

Build a Multi-Agent System (from Scratch)

1. welcome
2. 1_What_are_LLM_Agents_and_Multi-Agent_Systems?
3. 2_Working_with_Tools
4. 3_Working_with_LLMs
5. Appendix_C._Implementing_The_PydanticFunctionTool

welcome
Thank you for purchasing the MEAP for Build a Multi-Agent System (From
Scratch).

Multi-agent systems and the LLM agents that comprise them are some of
the most discussed and worked on topics in AI today. Everyday tasks like
searching the web, as well as more complex tasks like building entire
codebases of software applications, are some examples where LLM agents
have already been deployed. While they are by no means perfect systems,
many recognize the great potential for agent-to-agent interactions to reshape
the way many tasks are done in our society today.

There are more than a handful of LLM agent frameworks that exist today,
which I have used extensively and even contributed to building. In fact,
assuming some prior familiarity with LLMs and having past experiences
programming with Python or JavaScript/TypeScript, you can probably
already create LLM agents as well as multi-agent systems and have them
autonomously perform tasks with any one of these frameworks.

This book, however, employs a hands-on approach to help you gain a
deeper understanding of the inner workings of a multi-agent system and the
LLM agents that comprise them by having you build these from scratch.
This is not so different from how you might deepen your knowledge in
LLMs by learning how to implement attention and transformers yourself.

To build a multi-agent system from scratch, our journey starts with the
building of a foundational LLM agent. We’ll also incorporate a few
significant enhancements to it, such as making it MCP-ready. The vast
network of tools and resources made available through MCP increases the
potential of LLM agents that can leverage them. It also helps to offload
some of the responsibilities for developing robust tooling for LLM agents to
external teams and organizations. We’ll also consider how to implement
human-in-the-loop capabilities and memory for LLM agents, before finally

taking on the step of assembling multi-agent systems through the
Agent2Agent protocol.

We’ll package all our code, which includes the required infrastructure, such
as interfaces for tools and LLMs, in the book’s very own LLM agent
framework that you’ll get to develop for yourself.

This framework is primarily designed for educational purposes, rather than
being deployed in production settings. Nevertheless, it will give you the
foundation to work more confidently and effectively with any other LLM
agent and multi-agent frameworks of your choosing or even to develop your
own specialized solutions.

Please be sure to post any questions, comments, or suggestions you have
about the book in the liveBook discussion forum.

Val Andrei Fajardo, PhD

In this book

welcome 1 What are LLM Agents and Multi-Agent Systems? 2 Working
with Tools 3 Working with LLMs
Appendix C. Implementing The PydanticFunctionTool

file:///C:/Users/pc/AppData/Local/Temp/calibre_6fe6roxu/f0wxuv7s_pdf_out/EPUB/livebook.manning.com.html

1 What are LLM Agents and Multi-
Agent Systems?
This chapter covers

Current real-world applications of LLM agents and multi-agent systems
What LLM agents are and why LLMs alone are insufficient
Important design patterns, enhancements, and protocols for LLM agents
When applications may benefit from multi-agent systems
A roadmap for developing LLM agents and multi-agent systems

If a user asks a Large Language Model (LLM) where to find the best value
in croissants in New York City, the LLM might respond, ‚ÄúI will search the
web for highly-rated croissants and their prices.‚Äù LLMs are very good at
expressing intent to act toward a specific goal‚Äîto generate text that tells us
what they are going to do to resolve a query. At this point, however, we run
into a critical limitation: since LLMs are only text-generators, they cannot
act on their intentions. They can articulate a plan for processing a task, but
cannot carry it out‚Äîunless they are surrounded by a system to orchestrate
the plan and execute the actions.

These orchestration systems are called LLM agents. We‚Äôll add some
nuance to this definition soon, but for our purposes, LLM agents are systems
that automatically turn the LLM‚Äôs intentions into actions.

LLM agents work by interfacing with a key capability of modern LLMs:
tool-calling. By tool-calling, we mean we can give the LLM (in text) a list of
tools and a description of what those tools do, and the LLM can generate (in
text) a tool-call request to call on the appropriate tool to carry out its intent
when queried. The actual processing of this request occurs elsewhere in the
application, and its results are sent back to the LLM for synthesis and
response.

LLM agents utilize tool-calling extensively when performing tasks for users.
They ensure that the tool-call requests made by the LLMs are processed, and
results are sent back to the LLM. Without an LLM agent, users would have
to manage this back-and-forth between tool processing and querying the
LLM themselves.

As in real life, the more tools in your toolbox, the more you can do;
equipping an LLM with tools for web search, math calculations, and code
interpreters, for instance, makes it capable of handling a variety of tasks. We
can build our own tools for LLMs to use, but we can also rely on the tools
that others have created. Anthropic‚Äôs Model Context Protocol (MCP) is a
popular standard for how LLM agents access third-party tools with which
they can equip their underlying LLM. Many tools, as well as other resources,
are made available through MCP, and tapping into them dramatically
increases an LLM agent‚Äôs potential.

It is also possible to combine multiple LLM agents into a single system in
order to improve task performance. We refer to such systems as multi-agent
systems (MAS). In MAS, individual LLM agents collaborate with each other
to perform tasks on behalf of a user. Google‚Äôs Agent2Agent (A2A)
protocol helps facilitate these collaborations by defining a standard for
agent-to-agent interactions. With A2A, even LLM agents built using
different frameworks can collaborate with each other to accomplish a task.

To work with LLM agents and multi-agent systems, and make the most of
them, it‚Äôs important to have a deep understanding of how they work. To
gain that understanding, we will

build our very own LLM agents and multi-agent systems from scratch. We
will build the complete infrastructure for LLM agents and MAS from the
ground up, including interfaces for LLMs, tools, MCP resources, and A2A
connectivity. And we‚Äôll package all of these into our very own LLM
agent framework.

Several LLM agent frameworks already exist, and most AI engineers and
practitioners use one of them. But the goal of this book is to give you a
deeper understanding of how these LLM agents function, so you can work
confidently and efficiently with these existing frameworks or build

specialized solutions specific to your needs. That‚Äôs why we are building
ours from scratch.

1.1 Where LLM Agents and Multi-Agent Systems
are useful

To get an idea of the broad usefulness of LLM agents and MAS, let‚Äôs
discuss a few real-world use cases, some of which are depicted in figure 1.1.

Figure 1.1 The applications for LLM agents are many, including agentic RAG, report
generation, deep search and computer use, all of which can benefit from MAS.

1.1.1 Report generation

The typical process for producing a report involves the collection of a large
body of information, synthesizing it into key insights, and summarizing
these insights into a structured output format. Since LLMs can synthesize
large bodies of text information, the report generation task has become a

popular task for LLM agents. For instance, we might task an LLM agent to
collect statistics on a variety of investment opportunities, and then provide a
risk-and-opportunity assessment report for each of them. Note: reports like
these can be marred by LLM hallucinations, so monitoring is crucial.

1.1.2 Web search and deep search

Performing searches against general user queries is a common use for LLM
agents. Here, the LLM agents feature an LLM that has likely been fine-tuned
for enhanced reasoning capabilities and web search tools. Perplexity.ai is one
of the new web search engine companies that use LLM agents, but
OpenAI‚Äôs ChatGPT and Anthropic‚Äôs Claude web applications have
also recently added web search.

An extension of web search is deep research, which involves a multi-step
orchestration logic that executes steps of deep browsing of webpages,
followed by synthesis and report generation steps. Google‚Äôs Gemini Deep
Research product employs an orchestration logic that involves planning,
searching, reasoning, and reporting. The other large LLM providers offer
their own versions of deep research. Later in this book, we‚Äôll implement
our very own deep research agent using our LLM agent build.

1.1.3 Agentic RAG

LLM agents can also be used as part of a retrieval-augmented generation
(RAG) system, otherwise known as Agentic RAG systems. In these
applications, LLM agents are equipped with tools for querying previously
built knowledge stores that contain artifacts to help answer user queries.
Imagine a company with all its meeting notes and internal documentation
indexed into a set of knowledge stores. An agentic RAG system can then
retrieve context from these documents to answer queries supplied by the
company‚Äôs employees.

1.1.4 Coding LLM agents

One of the more popular uses for LLMs and LLM agents has been for
coding and software development. There‚Äôs even a new term, ‚Äúvibe

file:///C:/Users/pc/AppData/Local/Temp/calibre_6fe6roxu/f0wxuv7s_pdf_out/EPUB/.html

coding,‚Äù for giving the reins over to an LLM or LLM agent to code entire
projects or applications, with the human only providing natural language
instructions. Coding LLM agents can also work together to contribute to an
application‚Äôs code base, very much like how human software developer
teams contribute to a project. In these applications, LLM agents can be
equipped with sandboxed code interpreters for executing arbitrary code in
secure environments.

1.1.5 Computer use

LLM agents have also recently been equipped with tools that increase their
scope and permissions, including those providing controls to entire
applications, such as web browsers. With computer-use applications, the
LLM agents can even be given control of the entirety of the operating
software. With these kinds of permissions, LLM agents can perform tasks
such as ordering food, buying concert tickets, and more, all through using a
computer, much like how humans would. In this way, LLM agents can be
viewed as next-generation Robot Process Automation (RPA) systems, which
traditionally are rules-based and cannot flexibly adapt or apply reasoning to
make decisions like LLM agents can.

1.1.6 Enhancing applications with MAS

All of these uses for LLM agents may be enhanced through MAS by using
specialized agents across different components of an overall task. In the
report generation application, you might have a specialized LLM agent that
can more effectively summarize or extract information from domain-specific
datasets, like financial documents. This agent might collaborate with another
LLM agent that is responsible for producing well-structured reports. Or we
might employ a team of coding LLM agents for building a full-stack
application: you might have one that builds front-end code and another that
creates the backend. In principle, MAS excel when complex tasks can be
decomposed into smaller sub-tasks, where focused LLM agents outperform
general-purpose ones.

1.2 What is an LLM agent?

A simple definition of an agent is some entity that acts autonomously to
perform a task. Since LLMs can only generate text and cannot act, they
cannot be viewed as agents.

As mentioned, LLMs can, however, express intent to act through text. They
can generate tool call requests and can formulate plans to perform tasks. So
if we build a system around an LLM that can orchestrate the executions of
these generated tool-call requests and plans, that system could be viewed as
an agent.

Definition

An LLM agent is an autonomous system, comprised of a backbone LLM and
tools, that acts on tool-call requests and plans formulated by the LLM to
perform tasks on behalf of a user.

Figure 1.2 shows an LLM agent that utilizes the Qwen3-7b (i.e., the 7 billion
parameter version of Qwen3) model as its backbone LLM and is equipped
with five tools. Three of these tools are accessed through Anthopic‚Äôs
MCP, meaning third-party tool providers could have created them.

Figure 1.2 An LLM agent is comprised of a backbone LLM and its equipped tools.

1.2.1 Prerequisite LLM capabilities

By our definition, an LLM agent depends on the backbone LLM‚Äôs plans
and requests for tool calls to accomplish tasks. To be effective, LLM agents
require their backbone LLM to make sensible choices for the next actions,
including which tool calls to perform, after synthesizing the results of
previous actions. Two LLM capabilities that can meet this requirement are
planning and tool calling.

Planning

LLM agents are often implemented so that their backbone LLMs create
initial plans to execute a given task. This happens at the very beginning of
the task execution and clearly relies on the overall capability of the backbone
LLM to formulate plans. Setting an incorrect plan at the very beginning of
the task execution can lead to catastrophic outcomes such as incorrect task
results, task execution timeouts, or massive inefficiencies.

Suppose we were to execute on our task of finding the best-value croissants
in New York City. The LLM agent might first receive the original user
request and formulate an initial plan. It does this through text generation, of
course, and could look something like the following:

"I need to find all of the bakeries in New York City that sell
croissants and check their prices as well as their ratings.
Then, I need to build an analysis with this information to
determine the best-value croissants in NYC."

This initial plan typically forms the start of a new sub-step execution, which
is part of the broader task processing. As you can imagine, planning is not
only used at the beginning of the task execution, but also throughout its
entirety.

One common way to implement a task execution is through a processing
loop that produces steps or actions towards task completion. We utilize the
LLM‚Äôs planning capability to synthesize the results of the previous steps
or actions and their contribution to the overall task execution. It is here that
the LLM agent, through its backbone LLM, can adapt its current plan to a
new one based on these past results. The LLM agent could, for example,
course-correct if it deems that the past steps have led the execution down a
not-so-happy path, or it could determine that the task has been completed,
perhaps earlier than anticipated, and exit the task execution with the
appropriate task result.

Figure 1.3 shows how LLM agents plan with LLMs.

Figure 1.3 LLM agents utilize the planning capability of backbone LLMs to formulate initial
plans for tasks, as well as to adapt current plans based on the results of past steps or actions
taken towards task completion.

Planning vs Chain-of-Thought and Reasoning LLMs

A related concept to planning is Chain-of-Thought, an LLM-prompting
technique that attempts to have LLMs provide their reasoning and deduction
steps, in addition to the final response. Prompts used to elicit these chains of
thought from LLMs to answer questions could include demonstrative
examples, known as few-shot exemplars.

For instance, ‚ÄúThe number 77 is divisible by 7 and 11. Thus, 77 is not a
prime number‚Äù would be an exemplar answer to the question ‚ÄúIs 77 a
prime number?‚Äù that could be included under an examples section of a
prompt.

These prompts also typically include words like ‚Äúshow your or work‚Äù
or ‚Äúlet‚Äôs solve this step-by-step‚Äù in the system-context setting
portion of the prompt.

In recent times, LLMs have been further trained to generate long chains of
thought, and such LLMs have come to be known as ‚Äúreasoning LLMs.
‚Äù These generated sequences of text are often included in the final text
output, typically enclosed in a section marked by the tags ‚Äú<thinking>‚Äù
and ‚Äú</thinking>‚Äù.

As a result of their post-training, reasoning LLMs may also have increased
abilities to plan, and could therefore be a worthy candidate as the backbone
LLM for LLM agents.

Tool Calling

The second prerequisite capability for the backbone LLM is tool calling.
Earlier, we discussed how to equip an LLM with a tool by providing it with
textual descriptions of the tool‚Äôs functionality and parameters. By doing
so, we enable the LLM to express an intent to use the tool. You can see this
tool-equipping process in figure 1.4

Figure 1.4 An illustration of the tool-equipping process, where a textual description of the tool
that contains the tool‚Äôs name, description and its parameters is provided to the LLM agent.

Let‚Äôs unpack the rest of the broader tool-calling process and overall
capability.

Tools that are equipped to the LLM agent can be used for future tool calls.
The entire tool-call process is shown in figure 1.5

Figure 1.5 The tool-calling process, where any equipped tool can be used.

Each tool-call process begins with an LLM making a tool-call request. This
tool-call request is text generated by the LLM, which includes the tool
identifier as well as the values for the required parameters of the selected
tool. LLMs often make these tool-call requests through a structured output,
such as a JSON format. For example, and in continuation with our task to
find the best-value croissants in New York City, the LLM may generate a
web-search tool-call request that looks something like the following:

{
 "tool_name": "web-search-tool", #A
 "parameters": { #B
 "query": "Croissant bakeries in New York City and their
prices.",
 }
}

As you can see, the tool request that the LLM makes contains not only the
tool selection but also the values for the selected tool‚Äôs parameters.

After an LLM has made a tool call request, the tool is executed with the
provided parameters. The results of the tool call execution are then sent back
to the LLM, allowing it to synthesize the information and generate an
appropriate response.

Teaching LLMs how to tool-call

To provide LLMs with this tool-calling capability, often also referred to as
‚Äútool usage‚Äù, LLMs typically undergo supervised fine-tuning, a form
of post-training. This training uses instruction examples that demonstrate the
types of tool calls the LLM should learn to generate. The objective is to
teach the LLM to adhere to the specified format for making tool call requests
and to learn when tool calls would be appropriate. An LLM that cannot
generate tool call requests would undoubtedly be a bad choice for the
backbone LLM of an LLM agent.

Having discussed the two prerequisite capabilities of the backbone LLM,
let's now see how the LLM agent uses these capabilities to perform tasks
through its processing loop.

1.3 The processing loop

The processing loop of an LLM agent is where all the action takes place.
Plans are developed, tool calls are made, and steps are taken to complete the
task. When initial plans fail, they can be adapted to perform the task
successfully. LLM planning and tool-calling capabilities are repeatedly used
within a processing loop. Figure 1.6 shows the processing loop and how
tasks are performed within it. Let‚Äôs walk through this mental model
together.

Figure 1.6 A mental model of an LLM agent performing a task through its processing loop,
where tool calling and planning are used repeatedly. The task is executed through a series of
sub-steps, a typical approach for performing tasks.

A processing loop is initiated when a task is submitted to the LLM agent for
execution. The actual approach for executing tasks within a processing loop
is a design choice. For our LLM agent framework, our approach is to
execute the task through a series of sub-steps, as shown in figure 1.6.

At the start of every step, the LLM agent synthesizes the results and progress
made so far on the task to create the next intermediate plan or step. For the
very first step of task execution, since no prior progress has been made, the
LLM agent simply uses the user‚Äôs request or task instruction to formulate
the initial step‚Äôs plan. The LLM agent can make tool calls within any
step.

For our example task of finding the best-value croissants in New York City,
let‚Äôs suppose that the initial plan and tool call presented in the previous
sections, where we discussed the prerequisite LLM capabilities, form the
first sub-step. Here‚Äôs an outline of this first step, as it fits within the
overall task execution.

2 Working with Tools
This chapter covers

Specifying the base class for tools to standardize how they are used in our
framework
Defining the data structures for facilitating a tool-call process
Turning Python functions into tools to use with LLMs and LLM agents

You now know that tools are a crucial part of LLM agents. Tools, such as those for
performing web searches, plotting data, and executing code in a sandboxed
environment, increase the potential of LLM agents and expand the range of tasks
they can perform.

Equipping an LLM with a tool requires us to provide a textual description of the
tool so that the LLM can understand how to use it. LLMs can use a tool through
the tool-calling process, which involves the LLM generating a tool-call request,
invoking the tool, and finally returning the result to the LLM for synthesis and
response.

The focus of this chapter, as illustrated in figure 2.1, is to build the required
infrastructure for defining tools and how they can be used. We’ll package all our
code in our own LLM agent framework, called llm-agents-from-scratch.

Figure 2.1 The focus of the current chapter, through the lens of our build plan introduced in Chapter 1.
Before we can build an LLM agent, we first need to properly define tools and how they can be used
within our framework.

To be more specific, we’ll define a base class interface for tools, BaseTool, which
will serve as a blueprint for adding tools to our framework. This blueprint will also
help to standardize how tool calls are performed, as well as how the textual
descriptions of tools are prepared and passed to the LLM. To completely
standardize the tool calling process in our framework, we’ll need to introduce a
couple of new data structures that represent the input and output of tool calls.

In addition to defining the base class and adding the necessary data structures,
we’ll also implement a couple of subclasses that will help us to create LLM tools
from Python functions.

To follow along with the code examples, I recommend forking the book’s GitHub
repository and activating the framework’s dedicated virtual environment. You can
do so by running the following terminal commands while in the project’s root
directory.

uv sync #A

mac or linux
source .venv/bin/activate

windows (powershell)
.venv\Scripts\activate

Additionally, a Jupyter notebook containing executable code for the example
demonstrations in this chapter has been prepared and can be found in the book’s
GitHub repository: https://github.com/nerdai/llm-agents-from-
scratch/blob/main/examples/ch02.ipynb. Code snippets marked with # Included
in examples/ch02.ipynb are available in this notebook for you to run.

I recommend using uv to launch Jupyter Lab to ensure all the necessary packages
are installed for you to run these examples. You can do this by running the
following terminal command in the project’s root directory (where
pyproject.toml can be found).

uv run --with jupyter jupyter lab

2.1 BaseTool: a blueprint for tools

Tools can differ significantly in their functionality. For example, a tool that
performs web searches is obviously very different from another tool that can plot
pie charts. LLM agents with tools of various functionalities have the potential to
be more potent and versatile. However, if these tools also differ significantly in
how they’re invoked, then it would be challenging to realize such potential. These
differences might also lead to the LLM making mistakes when requesting tool
calls.

A better approach would be to define a standard way for calling tools, regardless
of their different functionalities. For similar reasons, we’d also want to standardize
the way in which textual descriptions of tools are formatted. This standardization
will pave the way for us to write reliable code that enables LLMs and LLM agents
to work with these tools—as you’ll see later, in Chapters 3 and 4.

We will define this standard for tools through a special base class, BaseTool,
which we’ll implement in this section. To be even more precise, though, we’ll also
be implementing a related base class called AsyncBaseTool. Together, these base
classes define the standard that every tool added to our framework must conform
to.

To keep things simple, let’s consider only BaseTool for now and revisit
AsyncBaseTool later. Figure 2.2 illustrates the same LLM agent from before, along
with its tools, each of which is now shown to inherit from BaseTool.

file:///C:/Users/pc/AppData/Local/Temp/calibre_6fe6roxu/f0wxuv7s_pdf_out/EPUB/examples.html

Figure 2.2 Each tool inherits from the BaseTool class, allowing the LLM agent to access the textual
descriptions and execute the logic of each tool in the same manner.

Our BaseTool class will specify a set of methods and attributes, which every tool
that inherits from it must also support. For simplicity, figure 2.2 shows only the
__call__() method and the parameters_json_schema attribute, but we will soon
see the full structure of BaseTool.

As mentioned earlier, defining the BaseTool only gets us part of the way toward
implementing a standardized tool-calling process in our framework. We also need

to define two new data structures for representing the input and output of a tool
call. The ToolCall class will define our tool-call input, and the ToolCallResult
class will define our tool-call output.

Before we write any code, let’s quickly revisit the tool-calling process that we
covered in the previous chapter, and see how our new classes fit into it. Figure 2.3
shows the familiar tool-calling process diagram, but with our new classes
incorporated into it.

Figure 2.3 Incorporating our new classes—BaseTool, ToolCall, and ToolCallResult—into the tool-calling
process, first shown in Chapter 1.

As you learned in the previous chapter, the first step to the tool-call process is for
the LLM to select a tool and generate a tool-call request. We can now add more

structure to this step by packaging the generated request into a ToolCall object.
The next step would be to execute the selected tool’s logic using the parameters
specified in the tool-call request. Since all tools will conform to the standard
interface defined in BaseTool, we will be able to execute every tool’s logic in the
same way. That is, through the selected tool’s __call__() method, which would
accept the previously created ToolCall object as input. After the tool’s logic is
executed, the result is then packaged into a ToolCallResult object, which can
then be passed back to the LLM.

Now that we have outlined how these new classes will work together, let’s delve
into their structural details, which are provided in the UML class diagrams seen in
figure 2.4.

Figure 2.4 The UML class diagrams for BaseTool, ToolCall and ToolCallResult.

We covered a few of the basics for UML class diagrams in Chapter 1. You may
recall from that previous discussion that attributes are outlined in the top section of

the rectangular box, while methods are provided in the bottom section. Figure 2.4
shows that ToolCall consists of three attributes—id_, tool_name, and arguments
—and no methods. The ToolCallResult class also has three attributes and no
methods. Those attributes are tool_call_id, content, and error. We’ll go over
what these attributes represent when we write the code for these two classes.

Figure 2.4 also shows the full structure of the BaseTool class, which we covered
only partially at the beginning of this section. We were previously familiar with
the parameters_json_schema attribute and the __call__() method, but now we
can see two additional attributes: name and description.

Finally, figure 2.4 illustrates a couple of new UML concepts that we’ll now go
over. First is the inheritance relationship, which is indicated by a solid line with a
hollow triangle arrowhead pointing from the child class to the parent class. You
can see that both ToolCall and ToolCallResult inherit from the external
pydantic.BaseModel class. Second, you may have noticed that, rather than the
usual circle with a “C” beside the BaseTool text, there is a circle with an “A”
instead. This “A” stands for abstract and indicates that any tool that extends the
BaseTool class must provide implementations for the methods which have been
marked as abstract; these are methods that have no default implementation in the
base class. You’ll see how we mark methods as abstract when we implement the
BaseTool class.

TIP

Pydantic is a Python library that is especially useful in defining data models that
require robust validation.

Now that we understand how these classes are structured and work together in the
tool-calling process, let's implement them!

2.1.1 Implementing ToolCall and ToolCallResult

We’ll implement our two new data structures, one at a time, starting with
ToolCall. The three attributes of ToolCall were shown in figure 2.4. The id_
attribute provides a string identifier for a ToolCall object, while tool_name and
arguments represent the selected tool’s name and the parameter values we’ll use to
invoke it, respectively.

The following listing shows the implementation of ToolCall.

Listing 2.1 Implementing ToolCall

llm_agents_from_scratch/data_structures/tool.py #A
import uuid
from typing import Any

from pydantic import BaseModel, Field

class ToolCall(BaseModel):
 """Tool call.

 Attributes:
 id_: A string identifier for the tool call.
 tool_name: Name of tool to call.
 arguments: The arguments to pass to the tool execution.
 """

 id_: str = Field(default_factory=lambda: str(uuid.uuid4()))
 tool_name: str #B
 arguments: dict[str, Any] #C

Since ToolCall inherits from pydantic.BaseModel, we specify attributes under
the class declaration. With pydantic, the three attributes are also called model
fields. We can add customizations to any of the fields, such as providing a default
factory method, as we’ve done for id_. This means that we do not need to supply a
value for id_ when creating a ToolCall object. I should also mention that a default
constructor is provided for pydantic.BaseModel objects, which explains why we
don’t need to define an __init__() method ourselves.

As discussed earlier, we need to package the tool-call requests generated by LLMs
into ToolCall objects. Let’s revisit our best-value croissant in New York City
example from the previous chapter. Suppose the backbone LLM generates a tool-
call request in natural language text: “I need to use the web-search-tool to run the
search query: ‘Croissant bakeries in New York City and their prices’.” Figure 2.5
shows how we create a ToolCall object from this request.

Figure 2.5 Creating a ToolCall object from an LLM’s natural language tool-call request. Since the web-
search tool is a BaseTool, we must first convert the request into a ToolCall object before invoking it.

Converting this request to a ToolCall object requires identifying the selected
tool’s name as well as the arguments we’ll use to invoke it. The following code

snippet demonstrates how we can use these identified elements to create our
ToolCall object.

Included in examples/ch02.ipynb #A
from llm_agents_from_scratch.data_structures.tool import ToolCall

croissant_tool_call = ToolCall(
 tool_name="web-search-tool", #B
 arguments={
 "query": "Croissant bakeries in New York City and their
 prices.", #C
 }
)

NOTE

In practice, we use APIs or Software Development Kits (SDKs) provided by LLM
providers to elicit tool-call requests. In contrast to our example, these requests are
typically generated according to a pre-specified structured format. This is
beneficial because working with unstructured text would be brittle and pose
significant challenges when extracting the required elements to build ToolCall
objects consistently. We’ll work with one such API in the next chapter when we
build out the base class for LLMs.

With our ToolCall object created, we can now invoke the tool’s __call__()
method to execute the requested web search. Since we haven’t yet implemented
our BaseTool class, we’ll have to wait a little longer before we can see this step in
action.

For now, let’s continue with our planned implementation of ToolCallResult. You
saw earlier from figure 2.4 that ToolCallResult has three attributes:
tool_call_id, content, and error. The content attribute stores the results of the
tool-call execution, while the error attribute specifies whether or not an error was
encountered. The tool_call_id attribute helps to tie back the result to its
associated tool-call request. Figure 2.6 shows how the creation of the
ToolCallResult object is dependent on the outcome of a tool execution.

Figure 2.6 Creating a ToolCallResult object from the selected tool’s execution, handling both successful
and failed executions.

After a successful execution, the result is assigned to the content attribute and the
error is set to False. If an error is encountered during the tool’s execution, the

content and error attributes are set to None and True, respectively.

The following code implements the ToolCallResult class.

Listing 2.2 Implementing ToolCallResult

llm_agents_from_scratch/data_structures/tool.py
import uuid
from typing import Any

from pydantic import BaseModel, Field

… #A

class ToolCallResult(BaseModel):
 """Result of a tool call execution.

 Attributes:
 tool_call_id: The id of the associated tool call.
 content: The content of tool call.
 error: Whether or not the tool call yielded an error.
 """

 tool_call_id: str #B
 content: Any | None #C
 error: bool = False #D

As you can see, the implementation of ToolCallResult is similar to that of
ToolCall since both classes inherit from pydantic.BaseModel.

Continuing our previous example, if we imagine a successful execution of the
web-search-tool, we’d create a ToolCallResult object with its content set to
the execution result and its error set to False, as the following code snippet
demonstrates.

Included in examples/ch02.ipynb #A
from llm_agents_from_scratch.data_structures.tool import
ToolCallResult

result = ToolCallResult(
 tool_call_id=tool_call.id_, #B
 content={
 "search_results": … #C
 }
)

2.1.2 Implementing BaseTool

Now that we’ve implemented the necessary data structures for working with the
BaseTool class, let’s move on to its implementation. As we saw from the UML
class diagram in figure 2.4, BaseTool is an abstract class with three attributes and
one method.

The three attributes—name, description, and parameters_json_schema—
provide the information needed to equip an LLM with the BaseTool. More
specifically, they are used to prepare the textual descriptions passed to the LLM, as
shown in figure 2.7.

Figure 2.7 Revisiting the tool-equipping process. With a BaseTool, we can use its attributes to fill in the
values required for textual descriptions that are passed to the LLM.

Once a tool is equipped to the LLM, it can be used in a tool-call process. As we've
already discussed, the __call__() method is now responsible for the tool's
execution, which takes in a ToolCall and outputs a ToolCallResult.

We’ll mark this __call__() method as abstract, implying that subclasses will need
to provide an implementation for it. The following listing shows the code for
BaseTool.

Listing 2.3 Implementing BaseTool

llm_agents_from_scratch/base/tool.py #A
from abc import ABC, abstractmethod
from llm_agents_from_scratch.data_structures.tool import (
 ToolCall, #B
 ToolCallResult, #B
)

class BaseTool(ABC):
 """Base Tool Class."""

 @property #C
 @abstractmethod
 def name(self) -> str:
 """Name of tool."""

 @property
 @abstractmethod #D
 def description(self) -> str:
 """Description of what this tool does."""

 @property
 @abstractmethod
 def parameters_json_schema(self) -> dict[str, Any]:
 """JSON Schema for tool parameters."""

 @abstractmethod
 def __call__(
 self,
 tool_call: ToolCall,
 *args: Any,
 **kwargs: Any,
) -> ToolCallResult:
 """Execute the tool call.""" #E

You can see that we’ve marked the __call__() method as abstract by applying the
@abstractmethod decorator to it.

For our three attributes, you may be surprised to see that we have marked them
with @abstractmethod as well. While they’re marked as abstract methods, the
@property decorator gives us the attribute-like behavior we want. This provides
some flexibility in terms of hiding internal attributes and performing validation

when needed. However, the main reason I have chosen to use property attributes
here is for a consistent interface. All subclasses must provide implementations for
name, description, parameters_json_schema, and __call__(), and failing to do
so would raise an AbstractMethodError.

NOTe

Most, if not all, LLM providers have designed their LLM tool-calling APIs and
SDKs to accept outlines of the tool’s parameters that adhere to the JSON Schema
specification. Using JSON Schema for our framework is a technically sound
choice that also happens to maximize compatibility with existing LLM tools and
services.

Let’s look at a simple example of building a tool by subclassing the BaseTool class
we just implemented. For this example, we’ll create a tool called the Hailstone tool
that applies a single step of the Hailstone sequence to a given positive integer. If
the integer is even, the Hailstone tool outputs the result of halving it; if odd, the
Hailstone tool outputs the result of multiplying it by three and adding one. Figure
2.8 illustrates the Hailstone tool and its execution logic as part of a tool-call
process.

Figure 2.8 The Hailstone tool performs a Hailstone step on a given positive integer. By implementing the
Hailstone tool as a subclass of BaseTool, we can use it within the tool-call process for LLMs.

To implement the Hailstone tool as a BaseTool, we know from before that we’ll
have to write implementations for name, description, parameters_json_schema,
and __call__().

For name and description, we’ll use “hailstone” and “A tool that performs a
Hailstone step on a given input number,” respectively. For

parameters_json_schema, we need to provide a schema of the Hailstone tool’s
parameters that conforms to the JSON Schema specification. We’ll create this
manually for this simple example, but later in this chapter, we’ll build a helper
function to generate these JSON Schemas automatically.

The Hailstone tool requires only one input parameter: the integer to which we
want to apply the Hailstone step. If we call this input parameter x, which aligns
with the naming used in figure 2.8, the JSON Schema for the Hailstone tool’s
parameters looks like the following code.

{
 "type": "object",
 "properties": { #A
 "x": { #B
 "type": "number",
 "description": "The input number."
 },
 },
 "required": ["x"], #C
}

As you can see, the input parameter x is specified and listed as required.

JSON Schemas like the one we just created are simply JSON documents that use a
set of reserved keywords to describe their data requirements. Readers unfamiliar
with the JSON Schema specification may find it helpful to read the sidebar, which
provides an overview of the basics of JSON Schema.

JSON Schema basics

JSON Schemas are themselves JSON documents that are used to describe the
shape and format of data. This specification makes it easier to create and share
data. For example, JSON Schemas can be used to specify the shape of data
representing transactions from a retail store. As another example, a JSON Schema
can also be used to describe LLM agents.

Let’s say that we want to have LLM agents specified by their backbone LLM and
the list of its equipped tools. To accomplish this, we’d structure the overall JSON
Schema using the type object. This object JSON data type is analogous to the
Python dict type. Within an object, we can define its properties, or key-value
pairs, that represent the object.

For our LLM agent, we would have two properties: llm and tools. Each property
in JSON Schema is defined by a schema object that specifies its data type and
constraints. We may want the llm property, for example, to specify the name of the
LLM model, like “gpt-5”. In this case, we’d specify the llm property type to be the
string JSON type.

In contrast, the tools property would be an array JSON type, which is analogous
to the Python list data type. In addition to specifying the data type, we can also
provide a name or title to each JSON Schema fragment. The following code
shows the JSON Schema that we just described.

{
 "title": "LLMAgent",
 "type": "object", #A
 "properties": {
 "llm": { #B
 "title": "Llm",
 "type": "string" #C
 },
 "tools": { #D
 "items": { #E
 "additionalProperties": true,
 "type": "object"
 },
 "title": "Tools",
 "type": "array" #F
 },
 },
 "required": [#G
 "llm",
 "tools"
]
}

With this JSON Schema, we know precisely how to create a valid LLM agent data
record. We see the shape and format of this data and understand that a valid LLM
agent data record must include both llm and tools properties, as shown in the
following code.

{
 "llm": "gpt-5",
 "tools": [
 {
 "name": "websearch-tool"
 }
]
}

Failing to have either of these fields or supplying incorrect data types would result
in a JSON data validation error. The following code shows an invalid LLM agent
data record because it is missing the llm property.

{
 "tools": [
 {
 "name": "websearch-tool"
 }
]
}

By passing JSON Schemas of the tool parameters to LLMs, they’ll know exactly
how to provide the required information for parameters when making tool-call
requests.

For more comprehensive information on JSON Schemas, readers are encouraged
to read other resources such as https://json-schema.org/.

The last item to implement for our Hailstone tool is its __call__() method. With
our parameter’s JSON Schema established, we can now expect ToolCall objects
passed to the Hailstone tool to contain the key x in their arguments dictionary. The
value for this key is the input number to which we’ll apply the Hailstone step
logic. The following code implements this logic after extracting the input number
from a given ToolCall object called tool_call.

x = tool_call.arguments.get("x") #A
if x % 2 == 0:
 result = x // 2 #B
else:
 result = (x * 3) + 1 #C

return ToolCallResult(#D
 tool_call_id=tool_call.id_,
 content=result,
 error=False,
)

Our code successfully implements the Hailstone step and packages the result into a
ToolCallResult, as required by the __call__() method. This implementation
keeps things simple at this stage, but a more robust version could include
validation and error handling for the input parameter x.

The following code ties everything back together, providing the entire
implementation for the Hailstone tool.

file:///C:/Users/pc/AppData/Local/Temp/calibre_6fe6roxu/f0wxuv7s_pdf_out/EPUB/json-schema.org.html

Included in examples/ch02.ipynb #A
from typing import Any
from llm_agents_from_scratch.base.tool import BaseTool
from llm_agents_from_scratch.data_structures.tool import (
 ToolCall,
 ToolCallResult,
)

class Hailstone(BaseTool): #B
 @property
 def name(self) -> str:
 return "hailstone"

 @property
 def description(self) -> str:
 return "A tool that performs a Hailstone step on a given
input
 number."

 @property
 def parameters_json_schema(self) -> dict[str, Any]:
 """JSON Schema for tool parameters."""
 return {
 "type": "object",
 "properties": {
 "x": {
 "type": "number",
 "description": "The input number."
 },
 },
 "required": ["x"]
 }

 def __call__(
 self,
 tool_call: ToolCall,
 *args: Any,
 **kwargs: Any,
) -> ToolCallResult:
 """Execute the tool call."""
 x = tool_call.arguments.get("x")
 if x % 2 == 0:
 result = x // 2
 else:
 result = (x * 3) + 1

 return ToolCallResult(
 tool_call_id=tool_call.id_,
 content=result,
 error=False,
)

We can run the Hailstone tool call shown in figure 2.8 as follows:

Included in examples/ch02.ipynb #A
hailstone_tool = Hailstone() #B

tool_call = ToolCall(#C
 tool_name="hailstone",
 arguments={"x": 3},
)

tool_call_result = hailstone_tool(tool_call) #D
print(tool_call_result)

The returned ToolCallResult object contains the result of applying the Hailstone
step to x = 3, which is 10.

tool_call_id='112233', content='10', error=False

A demonstration of using the Hailstone tool’s name, description, and
parameters_json_schema to prepare a textual description for an LLM will have to
wait until we’ve implemented the BaseLLM class, which is the subject of the next
chapter. For now, let’s go over the other base class that we mentioned earlier:
AsyncBaseTool.

2.1.3 The AsyncBaseTool

To conclude this section, we’ll present an important variation of the BaseTool
class: the AsyncBaseTool, which is designed for tools whose logic executes
asynchronously. Tools that make external API calls, such as for checking weather
data, are best suited for asynchronous execution. While waiting for the result of an
external API call, asynchronous tools allow other parts of an application’s code to
execute simultaneously. Figure 2.9 illustrates the difference in execution
mechanics between BaseTool, which is synchronous and therefore blocking, and
the non-blocking AsyncBaseTool.

Figure 2.9 Comparing synchronous and asynchronous tool executions.

During the execution of an AsyncBaseTool, if it must wait for external results,
other parts of an application can start or continue running. This concurrent

execution often yields significant speed gains due to improved resource utilization
compared with the synchronous execution of its BaseTool counterpart.

Figure 2.10 shows the UML class diagram of the AsyncBaseTool class.

Figure 2.10 The UML class diagram for AsyncBaseTool, which shows a nearly identical structure to the
BaseTool class.

The AsyncBaseTool class exposes an interface similar to BaseTool. It shares the
same attributes as BaseTool, and also supports a __call__() method. However,

the __call__() method of AsyncBaseTool is asynchronous.

In Python, we mark methods as asynchronous by using the keyword async just
before declaring the method signature. The complete implementation for
AsyncBaseTool is provided in the following code.

Listing 2.4 Implementing AsyncBaseTool

llm_agents_from_scratch/base/tool.py
from abc import ABC, abstractmethod
from llm_agents_from_scratch.data_structures.tool import (
 ToolCall,
 ToolCallResult,
)

class BaseTool(ABC):
 """Base Tool Class."""
 … #A

class AsyncBaseTool(ABC):
 """Async Base Tool Class."""

 @property
 @abstractmethod
 def name(self) -> str:
 """Name of tool."""

 @property
 @abstractmethod
 def description(self) -> str:
 """Description of what this tool does."""

 @property
 @abstractmethod
 def parameters_json_schema(self) -> dict[str, Any]:
 """JSON schema for tool parameters."""

 @abstractmethod
 async def __call__(#B
 self,
 tool_call: ToolCall,
 *args: Any,
 **kwargs: Any,
) -> ToolCallResult:
 """Asynchronously execute the tool call."""

As an example, if the Hailstone tool from earlier inherited from AsyncBaseTool
instead of BaseTool, we would invoke it with the following code.

hailstone_tool = Hailstone() #A

tool_call = ToolCall(#B
 tool_name="hailstone",
 arguments={"x": 3},
)

tool_call_result = await hailstone_tool(tool_call) #C

note

The async keyword turns a function into an asynchronous one that returns a
coroutine when called. Coroutines are non-blocking objects that enable concurrent
execution within an asynchronous event loop, such as the ones provided by the
asyncio library. Results of coroutines must be awaited using the await keyword
when called from an asynchronous method. To run a coroutine from synchronous
code, you can use asyncio.run().

Exercise 2.1 Hailstone as an AsyncBaseTool

Re-implement the Hailstone tool from earlier, but this time make it inherit from
AsyncBaseTool. For its execution logic, introduce a 1-second sleep before
performing the Hailstone step by using asyncio.sleep(1).

2.2 SimpleFunctionTool: a subclass of BaseTool

While we were able to implement the Hailstone tool with relative ease, we can
add extra convenience by developing an abstraction that automatically builds
BaseTool objects from Python functions. In this section, we’ll create
SimpleFunctionTool, a subclass of BaseTool that serves as a wrapper class for
creating tools in this manner.

When supplied with a function, SimpleFunctionTool automatically implements
name, description, parameters_json_schema, and __call__() using the
information encapsulated in the function, as shown in Figure 2.11.

Figure 2.11 Wrapping Python functions with SimpleFunctionTool so that they can be used as tools for
LLMs and LLM agents.

We’ll also implement the asynchronous version of SimpleFunctionTool, for
creating AsyncBaseTool objects derived from asynchronous Python functions.
Figure 2.12 shows the UML class diagrams for SimpleFunctionTool and
AsyncSimpleFunctionTool.

Figure 2.12 UML class diagrams for SimpleFunctionTool and AsyncSimpleFunctionTool.

Both classes inherit from their corresponding base tool classes and add a new
attribute called func, which is the function they wrap. For SimpleFunctionTool,
the wrapped function is synchronous, while for AsyncSimpleFunctionTool, it is
asynchronous.

If we reconsider the Hailstone tool, the new SimpleFunctionTool class enables an
alternative implementation based on a function that implements the Hailstone step
logic, as shown in the following code.

Included in examples/ch02.ipynb #A
def hailstone_step_func(x: int) -> int:
 """Performs a single step of the Hailstone sequence."""
 if x % 2 == 0:
 return x // 2 #B
 else:
 return 3 * x + 1 #B

The idea is to have SimpleFunctionTool wrap the hailstone_step_func() to
create a new tool that an LLM or LLM agent can use in a tool-call process.

2.2.1 Implementing SimpleFunctionTool

Now that we have an idea of what we’re trying to accomplish, let’s implement
SimpleFunctionTool. Since SimpleFunctionTool inherits from BaseTool, as
shown in figure 2.12, we know that we’ll need to implement name, description,
parameters_json_schema, and __call__(). As previously discussed, we’ll derive
these implementations automatically based on the supplied function and a new
attribute, func.

To start, for the name attribute, we’ll use the name of the Python function. For
description, we can use the docstring of the Python function if it exists;
otherwise, we fall back to some pre-specified template. The implementations of
these first two attributes, as well as the constructor __init__() method are shown
in listing 2.5.

Listing 2.5 Implementing SimpleFunctionTool.(__init__(), name, description)

llm_agents_from_scratch/tools/simple_function.py
from typing import Any, Callable
from llm_agents_from_scratch.base.tool import BaseTool

class SimpleFunctionTool(BaseTool):
 """Simple function calling tool.

 Turn a Python function into a tool for an LLM.
 """
 def __init__(
 self,
 func: Callable[..., Any], #A
 desc: str | None = None,
) -> None:
 """Initialize a SimpleFunctionTool.

 Args:

 func (Callable): The Python function to expose as a tool
to the
 LLM.
 desc (str | None, optional): Description of the function.
 Defaults to None.
 """
 self.func = func
 self._desc = desc #B

 @property
 def name(self) -> str:
 """Name of function tool."""
 return self.func.__name__ #C

 @property
 def description(self) -> str:
 """Description of what this function tool does."""
 return (
 self._desc or self.func.__doc__ or f"Tool for
 {self.func.__name__}" #D
)

Let’s now move on to implementing parameters_json_schema for
SimpleFunctionTool. When we implemented the Hailstone tool earlier, we
created the parameters JSON Schema manually. I mentioned then that we’d later
build a helper function to automate the generation of these schemas. We’ll do this
now by implementing a helper that derives the JSON Schema from func by
inspecting its method signature. We’ll call this helper function:
function_signature_to_json_schema().

Implementing function_signature_to_json_schema() mainly involves mapping
Python data types to the corresponding JSON Schema data types, as well as
determining which of the function parameters are required because they have no
defined default values.

NOTE

We’re coding a JSON Schema builder from scratch with our implementation of
function_signature_to_json_schema() to deepen our understanding of how the
textual descriptions of tools are prepared for an LLM to consume. In the next
section, we will introduce yet another BaseTool subclass that handles this aspect
more robustly by leveraging the JSON Schema generation capabilities offered by
the pydantic library.

There is quite a bit of logic that needs to be implemented in
function_signature_to_json_schema(). To help you better understand all of it,
I’ve illustrated the logic in figure 2.13. Let’s walk through all of it together before
seeing the entire implementation in a listing.

Figure 2.13 A visual breakdown of the three steps involved in the implementation of the helper
function_signature_to_json_schema.

As shown in figure 2.13, there are three steps to implement. First, we introspect
the function signature to identify the parameters and their annotated types. Second,

we loop through all the identified parameters to build a JSON Schema fragment
for each of them. This step involves mapping the parameter’s type to the
corresponding JSON data type and determining if the parameter is required. Third,
we assemble and return the overall JSON Schema.

The complete implementation of function_signature_to_json_schema() is
provided next in listing 2.6.

Listing 2.6 Helper for turning a function signature into a JSON Schema

llm_agents_from_scratch/tools/simple_function.py
import inspect
from typing import Any, Callable, get_type_hints

def function_signature_to_json_schema(func: Callable) -> dict[str,
Any]:
 """Turn a function signature into a JSON schema.

 Inspects the signature of the function and maps types to the
 appropriate JSON schema type.

 Args:
 func (Callable): The function for which to get the JSON
schema.

 Returns:
 dict[str, Any]: The JSON schema
 """
 sig = inspect.signature(func) #A
 type_hints = get_type_hints(func)
 python_to_json_schema_type = { #B
 str: "string",
 int: "number",
 float: "number",
 dict: "object",
 list: "array",
 type(None): "null",
 bool: "boolean",
 tuple: "array",
 bytes: "string",
 set: "array",
 }

 properties = {}
 required = []
 for param in sig.parameters.values(): #C
 # skip args and kwargs
 if param.kind in (param.VAR_POSITIONAL, param.VAR_KEYWORD):
 continue

 annotation = type_hints.get(param.name, param.annotation)
 if annotation in python_to_json_schema_type:
 this_params_json_schema = {
 "type": python_to_json_schema_type[annotation],
 }
 else:
 # fallback schema, that accepts everything
 this_params_json_schema = {}
 properties[param.name] = this_params_json_schema

 # check if param is required
 if param.default == inspect._empty: #D
 required.append(param.name)

 return { #E
 "type": "object",
 "properties": properties,
 "required": required,
 }

Phew, that was a lot of work. Fortunately, all that remains to implement
parameters_json_schema is to invoke our helper function, as shown in the
following code.

Listing 2.7 Implementing SimpleFunctionTool.parameters_json_schema

llm_agents_from_scratch/tools/simple_function.py
import inspect
from typing import Any, Callable, get_type_hints
from llm_agents_from_scratch.base.tool import BaseTool

def function_signature_to_json_schema(func: Callable) -> dict[str,
Any]:
 … #A

class SimpleFunctionTool(BaseTool):
 """Simple function calling tool.

 Turn a Python function into a tool for an LLM.
 """
 … #B

 @property
 def parameters_json_schema(self) -> dict[str, Any]:
 """JSON schema for tool parameters."""
 return function_signature_to_json_schema(self.func) #C

Let’s move on to the final required implementation, __call__(). Since
SimpleFunctionTool serves as a wrapper class to create a tool from func, we’ll
simply delegate to func within __call__(). Before this delegation, however, we’ll
first perform validation on the parameter data provided by the LLM in its tool-call
request. Figure 2.14 shows these validation and delegation steps when __call__()
is invoked.

Figure 2.14 Executing a SimpleFunctionTool involves validating the parameter data of the ToolCall
object and subsequently delegating to the wrapped function.

Any failures experienced in either the validation or delegation stages are handled
by returning a ToolCallResult with error set to True and content set to a JSON-
serialized string containing information on the error.

To perform the parameter data validation, we’ll use the jsonschema library. When
a ToolCall object, say tool_call, is passed to __call__(), we validate
tool_call.arguments against the tool’s parameters_json_schema. The following
listing shows this validation aspect of the overall __call__() implementation.

Listing 2.8 Implementing SimpleFunctionTool.__call__() (validation)

llm_agents_from_scratch/tools/simple_function.py
… #A
from jsonschema import SchemaError, ValidationError, validate

class SimpleFunctionTool(BaseTool):
 """Simple function calling tool.

 Turn a Python function into a tool for an LLM.
 """
 … #B

 def __call__(
 self,
 tool_call: ToolCall,
 *args: Any,
 **kwargs: Any,
) -> ToolCallResult:
 … #C
 try:
 # validate the arguments
 validate(tool_call.arguments, #D
 schema=self.parameters_json_schema)
 except (SchemaError, ValidationError) as e:
 error_details = {
 "error_type": e.__class__.__name__,
 "message": e.message,
 }
 return ToolCallResult(#E
 tool_call_id=tool_call.id_,
 content=json.dumps(error_details),
 error=True,
)

 … #F

Delegating to the wrapped function, func, amounts to passing the validated
tool_call.arguments to it. Listing 2.9 implements the delegation portion of

__call__().

Listing 2.9 Implementing SimpleFunctionTool.__call__() (delegation)

llm_agents_from_scratch/tools/simple_function.py
… #A

class SimpleFunctionTool(BaseTool):
 """Simple function calling tool.

 Turn a Python function into a tool for an LLM.
 """
 … #B

 def __call__(
 self,
 tool_call: ToolCall,
 *args: Any,
 **kwargs: Any,
) -> ToolCallResult:
 … #C

 … #D

 try:
 # execute the function
 res = self.func(**tool_call.arguments) #E
 except Exception as e:
 error_details = {
 "error_type": e.__class__.__name__,
 "message": f"Internal error while executing tool:
 {str(e)}",
 }
 return ToolCallResult(#F
 tool_call_id=tool_call.id_,
 content=json.dumps(error_details),
 error=True,
)

 return ToolCallResult(
 tool_call_id=tool_call.id_,
 content=str(res),
 error=False,
)

We have now completed our implementation of SimpleFunctionTool. To
celebrate, let’s complete the alternative implementation of the Hailstone tool,
based on the hailstone_step_func() we coded earlier.

Included in examples/ch02.ipynb #A
from llm_agents_from_scratch.tools.simple_function import (
 SimpleFunctionTool
)

convert our Python function to a BaseTool
hailstone_tool = SimpleFunctionTool(hailstone_step_func)

print(hailstone_tool.name)
print(hailstone_tool.description)
print(hailstone_tool.parameters_json_schema)

The resulting print statements should return the values of the attributes that were
automatically derived from the supplied hailstone_step_func().

hailstone_step_func #A
Performs a single step of the Hailstone sequence. #B
{'type': 'object', 'properties': {'x': {'type': 'number'}},
'required': ['x']} #C

Running this version of hailstone_tool with a ToolCall object works in the
same manner as our original implementation.

Included in examples/ch02.ipynb #A
from llm_agents_from_scratch.data_structures import ToolCall

tool_call = ToolCall(
 tool_name="hailstone_fn",
 arguments={"x": 3}
)

res = hailstone_tool(tool_call) #B

This is great. With SimpleFunctionTool, we’ve unlocked a useful pattern for
building tools from Python functions that LLMs and LLM agents can use. Let’s
wrap up this section by quickly implementing its asynchronous counterpart.

2.2.2 The AsyncSimpleFunctionTool

With AsyncSimpleFunctionTool, we aim to provide the same automatic tool
creation that SimpleFunctionTool enabled, but for asynchronous functions. The
mental model for AsyncSimpleFunctionTool is similar to that for
SimpleFunctionTool, which was illustrated in figure 2.11. The adapted version
for AsyncSimpleFunctionTool is shown in figure 2.15.

Figure 2.15 Wrapping an asynchronous Python function to create an AsyncBaseTool object
automatically.

You might also recall from the UML class diagrams shown in figure 2.12 that
AsyncSimpleFunctionTool and SimpleFunctionTool are structurally very similar.
The main difference is that the func attribute of AsyncSimpleFunctionTool stores
an asynchronous Python function.

All these shared similarities mean that we can reuse much of the code we wrote for
SimpleFunctionTool when implementing AsyncSimpleFunctionTool. Because of
this, we’ll only cover the parts of the implementation where differences do exist
between the two classes.

The first subtle difference lies in the implementation of the constructor,
__init__(). Specifically, the type annotation that we’ll use for func is more
specialized now: Callable[…, Awaitable[Any]]. This updated annotation
indicates that we’re now working with a function that returns an object that can be
awaited by using the await keyword. Coroutines, which we previously discussed,
are one example of an awaitable object.

TIP

The typing.Awaitable class is more flexible than typing.Coroutine,
representing any object that is awaitable, which includes coroutines,
asyncio.Futures, and asyncio.Tasks.

The next and final difference involves the implementation of __call__(). Since
the wrapped function is asynchronous, we’ll need to use the await keyword when
delegating to it. The validation logic is identical to that used for
SimpleFunctionTool. The following code shows the implementation of
AsyncSimpleFunctionTool.

Listing 2.10 Implementing AsyncSimpleFunctionTool (differences only)

llm_agents_from_scratch/tools/simple_function.py
… #A
from llm_agents_from_scratch.base.tool import AsyncBaseTool

class AsyncSimpleFunctionTool(AsyncBaseTool): #B
 """Async simple function calling tool.

 Turn a Python function into a tool for an LLM.
 """

 def __init__(
 self,
 func: Callable[..., Awaitable[Any]], #C
 desc: str | None = None,
) -> None:
 … #D

 … #E

 async def __call__(#F
 self,
 tool_call: ToolCall,
 *args: Any,
 **kwargs: Any,
) -> ToolCallResult:
 … #G

 … #H

 try:
 # execute the function
 res = await self.func(**tool_call.arguments) #I
 … #J

Exercise 2.2 Alternative async Hailstone implementation

Re-implement the async Hailstone you created in Exercise 2.1, but this time using
AsyncSimpleFunctionTool. To do this, you’ll need to turn the
hailstone_step_func() into an asynchronous function. Test both versions on the
same input to verify they return identical outputs.

2.3 PydanticFunctionTool: another subclass of
BaseTool

The SimpleFunctionTool from the previous section features our from-scratch
helper method function_signature_to_json_schema() for automatically
deriving JSON Schemas from function signatures. In this final section, we’ll
provide an alternative function tool wrapper class, PydanticFunctionTool, with
similar capabilities to SimpleFunctionTool, but which leverages the pydantic
library for more powerful and robust JSON Schema generation and validation
capabilities.

The implementation procedure for PydanticFunctionTool, which also inherits
from BaseTool, is very similar to that used to implement SimpleFunctionTool in
the previous section. For this reason, we won’t cover the full implementation of
PydanticFunctionTool here and instead will focus on its usage pattern in our
framework. Interested readers can refer to Appendix C for a comprehensive
walkthrough of the full implementation.

The usage pattern for our PydanticFunctionTool is slightly different than that of
SimpleFunctionTool. The main difference is that we’ll now require the
parameters of the wrapped function to be supplied via a pydantic.BaseModel as
shown in the following code.

Included in examples/ch02.ipynb #A
from pydantic import BaseModel

class MyFuncParams(BaseModel): #B
 x: int

def my_func(params: MyFuncParams) -> int: #C
 print(params.x) #D

With my_func() defined, we can use PydanticFunctionTool in a similar manner
to SimpleFunctionTool to wrap my_func() to automatically create a tool that an

LLM or LLM agent can use.

Included in examples/ch02.ipynb #A
from llm_agents_from_scratch.tools.pydantic_function import (
 PydanticFunctionTool
)

tool = PydanticFunctionTool(my_func) #B

This new tool can take in ToolCall objects to perform the tool-call process like
any other tools implemented in this chapter.

Exercise 2.3 Hailstone tool as an PydanticFunctionTool

Re-implement the Hailstone tool, but this time using PydanticFunctionTool.
Refer to Appendix C for usage guidance to complete this exercise.

The main benefits of PydanticFunctionTool are not directly obvious from the
usage pattern we’ve just covered. Instead, the benefits are seen in the
implementation of the parameters_json_schema attribute and the validation
portion within __call__(). For these, we now rely on Pydantic’s more robust
JSON Schema generation and validation capabilities through
BaseModel.model_json_schema() and BaseModel.model_validate(),
respectively. In addition to the PydanticFunctionTool, its asynchronous
counterpart, AsyncPydanticFunctionTool has also been added to the framework.
Both classes can be imported from
llm_agents_from_scratch.tools.pydantic_function.

We have covered a lot of ground in this chapter by implementing the base tool
interfaces as well as adding a couple of handy tool factory classes that turn Python
functions into tools which LLMs and LLM agents can use.

In the next chapter, we’ll crucially implement our BaseLLM class as well as the
OllamaLLM subclass of it that will allow us to work with LLMs supported by
Ollama, a popular open-source LLM inference framework.

2.4 Summary

To build an LLM agent, we need to build the required infrastructure,
including abstractions representing tools that they work with to perform tasks.
LLMs require the following information to be able to make a tool call request
for a given tool: its name, a description of its functionality, and a JSON

Schema of its input parameters.
A BaseTool object executes a single ToolCall and returns a single
ToolCallResult object.
The AsyncBaseTool class is designed for tools that execute their logic
asynchronously.
The SimpleFunctionTool is a wrapper class for turning Python functions into
a BaseTool objects.
The AsyncSimpleFunctionTool is a wrapper class for turning async Python
functions into a AsyncBaseTool objects.
The PydanticFunctionTool is similar to the SimpleFunctionTool, but wraps
a special function we called PydanticFunction instead. These functions get
passed their input parameters for logic execution through a
~pydantic.BaseModel.

3 Working with LLMs
This chapter covers

The base class for working with LLMs in our LLM agent framework
Implementatingr an LLM class that enables the use of any open-source
LLM with Ollama
A complete demonstration of the tool-call process

In the previous chapter, we began our Stage 1 build of llm-agents-from-
scratch by writing base classes for tools as well as the necessary data
structures that they work with. We’ll continue our Stage 1 build here by
similarly adding a base class for LLMs and the data structures that will
enable the various modes of interacting with LLMs we want to support in
our framework.

One such mode is the tool-calling process, which we’ll finally be able to
execute in its entirety by the end of this chapter. Specifically, we’ll learn
how to elicit a tool-call request from an LLM and how to submit the result of
the tool invocation we covered in the previous chapter back to the LLM for
synthesis and response.

After establishing our base class, BaseLLM, we’ll move on to the very
exciting task of building an integration with Ollama, a highly popular open-
source LLM inference framework. We’ll do this by implementing
OllamaLLM, a subclass of BaseLLM, which will enable the use of any of the
many open-source LLMs supported by Ollama, including those from the
Llama and Qwen families of models. Figure 3.1 shows our updated build
plan, highlighting the progress we’ve made so far and our current focus.

Figure 3.1 Having added tools to our LLM agent framework, the focus of this chapter is to add
the other main component of LLM agents—their backbone LLM—to our framework. We’ll
specify the interface that all future LLMs must conform to through the BaseLLM class and
implement the OllamaLLM subclass to enable the use of any of the open-source LLMs
supported by Ollama.

As a reminder, you can follow along with the code examples by forking the
book’s GitHub repository and activating the framework’s dedicated virtual
environment as discussed in the previous two chapters. For added
convenience, I’ve also prepared a Jupyter notebook to provide an execution
environment for the coded examples in this chapter:
https://github.com/nerdai/llm-agents-from-
scratch/blob/main/examples/ch03.ipynb. Code snippets marked like the
example code below are available in this notebook.

Included in examples/ch03.ipynb #A
… #B

I recommend using uv to launch Jupyter Lab with all the necessary
packages. Run the following terminal command from the project’s root
directory.

uv run --with jupyter jupyter lab

file:///C:/Users/pc/AppData/Local/Temp/calibre_6fe6roxu/f0wxuv7s_pdf_out/EPUB/examples.html

3.1 BaseLLM: a blueprint for LLMs

Several LLM providers exist today. OpenAI, with its GPT series, and
Anthropic, with Claude, are two of the mainstream closed-source options.
On the other hand, open-source LLMs, including those from the Llama,
Qwen, and DeepSeek families of models, can be utilized through
frameworks such as HuggingFace, Ollama, and vLLM. Interacting with
LLMs from these providers and frameworks involves working with their
respective APIs or SDKs. While all of them support the standard modes of
interacting with an LLM, which we’ll cover shortly, there are differences in
how they can be used to build applications.

If we were to expose each of these APIs in our framework, it would become
challenging and frustrating for us and our users to deal with those
inconsistencies. A more sensible approach is to define a standard and
flexible interface through a base class, allowing us to onboard various LLM
providers and frameworks under a single, common API. That standard
interface is the BaseLLM class, which we’ll define in this section.

Text completion and chat are the two most standard LLM interaction
modalities, which all LLM providers and frameworks support. Naturally,
we’ll also support these modes through the BaseLLM class via the methods
complete() and chat(). There are a couple more interaction modes that
BaseLLM supports, but I’ve omitted them for now to keep things focused.
Figure 3.2 shows our LLM agent from before, but with the backbone LLM
inheriting from the new BaseLLM class.

Figure 3.2 Our LLM agent with its backbone LLM and equipped tools. The backbone LLM is
the Qwen3-7b model from the OllamaLLM class that we’ll implement later in this chapter.

The complete() method is designed for simple LLM text completion of a
provided prompt, whereas chat() is for conversational dialogues with an
LLM represented as a sequence of messages. Tool-calling with LLMs is
typically handled through these chat interactions, which, as you’ll soon see,
is how we’ll support it in our framework as well. Finally, it’s important to
note that BaseLLM is an async-first class, meaning all LLM interactions are
executed asynchronously.

As mentioned earlier, we’ll need a few new data structures to standardize the
use of LLMs in our framework. First is CompleteResult, which we’ll use to
package the results of a complete() invocation. More specifically, we pass a
prompt string as input to complete(), which then outputs a CompleteResult
object containing the LLM’s generated response. Figure 3.3 illustrates this
process.

Figure 3.3 Supporting text completion with complete().

The next new data structure is ChatMessage, which facilitates chat
interactions with LLMs. A ChatMessage object contains the content of the
message and specifies its sender through another data structure, ChatRole.
Figure 3.4 shows the process for chatting with LLMs through chat() and
these data structures.

Figure 3.4 Supporting chat interactions with LLMs via chat().

We invoke chat() with an input string, an optional chat history of
ChatMessage objects, and a list of tools we want to equip the LLM with.
The result of chat() is a new pair of ChatMessage objects. The first
ChatMessage object is created from the user’s input, whereas the second is
created from the response generated by the LLM. If tool-call requests are
made by the LLM, then they would be packaged in the second ChatMessage
object. This returned pair can then be appended to the running chat history
for the next chat() invocation.

note

I’ve elected to accept a simpler input type (i.e., string) for educational
purposes and user convenience. Returning both the user input and LLM
response as ChatMessage objects makes it easy to maintain a chat history
under this design choice.

Now that we understand how the BaseLLM class and the new data structures
can support the standard LLM interaction modes, let’s go over their
structural details. Figure 3.5 shows the UML class diagrams of BaseLLM,
CompleteResult, ChatMessage, and ChatRole.

Figure 3.5 The UML class diagrams for BaseLLM and new data structures.

There are yet a few more new UML concepts introduced in figure 3.5. The
first is the specification of ChatRole as an enum class, which is marked by
the circle with the letter “E”. Enumerations (or enums for short) are a
programming type that specifies a finite set of named constants. Each
instance can only be assigned one of the predefined values. The enum type is
a perfect choice for the ChatRole class, which can only take on values of
valid message senders: SYSTEM, USER, ASSISTANT, and TOOL. The next new
UML concept is the composition relationship, indicated by a solid line with
a filled diamond arrowhead. Composition relationships describe situations
where one class is made up of other classes. The encompassing class is said
to be composed of those other classes, which don’t exist in a meaningful
way on their own. Figure 3.5 shows that ChatMessage is composed of
ChatRole, which aligns with our earlier discussion. It’s worth noting that
ChatRole doesn’t meaningfully exist without the context of a ChatMessage.

Continuing our discussion of the ChatMessage class, you can see from figure
3.5 that it inherits from pydantic.BaseModel and has three attributes: role,
content, and tool_calls. We’ll discuss the meaning behind these attributes
when we implement this data structure. In the meantime, you can also see
that ChatMessage has one method, from_tool_call_result(), which has
been marked with the <<constructor>> tag. This indicates that it's a
constructor method, which in Python terminology is analogous to the
@classmethod concept. You can interpret from_tool_call_result() as a
method that creates a ChatMessage object from a ToolCallResult object,
which, you’ll see later, provides some convenience for us when
implementing the final step to the tool-calling process.

The CompleteResult class also inherits from pydantic.BaseModel and has
two attributes: response and prompt. The names of these attributes are self-
documenting, but regardless, we’ll discuss them when we implement
CompleteResult in the next section.

Finally, the BaseLLM class is an abstract class with no attributes but four
methods: complete(), chat(), continue_chat_with_tool_results(), and
structured_output(). You can also see that BaseLLM is indeed async-first,
with all four methods marked with the <<async>> tag to indicate their
asynchronous nature. We’ve already discussed the standard LLM interaction
modes, supported by complete() and chat(), and figure 3.5 reinforces how

CompleteResult and ChatMessage objects are used to facilitate these
interactions.

Let’s now discuss the two new methods and the interaction modes they
support. The first new method, continue_chat_with_tool_results(),
extends chat() by providing a convenient way to submit tool results back to
the LLM for synthesis and response. Since we’re effectively continuing an
existing chat interaction with this method, it also works with the already
established ChatMessage and ChatRole data structures. On the other hand,
structured_output() is designed for another useful LLM interaction mode,
where we prompt LLMs to return their response in a pre-specified format,
most often JSON. Figure 3.5 illustrates the use of a generic type, T, in the
signature of structured_output(), which enables our users to specify their
structured output using custom classes. We’ll go over both methods in more
detail when we implement the BaseLLM interface.

As we did in Chapter 2, we’ll first implement the new data structures before
implementing our main base class, BaseLLM.

3.1.1 Implementing CompleteResult, ChatMessage, and
ChatRole

The first new data structure that we’ll be adding to our framework is
CompleteResult. It is a simple data structure that contains prompt and
response attributes, both of which are of string type, as was shown in figure
3.5. The prompt attribute stores the input used to prompt the LLM, while the
response attribute stores the LLM’s generated response. Figure 3.6 shows
the same text completion interaction process from earlier, but now includes
an example input prompt and CompleteResult output object along with its
attributes.

Figure 3.6 An example of a CompleteResult object that is returned from an invocation of
complete().

The following code implements CompleteResult.

Listing 3.1 Implementing CompleteResult

llm_agents_from_scratch/data_structures/llm.py
from pydantic import BaseModel
from typing_extensions import Self
from llm_agents_from_scratch.data_structures.tool import
ToolCall

class CompleteResult(BaseModel):
 """The LLM completion result data model.

 Attributes
 response: The completion response provided by the LLM.

 full_response: Input prompt and completion text.
 """

 response: str #A
 prompt: str #B

Let’s next implement the data structures that facilitate the chat interactions:
ChatMessage and ChatRole. Figure 3.7 shows the chat interaction first
shown in figure 3.4, but this time layered with examples of these data
structures.

Figure 3.7 Example ChatMessage and ChatRole objects within a chat() invocation.

As you can see, the user’s input is returned as a ChatMessage with the USER
role, whereas the LLM’s response is a ChatMessage with the ASSISTANT role.
In this example, the LLM’s response carries a ToolCall object, and in these
cases, the content of the ChatMessage object is an empty string.

Standardized message roles

The role definitions for messages have been standardized to some extent
across various LLM providers and frameworks and can be described as
follows. The SYSTEM role is reserved for setting the general context for the
LLM or LLM agent, such as defining its role in the upcoming chat
interaction. The USER role is reserved for messages sent by the user, whereas
the ASSISTANT role is meant for messages from the LLM. Finally, the TOOL
role is for messages that carry the tool results sent back to the LLM.

For convenience, ChatMessage objects can also be derived from a
ToolCallResult via the constructor method, from_tool_call_result().
This method returns a ChatMessage object with the TOOL role and whose
content is a string serialization of the ToolCallResult object.

The implementations for ChatMessage and ChatRole are shown in the
following code.

Listing 3.2 Implementing ChatMessage and ChatRole

llm_agents_from_scratch/data_structures/llm.py
from pydantic import BaseModel
from typing_extensions import Self
from llm_agents_from_scratch.data_structures.tool import
ToolCall

… #A

class ChatRole(str, Enum):
 """Roles for chat messages."""

 USER = "user"
 ASSISTANT = "assistant"
 SYSTEM = "system"
 TOOL = "tool"

class ChatMessage(BaseModel):

 """The chat message data model.

 Attributes:
 role: The role of the message.
 content: The content of the message.
 tool_calls: Tool calls associated with the message.
 """

 model_config = ConfigDict(arbitrary_types_allowed=True)
 role: ChatRole
 content: str
 tool_calls: list[ToolCall] | None = None #B

 @classmethod #C
 def from_tool_call_result(
 cls,
 tool_call_result: ToolCallResult
) -> Self:
 """Create a ChatMessage from a ToolCallResult."""
 return cls(
 role=ChatRole.TOOL, #D
 content=tool_call_result.model_dump_json(indent=4),
#E
)

3.1.2 Implementing BaseLLM

We’re now ready to start implementing the BaseLLM class. As you saw from
the UML class diagrams in figure 3.5, BaseLLM is an abstract class that has
no attributes but four methods: complete(), chat(),
continue_chat_with_tool_results(), and structured_output().

We'll start with complete() and chat(), both of which will be marked as
abstract and whose input and output types we've already covered in great
detail. The following listing shows their implementation.

Listing 3.3 Implementing BaseLLM: chat() and complete()

llm_agents_from_scratch/base/llm.py
from abc import ABC, abstractmethod
from llm_agents_from_scratch.base.tool import AsyncBaseTool,
BaseTool
from llm_agents_from_scratch.data_structures import (
 ChatMessage,

 CompleteResult,
 ToolCallResult,
)
from typing import Any, Sequence

Tool: TypeAlias = BaseTool | AsyncBaseTool #A

class BaseLLM(ABC):
 """Base LLM Class."""

 @abstractmethod
 async def complete(
 self,
 prompt: str, #B
 **kwargs: Any
) -> CompleteResult: #C
 """Text Complete."""

 @abstractmethod
 async def chat(
 self,
 input: str, #D
 chat_messages: Sequence[ChatMessage] | None = None, #E
 tools: Sequence[Tool] | None = None, #F
 **kwargs: Any,
) -> tuple[ChatMessage, ChatMessage]: #G
 """Chat interface."""

As with BaseTool in Chapter 2, subclasses of BaseLLM will need to provide
implementations for all methods marked as abstract.

Let’s now move on to specifying our convenient extension of chat() used
for returning tool call results back to the LLM:
continue_chat_with_tool_results(). Before writing any code, let’s
revisit the tool-call process one more time. Figure 3.8 illustrates the familiar
tool-calling process—first introduced in Chapter 1—but now projected into
an LLM chat interaction.

Figure 3.8 The familiar tool-calling process, now shown within a chat() invocation.

A tool-call request, within a chat interaction, is represented by a
ChatMessage that contains ToolCall objects in its tool_calls attribute.
Note that only ChatMessage objects with the ASSISTANT role can carry tool-
call requests. ToolCall objects need to be extracted from such messages and
passed to the __call__() method of the selected tool for execution. After
the tool’s execution, we need to send the produced ToolCallResult
object(s) back to the LLM for synthesis and response. To do so, we utilize
our convenient chat extension method,
continue_chat_with_tool_results(), which should first create
ChatMessage objects from the supplied ToolCallResult objects before
passing them on to the LLM.

The inputs for continue_chat_with_tool_results() are almost identical to
those for chat(), with the only difference being that, rather than an input
string being passed to chat(), ToolCallResult objects are passed instead.

The output of continue_chat_with_tool_results(), like for chat(), is a
tuple of ChatMessage objects. The first element is the list of ChatMessage
objects derived from the input ToolCallResult objects, each with the TOOL
role. The second element is the LLM’s response to the tool-call results as a
ChatMessage. This maintains the same pattern for updating your chat history
—append both elements of the returned tuple to your running chat history,
whether you’re using chat() or continue_chat_with_tool_results().

NOTE

We could forego the use of continue_chat_with_tool_results() and use
chat() directly instead. This process would involve having to convert the
ToolCallResult objects manually into ChatMessage objects with the
appropriate TOOL role and passing them along with the updated chat history
to the next chat() invocation. However, for both convenience and
educational purposes, I’ve elected to include this method to make the entire
tool-call process within an LLM chat interaction more explicit.

The following code shows the implementation of
continue_chat_with_tool_results().

Listing 3.4 Implementing BaseLLM: continue_chat_with_tool_results()

llm_agents_from_scratch/base/llm.py
from abc import ABC, abstractmethod
from llm_agents_from_scratch.base.tool import AsyncBaseTool,
BaseTool
from llm_agents_from_scratch.data_structures import (
 ChatMessage,
 CompleteResult,
 ToolCallResult,
)
from typing import Any

class BaseLLM(ABC):
 """Base LLM Class."""
 … #A

 @abstractmethod
 async def continue_chat_with_tool_results(
 self,
 tool_call_results: Sequence[ToolCallResult], #B
 chat_history: Sequence[ChatMessage], #C
 tools: Sequence[Tool] | None = None,
 **kwargs: Any,
) -> tuple[list[ChatMessage], ChatMessage]: #D
 """Continue a chat submitting tool call results."""

We’ll now move on to implementing the final method for BaseLLM:
structured_output(). Before writing any code, let’s first discuss the
motivation for including this method in our interface in the first place.

As text generators, LLMs can also produce structured outputs. That is, we
can elicit LLMs to generate text that conforms to a pre-specified structured
format, most typically JSON. Structured outputs simplify downstream
processing by reducing the need to implement logic that is often brittle and
unreliable for extracting the required elements from raw output strings. Let’s
consider the simple example below, which demonstrates the brittleness of
unstructured, raw outputs.

Tell me a joke from any of these three subjects: math, physics, and biology.
Also, include the subject of the joke.

An unstructured response

Here's one:

Why did the DNA go to therapy? Because it was feeling a little twisted!
(Biology)

From this lone response, we can easily extract the joke’s subject, biology.
But even just prompting the LLM a second time with the same prompt as
before can lead to a drastically different form of output.

Another LLM unstructured response

Here's one:

Why did the math book look so sad? Because it had too many problems.

Subject: Math

Like with the first output, it’d be easy to extract that the subject is math upon
manual inspection. However, if we wanted to build robust code that depends
on the accurate parsing of this free-form output, we’re likely setting
ourselves up for failure. A better approach is to prompt the LLM to produce
its output in a structured format, as illustrated next.

Tell me a joke from any of these three subjects: math, physics, and biology.
Also, include the subject of the joke.

Return your output in the format provided below:

‘{
 “subject”: …,
 “joke”: …,
}’

Structured response

{
 "subject": "math",
 "joke": "Why did the math book look so sad? Because it had
too many problems."
}

This structured output is much easier to work with than the free-form
versions and would allow us to build downstream logic that depends on

these formatted outputs. Figure 3.9 illustrates how this example can be
executed through the structured_output() method.

note

Similar to tool calling, LLM inference providers and frameworks often
provide a dedicated API for structured outputs. These are usually designed
such that the user only needs to supply the desired output schema, typically
JSON, and can offload the job of instructing the LLM to produce output in
this format to the service provider (or framework). In contrast, in our
example, we manually elicited the LLM to produce output in our desired
format.

Figure 3.9 The structured output LLM interaction. An instruction prompt and the desired
output format, mdl, are passed as the inputs to structured_output(). The LLM generates a
response that can then be used to create an instance of mdl, a subclass of pydantic.BaseModel.

Now that we understand the rationale for this structured_output(), let’s
focus on its implementation. As you saw in Figure 3.5, the signature of
structured_output() specifies a prompt string and a mdl parameter as
inputs, where mdl allows us to specify the desired output format. This mdl
parameter, as you might recall from our earlier discussion, depends on a
generic T. We’ll bind T to the pydantic.BaseModel class. Doing so means
that we must define our desired structured output type via a subclass of
pydantic.BaseModel.

The structured_output() method returns an instance of T. In other words,
it returns an instance of our desired structured output class. For increased
clarity, we refer to T as StructuredOutputType in our implementation, as
shown in the following code.

Listing 3.5 Implementing BaseLLM: structured_output()

llm_agents_from_scratch/base/llm.py
from abc import ABC, abstractmethod
from typing import Any, Sequence, TypeVar
from pydantic import BaseModel
from llm_agents_from_scratch.base.tool import AsyncBaseTool,
BaseTool
 from llm_agents_from_scratch.data_structures import (
 ChatMessage,
 CompleteResult,
 ToolCallResult,
)

StructuredOutputType = TypeVar("StructuredOutputType",
bound=BaseModel) #A

class BaseLLM(ABC):
 """Base LLM Class."""
 … #B

 @abstractmethod
 async def structured_output(
 self,
 prompt: str,
 mdl: type[StructuredOutputType], #C
 **kwargs: Any,
) -> StructuredOutputType: #D
 """Structured output interface for returning
~pydantic.BaseModels.

NOTE

Binding the generic StructuredOutputType to pydantic.BaseModel is an
implementation detail that lets us fully leverage the powerful validation
checks offered by the pydantic library.

Let’s take our joke example from before and build a structured output model
for it. This structured output model is what we’d supply for the mdl
parameter in a structured_output() invocation. As you now know, this
model needs to inherit from pydantic.BaseModel as shown in the following
code.

Included in examples/ch03.ipynb #A
from typing import Literal
from pydantic import BaseModel

class Joke(BaseModel): #B
 """A structured output model for Jokes."""

 subject: Literal["math", "physics", "biology"]
 joke: str

To demonstrate an actual invocation of structured_output() using this
Joke class, we’ll first need a proper subclass of BaseLLM that has an
implementation for this method. This is precisely where we’re heading in the
next section.

Tool calling as structured output and vice versa

Tool calling can also be viewed as a structured output. We could even use
the structured_output() method to get the LLM to produce a tool-call
request JSON specifying the selected tool’s name and the argument values to
invoke the tool with.

However, tool-calling APIs offered by LLM service providers and
frameworks have ready-made prompt templates that instruct the LLM to use
the specified tools only if necessary. They also have prompt templates for
instructing an LLM to synthesize and respond to tool-call results whenever it
receives them. For these reasons, it’s better to rely on these native tool-
calling APIs versus trying to make it work with structured outputs.

It's also worth mentioning that it's entirely possible to implement structured
output interactions as a tool call. That is, by defining a tool that generates the
desired structured format and forcefully instructing the LLM to use it.

3.2 OllamaLLM: a subclass of BaseLLM

Now that we’ve specified the way we’ll work with LLMs in our framework,
through the BaseLLM class, let’s implement one. In this section, we’ll build
an integration with the Ollama LLM inference framework. This integration
will enable us to use any open-source LLM supported by Ollama. We’ll
implement the OllamaLLM class, which interacts with an Ollama service,
typically running locally on your machine.

Implementing OllamaLLM requires using the ollama Python library. Once
implemented, we’ll run through examples for interacting with an LLM via
chat(), complete(), continue_chat_with_tool_results(), and
structured_output().

note

Building an integration like this often requires reading documentation,
source code, and other resources for the library. In writing this section, I
referenced the official documentation and even the source code of the
ollama library to determine how to build this integration effectively. While
you won’t need to do this for the current Ollama integration, as we’ll walk
through the completed code together, it may be helpful to know what
resources were referenced.

Figure 3.10 shows our Ollama integration through OllamaLLM, a subclass of
BaseLLM.

Figure 3.10 Integrating with the Ollama LLM inference framework. The OllamaLLM connects
to a running Ollama server, often running locally on your machine, to work with any of the
supported open-source LLMs.

In addition to the methods and attributes of BaseLLM, the OllamaLLM class
introduces a _client attribute for interacting with a running Ollama service.
The complete structure of OllamaLLM is outlined in its UML class diagram
shown in figure 3.11.

Figure 3.11 UML class diagram for OllamaLLM.

You can see that the OllamaLLM class adds two new attributes and one
method. The model attribute specifies which supported LLM to use, while
_client connects to a running Ollama service and is of the type
AsyncClient from the ollama library. Finally, __init__() is used for
initializing objects of OllamaLLM.

NOTE

To run the code examples in this section, you’ll need Ollama installed on
your local machine with its service running. To download Ollama, follow the
instructions at https://ollama.com/download. After installation, a service may
launch automatically. If not, you can start one by opening a terminal and
running the command ollama serve.

3.2.1 Implementing OllamaLLM

We’re going to implement this integration step-by-step, starting with the
implementation of the __init__() method.

As shown in figure 3.11, the __init__() method takes in model and host
parameters as inputs. The model parameter is a string type that specifies the
LLM we’d like to use, such as llama3.2:1b. The optional host parameter
specifies the address for the Ollama service that we’d like to interact with. If
no host is provided, the default Ollama service address will be used.

note

Running ollama serve on your machine launches a service at the default
address http://127.0.0.1:11434. If you don’t provide a value for host when
initializing an OllamaLLM instance, this default address will be used.

Within the __init__() method, we’ll use the provided parameters to set the
model and _client attributes of the OllamaLLM instance. The following code
shows the implementation of __init__().

Listing 3.6 Implementing OllamaLLM: __init__()

file:///C:/Users/pc/AppData/Local/Temp/calibre_6fe6roxu/f0wxuv7s_pdf_out/EPUB/ollama.com.html
file:///C:/Users/pc/AppData/Local/Temp/calibre_6fe6roxu/f0wxuv7s_pdf_out/EPUB/.html

 # llm_agents_from_scratch/llms/ollama/llm.py
from typing import Any
from ollama import AsyncClient #A
from llm_agents_from_scratch.base.llm import BaseLLM

class OllamaLLM(BaseLLM):
 """Ollama LLM class."""

 def __init__(
 self,
 model: str, #B
 host: str | None = None,
 *args: Any,
 **kwargs: Any,
) -> None:
 """Create an OllamaLLM instance.

 Args:
 model (str): The name of the LLM model.
 host (str | None): Host of running Ollama service.
Defaults to
 None.
 *args (Any): Additional positional arguments.
 **kwargs (Any): Additional keyword arguments.
 """
 super().__init__(*args, **kwargs)
 self.model = model
 self._client = AsyncClient(host=host) #C

To see this __init__() method in action, let’s create an instance of our
OllamaLLM class that connects to the default host and uses the 3-billion
parameter version of the Qwen 2.5 LLM. The following code snippet
demonstrates how to do that.

Included in examples/ch03.ipynb #A
from llm_agents_from_scratch.llms.ollama import OllamaLLM

llm = OllamaLLM(model="qwen2.5:3b")

note

The remainder of this chapter uses the qwen2.5:3b model, which Ollama
supports. You will need to pull this model from Ollama first to run the

remaining code snippets by using the terminal command ollama pull
qwen2.5:3b.

With our __init__() method established, let’s now focus on implementing
all the abstract methods required by BaseLLM, starting with the complete()
method.

The logic for our complete() method will have us using the instance’s
_client attribute to interact with our running Ollama service. More
specifically, the ollama.AsyncClient class contains a method named
generate() that is Ollama’s interface for supporting the LLM completion
interaction mode.

The generate() method of ollama.AsyncClient requires two parameters:
model and prompt. We provide the name of the model to use by passing
along our instance’s model attribute. For the prompt parameter, we simply
forward the prompt variable from the outer complete() call. The result of
generate() is an Ollama data type, which we’ll use to derive a
CompleteResult object that we’ll return as the final output of complete().
Figure 3.12 shows how complete() integrates with the ollama library
through the generate() method.

Figure 3.12 Integrating with Ollama’s text completion interface. A complete() invocation of
OllamaLLM invokes the generate() method of the Ollama library and returns an Ollama data
type from which we derive the final return type, CompleteResult.

The following code provides the implementation of complete() for
OllamaLLM.

Listing 3.7 Implementing OllamaLLM: complete()

llm_agents_from_scratch/llms/ollama/llm.py
from typing import Any
from ollama import AsyncClient
from llm_agents_from_scratch.base.llm import BaseLLM
from llm_agents_from_scratch.data_structures import (
 CompleteResult,
)

class OllamaLLM(BaseLLM):
 """Ollama LLM class."""
 … #A

 async def complete(self, prompt: str, **kwargs: Any) ->
CompleteResult:
 """Complete a prompt with an Ollama LLM.

 Args:
 prompt (str): The prompt to complete.
 **kwargs (Any): Additional keyword arguments.

 Returns:
 CompleteResult: The text completion result.
 """
 response = await self._client.generate(#B
 model=self.model, #C
 prompt=prompt, #D
 **kwargs,
)
 return CompleteResult(
 response=response.response, #E
 prompt=prompt,
)

Let’s go over a demonstration of our now-implemented complete() method.
We’ll use the qwen2.5:3b LLM and have it tell us a joke.

Included in examples/ch03.ipynb #A
import asyncio
from llm_agents_from_scratch.llms.ollama import OllamaLLM

async def main():
 llm = OllamaLLM(model="qwen2.5:3b")
 response = await llm.complete("Tell me a joke.")
 print(response)

asyncio.run(main())

You learned that complete() returns a CompleteResult object that contains
a response and prompt attribute. Therefore, print(response) outputs the
string representation of this class, which should resemble the following code.

response="Sure! Here's one for you:\n\nWhy don't scientists
trust atoms?\n\nBecause they make up everything!" prompt='Tell
me a joke.'

NOTE

Async methods need to be run within an async event loop. The
asyncio.run() method creates a new event loop and runs the provided
Coroutine. When using Jupyter notebooks, there is already a running event
loop, which means async methods can be awaited directly without using
asyncio.run().

With the complete() method implemented, rather than implementing
chat() next, let’s implement structured_output(). The reason for this is
that we’ll use the same “tell me a joke” example that we just covered, but
using our Joke model from earlier as our desired structured output format.

To implement structured_output(), we’ll need to use Ollama’s structured
output interface, much like how our implementation of complete() relied on
Ollama’s completion interface, generate(). As it turns out, Ollama’s
structured output interface is facilitated by their chat interface. To not
confuse Ollama’s chat interface with that of our framework, I’ll refer to
Ollama’s as ollama.chat().

The ollama.chat() method allows for the optional specification of a format
parameter, where users can supply their desired structured output as a JSON
Schema. You learned about JSON Schemas in the previous chapter, and you
may recall they can be produced for pydantic.BaseModel subclasses
through the model_json_schema() method. We’ll rely on this as well in our
implementation of structured_output() since the parameter mdl is a type
that is bound to pydantic.BaseModel.

Before we show the code that implements structured_output(), we need
to discuss an important activity that typically takes place when building
integrations with LLM frameworks like Ollama. That is, developing these

integrations often requires converting between the data types of our
framework and those of the library we want to support, and vice versa. We
saw a bit of this in our previous implementation of complete(), when we
had to extract the response attribute from the returned Ollama data type to
create our CompleteResult. For our Ollama integration, we’ll use three
utility functions that explicitly convert the data structures of our framework
to the corresponding Ollama data type equivalents, and vice versa for the
message data type. The three utility methods are listed below and shown in
figure 3.13:

chat_message_to_ollama_message()

ollama_message_to_chat_message()

tool_to_ollama_tool()

Figure 3.13 Three utility functions for converting between llm-agents-from-scratch data types
and corresponding Ollama equivalent data types.

For brevity, and since the implementations of these utility functions are not
core to understanding how we’ll build OllamaLLM, I’ve not included them
here. Interested readers can view their complete implementations at:
https://github.com/nerdai/llm-agents-from-
scratch/blob/main/src/llm_agents_from_scratch/llms/ollama/utils.py.

file:///C:/Users/pc/AppData/Local/Temp/calibre_6fe6roxu/f0wxuv7s_pdf_out/EPUB/ollama.html

We now have all the pieces to implement structured_output() for
OllamaLLM. First, we’ll prepare the Ollama message data object that contains
our instruction prompt by invoking our utility
chat_message_to_ollama_message(). Next, we invoke the ollama.chat()
method, passing the Ollama message data object, as well as the JSON
Schema associated with mdl to specify our desired output structure. The
output of ollama.chat() is another Ollama data type, from which we must
extract the JSON data needed to build the instance of mdl that we return as
the final output of structured_output(). Figure 3.14 illustrates this entire
process.

Figure 3.14 Integrating with Ollama’s structured output interface, which is facilitated by their
chat interface. A structured_output() invocation of OllamaLLM invokes the ollama.chat() but
not before creating the Ollama message data object. The returned result is an
ollama.ChatResponse from which we extract the JSON payload corresponding to mdl that we
then use to validate and create the final structured output object.

The implementation of structured_output() for OllamaLLM is provided in
the following listing.

Listing 3.8 Implementing OllamaLLM: structured_output()

llm_agents_from_scratch/llms/ollama/llm.py
from typing import Any
from llm_agents_from_scratch.base.llm import (
 BaseLLM,
 StructuredOutputType,
)
from llm_agents_from_scratch.llms.utils import (
 chat_message_to_ollama_message,
)
from llm_agents_from_scratch.data_structures import (
 ChatMessage,
)

class OllamaLLM(BaseLLM):
 """Ollama LLM class."""
 … #A

 async def structured_output(
 self,
 prompt: str,
 mdl: type[StructuredOutputType],
 **kwargs: Any,
) -> StructuredOutputType:
 """Structured output interface implementation for Ollama
LLM.
 … #B
 """
 o_messages = [
 chat_message_to_ollama_message(
 ChatMessage(role="user", content=prompt),
),
]
 result = await self._client.chat(#C
 model=self.model,
 messages=o_messages,
 format=mdl.model_json_schema(), #D
)
 return mdl.model_validate_json(result.message.content)
#E

note

For structured_output(), we could have also built the Ollama message
data type directly rather than using our utility method
chat_message_to_ollama_message(). I’ve elected to use it here to
gradually introduce this concept, which we’ll use again when implementing
chat() and continue_chat_with_tool_results().

To demonstrate the usage of structured_output(), we’ll again prompt the
qwen2.5:3b LLM to tell us a joke. This time, however, we’ll have it output
the joke in the format of the Joke class we defined earlier, which I show
again here for convenience.

Included in examples/ch03.ipynb #A
import asyncio
from pydantic import BaseModel
from typing import Literal
from llm_agents_from_scratch.llms.ollama import OllamaLLM

class Joke(BaseModel):
 """A structured output model for Jokes."""

 subject: Literal["math", "physics", "biology"]
 joke: str

async def main():
 llm = OllamaLLM(model="qwen2.5:3b")
 prompt = ("Tell me a joke.")
 joke = await llm.structured_output(prompt=prompt, mdl=Joke)
#B
 print(joke.__class__.__name__)
 print(joke)

asyncio.run(main())

The first print statement outputs the class name of the returned joke, while
the second print statement outputs the string representation of the returned
Joke object. The following code snippet shows what the output of these two
print statements should resemble.

Joke
subject='math', joke='Why did the math book look so sad? Because
it had lots of problems.'

Great! We have implemented two of the four interaction modes for
OllamaLLM. Let’s wrap up this section with our implementations of chat()
and its convenient extension continue_chat_with_tool_results(). We’ve
already encountered Ollama’s chat interface, ollama.chat(), through our
previous implementation of structured_output(). Naturally, we’ll use
ollama.chat() again to integrate with the chat interfaces of our framework.

note

We'll hold off on demonstrations of chat() and
continue_chat_with_tool_results() until the next section, where we'll
see them working together in a complete end-to-end demonstration of a tool-
calling process.

To build out this Ollama chat integration, we’ll need to delve deeper into the
inner workings of ollama.chat(). Specifically, ollama.chat() takes in an
input list of Ollama message objects as well as an optional list of Ollama
tool objects. After querying the LLM service, ollama.chat() returns an
ollama.ChatResponse object from which we can extract the LLM’s
response message.

As mentioned earlier, building an integration with other LLM frameworks
involves converting between the data types of the two frameworks. For this,
we’ll use our utility conversion functions.

We saw from figures 3.5 and 3.7 that chat() takes in three parameters:
input, chat_history, and tools. We’ll need to apply
chat_message_to_ollama_message() to derive Ollama message objects
from input and chat_history, and tool_to_ollama_tool() to derive
Ollama tool objects from tools.

With our Ollama messages and tools prepared, we can invoke
ollama.chat() and extract the LLM’s response message from the
invocation result. Since this message is an Ollama message data type, we’ll
need to apply the ollama_message_to_chat_message() to convert the
LLM’s response to a ChatMessage. We return this ChatMessage object along
with another one that represents the user’s input as the final output to the
chat() method. Figure 3.15 shows this entire process.

Figure 3.15 Integrating with Ollama’s chat interface to implement chat(). The user’s input and
chat history are converted to Ollama messages, and tools are converted to Ollama tools. Next,
ollama.chat() is invoked and its response is then converted back to a ChatMessage. This
ChatMessage is returned along with another one derived from the user’s input.

The following code provides the implementation of chat().

Listing 3.9 Implementing OllamaLLM: chat()

llm_agents_from_scratch/llms/ollama/llm.py
… #A
from llm_agents_from_scratch.llms.utils import (#B
 chat_message_to_ollama_message,
 ollama_message_to_chat_message,
 tool_to_ollama_tool,
)

class OllamaLLM(BaseLLM):
 """Ollama LLM class."""
 … #C

 async def chat(
 self,
 input: str,
 chat_history: list[ChatMessage] | None = None,
 tools: list[BaseTool | AsyncBaseTool] | None = None,
 **kwargs: Any,
) -> tuple[ChatMessage, ChatMessage]:
 … #D
 # prepare messages #E
 o_messages = (
 [chat_message_to_ollama_message(cm) for cm in
chat_history]
 if chat_history
 else []
)
 user_message = ChatMessage(role="user", content=input)
 o_messages.append(
 chat_message_to_ollama_message(
 user_message,
),
)

 # prepare tools #F
 o_tools = (
 [tool_to_ollama_tool(t) for t in tools]
 if tools else None
)

 result = await self._client.chat(#G
 model=self.model,
 messages=o_messages,

 tools=o_tools,
)

 return (
 user_message,
 ollama_message_to_chat_message(result.message) #H
)

Let’s now implement the final abstract method,
continue_chat_with_tool_results(). As with the implementation for
chat(), much of the work we need to do here involves converting
ChatMessage objects from our framework to the Ollama message data type
equivalents. The main convenience this method offers, however, is that users
can pass in ToolCallResult objects directly—they do not have to deal with
converting these to ChatMessage objects at all.

To convert a ToolCallResult object to a ChatMessage object, we can use
the constructor method, from_tool_call_result(), which we provided
back in listing 3.2. From here, the process is similar to that of the previously
implemented chat() method. We apply
chat_message_to_ollama_message() and tool_to_ollama_tool() to
obtain Ollama messages and tools. Next, we invoke ollama.chat() to have
the LLM synthesize the tool results and generate a response. The result of
ollama.chat() is converted back to a ChatMessage with
ollama_message_to_chat_message(). We return this along with the list of
ChatMessage objects constructed from the supplied ToolCallResult objects.
Figure 3.16 illustrates this integration.

Figure 3.16 Integrating with Ollama’s chat interface to implement
continue_chat_with_tool_results(). The tool-call results and chat history are converted to
Ollama messages, and tools are converted to Ollama tools. Next, ollama.chat() is invoked and its
response is then converted back to a ChatMessage. This ChatMessage is returned along with the
list of ChatMessage objects derived from the tool-call results.

The following code implements continue_chat_with_tool_results().

Listing 3.10 Implementing OllamaLLM: continue_chat_with_tool_results()

llm_agents_from_scratch/llms/ollama/llm.py
… #A
class OllamaLLM(BaseLLM):
 """Ollama LLM class."""
 … #B

 async def continue_chat_with_tool_results(
 self,
 tool_call_results: Sequence[ToolCallResult],
 chat_history: Sequence[ChatMessage],
 tools: Sequence[Tool] | None = None,
 **kwargs: Any,
) -> tuple[list[ChatMessage], ChatMessage]:
 … #C
 # augment chat messages and convert to Ollama messages
 tool_messages = [
 ChatMessage.from_tool_call_result(tc) #D
 for tc in tool_call_results
]
 o_messages = [#E
 chat_message_to_ollama_message(cm)
 for cm in chat_history
] + [
 chat_message_to_ollama_message(tm)
 for tm in tool_messages
]

 # prepare tools
 o_tools = (
 [tool_to_ollama_tool(t) for t in tools]
 if tools else None
)

 # send chat request
 o_result = await self._client.chat(#F
 model=self.model,
 messages=o_messages,
)

 return (
 tool_messages, #G
 ollama_message_to_chat_message(o_result.message) #H
)

Phew. It was really no small feat to implement all four required methods for
OllamaLLM. The payoff for all this work, though, is quite significant. We can
now use any of the open-source LLMs available through Ollama in our
framework! To wrap up this chapter, we’ll revisit our Hailstone tool from the
previous chapter to demonstrate how our OllamaLLM can perform a tool call
with it.

Exercise 3.1 Structured outputs with an OllamaLLM

Create a structured data model for a poem that also includes the poem text
and its type (e.g., sonnet, haiku, etc.). Use an OllamaLLM instance to generate
a structured poem using your poem data model.

3.2.2 Hailstone tool call with OllamaLLM

Let’s quickly revisit the Hailstone tool that we created in the previous
chapter and demonstrate how we can use it to perform an entire tool-calling
process with our new OllamaLLM. To do so, we’ll make use of the chat()
and continue_chat_with_tool_results() methods.

We’ll use the same qwen2.5:3b model for our OllamaLLM and will supply it
with the hailstone_tool that we created in the previous chapter.

note

If you are coding these examples for yourself and not using the provided
Jupyter notebook, then be sure to bring the hailstone_step_func() defined
in the previous chapter into the necessary scope e.g. in your .py file if
coding with Python scripts.

To initiate a tool-calling process, we invoke chat() by supplying an input
string that will elicit a Hailstone tool-call request, as shown in the following
code.

Included in examples/ch03.ipynb #A
import asyncio
from llm_agents_from_scratch.llms.ollama import OllamaLLM
from llm_agents_from_scratch.data_structures.llm import
ChatMessage

from llm_agents_from_scratch.tools import SimpleFunctionTool

llm = OllamaLLM(model="qwen2.5:3b") #B
hailstone_tool = SimpleFunctionTool(hailstone_step_func) #C

async def main():
 user_input = (
 "What is the result of taking the next step of the " #D
 "Hailstone sequence on the number 3?\n\n"
 "Be very succinct in your response."
)
 return await llm.chat(#E
 user_input,
 tools=[hailstone_tool], #F
)

user_msg, response_msg = asyncio.run(main())
print(response_msg.tool_calls)

The print statement should return a single tool call of Hailstone, as shown
below. If it does, then congratulations, your OllamaLLM has successfully
requested a tool call for our Hailstone tool.

[ToolCall(id_='6f6d02ca-56db-4872-8c8f-3814e2ceeb19',
tool_name='hailstone', arguments={'x': 3})]

As we know from before, however, making the LLM elicit a tool call request
is only the first step in performing tool calls with LLMs. We next need to run
the tool with the arguments and then pass the ToolCallResult back to the
LLM.

Included in examples/ch03.ipynb #A
tool_call = response_msg.tool_calls[0]
tool_call_result = hailstone_tool(tool_call) #B
print(tool_call_result)

As we saw in the last chapter, performing a tool call with a BaseTool returns
a ToolCallResult. Thus printing the tool_call_result variable in the
above snippet should resemble something like the following:

tool_call_id='6f6d02ca-56db-4872-8c8f-3814e2ceeb19',
content='10', error=False

With our ToolCallResult in hand, we can now finally submit this back to
our LLM for synthesis and response using the
continue_chat_with_tool_results() method. As you know, this method
returns ChatMessage objects created from the tool results and the LLM's
response.

Included in examples/ch03.ipynb
async def main():
 return await llm.continue_chat_with_tool_results(
 tool_call_results=[tool_call_result],
 chat_history=[user_msg, response_msg],
)

tools_msg, final_response = asyncio.run(main())
print(final_response)

The print statement should output the string representation of a ChatMessage
object that looks something like the following:

role=<ChatRole.ASSISTANT: 'assistant'> content='The result of
taking the next step in the Hailstone sequence on the number 3
is 10.' tool_calls=None

We’ve done it! It took some time, but we have finally performed a complete
tool-calling process using our Hailstone tool and our newly implemented
OllamaLLM class. We’ve truly reached a significant milestone in our journey.
In fact, we’re now in the position to develop our first LLM agent from
scratch. In the next chapter, we’ll do just that by implementing the LLMAgent
class.

Exercise 3.2 Performing an asynchronous tool call with OllamaLLM

Create an instance of OllamaLLM and perform a tool call using the
asynchronous version of the Hailstone tool that you developed in Exercise
2.2.

3.3 Summary

APIs provided by LLM providers typically support two modes of
interaction with LLMs: one for text completion and another for

conversational dialogue.
Our BaseLLM class supports text completion via the complete()
method, and the conversational mode of interaction through our chat()
method.
One important use case for LLMs is structured output, where we
instruct an LLM to produce an output that conforms to a specified data
format, often described in JSON.
Structured outputs with our BaseLLM class, can be performed via the
structured_output() method.
Integrations into LLM providers and their companion Python SDKs can
be added to our framework by subclassing BaseLLM.
The OllamaLLM integration implemented in this chapter allows for the
use of any open-source LLMs supported by Ollama in our framework.

Appendix C. Implementing The
PydanticFunctionTool
In Chapter 2, we introduced the PydanticFunctionTool and its usage pattern
with our framework, as an alternative to our from-scratch
SimpleFunctionTool. The main benefits of the PydanticFunctionTool are
more robust JSON Schema generation for the associated function’s
parameters, as well as more powerful validation through the pydantic
library. In this appendix, we provide a walkthrough on the full
implementation of the PydanticFunctionTool as well as its asynchronous
version, AsyncPydanticFunctionTool.

C.1 Implementing PydanticFunctionTool

We now will build the PydanticFunctionTool wrapper class that will
enable the usage pattern that we just showed. As we saw then, we wrap a
function which takes in a single parameter params that is
pydantic.BaseModel. For convenience and to conform to our typing
practices that we’ve begun to establish in our framework, let’s create a
designated type for these kinds of functions.

We’ll call such function types PydanticFunction since they package their
parameters in a pydantic.BaseModel type as we saw in HailstoneParams.
The next listing provides its definition.

Listing C.1 Implementing the PydanticFunction Protocol

llm_agents_from_scratch/tools/pydantic_function.py
from typing import Any, Protocol
from pydantic import BaseModel

class PydanticFunction(Protocol):
 """PydanticFunction Protocol."""

 __name__: str
 __doc__: str | None

 def __call__(
 self,
 params: BaseModel,
 *args: Any,
 **kwargs: Any
) -> Any:
 """Callable interface.

 Args:
 params (BaseModel): The function's params as a
 ~pydantic.BaseModel.
 *args (Any): Additional positional arguments.
 **kwargs (Any): Additional keyword arguments.

 Returns:
 Any: The result of the function call.
 """
 ... #A

The listing above shows that we have chosen to implement the
PydanticFunction as a subclass of typing.Protocol, which are meant for
defining interfaces that can be typed-checked at runtime. The lone method
that we requires with this interface is the special __call__ method, which
importantly takes in a parameter, params, that is of type
pydantic.BaseModel. As an interface method, we need only supply elipsis
(i.e., …), which in this context indicates that the actual function provides the
implementation.

The other attributes we require in this interface are special Python attributes
__name__ and __doc__, which are defined by default for Python functions.
In other words, any function that has a signature involving a single variable
named params of type pydantic.BaseModel, satisfies the
PydanticFunction protocol—this is precisely what we need.

Another added benefit of defining our PydanticFunction as a
typing.Protocol is that modern Integrated Development Environments
(IDEs), such as VSCode, support typing and provide helpful type hints.

Now that we have defined a special type for our functions to be wrapped by
PydanticFunctionTool, let’s move onto the next order of business. To
make our implementation more robust, we should ensure that any function
that we wish to wrap with this class is indeed a PydanticFunction. We will
handle this by implementing specific validation logic next.

Listing C.2 Validating functions by signature inspection

llm_agents_from_scratch/tools/pydantic_function.py
import inspect
from typing import Any, Awaitable, Callable, Protocol,
get_type_hints
from pydantic import BaseModel

def _validate_pydantic_function(func: Callable) ->
type[BaseModel]:
 """Validates func as a proper `PydanticFunction`.

 Args:
 func (Callable): The function to validate as
`PydanticFunction`.

 Raises:
 RuntimeError: If validation of `func` fails.
 """
 sig = inspect.signature(func)
 type_hints = get_type_hints(func)

 if "params" not in sig.parameters: #A
 raise RuntimeError(
 "Validation of `func` failed: Missing `params`
argument.",
)

 if annotation := type_hints.get("params"):
 if not issubclass(annotation, BaseModel): #B
 msg = (
 f"Validation of `func` failed: {annotation} is
not"
 " a subclass of `~pydantic.BaseModel`."
)
 raise RuntimeError(msg)
 else:
 msg = (

 "Validation of `func` failed: `params` argument
must have "
 "type annotation."
)
 raise RuntimeError(msg)

 return annotation #C

Let’s walkthrough our validation logic step-by-step. The first bit of code
should hopefully look familiar, as we’re again needing to perform
introspection on the function signature, as we did when we built logic to
transform function signatures to JSON Schemas from scratch for
SimpleFunctionTool. As we did then, we rely on the combination of
inspect.signature and typing.get_type_hints here to extract the
parameters and their annotated types from the supplied function’s signature.

We then check if a parameter with the specific name “params” exists in the
extracted parameters. If it does, then we next check that its annotated type is
a pydantic.BaseModel. If either of these checks fail, then we raise a
RunTimeError with a message indicating as to why the validation failed.

If both checks pass, then we have a valid PydanticFunction, and we return
the type or subclass of pydantic.BaseModel with which params is
annotated. Let’s quickly demonstrate this validation with our
hailstone_pydantic_fn.

from llm_agents_from_scratch.tools.pydantic_function import (
 _validate_pydantic_function,
)

print(_validate_pydantic_function(hailstone_pydantic_fn))

The above print statement should return an output similar to the following.

__main__.HailstoneParams

We are now in a position to start implementing our PydanticFunctionTool,
which, like SimpleFunctionTool, inherits our BaseTool class. As we have
already seen how to create a subclass of BaseTool, we’ll present the entire
implementation in the listing below and then discuss it, rather than
implementing methods incrementally as we did before.

Listing C.3 Implementing PydanticFunctionTool

#llm_agents_from_scratch/tools/pydantic_function.py
import inspect
from typing import Any, Awaitable, Callable, Protocol,
get_type_hints
from pydantic import BaseModel
from llm_agents_from_scratch.base.tool import BaseTool
from llm_agents_from_scratch.data_structures import (
 ToolCall,
 ToolCallResult,
)

… #A

class PydanticFunctionTool(BaseTool):
 """Pydantic function calling tool.

 Turn a Python function that takes in a ~pydantic.BaseModel
params
 Object into a tool for an LLM.

 Attributes:
 func: PydanticFunction to represent as a tool.
 params_mdl: The params BaseModel.
 desc: Description of the PydanticFunction.
 """

 def __init__(
 self,
 func: PydanticFunction,
 desc: str | None = None,
):
 """Initialize a PydanticFunctionTool.

 Args:
 func (PydanticFunction): The Pydantic function to
expose as a
 tool to the LLM.
 desc (str | None, optional): Description of the
function.
 Defaults to None.
 """
 self.func = func
 self.desc = desc or func.__doc__ or f"Tool for
{func.__name__}"
 self.params_mdl = _validate_pydantic_function(func) #B

 @property
 def name(self) -> str:
 """Name of function tool."""
 return self.func.__name__

 @property
 def description(self) -> str:
 """Description of what this function tool does."""
 return self.desc

 @property
 def parameters_json_schema(self) -> dict[str, Any]:
 """JSON schema for tool parameters."""
 return self.params_mdl.model_json_schema() #C

 def __call__(
 self,
 tool_call: ToolCall,
 *args: Any,
 **kwargs: Any,
) -> ToolCallResult:
 """Execute the function tool with a ToolCall.

 Args:
 tool_call (ToolCall): The ToolCall to execute.
 *args (Any): Additional positional arguments.
 **kwargs (Any): Additional keyword arguments.

 Returns:
 ToolCallResult: The result of the tool call
execution.
 """
 try:
 params =
self.params_mdl.model_validate(tool_call.arguments) #D
 # execute the function
 res = self.func(params) #E
 content = str(res)
 error = False
 except Exception as e:
 content = f"Failed to execute function call: {e}"
 error = True

 return ToolCallResult(
 tool_call=tool_call,
 content=content,

 error=error,
)

Beginning with the __init__ method, we can see that it has the exact same
logic as SimpleFunctionTool.__init__, however, with the added
statement for validation and automatic extraction of the params model. As
we discussed, _validate_pydantic_function returns the type (or class) of
the function’s params argument. This can be seen as a bit of added
convenience, as we don’t require the user to supply this information, but
rather extract it from the supplied PydanticFunction automatically.

Next, the implementations for the property attributes name and desc are the
same as those for SimpleFunctionTool. Our current implementation of
parameters_json_schema, however, is different from that of
SimpleFunctionTool. Here, we simply call the method
params_mdl.model_json_schema, which is a class method that returns the
JSON Schema representation of params_mdl (a type of
pydantic.BaseModel). Unlike SimpleFunctionTool, where we relied on
our from-scratch code to convert function signatures to their JSON Schema
representations, we now utilize the pydantic library to build this JSON
Schema from the params_mdl for us.

Finally, our implementation of __call__ also involves a delegation to the
wrapped function func. However, since func is PydanticFunction, we
need to pass it an instance of the params_mdl type, which we must build
using the arguments supplied by the LLM in its tool call request. Again,
here we leverage the pydantic library but this time for its powerful JSON
validation. Specifically, we call the factory method
params_mdl.model_validate, which takes in a Python dictionary of JSON
data that is first validated against JSON Schema for params_mdl. If
validation is successful, then the input data gets used to initialize an
instance of params_mdl, which we store in the params variable and pass as
input to func. The rest of our implementation for __call__ is similar to that
of SimpleFunctionTool, including our approach for handling any errors
that may be encountered during the validation of tool parameters or the
delegation to the wrapped function.

The hailstone_pydantic_fn_tool that we defined at the start of this
section should work as intended with what we just developed.

print(hailstone_pydantic_fn_tool.description)
print(hailstone_pydantic_fn_tool.name)
print(hailstone_pydantic_fn_tool.parameters_json_schema)

These statements should print the following results.

hailstone_pydantic_fn
Perform a single step of the Hailstone sequence.
{'properties': {'x': {'title': 'X', 'type': 'integer'}},
'required': ['x'], 'title': 'HailstoneParams', 'type':
'object'}

We can also use hailstone_pydantic_fn_tool with the same tool call
request that we had for our quick demonstration of hailstone_tool (a
SimpleFunctionTool) in the previous section.

from llm_agents_from_scratch.data_structures import ToolCall

tool_call = ToolCall(
 tool_name="hailstone_pydantic_fn_tool",
 arguments={"x": 3}
)

res = hailstone_pydantic_fn_tool(tool_call)
print(res)

The print statement should print output as follows.

tool_call=ToolCall(tool_name='hailstone_pydantic_fn',
arguments={'x': 3}) content='10' error=False

This wraps up our implementation of PydanticFunctionTool, an
alternative approach to building tools from Python functions using our
LLM agent framework. Like SimpleFunctionTool, however, this wrapper
class only works with synchronous functions. And, as we did then, we’ll
now need to quickly add an async version of this wrapper class to work
with asynchronous functions.

C.2 The AsyncPydanticFunctionTool

Let’s quickly add an async version of PydanticFunctionTool that works
with asynchronous functions much like AsyncSimpleFunctionTool does.
We will move rather quickly here since the implementation is very similar
to the async version, with only minor differences that are similar to the
differences observed between SimpleFunctionTool and
AsyncSimpleFunctionTool.

First, we’ll require an async version of our PydanticFunction protocol.
We’ll call this function protocol AsyncPydanticFunction and present its
implementation in the next listing.

Listing C.4 Implementing the AsyncPydanticFunction Protocol

llm_agents_from_scratch/tools/pydantic_function.py
from typing import Any, Protocol
from pydantic import BaseModel

class AsyncPydanticFunction(Protocol):
 """Asynchronous PydanticFunction Protocol."""

 __name__: str
 __doc__: str | None

 async def __call__(#A
 self,
 params: BaseModel,
 *args: Any,
 **kwargs: Any,
) -> Awaitable[Any]: #B
 """Asynchronous callable interface.

 Args:
 params (BaseModel): The function's params as a
 ~pydantic.BaseModel.
 *args (Any): Additional positional arguments.
 **kwargs (Any): Additional keyword arguments.

 Returns:
 Awaitable[Any]: The result of the function call.
 """
 ...

The only difference between this AsyncPydanticFunction and
PydanticFunction from before is that the async protocol stipulates that the
function’s __call__ method be an async function that returns an
~typing.Awaitable type.

With this async function type defined, we can now present the complete
implementation of AsyncPydanticFunctionTool.

Listing C.5 Implementing AsyncPydanticFunctionTool

llm_agents_from_scratch/tools/pydantic_function.py
import inspect
from typing import Any, Awaitable, Callable, Protocol,
get_type_hints
from pydantic import BaseModel
from llm_agents_from_scratch.base.tool import AsyncBaseTool,
BaseTool
from llm_agents_from_scratch.data_structures import (
 ToolCall,
 ToolCallResult,
)

class AsyncPydanticFunctionTool(AsyncBaseTool):
 """Async Pydantic function calling tool.

 Turn an async Python function that takes in a
~pydantic.BaseModel
 Params object into a tool for an LLM.

 Attributes:
 func: AsyncPydanticFunction to represent as a tool.
 params_mdl: The params BaseModel.
 desc: Description of the PydanticFunction.
 """

 def __init__(
 self,
 func: AsyncPydanticFunction,
 desc: str | None = None,
):
 """Initialize an AsyncPydanticFunctionTool.

 Args:
 func (AsyncPydanticFunction): The async Pydantic

function to
 expose as a tool to the LLM.
 desc (str | None, optional): Description of the
function.
 Defaults to None.
 """
 self.func = func
 self.desc = desc or func.__doc__ or f"Tool for
{func.__name__}"
 self.params_mdl = _validate_pydantic_function(func)

 @property
 def name(self) -> str:
 """Name of function tool."""
 return self.func.__name__

 @property
 def description(self) -> str:
 """Description of what this function tool does."""
 return self.desc

 @property
 def parameters_json_schema(self) -> dict[str, Any]:
 """JSON schema for tool parameters."""
 return self.params_mdl.model_json_schema()

 async def __call__(
 self,
 tool_call: ToolCall,
 *args: Any,
 **kwargs: Any,
) -> ToolCallResult:
 """Execute the function tool with a ToolCall.

 Args:
 tool_call (ToolCall): The ToolCall to execute.
 *args (Any): Additional positional arguments.
 **kwargs (Any): Additional keyword arguments.

 Returns:
 ToolCallResult: The result of the tool call
execution.
 """
 try:
 params =
self.params_mdl.model_validate(tool_call.arguments)
 # execute the function
 res = await self.func(params)

 content = str(res)
 error = False
 except Exception as e:
 content = f"Failed to execute function call: {e}"
 error = True

 return ToolCallResult(
 tool_call=tool_call,
 content=content,
 error=error,
)

The implementation of AsyncPydanticFunctionTool is very similar to that
of PydanticFunctionTool, with the only differences being that here we
inherit from AsyncBaseTool and that the __call__ method is now async.

	welcome
	1_What_are_LLM_Agents_and_Multi-Agent_Systems?
	2_Working_with_Tools
	3_Working_with_LLMs
	Appendix_C._Implementing_The_PydanticFunctionTool

