
Theodoros Karakasidis
Avraam Charakopoulos

Time Series
and Networks
Analysis
A hands-on approach (Matlab & Octave)

Time Series and Networks Analysis

Theodoros Karakasidis • Avraam Charakopoulos

Time Series and Networks
Analysis

A hands-on approach (Matlab & Octave)

ISBN 978-3-031-92627-3 ISBN 978-3-031-92628-0 (eBook)
https://doi.org/10.1007/978-3-031-92628-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Theodoros Karakasidis
Department of Physics
Faculty of Science
University of Thessaly
Lamia, Greece

Avraam Charakopoulos
Department of Civil Engineering
School of Engineering
University of Thessaly
Volos, Greece

https://doi.org/10.1007/978-3-031-92628-0

To our families

To our students

vii

Preface

Time series analysis is a dynamic research area that has fundamental importance for

a wide range of scientific fields, in terms of both a fundamental point of view and

applications ranging from physics to engineering as well as biomedical and finan-

cial applications. Over the last few decades, many computational methods have

been applied and invented to deal with time series-related problems.

Beyond conventional time series methodologies, this book introduces the analy-

sis of time series through the perspective of complex networks. By transforming

time series data into network, researchers can extract topological features that reveal

underlying patterns.

But what is extremely interesting in this book is that we also provide detailed

guidelines about the software with examples in MATLAB so that anyone can run

the corresponding routines and apply them to the data provided or their personal

data of research. Moreover, the readers can modify the routines appropriately in

order to add more characteristics to the output. This fact is based on the basic idea

of learning by trying.

The aim of this book is to provide basic knowledge of time series, introduce

some statistical tools useful for analyzing these series, and gain experience in apply-

ing various linear, nonlinear, and advanced methodologies. We begin with the basic

concepts of asset returns and a brief introduction to the processes to be discussed

throughout the book.

The structure of the book is divided into two main parts. Part I: Linear & Non-

Linear Analysis introduces the reader to fundamental statistical tools and methods

used in traditional time series analysis. It begins with Chap. 1, which focuses on

basic statistical analysis, including descriptive measures, distributions, and hypoth-

esis testing for time series data. Chapter 2 delves into the temporal characteristics of

time series, exploring properties such as stationarity, autocorrelation, and trends.

Following that, Chap. 3 addresses nonlinear dynamics, including phase space recon-

struction, chaos indicators, and methods for detecting complex, nonlinear behavior

in time-dependent data. Part II: Complex Network Analysis presents a more

advanced perspective, applying network science techniques to the study of time

viii

series. In Chap. 4, readers are introduced to complex network representations of

time series, such as visibility graphs, and how these can be used to analyze struc-

ture, connectivity, and patterns in the data. Finally, Chap. 5 includes extended case

studies that combine both traditional and network-based methods, showcasing their

application to real-world datasets across different scientific disciplines. This struc-

ture allows the reader to progress from foundational concepts to more sophisticated

analytical techniques, building a comprehensive understanding of time series and

their underlying dynamics.

The book can be employed in undergraduate courses as well as in graduate

courses, particularly those aiming to provide a fast and practical guide for perform-

ing analysis of time series for research purposes in disciplines such as physics,

materials science, engineering, and finance, to mention a few areas.

Lamia, Greece Theodoros Karakasidis

Volos, Greece Avraam Charakopoulos

Competing Interests The authors have no competing interests to declare that are

relevant to the content of this manuscript.

ix

Part I Linear & Non-Linear Analysis

 1 Time Series Statistical Analysis . 3

 1.1 Introduction to Time Series . 3

 1.1.1 Examples of Time Series . 4

 1.2 Statistical Analysis: Univariate, Bivariate, and Multivariate 10

 1.3 Descriptive Statistics . 11

 1.3.1 Mean, Median, Variance, Standard Deviation,

Max and Min, Histogram, Skewness, and Kurtosis 11

 1.4 Components of a Time Series . 24

 1.4.1 Trend/Seasonal Component (Period Estimation) 29

 1.4.2 Detrending and De-Seasoning of a Time Series 30

 1.4.3 Detrending and De-Seasoning of a Real-Time Series 36

References . 43

 2 Temporal Behavior of Time Series . 45

 2.1 Autocorrelation . 45

 2.1.1 Seasonality Effects . 47

 2.1.2 Noise Effects . 48

 2.2 Power Spectrum Analysis . 52

 2.3 Mutual Information . 60

 2.4 Hurst Exponent . 64

 2.5 Hjorth Parameters . 66

 2.6 Clustering . 68

 2.6.1 Single-Linkage Clustering or Nearest Neighbor 69

 2.6.2 Complete-Linkage Clustering . 70

 2.6.3 Average-Linkage Clustering . 70

 2.6.4 Centroid-Linkage Clustering . 71

References . 73

Contents

x

 3 Nonlinear Time Series Analysis . 75

 3.1 Introduction to Dynamical System . 75

 3.1.1 System Identification . 77

 3.1.2 Phase Space Reconstruction . 78

 3.1.3 False Nearest Method . 83

 3.1.4 Chaos and Dynamical Systems . 84

 3.1.5 Dynamical Systems with an Attractor 85

 3.1.6 Correlation Dimension . 89

 3.2 Surrogate Time Series . 91

 3.2.1 Random Phase or Fourier Transform 92

 3.2.2 Amplitude Adjusted Fourier Transform (AAFT) 94

 3.2.3 Iterative Amplitude Adjusted Fourier

Transform (IAAFT) . 98

 3.2.4 Statistically Transformed Autoregressive

Process (STAP) . 99

References . 102

Part II Complex Network Analysis

 4 Complex Network Time Series . 105

 4.1 Basics of Complex Network Theory . 105

 4.1.1 Theoretical Definition of a Graph . 105

 4.2 Topological Network Measures . 108

 4.2.1 Degree and Degree Distribution . 108

 4.2.2 Shortest Path and Diameter . 112

 4.2.3 Clustering Coefficient . 114

 4.2.4 Centrality Measures/Betweenness Centrality 117

 4.2.5 Closeness Centrality. 120

 4.2.6 Eigenvector Centrality . 121

 4.2.7 Modularity . 123

 4.3 Types of Networks . 124

 4.3.1 Small-World Network . 124

 4.3.2 Scale-Free Network . 128

 4.3.3 Random Network . 129

 4.4 From Time Series to Complex Network/Methods

of Construction . 131

 4.4.1 Phase Space Network: Recurrence Network 131

 4.4.2 Correlation Network . 132

 4.4.3 Visibility Network . 133

 4.5 Extended Example of Transforming Time Series

to Network and Analyzing Them Using Network Properties 136

 4.5.1 Examples of Field Measurement Data

(Environmental Time Series) . 136

 4.5.2 Examples of Simulation Data

(Magnetohydrodynamics Time Series) 148

References . 152

Contents

xi

 5 Extended Case Studies . 155

 5.1 Example 1: “Detection of Low-dimensional

Chaos in Wind Time Series” . 155

 5.2 Example 2: “Identification of Spatiotemporal

Phenomena Using Non-linear Time Series Analysis

and Network Analysis Methods” . 160

 5.2.1 Nonlinear Analysis . 162

 5.2.2 Complex Network Analysis . 168

 5.3 Example 3: “Analysis of Magneto-hydrodynamic

Channel Flow Through Complex Network Analysis” 171

References . 178

 Index . 179

Contents

Part I

Linear & Non-Linear Analysis

3© The Author(s), under exclusive license to Springer Nature

Switzerland AG 2025

T. Karakasidis, A. Charakopoulos, Time Series and Networks Analysis,

https://doi.org/10.1007/978-3-031-92628-0_1

Chapter 1

Time Series Statistical Analysis

1.1 Introduction to Time Series

Time series data consists of a set of values that are assembled over even intervals in

time and ordered in a chronological order. The time interval at which data is col-

lected is commonly referred to as the time series sampling rate Δt and the inverse of

that is the sapling frequency Fs = 1/Δt, i.e., how many points are recorded in a time

unit [3, 4].

A time series is a sequential data set of points denoted as x(t), t = 0, 1, 2,….

where x is the variable and t represents time and is defined as follows

 X t x x x x
t() = …

1 2 3
, , ,

The variable we study can be discrete or continuous. Discrete variables can take

only given values, i.e., the number of times it rained during a given period, while

continuous variables can take any value in a given interval, i.e., the temperature can

be 23.4, 23.5, etc [5, 6].

In general, the data are recorded at equal time intervals, although this is not nec-

essarily always the case. In the present book, we are going to deal with time series

of the former type. The interest of studying time series is that since they originate

from a given system, they can provide information about the underlying system

which quite often is too complex to be studied considering all its aspects. A given

system can result in several time series as output, i.e., when we study the weather in

a given place, we measure the temperature, humidity, atmospheric pressure, etc [8].

Thus, time series analysis can deal with just one time series at a time; in this case,

we speak about univariate time series analysis. However, one can see the combined

analysis of two or more time series simultaneously speaking in this case for bivari-

ate or multivariate analysis [9, 10].

Time series can originate from various sources. One of the most common sources

is computational models of systems, such as simple models or complex simulations

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92628-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-92628-0_1#DOI

4

like computational fluid dynamics simulations. The other source originates from

sensors used in laboratory experiments and sensors deployed in the field, such as

environmental measurements. Financial interest time series, either of the stock

exchange or other types, are also of particular interest. Below, we present some

examples of such time series.

The data and the codes employed in the present book can be downloaded from

the website https://github.com/avcharak/Time-Series-and-Networks-Analysis.

1.1.1 Examples of Time Series

In the following, we present representative examples of time series, some of which

will be used as case studies in forthcoming chapters. Indicatively, these examples

cover some of the major scientific areas such as economic time series, environmen-

tal, applied science, physical sciences but also, we first present simple synthetic

time series.

What To Do First Although it may appear silly, our first job when studying a given

dataset is to plot the observations as a function of the time. This permits us to see if

there is any anomaly in the data, any missing points, or if everything has passed

smoothly and with precision from the source file to the data analysis software.

Sometimes some commas or points corresponding to different measuring systems

can cause headaches. Also, data from a malfunctioning instrument can have data

that are not correct.

 Simple Numeric Time Series

Here are some examples of simple synthetic time series. The equations of the pro-

gram are initially given for the purpose of expression, and then the graph, which is

the result, is presented.

Example 1 Generation of periodic time series (sine wave) with input of variables,

sampling period, frequency, and amplitude. We plot a periodic function using the

script 1.1. As the first important step in time series analysis is to visualize the data,

execute the script 1.1 in the Matlab command window. The result is displayed in

Fig. 1.1.

1 Time Series Statistical Analysis

https://github.com/avcharak/Time-Series-and-Networks-Analysis

5

Fig. 1.1 Sinus time series with sampling period Fs = 300, frequency f1 = 10, and amplitude

amp = 10

%Script 1.1
%Example 1, Generate a periodic time series

Fs=input('Give the sampling period_:'); %sampling period (samples
per second)
f1=input('Give the frequency_:');
Amp=input('Give the Amplitude_:');

Ts=1/Fs; % seconds per sample
dt=0:Ts:1-Ts; %signal duration

[y1]=(Amp*sin(2*pi*f1*dt))'; % sin function

plot(dt,y1,'b.-'); %plot function
ylim([-Amp-5 Amp+5])
ax=gca; %grid parameter
ax.YGrid= 'on'; % y grid on

title('Simulated data','FontSize',20)
ylabel('y(t)')
xlabel('(t) Time')

As expected, the data show periodic behavior commensurate with the input vari-

ables; otherwise, the time series has periodicity or seasonality.

There are several ways to plot time series on Matlab. Although the signal may

appear continuous, it is actually a discrete signal since there is a large number of

data points. Lines are generally used to guide our eyes. Sometimes, the number of

points can be so large that the points appear to form a continuous line.

Example 2 We can also create more complex synthetic signals by combining sim-

ple signals. For instance, we can create three periodic time series with different

frequencies by running in the command window and summing them using script

1.2, and the results appear in Fig. 1.2. For this complex time series, we can say that

1.1 Introduction to Time Series

6

Fig. 1.2 Generate three time series with different frequencies (sampling frequency Fs = 300,

amplitude amp = 10, and signal frequencies f1 = 10 Hz, f2 = 20 Hz, f3 = 30 Hz), respectively, in

one plot

1 Time Series Statistical Analysis

7

it still has periodicity, which depends on the frequencies of the individual time

series from which it is composed.

%Script 1.2
%Example 2, Generate a synthetic periodic time series

Fs=input('sampling frequency_');
f1=input('frequency_1_');
f2=input('frequency_2_');
f3=input('frequency_3_');
Amp=input('Amplitude_');

Ts=1/Fs; %sampling period
dt=0:Ts:1-Ts; %signal duration

y1=Amp*sin(2*pi*f1*dt);
y2=Amp*sin(2*pi*f2*dt);
y3=Amp*sin(2*pi*f3*dt);
y4=0.3*(y1+y2+y3);

subplot(4,1,1);
plot(dt,y1,'r.-','MarkerSize',10);
title(sprintf('Simulated data with (%d) frequency
',f1),'FontSize',18)
ylabel('y(t)')
xlabel('(t) Time')
subplot(4,1,2);
plot(dt,y2,'b.-','MarkerSize',10);
title(sprintf('Simulated data with (%d) frequency
',f2),'FontSize',18)
ylabel('y(t)')
xlabel('(t) Time')
subplot(4,1,3);
plot(dt,y3,'k.-','MarkerSize',10);
title(sprintf('Simulated data with (%d) frequency
',f3),'FontSize',18)
ylabel('y(t)')
xlabel('(t) Time')
subplot(4,1,4);
plot(dt,y4,'.-','MarkerSize',10);
title('Simulated data with combined frequencies','FontSize',18)
ylabel('y(t)')
xlabel('(t) Time')

 Field Measurement Data: Environmental Time Series

The next series contains 30 years of weekly observations recorded by a meteoro-

logical station, measuring the horizontal wind speed as a weekly mean across all

directions. This dataset comprises a total of 1488 records [7]. In Fig. 1.3, the weekly

mean wind speed vs time is presented.

By executing script 1.3 in Matlab command window, we get the time series plot.

1.1 Introduction to Time Series

8

Fig. 1.3 Weakly mean wind speed (http://www.emy.gr/emy/el/)

Fig. 1.4 Water temperature 3-hourly data measured (https://poseidon.hcmr.gr/)

%Script 1.3

%Example 3, plot wind time series

plot(wind,'b.-','MarkerSize',10); %'wind' the name of time

series

title('Environmental data','FontSize',20)

ylabel('wind velocity','FontSize',10)

xlabel('time (weeks)','FontSize',10)

By a first look in Fig. 1.3, we can understand that several smaller and larger peri-

odicities are present in this phenomenon. We will describe later in the book method-

ologies in order to derive the corresponding frequencies in the time series since they

may reveal information about the system under study.

Another example of a time series of environmental interest is presented in

Fig. 1.4 (after running script 1.4), where we can see seawater temperature data

recorded every 3 h through a system of buoys for measuring atmospheric and ocean-

ographic data (https://poseidon.hcmr.gr/) [1].

1 Time Series Statistical Analysis

http://www.emy.gr/emy/el/
https://poseidon.hcmr.gr/
https://poseidon.hcmr.gr/

9

%Script 1.4

%Example 4, plot water temperature time series

plot(water_temp,'b.-','MarkerSize',10); %water_temp the name of

time series

title('Enviromental data','FontSize',20)

ylabel('water temperature (oC)','FontSize',10)

xlabel('time (ΔΤ=3h)','FontSize',10)

 Experimental Data: Time Series from Applied Sciences

The following time series examples come from the scientific field of applied sci-

ences. After running script 1.5, we can see in Fig. 1.5 the instantaneous temperature

recorded during an experiment of a vertical turbulent heated jet [2]. It is clear how

complex the time series behavior is compared to the previous examples.

%Script 1.5

%Example 5, plot temperature time series

plot(turb_jet,'b.-','MarkerSize',6); %Turb_jet the name of time

series

title('Enviromental data','FontSize',20)

ylabel('temperature (oC)','FontSize',10)

xlabel('time (sec)','FontSize',10)

 Financial Time Series

The next series we consider here is the daily index of the Nasdaq stock market index

and gold price for 1 year (the data can be downloaded from Yahoo Finance). Using

script 1.6, we plot the data against the time index, and the results are presented in

Fig. 1.6. We can see that these time series present a different behavior from previ-

ous ones.

Fig. 1.5 Temperature time series of experimental temperature time series from a vertical turbulent

heated jet [2]

1.1 Introduction to Time Series

10

Fig. 1.6 Nasdaq 100 index and gold price for the same time period (data from Yahoo Finance)

%Script 1.6

%Example, plot financial time series

figure

subplot(2,1,1);

plot(Nasdaq,'r.-','MarkerSize',10);

xlim([0 252])

title('Financial data Nasdaq index','FontSize',18)

ylabel('Index ')

xlabel('(t) Time')

subplot(2,1,2);

plot(gold,'b.-','MarkerSize',10);

xlim([0 252])

title('Financial data Gold price','FontSize',18)

ylabel('y(t)')

xlabel('(t) Time')

1.2 Statistical Analysis: Univariate, Bivariate,

and Multivariate

In statistical analysis, there exists, among other things, three main categories of

analysis, depending on the origin and the number of variables: univariate, bivariate,

and multivariate analysis. When the measurement data refers to a sequence of mea-

surements of the same variable collected over time, then we have the case of the

univariate analysis.

1 Time Series Statistical Analysis

11

Bivariate data involves two different variables and mainly, the analysis of these

data focuses on investigating the causes and relationship between these two vari-

ables, while multivariate analysis is a more complex form of statistical analysis

technique and is used when there are more than two variables in the data set.

Multivariate analysis allows the separate and combined effects of the independent

variable to be examined.

1.3 Descriptive Statistics

Techniques used to summarize and describe the characteristics of a group or to

compare characteristics between groups are known as descriptive statistics.

1.3.1 Mean, Median, Variance, Standard Deviation, Max

and Min, Histogram, Skewness, and Kurtosis

Below we provide the definition of the most common descriptive statistics mea-

sures. In general, when we study a problem, this corresponds to a population; for

example, all temperatures in a class of experiments. However, we have access only

to a limited number of measurements, thus we have access to a sample of the popu-

lation. There are whole books dealing with the ways to perform appropriate sam-

pling, and thus we are not going to treat this subject here. However, below we are

going to treat terms that often appear as population or sample properties.

The sample average or mean, x, is obtained by summing up all measurements

and dividing by their number N:

x

x x x

N N
x

N

i

N

i
=

+ +…+
=

=∑
1 2

1

1

(1.1)

The mean represents the value around which the observations are gathered. When

referring to the ideal population average quite often, the symbol μ is used.

The median is the middle value in a group of numbers ranked by value. It is the

number that is exactly in the middle, so 50% of the ranked numbers are above and

50% are below the median. This definition holds when the number of observations

is odd. If the number of observations is even, then we take the average of the two

middle values as a median.

The min is simply the lowest value of the sample, while the max is the high-

est value.

The sample variance (σ2) is the sum of the difference of each point from the

mean. As it is known, it is a measure of spread of the values around the mean:

σ

ι

2

1

21

1
=

−
−()

=∑
Ν

Ν
x x
i

(1.2)

1.3 Descriptive Statistics

12

σ is called the standard deviation. When referring to population variance and stan-

dard deviation, the symbols S2 and S are used, respectively.

The mode is the value that appears at a higher frequency (i.e., more

frequently).

Range is the difference between the dataset’s largest value and the dataset’s

smaller value:

 R x x= −
max min

There are also other measures known as shape measures, which help describe how

data points in a dataset are distributed around the mean. These measures assist in

identifying patterns that become evident when the data is visualized on a graph.

Histogram It is of interest to measure the frequency of appearance of observed

values. Since, in many cases, we have measures that can take continuous values in

fact what we do is that we divide the region of values into intervals, and we measure

the values that fall within the given intervals. This leads to the so-called histogram

of the data. This representation can provide quite an insight into how the values are

distributed around the mean.

In Fig. 1.7, we present the histogram for the time series of wind speed using

script 1.7. The blue bars show the frequency of the value where the red line repre-

sents the normal distribution curve. We can see that in this case, we have a pretty

symmetric distribution of values around the mean value of the measurements. We

also can see the width of the distribution of values around the mean.

Fig. 1.7 Histogram of wind speed time series along with a fit corresponding to a normal

distribution

1 Time Series Statistical Analysis

13

%Script 1.7
%Example, calculates the histogram of wind time series

figure
function HIST=histogram_avra(data)

close all
m=length(data);
mu=mean(data);
sigma=std(data);
Bins=20;
[freq,x_axis]=hist(data,Bins);
pdf=freq./m;
figure('position',[0 0 800 600]);
title('Histogram')
xlabel('Values');
ylabel('number of Observations');
hold on
Y=normpdf(x_axis,mu,sigma);
bar(x_axis,pdf,'FaceColor','blue','BarWidth',1);
hold on
plot(x_axis,Y./sum(Y),'Color','red','LineWidth',2);
hold on

if nargin>=2
m_conf=length(percentiles);
quant=quantile(data,percentiles);
X_axis=get(gca,'XTick');
set(gca,'XTick',unique([min(X_axis) mu quant

max(X_axis)]));
for i=1:m_conf

plot(quant(i),0,'sm','LineWidth',2);
hold on

end
legend({'value','Normal

Dist.','Mean','Quantile'},'Location','NorthWest','FontSize',14,'Fo
ntWeight','Bold');

else
quant='';
legend({'value','Normal

Dist.','Mean'},'Location','NorthWest','FontSize',14,'FontWeight','
Bold');

end

In the following, we will present some brief information about various known

distributions that occur in many study systems. The main characteristic of these

distributions is the shape of the corresponding histograms generated from the

recorded values when examining the related systems.

 Normal Distribution

Gauss introduced the normal distribution or Gauss distribution, and the probability

of a value x occurs has the form:

1.3 Descriptive Statistics

14

f x e X

X

() = −∞ < < +∞
−

−()
1

2

2

2
2

πσ

µ

σ

(1.3)

We follow the notation for the X variable X~N(μ, σ2) where μ is the population aver-

age and σ2 is the population variance. In the case of the normal distribution, we have

the following percentages of the population in the corresponding intervals:

µ σ µ σ

µ σ µ σ

− +[]
− +[]

, of the population

, of the po

68 27

2 2 95 45

, %

, % ppulation

, of the populationµ σ µ σ− +[]3 3 99 73, % .

The above is approximately valid for a sample with a mean x and variance s and is

represented schematically in Fig. 1.8.

What is of interest is the so-called standard normal distribution:

f x e X() = −∞ < < +∞

−1

2

2

2

π

Ζ

(1.4)

which corresponds to μ = 0 and s = 1 and is obtained if we transform the variable Χ

using the relation:

Z

X
=

− µ

σ
(1.5)

The Z variable is known as the standardization of X and is often also known as the

Z-score. This is very practical when we have to compare different sets of values

with different mean values and variances. Of course, we use the corresponding sam-

ple quantities in the case of a sample.

We must mention here that other well-known distributions can also be applied in

exceptional cases. Such distributions are the gamma distribution and Weibull distri-

bution, which we discuss below.

There are two measures of form that describe the shape of the distribution and

are discussed below.

Fig. 1.8 Normal distribution of time series

1 Time Series Statistical Analysis

15

Fig. 1.9 Probability distribution for different situations

Pearson’s moment coefficient of skewness is the the average of the standardized

cubed deviation from the mean x():

b

x x

S

i

1
1

1

1

3

3
=

−

−()
=∑

Ν

Ν

ι

(1.6)

• If b1 = 0, the distribution is symmetric (Fig. 1.9 center),

• If b1 < 0, the distribution presents negative asymmetry (skewness) (Fig. 1.9 right).

• If b1 > 0, the distribution presents positive asymmetry (skewness) (Fig. 1.9 left).

The kurtosis (b2) sample coefficient is the average of the fourth power of the stan-

dardized deviations from the mean:

b

x x

S

i

2
1

1
3

1

4

4
=

−

−()
−=∑

Ν

Ν

ι

(1.7)

• If b2 = 0, the distribution is called Mesokurtic.

• If b2 < 0, the distribution is characterized as Leptokurtic.

• If b2 > 0, the distribution is called Platykurtic.

These different situations are presented schematically in Fig. 1.10.

The simplest time series model is the one that has no trend or seasonality, and the

variables are independent of each other and are randomly distributed with zero mean:

X N
t
~ 0

2
,σ() (1.8)

Thus, we generate a random array of data that follows the normal or Gaussian dis-

tribution Ν (μ,σ2). This time series has mean μ = 0 and standard deviation equal to

one σ = 1, i.e., the normal distribution Ν(0,1). Using script 1.8, we produce such a

time series, which is plotted in Fig. 1.11.

1.3 Descriptive Statistics

16

Fig. 1.10 The three characteristic types of distributions are based on kurtosis

Fig. 1.11 Time series following Gaussian distribution

% Script 1.8

% Generate time series with Gaussian distribution

N=input('Give the time series length_:');

TS=randn(N,1);

plot(TS,'.-')

title('Time series with Gaussian distribution

N(0,1)','FontSize',14)

xlabel('Time (t)');

ylabel('y(t)');

In order to calculate the main descriptive statistics of the corresponding time

series, we can execute script 1.9, and in Fig. 1.12, we can see the time series with

1 Time Series Statistical Analysis

17

Fig. 1.12 Time series marked the main statistical properties

Table 1.1 Descriptive statistics for time series of Fig. 1.12

Mean Standard deviation Variance Median Maximum value Minimum value

0.0183 0.9886 0.9973 0.0774 2.6929 −2.9785

the graphical representation of the corresponding statistical measures, which are

presented in Table 1.1.

%Script 1.9

%Descriptive statistics

TS=input('Give the time series_:');

Descriptive_results=[mean(TS)' std(TS)' var(TS)' median(TS)'

max(TS)' min(TS)']

plot(TS,'b.-','MarkerSize',10)

xlabel('Time (t)');

ylabel('y(t)');

In Fig. 1.13, we present the histogram of the N(0,1) distribution by executing

script 1.10.

% Script 1.10

% Histogram

TS=input('Give the time series_:');

histfit(TS',25,'normal')

title('Gaussian distribution N(0,1)','FontSize',14)

legend('Data distribution','Normal distribution')

xlabel('y(t)');

ylabel('Frequency');

As expected, the distribution of the simulated data is quite close to the ideal nor-

mal distribution. Slight differences are due to the finite number of data and the size

of the value intervals.

1.3 Descriptive Statistics

18

Fig. 1.13 Histogram of the time series N(0,1)

Fig. 1.14 Time series where the main statistical properties are marked graphically on the plot

Table 1.2 Descriptive statistic

Mean Std Var Skew Kurtosis Median Max Min

3.5690 0.3325 0.1105 −0.0717 2.7957 3.5800 4.4600 2.6500

In the following, we present results of the descriptive statistics of the example 1.2

(Fig. 1.14, Table 1.2).

We can also execute the script 1.11 to calculate the statistics of water temperature

time series, and in Fig. 1.15 we present the corresponding histogram of wind time

series by executing the script 1.10.

%Script 1.11

%Descriptive statistics 2

TS=input('Give the time series_:');

Descriptive_results=[mean(TS)' std(TS)' var(TS)' skewness(TS)'

kurtosis(TS)' median(TS)' max(TS)' min(TS)']

plot(TS,'b.-','MarkerSize',10)

xlabel('Time (t)');

ylabel('y(t)');

1 Time Series Statistical Analysis

19

Fig. 1.15 Histogram of time series of wind speed

Fig. 1.16 Time series showing the main statistical properties

Table 1.3 Descriptive statistic

Mean Std Var Skew Kurtosis Median Max Min

19.1458 3.0892 9.5433 0.5638 1.8845 18.0371 25.8252 15.2295

We can see that the histogram is quite close to the normal distribution (repre-

sented by the red curve).

We get the following results by executing script 1.9 on the water temperature

data (Fig. 1.16, Table 1.3).

We apply the same procedure in the case of the gold price for the period (see

Fig. 1.17, Table 1.4) and the Nasdaq index (see Fig. 1.18, Table 1.5).

The time series we have seen so far have practically zero skewness. Below we

present some time series that have either positive or negative skewness. This prop-

erty of time series is well reflected in the histograms where we can clearly see that

value distribution differs from the normal distribution and in fact belongs to differ-

ent kind of probability distributions (thus presenting different histograms too).

1.3 Descriptive Statistics

20

Fig. 1.17 Time series showing the main statistical properties (data from Yahoo Finance)

Table 1.4 Descriptive statistic

Mean Std Var Skew Kurtosis Median Max min

1773 1400 1952.3 0 0.2 1780 2051 1477

Fig. 1.18 Time series of Nasdaq index showing the main statistical properties (data from Yahoo

Finance)

Table 1.5 Descriptive statistic

Mean Std Var Skew Kurtosis Median Max min

10,300 1500 2,249,000 0.00 0.00 10,300 12,800 7000

 Gamma Function

There are time series which, due to the nature of the system from which they origi-

nate, present positive or negative skewness value and thus correspond to types of

distribution that differ from the normal distribution. A well-known such distribution

is the gamma function. The probability density function of the gamma distribution

is defined by:

1 Time Series Statistical Analysis

21

f x

x x

x() =

−







 ∗ −

−









()
≥ >

−
µ

β
µ

β

β γ
µ γ β

γ 1

0

exp

; ,
Γ

(1.9)

where γ is the shape parameter, μ is the location parameter, β is the scale parameter,

and Γ is the gamma function which is described by the following relation:

Γ α() =

∞ − −∫ 0
1

t e t
a t

d

(1.10)

Script 1.12 that follows let us generate such a time series graphically represented in

Fig. 1.19.

% Script 1.12

% Generates gamma random Numbers

r2=gamrnd(3,0.1,1,1000);

plot(r2,'.-')

xlabel('Time (t)');

ylabel('y(t)');

legend('Simulated time series','Location','Best')

The results from the calculation of the descriptive statistical measures by execut-

ing script 1.11 are presented in Table 1.6.

As observed this time series presents a positive skewness. In statistics, a posi-

tively skewed (or right-skewed) distribution is characterized by most values cluster-

ing around the left tail of the distribution, while the right tail of the distribution

is longer.

Fig. 1.19 Simulated time series following the Gamma distribution

Table 1.6 Descriptive statistics

Mean Std Var Skew Kurtosis Median Max min

0.292 0.173 0.0301 1.240 5.116 0.259 1.131 0.028

1.3 Descriptive Statistics

22

%Script 1.13

%Histogram of time series with positive skewness

TS=input('Give the time series_:'); % i.e r2

Skewness = input('Give the skewness_:'); % i.e 1.24 skewness of r2

histfit(TS',25,'gamma')

xlabel('y(t)');

ylabel('Frequency');

legend(sprintf('Skewness(%d)',Skewness),'Location','Best')

By running in the command window script file 1.13, we plot the distribution in

Fig. 1.20.

To understand the difference with the normal distribution, we can add the normal

distribution curve to the figure by executing the following command.

hold on

histfit(r2',25,'normal')

The results are depicted in Fig. 1.21.

Fig. 1.20 Histogram of a time series with positive skewness

Fig. 1.21 Histogram of a time series with positive skewness, marked with the gamma and normal

distribution

1 Time Series Statistical Analysis

23

 Weibull Distribution

In the previous paragraph, we have seen an example of a time series with positive

skewness. Now we are going to see an example of a time series where the distribu-

tion of the data presents a negative skewness which is a characteristic of the well-

known Weibull probability distribution which is described by the following

equation:

f x
x x

x() = −







 −

−



















≥ >
−()γ

α
µ

α
µ

α
µ γ α

γ γ1

0exp ; ,

(1.11)

%Script 1.13.1

% Generates Weinbull random numbers

r3=wblrnd(3,45,1,1000);

plot(r3,'.-')

xlabel('Time (t)');

ylabel('y(t)');

legend('Simulated time series','Location','Best')

Βy running in the command window script 1.13.1, we plot the simulated time

series as we can see in Fig. 1.22.

By running script 1.14, we obtain the statistics and the histogram of the above

time series, along with a comparison with the normal distribution (Fig. 1.23,

Table 1.7).

Fig. 1.22 Simulated the time series following the Weibull distribution

1.3 Descriptive Statistics

24

Fig. 1.23 Histogram of a time series with negative skewness, marked with the Weibull and normal

distribution

Table 1.7 Descriptive statistics

Mean Std Var Skew Kurtosis Median Max Min

2.960 0.083 0.007 −1.027 4.854 2.974 3.154 2.539

% Script 1.14

% Histogram of time series with negative skewness

TS=input('Give the time series_:'); % i.e r3

Skewness = input('Give the skewness_:'); % i.e -1.027 skewness of

r3

h = histfit(TS',25,'weibull');set(h(1),'color','b');

set(h(2),'color','r')

ylabel('Frequency');

leg1=legend(sprintf('Time series Skewness(%d)',Skewness),'Weibull

distribution','Location','Best')

hold on

h1=histfit(TS',25,'normal');set(h1(1),'color','b');

set(h1(2),'color','g')

Although statistical analysis is very useful and provides a certain insight for the

system under study, there are some aspects that cannot be resolved such as, for

example, any temporal relation or the existence of deterministic laws that could help

describe the phenomenon and perhaps permit prediction of its behavior.

1.4 Components of a Time Series

This subsection presents the basic information about the components of a time

series and the methods to decompose it. Time series are affected by the following

three components:

1 Time Series Statistical Analysis

25

• Trend refers to the tendency of the time series to increase, decrease, or remain

constant over a long period of time. Otherwise, it indicates the long-term change

in the mean level of data. The trend may be linear or nonlinear and may vary

over time.

• Seasonality/periodicity shows a repeating pattern present in a time series.

Several factors can cause seasonal variations, such as seasonal effects in environ-

mental data, or certain times, such as the end of the year for financial data, etc.

• The third component is the irregular behavior which is combined with the pre-

vious components. This component may be random/stochastic, or it may follow

a more complex behavior as it is the case in chaotic systems.

Seasonality and trend are considered as deterministic components.

Two different types of models are generally used to describe the time series con-

sidering the effect of these four components.

The additive model is the model that time series is supposed to be the sum of the

three components:

 X t T t S t I t() = ()+ ()+ () (1.12)

where T(t), S(t), and I(t) are trend, seasonal, and irregular components, respectively,

at time (t).

The multiplicative model is the model where the time series is the product of the

three above components:

 X t T t S t I t() = () () () (1.13)

In order to demonstrate the above concepts, we present in Fig. 1.24 a signal that is

synthetic and originates from three components: trend, periodicity, and irregular

component, produced using script 1.15.

%%
%Script 1.15
%Generate time series with noise and trend

N=input('Give the time series length_:');300
f=input('Give the frequency_:'); 10,10,0.2
Amp=input('Give the Amplitude_:');
t=0:1:N;
y=Amp*sin(2*pi*f*t/500);

noise=input('Give the noise level_:');
ynoise=AddNoise(y',noise); % add noise

t=1:N+1;
Ynoise_trend=(ynoise' + t/10)';
plot(Ynoise_trend,'b.-','MarkerSize',10);
ylim([-Amp-5 4*Amp])
xlim([0 N+1])
xlabel('Time (t)');
ylabel('y(t)');
legend('Time series with noise and trend','Location','Best')

1.4 Components of a Time Series

26

Time series with

Trend + Periodicity + Irregular component

Fig. 1.24 A time series with noise, periodicity, trend (left) and the time series of the three compo-

nents (on the right)

By employing Matlab scripts 1.15 and 1.16, we get the time series of Fig. 1.24.

%%
%Script 1.16
%Generate periodic time series

N=input('Give the time series length_:');
f=input('Give the frequency_:');
Amp=input('Give the Amplitude_:');
t=0:1:N;
y=Amp*sin(2*pi*f*t/500);
plot(y,'b.-','MarkerSize',10); %plot function
ylim([-Amp-5 Amp+5])
xlim([0 N])
xlabel('Time (t)');
ylabel('y(t)');
legend('Periodic component ','Location','Best')

The main purpose of the analysis of a time series, through the process of decom-

position into individual time series which when synthesized create the time series,

is the study of the irregular component. This component may contain important

information for explaining the time series under study.

Another example of a time series with trend is presented in Fig. 1.25 and is

obtained using script 1.17.

1 Time Series Statistical Analysis

27

Fig. 1.25 Time series with noise, periodicity, and trend

%%
%Script 1.17
%Generate time series with noise and trend

N=input('Give the time series length_:');
t=0:1:N;
A=sqrt(t)/3;
y=A.*A.*A.*sin(2*pi*t/50);

noise=input('Give the noise level_:');
ynoise=AddNoise(y',noise);

t=1:N+1;
Ynoise_trend=(ynoise' + 2*t)'; % TStrend the new name of time
series
plot(Ynoise_trend,'b.-','MarkerSize',10); %plot function
xlim([0 N+1])
xlabel('Time (t)');
ylabel('y(t)');
legend('Time series with noise and trend','Location','Best')

%%
%Script 1.18
%Generate time series

N=input('Give the time series length_:');
t=0:1:N;
A=sqrt(t)/3;
y=A.*A.*A.*sin(2*pi*t/50);
plot(y','b.-','MarkerSize',10); %plot function
ylim([min(y)-5 max(y)+5])
xlim([0 N+1])
xlabel('Time (t)');
ylabel('y(t)');
legend('Time series','Location','Best')

Using script 1.18 and giving the length of the time series, we get the time series

of Fig. 1.26.

1.4 Components of a Time Series

28

Fig. 1.26 Periodicity component

Fig. 1.27 Trend component

Fig. 1.28 Irregular component

Figure 1.27 presents the trend component, and Fig. 1.28 the irregular component

which is added to the time series according to script 1.17.

The question that naturally arises is how we can decompose and detect these

components in a given time series. There is also another reason that we need to

detect these components/behaviors. When we have trend and/or seasonality in a

time series, it means that the statistical measures that we extract (mean, standard

deviation, etc.) are not constant all along the time of observation and thus the time

series is not stationary. However, many tests and methods suppose that the time

1 Time Series Statistical Analysis

29

series analyzed is stationary. We say that a time series presents strong stationarity

when the descriptive statistical measures are constant along the time series (i.e.,

mean, variance, kurtosis, and skewness) while we say that it presents weak station-

arity when only the mean and variance are constant along the time series. The latter

is the most common case.

1.4.1 Trend/Seasonal Component (Period Estimation)

The first component, trend, shows the tendency of the variables to increase or

decrease as the data evolves over time. Uptrends represent the increase of the data

over time, and downtrends show the decrease.

One of the simplest tests to determine if a time series presents a constant trend is

to divide it into smaller segments and calculate the change in the mean value of the

individual segments. If the average values are not constant in the evolution of the

time series, then we can say that the time series has a trend.

We can see the time series of Fig. 1.29.

Using script 1.19, we obtain the mean in successive segments, as shown in

Fig. 1.29. We can clearly see that the time series presents a trend since the average

value of the data changes as a function of the interval, and more specifically, it

seems to increase at a rather constant rate (Fig. 1.30).

Fig. 1.29 Time series with noise and trend

Fig. 1.30 Successive segments mean of the time series of Fig. 1.29

1.4 Components of a Time Series

30

%Script 1.19

% Test for trend using the mean value

TS=input('Give the time series_:'); %Ynoise_trend

Size_segment=input('Give the time series (segment) length_:');

%50

Overlap=input('Give the overlap of segments_'); %0

[TS_segments,index,reject] =slideWindow(TS, Size_segment,

Overlap);

TS_segments(TS_segments==0)=NaN;

columnMeans = mean(TS_segments,'omitnan');

plot(columnMeans,'o')

xlabel('Points');

ylabel('mean');

Detrending is the process of removing the trend from a data set. It is a crucial

step of time series analysis. There are several detrending methods described below.

1.4.2 Detrending and De-Seasoning of a Time Series

Detrending and De-seasoning are techniques to remove trend and seasonal compo-

nents from a time series.

 Detrending Using a Fit Deduced Model

To be able to understand the trend in time series, we will use the examples men-

tioned earlier. As we have seen, there is rather a linear trend so we can try to fit a

linear model of the form x = at + b, subtract it from the time series and study the

remaining part.

The following script 1.20 shows an example of a linear fit application. When

subtracted from the time series, we have the remaining oscillating part with a large

period indicating seasonality along with small variations on top of it. Using script

1.20, the initial and the detrended time series are presented in Fig. 1.31.

Fig. 1.31 Initial data, model trend, and detrended data

1 Time Series Statistical Analysis

31

%% Script 1.20

% Detrend data with fit model

TStrend = input('Give the time series_:');

length = input('Give the time series lenght_:');

Degreefit=input('Give the degree polynomial_:');

t=(1:length)';

p=polyfit(t,TStrend,Degreefit);

f=polyval(p,t);

plot(t,TStrend,'b.-',t,f,':k')

hold on

TSdetrend=TStrend-f;

plot(TSdetrend,'r.-');

axis([0 length -20 40])

legend('Initial Data','Model Trend (fit)','Detrended data')

xlabel('Time (t)');

ylabel('y(t)');

 Detrending Using Moving Average Mean

Another method to subtract the time series trend is to apply the rolling average func-

tion, detrending moving average (DMA) to the time series data and then subtract the

average result from the time series. The DMA consists of variance σ2
DMA(n) of the

time series y(i) i = 1 to N with the respect to the trend yn(i) at scale n:

σ
DMA

2
21

1
n

N n
y i yn i

i

() =
− +

()− () ∑ 

(1.14)

where yn i() is defined as a time dependent average function of y(i) and

~
~y i

n
y i k

n k

n

() = −()
=

−

∑
1

0

1

(1.15)

In this case, what needs to be taken care of is not to remove from the time series a

component/element that contains useful information. To prevent this from happen-

ing, it is advisable to use as many averaging points in the function as the time

series period.

In the following, we present some examples.

1.4 Components of a Time Series

32

%Script 1.21

% Detrend data with applying moving average (1) TSTN

TStrend = input('Give the time series with trend_:');

ma_mean = input('Give the moving mean k_:');

m = movmean(TStrend,ma_mean);

TSdetrend = TStrend - m;

figure

plot(TStrend,'.-')

hold on
plot(m,'-r')

plot(TSdetrend,'.-')

xlabel('Time (t)');

ylabel('y(t)');

legend('Time series with trend',sprintf('Moving Average Mean(%d)

degree',ma_mean),'Detrended','Location','Best')

title(sprintf('Detrended time series by Moving Average(%d)

mean',ma_mean))

Using script 1.21 in this example, we chose 30 points for a moving average as

the time series has a periodicity of about 30 points and the results appear in

Fig. 1.32.

In Fig. 1.33, we present the results if we choose 10 points for averaging (using

script 1.21). As we can see this choice results in a smoother curve. From the figure,

we observe that not only is the trend removed, but also useful information about the

time series.

 Detrending Using Moving Average Model (Filter)

The following code (script 1.22) shows how to remove a trend component from a

time series using moving average mean model (filter).

Fig. 1.32 Detrended time series using moving mean of 30 points

1 Time Series Statistical Analysis

33

Fig. 1.33 Detrended time series using moving mean of 10 points

Fig. 1.34 Detrended time series using moving model (filter) of 30 points

% Script 1.22
% Detrend data with applying moving average model TSTN

TStrend = input('Give the time series with trend_:');
ma_degree = input('Give the moving average degree_:');
m = ones(1,ma_degree)/ma_degree;
mafit = filtfilt(m,1,TStrend);
figure
plot(TStrend,'.-')
hold on
plot(mafit,'-r')
xlabel('Time (t)');
ylabel('y(t)');
TSdetrend = TStrend - mafit;
hold on
plot(TSdetrend,'.-')
xlabel('Time (t)');
ylabel('y(t)');
legend('Time series with trend',sprintf('Moving Average(%d)
degree',ma_degree),'Detrended','Location','Best')
title(sprintf('Detrended time series by Moving Average Model(%d)
degree',ma_degree))

By running script 1.22, we obtain the results presented in Fig. 1.34.

1.4 Components of a Time Series

34

If we change the number of moving average points from 30 to 10, we get the

results appearing in Fig. 1.35. As we can see this choice results in a smoother curve.

From the figure, we observe that not only is the trend removed, but also useful infor-

mation about the time series.

 Detrending Using First Differences

A common method to remove trends is to transform the time series employing first

differences:

 y t y t y t() = ()− −()
′

1 (1.16)

where y(t) t = 1 to N is the original time series.

This procedure can be applied using script 1.23, and the results of using it appear

in Fig. 1.36.

Fig. 1.35 Detrended time series using moving model (filter) of 10 points

Fig. 1.36 Original and detrended time series using first differences

1 Time Series Statistical Analysis

35

%%Script 1.23

% Detrend data with applying first difference TSTN

TStrend = input('Give the time series with trend_:');

length = input('Give the time series length_:');

t=1:length;

Diff_detreded=diff(TStrend) % Diff_y1 the time series without

trend

plot(t,TStrend,'.-');

hold on

plot(Diff_detreded,'.-');

legend('Data with trend','Detrended time series')

xlabel('Time (t)');

ylabel('y(t)');

title('Detrended time series by First Difference','FontSize',14)

In the case of the first differences, the trend is removed, and we see that to some

extent, the periodicity of the time series is maintained.

In the following, we present examples of time series with nonlinear trend as well

as application of trend removal methods.

Example with Nonlinear Trend

In Fig. 1.37, we can see an example of time series presenting a nonlinear trend. This

is a synthetic time series produced following the next steps.

First, using script 1.23.1, we add a nonlinear component to a time series. We

obtain the results appearing in Fig. 1.37.

%%Script 1.23.1

% Add non linear trend to time series r

TS = input('Give the time series_:');

length = input('Give the time series lenght_:');

t=1:length;

nonlinear_trend = (0.01 * t.^2 - 0.5 * t + 2)';

TStrendnon=[TS + nonlinear_trend];

figure

plot(t,TS,t,TStrendnon)

legend('Initial Data','Data with nonlinear Trend')

xlabel('Time (t)');

ylabel('y(t)');

Now, we have a new time series (the red one) with a nonlinear trend. We can try

to remove the nonlinear trend by applying the first differences technique (script 1.23).

The results are depicted in Fig. 1.38.

1.4 Components of a Time Series

36

Fig. 1.37 Original and detrended time series using first difference

Fig. 1.38 Original and detrended time series using first difference

Fig. 1.39 Sea water temperature time series (Charakopoulos et al. 2018)

1.4.3 Detrending and De-Seasoning of a Real-Time Series

The above methods are then applied to real-world time series. Figure 1.39 shows the

sea water temperature time series [1].

We first applied script 1.19 to evaluate whether the data exhibit a trend. The

results are presented in Fig. 1.40, which shows that the values of the successive

means differ. This indicates that the time series displays a trending behavior and is

not stationary.

1 Time Series Statistical Analysis

37

Fig. 1.40 Successive mean of the time series of Fig. 1.39

Fig. 1.41 Original and detrended time series using second-degree polynomial fit

To remove the trend from the data, we first applied the polynomial fit method, as

the trend is nonlinear. In this context, it is crucial to carefully select the appropriate

degree of the polynomial model using script 1.20. The results are shown in Fig. 1.41,

where it is evident that the trend remains in the data because the correct polynomial

degree was not chosen.

We can notice that the choice of the second-degree polynomial fit is not suitable

for the time series. Therefore, a higher degree of polynomial should be used.

In Fig. 1.42 shows the results using an eighth-degree polynomial fit. We can

observe that by choosing a different degree model, we can extract the trend of the

time series.

Then, for the same time series, the moving average method is applied. Using the

following script 1.24, we obtain the results presented in Figs. 1.43 and 1.44.

1.4 Components of a Time Series

38

Fig. 1.42 Original and detrended time series using eighth-degree polynomial fit

Fig. 1.43 Sea water temperature time series and the applied second degree model

Fig. 1.44 Detrended sea water temperature time series

1 Time Series Statistical Analysis

39

% script 1.24
%% Detrend data with applying moving average

TStrend = input('Give the time series with trend_:');
ma_degree = input('Give the moving average degree_:');
m = ones(1,ma_degree)/ma_degree;
mafit = filtfilt(m,1,TStrend);

figure
plot(TStrend,'-')
hold on
plot(mafit(1:700),'.-r')
xlabel('Time (t)');
ylabel('y(t)');
legend('Time series with trend',sprintf('Moving Average(%d)
degree',ma_degree),'Location','Best')

TSdetrend = TStrend - mafit;
figure(3)
clf
plot(TSdetrend,'.-')
xlabel('Time (t)');
ylabel('y(t)');
title(sprintf('Detrended time series by Moving Average(%d)
degree',ma_degree))

Figure 1.45 shows the result of applying the method (script 1.25) of the first dif-

ferences in the same time series.

% script 1.25

%% Detrend data with applying first difference

TStrend = input('Give the time series with trend_:');

length = input('Give the time series lenght_:');

t=1:length;

Diff_detreded=diff(TStrend); % Diff_y1 the time series without

trend

plot(Diff_detreded);

legend('Detrended time series')

xlabel('Time (t)');

ylabel('y(t)');

We present another example of a detrended time series using the corresponding

script 1.26 and gold price time series data. Figure 1.46 presents the results of

checking whether the gold price time series contains a trend.

1.4 Components of a Time Series

40

Fig. 1.45 Detrended water temperature time series using first differences

Fig. 1.46 Results of mean in sliding segments of gold time series

% script 1.26

%% Test for trend using the mean value

TS=input('Give the time series_:');

Size_segment=input('Give the time series (segment) length_:');

Overlap=input('Give the overlap of segments_');

[TS_segments,index,reject] =slideWindow(TS, Size_segment,

Overlap);

TS_segments(TS_segments==0)=NaN;

columnMeans = mean(TS_segments,'omitnan');

plot(columnMeans,'o')

xlabel('Points');

ylabel('mean');

First, we applied the detrend using fit model using the following code (script

1.27), and the results appear in Fig. 1.47.

1 Time Series Statistical Analysis

41

% script 1.27

%% Detrend data with fit model (DJI_index)

TStrend = input('Give the time series_:');

length = input('Give the time series lenght_:');

Degreefit=input('Give the degree polynomial_:');

t=(1:length)';

p=polyfit(t,TStrend,Degreefit);

f=polyval(p,t);

plot(t,TStrend,t,f,':k')

hold on

TSdetrend=TStrend-f; % y1detrend time series name

plot(TSdetrend);

legend('Data with Trend',sprintf('(%d) Degree

model',Degreefit),'Detrended data')

xlabel('Time (t)');

ylabel('y(t)');

Next, we applied the detrend method (script 1.28) using the moving average

approach as it appears in the following code (script 1.28), and the results appear in

Figs. 1.48 and 1.49.

Fig. 1.47 Results of detrend using detrend fit model

Fig. 1.48 Gold time series and fitting a moving average degree model

1.4 Components of a Time Series

42

Fig. 1.49 Results of detrend using moving average degree model

Fig. 1.50 Results of detrend using first difference method

% script 1.28
%% Detrend data with applying moving average (DJI_index)

TStrend = input('Give the time series with trend_:');
ma_degree = input('Give the moving average degree_:');
m = ones(1,ma_degree)/ma_degree;
mafit = filtfilt(m,1,TStrend);

figure
plot(TStrend,'-')
hold on
plot(mafit(1:100),'.-r')
xlabel('Time (t)');
ylabel('y(t)');
legend('Time series with trend',sprintf('Moving Average(%d)
degree',ma_degree),'Location','Best')

TSdetrend = TStrend - mafit;
figure(3)
clf
plot(TSdetrend,'.-')
xlabel('Time (t)');
ylabel('y(t)');
title(sprintf('Detrended time series by Moving Average(%d)
degree',ma_degree))

We applied script 1.29, and the results appear in Fig. 1.50.

1 Time Series Statistical Analysis

43

% script 1.29

%% Detrend data with applying first difference

TStrend = input('Give the time series with trend_:');

length = input('Give the time series lenght_:');

t=1:length;

Diff_detreded=diff(TStrend); % Diff_y1 the time series without

trend

plot(t,TStrend);

hold on

plot(Diff_detreded);

legend('Data with trend','Detrended time series')

xlabel('Time (t)');

ylabel('y(t)');

References

1. Charakopoulos, A. Κ., Karakasidis, T. E., & Liakopoulos, A. (2015). Spatiotemporal analysis

of seawatch buoy meteorological observations. Environmental Processes, 2, 23–39.

2. Charakopoulos, A. Κ., Karakasidis, T. E., Papanicolaou, P. N., & Liakopoulos, A. (2014).

The application of complex network time series analysis in turbulent heated jets. Chaos: An

Interdisciplinary Journal of Nonlinear Science, 24(2).

3. Chatfield, C. (2013). The analysis of time series: Theory and practice. Springer.

4. Cryer, J. D. (2008). Time series analysis. Springer.

5. Hamilton, J. D. (2020). Time series analysis. Princeton University Press.

6. Kantz, H., & Schreiber, T. (2003). Nonlinear time series analysis. Cambridge University Press.

7. Karakasidis, T. E., & Charakopoulos, A. (2009). Detection of low-dimensional chaos in wind

time series. Chaos, Solitons & Fractals, 41(4), 1723–1732.

8. Kirchgässner, G., Wolters, J., & Hassler, U. (2012). Introduction to modern time series analy-

sis. Springer Science & Business Media.

9. Pham, H. (Ed.). (2023). Springer handbook of engineering statistics. Springer Nature.

10. Shumway, R. H., Stoffer, D. S., & Stoffer, D. S. (2000). Time series analysis and its applica-

tions (Vol. 3, p. 4). Springer.

1.4 Components of a Time Series

45© The Author(s), under exclusive license to Springer Nature

Switzerland AG 2025

T. Karakasidis, A. Charakopoulos, Time Series and Networks Analysis,

https://doi.org/10.1007/978-3-031-92628-0_2

Chapter 2

Temporal Behavior of Time Series

Time series analysis focuses on understanding the temporal behavior of data points

collected sequentially over time. This involves exploring patterns such as trends,

seasonality, and cyclicity, as well as deeper properties like autocorrelation, which

quantifies the similarity between observations as a function of time lag, and the

power spectrum, which reveals the frequency components of the data. Advanced

techniques, such as calculating mutual information, help uncover nonlinear depen-

dencies, while measures like the Hurst exponent provide insights into long-term

memory and persistence within the series. Additionally, Hjorth parameters offer a

comprehensive framework for characterizing the activity, mobility, and complexity

of time-varying signals. By integrating these concepts, researchers can gain a mul-

tidimensional understanding of time series, enabling better predictions, enhanced

feature extraction, and deeper exploration of the underlying dynamics [3, 4].

2.1 Autocorrelation

Autocorrelation measures the degree of similarity between a time series and its

lagged version over consecutive time intervals. It quantifies the relationship between

a variable’s present value and its past values.

The autocorrelation function (ACF) assesses the correlation between observa-

tions in a time series for a set of lags. The ACF for time series y is given by:

r
x x x x

x x

k
k

t k

n k

t k t

t

n

t

=
-() -()

-()
= …= +

-

-

=

∑

∑
1

1

2
1 2, , .

(2.1)

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92628-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-92628-0_2#DOI

46

Here, rk represents the ACF correlation coefficient of the series with its k lag; and n,

xt, x denote, respectively, the number of observations of the series, the t-th observa-

tion of the series, and the mean.

A positive correlation between two values signifies that when one increases, the

other increases too or when one decreases, the other decreases too. Negative corre-

lation signifies that when a value increases/decreases, the other decreases/increases,

respectively. The value of rk ranges from −1 to +1. A value of the autocorrelation

coefficient of +1 represents a perfect positive correlation, while a value −1 repre-

sents a perfect negative correlation. A value close to zero signifies that no correla-

tion (or very mall correlation) is present.

Technical analysts can use autocorrelation to assess the impact of past prices of

a security on its future price. However, this is not completely true since autocorrela-

tion indicates the correlation between two observations at different points in a time

series. A possible cause-result effect can be checked using other methods such as

the Granger causality.

The ACF is a useful tool for identifying lags with significant correlations, help-

ing to understand the patterns and properties of a time series. This information can

then be used to model the time series data effectively. From the ACF, you can assess

the randomness and stationarity of a time series, as well as identify trends and sea-

sonal patterns.

For random data, the autocorrelations should be close to zero for all lags, a con-

dition often referred to as white noise. In contrast, non-random data will exhibit at

least one significant lag.

Using script 2.1, one can calculate the autocorrelation function and plot it

in Matlab.

%%

%Script 2.1

data=input('Time series name_'); %r

lag_t=input('Time Lag_');

figure

subplot(2,1,1);

plot(data,'b.-','MarkerSize',6);

title('Time series','FontSize',18)

ylabel('y(t)')

xlabel('(t) Time')

subplot(2,1,2);

[acf,lags,bounds]=autocorr(data,lag_t);

autocorr(data,lag_t);

title('Sample Autocorrelation Function','FontSize',16)

legend('acf','upper bound','down bound')

ylabel('Sample autocorrelation')

xlabel('Lag')

For random data, autocorrelations should be near zero for all lags (Fig. 2.1).

The lines indicate the confidence intervals for non-zero values. We observe that,

apart from lag zero, all values fall within these bounds, signifying insignificance.

2 Temporal Behavior of Time Series

47

Fig. 2.1 Time series and results of autocorrelation function

We note that all prices are below the significance threshold, indicating that the val-

ues of the time series are uncorrelated and unrelated to each other, as expected for

random data.

2.1.1 Seasonality Effects

A seasonal series presents alternating patterns of positive and negative autocorrela-

tion lags. In Fig. 2.2, we present a periodic time series and its corresponding auto-

correlation function. The correlation coefficients of successive values of time lags

are reflected in the graph of autocorrelation function. Positive and negative autocor-

relation values are observed in the periodic time series.

However, when such a behavior is observed for a long time (and we have no

trends in the time series), the analyst chooses a smaller lag corresponding to auto-

correlation value of 1/e (i.e., a value 0.376).

 Examples of Time Series with More than One Frequency

The next example shows the application in a synthetic time series with three fre-

quencies (Fig. 2.3). A repeating pattern is observed.

While in Fig. 2.4, we present results for three different sample rates frequencies,

in order to see the effect of frequency on the autocorrelation graph.

In Fig. 2.4, we show the effect of data frequency on autocorrelation diagrams.

2.1 Autocorrelation

48

Fig. 2.2 Periodic time series and results of autocorrelation function

Fig. 2.3 Periodic time series with three frequencies and results of autocorrelation function

2.1.2 Noise Effects

Subsequently, it is examined whether the existence of noise affects the result of the

function. In Fig. 2.5, we have results for time series without noise and time series

with noise. We can see that in case the data include noise, the autocorrelation curve

has lower values at the corresponding lags.

2 Temporal Behavior of Time Series

49

Fig. 2.4 Periodic time series with three different frequencies and the respective results of autocor-

relation function

Fig. 2.5 Autocorrelation results in noisy time series

2.1 Autocorrelation

50

Fig. 2.6 Autocorrelation results with different level of noisy

As we can see the results are affected by the percentage of noise in the original

time series. As the level of noise increases, the results of autocorrelation function

are different (see Fig. 2.6). It is noted that the larger the noise rate in the initial

time series, the greater the effect on the result of the autocorrelation function.

Next, we examine the effects on autocorrelation for a time series that presents

trend (Fig. 2.7).

In addition, examples of calculation of the autocorrelation function in the

event of deterministic time series from simulations or field measurements are

presented. In Fig. 2.8, we present results for the Lorenz dynamical systems, while

in Fig. 2.9, we present results for wind time series collected in the field.

As we can see without any trend removal, there are long lasting correlations.

2 Temporal Behavior of Time Series

51

Fig. 2.7 Autocorrelation results from time series with trend

Fig. 2.8 Autocorrelation results of deterministic time series (Lorenz equations)

2.1 Autocorrelation

52

Fig. 2.9 Autocorrelation results of wind speed time series

2.2 Power Spectrum Analysis

Periodicity is closely related to the power spectrum. If a time series exhibits strong

periodicity with a period T, its power spectrum will display a significant peak at the

corresponding frequency 1/T. Generally, a time series sampled at discrete time steps

can be represented as a sum of periodic waveforms with different frequencies (or

equivalently, different periods). This decomposition is expressed through the Fourier

series, which takes the form:

x t t ft
k

M

k k� � � � � �� � �� �
�

�� � � � �
0

1

2 2cos sinkf

(2.2)

where α0 is the mean, αk and βk are the amplitude for each cosine and sinus oscilla-

tion at harmonic frequencies, and M represents the number of harmonics, which

can extend to infinity in a continuous case. f represents the fundamental frequency

of the time series, which is the reciprocal of the fundamental period T = 1/f. Each

term in the summation corresponds to a harmonic component of the signal, where

kf denotes the k-th harmonic frequency (i.e., integer multiples of the fundamental

frequency).

2 Temporal Behavior of Time Series

53

Fig. 2.10 Periodic time series and the power spectrum

If x(t) is a periodic function with period T, then its Fourier transform consists of

discrete frequency components, located at integer multiples of the fundamental

frequency f0 = 1/T. These components correspond to the coefficients in the

Fourier series:

X f c f kf
k

k� � � �� �
���

�

� �
0

(2.3)

where ck are the Fourier series coefficients, and δ(f) is the Dirac delta function,

which indicates discrete frequencies.

The Fourier transform allows us to analyze how different frequency components

contribute to the overall signal. A periodic signal has a discrete Fourier spectrum,

meaning its Fourier transform consists of delta functions at discrete frequencies. A

non-periodic (or transient) signal has a continuous Fourier spectrum, meaning it

spreads across multiple frequencies.

Using script 2.2, we create a periodic time series and its Fourier transform, with

the results appearing in Fig. 2.10. From the frequency chart, we can see that the time

series has a main frequency f = 0.02 with a period T = 1/f = 50.

2.2 Power Spectrum Analysis

54

%UNTITLED2 Summary of this function goes here time series y1

% Detailed explanation goes here

N=length(XV);

b=1:N;

Ts=1;

fs=1/Ts;

ts=Ts*(b-1);

X=fft(XV);

%X=fft(hanning(length(XV)).*XV)

pwr=X.*conj(X)/N ;

frs=(b-1)/N*fs;

% frs=(b-1)/N*fs;

subplot(2,1,1);

plot(XV),title('Time Series')

xlim([0 N])

xlabel('t (time)')

ylabel('y(t)')

subplot(2,1,2);

plot(frs,pwr),title('power spectrum as funtion of frequency')

grid on; xlabel('frequency (Hz)');ylabel ('power');

xlim([0 0.5])

[spow,spos]=sort(pwr);

m=4; spos(N:-1:(N-m+1));

end

%%

%Script 2.2

function [power] = powerspectrum33(XV)

Figure 2.11 below presents the frequency diagram of a time series resulting from

a three-signal synthesis, and a different component is presented (script 2.2). From

the frequency diagram, we can see these three different frequencies as well as the

different intensity/contribution of each frequency. The first frequency is 0.02, the

second 0.04, and the third 0.06. This illustrates the utility of the power spectrum

analysis since it reflects both the frequencies present in the time series as well as

their relative contributions.

Some points that should be taken into account when performing a power spec-

trum analysis that may affect the results.

Next we explore the so-called aliasing effect and the notion of Nyquist frequency.

The Nyquist frequency is defined as half of the sampling frequency. In the follow-

ing, we are going to see what the effect on a recorded signal is if the Nyquist fre-

quency is higher than the largest frequency of the system under study and how the

signal is distorted and as a consequence the Fourier transforms too.

In 2.12, we have a periodic signal with frequency 4 Hz and we present with cir-

cles the points recorded at various sapling frequencies and specifically Fs = 20 Hz,

2 Temporal Behavior of Time Series

55

Fig. 2.11 Periodic time series consist of three frequencies and the corresponding power spectrum

10 Hz, and 6 Hz. This means that the corresponding Nyquist frequencies

FNyquist = 10 Hz, 5 Hz, and 3 Hz, respectively. We can see that for the case of

FNyquist<Fsystem, the signal is completely distorted and seems to correspond to a

lower frequency. So when the distorted signal is Fourier transformed, it will result

in lower frequency.

Initially, using script 2.3, we create the initial time series of Fig. 2.12.

%Script 2.3

% equation y(t) = sin(2*pi*f*t)

f=4; % frequency

Ts=0.01; % sampling rate fs=1/Ts (100/sec)

t=0: Ts: 1;

x=sin(2*pi*f*t);

plot(t,x, 'o-');

title('Initial Time series','FontSize',20)

ylabel('y(t)')

xlabel('(t) Time')

Next, in order to see how the resampling affects the time series, we use the fol-

lowing script 2.4 in Matlab.

2.2 Power Spectrum Analysis

56

Fig. 2.12 Periodic time series and the extracted time series with different sampling rate

%%
%Script 2.4

% equation y(t) = sin(2*pi*f*t)
f=4;
Fs=input('sampling frequency_');
Ts=1/Fs;
t=0:Ts:1;
[x1]=(sin(2*pi*f*t))';
plot(t,x1, 'o-');
title(sprintf('Time series with (%d) sampling rate Fs
',Fs),'FontSize',14)

The Nyquist frequency is calculated as 2∙f = 2∙4 = 8.

Subsequently, the results are presented in comparable figures (Fig. 2.13).

Then, a periodic time series with three frequencies is constructed, where differ-

ent cases are given depending on the sampling frequency (Figs. 2.14 and 2.15).

2 Temporal Behavior of Time Series

57

Fig. 2.13 Effect of sampling rate on time series recording

%%
%Script 2.5

% equation
%y(t)=5*cos(2*f1*pi*t)+15*cos(2*f2*pi*t)+5*cos(2*f3*pi*t);

Fs=input('sampling frequency_'); %400
f1=input('frequency_1_'); %5
f2=input('frequency_2_'); %10
f3=input('frequency_3_'); %15
Ts=1/Fs;
t=0:Ts:0.4;
x=5*cos(2*f1*pi*t)+15*cos(2*f2*pi*t)+5*cos(2*f3*pi*t);
plot(t, x, 'o-');
title(sprintf('Time series with (%d) sampling rate Fs
',Fs),'FontSize',14)
ylabel('y(t)')
xlabel('t (time)')

2.2 Power Spectrum Analysis

58

Fig. 2.14 Time series and the extracted time series with different sampling rate

From the above cases, we can see the effect of sampling frequency on different

time series cases.

2 Temporal Behavior of Time Series

59

Fig. 2.15 Continuous time series and the extracted time series with different sampling rate and a

time series with sampling rate equal to F maximum

2.2 Power Spectrum Analysis

60

2.3 Mutual Information

Mutual information often proves to be statistically useful, especially when it comes

to assessing the association between two variables in time series analysis. Unlike

the correlation coefficient, which only indicates the strength of linear relationship,

mutual information can find both linear and non-linear relationships between the

variables [3, 5].

Mutual Information I(t) is a widely used nonlinear measure used in time series

analysis for determine the appropriate delay time τ for state space reconstruction

and is defined as:

I t P x x t
P x x t

P x P x t
� � � � � �� �� � � � �� �� �

� �� � �� �� �
ti , ti

ti , ti

ti ti
log

��

�
�
�

�

�
�
�� � �� �� x ti ti,x t

(2.4)

where x(ti) is the ith data point of time series, t = kΔt (k = 1,2,… kmax); Δt is the

sampling time; P(x(ti)) is the probability density at x(ti), P(x(ti), x(ti + τ)) is the joint

probability density at x(ti), x(ti + t); τ is the delay time.

The delay t corresponding to the first minimum of the mutual information is

chosen as a delay time for the reconstruction of phase space.

Using script 2.6, we produce a periodic signal that appears in Fig. 2.16, and then

we run the mutual information script to obtain the results in Fig. 2.17.

Fig. 2.16 Periodic time series

Fig. 2.17 Results of mutual information function with time lag τ = 60

2 Temporal Behavior of Time Series

61

%%
%Script 2.6
%Generate periodic time series

N=input('Give the time series length_:');
f=input('Give the frequency_:');
Amp=input('Give the Amplitude_:'); 100,3,10
t=0:1:N;
yy=Amp*sin(2*pi*f*t/100);
plot(yy,'b.-','MarkerSize',10); %plot function
ylim([-Amp-5 Amp+5])
xlim([0 N])
xlabel('Time (t)');
ylabel('y(t)');
legend('Periodic component ','Location','Best')

In Fig 2.17 we applied the mutual information function for a delay τ=60 using

the following command, and where we can see the existence of periodicity, which

is a result of the periodic nature of the time series.

%%

%Mutual information

M=mutualinformation(yy,60)

The next figure shows the result of mutual information function, where we can

see the existence of periodicity which is a result of the periodicity of the time series.

Then we calculate the mutual information for a shorter time (Fig. 2.18).

%%

%Mutual information

M=mutualinformation(yy,10)

Fig. 2.18 Results of mutual information function with time lag τ = 10

2.3 Mutual Information

62

Fig. 2.19 Time series and the correspondance mutual information function

In the following script 2.7, we give as input the time series name and the maxi-

mum delay time to be explored and we obtain a plot of the mutual information

diagram that corresponds to the time series (Fig. 2.19).

%%

% script 2.7

data=input('Time series name_');

tmax=input('Time Lag_');

figure

subplot(2,1,1);

plot(data,'b.-','MarkerSize',6);

axis([0 100 -10 10])

title('Time series','FontSize',10)

ylabel('y(t)')

xlabel('(t) Time')

subplot(2,1,2);
[mutM] = mutualinformation_b(data, tmax)

So far, we have seen the results of the function for synthetic time series. Then the

result for field measurements and specifically for the wind velocity time series, the

results are obtained running the following command and appear in Fig. 2.20.

%%

%Mutual information

M=mutualinformation(wind,100)

2 Temporal Behavior of Time Series

63

Fig. 2.20 Results of mutual information function with time lag τ = 100 of wind speed time series

Fig. 2.21 Results of mutual information function with time lag τ = 100 of Nasdaq time series

The results for time series of stock market prices are also presented in Fig. 2.21.

Mutual information is particularly valuable in phase space reconstruction meth-

odology, as it helps determine the optimal time delay between points in the recon-

structed space by identifying the delay that maximizes the independence between

successive points. This step is essential for accurately capturing the system’s

dynamics and reducing redundancy in the reconstructed phase space, ultimately

leading to a clearer and more informative representation of the system’s behavior.

2.3 Mutual Information

64

2.4 Hurst Exponent

The measurement of long-term memory in time series is done through the estima-

tion methodologies of the Hurst exponent [2]. Hurst created Rescaled Range (R/S)

analysis which is one of the most widely used methods for estimating the Hurst

exponent. In Rescaled Range (R/S) analysis, we start by splitting the time series

{xi}.i = 1,… N of length N to S shorter time intervals of length n = N, N/2, N/4. Then,

for each time interval (time series), we calculate the range Rn.

R x x x x
n

k s
i

k

i n
k s

i

k

i n
� �� ��

�
�

�

�
� � �� ��

�
�

�

�
�� � � � � �� �max min

1 1
ns ns

(2.5)

where n = 0, 1, ….., Ns − 1 με Ns = Ν/S and

x
s

x
n

i

s

i
�

�

��
1

1

ns

(2.6)

The standard deviation of time series is given by:

S
s

x x
n

i

s

i n
� �� �

�

��
1

1

2

ns

(2.7)

The rescale range R/S is defined as the average Rn/Sn ratio of all time intervals. In

other words, it is given by:

R S E
R

S

n

n

/ �
�

�
�

�

�
�

(2.8)

The Hurst exponent is calculated from the scaling behavior of the rescalable range

R/S [7].

R S c n s

n

H/� � � � � �

(2.9)

In order to calculate the exponent, the logarithm graph of the mean rescaled ampli-

tude (R/S)n versus the length n is created. Then, a linear regression line is adjusted

to the graph, the slope of which gives the estimate of the Hurst exponent.

Observing that the calculation of the Hurst exponent using the R/S method led to

erroneous conclusions regarding the existence of large-scale correlations, the

method of Detrended Fluctuation Analysis (DFA) was developed and applied. This

method is a version of the initial variance analysis, in which linear trends are elimi-

nated from the time series and is applied in cases of non-stationary time series.

Initially, for a time series of length N, the sum or profile is calculated:

Y i x x

k

i

k� � � �� �
�

�
1

(2.10)

2 Temporal Behavior of Time Series

65

The time series {xi} i = 1,… N of length N is divided to S shorter time intervals of

length n = N, N/2, N/4,…

Then, in each section, the polynomial of degree m is estimated by adjusting an

appropriate polynomial. Trend-free time series are defined as the difference between

original time series and adaptations:

Y i Y i Y i
n v n

m� � � � �� � �,
(2.11)

where Y i
v n

m

, � � it is the polynomial that adapts to the N-th segment.

For each segment, the variance is calculated

F n
n

Y i

i

n

n�

2

1

21
� � � � �

�

�

(2.12)

Finally, calculating the square root of the mean of the variances in each segment

estimates the DFA function

F n
N

F n

n

N

n

s

DFA � � � � �
�

�
�

�

�
�

�

�

�
1

2 0

2

2

1

�

(2.13)

Hence, we can plot the diagram log(R/S)n vs log(n) and we calculate the Hurst

 exponent using linear least squares regression.

In the following, we run the Matlab command window, for the wind time series

(Fig. 2.22).

a)

b)

Fig. 2.22 Time series of wind speed (a) and random time series (b) and the corresponding result

of Hurst exponent

2.4 Hurst Exponent

66

%%

%Hurst Exponent

H= HurstExponent(wind)

The Hurst exponent takes values within the closed interval [0,1]. Its interpreta-

tion depends on how it compares to 0.5. When the exponent H is equal to 0.5, then

the time series follows the random walk model, which means that there is no cor-

relation between the values. In this case, the measurements are independent of each

other. Conversely, when the exponent is different from zero, it means that the obser-

vations are not distributed independently but have a long-term memory.

According to this definition, a Hurst exponent of 0.5 indicates a purely random

process, where past values have no influence on future values.

• When 0.5 < H < 1, the time series exhibits persistent behavior, meaning that high

values tend to be followed by high values and low values by low values. This

suggests a long-term positive correlation.

• When 0 < H < 0.5, the time series demonstrates anti-persistent behavior, where

high values are more likely to be followed by low values and vice versa. This

indicates a tendency to revert to the mean overtime.

2.5 Hjorth Parameters

Hjorth parameters are characteristic measures of time series and are used to quanti-

tatively describe a time series [1]. For a time series x(t), the following parameters

shall be set:

Activity

o
= m

(2.14)

Mobility =
m

m

2

0

(2.15)

Complexity =

m
m

m
m

4

2

2

0

(2.16)

where m0 is the variance (square of the standard deviation) of the variable, m2 is the

variance of the first derivative of the variable, and m4 is the variance of the second

derivative of the variable.

2 Temporal Behavior of Time Series

67

The mobility parameter expresses the average frequency of the time series and

is calculated as the ratio at each point in time of the standard deviation of the time

series slope to the standard deviation of the time series. The complexity param-

eter represents the change in the frequency of the time series and is defined as the

ratio of (a) the ratio of the second-order central moment of the second derivative

to the second-order central moment of the first derivative and (b) the ratio of the

second- order central moment of the first derivative to the second-order central

moment of the original time series. Complexity expresses the deviation of the

slope and can be thought of as a measure of the change in the frequency of the

input signal.

Using the Matlab function below, we obtain the Hjorth parameters in the case

of wind times series and a reando times series (see Fig. 2.23). It is clear that the

activity in the case of time series is significantly larger than in the wind

time series.

a)

Hactivity = 0.1105

Hmobility = 0.4103

Hcomplexity = 3.7061

b)

Hactivity = 9.4599e+03

Hmobility = 1.4287

Hcomplexity = 1.2089

Fig. 2.23 Time series of wind speed (a) and random time series (b) and the corresponding result

of Hjorth parameters

2.5 Hjorth Parameters

68

function [Hactivity,Hmobility,Hcomplexity] =
HjorthParameters_book(TS)
% [Hmobility,Hcomplexity] = HjorthParameters(TS)
% estimate the Hjorth mobility and complexity.
% INPUTS:
% - TS : The time series
% OUTPUTS
% - Hactivity,Hmobility,Hcomplexity
%===
=======

dTS = diff(TS);
ddTS = diff(dTS);
m0 = var(TS);
m1 = var(dTS);
m2 = var(ddTS);

Hactivity = m0
Hmobility = sqrt(m1/m0)
Hcomplexity=sqrt((m2/m1)/(m1/m0))

2.6 Clustering

Cluster analysis or data clustering is characterized as the partitioning of a set of raw

data into subsets, resulting in the extraction of useful information from them. It is

extensively used in scientific research across various fields such as medicine, biol-

ogy, statistics, and engineering problems. The goal of clustering is to identify struc-

tures within a dataset or, more simply, to create groups where each group gathers

homogeneous elements based on some similarity measure. The efficiency of clus-

tering methods is directly related to the type of data as well as the homogeneity

criterion or similarity measure used.

There are various clustering techniques, and their selection depends on the nature

of the data and the purpose of the clustering. One of the most common approaches

is hierarchical clustering [6]. Hierarchical clustering is performed in two ways:

agglomerative analysis and divisive analysis. In agglomerative analysis, initially,

each data point is considered as a separate entity. Then, at each iterative step, ele-

ments are merged based on a specific criterion, forming larger groups until all ele-

ments ultimately form a single group. This method requires a similarity criterion

and a proximity measure, which is defined as the distance between two elements. In

contrast, in divisive analysis, all data elements initially belong to a single group (a

unified cluster). Subsequently, based on a specific criterion, the elements are succes-

sively divided into smaller groups until each data element becomes its own separate

cluster, creating as many groups as there are data points.

The result of hierarchical clustering is a tree of groups and connections called a

dendrogram, which illustrates how the groups are related to one another. In the den-

drogram, a horizontal cut is chosen at a specific level. At this point, the number of

resulting groups and the elements contained in each group are displayed. Figure 2.24

2 Temporal Behavior of Time Series

69

Fig. 2.24 Example of hierarchical clustering

Fig. 2.25 Single-linkage

clustering

presents a typical dendrogram, where the horizontal axis refers to the groups (as

many as the data points), and the vertical axis corresponds to the level of similarity

or dissimilarity. By making horizontal cuts in the dendrogram, we can observe the

number of groups at the similarity level of interest.

There are various criteria used for dividing data into groups, which are based on

the distance matrix between pairs of data points. In other words, the similarity or

dissimilarity between the data is measured based on a distance function between the

elements or groups.

2.6.1 Single-Linkage Clustering or Nearest Neighbor

The single-linkage or nearest neighbor method uses the minimum distance between

elements, and subsequently between groups, as the similarity criterion. According

to this method, the two closest elements are initially connected based on the small-

est distance, and in each iterative step, distances are recalculated, and connections

are gradually made until a single group containing all elements is formed. The algo-

rithm is illustrated schematically in Fig. 2.25.

2.6 Clustering

70

2.6.2 Complete-Linkage Clustering

The process of this method differs from single-linkage in that complete-linkage

clustering uses the maximum distance between elements or groups. Figure 2.26

graphically illustrates the algorithm.

2.6.3 Average-Linkage Clustering

In hierarchical average-linkage clustering, the distance between two groups is

defined as the average distance between all possible pairs of elements from each

group. The weighted average distance is calculated based on the number of data

points in each group. Figure 2.27 illustrates the connections and the formula for

calculating the average distance.

Fig. 2.26 Complete-linkage clustering

Fig. 2.27 Average-linkage clustering

2 Temporal Behavior of Time Series

71

2.6.4 Centroid-Linkage Clustering

In this method, the Euclidean distance between the centroids of the groups is used

as the distance criterion. In each step of the algorithm, two groups are merged based

on the smallest distance between their centroids. Figure 2.28 graphically depicts the

algorithm.

These methods were applied to cluster the time series data to examine whether

clustering could provide better insights into the separation of regions involved in the

experimental process of turbulent flow. Notably, the clustering methodology did not

use the same time series as a similarity measure but rather a vector consisting of

linear and nonlinear measures, as extensively discussed earlier.

The dendrogram below illustrates the clustering of time series, using the

“Euclidean” metric for calculating the distance matrix among all elements and the

single-linkage method, as it achieves the highest cophenetic correlation coefficient

(Fig. 2.29).

In cases where the data are either too large or contain discontinuities, instead of

using the raw time series data for clustering, we can compute the descriptive mea-

sures of the time series and then input these into the clustering algorithm. This

approach reduces the length of the input vector, allowing the routine to produce

results much faster.

In following, the statistical descriptive measures of the time series and calculate

the dendrogram based on these measures and not using the time series values

(Fig. 2.30).

Fig. 2.28 Centroid-linkage clustering

2.6 Clustering

72

Fig. 2.30 Hierarchical

clustering based on

statistical measures of time

series values

a)

b)

Fig. 2.29 (a, b) Time series of COVID deaths (weekly) of countries and the chart of hierarchical

clustering (https://www.worldometers.info/coronavirus/)

2 Temporal Behavior of Time Series

https://www.worldometers.info/coronavirus/

73

References

1. Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalography

and Clinical Neurophysiology, 29(3), 306–310.

2. Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American

Society of Civil Engineers, 116(1), 770–799.

3. Kantz, H., & Schreiber, T. (2003). Nonlinear time series analysis. Cambridge University Press.

4. Koopmans, L. H. (1995). The spectral analysis of time series. Elsevier.

5. Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information. Physical

Review E—Statistical, Nonlinear, and Soft Matter Physics, 69(6), 066138.

6. Kraskov, A., Stögbauer, H., Andrzejak, R. G., & Grassberger, P. (2005). Hierarchical clustering

using mutual information. Europhysics Letters, 70(2), 278.

7. Mandelbrot, B. B., & Wallis, J. R. (1969). Robustness of the rescaled range R/S in the measure-

ment of noncyclic long run statistical dependence. Water Resources Research, 5(5), 967–988.

References

75© The Author(s), under exclusive license to Springer Nature

Switzerland AG 2025

T. Karakasidis, A. Charakopoulos, Time Series and Networks Analysis,

https://doi.org/10.1007/978-3-031-92628-0_3

Chapter 3

Nonlinear Time Series Analysis

Nonlinear time series analysis plays a vital role in understanding the complex behav-

iors exhibited by dynamical systems over time. Unlike linear methodologies, which

assume straightforward relationships between variables, nonlinear analysis delves

into the intricate interdependencies and feedback loops that characterize many real-

world phenomena. By examining the underlying dynamics across diverse fields such

as meteorology, economics, neuroscience, and ecology, nonlinear time series analy-

sis unveils emergent patterns, chaotic behavior, and predictive insights that often

elude traditional linear approaches. Through sophisticated mathematical techniques

like phase space reconstruction, chaos theory, and recurrence quantification analysis,

researchers can capture the nonlinear dynamics inherent in these systems, offering a

deeper understanding of their underlying mechanisms and behaviors [1, 2, 6, 16].

In recent years, the application of nonlinear time series analysis has gained

ground due to advances in computational power and the recognition of its relevance

across an expanding array of disciplines. From financial forecasting to climate mod-

eling, from biological systems to engineering applications, nonlinear analysis has

proven indispensable in deciphering the complexities of dynamic systems. As

researchers continue to refine methodologies and develop novel techniques, nonlin-

ear time series analysis remains at the forefront of scientific inquiry, providing

invaluable tools for exploring the rich tapestry of nonlinear dynamics that underpin

our ever-evolving world.

3.1 Introduction to Dynamical System

A dynamical system is defined as any system that evolves over time. In a dynamical

system, there exists a set of variables that interact with each other, generating the

system’s behavior, which corresponds to the system’s variables. Additionally, in a

system, the term “state” is defined as the set of variables x1 (t), x2 (t), …,xn (t) that

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92628-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-92628-0_3#DOI

76

describes the system’s state at the time t. The set of successive states defines the so-

called state space of the dynamical system. Otherwise stated, the system’s state

space is the set of possible positions-solutions of the system, where the system is

represented as a function of its variables, connecting the past value with the present

and future. The dimension of the state space is defined by the number of variables

needed to describe the system.

The mathematical definition of a dynamical system states that a dynamical sys-

tem is any system whose evolution from some initial state is mathematically

described by a system of differential equations, where the independent variable is

time (t).

We assume that the time series x(i) originates from a system of n differential equa-

tions describing the evolution of the system.

d

d
, ; , ,

d

d
, ; , ,

x

t
f x x x c c c

x

t
f x x x c c c

n n

n

1

1 1 2 1 2

2

2 1 2 1 2

= … …()

= … …

, , ,

, ,
nn

n
n n n

x

t
f x x x c c c

()

= … …()

,

.

.

, , ,
d

d
, ; , ,

1 2 1 2

(3.1)

or equivalently

d

d
, ,

x
F

t
x t c= ()

(3.2)

where x is a vector of n time variable

x t x t x t x t

n() = () () … () 1 2
, ,

(3.3)

In Eq. (3.1), F is the function describing the system with F: Rd → Rd, where Rd is the

state space or phase space of the system, d is the dimension of the Euclidean state

space, and c represents the parameters of the system that remain constant. The

dimension of the state space is denoted by n, equal to the number of variables. At

each moment in time, the position of the system in the state space is given by

the term.

The variables xi typically represent physical quantities such as position, velocity,

temperature, pressure, etc. The state of the system at a specific moment in time in

phase space is depicted by a point x(t) = [x1(t), x2(t), …xn(t)]. At the next moment in

time, the state of the system will change, and it will move to a new state point, creat-

ing in this way a trajectory after successive time steps in phase space, which illus-

trates the temporal evolution of the dynamical state of the system. Each point in

3 Nonlinear Time Series Analysis

77

phase space traces only one trajectory due to the deterministic component of the

system. However, changing the initial conditions or the parameters of the system

can alter the behavior of the dynamical system.

Dynamical systems can be classified as deterministic or stochastic, depending on

whether their behavior is predictable. A system is deterministic if its state at a given

time uniquely determines all future states. In such systems, both past and future

states are completely specified by the governing equations. In contrast, stochastic

dynamical systems are influenced by random external or internal factors, making

their future evolution inherently uncertain at least after a given time.

A particularly important subclass of deterministic systems consists of chaotic

systems. A dynamical system exhibits chaos when small variations in initial condi-

tions lead to exponentially diverging trajectories, resulting in vastly different long-

term outcomes. Despite being deterministic, chaotic systems are highly sensitive to

initial conditions, making long-term prediction practically impossible.

Additionally, dynamical systems are classified based on how they evolve over

time. If a system is described by differential equations, it is a continuous-time sys-

tem. If it is governed by difference equations, it is a discrete-time system.

In the present book, we are going to deal with continuous and chaotic systems.

3.1.1 System Identification

When the evolutionary equations describing it are known for a dynamical system,

then we can generate the time series from the equations that govern the system. So,

suppose the state of a system at time t is xt, and the difference equation describing it

is of the form xt + 1 = f(xt), if we know the initial state x0 and the function f describ-

ing the dynamic behavior of the system, we can recursively compute the state of the

system for each time step. The ability to generate data translates into a complete

understanding of the system’s dynamic behavior. In other words, in this way, we

have knowledge of the past, the current state, and we can predict the future states of

the system.

However, the study of physical dynamical systems suggests that purely stochas-

tic or purely deterministic behavior is the exception rather than the rule. In contrast,

studying a fully deterministic system is relatively straightforward, as each state fol-

lows directly from the previous one, and the next state is uniquely determined by the

current one or some previous ones. However, in many physical but also economic or

biological systems, determinism and randomness coexist, leading to the notion of

complexity. Complexity may also arise from the large number of variables that may

determine the state of a system. For example, a system composed of many interact-

ing atoms may have well-defined interaction rules, yet its global behavior remains

difficult to predict due to emergent complexities.

Physical and other category dynamical systems generally arise from nonlinear

equations involving multiple variables, the exact analytical form of which is often

unknown. As a result, interpreting these systems is highly challenging. Their study

3.1 Introduction to Dynamical System

78

relies on time series analysis. A time series, whether in single-variable or multivari-

able analysis, represents recorded observations of a system’s evolution over time

and often provides the only available insight into its dynamics. Time series are

intrinsically linked to the system’s dynamic behavior.

In time series analysis, the term “system identification” refers to a set of methods

designed to understand the temporal evolution of data. The primary goal is to ana-

lyze the system’s behavior, extract the underlying dynamics, and identify represen-

tative characteristics, rather than fully uncovering the internal mechanisms or

physical laws governing the process. Additionally, system identifications seek to

determine the key elements influencing the system’s evolution, namely its dynam-

ics, using only measured data. These measurements must be strongly coupled with

the system’s dynamics to ensure accurate modeling and interpretation.

3.1.2 Phase Space Reconstruction

As previously mentioned, the dynamic behavior of a system in many cases can be

described by differential equations and refers to the temporal evolution of the sys-

tem’s state [3–5, 14–17]. The description of the system is determined by a number

of n variables over time, which determine the state of the system, i.e., they constitute

the “solution” of the system for a given moment in time. The space defined by the

number of these dynamic variables is called the state space or phase space, which

has a dimension equal to the number of variables and is the space where the position

state of the system is depicted for each moment in time. The solution of the dynami-

cal system, for specific initial conditions, in phase space is represented by the suc-

cessive positions of the state vector or alternatively by the solutions of the system.

These successive solutions form the trajectory or curve of the system. Using the

script below (script 3.1), we produce representative time series for a harmonic oscil-

lator with a given frequency and amplitude and then we construct the corresponding

trajectory in the phase space. The corresponding results appear in Fig. 3.1 where we

Fig. 3.1 Time series of harmonic oscillator and the phase space, respectively

3 Nonlinear Time Series Analysis

79

can see that the time series of the harmonic oscillator with constant amplitude gives

us a circle which is an attractor of the system. The interesting part is that knowing

this circle we know all the states that the system can visit.

% script 3.1

%Time series for a simple harmonic oscillator

t = 0:0.01:10; % Vector (0 to 10 seconds with 0.01s

intervals)

omega = 2*pi; % Angular frequency (1 Hz)

x = sin(omega*t); % Position of the harmonic oscillator

% Choose the time delay (tau)

tau = 10; % Example time delay (adjustable)

% Create the 3D phase-space (state space reconstruction)

X1 = x(1:end-2*tau); % Position at time t

X2 = x(1+tau:end-tau); % Position at time t+tau

X3 = x(1+2*tau:end); % Position at time t+2*tau

% Plot the time series and the 3D phase-space side by side

figure;

% Plot time series of position (left side)

subplot(1,2,1); % Subplot (1 row, 2 columns, position

1)

plot(t, x, 'b');

xlabel('Time (t)');

ylabel('Position (x)');

title('Time Series of Harmonic Oscillator');

grid on;

% Plot the 3D phase-space (cycle plot) (right side)

subplot(1,2,2); % Subplot (1 row, 2 columns, position

2)

plot3(X1, X2, X3, 'r');

xlabel('x(t)');

ylabel('x(t+τ)');

zlabel('x(t+2τ)');

title('3D Phase Space of Harmonic Oscillator');

grid on;

axis equal;

view(3); % Set 3D view angle

Next we give an example of a harmonic oscillator where the amplitude gradually

decreases. By executing the script 3.2 below, the results of the time series and the

attractor in the reconstructed space are shown in Fig. 3.2.

3.1 Introduction to Dynamical System

80

% script 3.2

%Time series for a damped harmonic oscillator

t = 0:0.01:10; % Time vector (0 to 10 seconds with

0.01s intervals)

omega = 2*pi; % Angular frequency (1 Hz)

decay_rate = 0.1; % Decay rate (damping factor)

% Position of the damped harmonic oscillator with exponential

decay

x = exp(-decay_rate * t) .* sin(omega * t);

% Choose the time delay (tau)

tau = 10; % Example time delay (adjustable)

% Create the 3D phase-space (state space reconstruction)

X1 = x(1:end-2*tau); % Position at time t

X2 = x(1+tau:end-tau); % Position at time t+tau

X3 = x(1+2*tau:end); % Position at time t+2*tau

% Plot the time series and the 3D phase-space side by side

figure;

% Plot time series of position (left side)

subplot(1,2,1); % Create a subplot (1 row, 2

columns, position 1)

plot(t, x, 'b');

xlabel('Time (t)');

ylabel('Position (x)');

title('Time Series of Damped Harmonic Oscillator');

grid on;

% Plot the 3D phase-space (cycle plot) (right side)

subplot(1,2,2); % Create a subplot (1 row, 2

columns, position 2)

plot3(X1, X2, X3, 'r');

xlabel('x(t)');

ylabel('x(t+τ)');

zlabel('x(t+2τ)');

title('3D Phase Space of Damped Harmonic Oscillator');

grid on;

axis equal;

view(3); % Set 3D view angle

The following is a brief presentation of the Lorenz system [11], a well-known

chaotic system for specific parameter values, along with its corresponding Lorenz

attractor. A more detailed reference to the Lorenz system will be made in subse-

quent paragraphs. By running script 3.3, we obtain the three time series describing

the system evolution and its corresponding phase space representation (Fig. 3.3).

3 Nonlinear Time Series Analysis

81

Fig. 3.2 Time series of harmonic oscillator with decreasing amplitude and the phase space attrac-

tor, respectively

Fig. 3.3 Time series of Lorenz system and the phase space attractor, respectively

3.1 Introduction to Dynamical System

82

% script 3.3
% Lorenz system parameters
sigma = 10;
rho = 28;
beta = 8/3;

% Time span and initial conditions
tspan = [0, 50]; % Time range for the solution
initial_conditions = [1, 1, 1]; % Initial conditions [x0, y0,
z0]

% Define the Lorenz system as a set of differential equations
lorenz = @(t, X) [...

sigma * (X(2) - X(1)); % dx/dt
X(1) * (rho - X(3)) - X(2); % dy/dt
X(1) * X(2) - beta * X(3) % dz/dt

];

% Solve the system using ode45
[t, XYZ] = ode45(lorenz, tspan, initial_conditions);

% Extract the x, y, and z components
x = XYZ(:,1);
y = XYZ(:,2);
z = XYZ(:,3);

% Plot the time series and the 3D phase-space (Lorenz attractor)
side by side
figure;

% Plot the time series for x, y, and z components (left side)
subplot(1,2,1); % Subplot (1 row, 2 columns,
position 1)
plot(t, x, 'b', t, y, 'r', t, z, 'g');
xlabel('Time (t)');
ylabel('Values of x, y, z');
title('Time Series of Lorenz System');
legend('x(t)', 'y(t)', 'z(t)');
grid on;

% Plot the 3D phase-space (Lorenz attractor) (right side)
subplot(1,2,2); % Subplot (1 row, 2 columns,
position 2)
plot3(x, y, z, 'b');
xlabel('x(t)');
ylabel('y(t)');
zlabel('z(t)');
title('3D Phase Space of Lorenz System');
grid on;
axis tight;
view(3);

Till here, we have seen examples of phase spaces of systems where we know the

governing equations. Now we will try to reconstruct the phase space based only on

the knowledge of a system time series. To do so, we first need to calculate the time

lag and then the estimate the embedding dimension of the system. The time lag is

determined using the mutual information function, while the embedding dimension

is estimated using the nearest neighbor algorithm, which is the most common

method for this purpose. A widely used approach is the False Nearest Neighbors

3 Nonlinear Time Series Analysis

83

(FNN) method, which identifies false neighbors based on their distance relation-

ships. The method is described in the next paragraph.

3.1.3 False Nearest Method

The False Nearest Neighbors (FNN) is a method in phase space reconstruction used

to determine the optimal embedding dimension for time series data. By embedding

a time series in a higher-dimensional space, FNN identifies points that appear close

in lower dimensions but are distant in higher dimensions due to projection effects.

These points are labeled as “false neighbors.” In this method, for an initial embed-

ding dimension mm, we examine how the distance between two points changes

when increasing the embedding dimension to m + 1 m + 1. If the distance between

the points increases significantly (beyond a specified threshold), the points are con-

sidered false neighbors in the higher-dimensional space, indicating that the chosen

embedding dimension mm is insufficient. This procedure is repeated for all points,

and the percentage of false neighbors is analyzed to determine an appropriate

embedding dimension.

The process involves incrementally increasing the embedding dimension until

the fraction of false neighbors drops below a threshold, indicating that the recon-

structed phase space preserves the underlying dynamics without distortions caused

by insufficient dimensions. The correct dimension is identified when the percentage

of false neighbors drops to near zero or below a predefined threshold, indicating that

sufficient dimensions have been used to unfold the attractor. Script 3.4 [11] can be

employed in Matlab to estimate the embedding dimension.

% script 3.4

function fnnM = FalseNearestNeighbors(xV,tauV,mV,escape,theiler)

% fnnM = FalseNearestNeighbors(xV,tauV,mV,escape,theiler)

% FALSENEARESTNEIGHBORS computes the percentage of false nearest

neighbors

% for a range of delays in 'tauV' and embedding dimensions in

'mV'.

% INPUT

% xV : Vector of the scalar time series

% tauV : A vector of the delay times.

% mV : A vector of the embedding dimension.

% escape : A factor of escaping from the neighborhood.

Default=10.

% theiler : the Theiler window to exclude time correlated points

in the

% search for neighboring points. Default=0.

% OUTPUT:

% fnnM : A matrix of size 'ntau' x 'nm', where 'ntau' is the

number of

% given delays and 'nm' is the number of given

embedding

% dimensions, containing the percentage of false

nearest

% neighbors.

3.1 Introduction to Dynamical System

84

Fig. 3.4 Results of false nearest method of Lorenz time series

Using as input the time series produced for the Lorenz system previously in the

txt, the embedding dimension for the case of Lorenz system can be estimated by

running the following command.

% False Nearest Neighbors Method

>> FalseNearestNeighbors (lorenz,1,10)

The results appear in Fig. 3.4 where we can see that we can select m = 3 as

embedding dimension since above this dimension the percentage of false nearest

neighbors (FNN) has reached practically zero values (vertical axis).

3.1.4 Chaos and Dynamical Systems

The concept of chaos is deeply embedded in the study of complex dynamical sys-

tems, particularly within the realm of nonlinear dissipative dynamical systems [17,

18, 20]. However, while nonlinearity is a necessary condition for chaos, it is not

sufficient on its own. Chaos is widely understood as the seemingly unpredictable

behavior of a deterministic system due to its high sensitivity to initial conditions.

This unexpected dependence on initial conditions implies that even an infinitesimal

difference in initial conditions can lead to vastly different trajectories in phase space

over time. As a result, long-term prediction becomes practically impossible despite

the system being fully deterministic.

Examples of physical dynamical systems with chaotic behavior are found in the

study of climate, astronomy, biology, atmosphere, the solar system, etc.

In chaotic dynamical systems, small variations in the initial conditions are expo-

nentially amplified over time, leading to vastly different system evolutions. This

3 Nonlinear Time Series Analysis

85

extreme sensitivity to initial conditions, a defining characteristic of chaos, ensures

that even minor differences in starting points result in trajectories that diverge expo-

nentially in phase space. Consequently, two nearby trajectories will never converge

and will continue evolving along distinct, non-repeating paths of infinite length.

Despite being governed by deterministic laws, chaotic systems are inherently

unpredictable beyond a certain time horizon. This unpredictability arises because

even the most precise measurements of initial conditions contain inherent limita-

tions, making long-term forecasting practically impossible. Many natural phenom-

ena exhibit this behavior because they originate from nonlinear dynamical systems

with multiple interacting variables. In specific regions of their parameter space,

these systems display chaotic dynamics, making them highly sensitive to initial

conditions.

However, in practice, while chaotic systems are unpredictable in the long run,

their behavior can still be estimated over short time scales before small uncertainties

in initial conditions amplify beyond practical limits.

3.1.5 Dynamical Systems with an Attractor

During the temporal evolution of a dynamical system, its trajectory often remains

confined within a specific region known as basin of attraction [3, 14]. This basin

consists of all initial conditions that lead to trajectories that asymptotically converge

over time toward a particular long-term behavior. Within this region, an attractor

emerges as an invariant set of points to which trajectories asymptotically converge

over time. The attractor’s dimension serves as a descriptor of its geometric structure

and complexity.

A special class of attractors, known as strange attractors, arises in chaotic dynam-

ical systems, i.e., systems that exhibit sensitivity to initial conditions. In such sys-

tems, even infinitesimally close initial conditions lead to exponentially diverging

trajectories, resulting in seemingly stochastic behavior despite being governed by

deterministic laws. This sensitivity underpins the unpredictability of chaotic sys-

tems: they may be predictable over short time scales but become increasingly diffi-

cult to forecast as time progresses.

Strange attractors exhibit an important geometric property: self-similarity across

different spatial scales, meaning they are fractal in nature. Their structure is charac-

terized by a fractal dimension, a non-integer measure that quantifies their complex-

ity and degree of self-similarity. The fractal dimension is always lower smaller than

the topological dimension of the space in which the attractor resides. The structure

of systems presenting such behavior relies on nonlinear analysis, providing insights

into the behavior of chaotic systems across various scientific disciplines.

One of the most well-known dynamical systems with chaotic behavior under

conditions is the Lorenz dynamical system. Lorenz created a system of three dif-

ferential equations that contained two nonlinear terms and modeled heat transfer

currents within a fluid. The differential equations are:

3.1 Introduction to Dynamical System

86

Fig. 3.5 The three time series—variables of the Lorenz system

d

d

d

d

d

d

x

t
y x

y

t
x z y

z

t
xy z

= −()

= −()−

= −

σ

ρ

β

(3.4)

where σ, ρ, and β are three parameters of the system. More specifically, the param-

eter σ is called the dimensionless Prandtl number and is defined as the ratio of kine-

matic viscosity to thermal diffusion, the parameter ρ is called the Rayleigh number

and is connected to heat transfer within a fluid and the parameter b is a geometric

factor. For the values of the parameters σ = 10, ρ = 28, and β = 8/3, the system exhib-

its chaotic behavior and its numerical solution results in the creation of the trajec-

tory in the phase space known as the Lorenz attractor. By running script 3.5, we

obtain the time series that appear in Fig. 3.5 and the corresponding phase space and

attractor in Fig. 3.6.

3 Nonlinear Time Series Analysis

87

Fig. 3.6 Lorenz attractor

3.1 Introduction to Dynamical System

88

% script 3.5
% Parameters for the Lorenz system
sigma = 10; % Parameter sigma
rho = 28; % Parameter rho
beta = 8/3; % Parameter beta

% Time span and initial conditions
tspan = [0, 50]; % Time range for the solution
initial_conditions = [1, 1, 1]; % Initial values [x0, y0, z0]

% Define the Lorenz system of differential equations
lorenz_system = @(t, X) [...

sigma * (X(2) - X(1)); % dx/dt
X(1) * (rho - X(3)) - X(2); % dy/dt
X(1) * X(2) - beta * X(3) % dz/dt

];

% Solve the Lorenz system using ode45
[t, XYZ] = ode45(lorenz_system, tspan, initial_conditions);

% Extract the x, y, and z components of the solution
x = XYZ(:,1);
y = XYZ(:,2);
z = XYZ(:,3);

% Plot the time series for each variable figure;

subplot(3,1,1); % Plot for x(t)
plot(t, x, 'b');
xlabel('Time (t)');
ylabel('x(t)');
title('Lorenz System - Time Series for x(t)');
grid on;

subplot(3,1,2); % Plot for y(t)
plot(t, y, 'r');
xlabel('Time (t)');
ylabel('y(t)');
title('Lorenz System - Time Series for y(t)');
grid on;

subplot(3,1,3); % Plot for z(t)
plot(t, z, 'g');
xlabel('Time (t)');
ylabel('z(t)');
title('Lorenz System - Time Series for z(t)');
grid on;

% 3D Plot of the Lorenz attractor
figure;
plot3(x, y, z, 'b');
xlabel('x(t)');
ylabel('y(t)');
zlabel('z(t)');
title('Lorenz Attractor in 3D Phase Space');
grid on;
view(3); % Set a 3D view angle for better visualization

3 Nonlinear Time Series Analysis

89

3.1.6 Correlation Dimension

The calculation of the attractor’s dimension is a very useful tool in nonlinear analy-

sis and chaos theory. It helps distinguish between chaos and randomness and deter-

mines the minimum number of variables required to describe the dynamics of the

system from which time series emanate [14].

An attractor, as a geometric object, is characterized by its Euclidean dimension,

which described the space it occupies. In the reconstructed phase space, this dimen-

sion corresponds to the embedding dimension, denoted as m. Unlike non-chaotic

attractors, which have an integer dimension equal to the topological dimension of

the phase space and do not exhibit sensitivity to initial conditions, chaotic attractors

are characterized by a non-integer (fractal) dimension and display the property of

self-similarity across different scales of space. That fractal nature is a key signature

of chaos.

The fractal dimension is expressed by the correlation dimension, which is

most commonly used. Assuming two points xi and xj of the attractor, we define the

probability P(‖xi − xj‖ < r) that their distance is less than a given radius r. If μi is

the number of points within a sphere of radius r centered at xi, the average over al

xi 〈μi〉x approximates this probability. For small values of r, the scaling law

applies:

µ
i x

r r∼ →for 0

In the case of a time series, the average over all xi is estimated by the correlation

sum as follows:

C r
N N

r x x
i

N

j i

N

i j() =
−()

− −()
= = +

∑∑
2

1 1 1

Θ

(3.5)

where Θ(x) is the Heaviside function. The correlation sum defines the probability

that two randomly selected points of the attractor are closer than a given distance r.

For small r and using the scaling law, the correlation dimension is calculated as:

ν =
()d C r

d r

log

log

(3.6)

In practice, the correlation dimension is determined as the slope of a linear region in

the log-log plot of C(r) versus r. Care must be taken to calculate it for a sufficient

embedding dimension mmm. A sufficient embedding dimension corresponds to the

embedding dimension m for which the correlation dimension no longer increases.

Despite its widespread application, the calculated correlation dimension can be

affected by the length of the time series, noise, short sampling intervals, and the

choice of time delay used in reconstructing the phase space.

3.1 Introduction to Dynamical System

90

The correlation dimension provides information about the fractal dimension of

the attractor. We evaluate the correlation dimension using the below script 3.6 [11].

% script 3.6 Calculation of correlation dimension

function nuT = CorrelationDimension(xV,tauV,mV,theiler,sV,resol)

% nuT = CorrelationDimension(xV,tauV,mV,theiler,sV,resol)

% CORRELATIONDIMENSION computes the correlation dimension for a

given time

% series 'xV', for a range of delays in 'tauV', a range of

embedding

% dimensions in 'mV' and for a range of upper/lower ratio of

scaling window

% in % 'sV' (s=r2/r1 where r2-r1 is the length of the scaling

window).

% The parameter 'theiler' excludes temporally close points

(smaller than

% 'theiler') from the inter-distance computations. The parameter

'resol'

% determines the number of radii for which the correlation sum is

% computed.

% First, the correlation sum C(r) and the local slopes

log(C(r))/log(r) are

% computed for a range of distances r given by 'resol'. Then the

correlation

% dimension 'nu' is estimated by searching for the local slope in

radii

% intervals [r1,r2] (determined by 's') with the smallest standard

% deviation (best scaling). The mean local slope in this interval

is the

% estimate of 'nu'.

% INPUTS:

% - xV : Vector of the scalar time series ('xV' is then

standardized

% in [0,1]).

% - tauV : A vector of the delay times.

% - mV : A vector of the embedding dimension.

% - theiler : the Theiler window to exclude time correlated points

in the

% search for neighboring points. Default=0.

% - sV : A vector of values of upper/lower ratio of scaling

window

% (e=r2/r1 where r2-r1 is the length of the scaling

window).

% - resol : The number of radius for which the correlation sum

is computed.

% Note that this parameters is supposed to be larger

than 10.

% OUTPUT:

% - nuT : A matrix of size 'ntau' x 'nm' x 'ne', where 'ntau'

is the

% number of given delays, 'nm' is the number of given

embedding

% dimensions and 'ne' is the number of scaling ratio

of radii.

% The components of the matrix are the correlation

dimension

% values.

3 Nonlinear Time Series Analysis

91

Fig. 3.7 Correlation dimension of Lorenz attractor

By running script for the time series of Lorenz attractor previously obtained, we

can estimate the correlation dimension around 2.1 from Fig. 3.7. We can see in

detail the log C(r) vs log r diagram for which the slopes are calculated in segments

and plotted and the average slope with the standard deviation for the “horizontal”

parts appears as function of the embedding dimension along with the log intervals

that have been employed.

3.2 Surrogate Time Series

In time series analysis, surrogate data are widely used to assess the statistical sig-

nificance of results. In nonlinear time series analysis, the surrogate data method was

developed to distinguish between linear stochastic processes and nonlinear deter-

ministic dynamics [7–10, 12, 13, 19].

The core idea behind this method is to generate surrogate time series from the

original data while preserving certain statistical properties. Specifically, the surro-

gate data method involves creating datasets that conform to a null hypothesis, allow-

ing researchers to test whether the underlying dynamical system is linear or

nonlinear.

The process begins with the hypothesis to be tested. Next surrogate time series

are generated using a variety of algorithms, with the most popular ones employing

the Fourier transform. A test statistic is then computed for both the original time

series and the surrogates, and the statistical significance is evaluated.

An important aspect of this approach is the careful selection of the surrogate data

generation algorithm since surrogate data should preserve the same cumulative dis-

tribution function and the same autocorrelation as the real data. In the following

3.2 Surrogate Time Series

92

sections outline the most important techniques for generating surrogate data. To

illustrate their application, each methodology is accompanied by an example dem-

onstrating how the method works in practice.

3.2.1 Random Phase or Fourier Transform

The fundamental concept behind surrogate data, upon which most algorithms are

based, is the randomization of the phases in the Fourier transform. The algorithm

assumes that the time series originates from a stochastic Gaussian process. Surrogate

data are constructed in such a way that they retain the same periodogram (Fourier

spectrum). Initially, the Fourier transform of the time series Xt is computed for all

frequencies. Then, the phases are randomized by multiplying each complex ampli-

tude by eiΦ, where Φ is independently chosen for each frequency from the interval

[0, 2π]. Subsequently, the inverse Fourier transform produces the final surrogate

data Yt. It is important to note that, for the inverse Fourier transform to contain real

components, the phases must be symmetric, such that Φ(f) = −Φ(−f).

3 Nonlinear Time Series Analysis

93

% script 3.7

% Generate surrogate time series (Random Phase or Fourier

% Transform)

% Original time series (example: a sine wave with noise)

N = 1000; % Length of the time series

t = linspace(0, 10, N); % Time vector

original_series = sin(2 * pi * 1 * t) + 0.2 * randn(1, N);

% Parameters for surrogate generation

num_surrogates = 10; % Number of surrogate series to generate

surrogate_series = zeros(num_surrogates, N);

% Generate surrogates using the Random Phase Fourier Transform

method

for s = 1:FGM_surrogates

% Step 1: Fourier Transform of the original series

fft_original = fft(original_series);

magnitude = abs(fft_original);

phase = angle(fft_original);

% Step 2: Add random phase to the original phase

random_phase = 2 * pi * rand(1, N) - pi; % Uniform random

phase in [-pi, pi]
new_phase = phase + random_phase;

% Step 3: Construct surrogate in Fourier domain

surrogate_fft = magnitude .* exp(1i * new_phase);

% Step 4: Inverse FFT to get the surrogate time series

surrogate_series(s, :) = real(ifft(surrogate_fft));

end

% Plot original series and surrogates

figure;

subplot(2, 1, 1);

plot(t, original_series, 'b', 'LineWidth', 1.5);

title('Original Time Series');

xlabel('Time'); ylabel('Amplitude'); grid on;

subplot(2, 1, 2);

hold on;

for s = 1:num_surrogates

plot(t, surrogate_series(s, :), 'LineWidth', 1);

end

title('Surrogate Time Series');

xlabel('Time'); ylabel('Amplitude'); grid on;

hold off;

Using the above script (3.7), we construct ten surrogate time series with the ran-

dom phase Fourier transform method. In Fig. 3.8, we can see the original time series

and the corresponding surrogate time series.

3.2 Surrogate Time Series

94

Fig. 3.8 Original time series and the surrogates using random phase Fourier transform method

3.2.2 Amplitude Adjusted Fourier Transform (AAFT)

The Amplitude Adjusted Fourier Transform (AAFT) generates surrogate data by

using a random time series with a normal distribution. The elements of the time

series are then rearranged to match the rank ordering of the original time series (Xt)

(rank ordering white noise), thus producing the time series Xt′. Next, the Fourier

transform of Xt′ is calculated, and the phases are randomly shuffled to ensure that

the surrogate time series maintains the same power spectrum as the original. This

process results in a new time series Xt″. Subsequently, the inverse Fourier transform

of Xt″ is computed. By observing the rank order distribution of the time series ele-

ments, the data from the original time series are rearranged based on the data of Xt″.

3 Nonlinear Time Series Analysis

95

Fig. 3.9 Original time series and the surrogates using amplitude adjusted Fourier transform method

In this way, the surrogate time series have the same distribution and approximately

the same power spectrum. However, because the algorithm assumes that the static

transformation is monotonic, it fails to accurately reproduce the linear correlations

(autocorrelation function) in the surrogate time series. This means that if the origi-

nal time series does not employ a monotonic static transformation, there may be

discrepancies in the linear correlations between the surrogate and the original time

series. As a result, the AAFT algorithm is used to test the null hypothesis that the

time series originates from a Gaussian process subjected to a monotonic static

transformation.

By running in Matlab command window, the following script (3.8) we get the

results appearing in Fig. 3.9, where the original time series and the surrogates are

presented.

3.2 Surrogate Time Series

96

% script 3.8

% Generate surrogate time series (Amplitude Adjusted Fourier

% Transform (AAFT))

% Original time series (example: a sine wave with noise)

N = 1000; % Length of the time series

t = linspace(0, 10, N); % Time vector

original_series = sin(2 * pi * 1 * t) + 0.2 * randn(1, N);

% Parameters for surrogate generation

num_surrogates = 10; % Number of surrogate series to generate

surrogate_series = zeros(num_surrogates, N);

% Generate surrogates using the Amplitude Adjusted Fourier

Transform (AAFT) method

for s = 1:num_surrogates

% Step 1: Rank-order original series to create a Gaussian-

distributed series

sorted_original = sort(original_series);

gaussian_series = sort(randn(1, N));

[~, idx] = sort(original_series);

rank_ordered_series = gaussian_series(idx);

% Step 2: Fourier Transform of the rank-ordered series

fft_gaussian = fft(rank_ordered_series);

magnitude = abs(fft_gaussian);

phase = angle(fft_gaussian);

% Step 3: Add random phase to preserve spectrum

random_phase = 2 * pi * rand(1, N) - pi; % Uniform random

phase in [-pi, pi]

surrogate_fft = magnitude .* exp(1i * random_phase);

% Step 4: Inverse FFT to get the surrogate series

gaussian_surrogate = real(ifft(surrogate_fft));

% Step 5: Match the amplitude distribution of the original

series

[~, surrogate_idx] = sort(gaussian_surrogate);

amplitude_adjusted_series = zeros(1, N);

amplitude_adjusted_series(surrogate_idx) = sorted_original;

% Store the surrogate series

surrogate_series(s, :) = amplitude_adjusted_series;

end

% Plot original series and surrogates

figure;

subplot(2, 1, 1);

plot(t, original_series, 'b', 'LineWidth', 1.5);

title('Original Time Series');

xlabel('Time'); ylabel('Amplitude'); grid on;

subplot(2, 1, 2);

hold on;

for s = 1:num_surrogates

plot(t, surrogate_series(s, :), 'LineWidth', 1);

end

title('Surrogate Time Series (AAFT)');

xlabel('Time'); ylabel('Amplitude'); grid on;

hold off;

3 Nonlinear Time Series Analysis

97

% script 3.9

% Generate surrogate time series (Iterative Amplitude Adjusted

Fourier Transform (IAAFT))

% Original time series (example: a sine wave with noise)

N = 1000; % Length of the time series

t = linspace(0, 10, N); % Time vector

original_series = sin(2 * pi * 1 * t) + 0.2 * randn(1, N);

% Parameters for surrogate generation

num_surrogates = 10; % Number of surrogate series to generate

surrogate_series = zeros(num_surrogates, N);

% Generate surrogates using the Iterative Amplitude Adjusted

Fourier Transform (IAAFT) method

for s = 1:FGM_surrogates

% Step 1: Rank-order original series to create a Gaussian-

distributed series

sorted_original = sort(original_series);

gaussian_series = sort(randn(1, N));

[~, idx] = sort(original_series);

rank_ordered_series = gaussian_series(idx);

% Step 2: Initialize with Fourier Transform of the rank-

ordered series

fft_gaussian = fft(rank_ordered_series);

magnitude = abs(fft_gaussian);

phase = angle(fft_gaussian);

% Iterative adjustment

max_iter = 100;

tol = 1e-6;

surrogate = rank_ordered_series;

for iter = 1:max_iter

% Fourier Transform of the surrogate series

fft_surrogate = fft(surrogate);

% Enforce original magnitude spectrum

adjusted_fft = magnitude .* exp(1i *

angle(fft_surrogate));

adjusted_series = real(ifft(adjusted_fft));

% Rescale to match the amplitude distribution of the

original series

[~, surrogate_idx] = sort(adjusted_series);

rescaled_series = zeros(1, N);

rescaled_series(surrogate_idx) = sorted_original;

% Check for convergence

if max(abs(rescaled_series - surrogate)) < tol

break;

end

surrogate = rescaled_series;

end

% Store the final surrogate series

surrogate_series(s, :) = surrogate;

end

3.2 Surrogate Time Series

98

3.2.3 Iterative Amplitude Adjusted Fourier Transform (IAAFT)

The Iterative Amplitude Adjusted Fourier Transform (IAAFT) algorithm improves

upon the AAFT algorithm by more accurately preserving the linear correlations of

surrogate time series through an iterative refinement process.

The procedure begins by randomly shuffling the values of the original time

series. Then, a surrogate time series is generated to match the original power spec-

trum while preserving the rank order of the data. This is achieved by generating a

white noise time series and replacing its squared magnitudes with those of the origi-

nal time series.

Subsequently, since the power spectrum is preserved but the marginal distribu-

tion is altered, the elements are reordered to match the rank order of the original

time series. However, since this process achieves marginal distribution but modifies

the power spectrum, the previous steps are repeated iteratively until convergence is

achieved in both the correlations of the data and the marginal distribution. Thus, the

surrogate time series have almost the same distribution and linear structure as the

original time series. However, due to the algorithm’s mechanism, the surrogate time

series are consistently less correlated than the original time series, which may result

in significant linear discrepancies.

In general, the IAAFT algorithm is used to test the null hypothesis that the time

series originates from a Gaussian process subjected to a static transformation. Using

the script (3.9), we generate the surrogates time series presented in Fig. 3.10.

Fig. 3.10 Original time series and the surrogates using iterative amplitude adjusted Fourier trans-

form (IAAFT) method

3 Nonlinear Time Series Analysis

99

% Plot original series and surrogates

figure;

subplot(2, 1, 1);

plot(t, original_series, 'b', 'LineWidth', 1.5);

title('Original Time Series');

xlabel('Time'); ylabel('Amplitude'); grid on;

subplot(2, 1, 2);

hold on;

for s = 1:num_surrogates

plot(t, surrogate_series(s, :), 'LineWidth', 1);

end

title('Surrogate Time Series (IAAFT)');

xlabel('Time'); ylabel('Amplitude'); grid on;

hold off;

3.2.4 Statistically Transformed Autoregressive Process (STAP)

The Statistically Transformed Autoregressive Process (STAP) algorithm generates

surrogate data that preserve both the autocorrelation structure and the probability

distribution function of the original time series. In a first place a white Gaussian

noise time series is created, and the transformation from the Gaussian to the desired

distribution is approximated using a polynomial of a specified degree (m). The auto-

correlation of an autoregressive process u (AR(p)) is represented as a polynomial

function of degree mm of the autocorrelation of the original time series.

The parameters of the AR model of order p are estimated using the Levinson

algorithm, leading to the construction of the u time series based on the AR(p) model.

This series is then transformed into the surrogate data time series, ensuring it shares

the same linear structure (autocorrelation) and probability distribution function as

the original time series. The procedure is repeated to optimize the autocorrelation

match with the original time series.

Thus, surrogate time series generated by the STAP algorithm exhibit greater

variability than those produced by the IAAFT algorithm, while maintaining the

same linear structure as the original time series. In general, the STAP algorithm is

used to test the null hypothesis that the time series originates from a Gaussian pro-

cess that has undergone a static transformation. Figure 3.11 presents the surrogates

time series produced using script 3.10.

3.2 Surrogate Time Series

100

Fig. 3.11 Original time series and the surrogates using statistically transformed autoregressive

process (STAP) method

3 Nonlinear Time Series Analysis

101

% script 3.10

% Generate surrogate time series (Statistically Transformed

% Autoregressive Process (STAP))

% Original time series (example: a sine wave with noise)

N = 1000; % Length of the time series

t = linspace(0, 10, N); % Time vector

original_series = sin(2 * pi * 1 * t) + 0.2 * randn(1, N);

% Parameters for surrogate generation

num_surrogates = 10; % Number of surrogate series to generate

surrogate_series = zeros(num_surrogates, N);

% Fit an autoregressive (AR) model to the original series

order = 2; % Order of the AR model

ar_model = ar(original_series, order); % Estimate AR model

coefficients

% Generate surrogates using Statistically Transformed

Autoregressive Process (STAP)

for s = 1:num surrogates

% Step 1: Generate a Gaussian white noise sequence

gaussian_noise = randn(1, N);

% Step 2: Use the AR model to generate an AR process

ar_process = filter(1, [1 -ar_model.a(2:end)],

gaussian_noise);

% Step 3: Match the amplitude distribution of the original

% series

[sorted_original, idx_original] = sort(original_series);

[sorted_ar, idx_ar] = sort(ar_process);

transformed_process = zeros(1, N);

transformed_process(idx_ar) = sorted_original;

% Store the surrogate series

surrogate_series(s, :) = transformed_process;

end

% Plot original series and surrogates

figure;

subplot(2, 1, 1);

plot(t, original_series, 'b', 'LineWidth', 1.5);

title('Original Time Series');

xlabel('Time'); ylabel('Amplitude'); grid on;

subplot(2, 1, 2);

hold on;

for s = 1:num_surrogates

plot(t, surrogate_series(s, :), 'LineWidth', 1);

end

title('Surrogate Time Series (STAP)');

xlabel('Time'); ylabel('Amplitude'); grid on;

hold off;

3.2 Surrogate Time Series

102

References

1. Brockwell, P. J. (1991). Time series: Theory and methods. Springer-Verlag.

2. Charakopoulos, A. K., Karakasidis, T. E., Papanicolaou, P. N., & Liakopoulos, A. (2014).

Nonlinear time series analysis and clustering for jet axis identification in vertical turbulent

heated jets. Physical Review E, 89(3), 032913.

3. Elsner, J. B., & Tsonis, A. A. (1996). Phase space reconstruction. In Singular spectrum analy-

sis (pp. 143–155). Springer US.

4. Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from

mutual information. Physical Review A, 33(2), 1134.

5. Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors.

Physica D: Nonlinear Phenomena, 9(1–2), 189–208.

6. Kantz, H., & Schreiber, T. (2003). Nonlinear time series analysis. Cambridge University Press.

7. Kugiumtzis, D. (1999). Test your surrogate data before you test for nonlinearity. Physical

Review E, 60(3), 2808–2816.

8. Kugiumtzis, D. (2000). Surrogate data test for nonlinearity including nonmonotonic trans-

forms. Physical Review E, 62(1), R25.

9. Kugiumtzis, D. (2008). Evaluation of surrogate and bootstrap tests for nonlinearity in time

series. Studies in Nonlinear Dynamics & Econometrics, 12(1).

10. Kugiumtzis, D., & Tsimpiris, A. (2010). Measures of analysis of time series (MATS): A

MATLAB toolkit for computation of multiple measures on time series data bases. Journal of

Statistical Software, 33, 1–30.

11. Lorenz, H. W. (1993). Nonlinear dynamical economics and chaotic motion (Vol. 334).

Springer.

12. Schreiber, T., & Schmitz, A. (1996). Improved surrogate data for nonlinearity tests. Physical

Review Letters, 77(4), 635.

13. Schreiber, T., & Schmitz, A. (2000). Surrogate time series. Physica D: Nonlinear Phenomena,

142(3–4), 346–382.

14. Sivakumar, B. (2004). Chaos theory in geophysics: Past, present and future. Chaos, Solitons

& Fractals, 19(2), 441–462.

15. Sprott, J. (2003). Chaos and time-series analysis. Oxford University Press.

16. Strogatz, S. H. (2014). Nonlinear dynamics and chaos: With applications to physics, biology,

chemistry, and engineering. Westview press.

17. Takens, F. (2006, October). Detecting strange attractors in turbulence. In Dynamical systems

and turbulence, Warwick 1980: Proceedings of a symposium held at the University of Warwick

1979/80 (pp. 366–381). Springer Berlin Heidelberg.

18. Theiler, J. (1990). Estimating fractal dimension. JOSA A, 7(6), 1055–1073.

19. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Farmer, J. D. (1992). Testing for non-

linearity in time series: The method of surrogate data. Physica D: Nonlinear Phenomena,

58(1–4), 77–94.

20. Tsonis, A. A. (2012). Chaos: From theory to applications. Springer Science & Business Media.

3 Nonlinear Time Series Analysis

Part II

Complex Network Analysis

105© The Author(s), under exclusive license to Springer Nature

Switzerland AG 2025

T. Karakasidis, A. Charakopoulos, Time Series and Networks Analysis,

https://doi.org/10.1007/978-3-031-92628-0_4

Chapter 4

Complex Network Time Series

Complex network-based time series analysis has gained significant attention, and

they have provided new insights to time series analysis by applying graph theory.

This approach has achieved valuable results in addressing interdisciplinary chal-

lenges. Network analysis findings indicate that time series properties can be inher-

ited by the network measures, enhancing our understanding of crucial processes in

physics, economy, among others such as neuroscience, biology, medicine, and

finance [1, 3, 4, 5, 8].

4.1 Basics of Complex Network Theory

In this part of the book, we present some of the basic ideas behind graph theory and

the key aspects of the study of network structure. Network analysis is based on a

branch of mathematics called graph theory to define the basics concepts.

4.1.1 Theoretical Definition of a Graph

A graph consists of a set of objects, called nodes or vertices, with certain pairs of

these objects connected by links called edges. Mathematically, a graph G = (N;E) is

defined by a set of nodes N and a set of edges E connecting them [1, 3].

A vertex (singular of vertices) is the smallest unit in a network and is typically

labeled with a number, while an edge represents a connection (or tie) between two

vertices.

For example, the graph in Fig. 4.1 consists of nine nodes labeled 1, 2, 3, …, 9.

Two nodes are considered neighbors if they are connected by an edge. Figure 4.1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92628-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-92628-0_4#DOI

106

Fig. 4.1 Network

consisting of nine nodes

Fig. 4.2 Directed network

consisting of nine nodes

illustrates the typical way one draws a graph with small circles representing the

nodes, and lines connecting them indicate edges.

Networks can be classified into two basic types based on node connectivity:

directed networks and undirected networks. A directed graph is defined as a type of

graph where edges have an assigned direction. In contrast, an undirected graph has

edges with no specified direction. In directed graphs, edges are called arcs, which

are ordered pairs of vertices where the first vertex is the sender and the second is the

receiver. In undirected graphs, edges are represented as unordered pairs, meaning

the order of vertices does not matter. A directed graph contains one or more arcs,

whereas an undirected graph contains no arcs, only bidirectional edges. Figure 4.1

illustrates an undirected graph, while Fig. 4.2 shows a directed network.

From a mathematical point of view, we can represent a network using an adja-

cency matrix A. A graph with N vertices can be represented by an N × N adjacency

matrix, where each entry indicates the presence or absence of an edge between two

vertices. Figure 4.3 presents an undirected network and its corresponding adja-

cency matrix.

Another distinction that may occur between graphs are the unweighted and

weighted graphs. An unweighted graph is a graph in which all edges are considered

equal, meaning they do not carry any numerical values or weights. The presence or

absence of an edge simply indicates whether two vertices are connected. In an

unweighted adjacency matrix, entries are typically 1 (if an edge exists) or 0 (if no

edge exists). In contrast, a weighted graph is a graph in which each edge is assigned

4 Complex Network Time Series

107

Fig. 4.3 Undirected network and the corresponding adjacency matrix

a numerical value, called a weight, which represents some measure of the connec-

tion between two vertices. Weights can represent distances, costs, capacities, prob-

abilities, or other relevant quantities depending on the context. In a weighted

adjacency matrix, entries store the weight of each edge instead of just 1s and 0s.

For an undirected and unweighted graph, like the one shown in Fig. 4.3, the

edges can be represented by the elements Aij of this matrix such Aij = 1, if the nodes

i and j are connected, otherwise it is 0. Two nodes joined by a link are referred to as

adjacent or neighboring nodes. In this case, the adjacency matrix is symmetric, it

means Aij = Aji, while for directed ones, the matrix is not symmetric and the element

Aij = 1 indicates that the node i points to the node j.

An example of adjacency matrix in the Matlab can be obtained by executing the

script 4.1 in the command window below, and the result is displayed in Fig. 4.4.

We can see that the adjacency matrix is symmetrical with respect to the main

diagonal (the dots correspond to the number 1, while the spaces correspond to the

number 0). As we have mentioned, the existence of a dot indicates that there is a

connection between the nodes. So, node 1 is connected with node 2, 4, 5, 6, and 7.

4.1 Basics of Complex Network Theory

108

Fig. 4.4 Adjacency matrix of a network consisting of ten nodes

4.2 Topological Network Measures

As previously mentioned, an undirected and unweighted complex network can be

represented as a graph G = (N,E) consisting of a set of N = (n1,n2,…nN) nodes or

vertices and a set of E = (e1,e2,…,eE) edges or links. The network’s topological

structure is described by a N × N adjacency matrix A = [aij] where aij = 1 if the vertex

i is connected to vertex j and aij = 0 otherwise.

4.2.1 Degree and Degree Distribution

 Degree of a Node

The degree of a node i (ki) is a fundamental parameter of a network that influences

other characteristics and is defined as the total number of connections (or edges)

adjacent to that node i. Hence, the degree of a node is the number of edges that it

shares with other nodes [1, 3, 5].

For undirected networks, it can be computed as

k a a
i

j

i j

j

ji
= =∑ ∑

(4.1)

4 Complex Network Time Series

109

Fig. 4.5 Example of

degree of a network node

characterizing the connectivity properties of an individual node in a network, the

average degree ⟨k⟩ represents the mean value of ki across all nodes. It serves as a

global measurement of the connectivity of the network.

k
N

k
N

a
i

i

ij

ji= =∑ ∑
1 1

(4.2)

The average degree of all vertices is a measure of the structural cohesion of a net-

work. In the case of a directed network, we can define the in-degree and the out-

degree. The in-degree of a node is the number of arcs it receives, while the out-degree

is the number of arcs it sends.

Figure 4.5 illustrates an example of node calculation in the case of an undirected

network. The degree of node 7 is k7 = 5 since node 7 is connected with five nodes,

i.e., N2, N5, N6, N8, and N9.The degree of node 2 is k2 = 4 since it is connected to four

nodes, i.e., N1, N7, N3, N5.

Let’s assume that we have a network consisting of 100 nodes (Fig. 4.6), for

which we calculate the degree of each node as well as the average degree overall for

the network.

Using the following script (4.2) in Matlab, we can calculate the degree of each

node in the network.

4.2 Topological Network Measures

110

Fig. 4.6 Example of a network consisting of 100 nodes

In the Matlab command, we have to type the following:

or we can execute the above script.

Figure 4.7 shows the results of the node degree (number of connections) of each

node for the network of Fig. 4.6. The height of each bar indicates the degree of each

node, that is, the number of connections of each node. From this graph, we can see

which node has the most connections. We can see that node 12 has the highest num-

ber of connections and thus the highest degree (with value equal to 31).

 Degree Distribution

The degree distribution of a network is the fraction of nodes with degree kkk, rep-

resenting the probability that a randomly selected node has exactly kkk edges.

Examining the degree distribution—often visualized as a histogram—provides

insight into the structure and behavior of the network. Another definition is that

4 Complex Network Time Series

111

Fig. 4.7 Degree of network consisting of 100 nodes

degree distribution is the frequency distribution of different degrees across the

nodes in the network and can be used to characterize a network. The degree distribu-

tion gives the probability that a selected node has exactly k edges.

Below the code (script 4.3) for calculating the degree distribution is given.

4.2 Topological Network Measures

112

Fig. 4.8 Degree per node (left) and degree distribution (right) of a network consisting of 100 nodes

In the Matlab command, we write:

or we can execute the script file (4.3) and the results appear in Fig. 4.8. Pay atten-

tion that the horizontal axis on the degree distribution (right figure) is logarithmic.

We calculate the degree of each node, i.e., the connections, as well as the degree

distribution of points.

4.2.2 Shortest Path and Diameter

In a network, the number of edges in a path connecting vertices i and j is called the

length of the path. The distance dij between nodes i, j defined as the length of the

shortest path connecting them. The network’s diameter D is the longest shortest

path distances between any pair of nodes of a network. The average distance <di,j>

is the average distance of a network connecting any pair of points i, j. In other

words, the average path length is the mean number of edges in the shortest paths

connecting all nodes in the network:

D d
i j

i j

= max
,

,

(4.3)

4 Complex Network Time Series

113

Fig. 4.9 Example of distance in a network

d
N N

di j

i j

i j,

,

,
=

-()∑
1

1

(4.4)

Diameter is an important characteristic that depends on the overall network structure.

In Fig. 4.9, we present a network with examples of distances.

To calculate the network diameter of the network, the following script needs to

be executed in Matlab.

In the command window of Matlab, we type the following command:

Figure 4.10 shows the shortest path between nodes in the network of Fig. 4.6.

Specifically, we can see two shorter paths: the first where it connects the two distant

red nodes and the one that connects the two blue nodes.

4.2 Topological Network Measures

114

Fig. 4.10 Example of shortest paths of network consisting of 100 nodes

4.2.3 Clustering Coefficient

The clustering coefficient of a network quantifies the local link density by counting

the triangles in the network and for a node i can be defined as:

c
e

k k
i

i

i i

=
-()

2

1

(4.5)

where ki is the number of neighbors of i and ei is the number of connected pairs

between all neighbors of i in a network. We can say that if a node i has ki neighbors

or friends, then all possible connections among neighbors pairs of the nodes in a

graph are ki(ki − 1)/2.

The average clustering coefficient C of a network is the average ci and it is

defined as

C c
N

c
i

i

i
= = ∑

1

(4.6)

An alternative definition of the clustering coefficient of a node i is the ratio E/M,

where E is the number of edges between the neighbors of node i, and M is the maxi-

mum number of edges that could potentially exist between those neighbors. The

4 Complex Network Time Series

115

clustering coefficient of a node ranges between 0 and 1. Therefore, the local cluster-

ing coefficient measures the probability of the neighbors of a node i being con-

nected which is the probability that first step neighbors of a node i (called “friends”

of the node i) are connected directly to each other. Clustering coefficient is a mea-

sure of network transitivity, which indicates how much neighbors of a node are

neighbors of each other. Transitivity measures the probability that adjacent vertices

of a node are connected. A network is considered transitive, if for any three nodes a,

b, and c, when there is an edge between a and b, and between b and c, then there

exists an edge between a and c as well.

Figure 4.11 illustrates clustering coefficient for a representative node. In this

case, node 2 presents a degree equal to 4 and thus based on Eq. (4.5), the corre-

sponding clustering is found equal to 1/6.

In the following, we present a Matlab script (4.5) that calculates the clustering

coefficient of a network.

In the command window of Matlab, we type the following commands and the

results are presented in Fig. 4.12, where we can see the value of the clustering

4.2 Topological Network Measures

116

Fig. 4.11 Example of clustering coefficient of a network

Fig. 4.12 Clustering coefficient of the nodes of a network consisting of 100 nodes

coefficient for each node of the network. In Fig. 4.13, the network nodes are repre-

sented in a color scale based on their value of clustering coefficient. The darker the

node, the higher the value of the clustering coefficient.

4 Complex Network Time Series

117

Fig. 4.13 Graphical representation of clustering coefficients of nodes of network consisting of

100 nodes

4.2.4 Centrality Measures/Betweenness Centrality

 Centrality Measures

Centrality measures indicating the importance of node in the network (is deciding

on whether there are any vertices “more important” than others). Below we discuss

the various measures.

 Betweenness Centrality

Betweenness centrality is calculated based on the position of the node in the net-

work paths. Thus, nodes with high betweenness can have significant influence

within a network for the transmission of information. The betweenness centrality of

a node v is given by the following equation:

g
v

V

s v t

st

st

()
≠ ≠

=
()

∑
σ

σ

(4.7)

4.2 Topological Network Measures

118

where σst is the total number of shortest paths from node s to node t and σst(v) is the

number of those paths that pass-through v.

The following script (4.6) can be used in Matlab to calculate the betweenness

centrality.

4 Complex Network Time Series

119

Fig. 4.14 Betweenness centrality of network consisting of 100 nodes

Fig. 4.15 (a) The network and (b) betweenness centrality of network consist of 100 nodes. The

color map indicates the intensity of the measure. The darker the node, the higher the value, and the

node with the largest value of the clustering coefficient has a larger size

For the calculation in the Matlab, we type the following command in the corre-

sponding window. The corresponding results for each node of the network appear in

Fig. 4.14.

In Fig. 4.15, the network is shown on the left, while on the right is the network

layout with a color scale based on the betweenness centrality of each node. Α bright

purple color in the case of node N = 55 is employed to represent the highest value

and thus the larger circle size. It is also visually perceptible according to the impor-

tance of the variable that this node will have the highest value as we can see that it

is on a critical path. Such nodes are usually called hubs in analogy with the airport

hubs (i.e., airports presenting connections with many other airports, not necessarily

connected directly between them).

4.2 Topological Network Measures

120

4.2.5 Closeness Centrality

Closeness centrality represents the flow of information from one node to others and

measures how short the shortest paths are from node i to all nodes. The closeness

centrality can be calculated using the following equation:

CC
,

i
N

d i j
j

() =
-

∑
1

()

(4.8)

where i ≠ j, dij is the length of the shortest path between nodes i and j in the network

and N is the number of nodes.

The closeness coefficient can be calculated using script 4.7.

For the calculation, we type in the Matlab command window the following

command:

4 Complex Network Time Series

121

Fig. 4.16 Closeness centrality of network consists of 100 nodes

Fig. 4.17 (a) The network and (b) closeness centrality of nodes of a network consisting of 100

nodes. Nodes with a bright green color and a larger circle size than the rest are the nodes that pres-

ent a higher closeness centrality value than the others

The result of the calculation is illustrated in Fig. 4.16 where we can see the close-

ness centrality for each node of the network.

Figure 4.17 shows in the left the network and in the right their representation in

color scale based on the value of closeness centrality of each node. Nodes with a

bright green color and a larger size than the rest are the nodes with a greater close-

ness centrality value than the others.

4.2.6 Eigenvector Centrality

Eigenvector centrality is a measure of a node’s influence within a network while

considering the importance of its neighbors. This measure takes into account not

only how many connections a node has (i.e., its degree), but also the centrality of the

vertices that it is connected to. The eigenvector centrality is based on the eigenvalue,

meaning that the value of an entity is based on the value of the entities connected to

it: the higher the latter is, the higher the former becomes.

4.2 Topological Network Measures

122

The following script (script 4.8) permits to calculate the eigenvector centrality

in Matlab.

In the Μatlab command window, we type:

Figure 4.18 shows the values of the indicator for each node, while Fig. 4.19b

shows the network and its colored representation based on the value of eigenvalue

centrality, where we can see in bright green the nodes with a higher value.

Fig. 4.18 Eigenvector centrality of the nodes of network consisting of 100 nodes

4 Complex Network Time Series

123

Fig. 4.19 (a) The network and (b) Eigenvector centrality of network consist of 100 nodes. The

color variation indicates the value of the measure. The darker the color, the higher the value

4.2.7 Modularity

Modularity measures the effectiveness of a network’s division into communities.

Communities with high modularity values have dense edge connections between

the vertices within a community, but sparse connections between nodes in different

communities.

We can use the script 4.9 to calculate modularity of network in Matlab.

In Matlab command window, we can type the following commands:

In Fig. 4.20, the results are presented, and we see the modularity values for each

node. Figure 4.21 shows these groups of nodes in different colors. We can distin-

guish six different groups of nodes (modules), which are depicted in different col-

ors. Within these groups, there are strong connections between nodes and sparse

connections between groups (modules).

4.2 Topological Network Measures

124

Fig. 4.20 Modularity class of each node of the network

Fig. 4.21 (a) The network and (b) modularity of network consisting of 100 nodes. The different

colors represent nodes in different communities

4.3 Types of Networks

A network is essentially a system that can be represented as a graph, consisting of

elements known as nodes or vertices and a set of connecting links (edges) that rep-

resent the interactions between them [1, 7, 8, 9, 13].

4.3.1 Small-World Network

A small-world network is a type of graph where most nodes are not directly con-

nected to each other, but most nodes can be reached from every other node within

few steps. A small-world network is a network where the typical distance L between

two randomly chosen nodes grows proportionally to the logarithm of the number of

nodes N in the network, L ∝ log N. Watts and Strogatz introduced this type of net-

work as follows [13]:

Consider a set of n vertices {v1, v2, …, vn} and an (even) number k. In order to

ensure that the graph will have relatively few edges (i.e., it is sparse), choose n and

k such that n ≥ k ≥ ln(n) ≥ 1.

• Order the n vertices into a ring and connect each vertex to its first k/2 left-hand

(clockwise) neighbors, and to its k/2 right-hand (counterclockwise) neighbors,

leading to graph G

4 Complex Network Time Series

125

• With probability p, replace each edge {u, v} with an edge {u, w} where w is a

randomly chosen vertex from V(G) other than u, and such that {u, w} is not

already contained in edge set of (the modified) G

Watts–Strogatz model presents high clustering coefficients while maintaining short

average path lengths. The resulting graph is known a Watts–Strogatz random graph

or WS graph.

To make a Watts–Strogatz (WS) graph, we start with a ring lattice. First, a ring

lattice with N nodes of mean degree 2K will be created. Each node is connected to

its K nearest neighbors on either side. Next, for each edge in the graph, rewire the

target node with probability p. We can employ script 4.10 to create a WS network

in Matlab.

t = s + repmat(1:K,N,1);

t = mod(t-1,N)+1;

for source=1:N

SE = rand(K, 1) < p;

NT = rand(N, 1);

NT (source) = 0;

NT (s(t==source)) = 0;

NT (t(source, ~ SE)) = 0;

[~, ind] = sort(NT, 'descend');

t(source, SE) = ind(1:nnz(SE));

end

WS = graph(s,t);

end

In order to generate a network, consist of 20 nodes, a network degree of 5 and

probability 0, we write in Matlab the following commands.

% Example of Watts-Strogatz (WS) network

>> WS = WattsStrogatz(20,5,0);

>> plot(WS,'NodeColor','k','Layout','circle');

>> title('Watts-Strogatz Graph with N = 20 nodes, degree K = 5, and

p = 0')

4.3 Types of Networks

126

The results are presented in Fig. 4.22. The graph is a perfect ring lattice. When

p = 0, no edges are rewired and the model returns a ring lattice. Conversely, when

p = 1, all of the edges are rewired, converting the ring lattice is transformed into a

random graph.

Then we increase the probability to 0.1 and we type in Matlab the following

commands. The results are presented in Fig. 4.23.

Fig. 4.22 A perfect lattice network with 20 nodes

Fig. 4.23 Network with 20 nodes and p = 0.1

4 Complex Network Time Series

127

% Example of Watts-Strogatz (WS) network

>> WS = WattsStrogatz(20,5,0.1);

>> plot(WS,'NodeColor','k','Layout','circle');

>> title('Watts-Strogatz Graph with N = 20 nodes, degree K = 5, and

p = 0.1')

Then we increase the probability to 1 by typing the command, and the result is

presented in Fig. 4.24. As we can see by comparison to Fig. 4.23, as probability

increases, the number of random connections increases too.

>> WS = WattsStrogatz(20,5,1);

>> plot(WS,'NodeColor','k','Layout','circle');

>> title('Watts-Strogatz Graph with N = 20 nodes, degree K = 5, and

p = 1')

The degree distribution of the nodes in the different Watts–Strogatz graphs var-

ies. When beta is 0, all nodes preset the same degree, 2K. However, as p increases,

the degree distribution changes. This can be seen in Fig. 4.25.

Fig. 4.24 Random network with 20 nodes

4.3 Types of Networks

128

Fig. 4.25 The Watts–Strogatz model of the small world. For p = 0, the network is regular and as

it increases, it is characterized as small world until for p = 1 where it is a random graph

4.3.2 Scale-Free Network

A scale-free network is one in which the distribution of links to nodes follows a

power law. The power law means that the vast majority of nodes have very few con-

nections, while a few important nodes (named Hubs) have a huge number of

connections.

Albert-László Barabási mapped the network of a portion of the World Wide Web

(WWW). The analysis of that network had led to some interesting findings:

 1. A number of nodes (hubs) have more connections than others.

 2. The WWW network has a power law distribution of the number of links con-

nected to web pages.

From the above, we can conclude that scale-free networks have the following key

features:

 1. Several nodes with high degrees are known as hubs; they appear as a result of

preferential attachment.

 2. The degree distribution follows a power law.

 3. Hubs usually have links from all around the network, serving as links between

different parts of the network, therefore showing a small-world property.

Figure 4.26 represents an example of a network with scale-free behavior and the

corresponding degree distribution in Fig. 4.27, which was generated by running the

commands of script 4.11.

4 Complex Network Time Series

129

Fig. 4.26 Scale-free

network

Fig. 4.27 Degree and degree distribution of scale-free network of Fig. 4.26

4.3.3 Random Network

A random network consists of N nodes where each node pair is connected with

probability p [8]. To construct a random network, we follow these steps:

 1. Start with N isolated nodes.

 2. Select a node pair and generate a random number between 0 and 1.

If the number is larger than the probability p, then connect the selected node pair

with a link otherwise leave them disconnected.

 3. Repeat step 2 for each of the N(N − 1)/2 node pairs.

4.3 Types of Networks

130

Fig. 4.28 Random

network consists of 225

nodes

Fig. 4.29 Degree and Degree Distribution of the Random network of Fig. 4.28

The network obtained after this procedure is called a random graph or a random

network. A representative example is presented in Fig. 4.28 along with the degree

value for each node and the degree distribution in Fig. 4.29.

Random networks’ degree distribution follows either a Poisson or Binomial

distribution.

4 Complex Network Time Series

131

4.4 From Time Series to Complex Network/Methods

of Construction

The concept of analyzing the dynamic characteristics of a time series by transform-

ing it into a complex network system has been introduced [1, 6, 9, 10, 12]. Several

studies have shown that distinct features of a time series can be mapped onto net-

works with different topological characteristics such as correlation, phase space

reconstruction, visibility, and recurrence.

4.4.1 Phase Space Network: Recurrence Network

Recurrence networks are a technique used to analyze complex dynamical systems

based on the recurrence properties of states in the system’s phase space. They are

particularly useful for understanding the underlying dynamics of nonlinear and cha-

otic systems. Recurrence networks offer a graph-based representation of time series

data, providing insights into the system’s recurrent patterns and structures.

Recurrence networks offer a unique perspective on time series data by emphasizing

the spatial relationships between states in a reconstructed phase space. They are a

valuable tool for researchers seeking to understand the complex behaviors of

dynamic systems.

First, recurrence networks start with a time series dataset, which consists of a

sequence of data points recorded over time. This data can originate from various

domains, such as physics, biology, finance, and engineering just to mention few

ones. Then, to create a recurrence network, we first transform the one-dimensional

time series data into a higher-dimensional representation known as a phase space.

This is often done using time delay embedding, a technique that constructs a multi-

dimensional space by stacking lagged copies of the time series. The choice of

embedding dimension and time delay is important and should be determined based

on the characteristics of the system under study.

The core of a recurrence network is the construction of a recurrence plot. A

recurrence plot is a binary matrix where each element indicates whether two points

in the phase space are close to each other. Typically, a threshold or distance measure

is used to determine when two points are considered close or “recurrent.” If the

distance between two points falls below the threshold, the corresponding entry in

the recurrence plot is set to 1; otherwise, it’s set to 0. Recurrence plots reveal regions

in phase space where the system revisits similar states over time. Finally, the recur-

rence plot can be further transformed into a network or graph. In this network, nodes

represent the states in the phase space, and edges connect pairs of states that are

recurrent. The edges can be weighted, representing the strength of recurrence

between states. Recurrence networks can be applied to a wide range of dynamic

systems, including ecological systems, physiological data (e.g., EEG signals),

4.4 From Time Series to Complex Network/Methods of Construction

132

climate data, financial time series, and more. They have found applications in fields

like physics, biology, engineering, and neuroscience.

Advantages of recurrence networks include their ability to capture complex,

nonlinear dynamics and their robustness to noise in the data. They can reveal impor-

tant features of a system’s behavior that may not be apparent through traditional

time series analysis techniques.

Overall, recurrence networks provide a powerful tool for understanding the

underlying structure and behavior of complex systems, making them valuable in

various scientific and engineering disciplines.

4.4.2 Correlation Network

A correlation network is a type of network that is constructed based on the statistical

relationships between variables or data points, specifically through measures of cor-

relation. These networks are used to visualize and analyze the associations or

dependencies among variables in a dataset. Correlation networks are particularly

useful for understanding patterns and connections in multivariate data.

In this approach, we calculate the pairwise correlations between time series data

points (e.g., Pearson correlation coefficient or cross-correlation) and use these cor-

relations to construct a network. Nodes in the network represent time series vari-

ables, and edges between nodes represent significant correlations. Such networks

can help identify which variables are strongly related over time.

To create a correlation network, we start with a dataset that contains multiple

variables (features) and data points. These variables can represent anything from

financial indicators, biological measurements, to social interactions, and more.

Then, the next step is to calculate pairwise correlations between all pairs of vari-

ables in the dataset. The most commonly used correlation measure is the Pearson

correlation coefficient, but other measures like Spearman’s rank correlation or

Kendall’s tau can also be used, depending on the nature of the data.

Once we have computed the correlations, we typically apply a threshold to

decide which correlations to include in the network. Correlations above a certain

threshold (e.g., absolute correlation value >0.5) are considered significant and are

used to establish connections in the network. The choice of threshold can impact the

network’s density and structure.

Based on the significant correlations, we construct a network where each vari-

able is represented as a node (or vertex), and edges (or links) between nodes repre-

sent correlations above the threshold. The edges can be weighted to reflect the

strength of the correlation.

The resulting correlation network can be visualized using various techniques,

such as node-link diagrams or adjacency matrices. Visualization tools like network

graphs can help you explore and interpret the relationships between variables.

Correlation networks have applications in various fields like finance, biology,

climate science, and other.

4 Complex Network Time Series

133

4.4.3 Visibility Network

We remind that the structure of complex network can be represented as a graph

G = (N,E), which consists of a set of N = (n1,n2,…,nN) vertices or nodes connected

by a set of E = (e1,e2,…,eE) links or edges. A network can be represented by its adja-

cency matrix A = [aij]. The adjacency matrix contains the information about the

connectivity structure of the graph, and for a graph with N nodes is an N × N matrix.

The elements aij are equal to 1 whenever there is an edge connecting the vertices i

and j, and equal to 0 otherwise. When the graph is undirected, the adjacency matrix

is symmetric, i.e., the elements aij = aji for any i and j.

In the visibility method, each value of time series is converted to a node and each

node is connected with all the other nodes that exists visibility between them. There

are two main categories and several variations of them, converting time series to

network, horizontal graph, and natural graph. The natural graph is described below.

Mathematically, the visibility criterion can be defined as follows: two time series

points x(ti) and x(tj) in the time series have visibility and consequently become two

connected nodes in the graph, if any other data (tk, x(tk)) placed between them

(ti < tk < tj) fulfills the following constrain:

x t x t x t x t
t t

t t
k i j i

k i

j i

() < ()+ ()- ()()
-

-

(4.9)

Hence, i and j are connected if a straight line can be drawn in the time series joining

the two points i and j, such that, at all intermediate points (ti < tk < tj), x(tk) fall below

this line. In a network mapped using the visibility algorithm, each node is visible at

least by its nearest neighbors (left and right). An illustration of a time series trans-

formed into a visibility graph is shown in Fig. 4.30.

To understand the methodology of converting time series to network, below we

present an example of converting a time series of ten values to a network and a time

series of 10 points to a network (Fig. 4.31).

Fig. 4.30 Schematic representation of transformation of time series to a network via the visibil-

ity method

4.4 From Time Series to Complex Network/Methods of Construction

134

Fig. 4.31 Example of time series with ten values (two different plot type)

Then the algorithm for converting a time series into a graph is based on the vis-

ibility algorithm as presented in script 4.12.

txV=[1:1:N]';

xV=xn;

for i=1:N

if (i<N)

Net(i,i+1)=1;

Net(i+1,i)=1;

end

end

for i=1:N

for j=(i+2):N

Dyt(i,j)=(xV(j)-xV(i))/(txV(j)-txV(i));

Net(i,j)=1;

Net(j,i)=1;

for k=(i+1):(j-1)

temp(k) = xV(i) + Dyt(i,j)*(txV(k)-txV(i));

if temp(k) <= xV(k)

Net(i,j) = 0;

Net(j,i) = 0;

break

end

end

end

end

Suppose we have NetA1_10 time series, and we want to transform it into a net-

work named NETA1_10. We have to write the following in Matlab (Fig. 4.32).

4 Complex Network Time Series

135

Fig. 4.32 Adjacency

matrix of time series with

ten values (two different

plot type)

Fig. 4.33 Network of time

series with ten values

As we have already seen for the adjacency matrix wherever there are dots, it

means that there is a connection between the corresponding nodes. That is, there are

a total of ten nodes as many as the points of the time series. Connections are derived

from the criterion of visibility graph. In the adjacency matrix, where there is a dot

means connection between the nodes. That is, we can see that node 1 is connected

only to node 2, while node 2 is connected to node 1, 3, 4, 5. In Fig. 4.33, the graph

formed by the adjacency matrix is shown.

4.4 From Time Series to Complex Network/Methods of Construction

136

4.5 Extended Example of Transforming Time Series

to Network and Analyzing Them Using

Network Properties

4.5.1 Examples of Field Measurement Data (Environmental

Time Series)

Below we will present some examples of converting time series into networks. The

time series have been selected on the base of their different dynamical behavior.

Specifically, these are field meteorological time series, which have been obtained

through the Poseidon system of buoys maintained by the Hellenic Center for

Marine Research (HCMR) www.poseidon.hcmr.gr. The sampling interval was 3 h

for all variables, and every measurement is an average over 10 min, resulting in

eight values per day. Thus, the length of the time series is 3.730 values (in units of

Δt = 3 h).

At first, time series of water temperature (Water Temp.) is displayed in Fig. 4.34.

In order to plot the time series, we write the following command.

In order to convert this time series into a network using the visibility method, we

write the following command in Matlab. We remind that in this way, the number of

nodes of the network is equal to the number of the time series recordings (3730 in

the present case).

Fig. 4.34 Water temperature time series

4 Complex Network Time Series

http://www.poseidon.hcmr.gr

137

Fig. 4.35 Adjacency matrix of water temperature time series of Fig. 4.34

In this way, we have transformed the time series into a network. To see the adja-

cency matrix we write in Matlab (Fig. 4.35):

In order to be able to visualize the network in the design software Gephi [2], we

write in Μatlab the following command.

4.5 Extended Example of Transforming Time Series to Network and Analyzing Them…

138

Using the above routine, the file can now be processed by the Gephi program, the

visualization of which based on modularity measure is shown in Fig. 4.36.

Looking at the network, we can see that few groups (modules) of nodes are cre-

ated where nodes have strong connections within the same group and sparse con-

nections of nodes between different groups (modules). This observation is linked to

the dynamic evolution of time series values.

In the following, we present another example of a time series transformation into

a network. After executing the following command in Matlab, the time series is

shown in Fig. 4.37.

Fig. 4.36 Network of water temperature time series

Fig. 4.37 Atmospheric pressure time series

4 Complex Network Time Series

139

We observe that the values of this time series have different dynamic behavior,

where the periodicity of the data is no longer clear, and these values fluctuate more.

We convert this time series into a network by typing the following command

in Matlab.

We can see the adjacency table by writing in Matlab (Fig. 4.38).

The next figure illustrates the network using the Gephi program, in the property

of modularity.

In the network representation in Fig. 4.39, we can distinguish several groups of

nodes where there are strong connections, and more sparse connections

between groups.

The third example of converting a time series to a network involves a time series

that fluctuates more than the two previous one. After executing the following com-

mand in Matlab, in Fig. 4.40 the time series is shown.

4.5 Extended Example of Transforming Time Series to Network and Analyzing Them…

140

Fig. 4.38 Adjacency

matrix of atmospheric

pressure time series of

Fig. 4.37

Fig. 4.39 Network of atmospheric pressure time series

To convert this time series into a network using the method of visibility, we write

the following command in Matlab.

4 Complex Network Time Series

141

Fig. 4.40 Wind speed time series

Fig. 4.41 Adjacency

matrix of wind speed time

series of Fig. 4.40

In this way, we have transformed the time series into a network. To obtain and

visualize the adjacency matrix, we write in Matlab (Fig. 4.41):

To visualize the network in the design software Gephi, we write the following

command in Matlab.

4.5 Extended Example of Transforming Time Series to Network and Analyzing Them…

142

In Fig. 4.42, the corresponding network is shown, using the modularity measure

for illustration.

It is appropriate to present the three cases in the figure below and then comment

on the network analysis method (Fig. 4.43).

In the left part, we plot the variable as recorded, in the middle, we present the

network’s adjacency matrix, and on the right, we represent the network graph,

where we mention the modularity classes.

Fig. 4.42 Network of wind speed time series

4 Complex Network Time Series

143

Fig. 4.43 Time series, adjacency matrix, and network graph generated, respectively, for (a) air

temperature, (b) water temperature, and (c) wind speed time series using the visibility algorithm

A first overview suggests that differences in the dynamical behavior of the obser-

vations are mapped onto corresponding network topologies. These differences are

associated with the fluctuations of the time series. Specifically, in the water tem-

perature network, there are relatively few communities (modularity classes) each

containing a large number of connected nodes. In contrast, the air temperature net-

work exhibits a greater number of communities compared to those of water tem-

perature network with a corresponding reduction of the connected nodes in each

hub. Finally, the wind speed network presents a lot of communities with the least

connected nodes in each hub. This network profile is consistent with the physical

state, as it increases the fluctuation of the time series values. Hence, the network

graphs provide an initial indication that the dynamic variability of the time series is

effectively captured through network topology.

Below, we present in detail the calculation of the network’s topological measures

derived from the time series of water temperature.

To calculate the degree of the network and the distribution of the degree, we

write in the command line of Matlab.

4.5 Extended Example of Transforming Time Series to Network and Analyzing Them…

144

The result is reflected in Fig. 4.44 which shows the time series of the degree of

each node of the network.

Below we present the degree and the degree distribution (Fig. 4.45).

The calculation of the diameter and the clustering coefficient are done by execut-

ing the following commands in Matlab.

Fig. 4.44 Degree of water temperature network

4 Complex Network Time Series

145

Fig. 4.45 Degree (left) and degree Distribution (right) of network of water temperature

Fig. 4.46 Clustering coefficient of network of water temperature

Figure 4.46 shows the clustering coefficient of water temperature network.

As we have mentioned, the betweenness centrality is calculated by typing the

following command, and the result is represented in Fig. 4.47.

4.5 Extended Example of Transforming Time Series to Network and Analyzing Them…

146

Fig. 4.47 Betweenness centrality of network of water temperature

Fig. 4.48 Closeness centrality of network of water temperature

To calculate the closeness centrality, we write in Matlab, while in Fig. 4.48, we

observe the values of centrality of each node.

4 Complex Network Time Series

147

Fig. 4.49 Eigenvector centrality of network of water temperature

Fig. 4.50 Modularity class of each node of the network of water temperature

Figures 4.49 and 4.50 illustrate the results of the calculation of eigenvector cen-

trality and modularity, respectively, for the case of the water temperature network.

4.5 Extended Example of Transforming Time Series to Network and Analyzing Them…

148

4.5.2 Examples of Simulation Data (Magnetohydrodynamics

Time Series)

In this section, an example of the application of the methodology for transforming

a time series into a network, in a time series derived from simulation, will be pre-

sented. In particular, velocity time series of hydrodynamic and magnetohydrody-

namic (MHD) turbulent flow are analyzed. The main scope is to understand the

mechanism of fluid patterns modification due to the external magnetic field. The

time series used was extracted from direct numerical method simulation, consisting

of 3600 values.

In order to be able to complete all the steps of the analysis, below is the complete

script file from plotting the data to converting to a graph and calculating the topo-

logical measures of the network.

4 Complex Network Time Series

149

%Script file example of time series to network

% % Analysis of magnetohydradynamic time series

% m_mu1 the name of the times series

%% plotting

figure (1)

plot(m_mu1)

title ('Time series','fontSize',11)

xlim([0 3601])

xlabel('time')

ylabel('Velocity')

figure (2)

DM_mu1=diff(m_mu1)

plot(DM_mu1)

xlim([0 3601])

title ('First Difference Time series','fontSize',11)

xlabel('time')

ylabel('Velocity')

%% convert to network

Net_x_nmu1=visibilitynet(DM_mu1);

%% plot adj

% Net_x_nmu1 the name of the network

figure ()

spy(Net_x_nmu1)

title ('Adjacency matrix','fontSize',11)

print -DMeta

%% convert to GEPHI file

writetoPAJ(Net_x_nmu1, 'Net_x_adnmu1', 0)

The results of the analysis are presented in the following figures. The first figure

shows the time series of speed, while the second is the time series of the first differ-

ences (Figs. 4.51 and 4.52).

Figure 4.53 illustrates the connectivity table of the network nodes. We can see

that there are small–large squares which are connected in a range of points (≈800,

≈2100, ≈3000).

In Fig. 4.54, the corresponding network is shown, using the degree measure for

illustration.

4.5 Extended Example of Transforming Time Series to Network and Analyzing Them…

150

Fig. 4.51 Time series of velocity

Fig. 4.52 First difference of time series of Fig. 4.51

Fig. 4.53 Adjacency

matrix of the

corresponding network

4 Complex Network Time Series

151

Fig. 4.54 Network of magnetohydrodynamic time series. The most intense color and largest

nodes are the nodes that have the highest degree

The network of Fig. 4.54 is plotted based on the property of the degree of the

nodes of the network; there is a color scale, and the greater the degree of the node,

the larger the size of the corresponding marker. In this way, we can easily locate the

nodes and then the corresponding values of the time series, since as we have men-

tioned there is a correspondence in the numbering of the values of the time series

with that of the nodes of the network.

In this case, we can identify the points of the time series where they have a higher

value/fluctuation than the rest. In general, in this way we identify the points of

change of the dynamic state in the evolution of the time series. In the next figure, we

present only the nodes with the maximum value of node degree measure. From

Fig. 4.55, we can identify the points of the time series where there is a change in the

dynamic evolution of the time series.

In Fig. 4.56, the corresponding network is shown, using the modularity measure

for illustration. We can distinguish four groups–communities of nodes. These dif-

ferent communities can characterize different regions in the time series.

4.5 Extended Example of Transforming Time Series to Network and Analyzing Them…

152

Fig. 4.55 Time series and part of the corresponding network based on the degree measure. The

network shows the nodes with the highest values of the degree

Fig. 4.56 Network from time series, based on the modularity measure

References

1. Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of

Modern Physics, 74(1), 47.

2. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for explor-

ing and manipulating networks. ICWSM, 8, 361–362.

4 Complex Network Time Series

153

3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex net-

works: Structure and dynamics. Physics Reports, 424(4–5), 175–308.

4. Charakopoulos, A. Κ., Karakasidis, T. E., Papanicolaou, P. N., & Liakopoulos, A. (2014).

The application of complex network time series analysis in turbulent heated jets. Chaos: An

Interdisciplinary Journal of Nonlinear Science, 24(2).

5. Donges, J. F., Zou, Y., Marwan, N., & Kurths, J. (2009). Complex networks in climate dynam-

ics. The European Physical Journal Special Topics, 174(1), 157–179.

6. Donner, R., & Donges, J. (2012). Visibility graph analysis of geophysical time series: Potentials

and possible pitfalls. Acta Geophysica, 60(3), 589–623.

7. Donner, R. V., Small, M., Donges, J. F., Marwan, N., Zou, Y., Xiang, R., & Kurths, J. (2011).

Recurrence-based time series analysis by means of complex network methods. International

Journal of Bifurcation and Chaos, 21(04), 1019–1046.

8. Erdős, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae Debrecen,

6, 290–297.

9. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuno, J. C. (2008). From time series to

complex networks: The visibility graph. Proceedings of the National Academy of Sciences,

105(13), 4972–4975.

10. Lacasa, L., Luque, B., Luque, J., & Nuno, J. C. (2009). The visibility graph: A new method

for estimating the Hurst exponent of fractional Brownian motion. EPL (Europhysics Letters),

86(3), 30001.

11. Zhang, J., & Small, M. (2006). Complex network from pseudoperiodic time series: Topology

versus dynamics. Physical Review Letters, 96(23), 238701.

12. Small, M., Zhang, J., & Xu, X. (2009). Transforming time series into complex networks. In

Complex sciences (pp. 2078–2089). Springer.

13. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature,

393(6684), 440–442.

References

155© The Author(s), under exclusive license to Springer Nature

Switzerland AG 2025

T. Karakasidis, A. Charakopoulos, Time Series and Networks Analysis,

https://doi.org/10.1007/978-3-031-92628-0_5

Chapter 5

Extended Case Studies

In this chapter, extensive examples of time series analysis are presented, based on

the theory covered in previous chapters. The purpose of this chapter is to help the

reader understand the theoretical concepts while simultaneously being able to

reproduce the presented results by applying the routines provided in the book. In

this way, we believe that the reader will be capable of applying these routines to

other datasets as well. Example 1 includes field data, Example 2 used experimental

data, while Example 3 performed simulated data.

5.1 Example 1: “Detection of Low-dimensional Chaos

in Wind Time Series”

In this extended example, we explored the presence of low-dimensional determinis-

tic chaos in wind time series obtained from a meteorological station [5]. Initially, we

utilized techniques such as power spectrum and average mutual information func-

tion to extract characteristic times. Our examination of correlation dimension sug-

gested the potential existence of a low-dimensional attractor, which provided

significant evidence supporting the existence of low-dimensional chaotic dynamics

within the wind time series.

The series consists of 30 years of weekly observations, provided by a meteoro-

logical station of horizontal wind speed measured as a weekly mean average,

including all directions, resulting in a total number of 1488 records. In Fig. 5.1, the

weekly mean wind speed vs time is presented, using script 5.1.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92628-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-92628-0_5#DOI

156

Fig. 5.1 Weakly mean wind speed (http://www.emy.gr/emy/el/)

%Script 5.1

plot(wind,'b.-','MarkerSize',10); %'wind' the name of time

series

title('Environmental data','FontSize',20)

ylabel('wind velocity','FontSize',10)

xlabel('time (weeks)','FontSize',10)

We can obviously observe from the figure above the existence of periodicity.

To determine if the data contains trends, we apply the following script (5.2)

(Fig. 5.2).

% Script 5.2

% Test for trend using the mean value

TS=input('Give the time series_:');

Size_segment=input('Give the time series (segment) length_:');

%50

Overlap=input('Give the overlap of segments_');

[TS_segments,index,reject] =slideWindow(TS, Size_segment, Ovelap);

TS_segments(TS_segments==0)=NaN;

columnMeans = mean(TS_segments,'omitnan');

plot(columnMeans,'o')

xlabel('Points');

ylabel('mean');

As we can see, using linear regression, the dotted line is created which indicates

the trend. Then, the trend is removed using the first differences approach (script

5.3), and the corresponding time series appear in Fig. 5.3.

5 Extended Case Studies

http://www.emy.gr/emy/el/

157

Fig. 5.2 Successive segments mean the wind speed time series

Fig. 5.3 Original and detrended time series using first difference

% Script 5.3

% Detrend data with applying first difference

TStrend = input('Give the time series with trend_:');

length = input('Give the time series length_:');

t=1:length;

Diff_detreded=diff(TStrend) % Diff_y1 the time series without

trend

plot(t,TStrend,'.-');

hold on

plot(Diff_detreded,'.-');

legend('Data with trend','Detrended time series')

xlabel('Time (t)');

ylabel('y(t)');

title('Detrended time series by First Difference','FontSize',14)

Then we employ the mutual information analysis in order to extract a time lag for

the reconstruction of space phase following the script 5.4, and the results appear in

5.1 Example 1: “Detection of Low-dimensional Chaos in Wind Time Series”

158

Fig. 5.4. As we can see the first minimum of the mutual information of the first dif-

ferences occur at τ = 1. For the calculation of the lag time, it is recommended to be

done on the time series where the trend has been removed.

% Script 5.4

% Plot time series and compute mutualinformation

data=input('Time series name_');

tmax=input('Time Lag_');

figure

subplot(2,1,1);

plot(data,'b.-','MarkerSize',6);

axis([0 1480 2 5])

title('Time series','FontSize',10)

ylabel('y(t)')

xlabel('(t) Time')

subplot(2,1,2);

[mutM] = mutualinformation_b(data, tmax)

In order to determine that it is necessary to remove the trend, below is given the

initial time series as well as the result of finding the lag time using mutual informa-

tion function. We can see from Fig. 5.5 that there is a smooth decline without show-

ing a sharp plunge in values.

Next we employ the false nearest neighbor method in order to select the minimal

embedding dimension. This method is based on the assumption that two points that

are near to each other in the sufficient embedding dimension should remain close as

the dimension increases. We obtain the results appearing in Fig. 5.6 using the script

5.5, where tau = 1 and nmax = 10.

Fig. 5.4 Results of mutual information function of detrended time series

5 Extended Case Studies

159

Fig. 5.5 Results of mutual information function of initial time series

Fig. 5.6 False nearest neighbor function with time embedding 10

% script 5.5

% False Nearest Neighbors

% calculate the embedding dimension

function FnM = falsenearest(wind,1,10)

% FnM = falsenearest(xV,tau,mmax,escape,theiler,tittxt)

% Computes the false nearest neighbors starting from 1 to 'mmax'

%embedding dimensions.

% INPUT

% xT : time series

% tau : delay time. If empty, tau=1

% mmax : maximum embedding dimension.

%

5.1 Example 1: “Detection of Low-dimensional Chaos in Wind Time Series”

160

Fig. 5.7 Estimation of correlation dimension

Then we evaluate the correlation dimension, using the code presented in previ-

ous subchapter, which is an indicator of existing low-dimensional chaos (Fig. 5.7).

From the above figures, we can see that the time series of wind speed presents

low-dimensional chaos, with a correlation dimension between 2 and 3.

5.2 Example 2: “Identification of Spatiotemporal

Phenomena Using Non-linear Time Series Analysis

and Network Analysis Methods”

In this example, we describe a methodology for analyzing a spatiotemporal problem

and specifically the identification of regions in a liquid turbulent flow problem in an

experimental arrangement [2–4].

Discriminating the state of the fluid region as a function of the distance from the

jet axis is crucial challenge. We provide a methodology for studying turbulent flows,

specifically for identifying different regions of the jet (from the point of view of

their dynamical behavior) through nonlinear methodologies and also employed the

complex network analysis. In order to understand the example, first we present the

basic elements of the problem, which are common to both approaches to analysis,

and then we focus on the two methods separately.

5 Extended Case Studies

161

The data originate from temperature recordings in a vertical turbulent heated jet

where time series were recorded along a horizontal cut through the jet axis by trans-

forming them to complex networks. The time series are transformed into complex

networks using the visibility graph method, and then for each network, we evaluated

the main topological network properties to demonstrate how they can effectively

distinguish different dynamical regimes of the liquid regions.

A schematic flow representation of the turbulent jet is sketched in Fig. 5.8, where

in the case of fully developed turbulence, three different regions are expected:

 (a) The boundary region (BR) located at large distances from the jet axis (boundary

with ambient fluid).

 (b) The inner region (IR) positioned between the boundary region and the center of

the jet.

 (c) The jet axis region (JR) close to the jet axis.

In this study, 21 recordings of temperature time series obtained at various mea-

surement locations along a horizontal cut of the flow were employed. The sampling

period at each location was 40 s at a frequency of 60 Hz. The first time series was

recorded at position x = 32.40 cm (the first at top) and the last one at x = 46.50 cm

(the last at the bottom), and the corresponding time series are displayed in Fig. 5.9.

On the horizontal axis, time (t) is presented, while the vertical axis refers to each

time series which is located as we move from the left boundary (position

x = 32.40 cm) of the tank to the right (position x = 46.50 cm) (Fig. 5.10).

Fig. 5.8 A schematic

turbulent jet flow

5.2 Example 2: “Identification of Spatiotemporal Phenomena Using Non-linear Time…

162

Fig. 5.9 The time series recorded at various measurement distances from the jet axis. The green

time series correspond to the boundary region, while the blue and red time series represent the jet

axis region and inner regions, respectively

Fig. 5.10 A shadowgraph

view of the experimental

setup. The green areas

indicate the boundary

region, while the blue and

red areas represent the jet

axis region and inner

regions, respectively

5.2.1 Nonlinear Analysis

In this approach, for each temperature time series measured at different locations,

we estimated mainly nonlinear measures such as mutual information combined with

descriptive statistics measures, as well as some linear and nonlinear dynamic detec-

tors such as Hurst exponent, detrended fluctuation analysis (DFA), and Hjorth

parameters.

First for each time series, we evaluate the Hurst exponent, using the following

command in Matlab (Fig. 5.11).

5 Extended Case Studies

163

Fig. 5.11 Hurst exponent of the time series as a function of measurement positions with R/S method

%%

%Hurst Exponent

H= HurstExponent(XV)% XV is the name of each time series

The Hurst exponents exhibit their lowest values within the range of

36.25–38.40 cm, corresponding to the jet axis region, thereby distinguishing these

time series and their respective measurement regions from others. Generally, the

Hurst exponent values exceed 0.5, except at x = 46.5, which lies outside the jet

region in the ambient water region, reflecting a persistent behavior.

Figure 5.12 presents the Hjorth parameters, mobility, and complexity, of the

time series. Notably, the highest mobility values are observed in the time series

originating from the jet core, where the complexity values are at their lowest. In

order to calculate the Hjorth parameters, we write the following in Matlab.

5.2 Example 2: “Identification of Spatiotemporal Phenomena Using Non-linear Time…

164

Fig. 5.12 Hjorth parameters mobility and complexity of the time series as a function of measure-

ment positions

5 Extended Case Studies

165

function [mutM_all] = mutualInformationMatrixavr(timeSeriesMatrix,
tmax, partitions, tittxt, type)
% MUTUALINFORMATIONMATRIXSINGLEPLOT computes and plots mutual
information for
% each column of a matrix of time series, with all results shown
in one figure.
% INPUTS:
% timeSeriesMatrix : Matrix where each column represents a time
series
% tmax : Largest delay time to compute mutual
information

% OUTPUT:
% mutM_all : A cell array where each element contains the
mutual information for one time series
'b');

% Validate input
[n, FGMSeries] = size(timeSeriesMatrix);
if nargin < 3 || isempty(partitions)

partitions = ceil(sqrt(n / 5));
end
if nargin < 4

tittxt = '';
end
if nargin < 5

type = 'b';
end

% Initialize results

mutM_all = cell(FGMSeries, 1);

% Prepare figure

figure;

hold on;

% Loop through each time series (column)

for col = 1:FGMSeries

xV = timeSeriesMatrix(:, col);

mutM = computeMutualInformation(xV, tmax, partitions);

mutM_all{col} = mutM; % Store results

% Plot results

if type == 'd'

plot(mutM(:, 1), mutM(:, 2), '.', 'DisplayName',

['Series ', FGM2str(col)]);

elseif type == 'c'

plot(mutM(:, 1), mutM(:, 2), '-', 'DisplayName',

['Series ', FGM2str(col)]);

else

plot(mutM(:, 1), mutM(:, 2), '-o', 'MarkerSize', 6,

'DisplayName', ['Series ', FGM2str(col)]);

end

end

% Customize plot

grid on;

xlabel('Delay (lag)', 'FontSize', 10, 'FontWeight', 'bold');

ylabel('Mutual Information', 'FontSize', 10, 'FontWeight',

%Script 5.6

% Mutual Information of a matrix of time series

5.2 Example 2: “Identification of Spatiotemporal Phenomena Using Non-linear Time…

166

xV = (xV - xmin) / (xmax - xmin + eps); % Avoid division by

zero

% Assign to partitions

arrayV = min(floor(xV * partitions) + 1, partitions);

% Initialize mutual information results

mutM = zeros(tmax + 1, 2);

mutM(:, 1) = (0:tmax)'; % Lag values

% Compute mutual information for each lag

for tau = 0:tmax

ntotal = n - tau;

h12M(:) = 0; % Reset joint histogram

for t = 1:ntotal

h12M(arrayV(t + tau), arrayV(t)) = h12M(arrayV(t +

tau), arrayV(t)) + 1;

end

% Compute marginals

h1V = sum(h12M, 2); % Sum over rows

h2V = sum(h12M, 1); % Sum over columns

% Normalize probabilities

h12M = h12M / ntotal;

h1V = h1V / ntotal;

h2V = h2V / ntotal;

% Calculate mutual information

mutS = 0;

for i = 1:partitions

for j = 1:partitions

if h12M(i, j) > 0

mutS = mutS + h12M(i, j) * log(h12M(i, j) /

(h1V(i) * h2V(j) + eps));

end

end

end

mutM(tau + 1, 2) = mutS;

end

end

function [mutM] = computeMutualInformation(xV, tmax, partitions)

% Computes mutual information for a single time series

n = length(xV);

h1V = zeros(partitions, 1); % Marginal for x(t+tau)

h2V = zeros(partitions, 1); % Marginal for x(t)

h12M = zeros(partitions, partitions); % Joint probabilities

% Normalize data

xmin = min(xV);

xmax = max(xV);

'bold');

title(tittxt, 'FontSize', 12, 'FontWeight', 'bold');

legend('show', 'Location', 'Best');

hold off;

end

5 Extended Case Studies

167

Fig. 5.13 Mutual information of the time series as a function of measurement positions

Using the following command in Matlab, we calculate the mutual information

for each time series plotted in the same figure, giving as input the matrix with the

time series (Fig. 5.13).

It can be observed that time series coming from different positions on the hori-

zontal axis of the experiment show a different distribution of the values of the

mutual information function. In this way, we can separate the time series in relation

to their recording location.

Using the previously methods, it is evident that the jet regions can be distin-

guished through the analysis of the corresponding time series. Additionally, cluster-

ing technique can be applied in an effort to better discriminate the various regions

of the jet as well as locate the jet axis. The hierarchy built by the clustering algo-

rithm from each time series is represented by the dendrograms given in Fig. 5.14.

The horizontal axis represents each time series, while the vertical axis indicates

the distance. At the top of the dendrogram, the position of each time series measure-

ment along the horizontal axis is schematically displayed.

5.2 Example 2: “Identification of Spatiotemporal Phenomena Using Non-linear Time…

168

Fig. 5.14 Dendrogram based on the time series. The sketch above is a schematic representation of

the location of the various regions in the measurement setup

5.2.2 Complex Network Analysis

In this approach, the main idea is to analyze and investigate temperature fluctuations

from a vertical turbulent heated jet where temperature time series were recorded

along a horizontal cut through the jet axis by transforming them to complex net-

works [1].

We convert each time series to a network and then we calculate the topological

measures.

In Fig. 5.15, the diameter, modularity, and clustering coefficient are presented as

functions of the horizontal position along the reconstructed visibility algorithm,

presented in Chap. 4. The horizontal axis represents the measurement locations of

each time series. The diameter profile using the visibility algorithm exhibits its low-

est value at x = 37.40 cm. Notably, measurements on the far right and far left cor-

respond to ambient water, representing a distinct dynamical regime compared to the

flow region, which spans approximately from 35 to 42 cm. Therefore, when refer-

encing minimum or maximum values, we focus on the flow region, excluding the

full extent of the measurement data.

From the modularity results, it is observed that the lowest modularity values

within the flow region occur for the time series at x = 37.40 cm. Generally, higher

modularity values imply fewer communities, while the lowest modularity value at

x = 37.40 cm indicates a network with many smaller communities. This behavior is

linked to the underlying physics: near the jet axis, the dynamics are influenced by

small, short-lived vortices that frequently perturb the system, reducing connectivity

between successive states. Conversely, closer to the boundaries, large, long-lived

5 Extended Case Studies

169

Fig. 5.15 Diameter, modularity, and clustering coefficient of the networks along the hori-

zontal axis

structures dominate, leading to more connected states and fewer, larger

communities.

In the inner region (x = 36.40 cm to x = 40.25 cm), the clustering coefficient

reaches its lowest value at x = 37.40 cm. The clustering coefficient reflects the prob-

ability that the neighbors of a node are connected, indicating the likelihood that a

node’s “friends” are also “friends” with each other. For the network derived from

the time series at x = 37.40 cm, nodes exhibit greater independence compared to

networks constructed from other time series in the flow region. This behavior again

reflects system dynamics, as the small, short-lived vortices near the jet axis lead to

frequent disruptions, resulting in faster memory loss in system evolution and fewer

connected neighboring points (nodes) in the network. Moving toward the boundar-

ies, the presence of long-lived structures promotes longer memory effects, resulting

in greater connectivity among network nodes.

In summary, the lowest values of diameter, average path length, modularity, and

clustering coefficient are observed for the time series at x = 37.40 cm. The interpre-

tation of these topological properties identifies this position as corresponding to the

jet axis. Interestingly, conventional hydrodynamic methods, using exponential fit-

ting, estimate the jet axis position at x = 37.75 cm. More broadly, the spatial varia-

tion in network topological properties enables clear differentiation between the jet

axis region and other parts of the jet.

5.2 Example 2: “Identification of Spatiotemporal Phenomena Using Non-linear Time…

170

Fig. 5.16 Average degree of the networks along the horizontal axis

The average degree profile of each network constructed by visibility graph is

displayed in Fig. 5.16. The average degree of a network is the average of the degrees

over all nodes in the network.

The profile of the average degree is quite symmetric. Near the boundary (except

for the location x = 32.40 cm on the left and the region x = 42.50–46.50 cm on the

right, which lies outside the increased turbulence region and in fact corresponds to

ambient water) degree presents high values. As we move away from the boundary

toward the inner region, the degree value decreases and obtains its lowest value at

the position x = 37.40 cm.

Another noteworthy aspect is that the degree distribution of a network is consid-

ered one of the most significant properties of a network. According to Lacassa et al.,

the visibility graph network of a time series has a power law degree distribution

P(k) = k-γ and is characterized as a scale-free network. Figure 5.17 presents the

degree distribution of the networks constructed from selected time series recorded

in the three different regions of the flow as discussed already: one from the bound-

ary region, one from inner region, and one from the jet region.

The results show that the networks follow a power law tail distribution, P(k) = k−γ,

for k > 10 with varying power exponents γ. This suggests that the networks are

scale-free in this range and may exhibit fractal characteristics. The number of high-

degree nodes (k > 70) is limited to one or none, so they are excluded from the slope

calculation. Notably, the exponent γ decreases as we move from the jet region to the

boundary, indicating a variation in slopes: γ = 3.22 in the jet region, γ = 2.78 in the

inner region, and γ = 1.68 at the boundary. The jet region exhibits the steepest slope

among the three.

As we move away from the boundary region toward the jet axis region, the pres-

ence of small short living structures is enhanced resulting in a more frequent disrup-

tion of the dynamics of the corresponding fluid regions which results in a faster loss

of memory in the time series and as a result less nodes connected. Such events

5 Extended Case Studies

171

Fig. 5.17 Degree distribution of networks from time series near the boundary (blue), near the

inner region (green), and close to jet region (red)

reduce significantly the number of nodes with high number of neighbors which are

a result of the larger and longer living structures which dominate far from the jet

axis. Notably, there is also a variation of the low neighbor nodes (k < 10) depending

on the location of the measurement station.

5.3 Example 3: “Analysis of Magneto-hydrodynamic

Channel Flow Through Complex Network Analysis”

In this example, we analyze hydrodynamic (HD) and magnetohydrodynamic

(MHD) velocity time series from direct numerical simulations (DNS) using the vis-

ibility graph method [2]. We investigate whether the flow can be classified into three

distinct regions based on turbulent boundary-layer theory. Additionally, the study

explores the identification of different dynamical regions and hidden characteristic

patterns in the presence and absence of a magnetic field.

First, it is shown that the velocity time series recorded in different regions of the

flow exhibits distinct topological network structures. Additionally, various topologi-

cal properties of the resulting networks effectively capture and distinguish the three

turbulent regions—viscous sublayer, buffer layer, and log-law layer—in both hydro-

dynamic and magnetohydrodynamic (MHD) flows.

Figure 5.18 illustrates a schematic representation of the flow field geometry in a

turbulent channel flow, following the principles of turbulent boundary-layer theory.

According to wall-bounded turbulence theory, such flows consist of three distinct

regions. The region closest to the walls, known as the “Viscous Sublayer” (VS), is a

5.3 Example 3: “Analysis of Magneto-hydrodynamic Channel Flow Through Complex…

172

Fig. 5.18 Schematic flow of turbulent channel flow near a wall

Fig. 5.19 A schematic of the 3D channel flow simulation setup, along with instantaneous stream-

wise velocity profiles at three different wall-normal heights, is shown

thin layer where viscous effects dominate. Above this lies the “Buffer Sublayer”

(BS), characterized by a high time-averaged velocity and fully developed turbu-

lence. The outermost region, referred to as the “Log-Law Sublayer” (LLS), is domi-

nated by turbulent shear stress, with turbulence exhibiting significantly larger flow

structures compared to those near the boundary (Fig. 5.19).

The left panel represents the case without a magnetic field, while the right panel

illustrates the flow behavior under the influence of a magnetic field. The blue time

series refer to the VS region, while red and green time series refer to the BS region

and LLS region, respectively.

A closer examination of the time series reveals that, in the presence of a magnetic

field, the fluctuations are significantly reduced and appear smoothed out. Table 5.1

provides a summary of the expected regions and the approximate measurement

positions along the wall-normal direction (Fig. 5.20).

5 Extended Case Studies

173

Table 5.1 Expected flow regions

Region name

Measurement position along wall-

normal direction (approximately) Description

Viscous sublayer (VS) From y+ = 0.21 to y+ = 6.39 Area close to the channel wall

Buffer sublayer (BS) From y+ = 7.60 to y+ = 29.76 Region next to the boundary

Log-law sublayer

(LLS)

From y+ = 34.75 to y+ = 177.11 The area at higher distance

from the channel wall

Fig. 5.20 Time series measurement at y+ = 0.85

Each time series was first transformed into networks using the visibility graph

algorithm, as previously described in detail. To transform the time series into a net-

work, we use the following script (5.) in the Matlab. Figure 5.21 shows the network

connectivity (adjacency matrix) using script 5.7.

5.3 Example 3: “Analysis of Magneto-hydrodynamic Channel Flow Through Complex…

174

Fig. 5.21 Adjacency

matrix of time series

measurement at y+ = 0.85

In order to be able to visualize the network in the Gephi software, we use the

following script 5.8. Figure 5.22 shows the network layout.

Subsequently, we analyzed the topological properties of the resulting complex

networks using the following script files. The computed metrics, degree, closeness

centrality, clustering coefficient, eigenvector centrality, and betweenness centrality

are presented as functions of the measurement position along the wall-normal direc-

tion in inner units (y+). These results are illustrated in Fig. 5.23a–e, where dashed

lines indicate the boundaries of different flow regions.

5 Extended Case Studies

175

Fig. 5.22 Network layout of time series measurement at y+ = 0.85

5.3 Example 3: “Analysis of Magneto-hydrodynamic Channel Flow Through Complex…

176

Fig. 5.23 (a–e) Topological properties of the network derived from time series measurement at

y+ = 0.85

5 Extended Case Studies

177

Both in the absence and presence of a magnetic field, the network properties

exhibit a similar profile but on different scales. A closer examination reveals that

near the channel wall (viscous sublayer, VS), the degree value initially increases up

to approximately y+ = 7 (marked as a light blue area), then gradually decreases until

around y+ = 30 (buffer layer, BS), and remains nearly constant beyond this point in

the log-law sublayer (LLS). This average degree profile aligns with the physical

interpretation of the data and the network construction method, as time series from

the buffer and log-law sublayers exhibit greater variability compared to those from

the viscous sublayer.

5.3 Example 3: “Analysis of Magneto-hydrodynamic Channel Flow Through Complex…

178

References

1. Charakopoulos, A. Κ., Karakasidis, T. E., Papanicolaou, P. N., & Liakopoulos, A. (2014).

The application of complex network time series analysis in turbulent heated jets. Chaos: An

Interdisciplinary Journal of Nonlinear Science, 24(2).

2. Charakopoulos, A., Karakasidis, T., & Sarris, I. (2021). Analysis of magnetohydrodynamic

channel flow through complex network analysis. Chaos: An Interdisciplinary Journal of

Nonlinear Science, 31(4).

3. Charakopoulos, A. K., Karakasidis, T. E., Papanicolaou, P. N., & Liakopoulos, A. (2014).

Nonlinear time series analysis and clustering for jet axis identification in vertical turbulent

heated jets. Physical Review E, 89(3), 032913.

4. Charakopoulos, A. Κ., Karakasidis, T. E., & Liakopoulos, A. (2015). Spatiotemporal analysis

of seawatch buoy meteorological observations. Environmental Processes, 2, 23–39.

5. Karakasidis, T. E., & Charakopoulos, A. (2009). Detection of low-dimensional chaos in wind

time series. Chaos, Solitons & Fractals, 41(4), 1723–1732.

5 Extended Case Studies

179© The Author(s), under exclusive license to Springer Nature

Switzerland AG 2025

T. Karakasidis, A. Charakopoulos, Time Series and Networks Analysis,

https://doi.org/10.1007/978-3-031-92628-0

A

Amplitude adjusted Fourier transform

(AAFT), 94–98

Attractors, 79–81, 83, 85–91, 155

Autocorrelations, 45–52, 91, 95, 99

C

Centrality measures, 117–120

Centroid-linkage clustering, 71–73

Chaos detection, 155–160

Chaos theory, 75, 89

Complete-linkage clustering, 70

Complex network analysis, 160, 168–177

Complex network theory, 105–107

Correlation dimension, 89–91, 155, 160

Correlation networks, 132

D

Degree distribution, 108–112, 127–130, 144,

145, 170, 171

Descriptive statistics, 11–24, 162

Detrending, 30–43

Dynamical systems, 50, 75–91, 131

F

False nearest neighbors (FNN), 83, 84, 158, 159

First differences, 34–36, 39, 40, 42, 149,

150, 156–158

Fourier transform, 53, 54, 91–94

G

Graph theory, 105

H

Hierarchical clustering, 68, 69, 72

Hjorth parameters, 45, 66–68, 162–164

Hurst exponents, 45, 64–66, 162, 163

M

Magneto-hydrodynamic (MHD),

148, 171–177

Moving averages, 31–34, 37, 41, 42

Multivariate analysis, 3, 10, 11

Mutual information, 45, 60–63, 82, 155,

157–159, 162, 167

N

Nonlinear analysis, 75, 85, 89, 162–167

Nonlinear time series, 75–101, 160–171

P

Phase space reconstruction, 63,

75–99, 131

Power spectrum analysis, 52–58

R

Recurrence networks, 131–132

Index

https://doi.org/10.1007/978-3-031-92628-0#DOI

180

S

Scale-free networks, 128–129, 170

Seasonality, 5, 15, 25, 28, 30, 45, 47

Single-linkage clustering, 69–70

Small-world network, 124–128

Spatiotemporal phenomena, 160–171

Statistical analysis, 3–41

Surrogate time series, 91–102

T

Time series, 3–41, 45–71, 75–99, 105–151

Time series analysis, vii, 3, 4, 30, 45, 60,

75–99, 105, 132, 155, 160–171

Time series to network transformation, 133, 138

Turbulence analysis, 161, 172

Turbulent regions, 171

U

Univariate analysis, 10

V

Visibility networks, 133–136

W

Wind time series, 50, 65, 67, 155–160

Index

	Preface
	Contents
	Part I: Linear & Non-Linear Analysis
	Chapter 1: Time Series Statistical Analysis
	1.1 Introduction to Time Series
	1.1.1 Examples of Time Series
	Simple Numeric Time Series
	Field Measurement Data: Environmental Time Series
	Experimental Data: Time Series from Applied Sciences
	Financial Time Series

	1.2 Statistical Analysis: Univariate, Bivariate, and Multivariate
	1.3 Descriptive Statistics
	1.3.1 Mean, Median, Variance, Standard Deviation, Max and Min, Histogram, Skewness, and Kurtosis
	Normal Distribution
	Gamma Function
	Weibull Distribution

	1.4 Components of a Time Series
	1.4.1 Trend/Seasonal Component (Period Estimation)
	1.4.2 Detrending and De-Seasoning of a Time Series
	Detrending Using a Fit Deduced Model
	Detrending Using Moving Average Mean
	Detrending Using Moving Average Model (Filter)
	Detrending Using First Differences

	1.4.3 Detrending and De-Seasoning of a Real-Time Series

	References

	Chapter 2: Temporal Behavior of Time Series
	2.1 Autocorrelation
	2.1.1 Seasonality Effects
	Examples of Time Series with More than One Frequency

	2.1.2 Noise Effects

	2.2 Power Spectrum Analysis
	2.3 Mutual Information
	2.4 Hurst Exponent
	2.5 Hjorth Parameters
	2.6 Clustering
	2.6.1 Single-Linkage Clustering or Nearest Neighbor
	2.6.2 Complete-Linkage Clustering
	2.6.3 Average-Linkage Clustering
	2.6.4 Centroid-Linkage Clustering

	References

	Chapter 3: Nonlinear Time Series Analysis
	3.1 Introduction to Dynamical System
	3.1.1 System Identification
	3.1.2 Phase Space Reconstruction
	3.1.3 False Nearest Method
	3.1.4 Chaos and Dynamical Systems
	3.1.5 Dynamical Systems with an Attractor
	3.1.6 Correlation Dimension

	3.2 Surrogate Time Series
	3.2.1 Random Phase or Fourier Transform
	3.2.2 Amplitude Adjusted Fourier Transform (AAFT)
	3.2.3 Iterative Amplitude Adjusted Fourier Transform (IAAFT)
	3.2.4 Statistically Transformed Autoregressive Process (STAP)

	References

	Part II: Complex Network Analysis
	Chapter 4: Complex Network Time Series
	4.1 Basics of Complex Network Theory
	4.1.1 Theoretical Definition of a Graph

	4.2 Topological Network Measures
	4.2.1 Degree and Degree Distribution
	Degree of a Node
	Degree Distribution

	4.2.2 Shortest Path and Diameter
	4.2.3 Clustering Coefficient
	4.2.4 Centrality Measures/Betweenness Centrality
	Centrality Measures
	Betweenness Centrality

	4.2.5 Closeness Centrality
	4.2.6 Eigenvector Centrality
	4.2.7 Modularity

	4.3 Types of Networks
	4.3.1 Small-World Network
	4.3.2 Scale-Free Network
	4.3.3 Random Network

	4.4 From Time Series to Complex Network/Methods of Construction
	4.4.1 Phase Space Network: Recurrence Network
	4.4.2 Correlation Network
	4.4.3 Visibility Network

	4.5 Extended Example of Transforming Time Series to Network and Analyzing Them Using Network Properties
	4.5.1 Examples of Field Measurement Data (Environmental Time Series)
	4.5.2 Examples of Simulation Data (Magnetohydrodynamics Time Series)

	References

	Chapter 5: Extended Case Studies
	5.1 Example 1: “Detection of Low-dimensional Chaos in Wind Time Series”
	5.2 Example 2: “Identification of Spatiotemporal Phenomena Using Non-linear Time Series Analysis and Network Analysis Methods”
	5.2.1 Nonlinear Analysis
	5.2.2 Complex Network Analysis

	5.3 Example 3: “Analysis of Magneto-hydrodynamic Channel Flow Through Complex Network Analysis”
	References

	Index

