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welcome

Thank you for purchasing the MEAP for Build a Multi-Agent System (From
Scratch).

Multi-agent systems and the LLM agents that comprise them are some of
the most discussed and worked on topics in Al today. Everyday tasks like
searching the web, as well as more complex tasks like building entire
codebases of software applications, are some examples where LLM agents
have already been deployed. While they are by no means perfect systems,
many recognize the great potential for agent-to-agent interactions to reshape
the way many tasks are done in our society today.

There are more than a handful of LLM agent frameworks that exist today,
which I have used extensively and even contributed to building. In fact,
assuming some prior familiarity with LLMs and having past experiences
programming with Python or JavaScript/TypeScript, you can probably
already create LLM agents as well as multi-agent systems and have them
autonomously perform tasks with any one of these frameworks.

This book, however, employs a hands-on approach to help you gain a
deeper understanding of the inner workings of a multi-agent system and the
LLM agents that comprise them by having you build these from scratch.
This is not so different from how you might deepen your knowledge in
LLMs by learning how to implement attention and transformers yourself.

To build a multi-agent system from scratch, our journey starts with the
building of a foundational LLM agent. We’ll also incorporate a few
significant enhancements to it, such as making it MCP-ready. The vast
network of tools and resources made available through MCP increases the
potential of LLM agents that can leverage them. It also helps to offload
some of the responsibilities for developing robust tooling for LLM agents to
external teams and organizations. We’ll also consider how to implement
human-in-the-loop capabilities and memory for LLM agents, before finally



taking on the step of assembling multi-agent systems through the
Agent2Agent protocol.

We’ll package all our code, which includes the required infrastructure, such
as interfaces for tools and LLMs, in the book’s very own LLM agent
framework that you’ll get to develop for yourself.

This framework is primarily designed for educational purposes, rather than
being deployed in production settings. Nevertheless, it will give you the
foundation to work more confidently and effectively with any other LLM
agent and multi-agent frameworks of your choosing or even to develop your
own specialized solutions.

Please be sure to post any questions, comments, or suggestions you have
about the book in the liveBook discussion forum.

Val Andrei Fajardo, PhD

In this book

welcome 1 What are LLM Agents and Multi-Agent Systems? 2 Working
with Tools 3 Working with LL.Ms
Appendix C. Implementing The PydanticFunctionTool
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1 What are LLM Agents and Multi-
Agent Systems?

This chapter covers

e Current real-world applications of LLM agents and multi-agent systems
What LLM agents are and why LLMs alone are insufficient

Important design patterns, enhancements, and protocols for LLM agents
When applications may benefit from multi-agent systems

A roadmap for developing LLM agents and multi-agent systems

If a user asks a Large Language Model (LLM) where to find the best value
in croissants in New York City, the LLM might respond, ,AtI will search the
web for highly-rated croissants and their prices.,Au LLMs are very good at
expressing intent to act toward a specific goal, Aito generate text that tells us
what they are going to do to resolve a query. At this point, however, we run
into a critical limitation: since LLMs are only text-generators, they cannot
act on their intentions. They can articulate a plan for processing a task, but
cannot carry it out, Afunless they are surrounded by a system to orchestrate
the plan and execute the actions.

These orchestration systems are called LLM agents. We,A6ll add some
nuance to this definition soon, but for our purposes, LLM agents are systems
that automatically turn the LLM, Ads intentions into actions.

LLM agents work by interfacing with a key capability of modern LLMs:
tool-calling. By tool-calling, we mean we can give the LLM (in text) a list of
tools and a description of what those tools do, and the LLM can generate (in
text) a tool-call request to call on the appropriate tool to carry out its intent
when queried. The actual processing of this request occurs elsewhere in the
application, and its results are sent back to the LLLM for synthesis and
response.



LLM agents utilize tool-calling extensively when performing tasks for users.
They ensure that the tool-call requests made by the LLMs are processed, and
results are sent back to the LLM. Without an LLM agent, users would have
to manage this back-and-forth between tool processing and querying the
LLM themselves.

As in real life, the more tools in your toolbox, the more you can do;
equipping an LLM with tools for web search, math calculations, and code
interpreters, for instance, makes it capable of handling a variety of tasks. We
can build our own tools for LLMs to use, but we can also rely on the tools
that others have created. Anthropic,A6s Model Context Protocol (MCP) is a
popular standard for how LLM agents access third-party tools with which
they can equip their underlying LLM. Many tools, as well as other resources,
are made available through MCP, and tapping into them dramatically
increases an LLM agent,Ads potential.

It is also possible to combine multiple LLM agents into a single system in
order to improve task performance. We refer to such systems as multi-agent
systems (MAS). In MAS, individual LLM agents collaborate with each other
to perform tasks on behalf of a user. Google,Ads Agent2Agent (A2A)
protocol helps facilitate these collaborations by defining a standard for
agent-to-agent interactions. With A2A, even LLM agents built using
different frameworks can collaborate with each other to accomplish a task.

To work with LLM agents and multi-agent systems, and make the most of
them, it,A0s important to have a deep understanding of how they work. To
gain that understanding, we will

build our very own LLM agents and multi-agent systems from scratch. We
will build the complete infrastructure for LLM agents and MAS from the
ground up, including interfaces for LLMs, tools, MCP resources, and A2A
connectivity. And we,Adll package all of these into our very own LLM
agent framework.

Several LLM agent frameworks already exist, and most Al engineers and
practitioners use one of them. But the goal of this book is to give you a
deeper understanding of how these LLM agents function, so you can work
confidently and efficiently with these existing frameworks or build



specialized solutions specific to your needs. That,Ads why we are building
ours from scratch.

1.1 Where LLLM Agents and Multi-Agent Systems
are useful

To get an idea of the broad usefulness of LLM agents and MAS, let, Ads
discuss a few real-world use cases, some of which are depicted in figure 1.1.

Figure 1.1 The applications for LLM agents are many, including agentic RAG, report
generation, deep search and computer use, all of which can benefit from MAS.
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1.1.1 Report generation

The typical process for producing a report involves the collection of a large
body of information, synthesizing it into key insights, and summarizing
these insights into a structured output format. Since LLMs can synthesize
large bodies of text information, the report generation task has become a



popular task for LLM agents. For instance, we might task an LLM agent to
collect statistics on a variety of investment opportunities, and then provide a
risk-and-opportunity assessment report for each of them. Note: reports like
these can be marred by LLM hallucinations, so monitoring is crucial.

1.1.2 Web search and deep search

Performing searches against general user queries is a common use for LLM
agents. Here, the LLM agents feature an LLM that has likely been fine-tuned
for enhanced reasoning capabilities and web search tools. Perplexity.ai is one
of the new web search engine companies that use LLM agents, but
OpenAl,Ads ChatGPT and Anthropic,A6s Claude web applications have
also recently added web search.

An extension of web search is deep research, which involves a multi-step
orchestration logic that executes steps of deep browsing of webpages,
followed by synthesis and report generation steps. Google,Ads Gemini Deep
Research product employs an orchestration logic that involves planning,
searching, reasoning, and reporting. The other large LLM providers offer
their own versions of deep research. Later in this book, we,A6ll implement
our very own deep research agent using our LLM agent build.

1.1.3 Agentic RAG

LLM agents can also be used as part of a retrieval-augmented generation
(RAG) system, otherwise known as Agentic RAG systems. In these
applications, LLM agents are equipped with tools for querying previously
built knowledge stores that contain artifacts to help answer user queries.
Imagine a company with all its meeting notes and internal documentation
indexed into a set of knowledge stores. An agentic RAG system can then
retrieve context from these documents to answer queries supplied by the
company,Ads employees.

1.1.4 Coding LLM agents

One of the more popular uses for LLMs and LLM agents has been for
coding and software development. There,Ads even a new term, ,Auvibe
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coding,,Au for giving the reins over to an LLM or LLM agent to code entire
projects or applications, with the human only providing natural language
instructions. Coding LLM agents can also work together to contribute to an
application, Ads code base, very much like how human software developer
teams contribute to a project. In these applications, LLM agents can be
equipped with sandboxed code interpreters for executing arbitrary code in
secure environments.

1.1.5 Computer use

LLM agents have also recently been equipped with tools that increase their
scope and permissions, including those providing controls to entire
applications, such as web browsers. With computer-use applications, the
LLM agents can even be given control of the entirety of the operating
software. With these kinds of permissions, LLM agents can perform tasks
such as ordering food, buying concert tickets, and more, all through using a
computer, much like how humans would. In this way, LLM agents can be
viewed as next-generation Robot Process Automation (RPA) systems, which
traditionally are rules-based and cannot flexibly adapt or apply reasoning to
make decisions like LLM agents can.

1.1.6 Enhancing applications with MAS

All of these uses for LLM agents may be enhanced through MAS by using
specialized agents across different components of an overall task. In the
report generation application, you might have a specialized LLM agent that
can more effectively summarize or extract information from domain-specific
datasets, like financial documents. This agent might collaborate with another
LLM agent that is responsible for producing well-structured reports. Or we
might employ a team of coding LLM agents for building a full-stack
application: you might have one that builds front-end code and another that
creates the backend. In principle, MAS excel when complex tasks can be
decomposed into smaller sub-tasks, where focused LLM agents outperform
general-purpose ones.

1.2 What is an LLM agent?



A simple definition of an agent is some entity that acts autonomously to
perform a task. Since LLMs can only generate text and cannot act, they
cannot be viewed as agents.

As mentioned, LLMs can, however, express intent to act through text. They
can generate tool call requests and can formulate plans to perform tasks. So
if we build a system around an LLM that can orchestrate the executions of
these generated tool-call requests and plans, that system could be viewed as
an agent.

Definition

An LLM agent is an autonomous system, comprised of a backbone LLM and
tools, that acts on tool-call requests and plans formulated by the LLM to
perform tasks on behalf of a user.

Figure 1.2 shows an LLM agent that utilizes the Qwen3-7b (i.e., the 7 billion
parameter version of Qwen3) model as its backbone LLM and is equipped
with five tools. Three of these tools are accessed through Anthopic,Ads
MCP, meaning third-party tool providers could have created them.

Figure 1.2 An LLM agent is comprised of a backbone LLM and its equipped tools.
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1.2.1 Prerequisite LLM capabilities

By our definition, an LLM agent depends on the backbone LLM,Ads plans
and requests for tool calls to accomplish tasks. To be effective, LLM agents
require their backbone LLM to make sensible choices for the next actions,
including which tool calls to perform, after synthesizing the results of
previous actions. Two LLM capabilities that can meet this requirement are
planning and tool calling.

Planning

LLM agents are often implemented so that their backbone LLMs create
initial plans to execute a given task. This happens at the very beginning of
the task execution and clearly relies on the overall capability of the backbone
LLM to formulate plans. Setting an incorrect plan at the very beginning of
the task execution can lead to catastrophic outcomes such as incorrect task
results, task execution timeouts, or massive inefficiencies.



Suppose we were to execute on our task of finding the best-value croissants
in New York City. The LLM agent might first receive the original user
request and formulate an initial plan. It does this through text generation, of
course, and could look something like the following:

"I need to find all of the bakeries in New York City that sell
croissants and check their prices as well as their ratings.
Then, I need to build an analysis with this information to
determine the best-value croissants in NYC."

This initial plan typically forms the start of a new sub-step execution, which
is part of the broader task processing. As you can imagine, planning is not
only used at the beginning of the task execution, but also throughout its
entirety.

One common way to implement a task execution is through a processing
loop that produces steps or actions towards task completion. We utilize the
LLM,A6s planning capability to synthesize the results of the previous steps
or actions and their contribution to the overall task execution. It is here that
the LLM agent, through its backbone LLM, can adapt its current plan to a
new one based on these past results. The LLM agent could, for example,
course-correct if it deems that the past steps have led the execution down a
not-so-happy path, or it could determine that the task has been completed,
perhaps earlier than anticipated, and exit the task execution with the
appropriate task result.

Figure 1.3 shows how LLM agents plan with LLMs.

Figure 1.3 LLM agents utilize the planning capability of backbone LLMs to formulate initial
plans for tasks, as well as to adapt current plans based on the results of past steps or actions
taken towards task completion.
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Planning vs Chain-of-Thought and Reasoning LLMs

A related concept to planning is Chain-of-Thought, an LLM-prompting
technique that attempts to have LLMs provide their reasoning and deduction
steps, in addition to the final response. Prompts used to elicit these chains of
thought from LLMs to answer questions could include demonstrative
examples, known as few-shot exemplars.

For instance, ,AuThe number 77 is divisible by 7 and 11. Thus, 77 is not a
prime number, Al would be an exemplar answer to the question ,Alls 77 a
prime number?,Au that could be included under an examples section of a
prompt.

These prompts also typically include words like ,Atishow your or work, Au
or ,Aulet,Aos solve this step-by-step,Au in the system-context setting
portion of the prompt.

In recent times, LLMs have been further trained to generate long chains of
thought, and such LLMs have come to be known as ,Atireasoning LLM:s.

, At These generated sequences of text are often included in the final text
output, typically enclosed in a section marked by the tags ,Au<thinking>,Au
and ,Au</thinking>,Au.

As a result of their post-training, reasoning LLMs may also have increased
abilities to plan, and could therefore be a worthy candidate as the backbone
LLM for LLM agents.

Tool Calling

The second prerequisite capability for the backbone LLM is tool calling.
Earlier, we discussed how to equip an LLM with a tool by providing it with
textual descriptions of the tool,Ads functionality and parameters. By doing
so, we enable the LLM to express an intent to use the tool. You can see this
tool-equipping process in figure 1.4

Figure 1.4 An illustration of the tool-equipping process, where a textual description of the tool
that contains the tool,A6s name, description and its parameters is provided to the LLM agent.
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Let,Ads unpack the rest of the broader tool-calling process and overall
capability.

"tool_name": "wep-search-tool",
"parameters": {"query": string},
"description”: "Searches the web

Tools that are equipped to the LLM agent can be used for future tool calls.
The entire tool-call process is shown in figure 1.5

Figure 1.5 The tool-calling process, where any equipped tool can be used.



LLM agent calls the web-search
tool with the query: "best
croissants NYC ratings prices".

{
"tool_name": "web-search-tool",
"parameters": {
"query": "Croissant bakeries in
New York City and their
prices.",
}
}

LLM generated output for a web-search tool call request

tool_result = web_search_tool (

"Croissant bakeries in New York

City and their prices."

)
i
Web search tool execution
Below is a tool call result:
{
"tool_name": "web-search-tool",
"result": [
"hits": [
{
"name": "Bob’s Bakery",
"has_croissant": True,
"price": 3.50,
"yelp_rating": 4.80,
e
1,
}
}

The tool call result turned into a string to be sent back to the LLM

S

LLM selects a tool
and generates a
tool call request

Tool execution
commences with the
parameters
generated by the
LLM

Tool execution
completes

Results are sent
back to the LLM



Each tool-call process begins with an LLM making a tool-call request. This
tool-call request is text generated by the LLM, which includes the tool
identifier as well as the values for the required parameters of the selected
tool. LLMs often make these tool-call requests through a structured output,
such as a JSON format. For example, and in continuation with our task to
find the best-value croissants in New York City, the LLM may generate a
web-search tool-call request that looks something like the following:

{

"tool name": "web-search-tool", #A
"parameters": { #B
"query": "Croissant bakeries in New York City and their

prices.",
}
}

As you can see, the tool request that the LLM makes contains not only the
tool selection but also the values for the selected tool, Ads parameters.

After an LLM has made a tool call request, the tool is executed with the
provided parameters. The results of the tool call execution are then sent back
to the LLM, allowing it to synthesize the information and generate an
appropriate response.

Teaching LL.Ms how to tool-call

To provide LLMs with this tool-calling capability, often also referred to as
,Autool usage,Au, LLMs typically undergo supervised fine-tuning, a form
of post-training. This training uses instruction examples that demonstrate the
types of tool calls the LLM should learn to generate. The objective is to
teach the LLM to adhere to the specified format for making tool call requests
and to learn when tool calls would be appropriate. An LLM that cannot
generate tool call requests would undoubtedly be a bad choice for the
backbone LLLM of an LLLM agent.

Having discussed the two prerequisite capabilities of the backbone LLM,
let's now see how the LLLM agent uses these capabilities to perform tasks
through its processing loop.



1.3 The processing loop

The processing loop of an LLM agent is where all the action takes place.
Plans are developed, tool calls are made, and steps are taken to complete the
task. When initial plans fail, they can be adapted to perform the task
successfully. LLM planning and tool-calling capabilities are repeatedly used
within a processing loop. Figure 1.6 shows the processing loop and how
tasks are performed within it. Let,Ads walk through this mental model
together.

Figure 1.6 A mental model of an LLM agent performing a task through its processing loop,
where tool calling and planning are used repeatedly. The task is executed through a series of
sub-steps, a typical approach for performing tasks.
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A processing loop is initiated when a task is submitted to the LLM agent for
execution. The actual approach for executing tasks within a processing loop
is a design choice. For our LLM agent framework, our approach is to
execute the task through a series of sub-steps, as shown in figure 1.6.

At the start of every step, the LLM agent synthesizes the results and progress
made so far on the task to create the next intermediate plan or step. For the
very first step of task execution, since no prior progress has been made, the
LLM agent simply uses the user,Ads request or task instruction to formulate
the initial step,Aos plan. The LLM agent can make tool calls within any
step.

For our example task of finding the best-value croissants in New York City,
let, Ads suppose that the initial plan and tool call presented in the previous
sections, where we discussed the prerequisite LLM capabilities, form the
first sub-step. Here,Ads an outline of this first step, as it fits within the
overall task execution.



2 Working with Tools

This chapter covers

e Specifying the base class for tools to standardize how they are used in our
framework

e Defining the data structures for facilitating a tool-call process

e Turning Python functions into tools to use with LLMs and LLM agents

You now know that tools are a crucial part of LLM agents. Tools, such as those for
performing web searches, plotting data, and executing code in a sandboxed
environment, increase the potential of LLM agents and expand the range of tasks
they can perform.

Equipping an LLM with a tool requires us to provide a textual description of the
tool so that the LLM can understand how to use it. LLMs can use a tool through
the tool-calling process, which involves the LLM generating a tool-call request,
invoking the tool, and finally returning the result to the LLM for synthesis and
response.

The focus of this chapter, as illustrated in figure 2.1, is to build the required
infrastructure for defining tools and how they can be used. We’ll package all our
code in our own LLM agent framework, called 11m-agents-from-scratch.

Figure 2.1 The focus of the current chapter, through the lens of our build plan introduced in Chapter 1.
Before we can build an LLM agent, we first need to properly define tools and how they can be used
within our framework.



Step 2: Implement ¥\

function ool 1¢p |+ Define Apply further
BaseTool cnhancements /1 uman in the loop |
& data structures
—

SimpleFunction . Stage 3
P Build our first d

LLM Agent

memary

il

PydanticFunction Stage 1
LLM Agent
1 —
[ Ollama ]—[ LLM
J R
Stage 4 LLM Agent
' (S
MCP Tools ———"Stage 2 Support multiple

Add MCP LLM Agents LA
compatibility —

To be more specific, we’ll define a base class interface for tools, BaseTool, which
will serve as a blueprint for adding tools to our framework. This blueprint will also
help to standardize how tool calls are performed, as well as how the textual
descriptions of tools are prepared and passed to the LLM. To completely
standardize the tool calling process in our framework, we’ll need to introduce a
couple of new data structures that represent the input and output of tool calls.

In addition to defining the base class and adding the necessary data structures,
we’ll also implement a couple of subclasses that will help us to create LLM tools
from Python functions.

To follow along with the code examples, I recommend forking the book’s GitHub
repository and activating the framework’s dedicated virtual environment. You can
do so by running the following terminal commands while in the project’s root
directory.

uv sync #A

# mac or linux
source .venv/bin/activate



# windows (powershell)
.venv\Scripts\activate

Additionally, a Jupyter notebook containing executable code for the example
demonstrations in this chapter has been prepared and can be found in the book’s
GitHub repository: https://github.com/nerdai/llm-agents-from-
scratch/blob/main/examples/ch02.ipynb. Code snippets marked with # Included
in examples/ch02.ipynb are available in this notebook for you to run.

I recommend using uv to launch Jupyter Lab to ensure all the necessary packages
are installed for you to run these examples. You can do this by running the
following terminal command in the project’s root directory (where
pyproject.toml can be found).

uv run --with jupyter Jjupyter lab

2.1 BaseTool: a blueprint for tools

Tools can differ significantly in their functionality. For example, a tool that
performs web searches is obviously very different from another tool that can plot
pie charts. LLM agents with tools of various functionalities have the potential to
be more potent and versatile. However, if these tools also differ significantly in
how they’re invoked, then it would be challenging to realize such potential. These
differences might also lead to the LLM making mistakes when requesting tool
calls.

A better approach would be to define a standard way for calling tools, regardless
of their different functionalities. For similar reasons, we’d also want to standardize
the way in which textual descriptions of tools are formatted. This standardization
will pave the way for us to write reliable code that enables LLMs and LLLM agents
to work with these tools—as you’ll see later, in Chapters 3 and 4.

We will define this standard for tools through a special base class, BaseTool,
which we’ll implement in this section. To be even more precise, though, we’ll also
be implementing a related base class called asyncBaseTool. Together, these base
classes define the standard that every tool added to our framework must conform
to.

To keep things simple, let’s consider only BaseTool for now and revisit
AsyncBaseTool later. Figure 2.2 illustrates the same LLM agent from before, along
with its tools, each of which 1s now shown to inherit from BaseTool.
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Figure 2.2 Each tool inherits from the BaseTool class, allowing the LLLM agent to access the textual
descriptions and execute the logic of each tool in the same manner.
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Our BaseTool class will specify a set of methods and attributes, which every tool
that inherits from it must also support. For simplicity, figure 2.2 shows only the
__call () method and the parameters json schema attribute, but we will soon
see the full structure of BaseTool.

As mentioned earlier, defining the BaseTool only gets us part of the way toward
implementing a standardized tool-calling process in our framework. We also need



to define two new data structures for representing the input and output of a tool
call. The Too1cal1 class will define our tool-call input, and the ToolcallResult
class will define our tool-call output.

Before we write any code, let’s quickly revisit the tool-calling process that we
covered in the previous chapter, and see how our new classes fit into it. Figure 2.3
shows the familiar tool-calling process diagram, but with our new classes
incorporated into it.

Figure 2.3 Incorporating our new classes—BaseTool, ToolCall, and ToolCallResult—into the tool-calling
process, first shown in Chapter 1.
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As you learned in the previous chapter, the first step to the tool-call process is for
the LLM to select a tool and generate a tool-call request. We can now add more



structure to this step by packaging the generated request into a Too1call object.
The next step would be to execute the selected tool’s logic using the parameters
specified in the tool-call request. Since all tools will conform to the standard
interface defined in BaseToo1, we will be able to execute every tool’s logic in the
same way. That is, through the selected tool’s ca11 () method, which would
accept the previously created Toolcall object as input. After the tool’s logic is
executed, the result is then packaged into a Too1callResult object, which can
then be passed back to the LLM.

Now that we have outlined how these new classes will work together, let’s delve
into their structural details, which are provided in the UML class diagrams seen in
figure 2.4.

Figure 2.4 The UML class diagrams for BaseTool, ToolCall and ToolCallResult.
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We covered a few of the basics for UML class diagrams in Chapter 1. You may
recall from that previous discussion that attributes are outlined in the top section of



the rectangular box, while methods are provided in the bottom section. Figure 2.4
shows that Too1cal1 consists of three attributes—id , tool name, and arguments
—and no methods. The Toolcallresult class also has three attributes and no
methods. Those attributes are tool call id, content, and error. We’ll go over
what these attributes represent when we write the code for these two classes.

Figure 2.4 also shows the full structure of the BaseToo1 class, which we covered
only partially at the beginning of this section. We were previously familiar with
the parameters json schema attribute and the ca11 () method, but now we
can see two additional attributes: name and description.

Finally, figure 2.4 illustrates a couple of new UML concepts that we’ll now go
over. First is the inheritance relationship, which is indicated by a solid line with a
hollow triangle arrowhead pointing from the child class to the parent class. You
can see that both Too1cal1 and ToolcallResult inherit from the external
pydantic.BaseModel class. Second, you may have noticed that, rather than the
usual circle with a “C” beside the BaseTool text, there is a circle with an “A”
instead. This “A” stands for abstract and indicates that any tool that extends the
BaseTool class must provide implementations for the methods which have been
marked as abstract; these are methods that have no default implementation in the
base class. You’ll see how we mark methods as abstract when we implement the
BaseTool class.

TIP

Pydantic is a Python library that is especially useful in defining data models that
require robust validation.

Now that we understand how these classes are structured and work together in the
tool-calling process, let's implement them!

2.1.1 Implementing ToolCall and ToolCallResult

We’ll implement our two new data structures, one at a time, starting with
ToolCall. The three attributes of Too1ca11 were shown in figure 2.4. The id
attribute provides a string identifier for a Too1cal1 object, while tool name and
arguments represent the selected tool’s name and the parameter values we’ll use to
invoke it, respectively.

The following listing shows the implementation of Toolcall.



Listing 2.1 Implementing ToolCall

# 1llm agents from scratch/data structures/tool.py #A
import uuid
from typing import Any

from pydantic import BaseModel, Field

class ToolCall (BaseModel) :
"""Tool call.

Attributes:
id : A string identifier for the tool call.
tool name: Name of tool to call.
arguments: The arguments to pass to the tool execution.

id : str = Field(default factory=lambda: str (uuid.uuid4()))
tool name: str #B
arguments: dict[str, Any] #C

Since Toolcall inherits from pydantic.BaseModel, we specify attributes under
the class declaration. With pydantic, the three attributes are also called model
fields. We can add customizations to any of the fields, such as providing a default
factory method, as we’ve done for id_. This means that we do not need to supply a
value for id_ when creating a Too1call object. I should also mention that a default
constructor is provided for pydantic.BaseModel objects, which explains why we
don’t need to define an  init () method ourselves.

As discussed earlier, we need to package the tool-call requests generated by LLMs
into Toolcall objects. Let’s revisit our best-value croissant in New York City
example from the previous chapter. Suppose the backbone LLM generates a tool-
call request in natural language text: “I need to use the web-search-tool to run the
search query: ‘Croissant bakeries in New York City and their prices’.” Figure 2.5
shows how we create a Too1ca11 object from this request.

Figure 2.5 Creating a ToolCall object from an LL.M’s natural language tool-call request. Since the web-
search tool is a BaseTool, we must first convert the request into a ToolCall object before invoking it.
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Converting this request to a Too1call object requires identifying the selected
tool’s name as well as the arguments we’ll use to invoke it. The following code



snippet demonstrates how we can use these identified elements to create our
ToolCall object.

# Included in examples/chO2.ipynb #A
from 1lm agents from scratch.data structures.tool import ToolCall

croissant tool call = ToolCall(
tool name="web-search-tool", #B
arguments={
"query": "Croissant bakeries in New York City and their
prices.", #C

NOTE

In practice, we use APIs or Software Development Kits (SDKs) provided by LLM
providers to elicit tool-call requests. In contrast to our example, these requests are
typically generated according to a pre-specified structured format. This is
beneficial because working with unstructured text would be brittle and pose
significant challenges when extracting the required elements to build Toolca11
objects consistently. We’ll work with one such API in the next chapter when we
build out the base class for LLMs.

With our Toolcall object created, we can now invoke the tool’s  call ()
method to execute the requested web search. Since we haven’t yet implemented
our BaseTool class, we’ll have to wait a little longer before we can see this step in
action.

For now, let’s continue with our planned implementation of Toolcallresult. You
saw earlier from figure 2.4 that Too1callresult has three attributes:

tool call id, content, and error. The content attribute stores the results of the
tool-call execution, while the error attribute specifies whether or not an error was
encountered. The tool call id attribute helps to tie back the result to its
associated tool-call request. Figure 2.6 shows how the creation of the
ToolCallResult object is dependent on the outcome of a tool execution.

Figure 2.6 Creating a ToolCallResult object from the selected tool’s execution, handling both successful
and failed executions.
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After a successful execution, the result is assigned to the content attribute and the

error=False,

error 1S set to False. If an error is encountered during the tool’s execution, the



content and error attributes are set to None and True, respectively.
The following code implements the Toolcallresult class.
Listing 2.2 Implementing ToolCallResult

# 1lm agents from scratch/data structures/tool.py
import uuid
from typing import Any

from pydantic import BaseModel, Field

#A

class ToolCallResult (BaseModel) :
"""Result of a tool call execution.

Attributes:
tool call id: The id of the associated tool call.
content: The content of tool call.
error: Whether or not the tool call yielded an error.

mmon

tool call id: str #B
content: Any | None #C
error: bool = False #D

As you can see, the implementation of ToolcallResult is similar to that of
ToolCall since both classes inherit from pydantic.BaseModel.

Continuing our previous example, if we imagine a successful execution of the
web-search-tool, we’d create a ToolCallResult object with its content set to
the execution result and its error set to False, as the following code snippet
demonstrates.

# Included in examples/ch02.ipynb #A
from 1lm agents from scratch.data structures.tool import
ToolCallResult

result = ToolCallResult (
tool call id=tool call.id , #B
content={
"search results": .. #C

}

2.1.2 Implementing BaseTool



Now that we’ve implemented the necessary data structures for working with the
BaseTool class, let’s move on to its implementation. As we saw from the UML
class diagram in figure 2.4, BaseTool is an abstract class with three attributes and
one method.

The three attributes—name, description, and parameters json schema—
provide the information needed to equip an LLM with the BaseToo1. More
specifically, they are used to prepare the textual descriptions passed to the LLM, as
shown in figure 2.7.

Figure 2.7 Revisiting the tool-equipping process. With a BaseTool, we can use its attributes to fill in the
values required for textual descriptions that are passed to the LLM.



LLM Agent Backbone LLM Tools

Uy ——

| (Qwem functlon

I

' (I)

I

I

I

I

I

I

|

I \ /

I
hmsmemummd
by providing their
textual descriptions

| paraneters jo .- to the LLM

Since websearch is a BaseTool, we can use the
appropriate attributes to fill in the necessary
elements for its textual description, RaseToo]
aseTool

Once a tool 1s equipped to the LLM, it can be used in a tool-call process. As we've
already discussed, the ca11l () method is now responsible for the tool's
execution, which takes in a Toolcall and outputs a ToolCallResult.



We’ll mark this  ca11 () method as abstract, implying that subclasses will need
to provide an implementation for it. The following listing shows the code for
BaseTool.

Listing 2.3 Implementing BaseTool

# 1llm agents from scratch/base/tool.py #A

from abc import ABC, abstractmethod

from 1lm agents from scratch.data structures.tool import (
ToolCall, #B
ToolCallResult, #B

)

class BaseTool (ABC) :
"""Base Tool Class."""

@property #C

@abstractmethod

def name (self) -> str:
"""Name Of tool."""

@property
@abstractmethod #D
def description(self) -> str:

"""Description of what this tool does."""

@property

@abstractmethod

def parameters json_ schema(self) -> dictl[str, Any]:
"""JSON Schema for tool parameters."""

@abstractmethod
def  call (
self,
tool call: ToolCall,
*args: Any,
**kwargs: Any,
) —> ToolCallResult:
"""Execute the tool call.""" #E

You can see that we’ve marked the ca11 () method as abstract by applying the
Rabstractmethod decorator to it.

For our three attributes, you may be surprised to see that we have marked them
with @abstractmethod as well. While they’re marked as abstract methods, the
eproperty decorator gives us the attribute-like behavior we want. This provides
some flexibility in terms of hiding internal attributes and performing validation



when needed. However, the main reason I have chosen to use property attributes
here is for a consistent interface. All subclasses must provide implementations for
name, description, parameters json schema, and __call (), and failing to do
so would raise an AbstractMethodError.

NOTe

Most, if not all, LLM providers have designed their LLM tool-calling APIs and
SDKs to accept outlines of the tool’s parameters that adhere to the JSON Schema
specification. Using JSON Schema for our framework is a technically sound
choice that also happens to maximize compatibility with existing LLM tools and
services.

Let’s look at a simple example of building a tool by subclassing the BaseToo1 class
we just implemented. For this example, we’ll create a tool called the Hailstone tool
that applies a single step of the Hailstone sequence to a given positive integer. If
the integer is even, the Hailstone tool outputs the result of halving it; if odd, the
Hailstone tool outputs the result of multiplying it by three and adding one. Figure
2.8 illustrates the Hailstone tool and its execution logic as part of a tool-call
process.

Figure 2.8 The Hailstone tool performs a Hailstone step on a given positive integer. By implementing the
Hailstone tool as a subclass of BaseTool, we can use it within the tool-call process for LLMs.
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To implement the Hailstone tool as a BaseTool, we know from before that we’ll
have to write implementations for name, description, parameters json schema,
and  call ().

For name and description, we’ll use “hailstone” and “A tool that performs a
Hailstone step on a given input number,” respectively. For



parameters json_schema, We need to provide a schema of the Hailstone tool’s
parameters that conforms to the JSON Schema specification. We’ll create this
manually for this simple example, but later in this chapter, we’ll build a helper
function to generate these JSON Schemas automatically.

The Hailstone tool requires only one input parameter: the integer to which we
want to apply the Hailstone step. If we call this input parameter x, which aligns
with the naming used in figure 2.8, the JSON Schema for the Hailstone tool’s
parameters looks like the following code.

{

"type": "object",
"properties": { #A
"x": { #B
"type": "number",
"description": "The input number."
by
}l
"required": ["x"], #C

}

As you can see, the input parameter x is specified and listed as required.

JSON Schemas like the one we just created are simply JSON documents that use a
set of reserved keywords to describe their data requirements. Readers unfamiliar
with the JSON Schema specification may find it helpful to read the sidebar, which
provides an overview of the basics of JSON Schema.

JSON Schema basics

JSON Schemas are themselves JSON documents that are used to describe the
shape and format of data. This specification makes it easier to create and share
data. For example, JSON Schemas can be used to specify the shape of data
representing transactions from a retail store. As another example, a JSON Schema
can also be used to describe LLM agents.

Let’s say that we want to have LLM agents specified by their backbone LLM and
the list of its equipped tools. To accomplish this, we’d structure the overall JSON
Schema using the type object. This object JSON data type is analogous to the
Python dict type. Within an object, we can define its properties, or key-value
pairs, that represent the object.



For our LLM agent, we would have two properties: 11m and tools. Each property
in JSON Schema is defined by a schema object that specifies its data type and
constraints. We may want the 11m property, for example, to specify the name of the
LLM model, like “gpt-5”. In this case, we’d specify the 11m property type to be the
string JSON type.

In contrast, the tools property would be an array JSON type, which is analogous
to the Python 1ist data type. In addition to specifying the data type, we can also
provide a name or title to each JSON Schema fragment. The following code
shows the JSON Schema that we just described.

{
"title": "LLMAgent",
"type": "object", #A
"properties": {
"1lm": { #B
"title": "Llm",
"type": "string" #C
b
"tools": { #D
"items": { #E
"additionalProperties": true,
"type": "object"
b
"title": "Tools",
"type": "array" #F
b
by
"required": [ #G
"11m" ,
"tools"

}

With this JSON Schema, we know precisely how to create a valid LLM agent data
record. We see the shape and format of this data and understand that a valid LLM
agent data record must include both 11m and too1s properties, as shown in the
following code.

{
"Ilm": "gpt-5",
"tools": |
{
"name": "websearch-tool"

}



Failing to have either of these fields or supplying incorrect data types would result
in a JSON data validation error. The following code shows an invalid LLM agent
data record because it is missing the 11m property.

{

"tools": |

{

"name": "websearch-tool"

}
}

By passing JSON Schemas of the tool parameters to LLMs, they’ll know exactly
how to provide the required information for parameters when making tool-call
requests.

For more comprehensive information on JSON Schemas, readers are encouraged
to read other resources such as https://json-schema.org/.

The last item to implement for our Hailstone tool isits  ca11 () method. With
our parameter’s JSON Schema established, we can now expect Too1call objects
passed to the Hailstone tool to contain the key x in their arguments dictionary. The
value for this key is the input number to which we’ll apply the Hailstone step
logic. The following code implements this logic after extracting the input number
from a given Toolcall object called tool call.

x = tool call.arguments.get ("x") #A
if x % 2 == 0:

result = x // 2 #B
else:

result = (x * 3) + 1 #C

return ToolCallResult( #D
tool call id=tool call.id ,
content=result,
error=False,

)

Our code successfully implements the Hailstone step and packages the result into a
ToolCallResult, as required by the ca11l () method. This implementation
keeps things simple at this stage, but a more robust version could include
validation and error handling for the input parameter x.

The following code ties everything back together, providing the entire
implementation for the Hailstone tool.


file:///C:/Users/pc/AppData/Local/Temp/calibre_6fe6roxu/f0wxuv7s_pdf_out/EPUB/json-schema.org.html

# Included in examples/chO2.ipynb #A

from typing import Any

from 1lm agents from scratch.base.tool import BaseTool

from 1lm agents from scratch.data structures.tool import (
ToolCall,

ToolCallResult,
)
class Hailstone (BaseTool) : #B
@property
def name (self) -> str:

return "hailstone"

@property
def description(self) -> str:
return "A tool that performs a Hailstone step on a given
input
number."
@property

def parameters json_ schema(self) -> dictl[str, Any]:
"""JSON Schema for tool parameters."""

return {
"type": "object",
"properties": {
"x": |
"type": "number",
"description": "The input number."
}I
by
"required": ["x"]
}
def call (
self,

tool call: ToolCall,
*args: Any,
**kwargs: Any,
) —> ToolCallResult:
"""Execute the tool call."""
x = tool call.arguments.get ("x")
if x % 2 == 0:
result = x // 2
else:
result = (x * 3) + 1

return ToolCallResult (
tool call id=tool call.id ,
content=result,
error=False,



We can run the Hailstone tool call shown in figure 2.8 as follows:

# Included in examples/ch02.ipynb #A
hailstone tool = Hailstone() #B

tool call = ToolCall( #C
tool name="hailstone",
arguments={"x": 3},

)

tool call result = hailstone tool(tool call) #D
print (tool call result)

The returned ToolcallResult object contains the result of applying the Hailstone
step to x = 3, which is 10.

tool call id='112233', content='10', error=False

A demonstration of using the Hailstone tool’s name, description, and
parameters json schema to prepare a textual description for an LLM will have to
wait until we’ve implemented the Baser1M class, which is the subject of the next
chapter. For now, let’s go over the other base class that we mentioned earlier:

AsyncBaseTool.

2.1.3 The AsyncBaseTool

To conclude this section, we’ll present an important variation of the BaseTool
class: the AsyncBaseTool, which is designed for tools whose logic executes
asynchronously. Tools that make external API calls, such as for checking weather
data, are best suited for asynchronous execution. While waiting for the result of an
external API call, asynchronous tools allow other parts of an application’s code to
execute simultaneously. Figure 2.9 illustrates the difference in execution
mechanics between BaseTool, which is synchronous and therefore blocking, and
the non-blocking AsyncBaseTool.

Figure 2.9 Comparing synchronous and asynchronous tool executions.
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execution often yields significant speed gains due to improved resource utilization
compared with the synchronous execution of its BaseTool counterpart.

Figure 2.10 shows the UML class diagram of the AsyncBaseTool class.

Figure 2.10 The UML class diagram for AsyncBaseTool, which shows a nearly identical structure to the
BaseTool class.
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The asyncBaseTool class exposes an interface similar to BaseTool. It shares the
same attributes as BaseTool, and also supportsa call () method. However,



the call () method of AsyncBaseTool is asynchronous.

In Python, we mark methods as asynchronous by using the keyword async just
before declaring the method signature. The complete implementation for
AsyncBaseTool is provided in the following code.

Listing 2.4 Implementing AsyncBaseTool

# 1llm agents from scratch/base/tool.py

from abc import ABC, abstractmethod

from 1lm agents from scratch.data structures.tool import (
ToolCall,
ToolCallResult,

)

class BaseTool (ABC) :
"""Base Tool Class."""
#A

class AsyncBaseTool (ABC) :
"""Async Base Tool Class.™""

@property

@Qabstractmethod

def name (self) -> str:
"""Name Of tool'"""

@property
@abstractmethod
def description(self) -> str:
"""Description of what this tool does."""

@property

@abstractmethod

def parameters json schema(self) -> dictl[str, Any]:
"""JSON schema for tool parameters."""

@abstractmethod
async def  call ( #B
self,

tool call: ToolCall,
*args: Any,
**kwargs: Any,
) —-> ToolCallResult:
"""Asynchronously execute the tool call."""

As an example, if the Hailstone tool from earlier inherited from AsyncBaseTool
instead of BaseToo1, we would invoke it with the following code.



hailstone tool = Hailstone() #A

tool call = ToolCall( #B
tool name="hailstone",
arguments={"x": 3},

)

tool call result = await hailstone tool(tool call) #C

note

The async keyword turns a function into an asynchronous one that returns a
coroutine when called. Coroutines are non-blocking objects that enable concurrent
execution within an asynchronous event loop, such as the ones provided by the
asyncio library. Results of coroutines must be awaited using the await keyword
when called from an asynchronous method. To run a coroutine from synchronous
code, you can us€ asyncio.run().

Exercise 2.1 Hailstone as an AsyncBaseTool

Re-implement the Hailstone tool from earlier, but this time make it inherit from
AsyncBaseTool. For its execution logic, introduce a 1-second sleep before
performing the Hailstone step by using asyncio.sleep (1).

2.2 SimpleFunctionTool: a subclass of BaseTool

While we were able to implement the Hailstone tool with relative ease, we can
add extra convenience by developing an abstraction that automatically builds
BaseTool objects from Python functions. In this section, we’ll create
SimpleFunctionTool, a subclass of BaseTool that serves as a wrapper class for
creating tools in this manner.

When supplied with a function, simpleFunctionTool automatically implements
name, description, parameters json schema, and __call () using the
information encapsulated in the function, as shown in Figure 2.11.

Figure 2.11 Wrapping Python functions with SimpleFunctionTool so that they can be used as tools for
LLMs and LLM agents.
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We’ll also implement the asynchronous version of SimpleFunctionTool, for
creating AsyncBaseTool objects derived from asynchronous Python functions.

Figure 2.12 shows the UML class diagrams for simpleFunctionTool and
AsyncSimpleFunctionTool.

Figure 2.12 UML class diagrams for SimpleFunctionTool and AsyncSimpleFunctionTool.
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Both classes inherit from their corresponding base tool classes and add a new
attribute called func, which is the function they wrap. For simpleFunctionTool,
the wrapped function is synchronous, while for AsyncsimpleFunctionTool, it is
asynchronous.

If we reconsider the Hailstone tool, the new SimpleFunctionTool class enables an
alternative implementation based on a function that implements the Hailstone step
logic, as shown in the following code.



# Included in examples/chO2.ipynb #A

def hailstone step func(x: int) -> int:
"""pPerforms a single step of the Hailstone sequence."""
if x $ 2 == 0:
return x // 2 #B
else:

return 3 * x + 1 #B

The idea is to have simpleFunctionTool wrap the hailstone step func() to
create a new tool that an LLM or LLM agent can use in a tool-call process.

2.2.1 Implementing SimpleFunctionTool

Now that we have an idea of what we’re trying to accomplish, let’s implement
SimpleFunctionTool.SinCGfSimpleFunctionToolinherﬁSfTOHlBaseTool,aS
shown in figure 2.12, we know that we’ll need to implement name, description,
parameters json schema,and call (). As previously discussed, we’ll derive
these implementations automatically based on the supplied function and a new
attribute, func.

To start, for the name attribute, we’ll use the name of the Python function. For
description, we can use the docstring of the Python function if it exists;
otherwise, we fall back to some pre-specified template. The implementations of
these first two attributes, as well as the constructor init () method are shown
in listing 2.5.

Listing 2.5 Implementing SimpleFunctionTool.(__init__ (), name, description)

# 1llm agents from scratch/tools/simple function.py
from typing import Any, Callable
from 1lm agents from scratch.base.tool import BaseTool

class SimpleFunctionTool (BaseTool) :
"""Simple function calling tool.

Turn a Python function into a tool for an LLM.

def _ init_ (

self,
func: Callable[..., Any], #A
desc: str | None = None,

) —> None:

"""Initialize a SimpleFunctionTool.

Args:



func (Callable): The Python function to expose as a tool

to the
LLM.
desc (str | None, optional): Description of the function.
Defaults to None.
mwwn
self.func = func
self. desc = desc #B
@property
def name (self) -> str:
"""Name of function tool.™""
return self.func. name  #C
@property
def description(self) -> str:
"""Description of what this function tool does.™""
return (
self. desc or self.func. doc  or f"Tool for
{self.func. name }" #D

Let’s now move on to implementing parameters json_ schema for
SimpleFunctionTool. When we implemented the Hailstone tool earlier, we
created the parameters JSON Schema manually. I mentioned then that we’d later
build a helper function to automate the generation of these schemas. We’ll do this
now by implementing a helper that derives the JSON Schema from func by
inspecting its method signature. We’ll call this helper function:

function signature to json schema().

Implementing function signature to json schema () mainly involves mapping
Python data types to the corresponding JSON Schema data types, as well as
determining which of the function parameters are required because they have no
defined default values.

NOTE

We’re coding a JSON Schema builder from scratch with our implementation of
function signature to json schema () to deepen our understanding of how the
textual descriptions of tools are prepared for an LLM to consume. In the next
section, we will introduce yet another BaseTool subclass that handles this aspect
more robustly by leveraging the JSON Schema generation capabilities offered by
the pydantic library.



There is quite a bit of logic that needs to be implemented in

function signature to json_ schema (). To help you better understand all of it,
I’ve illustrated the logic in figure 2.13. Let’s walk through all of it together before
seeing the entire implementation in a listing.

Figure 2.13 A visual breakdown of the three steps involved in the implementation of the helper
function_signature_to_json_schema.
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As shown in figure 2.13, there are three steps to implement. First, we introspect
the function signature to identify the parameters and their annotated types. Second,



we loop through all the identified parameters to build a JSON Schema fragment
for each of them. This step involves mapping the parameter’s type to the
corresponding JSON data type and determining if the parameter is required. Third,
we assemble and return the overall JSON Schema.

The complete implementation of function signature to json schema() iS
provided next in listing 2.6.

Listing 2.6 Helper for turning a function signature into a JSON Schema

# 1lm agents from scratch/tools/simple function.py
import inspect
from typing import Any, Callable, get type hints

def function signature to json schema (func: Callable) -> dict[str,
Any]:
"""Turn a function signature into a JSON schema.

Inspects the signature of the function and maps types to the
appropriate JSON schema type.

Args:
func (Callable): The function for which to get the JSON
schema.
Returns:
dict[str, Any]: The JSON schema
sig = inspect.signature (func) #A

type hints = get type hints (func)
python to json schema type = { #B

str: "string",
int: "number",
float: "number",
dict: "object",
list: "array",
type (None) : "null",
bool: "boolean",
tuple: "array",
bytes: "string",
set: "array",

}

properties = {}

required = []

for param in sig.parameters.values(): #C

# skip args and kwargs
if param.kind in (param.VAR POSITIONAL, param.VAR KEYWORD) :
continue



annotation = type hints.get (param.name, param.annotation)
if annotation in python to json schema type:
this params json schema = {
"type": python to json schema typel[annotation],

}

else:
# fallback schema, that accepts everything
this params json_ schema = {}
properties|[param.name] = this params json schema

# check if param is required
if param.default == inspect. empty: #D
required.append (param.name)

return { #E
"type": "object",
"properties": properties,
"required": required,

Phew, that was a lot of work. Fortunately, all that remains to implement
parameters json_ schema 1S to invoke our helper function, as shown in the
following code.

Listing 2.7 Implementing SimpleFunctionTool.parameters_json_schema

# 1lm agents from scratch/tools/simple function.py
import inspect

from typing import Any, Callable, get type hints

from 1lm agents from scratch.base.tool import BaseTool

def function signature to json schema (func: Callable) -> dict[str,
Any]:
#A

class SimpleFunctionTool (BaseTool) :
"""Simple function calling tool.

Turn a Python function into a tool for an LILM.

#B

@property
def parameters json schema (self) -> dict[str, Any]:
"""JSON schema for tool parameters."""
return function signature to json schema(self.func) #C



Let’s move on to the final required implementation, call (). Since
SimpleFunctionTool serves as a wrapper class to create a tool from func, we’ll
simply delegate to func within cal11 (). Before this delegation, however, we’ll
first perform validation on the parameter data provided by the LLM in its tool-call
request. Figure 2.14 shows these validation and delegation steps when  call ()
is invoked.

Figure 2.14 Executing a SimpleFunctionTool involves validating the parameter data of the ToolCall
object and subsequently delegating to the wrapped function.
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Any failures experienced in either the validation or delegation stages are handled
by returning a ToolCallResult With error set to True and content set to a JSON-
serialized string containing information on the error.

To perform the parameter data validation, we’ll use the jsonschema library. When

a ToolCall object, say tool call,ispassedto call (), we validate
tool call.arguments against the tool’s parameters json schema. The following
listing shows this validation aspect of the overall ca11 () implementation.

Listing 2.8 Implementing SimpleFunctionTool.__call__ () (validation)

# 1lm agents from scratch/tools/simple function.py
#A
from jsonschema import SchemaError, ValidationError, wvalidate

class SimpleFunctionTool (BaseTool) :
"""Simple function calling tool.

Turn a Python function into a tool for an LLM.

#B

def call (
self,
tool call: ToolCall,
*args: Any,
**kwargs: Any,

) —-> ToolCallResult:

#C

try:
# validate the arguments
validate (tool call.arguments, #D

schema=self.parameters json schema)
except (SchemaError, ValidationError) as e:

error details = {
"error type": e. class . name ,
"message": e.message,

}

return ToolCallResult( #E
tool call id=tool call.id ,
content=json.dumps (error details),
error=True,

)

#FE

Delegating to the wrapped function, func, amounts to passing the validated
tool call.arguments to it. Listing 2.9 implements the delegation portion of



_call ().
Listing 2.9 Implementing SimpleFunctionTool.__call__ () (delegation)

# 1llm agents from scratch/tools/simple function.py
#A

class SimpleFunctionTool (BaseTool) :
"""Simple function calling tool.

Turn a Python function into a tool for an LLM.

mmon

#B

def  call (
self,
tool call: ToolCall,
*args: Any,
**kwargs: Any,

) —-> ToolCallResult:

#C
#D
try:
# execute the function
res = self.func(**tool call.arguments) #E
except Exception as e:
error details = {
"error type": e. class . name ,
"message": f"Internal error while executing tool:

{str(e)}",
1
return ToolCallResult( #F
tool call id=tool call.id ,
content=json.dumps (error details),
error=True,

)

return ToolCallResult (
tool call id=tool call.id ,
content=str (res),
error=False,

We have now completed our implementation of SimpleFunctionTool. To
celebrate, let’s complete the alternative implementation of the Hailstone tool,
based on the hailstone step func() we coded earlier.



# Included in examples/chO2.ipynb #A
from 1lm agents from scratch.tools.simple function import (
SimpleFunctionTool

)

# convert our Python function to a BaseTool
hailstone tool = SimpleFunctionTool (hailstone step func)

print (hailstone tool.name)

print (hailstone tool.description)
print (hailstone tool.parameters json schema)

The resulting print statements should return the values of the attributes that were
automatically derived from the supplied hailstone step func().

hailstone step func #A

Performs a single step of the Hailstone sequence. #B
{"type': 'object', 'properties': {'x': {'type': 'number'}},
'required': ['x']} #C

Running this version of hailstone tool with a Toolcall object works in the
same manner as our original implementation.

# Included in examples/ch02.ipynb #A
from 1lm agents from scratch.data structures import ToolCall

tool call = ToolCall(
tool name="hailstone fn",
arguments={"x": 3}

res = hailstone tool(tool call) #B

This is great. With simpleFunctionTool, we’ve unlocked a useful pattern for
building tools from Python functions that LLMs and LLM agents can use. Let’s
wrap up this section by quickly implementing its asynchronous counterpart.

2.2.2 The AsyncSimpleFunctionTool

With AsyncsimpleFunctionTool, we aim to provide the same automatic tool
creation that simpleFunctionTool enabled, but for asynchronous functions. The
mental model for AsyncSimpleFunctionTool 18 similar to that for
SimpleFunctionTool, Which was illustrated in figure 2.11. The adapted version
for AsyncSimpleFunctionTool 1s shown in ﬁgure 2.15.

Figure 2.15 Wrapping an asynchronous Python function to create an AsyncBaseTool object
automatically.
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You might also recall from the UML class diagrams shown in figure 2.12 that
AsyncSimpleFunctionTool and simpleFunctionTool are structurally very similar.
The main difference is that the func attribute of AsyncSimpleFunctionTool stores
an asynchronous Python function.

All these shared similarities mean that we can reuse much of the code we wrote for
SimpleFunctionTool when implementing AsyncSimpleFunctionTool. Because of
this, we’ll only cover the parts of the implementation where differences do exist
between the two classes.

The first subtle difference lies in the implementation of the constructor,

__init__ (). Specifically, the type annotation that we’ll use for func is more
specialized now: callable[.., Awaitable[aAny]]. This updated annotation
indicates that we’re now working with a function that returns an object that can be
awaited by using the await keyword. Coroutines, which we previously discussed,
are one example of an awaitable object.

TIP



The typing.aAwaitable class is more flexible than typing.cCoroutine,
representing any object that is awaitable, which includes coroutines,

asyncio.Futures,andwasyncio.Tasks.

The next and final difference involves the implementation of  cal1 (). Since
the wrapped function is asynchronous, we’ll need to use the await keyword when
delegating to it. The validation logic is identical to that used for
SimpleFunctionTool. The following code shows the implementation of
AsyncSimpleFunctionTool.

Listing 2.10 Implementing AsyncSimpleFunctionTool (differences only)

# 1lm agents from scratch/tools/simple function.py
#A
from 1lm agents from scratch.base.tool import AsyncBaseTool

class AsyncSimpleFunctionTool (AsyncBaseTool): #B
"""Async simple function calling tool.

Turn a Python function into a tool for an LLM.

mwmwn

def  init (
self,
func: Callable[..., Awaitable[Any]], #C
desc: str | None = None,
) —> None:
#D

#E

async def  call ( #F
self,
tool call: ToolCall,
*args: Any,
**kwargs: Any,

) —> ToolCallResult:

#G
#H
try:
# execute the function
res = awailt self.func(**tool call.arguments) #1

#J



Exercise 2.2 Alternative async Hailstone implementation

Re-implement the async Hailstone you created in Exercise 2.1, but this time using
AsyncSimpleFunctionTool. To do this, you’ll need to turn the

hailstone step func () into an asynchronous function. Test both versions on the
same input to verify they return identical outputs.

2.3 PydanticFunctionTool: another subclass of
BaseTool

The simpleFunctionTool from the previous section features our from-scratch
helper method function signature to json schema () for automatically
deriving JSON Schemas from function signatures. In this final section, we’ll
provide an alternative function tool wrapper class, PydanticFunctionTool, with
similar capabilities to SimpleFunctionTool, but which leverages the pydantic
library for more powerful and robust JSON Schema generation and validation
capabilities.

The implementation procedure for PydanticFunctionTool, which also inherits
from BaseTool, 1s very similar to that used to implement SimpleFunctionTool in
the previous section. For this reason, we won’t cover the full implementation of
PydanticFunctionTool here and instead will focus on its usage pattern in our
framework. Interested readers can refer to Appendix C for a comprehensive
walkthrough of the full implementation.

The usage pattern for our pydanticFunctionTool is slightly different than that of
simpleFunctionTool. The main difference is that we’ll now require the
parameters of the wrapped function to be supplied via a pydantic.BaseModel as
shown in the following code.

# Included in examples/chO2.ipynb #A
from pydantic import BaseModel

class MyFuncParams (BaseModel) : #B
X: 1int

def my func(params: MyFuncParams) -> int: #C
print (params.x) #D

With my func () defined, we can use PydanticFunctionTool in a similar manner
to SimpleFunctionTool to wrap my func () to automatically create a tool that an



LLM or LLM agent can use.

# Included in examples/ch02.ipynb #A
from 1lm agents from scratch.tools.pydantic function import (
PydanticFunctionTool

)

tool = PydanticFunctionTool (my func) #B

This new tool can take in Toolcall objects to perform the tool-call process like
any other tools implemented in this chapter.

Exercise 2.3 Hailstone tool as an PydanticFunctionTool

Re-implement the Hailstone tool, but this time using PydanticFunctionTool.
Refer to Appendix C for usage guidance to complete this exercise.

The main benefits of PydanticFunctionTool are not directly obvious from the
usage pattern we’ve just covered. Instead, the benefits are seen in the
implementation of the parameters json schema attribute and the validation
portion within __call (). For these, we now rely on Pydantic’s more robust
JSON Schema generation and validation capabilities through
BaseModel.model_json_schema()EHKiBaseModel.model_validate(),
respectively. In addition to the PydanticFunctionTool, its asynchronous
counterpart, AsyncPydanticFunctionTool has also been added to the framework.
Both classes can be imported from

1lm agents from scratch.tools.pydantic function.

We have covered a lot of ground in this chapter by implementing the base tool
interfaces as well as adding a couple of handy tool factory classes that turn Python
functions into tools which LLMs and LLM agents can use.

In the next chapter, we’ll crucially implement our BaseLLM class as well as the
ollamaLLM subclass of it that will allow us to work with LLMs supported by
Ollama, a popular open-source LLM inference framework.

2.4 Summary

e To build an LLM agent, we need to build the required infrastructure,
including abstractions representing tools that they work with to perform tasks.

e LLMs require the following information to be able to make a tool call request
for a given tool: its name, a description of its functionality, and a JSON



Schema of its input parameters.

A BaseTool object executes a single Toolcall and returns a single
ToolCallResult object.

The asyncBaseTool class is designed for tools that execute their logic
asynchronously.

The simpleFunctionTool is a wrapper class for turning Python functions into
a BaseTool objects.

The asyncsimpleFunctionTool is @ wrapper class for turning async Python
functions into a AsyncBaseTool objects.

The PydanticFunctionTool is similar to the simpleFunctionTool, but wraps
a special function we called PydanticFunction instead. These functions get
passed their input parameters for logic execution through a
~pydantic.BaseModel.



3 Working with LLMs

This chapter covers

e The base class for working with LLMs in our LLM agent framework
e Implementatingr an LLM class that enables the use of any open-source
LLM with Ollama

e A complete demonstration of the tool-call process

In the previous chapter, we began our Stage 1 build of 11m-agents-from-
scratch by writing base classes for tools as well as the necessary data
structures that they work with. We’ll continue our Stage 1 build here by
similarly adding a base class for LLMs and the data structures that will
enable the various modes of interacting with LLMs we want to support in
our framework.

One such mode is the tool-calling process, which we’ll finally be able to
execute in its entirety by the end of this chapter. Specifically, we’ll learn

how to elicit a tool-call request from an LLM and how to submit the result of
the tool invocation we covered in the previous chapter back to the LLM for
synthesis and response.

After establishing our base class, BasernM, we’ll move on to the very
exciting task of building an integration with Ollama, a highly popular open-
source LLM inference framework. We’ll do this by implementing
0llamaLlLM, a subclass of Baser1.M, which will enable the use of any of the
many open-source LLMs supported by Ollama, including those from the
Llama and Qwen families of models. Figure 3.1 shows our updated build
plan, highlighting the progress we’ve made so far and our current focus.

Figure 3.1 Having added tools to our LLM agent framework, the focus of this chapter is to add
the other main component of LLM agents—their backbone LLM—to our framework. We’ll
specify the interface that all future LLMs must conform to through the BaseLLM class and
implement the OllamaLLM subclass to enable the use of any of the open-source LLMs
supported by Ollama.
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As a reminder, you can follow along with the code examples by forking the
book’s GitHub repository and activating the framework’s dedicated virtual
environment as discussed in the previous two chapters. For added
convenience, I’ve also prepared a Jupyter notebook to provide an execution
environment for the coded examples in this chapter:
https://github.com/nerdai/llm-agents-from-
scratch/blob/main/examples/ch03.ipynb. Code snippets marked like the
example code below are available in this notebook.

# Included in examples/ch03.ipynb #A
#B

I recommend using uv to launch Jupyter Lab with all the necessary
packages. Run the following terminal command from the project’s root
directory.

uv run --with jupyter Jjupyter lab


file:///C:/Users/pc/AppData/Local/Temp/calibre_6fe6roxu/f0wxuv7s_pdf_out/EPUB/examples.html

3.1 BaseLLM: a blueprint for LLMs

Several LLM providers exist today. OpenAl, with its GPT series, and
Anthropic, with Claude, are two of the mainstream closed-source options.
On the other hand, open-source LLMSs, including those from the Llama,
Qwen, and DeepSeek families of models, can be utilized through
frameworks such as HuggingFace, Ollama, and vLLM. Interacting with
LLMs from these providers and frameworks involves working with their
respective APIs or SDKs. While all of them support the standard modes of
interacting with an LLM, which we’ll cover shortly, there are differences in
how they can be used to build applications.

If we were to expose each of these APIs in our framework, it would become
challenging and frustrating for us and our users to deal with those
inconsistencies. A more sensible approach is to define a standard and
flexible interface through a base class, allowing us to onboard various LLM
providers and frameworks under a single, common API. That standard
interface is the BaseLLM class, which we’ll define in this section.

Text completion and chat are the two most standard LLM interaction
modalities, which all LLM providers and frameworks support. Naturally,
we’ll also support these modes through the Baser1M class via the methods
complete () and chat (). There are a couple more interaction modes that
BaseLLM supports, but I’ve omitted them for now to keep things focused.
Figure 3.2 shows our LLM agent from before, but with the backbone LLM
inheriting from the new BaserLLM class.

Figure 3.2 Our LLM agent with its backbone LLM and equipped tools. The backbone LLM is
the Qwen3-7b model from the OllamaLLLM class that we’ll implement later in this chapter.
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The complete () method is designed for simple LLM text completion of a
provided prompt, whereas chat () is for conversational dialogues with an
LLM represented as a sequence of messages. Tool-calling with LLMs is
typically handled through these chat interactions, which, as you’ll soon see,
is how we’ll support it in our framework as well. Finally, it’s important to
note that BaserL1M is an async-first class, meaning all LLM interactions are
executed asynchronously.

As mentioned earlier, we’ll need a few new data structures to standardize the
use of LLMs 1n our framework. First is completeResult, which we’ll use to
package the results of a complete () invocation. More specifically, we pass a
prompt string as input to complete (), which then outputs a completeresult
object containing the LLM’s generated response. Figure 3.3 illustrates this
process.

Figure 3.3 Supporting text completion with complete().
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The next new data structure is chatMessage, which facilitates chat
interactions with LLMs. A chatMessage object contains the content of the
message and specifies its sender through another data structure, chatRrole.
Figure 3.4 shows the process for chatting with LLMs through chat () and
these data structures.

Figure 3.4 Supporting chat interactions with LLMs via chat().
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We invoke chat () with an input string, an optional chat history of
ChatMessage objects, and a list of tools we want to equip the LLM with.
The result of chat () i1s a new pair of chatMessage objects. The first
ChatMessage object is created from the user’s input, whereas the second is
created from the response generated by the LLM. If tool-call requests are
made by the LM, then they would be packaged in the second chatMessage
object. This returned pair can then be appended to the running chat history
for the next chat () invocation.

note

I’ve elected to accept a simpler input type (i.e., string) for educational
purposes and user convenience. Returning both the user input and LLM
response as ChatMessage objects makes it easy to maintain a chat history
under this design choice.

Now that we understand how the Baser.1.M class and the new data structures
can support the standard LLM interaction modes, let’s go over their
structural details. Figure 3.5 shows the UML class diagrams of Baser1M,
CompleteResult, ChatMessage, and chatRole.

Figure 3.5 The UML class diagrams for BaseLLM and new data structures.
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There are yet a few more new UML concepts introduced in figure 3.5. The
first 1s the specification of chatRole as an enum class, which is marked by
the circle with the letter “E”. Enumerations (or enums for short) are a
programming type that specifies a finite set of named constants. Each
instance can only be assigned one of the predefined values. The enum type is
a perfect choice for the chatrole class, which can only take on values of
valid message senders: sYSTEM, USER, ASSISTANT, and TooL. The next new
UML concept is the composition relationship, indicated by a solid line with
a filled diamond arrowhead. Composition relationships describe situations
where one class is made up of other classes. The encompassing class is said
to be composed of those other classes, which don’t exist in a meaningful
way on their own. Figure 3.5 shows that chatMessage is composed of
ChatRole, which aligns with our earlier discussion. It’s worth noting that
ChatRole doesn’t meaningfully exist without the context of a chatMessage.

Continuing our discussion of the chatMessage class, you can see from figure
3.5 that it inherits from pydantic.BaseModel and has three attributes: role,
content, and tool calls. We’ll discuss the meaning behind these attributes
when we implement this data structure. In the meantime, you can also see
that chatMessage has one method, from tool call result (), which has
been marked with the <<constructor>> tag. This indicates that it's a
constructor method, which in Python terminology is analogous to the
@classmethod concept. You can interpret from tool call result()asa
method that creates a chatMessage object from a Toolcallresult object,
which, you’ll see later, provides some convenience for us when
implementing the final step to the tool-calling process.

The completeRresult class also inherits from pydantic.BaseModel and has
two attributes: response and prompt. The names of these attributes are self-
documenting, but regardless, we’ll discuss them when we implement
completeResult in the next section.

Finally, the Baser1M class is an abstract class with no attributes but four
methods: complete (), chat (), continue chat with tool results(), and
structured output (). You can also see that BasernM is indeed async-first,
with all four methods marked with the <<async>> tag to indicate their
asynchronous nature. We’ve already discussed the standard LLM interaction
modes, supported by complete () and chat (), and figure 3.5 reinforces how



CompleteResult and ChatMessage objects are used to facilitate these
interactions.

Let’s now discuss the two new methods and the interaction modes they
support. The first new method, continue chat with tool results(),
extends chat () by providing a convenient way to submit tool results back to
the LLM for synthesis and response. Since we’re effectively continuing an
existing chat interaction with this method, it also works with the already
established chatMessage and chatRole data structures. On the other hand,
structured output () 1s designed for another useful LLM interaction mode,
where we prompt LLMs to return their response in a pre-specified format,
most often JSON. Figure 3.5 illustrates the use of a generic type, T, in the
signature of structured output (), which enables our users to specify their
structured output using custom classes. We’ll go over both methods in more
detail when we implement the Base1.LM interface.

As we did in Chapter 2, we’ll first implement the new data structures before
implementing our main base class, BaseLLM.

3.1.1 Implementing CompleteResult, ChatMessage, and
ChatRole

The first new data structure that we’ll be adding to our framework is
CompleteResult. It is a simple data structure that contains prompt and
response attributes, both of which are of string type, as was shown in figure
3.5. The prompt attribute stores the input used to prompt the LLM, while the
response attribute stores the LLM’s generated response. Figure 3.6 shows
the same text completion interaction process from earlier, but now includes
an example input prompt and completeResult output object along with its
attributes.

Figure 3.6 An example of a CompleteResult object that is returned from an invocation of
complete().
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The following code implements CompleteResult.
Listing 3.1 Implementing CompleteResult

# 1lm agents from scratch/data structures/llm.py

from pydantic import BaseModel

from typing extensions import Self

from 1lm agents from scratch.data structures.tool import
ToolCall

class CompleteResult (BaseModel) :
"""The LLM completion result data model.

Attributes
response: The completion response provided by the LLM.



full response: Input prompt and completion text.

mwwn

response: str #A
prompt: str #B

Let’s next implement the data structures that facilitate the chat interactions:
ChatMessage and chatRole. Figure 3.7 shows the chat interaction first

shown in figure 3.4, but this time layered with examples of these data
structures.

Figure 3.7 Example ChatMessage and ChatRole objects within a chat() invocation.
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As you can see, the user’s input is returned as a ChatMessage with the user
role, whereas the LLM’s response is a ChatMessage With the AssTsTANT role.
In this example, the LLM’s response carries a ToolCall object, and in these
cases, the content of the chatMessage object is an empty string.

Standardized message roles

The role definitions for messages have been standardized to some extent
across various LLM providers and frameworks and can be described as
follows. The sysTemM role is reserved for setting the general context for the
LLM or LLM agent, such as defining its role in the upcoming chat
interaction. The UsER role is reserved for messages sent by the user, whereas
the Ass1sTaNT role is meant for messages from the LLM. Finally, the Toor
role is for messages that carry the tool results sent back to the LLM.

For convenience, chatMessage objects can also be derived from a
ToolCallResult via the constructor method, from tool call result().
This method returns a chatMessage object with the Toor role and whose
content 18 a string serialization of the ToolcallResult object.

The implementations for chatMessage and ChatRole are shown in the
following code.

Listing 3.2 Implementing ChatMessage and ChatRole

# 1lm agents from scratch/data structures/llm.py

from pydantic import BaseModel

from typing extensions import Self

from 1lm agents from scratch.data structures.tool import
ToolCall

#A

class ChatRole(str, Enum):
"""Roles for chat messages."""

USER = "user"

ASSISTANT = "assistant"
SYSTEM = "system"

TOOL = "tool"

class ChatMessage (BaseModel) :



"""The chat message data model.

Attributes:
role: The role of the message.
content: The content of the message.
tool calls: Tool calls associated with the message.

wirn

model config = ConfigDict (arbitrary types allowed=True)
role: ChatRole

content: str

tool calls: list[ToolCall] | None = None #B

@classmethod #C
def from tool call result(
cls,
tool call result: ToolCallResult
) —> Self:
"""Create a ChatMessage from a ToolCallResult."""
return cls(
role=ChatRole.TOOL, #D
content=tool call result.model dump json(indent=4),

#E

3.1.2 Implementing BaseLLM

We’re now ready to start implementing the Baser1.M class. As you saw from
the UML class diagrams in figure 3.5, BaseLLM is an abstract class that has
no attributes but four methods: complete (), chat (),

continue_chat_with_tool_results(),aDdLstructured_output().

We'll start with complete () and chat (), both of which will be marked as
abstract and whose input and output types we've already covered in great
detail. The following listing shows their implementation.

Listing 3.3 Implementing BaseLLM: chat() and complete()

# 1lm agents from scratch/base/llm.py

from abc import ABC, abstractmethod

from 1lm agents from scratch.base.tool import AsyncBaseTool,

BaseTool

from 1lm agents from scratch.data structures import (
ChatMessage,



CompleteResult,
ToolCallResult,
)

from typing import Any, Sequence
Tool: TypeAlias = BaseTool | AsyncBaseTool #A

class BaseLLM(ABC) :
"""Base LLM Class."""

@abstractmethod

async def complete (
self,
prompt: str, #B
**kwargs: Any

) —> CompleteResult: #C
"""Text Complete." mww

@abstractmethod
async def chat(
self,
input: str, #D

chat messages: Sequence[ChatMessage] | None = None,

tools: Sequence[Tool] | None = None, #F
**kwargs: Any,

) —-> tuple[ChatMessage, ChatMessage]: #G
"""Chat interface."""

As with BaseTool in Chapter 2, subclasses of BaserLm will need to provide

implementations for all methods marked as abstract.

Let’s now move on to specifying our convenient extension of chat () used

for returning tool call results back to the LLM:

continue chat with tool results (). Before writing any code, let’s
revisit the tool-call process one more time. Figure 3.8 illustrates the familiar
tool-calling process—first introduced in Chapter 1—but now projected into

an LLM chat interaction.

Figure 3.8 The familiar tool-calling process, now shown within a chat() invocation.
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A tool-call request, within a chat interaction, is represented by a
ChatMessage that contains Toolcall objects in its tool calls attribute.
Note that only chatMessage objects with the AssTsTaANT role can carry tool-
call requests. Too1call objects need to be extracted from such messages and
passedtothe cal1 () method of the selected tool for execution. After
the tool’s execution, we need to send the produced ToolcallResult
object(s) back to the LLM for synthesis and response. To do so, we utilize
our convenient chat extension method,
continue chat with tool results (), which should first create
ChatMessage objects from the supplied Too1callResult objects before
passing them on to the LLM.

The inputs for continue chat with tool results () are almost identical to
those for chat (), with the only difference being that, rather than an input
string being passed to chat (), ToolCallResult objects are passed instead.

The output of continue chat with tool results(), like for chat (), isa
tuple of chatMessage objects. The first element is the list of chatMessage
objects derived from the input ToolcallResult objects, each with the TooL
role. The second element is the LLM’s response to the tool-call results as a
ChatMessage. This maintains the same pattern for updating your chat history
—append both elements of the returned tuple to your running chat history,
whether you’re using chat () or continue chat with tool results().

NOTE

We could forego the use of continue chat with tool results() and use
chat () directly instead. This process would involve having to convert the
ToolCallResult objects manually into chatMessage objects with the
appropriate TooL role and passing them along with the updated chat history
to the next chat () invocation. However, for both convenience and
educational purposes, I’ve elected to include this method to make the entire
tool-call process within an LLM chat interaction more explicit.

The following code shows the implementation of
continue chat with tool results().

Listing 3.4 Implementing BaseLL.M: continue_chat with_tool_results()



# 1lm agents from scratch/base/llm.py
from abc import ABC, abstractmethod
from 1lm agents from scratch.base.tool import AsyncBaseTool,
BaseTool
from 1lm agents from scratch.data structures import (
ChatMessage,
CompleteResult,
ToolCallResult,
)
from typing import Any

class BaselLlLM (ABC) :
"""Base LLM Class."""
#A

@abstractmethod

async def continue chat with tool results(
self,
tool call results: Sequence[ToolCallResult], #B
chat history: Sequence[ChatMessage], #C

tools: Sequence[Tool] | None = None,
**kwargs: Any,
) —> tuple[list[ChatMessage], ChatMessage]: #D

"""Continue a chat submitting tool call results."""

We’ll now move on to implementing the final method for BaserL.M:
structured output (). Before writing any code, let’s first discuss the
motivation for including this method in our interface in the first place.

As text generators, LLMs can also produce structured outputs. That is, we
can elicit LLMs to generate text that conforms to a pre-specified structured
format, most typically JSON. Structured outputs simplify downstream
processing by reducing the need to implement logic that is often brittle and
unreliable for extracting the required elements from raw output strings. Let’s
consider the simple example below, which demonstrates the brittleness of
unstructured, raw outputs.

Tell me a joke from any of these three subjects: math, physics, and biology.
Also, include the subject of the joke.

An unstructured response

Here's one:



Why did the DNA go to therapy? Because it was feeling a little twisted!
(Biology)

From this lone response, we can easily extract the joke’s subject, biology.
But even just prompting the LLM a second time with the same prompt as
before can lead to a drastically different form of output.

Another LLM unstructured response

Here's one:

Why did the math book look so sad? Because it had too many problems.
Subject: Math

Like with the first output, it’d be easy to extract that the subject is math upon
manual inspection. However, if we wanted to build robust code that depends
on the accurate parsing of this free-form output, we’re likely setting
ourselves up for failure. A better approach is to prompt the LLM to produce
its output in a structured format, as illustrated next.

Tell me a joke from any of these three subjects: math, physics, and biology.
Also, include the subject of the joke.

Return your output in the format provided below:

{
“subject”: ..,
“joke”: .,

} 14
Structured response

{

"subject": "math",

"joke": "Why did the math book look so sad? Because it had
too many problems."

}

This structured output is much easier to work with than the free-form
versions and would allow us to build downstream logic that depends on



these formatted outputs. Figure 3.9 illustrates how this example can be
executed through the structured output () method.

note

Similar to tool calling, LLM inference providers and frameworks often
provide a dedicated API for structured outputs. These are usually designed
such that the user only needs to supply the desired output schema, typically
JSON, and can offload the job of instructing the LLM to produce output in
this format to the service provider (or framework). In contrast, in our
example, we manually elicited the LLM to produce output in our desired
format.

Figure 3.9 The structured output LLM interaction. An instruction prompt and the desired
output format, mdl, are passed as the inputs to structured_output(). The LLM generates a
response that can then be used to create an instance of mdl, a subclass of pydantic.BaseModel.
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Now that we understand the rationale for this structured output (), let’s
focus on its implementation. As you saw in Figure 3.5, the signature of
structured output () specifies a prompt string and a md1 parameter as
inputs, where md1 allows us to specify the desired output format. This md1
parameter, as you might recall from our earlier discussion, depends on a
generic T. We’ll bind T to the pydantic.BaseModel class. Doing so means
that we must define our desired structured output type via a subclass of
pydantic.BaseModel.

The structured output () method returns an instance of T. In other words,
it returns an instance of our desired structured output class. For increased
clarity, we refer to T as structuredoutputType in our implementation, as
shown in the following code.

Listing 3.5 Implementing BaseLLM: structured_output()

# 1lm agents from scratch/base/llm.py
from abc import ABC, abstractmethod
from typing import Any, Sequence, TypeVar
from pydantic import BaseModel
from 1lm agents from scratch.base.tool import AsyncBaseTool,
BaseTool
from 1lm agents from scratch.data structures import (
ChatMessage,
CompleteResult,
ToolCallResult,
)

StructuredOutputType = TypeVar ("StructuredOutputType",
bound=BaseModel) #A

class BaseLLM(ABC) :
"""Base LLM Class."""
#B

@abstractmethod
async def structured output (
self,
prompt: str,
mdl: type[StructuredOutputType], #C
**kwargs: Any,
) —-> StructuredOutputType: #D
"""Structured output interface for returning
~pydantic.BaseModels.



NOTE

Binding the generic structuredoutputType t0 pydantic.BaseModel i an
implementation detail that lets us fully leverage the powerful validation
checks offered by the pydantic library.

Let’s take our joke example from before and build a structured output model
for it. This structured output model is what we’d supply for the md1
parameter in a structured output () invocation. As you now know, this
model needs to inherit from pydantic.BaseModel as shown in the following
code.

# Included in examples/chO03.ipynb #A
from typing import Literal
from pydantic import BaseModel

class Joke (BaseModel): #B
"""A structured output model for Jokes."""

subject: Literal["math", "physics", "biology"]
joke: str

To demonstrate an actual invocation of st ructured output () using this
Joke class, we’ll first need a proper subclass of Baser.n.M that has an
implementation for this method. This is precisely where we’re heading in the
next section.

Tool calling as structured output and vice versa

Tool calling can also be viewed as a structured output. We could even use
the structured output () method to get the LLM to produce a tool-call
request JSON specifying the selected tool’s name and the argument values to
invoke the tool with.

However, tool-calling APIs offered by LLM service providers and
frameworks have ready-made prompt templates that instruct the LLM to use
the specified tools only if necessary. They also have prompt templates for
instructing an LLM to synthesize and respond to tool-call results whenever it
receives them. For these reasons, it’s better to rely on these native tool-
calling APIs versus trying to make it work with structured outputs.



It's also worth mentioning that it's entirely possible to implement structured
output interactions as a tool call. That is, by defining a tool that generates the
desired structured format and forcefully instructing the LLM to use it.

3.2 OllamaLLLLM: a subclass of BaseLLLM

Now that we’ve specified the way we’ll work with LLMs in our framework,
through the Baser1M class, let’s implement one. In this section, we’ll build
an integration with the Ollama LLM inference framework. This integration
will enable us to use any open-source LLM supported by Ollama. We’ll
implement the 011amar1M class, which interacts with an Ollama service,
typically running locally on your machine.

Implementing o11amaLLM requires using the ollama Python library. Once
implemented, we’ll run through examples for interacting with an LLM via
chat (), complete (), continue chat with tool results(), and

structured output ().

note

Building an integration like this often requires reading documentation,
source code, and other resources for the library. In writing this section, I
referenced the official documentation and even the source code of the
ollama library to determine how to build this integration effectively. While
you won’t need to do this for the current Ollama integration, as we’ll walk
through the completed code together, it may be helpful to know what
resources were referenced.

Figure 3.10 shows our Ollama integration through o11amar1M, a subclass of
BaseLLM.

Figure 3.10 Integrating with the Ollama LLM inference framework. The OllamaLLM connects
to a running Ollama server, often running locally on your machine, to work with any of the
supported open-source LL.Ms.
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In addition to the methods and attributes of BaseL1M, the 011amarLM class
introduces a client attribute for interacting with a running Ollama service.
The complete structure of 011amar1M is outlined in its UML class diagram
shown in figure 3.11.

Figure 3.11 UML class diagram for OllamaLLM.
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You can see that the 011amazLM class adds two new attributes and one
method. The mode1 attribute specifies which supported LLM to use, while
_client connects to a running Ollama service and is of the type
AsyncClient from the ol1lama library. Finally, init () 1s used for
initializing objects of 011amaLLMm.

NOTE

To run the code examples in this section, you’ll need Ollama installed on
your local machine with its service running. To download Ollama, follow the
instructions at https://ollama.com/download. After installation, a service may
launch automatically. If not, you can start one by opening a terminal and
running the command ollama serve.

3.2.1 Implementing OllamaLLLM

We’re going to implement this integration step-by-step, starting with the
implementation of the init () method.

As shown in figure 3.11,the init () method takes in model and host
parameters as inputs. The model parameter is a string type that specifies the
LLM we’d like to use, such as 11ama3.2:1b. The optional host parameter
specifies the address for the Ollama service that we’d like to interact with. If
no host is provided, the default Ollama service address will be used.

note

Running o11ama serve on your machine launches a service at the default
address http://127.0.0.1:11434. If you don’t provide a value for host when
initializing an o11amaLLM instance, this default address will be used.

Withinthe init () method, we’ll use the provided parameters to set the
model and client attributes of the o11amar1M instance. The following code
shows the implementation of  init ().

Listing 3.6 Implementing OllamaLLM: __init_ ()
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# 1lm agents from scratch/llms/ollama/llm.py
from typing import Any
from ollama import AsyncClient #A
from 1lm agents from scratch.base.llm import BaseLLM

class OllamalLlM (BaselLlM) :
"""o0llama LLM class."""

def init (
self,
model: str, #B
host: str | None = None,
*args: Any,
**kwargs: Any,
) —> None:
"""Create an OllamaLLM instance.

Args:
model (str): The name of the LLM model.
host (str | None): Host of running Ollama service.
Defaults to
None.
*args (Any): Additional positional arguments.
**kwargs (Any): Additional keyword arguments.

mwmww

super (). init (*args, **kwargs)
self.model = model
self. client = AsyncClient (host=host) #C

Toseethis init () method in action, let’s create an instance of our
ollamaLLM class that connects to the default host and uses the 3-billion
parameter version of the Qwen 2.5 LLM. The following code snippet
demonstrates how to do that.

# Included in examples/ch03.ipynb #A
from llm agents from scratch.llms.ollama import OllamaLLM

1lm = OllamalLlM (model="qgqwen2.5:3b")

note

The remainder of this chapter uses the qwen2.5:3b model, which Ollama
supports. You will need to pull this model from Ollama first to run the



remaining code snippets by using the terminal command o11ama pull
gwenz.5:3b.

With our init () method established, let’s now focus on implementing
all the abstract methods required by BaseL1m, starting with the complete ()
method.

The logic for our complete () method will have us using the instance’s
_client attribute to interact with our running Ollama service. More
specifically, the o11ama.aAsyncclient class contains a method named
generate () that is Ollama’s interface for supporting the LLM completion
interaction mode.

The generate () method of o11ama.AsyncClient requires two parameters:
model and prompt. We provide the name of the model to use by passing
along our instance’s mode1 attribute. For the prompt parameter, we simply
forward the prompt variable from the outer complete () call. The result of
generate () 1s an Ollama data type, which we’ll use to derive a
CompleteResult object that we’ll return as the final output of complete ().
Figure 3.12 shows how complete () integrates with the o11ama library
through the generate () method.

Figure 3.12 Integrating with Ollama’s text completion interface. A complete() invocation of
OllamaLLM invokes the generate() method of the Ollama library and returns an Ollama data
type from which we derive the final return type, CompleteResult.
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The following code provides the implementation of complete () for
OllamaLLM.

m .GenerateResponse

Listing 3.7 Implementing OllamaL.LM: complete()



# 1lm agents from scratch/llms/ollama/llm.py

from typing import Any

from ollama import AsyncClient

from 1lm agents from scratch.base.llm import BaseLLM

from 1lm agents from scratch.data structures import (
CompleteResult,

)

class OllamallM (BaseLLM) :
"""ollama LILM class."""
#A

async def complete(self, prompt: str, **kwargs: Any) ->
CompleteResult:

"""Complete a prompt with an Ollama LLM.

Args:
prompt (str): The prompt to complete.
**kwargs (Any): Additional keyword arguments.

Returns:
CompleteResult: The text completion result.

mwwn

response = await self. client.generate( #B
model=self.model, #C
prompt=prompt, #D
**kwargs,

)

return CompleteResult (
response=response.response, #E
prompt=prompt,

Let’s go over a demonstration of our now-implemented complete () method.
We’ll use the gwen2.5:3b LLM and have it tell us a joke.

# Included in examples/chO3.ipynb #A
import asyncio
from 1lm agents from scratch.llms.ollama import OllamaLLM

async def main{() :
11lm = OllamaLLM (model="qgwen2.5:3b")
response = await llm.complete("Tell me a Jjoke.™)
print (response)

asyncio.run (main())



You learned that complete () returns a completeResult object that contains
a response and prompt attribute. Therefore, print (response) outputs the
string representation of this class, which should resemble the following code.

response="Sure! Here's one for you:\n\nWhy don't scientists
trust atoms?\n\nBecause they make up everything!" prompt='Tell
me a joke.'

NOTE

Async methods need to be run within an async event loop. The
asyncio.run () method creates a new event loop and runs the provided
coroutine. When using Jupyter notebooks, there is already a running event
loop, which means async methods can be awaited directly without using

asyncio.run().

With the complete () method implemented, rather than implementing
chat () next, let’s implement structured output (). The reason for this is
that we’ll use the same “tell me a joke” example that we just covered, but
using our Joke model from earlier as our desired structured output format.

To implement structured output (), we’ll need to use Ollama’s structured
output interface, much like how our implementation of compiete () relied on
Ollama’s completion interface, generate (). As it turns out, Ollama’s
structured output interface is facilitated by their chat interface. To not
confuse Ollama’s chat interface with that of our framework, I’ll refer to
Ollama’s as ollama.chat ().

The o11ama.chat () method allows for the optional specification of a format
parameter, where users can supply their desired structured output as a JSON
Schema. You learned about JSON Schemas in the previous chapter, and you
may recall they can be produced for pydantic.BaseModel subclasses
through the mode1 json schema () method. We’ll rely on this as well in our
implementation of structured output () since the parameter md1 is a type
that 1s bound to pydantic.BaseModel.

Before we show the code that implements structured output (), we need
to discuss an important activity that typically takes place when building
integrations with LLM frameworks like Ollama. That is, developing these



integrations often requires converting between the data types of our
framework and those of the library we want to support, and vice versa. We
saw a bit of this in our previous implementation of complete (), when we
had to extract the response attribute from the returned Ollama data type to
create our completeresult. For our Ollama integration, we’ll use three
utility functions that explicitly convert the data structures of our framework
to the corresponding Ollama data type equivalents, and vice versa for the
message data type. The three utility methods are listed below and shown in
figure 3.13:

® chat message to ollama message ()
® ollama message to chat message()

® tool to ollama tool()

Figure 3.13 Three utility functions for converting between llm-agents-from-scratch data types
and corresponding Ollama equivalent data types.



/sre/lln agents from scratch/llms/ollama/utils.py

chat message to ollama message() converts a ChatMessage to an ollama Message

ChatMessage

ollama message to chat message() converts an olama Message to a Chathlessage

H Message ChatMessage

tool to ollama tool() converts a Tool to an ollama. Tool

For brevity, and since the implementations of these utility functions are not
core to understanding how we’ll build 011amarim, I’ve not included them
here. Interested readers can view their complete implementations at:
https://github.com/nerdai/llm-agents-from-
scratch/blob/main/src/llm_agents_from_scratch/lims/ollama/utils.py.


file:///C:/Users/pc/AppData/Local/Temp/calibre_6fe6roxu/f0wxuv7s_pdf_out/EPUB/ollama.html

We now have all the pieces to implement structured output () for
ollamaLiM. First, we’ll prepare the Ollama message data object that contains
our instruction prompt by invoking our utility

chat message to ollama message(). Next, we invoke the o11ama.chat ()
method, passing the Ollama message data object, as well as the JSON
Schema associated with md1 to specify our desired output structure. The
output of o11ama.chat () 1s another Ollama data type, from which we must
extract the JSON data needed to build the instance of md1 that we return as
the final output of structured output (). Figure 3.14 illustrates this entire
process.

Figure 3.14 Integrating with Ollama’s structured output interface, which is facilitated by their
chat interface. A structured_output() invocation of OllamaLlLLM invokes the ollama.chat() but
not before creating the Ollama message data object. The returned result is an
ollama.ChatResponse from which we extract the JSON payload corresponding to mdl that we
then use to validate and create the final structured output object.
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The implementation of structured output () for ol1amarrm is provided in
the following listing.

Listing 3.8 Implementing OllamaLLM: structured_output()

# 1lm agents from scratch/llms/ollama/llm.py

from typing import Any

from 1lm agents from scratch.base.llm import (
Baselll,
StructuredOutputType,

)

from 1lm agents from scratch.llms.utils import (
chat message to ollama message,

)

from 1lm agents from scratch.data structures import (
ChatMessage,

)

class OllamallM (BaseLLM) :
"""O0llama LLM class."""
#A

async def structured output (
self,
prompt: str,
mdl: type[StructuredOutputType],
**kwargs: Any,
) —> StructuredOutputType:
"""Structured output interface implementation for Ollama
LLM.

#B
0 _messages = [

chat message to ollama message (

ChatMessage (role="user", content=prompt),
)

]
result = await self. client.chat( #C

model=self.model,

messages=0_messages,

format=mdl.model json schema(), #D
)
return mdl.model validate json(result.message.content)

#E

note



For structured output (), we could have also built the Ollama message
data type directly rather than using our utility method

chat message to ollama message (). [’ve elected to use it here to
gradually introduce this concept, which we’ll use again when implementing
chat()Znuicontinue_chat_with_tool_results(L

To demonstrate the usage of structured output (), we’ll again prompt the
gqwen2.5:3b LLM to tell us a joke. This time, however, we’ll have it output
the joke in the format of the Joke class we defined earlier, which I show
again here for convenience.

# Included in examples/ch03.ipynb #A

import asyncio

from pydantic import BaseModel

from typing import Literal

from 1lm agents from scratch.llms.ollama import OllamaLLM

class Joke (BaseModel) :
"""A structured output model for Jokes."""

subject: Literal["math", "physics", "biology"]
joke: str

async def main () :

1llm = OllamallM (model="qwen2.5:3b")

prompt = ("Tell me a joke.")

joke = await llm.structured output (prompt=prompt, mdl=Joke)
#B

print (joke. class . name )

print (joke)

asyncio.run (main())

The first print statement outputs the class name of the returned joke, while
the second print statement outputs the string representation of the returned
Joke object. The following code snippet shows what the output of these two
print statements should resemble.

Joke
subject="math', joke='Why did the math book look so sad? Because
it had lots of problems.'



Great! We have implemented two of the four interaction modes for
ollamaLlM. Let’s wrap up this section with our implementations of chat ()
and its convenient extension continue chat with tool results (). We’ve
already encountered Ollama’s chat interface, ol1ama.chat (), through our
previous implementation of structured output (). Naturally, we’ll use
ollama.chat () again to integrate with the chat interfaces of our framework.

note

We'll hold off on demonstrations of chat () and
continue chat with tool results () until the next section, where we'll
see them working together in a complete end-to-end demonstration of a tool-
calling process.

To build out this Ollama chat integration, we’ll need to delve deeper into the
inner workings of o11ama.chat (). Specifically, o11ama.chat () takes in an
input list of Ollama message objects as well as an optional list of Ollama
tool objects. After querying the LLM service, ol1lama.chat () returns an
ollama.ChatResponse object from which we can extract the LLM’s
response message.

As mentioned earlier, building an integration with other LLM frameworks
involves converting between the data types of the two frameworks. For this,
we’ll use our utility conversion functions.

We saw from figures 3.5 and 3.7 that chat () takes in three parameters:
input, chat history, and tools. We’ll need to apply

chat message to ollama message () to derive Ollama message objects
from input and chat history, and tool to ollama tool () to derive
Ollama tool objects from too1ls.

With our Ollama messages and tools prepared, we can invoke

ollama.chat () and extract the LLM’s response message from the
invocation result. Since this message is an Ollama message data type, we’ll
need to apply the o11ama message to chat message() to convert the
LLM’s response to a ChatMessage. We return this chatMessage object along
with another one that represents the user’s input as the final output to the
chat () method. Figure 3.15 shows this entire process.



Figure 3.15 Integrating with Ollama’s chat interface to implement chat(). The user’s input and
chat history are converted to Ollama messages, and tools are converted to Ollama tools. Next,
ollama.chat() is invoked and its response is then converted back to a ChatMessage. This
ChatMessage is returned along with another one derived from the user’s input.
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The following code provides the implementation of chat ().
Listing 3.9 Implementing OllamaLL.M: chat()

# 1lm agents from scratch/llms/ollama/llm.py
#A
from 1lm agents from scratch.llms.utils import ( #B
chat message to ollama message,
ollama message to chat message,
tool to ollama tool,

)

class OllamallM (BaseLLM) :
"""O0llama LLM class."""

#C
async def chat (
self,
input: str,
chat history: list[ChatMessage] | None = None,
tools: list[BaseTool | AsyncBaseTool] | None = None,

**kwargs: Any,
) —> tuple[ChatMessage, ChatMessage]:
#D
# prepare messages #E
0 _messages = (
[chat message to ollama message (cm) for cm in
chat history]
if chat history
else []
)
user message = ChatMessage (role="user", content=input)
0 _messages.append (
chat message to ollama message (
user message,
)
)

# prepare tools #F

o _tools = (
[tool to ollama tool(t) for t in tools]
if tools else None

)

result = await self. client.chat( #G
model=self.model,
messages=0_messages,



tools=0_tools,

)

return (
user message,
ollama message to chat message (result.message) #H

Let’s now implement the final abstract method,
continue chat with tool results (). As with the implementation for
chat (), much of the work we need to do here involves converting
ChatMessage objects from our framework to the Ollama message data type
equivalents. The main convenience this method offers, however, is that users
can pass in ToolCallResult objects directly—they do not have to deal with
converting these to chatMessage objects at all.

To convert a ToolCallResult object to a ChatMessage object, we can use
the constructor method, from tool call result (), which we provided
back in listing 3.2. From here, the process is similar to that of the previously
implemented chat () method. We apply

chat message to ollama message () and tool to ollama tool() toO
obtain Ollama messages and tools. Next, we invoke ollama.chat () to have
the LLM synthesize the tool results and generate a response. The result of
ollama.chat () 1S converted back to a chatMessage with

ollama message to chat message () . We return this along with the list of
ChatMessage objects constructed from the supplied ToolcallResult objects.
Figure 3.16 illustrates this integration.

Figure 3.16 Integrating with Ollama’s chat interface to implement

continue chat with tool results(). The tool-call results and chat history are converted to
Ollama messages, and tools are converted to Ollama tools. Next, ollama.chat() is invoked and its
response is then converted back to a ChatMessage. This ChatMessage is returned along with the
list of ChatMessage objects derived from the tool-call results.
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The following code implements continue chat with tool results().
Listing 3.10 Implementing OllamaLLM: continue_chat_with_tool results()

# 1lm agents from scratch/llms/ollama/llm.py
. #A
class OllamallM (BaseLLM) :
"""Ollama LLM class."""
#B

async def continue chat with tool results(
self,
tool call results: Sequence[ToolCallResult],
chat history: Sequence[ChatMessage],
tools: Sequence[Tool] | None = None,
**kwargs: Any,
) —> tuple[list[ChatMessage], ChatMessage]:
#C
# augment chat messages and convert to Ollama messages
tool messages = |
ChatMessage.from tool call result(tc) #D
for tc in tool call results
]
0 messages = [ #E
chat message to ollama message (cm)
for cm in chat history
I+ I
chat message to ollama message (tm)
for tm in tool messages

]

# prepare tools

o tools = (
[tool to ollama tool(t) for t in tools]
if tools else None

)

# send chat request

o result = await self. client.chat( #F
model=self.model,
messages=0 messages,

return (
tool messages, #G
ollama message to chat message (o result.message)



Phew. It was really no small feat to implement all four required methods for
ollamaLiM. The payoff for all this work, though, is quite significant. We can
now use any of the open-source LLMs available through Ollama in our
framework! To wrap up this chapter, we’ll revisit our Hailstone tool from the
previous chapter to demonstrate how our 011amar1.M can perform a tool call
with it.

Exercise 3.1 Structured outputs with an OllamaLLM

Create a structured data model for a poem that also includes the poem text
and its type (e.g., sonnet, haiku, etc.). Use an 011amaL1M instance to generate
a structured poem using your poem data model.

3.2.2 Hailstone tool call with OllamaLLM

Let’s quickly revisit the Hailstone tool that we created in the previous
chapter and demonstrate how we can use it to perform an entire tool-calling
process with our new o11amarnM. To do so, we’ll make use of the chat ()
and continue chat with tool results () methods.

We’ll use the same qwen2.5:3b model for our 011amar1M and will supply it
with the hailstone tool that we created in the previous chapter.

note

If you are coding these examples for yourself and not using the provided
Jupyter notebook, then be sure to bring the hailstone step func() defined
in the previous chapter into the necessary scope e.g. in your .py file if
coding with Python scripts.

To initiate a tool-calling process, we invoke chat () by supplying an input
string that will elicit a Hailstone tool-call request, as shown in the following
code.

# Included in examples/ch03.ipynb #A

import asyncio

from 1lm agents from scratch.llms.ollama import OllamaLLM
from 1lm agents from scratch.data structures.llm import
ChatMessage



from 1lm agents from scratch.tools import SimpleFunctionTool

1lm = OllamalLLM (model="qgwen2.5:3b") #B
hailstone tool = SimpleFunctionTool (hailstone step func) #C

async def main() :
user input = (
"What is the result of taking the next step of the " #D
"Hailstone sequence on the number 32\n\n"
"Be very succinct in your response."

)

return await llm.chat( #E
user input,
tools=[hailstone tool], #F

user msg, response msg = asyncio.run(mainf())
print (response msg.tool calls)

The print statement should return a single tool call of Hailstone, as shown
below. If it does, then congratulations, your 011amarLM has successfully
requested a tool call for our Hailstone tool.

[ToolCall(id ='6f6d02ca-56db-4872-8c8f-3814e2ceebl9’,
tool name='hailstone', arguments={'x': 3})]

As we know from before, however, making the LLM elicit a tool call request
is only the first step in performing tool calls with LLMs. We next need to run
the tool with the arguments and then pass the Too1caliresult back to the
LLM.

# Included in examples/ch03.ipynb #A

tool call = response msg.tool calls[0]

tool call result = hailstone tool(tool call) #B
print (tool call result)

As we saw in the last chapter, performing a tool call with a BaseToo1 returns
a ToolCallResult. Thus printing the tool call result variable in the
above snippet should resemble something like the following:

tool call id='6f6d02ca-56db-4872-8c8f-3814e2ceebll’,
content='10"', error=False



With our Toolcallresult in hand, we can now finally submit this back to
our LLM for synthesis and response using the
continue chat with tool results () method. As you know, this method
returns ChatMessage objects created from the tool results and the LLM's
response.

# Included in examples/ch03.ipynb
async def main{() :
return await llm.continue chat with tool results(
tool call results=[tool call result],
chat history=[user msg, response msgl],

)

tools msg, final response = asyncio.run(main())
print (final response)

The print statement should output the string representation of a ChatMessage
object that looks something like the following:

role=<ChatRole.ASSISTANT: 'assistant'> content='The result of
taking the next step in the Hailstone sequence on the number 3
is 10."'" tool calls=None

We’ve done it! It took some time, but we have finally performed a complete
tool-calling process using our Hailstone tool and our newly implemented
ollamaLLM class. We’ve truly reached a significant milestone in our journey.
In fact, we’re now in the position to develop our first LLM agent from
scratch. In the next chapter, we’ll do just that by implementing the LLvMAgent
class.

Exercise 3.2 Performing an asynchronous tool call with OllamaLLM
Create an instance of 011amarLM and perform a tool call using the

asynchronous version of the Hailstone tool that you developed in Exercise
2.2

3.3 Summary

e APIs provided by LLM providers typically support two modes of
interaction with LLMs: one for text completion and another for



conversational dialogue.

Our BaseLLM class supports text completion via the complete ()
method, and the conversational mode of interaction through our chat ()
method.

One important use case for LLMs is structured output, where we
instruct an LLM to produce an output that conforms to a specified data
format, often described in JSON.

Structured outputs with our BaserL1M class, can be performed via the
structured output () method.

Integrations into LLM providers and their companion Python SDKs can
be added to our framework by subclassing BaseLLM.

The o11amarLM integration implemented in this chapter allows for the
use of any open-source LLMs supported by Ollama in our framework.



Appendix C. Implementing The
PydanticFunctionTool

In Chapter 2, we introduced the PydanticFunctionTool and its usage pattern
with our framework, as an alternative to our from-scratch
SimpleFunctionTool. The main benefits of the PydanticFunctionTool are
more robust JSON Schema generation for the associated function’s
parameters, as well as more powerful validation through the pydantic
library. In this appendix, we provide a walkthrough on the full
implementation of the pydanticFunctionTool as well as its asynchronous
Verﬂon,AsynchdanticFunctionTooL

C.1 Implementing PydanticFunctionTool

We now will build the pydanticFunctionTool wrapper class that will
enable the usage pattern that we just showed. As we saw then, we wrap a
function which takes in a single parameter params that is
pydantic.BaseModel. For convenience and to conform to our typing
practices that we’ve begun to establish in our framework, let’s create a
designated type for these kinds of functions.

We’ll call such function types pydanticFunction since they package their
parameters in a pydantic.BaseModel type as we saw in HailstoneParams.
The next listing provides its definition.

Listing C.1 Implementing the PydanticFunction Protocol

# 1lm agents from scratch/tools/pydantic function.py
from typing import Any, Protocol
from pydantic import BaseModel

class PydanticFunction (Protocol):
"""PydanticFunction Protocol."""



name . str

doc : str | None

def call (
self,
params: BaseModel,
*args: Any,
**kwargs: Any
) —> Any:
"""Callable interface.

Args:
params (BaseModel): The function's params as a
~pydantic.BaseModel.
*args (Any): Additional positional arguments.
**kwargs (Any): Additional keyword arguments.

Returns:
Any: The result of the function call.

mwwn

#A

The listing above shows that we have chosen to implement the
PydanticFunction as a subclass of typing.Protocol, which are meant for
defining interfaces that can be typed-checked at runtime. The lone method
that we requires with this interface is the special ca11  method, which
importantly takes in a parameter, params, that is of type
pydantic.BaseModel. As an interface method, we need only supply elipsis
(i.e., ..), which in this context indicates that the actual function provides the
implementation.

The other attributes we require in this interface are special Python attributes
__name__and doc , which are defined by default for Python functions.
In other words, any function that has a signature involving a single variable
named params of type pydantic.BaseModel, satisfies the
PydanticFunction protocol—this is precisely what we need.

Another added benefit of defining our pydanticFunction as a
typing.Protocol is that modern Integrated Development Environments
(IDEs), such as VSCode, support typing and provide helpful type hints.



Now that we have defined a special type for our functions to be wrapped by
PydanticFunctionTool, let’s move onto the next order of business. To
make our implementation more robust, we should ensure that any function
that we wish to wrap with this class is indeed a PydanticFunction. We will
handle this by implementing specific validation logic next.

Listing C.2 Validating functions by signature inspection

# 1lm agents from scratch/tools/pydantic function.py
import inspect

from typing import Any, Awaitable, Callable, Protocol,
get type hints

from pydantic import BaseModel

def validate pydantic function (func: Callable) ->
type [BaseModel] :
"""Validates func as a proper PydanticFunction’.

Args:
func (Callable): The function to validate as
"PydanticFunction .

Raises:

RuntimeError: If validation of “func® fails.
sig = inspect.signature (func)
type hints = get type hints (func)

if "params" not in sig.parameters: #A
raise RuntimeError (
"Validation of "func  failed: Missing “params’
argument.",

)

if annotation := type hints.get ("params"):
if not issubclass (annotation, BaseModel): #B
msg = (
f"Validation of "func® failed: {annotation} is
not"
" a subclass of “~pydantic.BaseModel ."
)
raise RuntimeError (msqg)
else:
msg = (



"Validation of “func® failed: "params’® argument
must have "
"type annotation."

)

raise RuntimeError (msqg)

return annotation #C

Let’s walkthrough our validation logic step-by-step. The first bit of code
should hopefully look familiar, as we’re again needing to perform
introspection on the function signature, as we did when we built logic to
transform function signatures to JSON Schemas from scratch for
SimpleFunctionTool. As we did then, we rely on the combination of
inspect.signatureZHKltyping.get_type_hintsihen:U)eXUBCtthe
parameters and their annotated types from the supplied function’s signature.

We then check if a parameter with the specific name “params” exists in the
extracted parameters. If it does, then we next check that its annotated type is
a pydantic.BaseModel. If either of these checks fail, then we raise a
RunTimeError With a message indicating as to why the validation failed.

If both checks pass, then we have a valid pydanticFunction, and we return
the type or subclass of pydantic.BaseModel with which params 1s
annotated. Let’s quickly demonstrate this validation with our

hailstone pydantic fn.

from 1lm agents from scratch.tools.pydantic function import (
_validate pydantic function,

)

print (_validate pydantic function (hailstone pydantic fn))

The above print statement should return an output similar to the following.

main .HailstoneParams

We are now in a position to start implementing our pydanticFunctionTool,
which, like simpleFunctionTool, inherits our BaseTool class. As we have
already seen how to create a subclass of BaseToo1, we’ll present the entire
implementation in the listing below and then discuss it, rather than
implementing methods incrementally as we did before.



Listing C.3 Implementing PydanticFunctionTool

#11lm agents from scratch/tools/pydantic function.py
import inspect
from typing import Any, Awaitable, Callable, Protocol,
get type hints
from pydantic import BaseModel
from 1lm agents from scratch.base.tool import BaseTool
from 1lm agents from scratch.data structures import (
ToolCall,
ToolCallResult,

#A

class PydanticFunctionTool (BaseTool):
"""pPydantic function calling tool.

Turn a Python function that takes in a ~pydantic.BaseModel
params

Object into a tool for an LLM.

Attributes:
func: PydanticFunction to represent as a tool.
params mdl: The params BaseModel.
desc: Description of the PydanticFunction.

mmow

def init (
self,
func: PydanticFunction,
desc: str | None = None,

"""Initialize a PydanticFunctionTool.

Args:
func (PydanticFunction): The Pydantic function to
expose as a
tool to the LLM.

desc (str | None, optional): Description of the
function.

Defaults to None.

mmow

self.func = func
self.desc = desc or func. doc  or f"Tool for
{func. name }"

self.params mdl = validate pydantic function (func) #B



@property

def name (self) -> str:
"""Name of function tool."™""
return self.func. name
@property
def description(self) -> str:

"""Description of what this function tool does."""
return self.desc

@property
def parameters json schema(self) -> dict[str, Any]:
"""JISON schema for tool parameters."""
return self.params mdl.model json schema () #C
def call (
self,

tool call: ToolCall,
*args: Any,
**kwargs: Any,
) —> ToolCallResult:
"""Execute the function tool with a ToolCall.

Args:
tool call (ToolCall): The ToolCall to execute.
*args (Any): Additional positional arguments.
**kwargs (Any): Additional keyword arguments.

Returns:
ToolCallResult: The result of the tool call
execution.
mmow
try:
params =
self.params mdl.model validate(tool call.arguments) #D
# execute the function
res = self.func(params) #E
content = str(res)
error = False
except Exception as e:
content = f"Failed to execute function call: {e}"
error = True

return ToolCallResult (
tool call=tool call,
content=content,



error=error,

)

Beginning with the init method, we can see that it has the exact same
logic as simpleFunctionTool. init , however, with the added
statement for validation and automatic extraction of the params model. As
we discussed, validate pydantic function returns the type (or class) of
the function’s params argument. This can be seen as a bit of added
convenience, as we don’t require the user to supply this information, but
rather extract it from the supplied PydanticFunction automatically.

Next, the implementations for the property attributes name and desc are the
same as those for simpleFunctionTool. Our current implementation of
parameters json schema, however, is different from that of
SimpleFunctionTool. Here, we simply call the method

params mdl.model json_ schema, Which is a class method that returns the
JSON Schema representation of params md1 (a type of

pydantic. BaseModel). Unlike SimpleFunctionTool, where we relied on
our from-scratch code to convert function signatures to their JSON Schema
representations, we now utilize the pydantic library to build this JSON
Schema from the params md1 for us.

Finally, our implementation of ca11  also involves a delegation to the
wrapped function func. However, since func is PydanticFunction, We
need to pass it an instance of the params md1 type, which we must build
using the arguments supplied by the LLM in its tool call request. Again,
here we leverage the pydantic library but this time for its powerful JSON
validation. Specifically, we call the factory method

params_mdl.model validate, which takes in a Python dictionary of JSON
data that is first validated against JSON Schema for params md1. If
validation is successful, then the input data gets used to initialize an
instance of params md1, which we store in the params variable and pass as
input to func. The rest of our implementation for ca11  is similar to that
of simpleFunctionTool, including our approach for handling any errors
that may be encountered during the validation of tool parameters or the
delegation to the wrapped function.



The hailstone pydantic fn tool that we defined at the start of this
section should work as intended with what we just developed.

print (hailstone pydantic fn tool.description)
print (hailstone pydantic fn tool.name)
print (hailstone pydantic fn tool.parameters json schema)

These statements should print the following results.

hailstone pydantic fn
Perform a single step of the Hailstone sequence.

{'properties': {'x': {'title': 'X', 'type': 'integer'}},
'required': ['x'], 'title': 'HailstoneParams', 'type':
'object'}

We can also use hailstone pydantic fn tool with the same tool call
request that we had for our quick demonstration of hailstone tool (a
SimpleFunctionTool) in the previous section.

from 1lm agents from scratch.data structures import ToolCall

tool call = ToolCall(
tool name="hailstone pydantic fn tool",
arguments={"x": 3}

res = hailstone pydantic fn tool (tool call)
print (res)

The print statement should print output as follows.

tool call=ToolCall(tool name='hailstone pydantic fn',
arguments={'x"': 3}) content='10' error=False

This wraps up our implementation of PydanticFunctionTool, an
alternative approach to building tools from Python functions using our
LLM agent framework. Like simpleFunctionTool, however, this wrapper
class only works with synchronous functions. And, as we did then, we’ll
now need to quickly add an async version of this wrapper class to work
with asynchronous functions.

C.2 The AsyncPydanticFunctionTool



Let’s quickly add an async version of PydanticFunctionTool that works
with asynchronous functions much like AsyncsimpleFunctionTool does.
We will move rather quickly here since the implementation is very similar
to the async version, with only minor differences that are similar to the
differences observed between SimpleFunctionTool and

AsyncSimpleFunctionTool.

First, we’ll require an async version of our PydanticFunction protocol.
We’ll call this function protocol AsyncPydanticFunction and present its
implementation in the next listing.

Listing C.4 Implementing the AsyncPydanticFunction Protocol

# 1lm agents from scratch/tools/pydantic function.py
from typing import Any, Protocol
from pydantic import BaseModel

class AsyncPydanticFunction (Protocol) :
"""Asynchronous PydanticFunction Protocol."""

__name : str

__doc_: str | None

async def call ( #A
self,

params: BaseModel,
*args: Any,
**kwargs: Any,
) -> Awaitable[Any]: #B
"""Asynchronous callable interface.

Args:
params (BaseModel): The function's params as a
~pydantic.BaseModel.
*args (Any): Additional positional arguments.
**kwargs (Any): Additional keyword arguments.

Returns:
Awaitable[Any]: The result of the function call.

mwwn



The only difference between this AsyncPydanticFunction and
PydanticFunction from before is that the async protocol stipulates that the
function’s call method be an async function that returns an
~typing.Awaitable type.

With this async function type defined, we can now present the complete
implementation of AsyncPydanticFunctionTool.

Listing C.5 Implementing AsyncPydanticFunctionTool

# 1lm agents from scratch/tools/pydantic function.py

import inspect

from typing import Any, Awaitable, Callable, Protocol,

get type hints

from pydantic import BaseModel

from 1lm agents from scratch.base.tool import AsyncBaseTool,

BaseTool

from 1lm agents from scratch.data structures import (
ToolCall,
ToolCallResult,

class AsyncPydanticFunctionTool (AsyncBaseTool) :
"""Async Pydantic function calling tool.

Turn an async Python function that takes in a
~pydantic.BaseModel
Params object into a tool for an LLM.

Attributes:
func: AsyncPydanticFunction to represent as a tool.
params mdl: The params BaseModel.
desc: Description of the PydanticFunction.

nmmow

def init (
self,
func: AsyncPydanticFunction,
desc: str | None = None,

"""Initialize an AsyncPydanticFunctionTool.

Args:
func (AsyncPydanticFunction): The async Pydantic



function to
expose as a tool to the LLM.

desc (str | None, optional): Description of the
function.
Defaults to None.
self.func = func
self.desc = desc or func. doc  or f"Tool for
{func. name }"
self.params mdl = validate pydantic function (func)
@property
def name (self) -> str:
"""Name of function tool."""
return self.func. name
@property

def description(self) -> str:
"""Description of what this function tool does."""
return self.desc

@property

def parameters json schema(self) -> dict[str, Any]:
"""ISON schema for tool parameters."""
return self.params mdl.model json schema ()

async def  call (
self,
tool call: ToolCall,
*args: Any,
**kwargs: Any,
) —> ToolCallResult:
"""Execute the function tool with a ToolCall.

Args:
tool call (ToolCall): The ToolCall to execute.
*args (Any): Additional positional arguments.
**kwargs (Any): Additional keyword arguments.

Returns:
ToolCallResult: The result of the tool call
execution.
try:
params =
self.params mdl.model validate (tool call.arguments)
# execute the function
res = await self.func(params)



content = str(res)
error = False
except Exception as e:
content = f"Failed to execute function call: {e}"
error = True

return ToolCallResult (
tool call=tool call,
content=content,
error=error,

The implementation of AsyncPydanticFunctionTool 1s very similar to that
of PydanticFunctionTool, with the only differences being that here we
inherit from AsyncBaseTool and that the ca11  method is now async.
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