar thermal history. Additional
investigation (e.g., microstructural characterization), which is beyond the scope of this
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paper, would be necessary to determine if this measurement represents a true variation in
the material properties or if it is an artifact of the tensile testing procedure.

Outlier set {c} represents a group of samples extracted from an SSJ3-D part (designated
P5) produced using keyhole parameters in B1.2, which were measured to have UTS values
ranging from approximately 250 to 450 MPa. Although the VPPM successfully predicts
some of this variation, it is not fully captured by the model. The authors hypothesize
that the relatively large vertical dimension of the SS-J3 gauge sections is detrimental to
the predictive performance of the VPPMs for material with significant populations of
keyhole porosity because it is difficult to correlate the volumetric tensile measurements
with individual in situ sensor indications of keyholing.

Next, outlier set {d} represents a group of samples extracted from an SSJ3-C part
(designated P1) printed using best parameters in B1.3, which were measured to have UTS
values of approximately 570 MPa but were predicted to have a UTS as low as 440 MPa. A
manual review of the sensor data for P1 revealed that significantly more soot was generated
in the vicinity of this part than is typical for parts produced using the best parameters
or for the other parts printed in B1.3. This soot was correctly segmented by the DSCNN,
and the increased soot levels were encoded into the corresponding super-voxel feature
vectors. Unlike other cases within this dataset (e.g., the LOF parts), these increased soot
levels did not correlate with a lower measured UTS, resulting in the lower-than-correct
VPPM predictions.

Finally, outlier set {e} encompasses samples extracted from the LOF parts produced
in B1.2. These samples exhibited extremely low UTS values (Figure 11) because of the
significant levels of lack-of-fusion porosity present within the parts. Significant variation in
UTS is also observed, likely the result of the variable number of pores that intersect with a
given SS-J3 gauge section. After a manual review of the sensor data, the authors consider
it unlikely that this variation could be more accurately modeled, given the available in
situ sensor data. Fortunately, the VPPM still correctly recognizes that these samples have
much lower strengths than nominal L-PBF SS 316L material, which would be a sufficient
threshold for many part qualification scenarios.

3.2. Testing Performance

Extraction of the CAD geometries, spatial registration of the visible-light camera data,
and anomaly segmentation by the DSCNN were performed in real-time on a network-
attached server during the printing operation, and they collectively required several sec-
onds of processing time per print layer, as discussed in Section 2.4. The time required to
calculate the feature vectors for all the super-voxels within a build depended upon the
volume of printed material and ranged from 12 to 19 h for the five builds reported in
this work and was performed post-build. Once the feature vectors were generated, the
prediction of the local tensile properties using the trained VPPMs was trivial, requiring less
than a minute for each build. Given the early-stop criteria, VPPM training required less
than five minutes for each fold. Therefore, the most computationally expensive portion
of this AIR was the generation of the super-voxel feature vectors. Currently, super-voxel
generation is dominated by the time required to retrieve the scan path information from the
TDMS files and spatially map the corresponding temporal data into the common spatial
coordinate system [51]. The authors expect that additional computational optimizations
can be applied to reduce this time burden significantly.

Figure 20 shows the local UTS predictions for a set of layers from B1.2 alongside the
UTS values measured from the SS-J3 samples extracted from the same vertical region of that
build. Most noticeably, the models correctly predict the low strength of the LOF parts in the
back-left quadrant, although the exact values are nearly a uniform average of the observed
variation for these parts, as discussed in Section 3.1. Importantly, the property variation
measured for the keyhole SSJ3-D part in the front-left quadrant is also captured, with
structures appearing qualitatively analogous to the DSCNN segmentations of excessive
melting shown in Figure 15. Furthermore, despite the measured UTS differences being
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relatively small, the models also correctly predicted slightly lower strengths for the thin-
walled SSJ3-A parts, as well as other parts with similarly thin cross-sections. Interestingly,
within the nominal SSJ3-D part in the back-right quadrant, regions of slightly lower strength
were predicted that qualitatively overlap with several of the structures observed in the scan
path feature maps (Figure 15); additional investigation would be required to determine the
veracity of this predicted shift in UTS distributions.

 

Figure 20. (a) Measured UTS values from the SS-J3 samples located between layer 639 (31.95 mm)
and layer 709 (35.45 mm) of B1.2. (b) VPPM-predicted local UTS values for the corresponding layers
as a color map, with white super-voxels indicating regions beyond the part geometries or detected
instances of out-of-distribution super-voxels. The nominal CAD geometry is indicated by the green
outlines, and both images show the full 245 × 245 mm print area.

As a final example, Figure 21 shows the local UTS predictions within a region of interest
for a set of layers from B1.3 alongside the UTS values measured from the corresponding
SS-J3 samples. The models correctly predict that the UTS was, on average, substantially
reduced in the thin-walled SSJ3-A parts and for super-voxels immediately adjacent to the
overhanging surface of the thicker SSJ3-C parts (Figure 13). Of course, with access to entire
volumes of localized tensile property predictions, a wealth of additional visualizations
and analyses are possible. However, the authors reserve a more detailed exploration of
volumetric property predictions for future work.
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Figure 21. (a) Measured UTS values from the SS-J3 samples located within a region of interest and
between layer 1136 (56.80 mm) and layer 1206 (60.30 mm) of B1.3. The region of interest lies within
the back-right quadrant of the powder bed, cropped so that the right side of the image is 122.5 mm
in length. (b) VPPM-predicted local UTS values for the corresponding layers as a color map, with
white super-voxels indicating regions beyond the part geometries or detected instances of out-of-
distribution super-voxels. Overhanging surfaces of interest are indicated by dashed vertical lines.

4. Discussion

In this study, the authors demonstrated several key components of a novel L-PBF
part qualification framework. The results of the tensile tests reported in Section 2.9 make
apparent the interdependencies between local part geometry, melting parameters, and
process conditions, which challenge efforts to create traditional manufacturing design
rules for L-PBF AM. Fortunately, as shown in Sections 3.1 and 3.2, the relay of machine-
learned models (i.e., the AIR) achieved direct localized prediction of tensile properties
for L-PBF printed parts based on data collected in situ during the printing process. The
presented framework is designed to be geometry- and process-parameter-agnostic and,
therefore, substantially generalizable. Importantly, each step in the proposed property
prediction pipeline is modular, allowing the iterative improvement of each component
to address specific limitations. During this study, the authors identified four areas that
should be addressed before similar AIR-based pipelines are applied to instance-wise
part qualification.

First, the resolution of the visible-light camera is currently limited, with a resolving
power of only 280 µm and many features that might indicate sub-surface pores or other
flaws are not currently observable. Other work has demonstrated the successful use of
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substantially higher resolution visible-light cameras for this purpose, such as the analysis
by Snow et al. [83], which used a 36.3 MP sensor to image a similarly sized powder bed.
Similarly, multiple lighting conditions can be used to cast shadows across the powder
bed and increase the contrast of topological features associated with various processing
anomalies [83]. The incorporation of temporally integrated near-infrared (NIR) camera
data, as explored by Schwerz [23], may allow the DSCNN to segment additional anomaly
classes, such as individual spatter particles interfering with the melt tracks [84]. Indeed,
the performance of the current models is impressive, given that a low-cost, OEM-standard
sensor suite was used. The authors expect that significant performance improvements can
be achieved with improved sensor modalities.

Second, precise localization of the tensile test results remains a challenge. Even using
the subsize SS-J3 specimens, the measured tensile properties apply to a relatively large
volume of printed material compared to the size of stochastic flaws such as keyhole porosity.
A potential solution is to use digital image correlation (DIC) [85] to further localize the
failure location within the specimen’s gauge section. Additionally, a subset of the SS-J3
specimens could be rotated during printing so that their long axis is perpendicular to the
vertical build direction. This approach could enable better correlation between tensile
measurements and certain laser scan path features and vertically isolated flaws such as
powder short feeds. Further shrinking the gauge section is also possible but will have to be
considered carefully to avoid introducing additional mechanical testing artifacts. Relatedly,
intrinsic tensile measurement errors could be reduced by using DIC to observe the true
strain (as opposed to using crosshead displacement as a proxy), measuring the initial gauge
section dimensions using an optical silhouette or laser profilometer technique, and using a
robotic arm to insert the specimens into the tensile load frames repeatably.

Third, based on the results of this work, each of the DL, ML, and feature encoding
steps can now be improved. Currently, all the DSCNN annotations are generated manually,
but some flaw indications observable in the NIR [23] sensor modality could be annotated
automatically using XCT as the ground truth [83]. Furthermore, in this work, local thermal
histories are only represented in the super-voxel feature vectors via proxy, but the use
of contemporary analytical thermal models could instead directly encode the thermal
histories, as shown by Donegan et al. [46] and Stump and Plotkowski [86]. Similarly, the
current feature vectors do not explicitly discriminate between super-voxels with machined
vs. as-printed surfaces. This limitation was most apparent in the predictions for the SSJ3-A
and SSJ3-B part types, both of which had similar wall thicknesses but different surface
conditions. Indeed, this situation demonstrates the need for the digital thread to include
information beyond just the printing operation itself (i.e., post-processing steps). Finally,
the VPPM perceptrons were trained using a canonical L1 loss function, which may bias the
model to learn average responses at the expense of predicting rare events. Applying a loss
weighting scheme, such as that described for the DSCNN in Section 2.3, or implementing a
different ML model type altogether, may improve the ability to model the effects of rare
processing conditions. Notably, the existence of several outlying predictions suggests that
the VPPM is not overfitting to specific fluctuations in the data. For example, outlier {a}
is representative of several co-located SS-J3 specimens (Figure 19) with unusually low
measured UTS values but in situ sensor signatures highly similar those of specimens with
much higher UTS values. The VPPM incorrectly predicts the UTS for all nine of these
outlying specimens, including those in the training set. If the VPPM were overfitting, it
is expected that it would instead correctly predict outliers in its training set, despite the
lack of physically significant variation in their corresponding input features. Therefore, the
depth of this neural network could potentially be increased to improve performance while
still producing a generalizable model.

Lastly, if any data-driven L-PBF qualification framework is to be adopted by an indus-
trial user base, it cannot be prohibitively expensive to implement at scale. Therefore, the
generalizability of the proposed framework to different L-PBF printers, feedstock mate-
rials, and material properties is a critical consideration. For discussion, the authors have
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grouped potential model transfer situations into three categories of increasing difficulty.
In the first category, the authors hypothesize that a relay of pre-trained models could be
directly transferred to other similar L-PBF printers using the same alloy, assuming that
the in situ sensor suite is held constant. In the next category, while the proposed data
analysis framework could be applied to a different alloy or material property, this approach
will certainly require replication of a significant testing campaign and a retraining of the
machine-learned models. Fortunately, the ablation results presented in Section 3.1 suggest
that the number of mechanical tests could be reduced by at least 80% without significantly
degrading the predictive capabilities. However, additional research is necessary to deter-
mine the minimum number of specimens required to fully represent the possible process
conditions within the training set, and alternate measures of VPPM performance may
be needed to ensure that the error rate for predicting rare but safety-critical conditions
is accurately quantified. It is also apparent that some material properties (e.g., fatigue
life) are substantially more expensive to measure at scale than static tensile properties, so
the bypass between N4 and N7 (Figure 1) utilizing analytical modeling may be the more
industrially scalable option for such properties. Alternatively, recent federated learning
strategies such as those proposed by Mehta and Shao [30] offer a potential solution to this
problem whereby expensive specimen characterization could be performed across multiple
locations but used to jointly train common models without compromising the intellectual
property of any of the participants. In the final category, it must be recognized that the
difficulty of observing certain anomalies in situ will vary across alloy systems, just as the
localizability of the ex situ measurements will depend on the material property of interest.
In these situations, alternate data-driven qualification frameworks should be explored.

5. Conclusions

In this work, the authors implemented a relay of machine-learned models to further
digital twin-informed, instance-wise qualification of parts printed using L-PBF processes.
The presented modular architecture was designed to be flexible, providing a conceptual
framework for future AM part qualification efforts. To support these efforts, the authors
printed and tested over six thousand tensile specimens, each of which was uniquely tracked
and spatially registered to the in situ sensor data using a cyberphysical digital platform.
The co-registered in situ data and tensile test results are approximately 230 GB in size and
are available in the Peregrine v2023-11 dataset [44]. Layer-wise visible-light images of
the powder bed were segmented using a DSCNN, the results of which were combined
with other in situ data and then encoded into human-engineered feature vectors using
a combination of image segmentation neural networks and classical signal processing
and computer vision algorithms. Localized tensile properties were then predicted at
the super-voxel scale by training a perceptron neural network with the ground truth
tensile measurements.

The viability of this framework was evaluated with multiple performance metrics,
demonstrating significant error reductions relative to traditional, naïve estimates of several
tensile properties, with the best performance improvements observed for UTS. An ablation
study indicated that the in situ layer-wise visible-light powder bed images contained the
majority of the information used by the trained models to predict the tensile properties,
while the log file data, laser scan paths, and CAD information enabled only moderate
improvements. Several sets of outliers were explored in detail to better understand the gen-
eralizability of the learned models and to motivate future work. Finally, tensile properties
were predicted for the entire volumes of all five builds, enabling the qualitative assessment
of the framework’s ability to capture experimentally observed trends, such as the effects of
process parameters, wall thickness, and overhanging surfaces.

Three primary areas have been identified for future work. First, the authors will
make iterative improvements, such as increasing the visible-light imaging sensor resolution
and incorporating a temporally integrated NIR imaging system as an additional in situ
sensor modality. Additionally, the use of a robotic tensile testing system and DIC will
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enable increased sample throughput and will provide more accurate measurements of
the specimen gauge sections to reduce the overall intrinsic tensile measurement error.
Changes to the specimen design and build layout will also improve the localizability of the
ground truth data and will prioritize building smaller sets of samples distributed across a
wider range of builds. Next, the authors will seek to quantify the generalizability of the
framework by applying it to other alloys, L-PBF printers, sensor modalities, and material
properties. Because this set of work will span efforts across multiple national laboratories,
it may also explore techniques such as federated learning, which will be critical for the
industry to adopt any artificial intelligence-based qualification frameworks relying on
extensive training datasets. Finally, software tools and experiments must be developed to
demonstrate the ability of the proposed approach to estimate the performance of a given
instance of a part within a specific application context. Ultimately, the authors believe that
this work demonstrates one of the first viable approaches for direct, localized material
property prediction based on in situ sensor data collected during an L-PBF printing process.
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Appendix A

Because the resolution of the in situ sensor data is on the order of 100 µm, as are many
of the void-type flaws [87] and surface features [65] expected to impact the tensile properties,
a relatively small gauge section was expected to facilitate correlation of the ground truth
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measurements to in situ sensor signatures. Additionally, smaller specimen sizes allowed
samples to be extracted from a more diverse set of part geometries, particularly thin-walled
structures with thicknesses relevant to the nuclear power industry. However, inherent
uncertainties in the spatial registration of the gauge sections to the in situ data, as well as
physical challenges associated with performing tensile tests on extremely small specimens,
ultimately limit the minimum size of the gauge section. Given these considerations, a
standard sub-size specimen was selected for mechanical testing. Existing literature indicates
that tensile properties measured using sub-size specimens may have higher variances and
may not be fully indicative of bulk properties for L-PBF components, generally providing a
conservative estimate of the bulk tensile properties [65]. Therefore, additional corrections
may be required when applying the local property predictions at N7 to a full part; this
topic is addressed in the Discussion section but is broadly beyond the scope of this work.
Finally, it was advantageous for parallel research efforts that the tensile specimens maintain
a form factor that is compatible with the standard canisters used for irradiation studies at
ORNL’s High Flux Isotope Reactor (HFIR). Therefore, an SS-J3 geometry was ultimately
selected, with nominal dimensions specified by ORNL’s generic metal irradiation specimen
standard [69].

Appendix B

Build B1.1, presented in Figure A1, shows the volume percentage of each part that
was classified as printed material by the DSCNN. While all parts were printed with the
nominal process parameters, the DSCNN classifications varied substantially across the
print bed and the part geometries. One objective of this work is to determine the correlation
between the sensor variation observed in a nominally processed build and the measured
static tensile properties.

Each SSJ3-D part in build B1.2 was printed with a different parameter set. Figure A2
visualizes the layer-wise distributions of the printed, edge swelling, debris, and exces-
sive melting DSCNN classes throughout the volumes of these four SSJ3-D parts. For the
histogram of each part, the frequency of a class within a print layer was calculated as a
percentage of the cross-sectional area of the CAD geometry at that layer. These results were
then grouped such that layers with similar class frequencies were placed in the same bin.
Parts with similar in situ sensor (visible-light camera) signatures have overlapping distribu-
tions, while parts with different signatures show differentiation between the distributions
for one or more DSCNN classes. The four process parameter sets used to manufacture
each of these SSJ3-D parts resulted in significant shifts in the anomalies segmented by the
DSCNN. As expected, the LOF and keyhole SSJ3-D parts show the highest percentages of
the debris and excessive melting classes, respectively. The SSJ3-D part printed with the
best parameters has the highest percentage of printed material, whereas the edge swelling
distributions are similar for the nominal, best, and keyhole SSJ3-D parts.

Figure A3 shows a post-build picture of several overhanging B1.3 parts with noticeable
differences in surface oxidation, a plot of DSCNN soot classifications, and a plot of several
shield gas metrics as functions of build height. Note that the seven instances of increased
soot segmentation correlate with the seven distinct discoloration bands in the as-built
parts. The authors hypothesize that as the oxygen concentration within the build chamber
increased, oxidation of the spatter particles increased [88]. The darker spatter particles
were easier for the DSCNN to segment as soot because of the increased contrast within the
layer-wise images. When the oxygen concentration exceeded a threshold of approximately
0.18%, the printer automatically increased the argon gas flow rate across the top of the
build chamber from 90 m3/h to 93 m3/h until the oxygen level returned to below 0.04%.
At this point, the gas flow returned to its nominal setpoint, and the oxygen level was again
allowed to climb, a pattern that resulted in the observed periodic behavior.
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Figure A1. The volume percentage of each part from B1.1 that is classified as printed material
by the DSCNN. Parts with lower percentages of printed material are shaded red, and parts with
higher percentages are shaded green. Significant variation in this metric is present despite uniform
process parameters.

Figure A4 shows a heat map of DSCNN soot segmentations projected through the
height of B1.4 onto the x-y plane, with brighter regions indicating higher percentages of
soot. This visualization conveys the correlation between the right-to-left gas flow and the
deposition of spatter particles across the print area. It is also apparent that, as intended,
parts printed with the soot parameters (indicated by white asterisks) deposited significant
amounts of spatter on top of the SSJ3-A, SSJ3-B, and SSJ3-C parts.
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Figure A2. Histograms showing the distribution of four DSCNN classes throughout the volumes of
the four SSJ3-D parts printed in B1.2. The y-axes are a log scaling of the bin density. These histograms
represent data from layer 25 (1.25 mm) through layer 819 (40.95 mm). The four process parameter
sets result in significant shifts in several of the distributions. For reference, one layer of the DSCNN
results for this build is shown in Figure 5.tt
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Figure A3. On the left, a picture of B1.3 taken after it was removed from the build chamber. Note the
seven distinct numbered regions of increased oxidation on several of the parts. On the right, DSCNN
soot segmentations (upper) and gas flow metrics (lower) are plotted as functions of layer height. Soot
percentages are normalized by the cross-sectional area of the CAD geometry at each layer. Values
from the log file are presented as deviations from their means, which are listed along the y-axis.
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Figure A4. Projection of DSCNN soot segmentations from layer 0 through layer 1599 (79.95 mm)
of build B1.4. The brightest regions indicate that soot was identified in 100% of the layers, and the
darkest regions indicate that no soot was identified in that location for any of the layers. The shielding
gas flows from right to left. White asterisks indicate the parts printed with the SOOT parameters; the
remaining parts were printed with nominal parameters, as indicated in Figure 8. Tiling artifacts [28]
and minor spotting on the camera’s viewport are also apparent in this visualization.

Figure A5 shows a 3D rendering of build B1.5, with DSCNN segmentations of super-
elevation highlighted in red. The two artificially induced powder short feeds were detected
as multiple consecutive layers of super-elevation by the DSCNN. Considering powder
consolidation effects and typical powder packing densities [89], a typical powder layer is
expected to be approximately 70 µm thick, whereas these anomalous layers are expected to
result in powder layers up to 170 µm thick, depending on the location within the print area.
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Figure A5. 3D rendering of B1.5, with part CAD geometries shown in gray and DSCNN super-
elevation segmentations shown in red. Super-elevation is primarily observed at the two build heights
(33.05 and 52.00 mm), where artificial powder short feeds were induced. DSCNN segmentations of
super-elevation are highlighted in red.

Appendix C

Because of a focus on nuclear power applications, the maximum soak temperature
was specified to retain the excellent as-built creep properties of the L-PBF-processed SS
316L material, as identified by Li et al. [90]. Soak times ranging from 0.5 to 24 h were then
tested to minimize the total geometric distortion. The final furnace profile is specified in
Table A1. To ensure that the larger SSJ3 parts reached the target soak temperature for the
specified duration, a thermocouple was inserted into a 1-inch printed cube located in the
middle of each build plate. All heat treatments were performed in ambient air.

Table A1. The post-build heat treatment profile applied to all five builds. The profile was designed to
reduce part distortions due to residual thermal stresses while maintaining creep behavior appropriate
for nuclear power applications.

Segment Description

1 Ramp up at 10 ◦C/min to 650 ± 10 ◦C
2 Soak at 650 ± 10 ◦C for 24 ± 0.5 h
3 Furnace cool to 100 ± 20 ◦C
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Appendix D

Table A2. Set of features calculated based on part CAD geometries and the minimum and maximum
values observed for the combined training and validation sets.

Feature Min Max Justification and Description

1
Distance from
edge (pixels)

1.115 27.000

Thermal histories [46] and porosity populations [58] for a volume are
influenced by its distance from the part edge. Additionally, the surface

roughness [9] of the SS-J3 samples is highly dependent upon whether it was
extracted from the surface or the bulk of its parent part. To represent the

planar distance of a super-voxel from a part edge, a distance transform [62]
is applied to the CAD geometry with values allowed to saturate above

3.0 mm. A Gaussian blur with a 1.0 mm kernel and a standard deviation of
0.5 mm is then applied to mitigate computational edge effects, and a planar

maximum is then performed within each super-voxel.

2
Distance from

overhang (layers)
26.305 71.000

Thermal histories [91,92] for a volume are influenced by its distance above
an overhanging surface. This distance is calculated for a vertical column of

pixels with values allowed to saturate above 71 layers. A Gaussian blur
with a 1.0 mm kernel and a standard deviation of 0.5 mm is then applied to

mitigate computational edge effects.

3
Build height

(mm)
8.875 72.775

Thermal histories for a volume can be influenced by its vertical distance
away from the build plate [93]. This feature is calculated using the nominal

print layer thickness and the known layer number.

Table A3. Set of features calculated based on DSCNN classifications of post-melt and post-spreading
visible-light image data and the minimum and maximum values observed for the combined training
and validation sets.

Feature Min Max Justification and Description

4 Powder 0.000 0.632 Descriptions of DSCNN classes and their corresponding
physical mechanisms are provided in Section 2.3. Each feature is

calculated by applying a Gaussian blur with a 1.0 mm kernel
and a standard deviation of 0.5 mm to the binary mask of each

class. The resultant values represent the distance-weighted
fractions of the surrounding area belonging to each class. The
Gaussian kernel also facilitates the encoding of soot, which is

most easily segmented on the powder surrounding a part.

5 Printed 0.000 1.000
6 Recoater streaking 0.000 0.984
7 Edge swelling 0.000 0.393
8 Debris 0.000 1.000
9 Super-elevation 0.000 0.033

10 Soot 0.000 0.945
11 Excessive melting 0.000 0.955

Table A4. Set of features calculated from the sensor values recorded in the printer log file and the
minimum and maximum values observed for the combined training and validation sets.

Feature Min Max Justification and Description

12 Layer print time (s) 45.3 155.9 The selected log file variables encode sensor values which may
be correlated to differences in thermal history (features 12, 16,
and 17) [94], part oxidation (features 13, 14, 15, and 18) [88],

and laser attenuation (features 13, 14, and 18) [95,96]. For each
sensor, all the values recorded during a layer are averaged

together, weighted by the temporal persistence of each
individual sensor reading.

13 Top gas flow Rate (m3/h) 62.5 99.8
14 Bottom gas flow rate (m3/h) 24.9 40.1
15 Module oxygen (%) 0.000 0.148
16 Build plate temperature (◦C) 27 39
17 Bottom flow temperature (◦C) 41 60
18 Actual ventilator flow rate (m3/h) 25.0 40.0

Table A5. Set of features calculated from the laser scan path data and the minimum and maximum
values observed for the combined training and validation sets.

Feature Min Max Justification and Description

19
Laser

module
0.000 1.000

Despite OEM calibration, the laser beam diameter and laser power may not behave
identically between the two laser modules, potentially resulting in differences in

thermal history, as well as melt pool morphology and size [97]. This feature encodes
the laser module used to melt a given super-voxel.
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Table A5. Cont.

Feature Min Max Justification and Description

20
Laser return

delay
0.020 0.750

The amount of time between adjacent laser passes can influence the thermal history
and the melt pool morphology and size [46]. To calculate a proxy for this metric,

minimum and maximum filters with 1.0 mm kernels are applied to maps of the melt
time since the start of each layer, and their pixel-wise difference is then calculated. A
saturation value was chosen empirically to prevent saturation (excluding the stripe

boundaries) for all the scan strategies used across the five builds.

21
Laser stripe
boundaries

0.018 9.940

Thermal histories, porosity populations, and melt pool morphologies and sizes may
be different at the interfaces between laser stripes [46]. To encode the locations of

stripe boundaries, Sobel filters [47] were applied along both image axes to maps of
the melt time since the start of each layer. The results are combined into a single

pixel-wise value using the root mean square sum of the two Sobel filter responses.
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