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Preface

Time series analysis is a dynamic research area that has fundamental importance for 

a wide range of scientific fields, in terms of both a fundamental point of view and 

applications ranging from physics to engineering as well as biomedical and finan-

cial applications. Over the last few decades, many computational methods have 

been applied and invented to deal with time series-related problems.

Beyond conventional time series methodologies, this book introduces the analy-

sis of time series through the perspective of complex networks. By transforming 

time series data into network, researchers can extract topological features that reveal 

underlying patterns.

But what is extremely interesting in this book is that we also provide detailed 

guidelines about the software with examples in MATLAB so that anyone can run 

the corresponding routines and apply them to the data provided or their personal 

data of research. Moreover, the readers can modify the routines appropriately in 

order to add more characteristics to the output. This fact is based on the basic idea 

of learning by trying.

The aim of this book is to provide basic knowledge of time series, introduce 

some statistical tools useful for analyzing these series, and gain experience in apply-

ing various linear, nonlinear, and advanced methodologies. We begin with the basic 

concepts of asset returns and a brief introduction to the processes to be discussed 

throughout the book.

The structure of the book is divided into two main parts. Part I: Linear & Non-

Linear Analysis introduces the reader to fundamental statistical tools and methods 

used in traditional time series analysis. It begins with Chap. 1, which focuses on 

basic statistical analysis, including descriptive measures, distributions, and hypoth-

esis testing for time series data. Chapter 2 delves into the temporal characteristics of 

time series, exploring properties such as stationarity, autocorrelation, and trends. 

Following that, Chap. 3 addresses nonlinear dynamics, including phase space recon-

struction, chaos indicators, and methods for detecting complex, nonlinear behavior 

in time-dependent data. Part II: Complex Network Analysis presents a more 

advanced perspective, applying network science techniques to the study of time 
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series. In Chap. 4, readers are introduced to complex network representations of 

time series, such as visibility graphs, and how these can be used to analyze struc-

ture, connectivity, and patterns in the data. Finally, Chap. 5 includes extended case 

studies that combine both traditional and network-based methods, showcasing their 

application to real-world datasets across different scientific disciplines. This struc-

ture allows the reader to progress from foundational concepts to more sophisticated 

analytical techniques, building a comprehensive understanding of time series and 

their underlying dynamics.

The book can be employed in undergraduate courses as well as in graduate 

courses, particularly those aiming to provide a fast and practical guide for perform-

ing analysis of time series for research purposes in disciplines such as physics, 

materials science, engineering, and finance, to mention a few areas.

Lamia, Greece  Theodoros Karakasidis  

Volos, Greece   Avraam Charakopoulos  
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Chapter 1

Time Series Statistical Analysis

1.1  Introduction to Time Series

Time series data consists of a set of values that are assembled over even intervals in 

time and ordered in a chronological order. The time interval at which data is col-

lected is commonly referred to as the time series sampling rate Δt and the inverse of 

that is the sapling frequency Fs = 1/Δt, i.e., how many points are recorded in a time 

unit [3, 4].

A time series is a sequential data set of points denoted as x(t), t = 0, 1, 2,…. 

where x is the variable and t represents time and is defined as follows

 X t x x x x
t( ) = …

1 2 3
, , ,  

The variable we study can be discrete or continuous. Discrete variables can take 

only given values, i.e., the number of times it rained during a given period, while 

continuous variables can take any value in a given interval, i.e., the temperature can 

be 23.4, 23.5, etc [5, 6].

In general, the data are recorded at equal time intervals, although this is not nec-

essarily always the case. In the present book, we are going to deal with time series 

of the former type. The interest of studying time series is that since they originate 

from a given system, they can provide information about the underlying system 

which quite often is too complex to be studied considering all its aspects. A given 

system can result in several time series as output, i.e., when we study the weather in 

a given place, we measure the temperature, humidity, atmospheric pressure, etc [8]. 

Thus, time series analysis can deal with just one time series at a time; in this case, 

we speak about univariate time series analysis. However, one can see the combined 

analysis of two or more time series simultaneously speaking in this case for bivari-

ate or multivariate analysis [9, 10].

Time series can originate from various sources. One of the most common sources 

is computational models of systems, such as simple models or complex simulations 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92628-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-92628-0_1#DOI
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like computational fluid dynamics simulations. The other source originates from 

sensors used in laboratory experiments and sensors deployed in the field, such as 

environmental measurements. Financial interest time series, either of the stock 

exchange or other types, are also of particular interest. Below, we present some 

examples of such time series.

The data and the codes employed in the present book can be downloaded from 

the website https://github.com/avcharak/Time-Series-and-Networks-Analysis.

1.1.1  Examples of Time Series

In the following, we present representative examples of time series, some of which 

will be used as case studies in forthcoming chapters. Indicatively, these examples 

cover some of the major scientific areas such as economic time series, environmen-

tal, applied science, physical sciences but also, we first present simple synthetic 

time series.

What To Do First Although it may appear silly, our first job when studying a given 

dataset is to plot the observations as a function of the time. This permits us to see if 

there is any anomaly in the data, any missing points, or if everything has passed 

smoothly and with precision from the source file to the data analysis software. 

Sometimes some commas or points corresponding to different measuring systems 

can cause headaches. Also, data from a malfunctioning instrument can have data 

that are not correct.

 Simple Numeric Time Series

Here are some examples of simple synthetic time series. The equations of the pro-

gram are initially given for the purpose of expression, and then the graph, which is 

the result, is presented.

Example 1 Generation of periodic time series (sine wave) with input of variables, 

sampling period, frequency, and amplitude. We plot a periodic function using the 

script 1.1. As the first important step in time series analysis is to visualize the data, 

execute the script 1.1 in the Matlab command window. The result is displayed in 

Fig. 1.1.

1 Time Series Statistical Analysis
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Fig. 1.1 Sinus time series with sampling period Fs  =  300, frequency f1  =  10, and amplitude 

amp = 10

%Script 1.1
%Example 1, Generate a periodic time series  

Fs=input('Give the sampling period_:');  %sampling period (samples 
per second)
f1=input('Give the frequency_:');  
Amp=input('Give the Amplitude_:');

Ts=1/Fs;        % seconds per sample 
dt=0:Ts:1-Ts;   %signal duration

[y1]=(Amp*sin(2*pi*f1*dt))'; % sin function

plot(dt,y1,'b.-');   %plot function
ylim([-Amp-5 Amp+5])
ax=gca;            %grid parameter
ax.YGrid= 'on';    % y grid on

title('Simulated data','FontSize',20)  
ylabel('y(t)')
xlabel('(t) Time')

 

As expected, the data show periodic behavior commensurate with the input vari-

ables; otherwise, the time series has periodicity or seasonality.

There are several ways to plot time series on Matlab. Although the signal may 

appear continuous, it is actually a discrete signal since there is a large number of 

data points. Lines are generally used to guide our eyes. Sometimes, the number of 

points can be so large that the points appear to form a continuous line.

Example 2 We can also create more complex synthetic signals by combining sim-

ple signals. For instance, we can create three periodic time series with different 

frequencies by running in the command window and summing them using script 

1.2, and the results appear in Fig. 1.2. For this complex time series, we can say that 

1.1 Introduction to Time Series
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Fig. 1.2 Generate three time series with different frequencies (sampling frequency Fs  =  300, 

amplitude amp = 10, and signal frequencies f1 = 10 Hz, f2 = 20 Hz, f3 = 30 Hz), respectively, in 

one plot

1 Time Series Statistical Analysis
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it still has periodicity, which depends on the frequencies of the individual time 

series from which it is composed.

%Script 1.2
%Example 2, Generate a synthetic periodic time series  

Fs=input('sampling frequency_');  
f1=input('frequency_1_');  
f2=input('frequency_2_'); 
f3=input('frequency_3_'); 
Amp=input('Amplitude_');

Ts=1/Fs;        %sampling period
dt=0:Ts:1-Ts;   %signal duration

y1=Amp*sin(2*pi*f1*dt);
y2=Amp*sin(2*pi*f2*dt);
y3=Amp*sin(2*pi*f3*dt);
y4=0.3*(y1+y2+y3);

subplot(4,1,1);
plot(dt,y1,'r.-','MarkerSize',10);
title(sprintf('Simulated data with (%d) frequency 
',f1),'FontSize',18) 
ylabel('y(t)')
xlabel('(t) Time')
subplot(4,1,2);
plot(dt,y2,'b.-','MarkerSize',10);
title(sprintf('Simulated data with (%d) frequency 
',f2),'FontSize',18) 
ylabel('y(t)')
xlabel('(t) Time')
subplot(4,1,3);
plot(dt,y3,'k.-','MarkerSize',10);
title(sprintf('Simulated data with (%d) frequency 
',f3),'FontSize',18) 
ylabel('y(t)')
xlabel('(t) Time')
subplot(4,1,4);
plot(dt,y4,'.-','MarkerSize',10);
title('Simulated data with combined frequencies','FontSize',18) 
ylabel('y(t)')
xlabel('(t) Time')

 

 Field Measurement Data: Environmental Time Series

The next series contains 30 years of weekly observations recorded by a meteoro-

logical station, measuring the horizontal wind speed as a weekly mean across all 

directions. This dataset comprises a total of 1488 records [7]. In Fig. 1.3, the weekly 

mean wind speed vs time is presented.

By executing script 1.3 in Matlab command window, we get the time series plot.

1.1 Introduction to Time Series
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Fig. 1.3 Weakly mean wind speed (http://www.emy.gr/emy/el/)

Fig. 1.4 Water temperature 3-hourly data measured (https://poseidon.hcmr.gr/)

%Script 1.3

%Example 3, plot wind time series  

plot(wind,'b.-','MarkerSize',10);   %'wind' the name of time 

series 

title('Environmental data','FontSize',20)  

ylabel('wind velocity','FontSize',10)

xlabel('time (weeks)','FontSize',10)

 

By a first look in Fig. 1.3, we can understand that several smaller and larger peri-

odicities are present in this phenomenon. We will describe later in the book method-

ologies in order to derive the corresponding frequencies in the time series since they 

may reveal information about the system under study.

Another example of a time series of environmental interest is presented in 

Fig.  1.4 (after running script 1.4), where we can see seawater temperature data 

recorded every 3 h through a system of buoys for measuring atmospheric and ocean-

ographic data (https://poseidon.hcmr.gr/) [1].

1 Time Series Statistical Analysis
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%Script 1.4

%Example 4, plot water temperature time series 

plot(water_temp,'b.-','MarkerSize',10);   %water_temp the name of 

time series 

title('Enviromental data','FontSize',20)   

ylabel('water temperature (oC)','FontSize',10)

xlabel('time (ΔΤ=3h)','FontSize',10)

 

 Experimental Data: Time Series from Applied Sciences

The following time series examples come from the scientific field of applied sci-

ences. After running script 1.5, we can see in Fig. 1.5 the instantaneous temperature 

recorded during an experiment of a vertical turbulent heated jet [2]. It is clear how 

complex the time series behavior is compared to the previous examples.

%Script 1.5

%Example 5, plot temperature time series  

plot(turb_jet,'b.-','MarkerSize',6);   %Turb_jet the name of time 

series 

title('Enviromental data','FontSize',20)

ylabel('temperature (oC)','FontSize',10)

xlabel('time (sec)','FontSize',10)

 

 Financial Time Series

The next series we consider here is the daily index of the Nasdaq stock market index 

and gold price for 1 year (the data can be downloaded from Yahoo Finance). Using 

script 1.6, we plot the data against the time index, and the results are presented in 

Fig. 1.6. We can see that these time series present a different behavior from previ-

ous ones.

Fig. 1.5 Temperature time series of experimental temperature time series from a vertical turbulent 

heated jet [2]

1.1 Introduction to Time Series
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Fig. 1.6 Nasdaq 100 index and gold price for the same time period (data from Yahoo Finance)

%Script 1.6

%Example, plot financial time series 

figure

subplot(2,1,1);

plot(Nasdaq,'r.-','MarkerSize',10);

xlim([0 252])

title('Financial data Nasdaq index','FontSize',18) 

ylabel('Index ')

xlabel('(t) Time')

subplot(2,1,2);

plot(gold,'b.-','MarkerSize',10);

xlim([0 252])

title('Financial data Gold price','FontSize',18) 

ylabel('y(t)')

xlabel('(t) Time')

 

1.2  Statistical Analysis: Univariate, Bivariate, 

and Multivariate

In statistical analysis, there exists, among other things, three main categories of 

analysis, depending on the origin and the number of variables: univariate, bivariate, 

and multivariate analysis. When the measurement data refers to a sequence of mea-

surements of the same variable collected over time, then we have the case of the 

univariate analysis.

1 Time Series Statistical Analysis



11

Bivariate data involves two different variables and mainly, the analysis of these 

data focuses on investigating the causes and relationship between these two vari-

ables, while multivariate analysis is a more complex form of statistical analysis 

technique and is used when there are more than two variables in the data set. 

Multivariate analysis allows the separate and combined effects of the independent 

variable to be examined.

1.3  Descriptive Statistics

Techniques used to summarize and describe the characteristics of a group or to 

compare characteristics between groups are known as descriptive statistics.

1.3.1  Mean, Median, Variance, Standard Deviation, Max 

and Min, Histogram, Skewness, and Kurtosis

Below we provide the definition of the most common descriptive statistics mea-

sures. In general, when we study a problem, this corresponds to a population; for 

example, all temperatures in a class of experiments. However, we have access only 

to a limited number of measurements, thus we have access to a sample of the popu-

lation. There are whole books dealing with the ways to perform appropriate sam-

pling, and thus we are not going to treat this subject here. However, below we are 

going to treat terms that often appear as population or sample properties.

The sample average or mean, x, is obtained by summing up all measurements 

and dividing by their number N:

 
x

x x x

N N
x

N

i

N

i
=

+ +…+
=

=∑
1 2

1

1

 
(1.1)

The mean represents the value around which the observations are gathered. When 

referring to the ideal population average quite often, the symbol μ is used.

The median is the middle value in a group of numbers ranked by value. It is the 

number that is exactly in the middle, so 50% of the ranked numbers are above and 

50% are below the median. This definition holds when the number of observations 

is odd. If the number of observations is even, then we take the average of the two 

middle values as a median.

The min is simply the lowest value of the sample, while the max is the high-

est value.

The sample variance (σ2) is the sum of the difference of each point from the 

mean. As it is known, it is a measure of spread of the values around the mean:
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(1.2)
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σ is called the standard deviation. When referring to population variance and stan-

dard deviation, the symbols S2 and S are used, respectively.

The mode is the value that appears at a higher frequency (i.e., more 

frequently).

Range is the difference between the dataset’s largest value and the dataset’s 

smaller value:

 R x x= −
max min  

There are also other measures known as shape measures, which help describe how 

data points in a dataset are distributed around the mean. These measures assist in 

identifying patterns that become evident when the data is visualized on a graph.

Histogram It is of interest to measure the frequency of appearance of observed 

values. Since, in many cases, we have measures that can take continuous values in 

fact what we do is that we divide the region of values into intervals, and we measure 

the values that fall within the given intervals. This leads to the so-called histogram 

of the data. This representation can provide quite an insight into how the values are 

distributed around the mean.

In Fig. 1.7, we present the histogram for the time series of wind speed using 

script 1.7. The blue bars show the frequency of the value where the red line repre-

sents the normal distribution curve. We can see that in this case, we have a pretty 

symmetric distribution of values around the mean value of the measurements. We 

also can see the width of the distribution of values around the mean.

Fig. 1.7 Histogram of wind speed time series along with a fit corresponding to a normal 

distribution
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%Script 1.7
%Example, calculates the histogram of wind time series 

figure
function HIST=histogram_avra(data)

close all
m=length(data);
mu=mean(data);
sigma=std(data);
Bins=20;
[freq,x_axis]=hist(data,Bins); 
pdf=freq./m;
figure('position',[0 0 800 600]);
title('Histogram')
xlabel('Values');
ylabel('number of Observations');
hold on
Y=normpdf(x_axis,mu,sigma);
bar(x_axis,pdf,'FaceColor','blue','BarWidth',1);
hold on
plot(x_axis,Y./sum(Y),'Color','red','LineWidth',2);   
hold on

if nargin>=2
m_conf=length(percentiles);
quant=quantile(data,percentiles);
X_axis=get(gca,'XTick');
set(gca,'XTick',unique([min(X_axis) mu quant 

max(X_axis)]));
for i=1:m_conf

plot(quant(i),0,'sm','LineWidth',2);
hold on

end
legend({'value','Normal 

Dist.','Mean','Quantile'},'Location','NorthWest','FontSize',14,'Fo
ntWeight','Bold');

else
quant='';
legend({'value','Normal 

Dist.','Mean'},'Location','NorthWest','FontSize',14,'FontWeight','
Bold');

end

 

In the following, we will present some brief information about various known 

distributions that occur in many study systems. The main characteristic of these 

distributions is the shape of the corresponding histograms generated from the 

recorded values when examining the related systems.

 Normal Distribution

Gauss introduced the normal distribution or Gauss distribution, and the probability 

of a value x occurs has the form:
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(1.3)

We follow the notation for the X variable X~N(μ, σ2) where μ is the population aver-

age and σ2 is the population variance. In the case of the normal distribution, we have 

the following percentages of the population in the corresponding intervals:

 

µ σ µ σ
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The above is approximately valid for a sample with a mean x and variance s and is 

represented schematically in Fig. 1.8.

What is of interest is the so-called standard normal distribution:
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(1.4)

which corresponds to μ = 0 and s = 1 and is obtained if we transform the variable Χ 

using the relation:

 
Z

X
=

− µ

σ  
(1.5)

The Z variable is known as the standardization of X and is often also known as the 

Z-score. This is very practical when we have to compare different sets of values 

with different mean values and variances. Of course, we use the corresponding sam-

ple quantities in the case of a sample.

We must mention here that other well-known distributions can also be applied in 

exceptional cases. Such distributions are the gamma distribution and Weibull distri-

bution, which we discuss below.

There are two measures of form that describe the shape of the distribution and 

are discussed below.

Fig. 1.8 Normal distribution of time series
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Fig. 1.9 Probability distribution for different situations

Pearson’s moment coefficient of skewness is the the average of the standardized 

cubed deviation from the mean x( ):
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• If b1 = 0, the distribution is symmetric (Fig. 1.9 center),

• If b1 < 0, the distribution presents negative asymmetry (skewness) (Fig. 1.9 right).

• If b1 > 0, the distribution presents positive asymmetry (skewness) (Fig. 1.9 left).

The kurtosis (b2) sample coefficient is the average of the fourth power of the stan-

dardized deviations from the mean:
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(1.7)

• If b2 = 0, the distribution is called Mesokurtic.

• If b2 < 0, the distribution is characterized as Leptokurtic.

• If b2 > 0, the distribution is called Platykurtic.

These different situations are presented schematically in Fig. 1.10.

The simplest time series model is the one that has no trend or seasonality, and the 

variables are independent of each other and are randomly distributed with zero mean:

 
X N
t
~ 0

2
,σ( ) (1.8)

Thus, we generate a random array of data that follows the normal or Gaussian dis-

tribution Ν (μ,σ2). This time series has mean μ = 0 and standard deviation equal to 

one σ = 1, i.e., the normal distribution Ν(0,1). Using script 1.8, we produce such a 

time series, which is plotted in Fig. 1.11.
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Fig. 1.10 The three characteristic types of distributions are based on kurtosis

Fig. 1.11 Time series following Gaussian distribution

% Script 1.8

% Generate time series with Gaussian distribution 

N=input('Give the time series length_:');

TS=randn(N,1);

plot(TS,'.-')

title('Time series with Gaussian distribution 

N(0,1)','FontSize',14) 

xlabel('Time (t)'); 

ylabel('y(t)');  

In order to calculate the main descriptive statistics of the corresponding time 

series, we can execute script 1.9, and in Fig. 1.12, we can see the time series with 
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Fig. 1.12 Time series marked the main statistical properties

Table 1.1 Descriptive statistics for time series of Fig. 1.12

Mean Standard deviation Variance Median Maximum value Minimum value

0.0183 0.9886 0.9973 0.0774 2.6929 −2.9785

the graphical representation of the corresponding statistical measures, which are 

presented in Table 1.1.

%Script 1.9

%Descriptive statistics 

TS=input('Give the time series_:');

Descriptive_results=[mean(TS)' std(TS)' var(TS)' median(TS)' 

max(TS)' min(TS)']

plot(TS,'b.-','MarkerSize',10)

xlabel('Time (t)'); 

ylabel('y(t)');  

In Fig. 1.13, we present the histogram of the N(0,1) distribution by executing 

script 1.10.

% Script 1.10

% Histogram

TS=input('Give the time series_:');

histfit(TS',25,'normal')

title('Gaussian distribution N(0,1)','FontSize',14) 

legend('Data distribution','Normal distribution')

xlabel('y(t)'); 

ylabel('Frequency');

 

As expected, the distribution of the simulated data is quite close to the ideal nor-

mal distribution. Slight differences are due to the finite number of data and the size 

of the value intervals.
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Fig. 1.13 Histogram of the time series N(0,1)

Fig. 1.14 Time series where the main statistical properties are marked graphically on the plot

Table 1.2 Descriptive statistic

Mean Std Var Skew Kurtosis Median Max Min

3.5690 0.3325 0.1105 −0.0717 2.7957 3.5800 4.4600 2.6500

In the following, we present results of the descriptive statistics of the example 1.2 

(Fig. 1.14, Table 1.2).

We can also execute the script 1.11 to calculate the statistics of water temperature 

time series, and in Fig. 1.15 we present the corresponding histogram of wind time 

series by executing the script 1.10.

%Script 1.11

%Descriptive statistics 2

TS=input('Give the time series_:');

Descriptive_results=[mean(TS)' std(TS)' var(TS)' skewness(TS)' 

kurtosis(TS)' median(TS)' max(TS)' min(TS)']

plot(TS,'b.-','MarkerSize',10)

xlabel('Time (t)'); 

ylabel('y(t)');
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Fig. 1.15 Histogram of time series of wind speed

Fig. 1.16 Time series showing the main statistical properties

Table 1.3 Descriptive statistic

Mean Std Var Skew Kurtosis Median Max Min

19.1458 3.0892 9.5433 0.5638 1.8845 18.0371 25.8252 15.2295

We can see that the histogram is quite close to the normal distribution (repre-

sented by the red curve).

We get the following results by executing script 1.9 on the water temperature 

data (Fig. 1.16, Table 1.3).

We apply the same procedure in the case of the gold price for the period (see 

Fig. 1.17, Table 1.4) and the Nasdaq index (see Fig. 1.18, Table 1.5).

The time series we have seen so far have practically zero skewness. Below we 

present some time series that have either positive or negative skewness. This prop-

erty of time series is well reflected in the histograms where we can clearly see that 

value distribution differs from the normal distribution and in fact belongs to differ-

ent kind of probability distributions (thus presenting different histograms too).
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Fig. 1.17 Time series showing the main statistical properties (data from Yahoo Finance)

Table 1.4 Descriptive statistic

Mean Std Var Skew Kurtosis Median Max min

1773 1400 1952.3 0 0.2 1780 2051 1477

Fig. 1.18 Time series of Nasdaq index showing the main statistical properties (data from Yahoo 

Finance)

Table 1.5 Descriptive statistic

Mean Std Var Skew Kurtosis Median Max min

10,300 1500 2,249,000 0.00 0.00 10,300 12,800 7000

 Gamma Function

There are time series which, due to the nature of the system from which they origi-

nate, present positive or negative skewness value and thus correspond to types of 

distribution that differ from the normal distribution. A well-known such distribution 

is the gamma function. The probability density function of the gamma distribution 

is defined by:
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where γ is the shape parameter, μ is the location parameter, β is the scale parameter, 

and Γ is the gamma function which is described by the following relation:
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Script 1.12 that follows let us generate such a time series graphically represented in 

Fig. 1.19.

% Script 1.12

% Generates gamma random Numbers

r2=gamrnd(3,0.1,1,1000);

plot(r2,'.-')

xlabel('Time (t)'); 

ylabel('y(t)');

legend('Simulated time series','Location','Best')

 

The results from the calculation of the descriptive statistical measures by execut-

ing script 1.11 are presented in Table 1.6.

As observed this time series presents a positive skewness. In statistics, a posi-

tively skewed (or right-skewed) distribution is characterized by most values cluster-

ing around the left tail of the distribution, while the right tail of the distribution 

is longer.

Fig. 1.19 Simulated time series following the Gamma distribution

Table 1.6 Descriptive statistics

Mean Std Var Skew Kurtosis Median Max min

0.292 0.173 0.0301 1.240 5.116 0.259 1.131 0.028
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%Script 1.13

%Histogram of time series with positive skewness

TS=input('Give the time series_:'); % i.e r2

Skewness = input('Give the skewness_:'); % i.e 1.24 skewness of r2 

histfit(TS',25,'gamma')

xlabel('y(t)'); 

ylabel('Frequency');

legend(sprintf('Skewness(%d)',Skewness),'Location','Best')

 

By running in the command window script file 1.13, we plot the distribution in 

Fig. 1.20.

To understand the difference with the normal distribution, we can add the normal 

distribution curve to the figure by executing the following command.

hold on

histfit(r2',25,'normal')

 

The results are depicted in Fig. 1.21.

Fig. 1.20 Histogram of a time series with positive skewness

Fig. 1.21 Histogram of a time series with positive skewness, marked with the gamma and normal 

distribution
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 Weibull Distribution

In the previous paragraph, we have seen an example of a time series with positive 

skewness. Now we are going to see an example of a time series where the distribu-

tion of the data presents a negative skewness which is a characteristic of the well- 

known Weibull probability distribution which is described by the following 

equation:
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%Script 1.13.1

% Generates Weinbull random numbers

r3=wblrnd(3,45,1,1000);

plot(r3,'.-')

xlabel('Time (t)'); 

ylabel('y(t)');

legend('Simulated time series','Location','Best')

 

Βy running in the command window script 1.13.1, we plot the simulated time 

series as we can see in Fig. 1.22.

By running script 1.14, we obtain the statistics and the histogram of the above 

time series, along with a comparison with the normal distribution (Fig.  1.23, 

Table 1.7).

Fig. 1.22 Simulated the time series following the Weibull distribution
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Fig. 1.23 Histogram of a time series with negative skewness, marked with the Weibull and normal 

distribution

Table 1.7 Descriptive statistics

Mean Std Var Skew Kurtosis Median Max Min

2.960 0.083 0.007 −1.027 4.854 2.974 3.154 2.539

% Script 1.14

% Histogram of time series with negative skewness

TS=input('Give the time series_:'); % i.e r3

Skewness = input('Give the skewness_:'); % i.e -1.027 skewness of 

r3 

h = histfit(TS',25,'weibull');set(h(1),'color','b'); 

set(h(2),'color','r')

ylabel('Frequency');

leg1=legend(sprintf('Time series Skewness(%d)',Skewness),'Weibull 

distribution','Location','Best')

hold on

h1=histfit(TS',25,'normal');set(h1(1),'color','b'); 

set(h1(2),'color','g')

 

Although statistical analysis is very useful and provides a certain insight for the 

system under study, there are some aspects that cannot be resolved such as, for 

example, any temporal relation or the existence of deterministic laws that could help 

describe the phenomenon and perhaps permit prediction of its behavior.

1.4  Components of a Time Series

This subsection presents the basic information about the components of a time 

series and the methods to decompose it. Time series are affected by the following 

three components:
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• Trend refers to the tendency of the time series to increase, decrease, or remain 

constant over a long period of time. Otherwise, it indicates the long-term change 

in the mean level of data. The trend may be linear or nonlinear and may vary 

over time.

• Seasonality/periodicity shows a repeating pattern present in a time series. 

Several factors can cause seasonal variations, such as seasonal effects in environ-

mental data, or certain times, such as the end of the year for financial data, etc.

• The third component is the irregular behavior which is combined with the pre-

vious components. This component may be random/stochastic, or it may follow 

a more complex behavior as it is the case in chaotic systems.

Seasonality and trend are considered as deterministic components.

Two different types of models are generally used to describe the time series con-

sidering the effect of these four components.

The additive model is the model that time series is supposed to be the sum of the 

three components:

 X t T t S t I t( ) = ( )+ ( )+ ( ) (1.12)

where T(t), S(t), and I(t) are trend, seasonal, and irregular components, respectively, 

at time (t).

The multiplicative model is the model where the time series is the product of the 

three above components:

 X t T t S t I t( ) = ( ) ( ) ( ) (1.13)

In order to demonstrate the above concepts, we present in Fig. 1.24 a signal that is 

synthetic and originates from three components: trend, periodicity, and irregular 

component, produced using script 1.15.

%%
%Script 1.15
%Generate time series with noise and trend

N=input('Give the time series length_:');300
f=input('Give the frequency_:');  10,10,0.2
Amp=input('Give the Amplitude_:');
t=0:1:N;
y=Amp*sin(2*pi*f*t/500);

noise=input('Give the noise level_:'); 
ynoise=AddNoise(y',noise);  % add noise

t=1:N+1;
Ynoise_trend=(ynoise' + t/10)';  
plot(Ynoise_trend,'b.-','MarkerSize',10);   
ylim([-Amp-5 4*Amp])
xlim([0 N+1])
xlabel('Time (t)'); 
ylabel('y(t)');
legend('Time series with noise and trend','Location','Best')
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Time series with 

Trend + Periodicity + Irregular component

Fig. 1.24 A time series with noise, periodicity, trend (left) and the time series of the three compo-

nents (on the right)

By employing Matlab scripts 1.15 and 1.16, we get the time series of Fig. 1.24.

%% 
%Script 1.16
%Generate periodic time series 

N=input('Give the time series length_:');
f=input('Give the frequency_:');  
Amp=input('Give the Amplitude_:');
t=0:1:N;
y=Amp*sin(2*pi*f*t/500);
plot(y,'b.-','MarkerSize',10);   %plot function
ylim([-Amp-5 Amp+5])
xlim([0 N])
xlabel('Time (t)'); 
ylabel('y(t)');
legend('Periodic component ','Location','Best')  

The main purpose of the analysis of a time series, through the process of decom-

position into individual time series which when synthesized create the time series, 

is the study of the irregular component. This component may contain important 

information for explaining the time series under study.

Another example of a time series with trend is presented in Fig.  1.25 and is 

obtained using script 1.17.
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Fig. 1.25 Time series with noise, periodicity, and trend

%% 
%Script 1.17
%Generate time series with noise and trend

N=input('Give the time series length_:');
t=0:1:N;
A=sqrt(t)/3;
y=A.*A.*A.*sin(2*pi*t/50);

noise=input('Give the noise level_:');
ynoise=AddNoise(y',noise);

t=1:N+1;
Ynoise_trend=(ynoise' + 2*t)';  % TStrend the new name of time 
series
plot(Ynoise_trend,'b.-','MarkerSize',10);   %plot function
xlim([0 N+1])
xlabel('Time (t)'); 
ylabel('y(t)');
legend('Time series with noise and trend','Location','Best')

 

%% 
%Script 1.18
%Generate time series 

N=input('Give the time series length_:');
t=0:1:N;
A=sqrt(t)/3;
y=A.*A.*A.*sin(2*pi*t/50);
plot(y','b.-','MarkerSize',10);   %plot function
ylim([min(y)-5 max(y)+5])
xlim([0 N+1])
xlabel('Time (t)'); 
ylabel('y(t)');
legend('Time series','Location','Best')

 

Using script 1.18 and giving the length of the time series, we get the time series 

of Fig. 1.26.

1.4 Components of a Time Series



28

Fig. 1.26 Periodicity component

Fig. 1.27 Trend component

Fig. 1.28 Irregular component

Figure 1.27 presents the trend component, and Fig. 1.28 the irregular component 

which is added to the time series according to script 1.17.

The question that naturally arises is how we can decompose and detect these 

components in a given time series. There is also another reason that we need to 

detect these components/behaviors. When we have trend and/or seasonality in a 

time series, it means that the statistical measures that we extract (mean, standard 

deviation, etc.) are not constant all along the time of observation and thus the time 

series is not stationary. However, many tests and methods suppose that the time 
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series analyzed is stationary. We say that a time series presents strong stationarity 

when the descriptive statistical measures are constant along the time series (i.e., 

mean, variance, kurtosis, and skewness) while we say that it presents weak station-

arity when only the mean and variance are constant along the time series. The latter 

is the most common case.

1.4.1  Trend/Seasonal Component (Period Estimation)

The first component, trend, shows the tendency of the variables to increase or 

decrease as the data evolves over time. Uptrends represent the increase of the data 

over time, and downtrends show the decrease.

One of the simplest tests to determine if a time series presents a constant trend is 

to divide it into smaller segments and calculate the change in the mean value of the 

individual segments. If the average values are not constant in the evolution of the 

time series, then we can say that the time series has a trend.

We can see the time series of Fig. 1.29.

Using script 1.19, we obtain the mean in successive segments, as shown in 

Fig. 1.29. We can clearly see that the time series presents a trend since the average 

value of the data changes as a function of the interval, and more specifically, it 

seems to increase at a rather constant rate (Fig. 1.30).

Fig. 1.29 Time series with noise and trend

Fig. 1.30 Successive segments mean of the time series of Fig. 1.29
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%Script 1.19

% Test for trend using the mean value 

TS=input('Give the time series_:');  %Ynoise_trend

Size_segment=input('Give the time series (segment) length_:');  

%50

Overlap=input('Give the overlap of segments_');  %0

[TS_segments,index,reject] =slideWindow(TS, Size_segment, 

Overlap);

TS_segments(TS_segments==0)=NaN;

columnMeans = mean(TS_segments,'omitnan');

plot(columnMeans,'o')

xlabel('Points'); 

ylabel('mean');  

Detrending is the process of removing the trend from a data set. It is a crucial 

step of time series analysis. There are several detrending methods described below.

1.4.2  Detrending and De-Seasoning of a Time Series

Detrending and De-seasoning are techniques to remove trend and seasonal compo-

nents from a time series.

 Detrending Using a Fit Deduced Model

To be able to understand the trend in time series, we will use the examples men-

tioned earlier. As we have seen, there is rather a linear trend so we can try to fit a 

linear model of the form x = at + b, subtract it from the time series and study the 

remaining part.

The following script 1.20 shows an example of a linear fit application. When 

subtracted from the time series, we have the remaining oscillating part with a large 

period indicating seasonality along with small variations on top of it. Using script 

1.20, the initial and the detrended time series are presented in Fig. 1.31.

Fig. 1.31 Initial data, model trend, and detrended data

1 Time Series Statistical Analysis



31

%% Script 1.20

% Detrend data with fit model

TStrend = input('Give the time series_:');  

length = input('Give the time series lenght_:'); 

Degreefit=input('Give the degree polynomial_:'); 

t=(1:length)';

p=polyfit(t,TStrend,Degreefit);     

f=polyval(p,t);

plot(t,TStrend,'b.-',t,f,':k')

hold on

TSdetrend=TStrend-f;        

plot(TSdetrend,'r.-');

axis([0 length -20 40])

legend('Initial Data','Model Trend (fit)','Detrended data')

xlabel('Time (t)'); 

ylabel('y(t)');

 

 Detrending Using Moving Average Mean

Another method to subtract the time series trend is to apply the rolling average func-

tion, detrending moving average (DMA) to the time series data and then subtract the 

average result from the time series. The DMA consists of variance σ2
DMA(n) of the 

time series y(i) i = 1 to N with the respect to the trend yn(i) at scale n:
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where yn i( ) is defined as a time dependent average function of y(i) and
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In this case, what needs to be taken care of is not to remove from the time series a 

component/element that contains useful information. To prevent this from happen-

ing, it is advisable to use as many averaging points in the function as the time 

series period.

In the following, we present some examples.
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%Script 1.21

% Detrend data with applying moving average (1) TSTN

TStrend = input('Give the time series with trend_:');

ma_mean = input('Give the moving mean k_:');

m = movmean(TStrend,ma_mean);

TSdetrend = TStrend - m;

figure

plot(TStrend,'.-')

hold on
plot(m,'-r')

plot(TSdetrend,'.-')

xlabel('Time (t)'); 

ylabel('y(t)');

legend('Time series with trend',sprintf('Moving Average Mean(%d) 

degree',ma_mean),'Detrended','Location','Best')

title(sprintf('Detrended time series by Moving Average(%d) 

mean',ma_mean))

 

Using script 1.21 in this example, we chose 30 points for a moving average as 

the time series has a periodicity of about 30 points and the results appear in 

Fig. 1.32.

In Fig. 1.33, we present the results if we choose 10 points for averaging (using 

script 1.21). As we can see this choice results in a smoother curve. From the figure, 

we observe that not only is the trend removed, but also useful information about the 

time series.

 Detrending Using Moving Average Model (Filter)

The following code (script 1.22) shows how to remove a trend component from a 

time series using moving average mean model (filter).

Fig. 1.32 Detrended time series using moving mean of 30 points
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Fig. 1.33 Detrended time series using moving mean of 10 points

Fig. 1.34 Detrended time series using moving model (filter) of 30 points

% Script 1.22
% Detrend data with applying moving average model TSTN

TStrend = input('Give the time series with trend_:');
ma_degree = input('Give the moving average degree_:');
m = ones(1,ma_degree)/ma_degree;
mafit = filtfilt(m,1,TStrend);
figure
plot(TStrend,'.-')
hold on
plot(mafit,'-r')
xlabel('Time (t)'); 
ylabel('y(t)');
TSdetrend = TStrend - mafit;
hold on
plot(TSdetrend,'.-')
xlabel('Time (t)'); 
ylabel('y(t)');
legend('Time series with trend',sprintf('Moving Average(%d) 
degree',ma_degree),'Detrended','Location','Best')
title(sprintf('Detrended time series by Moving Average Model(%d) 
degree',ma_degree))

 

By running script 1.22, we obtain the results presented in Fig. 1.34.
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If we change the number of moving average points from 30 to 10, we get the 

results appearing in Fig. 1.35. As we can see this choice results in a smoother curve. 

From the figure, we observe that not only is the trend removed, but also useful infor-

mation about the time series.

 Detrending Using First Differences

A common method to remove trends is to transform the time series employing first 

differences:

 y t y t y t( ) = ( )− −( )
′

1  (1.16)

where y(t) t = 1 to N is the original time series.

This procedure can be applied using script 1.23, and the results of using it appear 

in Fig. 1.36.

Fig. 1.35 Detrended time series using moving model (filter) of 10 points

Fig. 1.36 Original and detrended time series using first differences
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%%Script 1.23

% Detrend data with applying first difference TSTN

TStrend = input('Give the time series with trend_:'); 

length = input('Give the time series length_:');

t=1:length;

Diff_detreded=diff(TStrend)   % Diff_y1 the time series without 

trend

plot(t,TStrend,'.-');

hold on

plot(Diff_detreded,'.-');

legend('Data with trend','Detrended time series')

xlabel('Time (t)'); 

ylabel('y(t)');

title('Detrended time series by First Difference','FontSize',14)  

In the case of the first differences, the trend is removed, and we see that to some 

extent, the periodicity of the time series is maintained.

In the following, we present examples of time series with nonlinear trend as well 

as application of trend removal methods.

Example with Nonlinear Trend

In Fig. 1.37, we can see an example of time series presenting a nonlinear trend. This 

is a synthetic time series produced following the next steps.

First, using script 1.23.1, we add a nonlinear component to a time series. We 

obtain the results appearing in Fig. 1.37.

%%Script 1.23.1

% Add non linear trend to time series r

TS = input('Give the time series_:');

length = input('Give the time series lenght_:'); 

t=1:length;

nonlinear_trend = (0.01 * t.^2 - 0.5 * t + 2)';

TStrendnon=[TS + nonlinear_trend];  

figure 

plot(t,TS,t,TStrendnon)

legend('Initial Data','Data with nonlinear Trend')

xlabel('Time (t)'); 

ylabel('y(t)');

 

Now, we have a new time series (the red one) with a nonlinear trend. We can try 

to remove the nonlinear trend by applying the first differences technique (script 1.23).

The results are depicted in Fig. 1.38.
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Fig. 1.37 Original and detrended time series using first difference

Fig. 1.38 Original and detrended time series using first difference

Fig. 1.39 Sea water temperature time series (Charakopoulos et al. 2018)

1.4.3  Detrending and De-Seasoning of a Real-Time Series

The above methods are then applied to real-world time series. Figure 1.39 shows the 

sea water temperature time series [1].

We first applied script 1.19 to evaluate whether the data exhibit a trend. The 

results are presented in Fig. 1.40, which shows that the values of the successive 

means differ. This indicates that the time series displays a trending behavior and is 

not stationary.
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Fig. 1.40 Successive mean of the time series of Fig. 1.39

Fig. 1.41 Original and detrended time series using second-degree polynomial fit

To remove the trend from the data, we first applied the polynomial fit method, as 

the trend is nonlinear. In this context, it is crucial to carefully select the appropriate 

degree of the polynomial model using script 1.20. The results are shown in Fig. 1.41, 

where it is evident that the trend remains in the data because the correct polynomial 

degree was not chosen.

We can notice that the choice of the second-degree polynomial fit is not suitable 

for the time series. Therefore, a higher degree of polynomial should be used.

In Fig.  1.42 shows the results using an eighth-degree polynomial fit. We can 

observe that by choosing a different degree model, we can extract the trend of the 

time series.

Then, for the same time series, the moving average method is applied. Using the 

following script 1.24, we obtain the results presented in Figs. 1.43 and 1.44.
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Fig. 1.42 Original and detrended time series using eighth-degree polynomial fit

Fig. 1.43 Sea water temperature time series and the applied second degree model

Fig. 1.44 Detrended sea water temperature time series
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% script 1.24
%% Detrend data with applying moving average

TStrend = input('Give the time series with trend_:');
ma_degree = input('Give the moving average degree_:');
m = ones(1,ma_degree)/ma_degree;
mafit = filtfilt(m,1,TStrend);

figure
plot(TStrend,'-')
hold on
plot(mafit(1:700),'.-r')
xlabel('Time (t)'); 
ylabel('y(t)');
legend('Time series with trend',sprintf('Moving Average(%d) 
degree',ma_degree),'Location','Best')

TSdetrend = TStrend - mafit;
figure(3)
clf
plot(TSdetrend,'.-')
xlabel('Time (t)'); 
ylabel('y(t)');
title(sprintf('Detrended time series by Moving Average(%d) 
degree',ma_degree))

 

Figure 1.45 shows the result of applying the method (script 1.25) of the first dif-

ferences in the same time series.

% script 1.25

%% Detrend data with applying first difference  

TStrend = input('Give the time series with trend_:'); 

length = input('Give the time series lenght_:');

t=1:length;

Diff_detreded=diff(TStrend);   % Diff_y1 the time series without 

trend

plot(Diff_detreded);

legend('Detrended time series')

xlabel('Time (t)'); 

ylabel('y(t)');

 

We present another example of a detrended time series using the corresponding 

script 1.26 and gold price time series data. Figure  1.46 presents the results of 

checking whether the gold price time series contains a trend.
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Fig. 1.45 Detrended water temperature time series using first differences

Fig. 1.46 Results of mean in sliding segments of gold time series

% script 1.26

%% Test for trend using the mean value 

TS=input('Give the time series_:');  

Size_segment=input('Give the time series (segment) length_:');  

Overlap=input('Give the overlap of segments_');  

[TS_segments,index,reject] =slideWindow(TS, Size_segment, 

Overlap);

TS_segments(TS_segments==0)=NaN;

columnMeans = mean(TS_segments,'omitnan');

plot(columnMeans,'o')

xlabel('Points'); 

ylabel('mean');

 

First, we applied the detrend using fit model using the following code (script 

1.27), and the results appear in Fig. 1.47.
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% script 1.27

%% Detrend data with fit model (DJI_index)

TStrend = input('Give the time series_:');       

length = input('Give the time series lenght_:'); 

Degreefit=input('Give the degree polynomial_:'); 

t=(1:length)';

p=polyfit(t,TStrend,Degreefit);     

f=polyval(p,t);

plot(t,TStrend,t,f,':k')

hold on

TSdetrend=TStrend-f;        % y1detrend time series name

plot(TSdetrend);

legend('Data with Trend',sprintf('(%d) Degree 

model',Degreefit),'Detrended data')

xlabel('Time (t)'); 

ylabel('y(t)');

 

Next, we applied the detrend method (script 1.28) using the moving average 

approach as it appears in the following code (script 1.28), and the results appear in 

Figs. 1.48 and 1.49.

Fig. 1.47 Results of detrend using detrend fit model

Fig. 1.48 Gold time series and fitting a moving average degree model
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Fig. 1.49 Results of detrend using moving average degree model

Fig. 1.50 Results of detrend using first difference method

% script 1.28
%% Detrend data with applying moving average (DJI_index)

TStrend = input('Give the time series with trend_:');
ma_degree = input('Give the moving average degree_:');
m = ones(1,ma_degree)/ma_degree;
mafit = filtfilt(m,1,TStrend);

figure
plot(TStrend,'-')
hold on
plot(mafit(1:100),'.-r')
xlabel('Time (t)'); 
ylabel('y(t)');
legend('Time series with trend',sprintf('Moving Average(%d) 
degree',ma_degree),'Location','Best')

TSdetrend = TStrend - mafit;
figure(3)
clf
plot(TSdetrend,'.-')
xlabel('Time (t)'); 
ylabel('y(t)');
title(sprintf('Detrended time series by Moving Average(%d) 
degree',ma_degree))

 

We applied script 1.29, and the results appear in Fig. 1.50.
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% script 1.29

%% Detrend data with applying first difference 

TStrend = input('Give the time series with trend_:'); 

length = input('Give the time series lenght_:');

t=1:length;

Diff_detreded=diff(TStrend);   % Diff_y1 the time series without 

trend

plot(t,TStrend);

hold on

plot(Diff_detreded);

legend('Data with trend','Detrended time series')

xlabel('Time (t)'); 

ylabel('y(t)');
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Chapter 2

Temporal Behavior of Time Series

Time series analysis focuses on understanding the temporal behavior of data points 

collected sequentially over time. This involves exploring patterns such as trends, 

seasonality, and cyclicity, as well as deeper properties like autocorrelation, which 

quantifies the similarity between observations as a function of time lag, and the 

power spectrum, which reveals the frequency components of the data. Advanced 

techniques, such as calculating mutual information, help uncover nonlinear depen-

dencies, while measures like the Hurst exponent provide insights into long-term 

memory and persistence within the series. Additionally, Hjorth parameters offer a 

comprehensive framework for characterizing the activity, mobility, and complexity 

of time-varying signals. By integrating these concepts, researchers can gain a mul-

tidimensional understanding of time series, enabling better predictions, enhanced 

feature extraction, and deeper exploration of the underlying dynamics [3, 4].

2.1  Autocorrelation

Autocorrelation measures the degree of similarity between a time series and its 

lagged version over consecutive time intervals. It quantifies the relationship between 

a variable’s present value and its past values.

The autocorrelation function (ACF) assesses the correlation between observa-

tions in a time series for a set of lags. The ACF for time series y is given by:
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Here, rk represents the ACF correlation coefficient of the series with its k lag; and n, 

xt, x  denote, respectively, the number of observations of the series, the t-th observa-

tion of the series, and the mean.

A positive correlation between two values signifies that when one increases, the 

other increases too or when one decreases, the other decreases too. Negative corre-

lation signifies that when a value increases/decreases, the other decreases/increases, 

respectively. The value of rk ranges from −1 to +1. A value of the autocorrelation 

coefficient of +1 represents a perfect positive correlation, while a value −1 repre-

sents a perfect negative correlation. A value close to zero signifies that no correla-

tion (or very mall correlation) is present.

Technical analysts can use autocorrelation to assess the impact of past prices of 

a security on its future price. However, this is not completely true since autocorrela-

tion indicates the correlation between two observations at different points in a time 

series. A possible cause-result effect can be checked using other methods such as 

the Granger causality.

The ACF is a useful tool for identifying lags with significant correlations, help-

ing to understand the patterns and properties of a time series. This information can 

then be used to model the time series data effectively. From the ACF, you can assess 

the randomness and stationarity of a time series, as well as identify trends and sea-

sonal patterns.

For random data, the autocorrelations should be close to zero for all lags, a con-

dition often referred to as white noise. In contrast, non-random data will exhibit at 

least one significant lag.

Using script 2.1, one can calculate the autocorrelation function and plot it 

in Matlab.

%%

%Script 2.1

data=input('Time series name_'); %r

lag_t=input('Time Lag_'); 

figure

subplot(2,1,1);

plot(data,'b.-','MarkerSize',6);

title('Time series','FontSize',18) 

ylabel('y(t)')

xlabel('(t) Time')

subplot(2,1,2);

[acf,lags,bounds]=autocorr(data,lag_t);

autocorr(data,lag_t);

title('Sample Autocorrelation Function','FontSize',16) 

legend('acf','upper bound','down bound')

ylabel('Sample autocorrelation')

xlabel('Lag')

 

For random data, autocorrelations should be near zero for all lags (Fig. 2.1).

The lines indicate the confidence intervals for non-zero values. We observe that, 

apart from lag zero, all values fall within these bounds, signifying insignificance. 
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Fig. 2.1 Time series and results of autocorrelation function

We note that all prices are below the significance threshold, indicating that the val-

ues of the time series are uncorrelated and unrelated to each other, as expected for 

random data.

2.1.1  Seasonality Effects

A seasonal series presents alternating patterns of positive and negative autocorrela-

tion lags. In Fig. 2.2, we present a periodic time series and its corresponding auto-

correlation function. The correlation coefficients of successive values of time lags 

are reflected in the graph of autocorrelation function. Positive and negative autocor-

relation values are observed in the periodic time series.

However, when such a behavior is observed for a long time (and we have no 

trends in the time series), the analyst chooses a smaller lag corresponding to auto-

correlation value of 1/e (i.e., a value 0.376).

 Examples of Time Series with More than One Frequency

The next example shows the application in a synthetic time series with three fre-

quencies (Fig. 2.3). A repeating pattern is observed.

While in Fig. 2.4, we present results for three different sample rates frequencies, 

in order to see the effect of frequency on the autocorrelation graph.

In Fig. 2.4, we show the effect of data frequency on autocorrelation diagrams.

2.1 Autocorrelation
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Fig. 2.2 Periodic time series and results of autocorrelation function

Fig. 2.3 Periodic time series with three frequencies and results of autocorrelation function

2.1.2  Noise Effects

Subsequently, it is examined whether the existence of noise affects the result of the 

function. In Fig. 2.5, we have results for time series without noise and time series 

with noise. We can see that in case the data include noise, the autocorrelation curve 

has lower values at the corresponding lags.
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Fig. 2.4 Periodic time series with three different frequencies and the respective results of autocor-

relation function

Fig. 2.5 Autocorrelation results in noisy time series

2.1 Autocorrelation
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Fig. 2.6 Autocorrelation results with different level of noisy

As we can see the results are affected by the percentage of noise in the original 

time series. As the level of noise increases, the results of autocorrelation function 

are different (see Fig. 2.6). It is noted that the larger the noise rate in the initial 

time series, the greater the effect on the result of the autocorrelation function.

Next, we examine the effects on autocorrelation for a time series that presents 

trend (Fig. 2.7).

In addition, examples of calculation of the autocorrelation function in the 

event of deterministic time series from simulations or field measurements are 

presented. In Fig. 2.8, we present results for the Lorenz dynamical systems, while 

in Fig. 2.9, we present results for wind time series collected in the field.

As we can see without any trend removal, there are long lasting correlations.
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Fig. 2.7 Autocorrelation results from time series with trend

Fig. 2.8 Autocorrelation results of deterministic time series (Lorenz equations)

2.1 Autocorrelation
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Fig. 2.9 Autocorrelation results of wind speed time series

2.2  Power Spectrum Analysis

Periodicity is closely related to the power spectrum. If a time series exhibits strong 

periodicity with a period T, its power spectrum will display a significant peak at the 

corresponding frequency 1/T. Generally, a time series sampled at discrete time steps 

can be represented as a sum of periodic waveforms with different frequencies (or 

equivalently, different periods). This decomposition is expressed through the Fourier 

series, which takes the form:
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where α0 is the mean, αk and βk are the amplitude for each cosine and sinus oscilla-

tion at harmonic frequencies, and M represents the number of harmonics, which 

can extend to infinity in a continuous case. f represents the fundamental frequency 

of the time series, which is the reciprocal of the fundamental period T = 1/f. Each 

term in the summation corresponds to a harmonic component of the signal, where 

kf denotes the k-th harmonic frequency (i.e., integer multiples of the fundamental 

frequency).
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Fig. 2.10 Periodic time series and the power spectrum

If x(t) is a periodic function with period T, then its Fourier transform consists of 

discrete frequency components, located at integer multiples of the fundamental 

frequency f0  =  1/T. These components correspond to the coefficients in the 

Fourier series:
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where ck are the Fourier series coefficients, and δ(f) is the Dirac delta function, 

which indicates discrete frequencies.

The Fourier transform allows us to analyze how different frequency components 

contribute to the overall signal. A periodic signal has a discrete Fourier spectrum, 

meaning its Fourier transform consists of delta functions at discrete frequencies. A 

non-periodic (or transient) signal has a continuous Fourier spectrum, meaning it 

spreads across multiple frequencies.

Using script 2.2, we create a periodic time series and its Fourier transform, with 

the results appearing in Fig. 2.10. From the frequency chart, we can see that the time 

series has a main frequency f = 0.02 with a period T = 1/f = 50.

2.2 Power Spectrum Analysis



54

%UNTITLED2 Summary of this function goes here time series y1

%   Detailed explanation goes here

N=length(XV); 

b=1:N; 

Ts=1; 

fs=1/Ts; 

ts=Ts*(b-1); 

X=fft(XV); 

%X=fft(hanning(length(XV)).*XV)

pwr=X.*conj(X)/N ;

frs=(b-1)/N*fs; 

% frs=(b-1)/N*fs;

subplot(2,1,1);

plot(XV),title('Time Series')

xlim([0 N])

xlabel('t (time)')

ylabel('y(t)')

subplot(2,1,2);

plot(frs,pwr),title('power spectrum as funtion of frequency')

grid on; xlabel('frequency (Hz)');ylabel ('power');

xlim([0 0.5])

[spow,spos]=sort(pwr);

m=4; spos(N:-1:(N-m+1));

end

%%

%Script 2.2

function [ power ] = powerspectrum33(XV)

 

Figure 2.11 below presents the frequency diagram of a time series resulting from 

a three-signal synthesis, and a different component is presented (script 2.2). From 

the frequency diagram, we can see these three different frequencies as well as the 

different intensity/contribution of each frequency. The first frequency is 0.02, the 

second 0.04, and the third 0.06. This illustrates the utility of the power spectrum 

analysis since it reflects both the frequencies present in the time series as well as 

their relative contributions.

Some points that should be taken into account when performing a power spec-

trum analysis that may affect the results.

Next we explore the so-called aliasing effect and the notion of Nyquist frequency. 

The Nyquist frequency is defined as half of the sampling frequency. In the follow-

ing, we are going to see what the effect on a recorded signal is if the Nyquist fre-

quency is higher than the largest frequency of the system under study and how the 

signal is distorted and as a consequence the Fourier transforms too.

In 2.12, we have a periodic signal with frequency 4 Hz and we present with cir-

cles the points recorded at various sapling frequencies and specifically Fs = 20 Hz, 
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Fig. 2.11 Periodic time series consist of three frequencies and the corresponding power spectrum

10  Hz, and 6  Hz. This means that the corresponding Nyquist frequencies 

FNyquist = 10 Hz, 5 Hz, and 3 Hz, respectively. We can see that for the case of 

FNyquist<Fsystem, the signal is completely distorted and seems to correspond to a 

lower frequency. So when the distorted signal is Fourier transformed, it will result 

in lower frequency.

Initially, using script 2.3, we create the initial time series of Fig. 2.12.

%Script 2.3

% equation  y(t) = sin(2*pi*f*t)

f=4;     % frequency

Ts=0.01; % sampling rate fs=1/Ts (100/sec)

t=0: Ts: 1;

x=sin(2*pi*f*t);

plot(t,x, 'o-');

title('Initial Time series','FontSize',20)  

ylabel('y(t)')

xlabel('(t) Time')

 

Next, in order to see how the resampling affects the time series, we use the fol-

lowing script 2.4 in Matlab.

2.2 Power Spectrum Analysis
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Fig. 2.12 Periodic time series and the extracted time series with different sampling rate

%%
%Script 2.4

% equation  y(t) = sin(2*pi*f*t)
f=4;
Fs=input('sampling frequency_');  
Ts=1/Fs;
t=0:Ts:1;
[x1]=(sin(2*pi*f*t))';
plot(t,x1, 'o-');
title(sprintf('Time series with (%d) sampling rate Fs 
',Fs),'FontSize',14) 

 

The Nyquist frequency is calculated as 2∙f = 2∙4 = 8.

Subsequently, the results are presented in comparable figures (Fig. 2.13).

Then, a periodic time series with three frequencies is constructed, where differ-

ent cases are given depending on the sampling frequency (Figs. 2.14 and 2.15).
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Fig. 2.13 Effect of sampling rate on time series recording

%%
%Script 2.5

% equation   
%y(t)=5*cos(2*f1*pi*t)+15*cos(2*f2*pi*t)+5*cos(2*f3*pi*t);

Fs=input('sampling frequency_');   %400
f1=input('frequency_1_');   %5
f2=input('frequency_2_');   %10
f3=input('frequency_3_');   %15
Ts=1/Fs;
t=0:Ts:0.4;
x=5*cos(2*f1*pi*t)+15*cos(2*f2*pi*t)+5*cos(2*f3*pi*t);
plot(t, x, 'o-');
title(sprintf('Time series with (%d) sampling rate Fs 
',Fs),'FontSize',14) 
ylabel('y(t)')
xlabel('t (time)')
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Fig. 2.14 Time series and the extracted time series with different sampling rate

From the above cases, we can see the effect of sampling frequency on different 

time series cases.
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Fig. 2.15 Continuous time series and the extracted time series with different sampling rate and a 

time series with sampling rate equal to F maximum

2.2 Power Spectrum Analysis
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2.3  Mutual Information

Mutual information often proves to be statistically useful, especially when it comes 

to assessing the association between two variables in time series analysis. Unlike 

the correlation coefficient, which only indicates the strength of linear relationship, 

mutual information can find both linear and non-linear relationships between the 

variables [3, 5].

Mutual Information I(t) is a widely used nonlinear measure used in time series 

analysis for determine the appropriate delay time τ for state space reconstruction 

and is defined as:
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(2.4)

where x(ti) is the ith data point of time series, t = kΔt (k = 1,2,… kmax); Δt is the 

sampling time; P(x(ti)) is the probability density at x(ti), P(x(ti), x(ti + τ)) is the joint 

probability density at x(ti), x(ti + t); τ is the delay time.

The delay t corresponding to the first minimum of the mutual information is 

chosen as a delay time for the reconstruction of phase space.

Using script 2.6, we produce a periodic signal that appears in Fig. 2.16, and then 

we run the mutual information script to obtain the results in Fig. 2.17.

Fig. 2.16 Periodic time series

Fig. 2.17 Results of mutual information function with time lag τ = 60
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%%
%Script 2.6
%Generate periodic time series 

N=input('Give the time series length_:');
f=input('Give the frequency_:');  
Amp=input('Give the Amplitude_:'); 100,3,10
t=0:1:N;
yy=Amp*sin(2*pi*f*t/100);
plot(yy,'b.-','MarkerSize',10);   %plot function
ylim([-Amp-5 Amp+5])
xlim([0 N])
xlabel('Time (t)'); 
ylabel('y(t)');
legend('Periodic component ','Location','Best')

 

In Fig 2.17 we applied the mutual information function for a delay τ=60 using 

the following command, and where we can see the existence of periodicity, which 

is a result of the periodic nature of the time series.

%%

%Mutual information 

M=mutualinformation(yy,60)

 

The next figure shows the result of mutual information function, where we can 

see the existence of periodicity which is a result of the periodicity of the time series.

Then we calculate the mutual information for a shorter time (Fig. 2.18).

%%

%Mutual information 

M=mutualinformation(yy,10)

 

Fig. 2.18 Results of mutual information function with time lag τ = 10
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Fig. 2.19 Time series and the correspondance mutual information function

In the following script 2.7, we give as input the time series name and the maxi-

mum delay time to be explored and we obtain a plot of the mutual information 

diagram that corresponds to the time series (Fig. 2.19).

%%

% script 2.7

data=input('Time series name_'); 

tmax=input('Time Lag_'); 

figure

subplot(2,1,1);

plot(data,'b.-','MarkerSize',6);

axis([0 100 -10 10])

title('Time series','FontSize',10) 

ylabel('y(t)')

xlabel('(t) Time')

subplot(2,1,2);
[mutM] = mutualinformation_b(data, tmax)

 

So far, we have seen the results of the function for synthetic time series. Then the 

result for field measurements and specifically for the wind velocity time series, the 

results are obtained running the following command and appear in Fig. 2.20.

%%

%Mutual information 

M=mutualinformation(wind,100)
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Fig. 2.20 Results of mutual information function with time lag τ = 100 of wind speed time series

Fig. 2.21 Results of mutual information function with time lag τ = 100 of Nasdaq time series

The results for time series of stock market prices are also presented in Fig. 2.21.

Mutual information is particularly valuable in phase space reconstruction meth-

odology, as it helps determine the optimal time delay between points in the recon-

structed space by identifying the delay that maximizes the independence between 

successive points. This step is essential for accurately capturing the system’s 

dynamics and reducing redundancy in the reconstructed phase space, ultimately 

leading to a clearer and more informative representation of the system’s behavior.

2.3 Mutual Information
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2.4  Hurst Exponent

The measurement of long-term memory in time series is done through the estima-

tion methodologies of the Hurst exponent [2]. Hurst created Rescaled Range (R/S) 

analysis which is one of the most widely used methods for estimating the Hurst 

exponent. In Rescaled Range (R/S) analysis, we start by splitting the time series 

{xi}.i = 1,… N of length N to S shorter time intervals of length n = N, N/2, N/4. Then, 

for each time interval (time series), we calculate the range Rn.
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where n = 0, 1, ….., Ns − 1 με Ns = Ν/S and
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The standard deviation of time series is given by:
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The rescale range R/S is defined as the average Rn/Sn ratio of all time intervals. In 

other words, it is given by:

 

R S E
R

S

n

n

/ �
�

�
�

�

�
�

 

(2.8)

The Hurst exponent is calculated from the scaling behavior of the rescalable range 

R/S [7].
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In order to calculate the exponent, the logarithm graph of the mean rescaled ampli-

tude (R/S)n versus the length n is created. Then, a linear regression line is adjusted 

to the graph, the slope of which gives the estimate of the Hurst exponent.

Observing that the calculation of the Hurst exponent using the R/S method led to 

erroneous conclusions regarding the existence of large-scale correlations, the 

method of Detrended Fluctuation Analysis (DFA) was developed and applied. This 

method is a version of the initial variance analysis, in which linear trends are elimi-

nated from the time series and is applied in cases of non-stationary time series.

Initially, for a time series of length N, the sum or profile is calculated:
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2 Temporal Behavior of Time Series



65

The time series {xi} i = 1,… N of length N is divided to S shorter time intervals of 

length n = N, N/2, N/4,…

Then, in each section, the polynomial of degree m is estimated by adjusting an 

appropriate polynomial. Trend-free time series are defined as the difference between 

original time series and adaptations:
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where Y i
v n

m

, � �  it is the polynomial that adapts to the N-th segment.

For each segment, the variance is calculated
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Finally, calculating the square root of the mean of the variances in each segment 

estimates the DFA function
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Hence, we can plot the diagram log(R/S)n vs log(n) and we calculate the Hurst 

 exponent using linear least squares regression.

In the following, we run the Matlab command window, for the wind time series 

(Fig. 2.22).

a)

b)

Fig. 2.22 Time series of wind speed (a) and random time series (b) and the corresponding result 

of Hurst exponent
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%%

%Hurst Exponent

H= HurstExponent(wind)

 

The Hurst exponent takes values within the closed interval [0,1]. Its interpreta-

tion depends on how it compares to 0.5. When the exponent H is equal to 0.5, then 

the time series follows the random walk model, which means that there is no cor-

relation between the values. In this case, the measurements are independent of each 

other. Conversely, when the exponent is different from zero, it means that the obser-

vations are not distributed independently but have a long-term memory.

According to this definition, a Hurst exponent of 0.5 indicates a purely random 

process, where past values have no influence on future values.

• When 0.5 < H < 1, the time series exhibits persistent behavior, meaning that high 

values tend to be followed by high values and low values by low values. This 

suggests a long-term positive correlation.

• When 0 < H < 0.5, the time series demonstrates anti-persistent behavior, where 

high values are more likely to be followed by low values and vice versa. This 

indicates a tendency to revert to the mean overtime.

2.5  Hjorth Parameters

Hjorth parameters are characteristic measures of time series and are used to quanti-

tatively describe a time series [1]. For a time series x(t), the following parameters 

shall be set:

 
Activity

o
= m

 
(2.14)

 

Mobility =
m

m

2

0  

(2.15)

 

Complexity =

m
m

m
m

4

2

2

0  

(2.16)

where m0 is the variance (square of the standard deviation) of the variable, m2 is the 

variance of the first derivative of the variable, and m4 is the variance of the second 

derivative of the variable.
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The mobility parameter expresses the average frequency of the time series and 

is calculated as the ratio at each point in time of the standard deviation of the time 

series slope to the standard deviation of the time series. The complexity param-

eter represents the change in the frequency of the time series and is defined as the 

ratio of (a) the ratio of the second-order central moment of the second derivative 

to the second-order central moment of the first derivative and (b) the ratio of the 

second- order central moment of the first derivative to the second-order central 

moment of the original time series. Complexity expresses the deviation of the 

slope and can be thought of as a measure of the change in the frequency of the 

input signal.

Using the Matlab function below, we obtain the Hjorth parameters in the case 

of wind times series and a reando times series (see Fig. 2.23). It is clear that the 

activity in the case of time series is significantly larger than in the wind 

time series.

a)

Hactivity =   0.1105

Hmobility =    0.4103

Hcomplexity =    3.7061

b)

Hactivity = 9.4599e+03

Hmobility =    1.4287

Hcomplexity =    1.2089

Fig. 2.23 Time series of wind speed (a) and random time series (b) and the corresponding result 

of Hjorth parameters
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function [Hactivity,Hmobility,Hcomplexity] = 
HjorthParameters_book(TS)
% [Hmobility,Hcomplexity] = HjorthParameters(TS)
% estimate the Hjorth  mobility and complexity.
% INPUTS:
% - TS          : The time series
% OUTPUTS
% - Hactivity,Hmobility,Hcomplexity
%=================================================================
=======

dTS = diff(TS);
ddTS = diff(dTS);
m0 = var(TS);
m1 = var(dTS);
m2 = var(ddTS);

Hactivity = m0
Hmobility = sqrt(m1/m0)
Hcomplexity=sqrt((m2/m1)/(m1/m0))

 

2.6  Clustering

Cluster analysis or data clustering is characterized as the partitioning of a set of raw 

data into subsets, resulting in the extraction of useful information from them. It is 

extensively used in scientific research across various fields such as medicine, biol-

ogy, statistics, and engineering problems. The goal of clustering is to identify struc-

tures within a dataset or, more simply, to create groups where each group gathers 

homogeneous elements based on some similarity measure. The efficiency of clus-

tering methods is directly related to the type of data as well as the homogeneity 

criterion or similarity measure used.

There are various clustering techniques, and their selection depends on the nature 

of the data and the purpose of the clustering. One of the most common approaches 

is hierarchical clustering [6]. Hierarchical clustering is performed in two ways: 

agglomerative analysis and divisive analysis. In agglomerative analysis, initially, 

each data point is considered as a separate entity. Then, at each iterative step, ele-

ments are merged based on a specific criterion, forming larger groups until all ele-

ments ultimately form a single group. This method requires a similarity criterion 

and a proximity measure, which is defined as the distance between two elements. In 

contrast, in divisive analysis, all data elements initially belong to a single group (a 

unified cluster). Subsequently, based on a specific criterion, the elements are succes-

sively divided into smaller groups until each data element becomes its own separate 

cluster, creating as many groups as there are data points.

The result of hierarchical clustering is a tree of groups and connections called a 

dendrogram, which illustrates how the groups are related to one another. In the den-

drogram, a horizontal cut is chosen at a specific level. At this point, the number of 

resulting groups and the elements contained in each group are displayed. Figure 2.24 
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Fig. 2.24 Example of hierarchical clustering

Fig. 2.25 Single-linkage 

clustering

presents a typical dendrogram, where the horizontal axis refers to the groups (as 

many as the data points), and the vertical axis corresponds to the level of similarity 

or dissimilarity. By making horizontal cuts in the dendrogram, we can observe the 

number of groups at the similarity level of interest.

There are various criteria used for dividing data into groups, which are based on 

the distance matrix between pairs of data points. In other words, the similarity or 

dissimilarity between the data is measured based on a distance function between the 

elements or groups.

2.6.1  Single-Linkage Clustering or Nearest Neighbor

The single-linkage or nearest neighbor method uses the minimum distance between 

elements, and subsequently between groups, as the similarity criterion. According 

to this method, the two closest elements are initially connected based on the small-

est distance, and in each iterative step, distances are recalculated, and connections 

are gradually made until a single group containing all elements is formed. The algo-

rithm is illustrated schematically in Fig. 2.25.

2.6 Clustering
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2.6.2  Complete-Linkage Clustering

The process of this method differs from single-linkage in that complete-linkage 

clustering uses the maximum distance between elements or groups. Figure  2.26 

graphically illustrates the algorithm.

2.6.3  Average-Linkage Clustering

In hierarchical average-linkage clustering, the distance between two groups is 

defined as the average distance between all possible pairs of elements from each 

group. The weighted average distance is calculated based on the number of data 

points in each group. Figure 2.27 illustrates the connections and the formula for 

calculating the average distance.

Fig. 2.26 Complete-linkage clustering

Fig. 2.27 Average-linkage clustering
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2.6.4  Centroid-Linkage Clustering

In this method, the Euclidean distance between the centroids of the groups is used 

as the distance criterion. In each step of the algorithm, two groups are merged based 

on the smallest distance between their centroids. Figure 2.28 graphically depicts the 

algorithm.

These methods were applied to cluster the time series data to examine whether 

clustering could provide better insights into the separation of regions involved in the 

experimental process of turbulent flow. Notably, the clustering methodology did not 

use the same time series as a similarity measure but rather a vector consisting of 

linear and nonlinear measures, as extensively discussed earlier.

The dendrogram below illustrates the clustering of time series, using the 

“Euclidean” metric for calculating the distance matrix among all elements and the 

single-linkage method, as it achieves the highest cophenetic correlation coefficient 

(Fig. 2.29).

In cases where the data are either too large or contain discontinuities, instead of 

using the raw time series data for clustering, we can compute the descriptive mea-

sures of the time series and then input these into the clustering algorithm. This 

approach reduces the length of the input vector, allowing the routine to produce 

results much faster.

In following, the statistical descriptive measures of the time series and calculate 

the dendrogram based on these measures and not using the time series values 

(Fig. 2.30).

Fig. 2.28 Centroid-linkage clustering
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Fig. 2.30 Hierarchical 

clustering based on 

statistical measures of time 

series values

a)

b)

Fig. 2.29 (a, b) Time series of COVID deaths (weekly) of countries and the chart of hierarchical 

clustering (https://www.worldometers.info/coronavirus/)
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Chapter 3

Nonlinear Time Series Analysis

Nonlinear time series analysis plays a vital role in understanding the complex behav-

iors exhibited by dynamical systems over time. Unlike linear methodologies, which 

assume straightforward relationships between variables, nonlinear analysis delves 

into the intricate interdependencies and feedback loops that characterize many real-

world phenomena. By examining the underlying dynamics across diverse fields such 

as meteorology, economics, neuroscience, and ecology, nonlinear time series analy-

sis unveils emergent patterns, chaotic behavior, and predictive insights that often 

elude traditional linear approaches. Through sophisticated mathematical techniques 

like phase space reconstruction, chaos theory, and recurrence quantification analysis, 

researchers can capture the nonlinear dynamics inherent in these systems, offering a 

deeper understanding of their underlying mechanisms and behaviors [1, 2, 6, 16].

In recent years, the application of nonlinear time series analysis has gained 

ground due to advances in computational power and the recognition of its relevance 

across an expanding array of disciplines. From financial forecasting to climate mod-

eling, from biological systems to engineering applications, nonlinear analysis has 

proven indispensable in deciphering the complexities of dynamic systems. As 

researchers continue to refine methodologies and develop novel techniques, nonlin-

ear time series analysis remains at the forefront of scientific inquiry, providing 

invaluable tools for exploring the rich tapestry of nonlinear dynamics that underpin 

our ever-evolving world.

3.1  Introduction to Dynamical System

A dynamical system is defined as any system that evolves over time. In a dynamical 

system, there exists a set of variables that interact with each other, generating the 

system’s behavior, which corresponds to the system’s variables. Additionally, in a 

system, the term “state” is defined as the set of variables x1 (t), x2 (t), …,xn (t) that 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92628-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-92628-0_3#DOI
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describes the system’s state at the time t. The set of successive states defines the so- 

called state space of the dynamical system. Otherwise stated, the system’s state 

space is the set of possible positions-solutions of the system, where the system is 

represented as a function of its variables, connecting the past value with the present 

and future. The dimension of the state space is defined by the number of variables 

needed to describe the system.

The mathematical definition of a dynamical system states that a dynamical sys-

tem is any system whose evolution from some initial state is mathematically 

described by a system of differential equations, where the independent variable is 

time (t).

We assume that the time series x(i) originates from a system of n differential equa-

tions describing the evolution of the system.
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or equivalently
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where x is a vector of n time variable
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In Eq. (3.1), F is the function describing the system with F: Rd → Rd, where Rd is the 

state space or phase space of the system, d is the dimension of the Euclidean state 

space, and c represents the parameters of the system that remain constant. The 

dimension of the state space is denoted by n, equal to the number of variables. At 

each moment in time, the position of the system in the state space is given by 

the term.

The variables xi typically represent physical quantities such as position, velocity, 

temperature, pressure, etc. The state of the system at a specific moment in time in 

phase space is depicted by a point x(t) = [x1(t), x2(t), …xn(t)]. At the next moment in 

time, the state of the system will change, and it will move to a new state point, creat-

ing in this way a trajectory after successive time steps in phase space, which illus-

trates the temporal evolution of the dynamical state of the system. Each point in 
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phase space traces only one trajectory due to the deterministic component of the 

system. However, changing the initial conditions or the parameters of the system 

can alter the behavior of the dynamical system.

Dynamical systems can be classified as deterministic or stochastic, depending on 

whether their behavior is predictable. A system is deterministic if its state at a given 

time uniquely determines all future states. In such systems, both past and future 

states are completely specified by the governing equations. In contrast, stochastic 

dynamical systems are influenced by random external or internal factors, making 

their future evolution inherently uncertain at least after a given time.

A particularly important subclass of deterministic systems consists of chaotic 

systems. A dynamical system exhibits chaos when small variations in initial condi-

tions lead to exponentially diverging trajectories, resulting in vastly different long- 

term outcomes. Despite being deterministic, chaotic systems are highly sensitive to 

initial conditions, making long-term prediction practically impossible.

Additionally, dynamical systems are classified based on how they evolve over 

time. If a system is described by differential equations, it is a continuous-time sys-

tem. If it is governed by difference equations, it is a discrete-time system.

In the present book, we are going to deal with continuous and chaotic systems.

3.1.1  System Identification

When the evolutionary equations describing it are known for a dynamical system, 

then we can generate the time series from the equations that govern the system. So, 

suppose the state of a system at time t is xt, and the difference equation describing it 

is of the form xt + 1 = f(xt), if we know the initial state x0 and the function f describ-

ing the dynamic behavior of the system, we can recursively compute the state of the 

system for each time step. The ability to generate data translates into a complete 

understanding of the system’s dynamic behavior. In other words, in this way, we 

have knowledge of the past, the current state, and we can predict the future states of 

the system.

However, the study of physical dynamical systems suggests that purely stochas-

tic or purely deterministic behavior is the exception rather than the rule. In contrast, 

studying a fully deterministic system is relatively straightforward, as each state fol-

lows directly from the previous one, and the next state is uniquely determined by the 

current one or some previous ones. However, in many physical but also economic or 

biological systems, determinism and randomness coexist, leading to the notion of 

complexity. Complexity may also arise from the large number of variables that may 

determine the state of a system. For example, a system composed of many interact-

ing atoms may have well-defined interaction rules, yet its global behavior remains 

difficult to predict due to emergent complexities.

Physical and other category dynamical systems generally arise from nonlinear 

equations involving multiple variables, the exact analytical form of which is often 

unknown. As a result, interpreting these systems is highly challenging. Their study 
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relies on time series analysis. A time series, whether in single-variable or multivari-

able analysis, represents recorded observations of a system’s evolution over time 

and often provides the only available insight into its dynamics. Time series are 

intrinsically linked to the system’s dynamic behavior.

In time series analysis, the term “system identification” refers to a set of methods 

designed to understand the temporal evolution of data. The primary goal is to ana-

lyze the system’s behavior, extract the underlying dynamics, and identify represen-

tative characteristics, rather than fully uncovering the internal mechanisms or 

physical laws governing the process. Additionally, system identifications seek to 

determine the key elements influencing the system’s evolution, namely its dynam-

ics, using only measured data. These measurements must be strongly coupled with 

the system’s dynamics to ensure accurate modeling and interpretation.

3.1.2  Phase Space Reconstruction

As previously mentioned, the dynamic behavior of a system in many cases can be 

described by differential equations and refers to the temporal evolution of the sys-

tem’s state [3–5, 14–17]. The description of the system is determined by a number 

of n variables over time, which determine the state of the system, i.e., they constitute 

the “solution” of the system for a given moment in time. The space defined by the 

number of these dynamic variables is called the state space or phase space, which 

has a dimension equal to the number of variables and is the space where the position 

state of the system is depicted for each moment in time. The solution of the dynami-

cal system, for specific initial conditions, in phase space is represented by the suc-

cessive positions of the state vector or alternatively by the solutions of the system. 

These successive solutions form the trajectory or curve of the system. Using the 

script below (script 3.1), we produce representative time series for a harmonic oscil-

lator with a given frequency and amplitude and then we construct the corresponding 

trajectory in the phase space. The corresponding results appear in Fig. 3.1 where we 

Fig. 3.1 Time series of harmonic oscillator and the phase space, respectively
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can see that the time series of the harmonic oscillator with constant amplitude gives 

us a circle which is an attractor of the system. The interesting part is that knowing 

this circle we know all the states that the system can visit.

% script 3.1

%Time series for a simple harmonic oscillator

t = 0:0.01:10;               % Vector (0 to 10 seconds with 0.01s 

intervals)

omega = 2*pi;    % Angular frequency (1 Hz)

x = sin(omega*t);            % Position of the harmonic oscillator

% Choose the time delay (tau)

tau = 10;  % Example time delay (adjustable)

% Create the 3D phase-space (state space reconstruction)

X1 = x(1:end-2*tau);         % Position at time t

X2 = x(1+tau:end-tau);       % Position at time t+tau

X3 = x(1+2*tau:end);         % Position at time t+2*tau

% Plot the time series and the 3D phase-space side by side

figure;

% Plot time series of position (left side)

subplot(1,2,1);              % Subplot (1 row, 2 columns, position 

1)

plot(t, x, 'b');

xlabel('Time (t)');

ylabel('Position (x)');

title('Time Series of Harmonic Oscillator');

grid on;

% Plot the 3D phase-space (cycle plot) (right side)

subplot(1,2,2);              % Subplot (1 row, 2 columns, position 

2)

plot3(X1, X2, X3, 'r');

xlabel('x(t)');

ylabel('x(t+τ)');

zlabel('x(t+2τ)');

title('3D Phase Space of Harmonic Oscillator');

grid on;

axis equal;

view(3);                     % Set 3D view angle

 

Next we give an example of a harmonic oscillator where the amplitude gradually 

decreases. By executing the script 3.2 below, the results of the time series and the 

attractor in the reconstructed space are shown in Fig. 3.2.
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% script 3.2

%Time series for a damped harmonic oscillator

t = 0:0.01:10;                % Time vector (0 to 10 seconds with 

0.01s intervals)

omega = 2*pi;                 % Angular frequency (1 Hz)

decay_rate = 0.1;             % Decay rate (damping factor)

% Position of the damped harmonic oscillator with exponential 

decay

x = exp(-decay_rate * t) .* sin(omega * t);

% Choose the time delay (tau)

tau = 10;  % Example time delay (adjustable)

% Create the 3D phase-space (state space reconstruction)

X1 = x(1:end-2*tau);          % Position at time t

X2 = x(1+tau:end-tau);        % Position at time t+tau

X3 = x(1+2*tau:end);          % Position at time t+2*tau

% Plot the time series and the 3D phase-space side by side

figure;

% Plot time series of position (left side)

subplot(1,2,1);               % Create a subplot (1 row, 2 

columns, position 1)

plot(t, x, 'b');

xlabel('Time (t)');

ylabel('Position (x)');

title('Time Series of Damped Harmonic Oscillator');

grid on;

% Plot the 3D phase-space (cycle plot) (right side)

subplot(1,2,2);               % Create a subplot (1 row, 2 

columns, position 2)

plot3(X1, X2, X3, 'r');

xlabel('x(t)');

ylabel('x(t+τ)');

zlabel('x(t+2τ)');

title('3D Phase Space of Damped Harmonic Oscillator');

grid on;

axis equal;

view(3);                      % Set 3D view angle

 

The following is a brief presentation of the Lorenz system [11], a well-known 

chaotic system for specific parameter values, along with its corresponding Lorenz 

attractor. A more detailed reference to the Lorenz system will be made in subse-

quent paragraphs. By running script 3.3, we obtain the three time series describing 

the system evolution and its corresponding phase space representation (Fig. 3.3).
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Fig. 3.2 Time series of harmonic oscillator with decreasing amplitude and the phase space attrac-

tor, respectively

Fig. 3.3 Time series of Lorenz system and the phase space attractor, respectively
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% script 3.3
% Lorenz system parameters
sigma = 10;
rho = 28;
beta = 8/3;

% Time span and initial conditions
tspan = [0, 50];                  % Time range for the solution
initial_conditions = [1, 1, 1];   % Initial conditions [x0, y0, 
z0]

% Define the Lorenz system as a set of differential equations
lorenz = @(t, X) [ ...

sigma * (X(2) - X(1));          % dx/dt
X(1) * (rho - X(3)) - X(2);     % dy/dt
X(1) * X(2) - beta * X(3)       % dz/dt

];

% Solve the system using ode45
[t, XYZ] = ode45(lorenz, tspan, initial_conditions);

% Extract the x, y, and z components
x = XYZ(:,1);
y = XYZ(:,2);
z = XYZ(:,3);

% Plot the time series and the 3D phase-space (Lorenz attractor) 
side by side
figure;

% Plot the time series for x, y, and z components (left side)
subplot(1,2,1);               % Subplot (1 row, 2 columns, 
position 1)
plot(t, x, 'b', t, y, 'r', t, z, 'g');
xlabel('Time (t)');
ylabel('Values of x, y, z');
title('Time Series of Lorenz System');
legend('x(t)', 'y(t)', 'z(t)');
grid on;

% Plot the 3D phase-space (Lorenz attractor) (right side)
subplot(1,2,2);               % Subplot (1 row, 2 columns, 
position 2)
plot3(x, y, z, 'b');
xlabel('x(t)');
ylabel('y(t)');
zlabel('z(t)');
title('3D Phase Space of Lorenz System');
grid on;
axis tight;
view(3);                   

Till here, we have seen examples of phase spaces of systems where we know the 

governing equations. Now we will try to reconstruct the phase space based only on 

the knowledge of a system time series. To do so, we first need to calculate the time 

lag and then the estimate the embedding dimension of the system. The time lag is 

determined using the mutual information function, while the embedding dimension 

is estimated using the nearest neighbor algorithm, which is the most common 

method for this purpose. A widely used approach is the False Nearest Neighbors 
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(FNN) method, which identifies false neighbors based on their distance relation-

ships. The method is described in the next paragraph.

3.1.3  False Nearest Method

The False Nearest Neighbors (FNN) is a method in phase space reconstruction used 

to determine the optimal embedding dimension for time series data. By embedding 

a time series in a higher-dimensional space, FNN identifies points that appear close 

in lower dimensions but are distant in higher dimensions due to projection effects. 

These points are labeled as “false neighbors.” In this method, for an initial embed-

ding dimension mm, we examine how the distance between two points changes 

when increasing the embedding dimension to m + 1 m + 1. If the distance between 

the points increases significantly (beyond a specified threshold), the points are con-

sidered false neighbors in the higher-dimensional space, indicating that the chosen 

embedding dimension mm is insufficient. This procedure is repeated for all points, 

and the percentage of false neighbors is analyzed to determine an appropriate 

embedding dimension.

The process involves incrementally increasing the embedding dimension until 

the fraction of false neighbors drops below a threshold, indicating that the recon-

structed phase space preserves the underlying dynamics without distortions caused 

by insufficient dimensions. The correct dimension is identified when the percentage 

of false neighbors drops to near zero or below a predefined threshold, indicating that 

sufficient dimensions have been used to unfold the attractor. Script 3.4 [11] can be 

employed in Matlab to estimate the embedding dimension.

% script 3.4

function fnnM = FalseNearestNeighbors(xV,tauV,mV,escape,theiler)

% fnnM = FalseNearestNeighbors(xV,tauV,mV,escape,theiler)

% FALSENEARESTNEIGHBORS computes the percentage of false nearest 

neighbors

% for a range of delays in 'tauV' and embedding dimensions in 

'mV'.

% INPUT 

%  xV       : Vector of the scalar time series

%  tauV     : A vector of the delay times.

%  mV       : A vector of the embedding dimension.

%  escape   : A factor of escaping from the neighborhood. 

Default=10.

%  theiler  : the Theiler window to exclude time correlated points 

in the

%             search for neighboring points. Default=0.

% OUTPUT: 

%  fnnM     : A matrix of size 'ntau' x 'nm', where 'ntau' is the 

number of

%             given delays and 'nm' is the number of given 

embedding

%             dimensions, containing the percentage of false 

nearest

%             neighbors.
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Fig. 3.4 Results of false nearest method of Lorenz time series

Using as input the time series produced for the Lorenz system previously in the 

txt, the embedding dimension for the case of Lorenz system can be estimated by 

running the following command.

% False Nearest Neighbors Method

>> FalseNearestNeighbors (lorenz,1,10)  

The results appear in Fig.  3.4 where we can see that we can select m = 3 as 

embedding dimension since above this dimension the percentage of false nearest 

neighbors (FNN) has reached practically zero values (vertical axis).

3.1.4  Chaos and Dynamical Systems

The concept of chaos is deeply embedded in the study of complex dynamical sys-

tems, particularly within the realm of nonlinear dissipative dynamical systems [17, 

18, 20]. However, while nonlinearity is a necessary condition for chaos, it is not 

sufficient on its own. Chaos is widely understood as the seemingly unpredictable 

behavior of a deterministic system due to its high sensitivity to initial conditions. 

This unexpected dependence on initial conditions implies that even an infinitesimal 

difference in initial conditions can lead to vastly different trajectories in phase space 

over time. As a result, long-term prediction becomes practically impossible despite 

the system being fully deterministic.

Examples of physical dynamical systems with chaotic behavior are found in the 

study of climate, astronomy, biology, atmosphere, the solar system, etc.

In chaotic dynamical systems, small variations in the initial conditions are expo-

nentially amplified over time, leading to vastly different system evolutions. This 
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extreme sensitivity to initial conditions, a defining characteristic of chaos, ensures 

that even minor differences in starting points result in trajectories that diverge expo-

nentially in phase space. Consequently, two nearby trajectories will never converge 

and will continue evolving along distinct, non-repeating paths of infinite length.

Despite being governed by deterministic laws, chaotic systems are inherently 

unpredictable beyond a certain time horizon. This unpredictability arises because 

even the most precise measurements of initial conditions contain inherent limita-

tions, making long-term forecasting practically impossible. Many natural phenom-

ena exhibit this behavior because they originate from nonlinear dynamical systems 

with multiple interacting variables. In specific regions of their parameter space, 

these systems display chaotic dynamics, making them highly sensitive to initial 

conditions.

However, in practice, while chaotic systems are unpredictable in the long run, 

their behavior can still be estimated over short time scales before small uncertainties 

in initial conditions amplify beyond practical limits.

3.1.5  Dynamical Systems with an Attractor

During the temporal evolution of a dynamical system, its trajectory often remains 

confined within a specific region known as basin of attraction [3, 14]. This basin 

consists of all initial conditions that lead to trajectories that asymptotically converge 

over time toward a particular long-term behavior. Within this region, an attractor 

emerges as an invariant set of points to which trajectories asymptotically converge 

over time. The attractor’s dimension serves as a descriptor of its geometric structure 

and complexity.

A special class of attractors, known as strange attractors, arises in chaotic dynam-

ical systems, i.e., systems that exhibit sensitivity to initial conditions. In such sys-

tems, even infinitesimally close initial conditions lead to exponentially diverging 

trajectories, resulting in seemingly stochastic behavior despite being governed by 

deterministic laws. This sensitivity underpins the unpredictability of chaotic sys-

tems: they may be predictable over short time scales but become increasingly diffi-

cult to forecast as time progresses.

Strange attractors exhibit an important geometric property: self-similarity across 

different spatial scales, meaning they are fractal in nature. Their structure is charac-

terized by a fractal dimension, a non-integer measure that quantifies their complex-

ity and degree of self-similarity. The fractal dimension is always lower smaller than 

the topological dimension of the space in which the attractor resides. The structure 

of systems presenting such behavior relies on nonlinear analysis, providing insights 

into the behavior of chaotic systems across various scientific disciplines.

One of the most well-known dynamical systems with chaotic behavior under 

conditions is the Lorenz dynamical system. Lorenz created a system of three dif-

ferential equations that contained two nonlinear terms and modeled heat transfer 

currents within a fluid. The differential equations are:
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Fig. 3.5 The three time series—variables of the Lorenz system
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(3.4)

where σ, ρ, and β are three parameters of the system. More specifically, the param-

eter σ is called the dimensionless Prandtl number and is defined as the ratio of kine-

matic viscosity to thermal diffusion, the parameter ρ is called the Rayleigh number 

and is connected to heat transfer within a fluid and the parameter b is a geometric 

factor. For the values of the parameters σ = 10, ρ = 28, and β = 8/3, the system exhib-

its chaotic behavior and its numerical solution results in the creation of the trajec-

tory in the phase space known as the Lorenz attractor. By running script 3.5, we 

obtain the time series that appear in Fig. 3.5 and the corresponding phase space and 

attractor in Fig. 3.6.
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Fig. 3.6 Lorenz attractor
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% script 3.5
% Parameters for the Lorenz system
sigma = 10;           % Parameter sigma
rho = 28;             % Parameter rho
beta = 8/3;           % Parameter beta

% Time span and initial conditions
tspan = [0, 50];                    % Time range for the solution
initial_conditions = [1, 1, 1];     % Initial values [x0, y0, z0]

% Define the Lorenz system of differential equations
lorenz_system = @(t, X) [ ...

sigma * (X(2) - X(1));          % dx/dt
X(1) * (rho - X(3)) - X(2);     % dy/dt
X(1) * X(2) - beta * X(3)       % dz/dt

];

% Solve the Lorenz system using ode45
[t, XYZ] = ode45(lorenz_system, tspan, initial_conditions);

% Extract the x, y, and z components of the solution
x = XYZ(:,1);
y = XYZ(:,2);
z = XYZ(:,3);

% Plot the time series for each variable figure;

subplot(3,1,1);            % Plot for x(t)
plot(t, x, 'b');
xlabel('Time (t)');
ylabel('x(t)');
title('Lorenz System - Time Series for x(t)');
grid on;

subplot(3,1,2);            % Plot for y(t)
plot(t, y, 'r');
xlabel('Time (t)');
ylabel('y(t)');
title('Lorenz System - Time Series for y(t)');
grid on;

subplot(3,1,3);            % Plot for z(t)
plot(t, z, 'g');
xlabel('Time (t)');
ylabel('z(t)');
title('Lorenz System - Time Series for z(t)');
grid on;

% 3D Plot of the Lorenz attractor
figure;
plot3(x, y, z, 'b');
xlabel('x(t)');
ylabel('y(t)');
zlabel('z(t)');
title('Lorenz Attractor in 3D Phase Space');
grid on;
view(3);  % Set a 3D view angle for better visualization
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3.1.6  Correlation Dimension

The calculation of the attractor’s dimension is a very useful tool in nonlinear analy-

sis and chaos theory. It helps distinguish between chaos and randomness and deter-

mines the minimum number of variables required to describe the dynamics of the 

system from which time series emanate [14].

An attractor, as a geometric object, is characterized by its Euclidean dimension, 

which described the space it occupies. In the reconstructed phase space, this dimen-

sion corresponds to the embedding dimension, denoted as m. Unlike non-chaotic 

attractors, which have an integer dimension equal to the topological dimension of 

the phase space and do not exhibit sensitivity to initial conditions, chaotic attractors 

are characterized by a non-integer (fractal) dimension and display the property of 

self-similarity across different scales of space. That fractal nature is a key signature 

of chaos.

The fractal dimension is expressed by the correlation dimension, which is 

most commonly used. Assuming two points xi and xj of the attractor, we define the 

probability P(‖xi − xj‖ < r) that their distance is less than a given radius r. If μi is 

the number of points within a sphere of radius r centered at xi, the average over al 

xi 〈μi〉x approximates this probability. For small values of r, the scaling law 

applies:

 
µ
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In the case of a time series, the average over all xi is estimated by the correlation 

sum as follows:
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where Θ(x) is the Heaviside function. The correlation sum defines the probability 

that two randomly selected points of the attractor are closer than a given distance r.

For small r and using the scaling law, the correlation dimension is calculated as:

 

ν =
( )d C r

d r

log
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(3.6)

In practice, the correlation dimension is determined as the slope of a linear region in 

the log-log plot of C(r) versus r. Care must be taken to calculate it for a sufficient 

embedding dimension mmm. A sufficient embedding dimension corresponds to the 

embedding dimension m for which the correlation dimension no longer increases. 

Despite its widespread application, the calculated correlation dimension can be 

affected by the length of the time series, noise, short sampling intervals, and the 

choice of time delay used in reconstructing the phase space.
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The correlation dimension provides information about the fractal dimension of 

the attractor. We evaluate the correlation dimension using the below script 3.6 [11].

% script 3.6 Calculation of correlation dimension

function nuT = CorrelationDimension(xV,tauV,mV,theiler,sV,resol)

% nuT = CorrelationDimension(xV,tauV,mV,theiler,sV,resol)

% CORRELATIONDIMENSION computes the correlation dimension for a 

given time

% series 'xV', for a range of delays in 'tauV', a range of 

embedding 

% dimensions in 'mV' and for a range of upper/lower ratio of 

scaling window

% in % 'sV' (s=r2/r1 where r2-r1 is the length of the scaling 

window).

% The parameter 'theiler' excludes temporally close points 

(smaller than 

% 'theiler') from the inter-distance computations. The parameter 

'resol'

% determines the number of radii for which the correlation sum is

% computed. 

% First, the correlation sum C(r) and the local slopes 

log(C(r))/log(r) are 

% computed for a range of distances r given by 'resol'. Then the 

correlation 

% dimension 'nu' is estimated by searching for the local slope in 

radii

% intervals [r1,r2] (determined by 's') with the smallest standard 

% deviation (best scaling). The mean local slope in this interval 

is the  

% estimate of 'nu'. 

% INPUTS:

% - xV      : Vector of the scalar time series ('xV' is then 

standardized

%             in [0,1]). 

% - tauV    : A vector of the delay times.

% - mV      : A vector of the embedding dimension.

% - theiler : the Theiler window to exclude time correlated points 

in the

%             search for neighboring points. Default=0.

% - sV      : A vector of values of upper/lower ratio of scaling 

window

%             (e=r2/r1 where r2-r1 is the length of the scaling 

window).

% - resol   : The number of radius for which the correlation sum 

is computed.

%             Note that this parameters is supposed to be larger 

than 10.

% OUTPUT: 

% - nuT     : A matrix of size 'ntau' x 'nm' x 'ne', where 'ntau' 

is the 

%             number of given delays, 'nm' is the number of given 

embedding 

%             dimensions and 'ne' is the number of scaling ratio 

of radii. 

%             The components of the matrix are the correlation 

dimension

%             values.
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Fig. 3.7 Correlation dimension of Lorenz attractor

By running script for the time series of Lorenz attractor previously obtained, we 

can estimate the correlation dimension around 2.1 from Fig.  3.7. We can see in 

detail the log C(r) vs log r diagram for which the slopes are calculated in segments 

and plotted and the average slope with the standard deviation for the “horizontal” 

parts appears as function of the embedding dimension along with the log intervals 

that have been employed.

3.2  Surrogate Time Series

In time series analysis, surrogate data are widely used to assess the statistical sig-

nificance of results. In nonlinear time series analysis, the surrogate data method was 

developed to distinguish between linear stochastic processes and nonlinear deter-

ministic dynamics [7–10, 12, 13, 19].

The core idea behind this method is to generate surrogate time series from the 

original data while preserving certain statistical properties. Specifically, the surro-

gate data method involves creating datasets that conform to a null hypothesis, allow-

ing researchers to test whether the underlying dynamical system is linear or 

nonlinear.

The process begins with the hypothesis to be tested. Next surrogate time series 

are generated using a variety of algorithms, with the most popular ones employing 

the Fourier transform. A test statistic is then computed for both the original time 

series and the surrogates, and the statistical significance is evaluated.

An important aspect of this approach is the careful selection of the surrogate data 

generation algorithm since surrogate data should preserve the same cumulative dis-

tribution function and the same autocorrelation as the real data. In the following 
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sections outline the most important techniques for generating surrogate data. To 

illustrate their application, each methodology is accompanied by an example dem-

onstrating how the method works in practice.

3.2.1  Random Phase or Fourier Transform

The fundamental concept behind surrogate data, upon which most algorithms are 

based, is the randomization of the phases in the Fourier transform. The algorithm 

assumes that the time series originates from a stochastic Gaussian process. Surrogate 

data are constructed in such a way that they retain the same periodogram (Fourier 

spectrum). Initially, the Fourier transform of the time series Xt is computed for all 

frequencies. Then, the phases are randomized by multiplying each complex ampli-

tude by eiΦ, where Φ is independently chosen for each frequency from the interval 

[0, 2π]. Subsequently, the inverse Fourier transform produces the final surrogate 

data Yt. It is important to note that, for the inverse Fourier transform to contain real 

components, the phases must be symmetric, such that Φ(f) = −Φ(−f).
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% script 3.7

% Generate surrogate time series (Random Phase or Fourier

% Transform)

% Original time series (example: a sine wave with noise)

N = 1000; % Length of the time series

t = linspace(0, 10, N); % Time vector

original_series = sin(2 * pi * 1 * t) + 0.2 * randn(1, N);

% Parameters for surrogate generation

num_surrogates = 10; % Number of surrogate series to generate

surrogate_series = zeros(num_surrogates, N);

% Generate surrogates using the Random Phase Fourier Transform 

method

for s = 1:FGM_surrogates

% Step 1: Fourier Transform of the original series

fft_original = fft(original_series);

magnitude = abs(fft_original);

phase = angle(fft_original);

% Step 2: Add random phase to the original phase

random_phase = 2 * pi * rand(1, N) - pi; % Uniform random 

phase in [-pi, pi]
new_phase = phase + random_phase;

% Step 3: Construct surrogate in Fourier domain

surrogate_fft = magnitude .* exp(1i * new_phase);

% Step 4: Inverse FFT to get the surrogate time series

surrogate_series(s, :) = real(ifft(surrogate_fft));

end

% Plot original series and surrogates

figure;

subplot(2, 1, 1);

plot(t, original_series, 'b', 'LineWidth', 1.5);

title('Original Time Series');

xlabel('Time'); ylabel('Amplitude'); grid on;

subplot(2, 1, 2);

hold on;

for s = 1:num_surrogates

plot(t, surrogate_series(s, :), 'LineWidth', 1);

end

title('Surrogate Time Series');

xlabel('Time'); ylabel('Amplitude'); grid on;

hold off;
 

Using the above script (3.7), we construct ten surrogate time series with the ran-

dom phase Fourier transform method. In Fig. 3.8, we can see the original time series 

and the corresponding surrogate time series.
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Fig. 3.8 Original time series and the surrogates using random phase Fourier transform method

3.2.2  Amplitude Adjusted Fourier Transform (AAFT)

The Amplitude Adjusted Fourier Transform (AAFT) generates surrogate data by 

using a random time series with a normal distribution. The elements of the time 

series are then rearranged to match the rank ordering of the original time series (Xt) 

(rank ordering white noise), thus producing the time series Xt′. Next, the Fourier 

transform of Xt′ is calculated, and the phases are randomly shuffled to ensure that 

the surrogate time series maintains the same power spectrum as the original. This 

process results in a new time series Xt″. Subsequently, the inverse Fourier transform 

of Xt″ is computed. By observing the rank order distribution of the time series ele-

ments, the data from the original time series are rearranged based on the data of Xt″. 
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Fig. 3.9 Original time series and the surrogates using amplitude adjusted Fourier transform method

In this way, the surrogate time series have the same distribution and approximately 

the same power spectrum. However, because the algorithm assumes that the static 

transformation is monotonic, it fails to accurately reproduce the linear correlations 

(autocorrelation function) in the surrogate time series. This means that if the origi-

nal time series does not employ a monotonic static transformation, there may be 

discrepancies in the linear correlations between the surrogate and the original time 

series. As a result, the AAFT algorithm is used to test the null hypothesis that the 

time series originates from a Gaussian process subjected to a monotonic static 

transformation.

By running in Matlab command window, the following script (3.8) we get the 

results appearing in Fig. 3.9, where the original time series and the surrogates are 

presented.
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% script 3.8

% Generate surrogate time series (Amplitude Adjusted Fourier 

% Transform (AAFT))

% Original time series (example: a sine wave with noise)

N = 1000; % Length of the time series

t = linspace(0, 10, N); % Time vector

original_series = sin(2 * pi * 1 * t) + 0.2 * randn(1, N);

% Parameters for surrogate generation

num_surrogates = 10; % Number of surrogate series to generate

surrogate_series = zeros(num_surrogates, N);

% Generate surrogates using the Amplitude Adjusted Fourier 

Transform (AAFT) method

for s = 1:num_surrogates

% Step 1: Rank-order original series to create a Gaussian-

distributed series

sorted_original = sort(original_series);

gaussian_series = sort(randn(1, N));

[~, idx] = sort(original_series);

rank_ordered_series = gaussian_series(idx);

% Step 2: Fourier Transform of the rank-ordered series

fft_gaussian = fft(rank_ordered_series);

magnitude = abs(fft_gaussian);

phase = angle(fft_gaussian);

% Step 3: Add random phase to preserve spectrum

random_phase = 2 * pi * rand(1, N) - pi; % Uniform random 

phase in [-pi, pi]

surrogate_fft = magnitude .* exp(1i * random_phase);

% Step 4: Inverse FFT to get the surrogate series

gaussian_surrogate = real(ifft(surrogate_fft));

% Step 5: Match the amplitude distribution of the original 

series

[~, surrogate_idx] = sort(gaussian_surrogate);

amplitude_adjusted_series = zeros(1, N);

amplitude_adjusted_series(surrogate_idx) = sorted_original;

% Store the surrogate series

surrogate_series(s, :) = amplitude_adjusted_series;

end

% Plot original series and surrogates

figure;

subplot(2, 1, 1);

plot(t, original_series, 'b', 'LineWidth', 1.5);

title('Original Time Series');

xlabel('Time'); ylabel('Amplitude'); grid on;

subplot(2, 1, 2);

hold on;

for s = 1:num_surrogates

plot(t, surrogate_series(s, :), 'LineWidth', 1);

end

title('Surrogate Time Series (AAFT)');

xlabel('Time'); ylabel('Amplitude'); grid on;

hold off;
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% script 3.9

% Generate surrogate time series (Iterative Amplitude Adjusted 

Fourier Transform (IAAFT))

% Original time series (example: a sine wave with noise)

N = 1000; % Length of the time series

t = linspace(0, 10, N); % Time vector

original_series = sin(2 * pi * 1 * t) + 0.2 * randn(1, N);

% Parameters for surrogate generation

num_surrogates = 10; % Number of surrogate series to generate

surrogate_series = zeros(num_surrogates, N);

% Generate surrogates using the Iterative Amplitude Adjusted 

Fourier Transform (IAAFT) method

for s = 1:FGM_surrogates

% Step 1: Rank-order original series to create a Gaussian-

distributed series

sorted_original = sort(original_series);

gaussian_series = sort(randn(1, N));

[~, idx] = sort(original_series);

rank_ordered_series = gaussian_series(idx);

% Step 2: Initialize with Fourier Transform of the rank-

ordered series

fft_gaussian = fft(rank_ordered_series);

magnitude = abs(fft_gaussian);

phase = angle(fft_gaussian);

% Iterative adjustment

max_iter = 100;

tol = 1e-6;

surrogate = rank_ordered_series;

for iter = 1:max_iter

% Fourier Transform of the surrogate series

fft_surrogate = fft(surrogate);

% Enforce original magnitude spectrum

adjusted_fft = magnitude .* exp(1i * 

angle(fft_surrogate));

adjusted_series = real(ifft(adjusted_fft));

% Rescale to match the amplitude distribution of the 

original series

[~, surrogate_idx] = sort(adjusted_series);

rescaled_series = zeros(1, N);

rescaled_series(surrogate_idx) = sorted_original;

% Check for convergence

if max(abs(rescaled_series - surrogate)) < tol

break;

end

surrogate = rescaled_series;

end

% Store the final surrogate series

surrogate_series(s, :) = surrogate;

end
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3.2.3  Iterative Amplitude Adjusted Fourier Transform (IAAFT)

The Iterative Amplitude Adjusted Fourier Transform (IAAFT) algorithm improves 

upon the AAFT algorithm by more accurately preserving the linear correlations of 

surrogate time series through an iterative refinement process.

The procedure begins by randomly shuffling the values of the original time 

series. Then, a surrogate time series is generated to match the original power spec-

trum while preserving the rank order of the data. This is achieved by generating a 

white noise time series and replacing its squared magnitudes with those of the origi-

nal time series.

Subsequently, since the power spectrum is preserved but the marginal distribu-

tion is altered, the elements are reordered to match the rank order of the original 

time series. However, since this process achieves marginal distribution but modifies 

the power spectrum, the previous steps are repeated iteratively until convergence is 

achieved in both the correlations of the data and the marginal distribution. Thus, the 

surrogate time series have almost the same distribution and linear structure as the 

original time series. However, due to the algorithm’s mechanism, the surrogate time 

series are consistently less correlated than the original time series, which may result 

in significant linear discrepancies.

In general, the IAAFT algorithm is used to test the null hypothesis that the time 

series originates from a Gaussian process subjected to a static transformation. Using 

the script (3.9), we generate the surrogates time series presented in Fig. 3.10.

Fig. 3.10 Original time series and the surrogates using iterative amplitude adjusted Fourier trans-

form (IAAFT) method
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% Plot original series and surrogates

figure;

subplot(2, 1, 1);

plot(t, original_series, 'b', 'LineWidth', 1.5);

title('Original Time Series');

xlabel('Time'); ylabel('Amplitude'); grid on;

subplot(2, 1, 2);

hold on;

for s = 1:num_surrogates

plot(t, surrogate_series(s, :), 'LineWidth', 1);

end

title('Surrogate Time Series (IAAFT)');

xlabel('Time'); ylabel('Amplitude'); grid on;

hold off;
 

3.2.4  Statistically Transformed Autoregressive Process (STAP)

The Statistically Transformed Autoregressive Process (STAP) algorithm generates 

surrogate data that preserve both the autocorrelation structure and the probability 

distribution function of the original time series. In a first place a white Gaussian 

noise time series is created, and the transformation from the Gaussian to the desired 

distribution is approximated using a polynomial of a specified degree (m). The auto-

correlation of an autoregressive process u (AR(p)) is represented as a polynomial 

function of degree mm of the autocorrelation of the original time series.

The parameters of the AR model of order p are estimated using the Levinson 

algorithm, leading to the construction of the u time series based on the AR(p) model. 

This series is then transformed into the surrogate data time series, ensuring it shares 

the same linear structure (autocorrelation) and probability distribution function as 

the original time series. The procedure is repeated to optimize the autocorrelation 

match with the original time series.

Thus, surrogate time series generated by the STAP algorithm exhibit greater 

variability than those produced by the IAAFT algorithm, while maintaining the 

same linear structure as the original time series. In general, the STAP algorithm is 

used to test the null hypothesis that the time series originates from a Gaussian pro-

cess that has undergone a static transformation. Figure 3.11 presents the surrogates 

time series produced using script 3.10.
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Fig. 3.11 Original time series and the surrogates using statistically transformed autoregressive 

process (STAP) method
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% script 3.10

% Generate surrogate time series (Statistically Transformed

% Autoregressive Process (STAP))

% Original time series (example: a sine wave with noise)

N = 1000; % Length of the time series

t = linspace(0, 10, N); % Time vector

original_series = sin(2 * pi * 1 * t) + 0.2 * randn(1, N);

% Parameters for surrogate generation

num_surrogates = 10; % Number of surrogate series to generate

surrogate_series = zeros(num_surrogates, N);

% Fit an autoregressive (AR) model to the original series

order = 2; % Order of the AR model

ar_model = ar(original_series, order); % Estimate AR model 

coefficients

% Generate surrogates using Statistically Transformed 

Autoregressive Process (STAP)

for s = 1:num surrogates

% Step 1: Generate a Gaussian white noise sequence

gaussian_noise = randn(1, N);

% Step 2: Use the AR model to generate an AR process

ar_process = filter(1, [1 -ar_model.a(2:end)], 

gaussian_noise);

% Step 3: Match the amplitude distribution of the original 

% series

[sorted_original, idx_original] = sort(original_series);

[sorted_ar, idx_ar] = sort(ar_process);

transformed_process = zeros(1, N);

transformed_process(idx_ar) = sorted_original;

% Store the surrogate series

surrogate_series(s, :) = transformed_process;

end

% Plot original series and surrogates

figure;

subplot(2, 1, 1);

plot(t, original_series, 'b', 'LineWidth', 1.5);

title('Original Time Series');

xlabel('Time'); ylabel('Amplitude'); grid on;

subplot(2, 1, 2);

hold on;

for s = 1:num_surrogates

plot(t, surrogate_series(s, :), 'LineWidth', 1);

end

title('Surrogate Time Series (STAP)');

xlabel('Time'); ylabel('Amplitude'); grid on;

hold off;
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Chapter 4

Complex Network Time Series

Complex network-based time series analysis has gained significant attention, and 

they have provided new insights to time series analysis by applying graph theory. 

This approach has achieved valuable results in addressing interdisciplinary chal-

lenges. Network analysis findings indicate that time series properties can be inher-

ited by the network measures, enhancing our understanding of crucial processes in 

physics, economy, among others such as neuroscience, biology, medicine, and 

finance [1, 3, 4, 5, 8].

4.1  Basics of Complex Network Theory

In this part of the book, we present some of the basic ideas behind graph theory and 

the key aspects of the study of network structure. Network analysis is based on a 

branch of mathematics called graph theory to define the basics concepts.

4.1.1  Theoretical Definition of a Graph

A graph consists of a set of objects, called nodes or vertices, with certain pairs of 

these objects connected by links called edges. Mathematically, a graph G = (N;E) is 

defined by a set of nodes N and a set of edges E connecting them [1, 3].

A vertex (singular of vertices) is the smallest unit in a network and is typically 

labeled with a number, while an edge represents a connection (or tie) between two 

vertices.

For example, the graph in Fig. 4.1 consists of nine nodes labeled 1, 2, 3, …, 9. 

Two nodes are considered neighbors if they are connected by an edge. Figure 4.1 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92628-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-92628-0_4#DOI
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Fig. 4.1 Network 

consisting of nine nodes

Fig. 4.2 Directed network 

consisting of nine nodes

illustrates the typical way one draws a graph with small circles representing the 

nodes, and lines connecting them indicate edges.

Networks can be classified into two basic types based on node connectivity: 

directed networks and undirected networks. A directed graph is defined as a type of 

graph where edges have an assigned direction. In contrast, an undirected graph has 

edges with no specified direction. In directed graphs, edges are called arcs, which 

are ordered pairs of vertices where the first vertex is the sender and the second is the 

receiver. In undirected graphs, edges are represented as unordered pairs, meaning 

the order of vertices does not matter. A directed graph contains one or more arcs, 

whereas an undirected graph contains no arcs, only bidirectional edges. Figure 4.1 

illustrates an undirected graph, while Fig. 4.2 shows a directed network.

From a mathematical point of view, we can represent a network using an adja-

cency matrix A. A graph with N vertices can be represented by an N × N adjacency 

matrix, where each entry indicates the presence or absence of an edge between two 

vertices. Figure  4.3 presents an undirected network and its corresponding adja-

cency matrix.

Another distinction that may occur between graphs are the unweighted and 

weighted graphs. An unweighted graph is a graph in which all edges are considered 

equal, meaning they do not carry any numerical values or weights. The presence or 

absence of an edge simply indicates whether two vertices are connected. In an 

unweighted adjacency matrix, entries are typically 1 (if an edge exists) or 0 (if no 

edge exists). In contrast, a weighted graph is a graph in which each edge is assigned 
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Fig. 4.3 Undirected network and the corresponding adjacency matrix

a numerical value, called a weight, which represents some measure of the connec-

tion between two vertices. Weights can represent distances, costs, capacities, prob-

abilities, or other relevant quantities depending on the context. In a weighted 

adjacency matrix, entries store the weight of each edge instead of just 1s and 0s.

For an undirected and unweighted graph, like the one shown in Fig.  4.3, the 

edges can be represented by the elements Aij of this matrix such Aij = 1, if the nodes 

i and j are connected, otherwise it is 0. Two nodes joined by a link are referred to as 

adjacent or neighboring nodes. In this case, the adjacency matrix is symmetric, it 

means Aij = Aji, while for directed ones, the matrix is not symmetric and the element 

Aij = 1 indicates that the node i points to the node j.

An example of adjacency matrix in the Matlab can be obtained by executing the 

script 4.1 in the command window below, and the result is displayed in Fig. 4.4.

 

We can see that the adjacency matrix is symmetrical with respect to the main 

diagonal (the dots correspond to the number 1, while the spaces correspond to the 

number 0). As we have mentioned, the existence of a dot indicates that there is a 

connection between the nodes. So, node 1 is connected with node 2, 4, 5, 6, and 7.

4.1 Basics of Complex Network Theory
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Fig. 4.4 Adjacency matrix of a network consisting of ten nodes

4.2  Topological Network Measures

As previously mentioned, an undirected and unweighted complex network can be 

represented as a graph G = (N,E) consisting of a set of N = (n1,n2,…nN) nodes or 

vertices and a set of E  =  (e1,e2,…,eE) edges or links. The network’s topological 

structure is described by a N × N adjacency matrix A = [aij] where aij = 1 if the vertex 

i is connected to vertex j and aij = 0 otherwise.

4.2.1  Degree and Degree Distribution

 Degree of a Node

The degree of a node i (ki) is a fundamental parameter of a network that influences 

other characteristics and is defined as the total number of connections (or edges) 

adjacent to that node i. Hence, the degree of a node is the number of edges that it 

shares with other nodes [1, 3, 5].

For undirected networks, it can be computed as

 

k a a
i

j

i j

j

ji
= =∑ ∑

 

(4.1)
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Fig. 4.5 Example of 

degree of a network node

characterizing the connectivity properties of an individual node in a network, the 

average degree ⟨k⟩ represents the mean value of ki across all nodes. It serves as a 

global measurement of the connectivity of the network.
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(4.2)

The average degree of all vertices is a measure of the structural cohesion of a net-

work. In the case of a directed network, we can define the in-degree and the out- 

degree. The in-degree of a node is the number of arcs it receives, while the out-degree 

is the number of arcs it sends.

Figure 4.5 illustrates an example of node calculation in the case of an undirected 

network. The degree of node 7 is k7 = 5 since node 7 is connected with five nodes, 

i.e., N2, N5, N6, N8, and N9.The degree of node 2 is k2 = 4 since it is connected to four 

nodes, i.e., N1, N7, N3, N5.

Let’s assume that we have a network consisting of 100 nodes (Fig.  4.6), for 

which we calculate the degree of each node as well as the average degree overall for 

the network.

Using the following script (4.2) in Matlab, we can calculate the degree of each 

node in the network.
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Fig. 4.6 Example of a network consisting of 100 nodes

In the Matlab command, we have to type the following:

 

or we can execute the above script.

 

Figure 4.7 shows the results of the node degree (number of connections) of each 

node for the network of Fig. 4.6. The height of each bar indicates the degree of each 

node, that is, the number of connections of each node. From this graph, we can see 

which node has the most connections. We can see that node 12 has the highest num-

ber of connections and thus the highest degree (with value equal to 31).

 Degree Distribution

The degree distribution of a network is the fraction of nodes with degree kkk, rep-

resenting the probability that a randomly selected node has exactly kkk edges. 

Examining the degree distribution—often visualized as a histogram—provides 

insight into the structure and behavior of the network. Another definition is that 
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Fig. 4.7 Degree of network consisting of 100 nodes

degree distribution is the frequency distribution of different degrees across the 

nodes in the network and can be used to characterize a network. The degree distribu-

tion gives the probability that a selected node has exactly k edges.

Below the code (script 4.3) for calculating the degree distribution is given.
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Fig. 4.8 Degree per node (left) and degree distribution (right) of a network consisting of 100 nodes

In the Matlab command, we write:

 

or we can execute the script file (4.3) and the results appear in Fig. 4.8. Pay atten-

tion that the horizontal axis on the degree distribution (right figure) is logarithmic. 

We calculate the degree of each node, i.e., the connections, as well as the degree 

distribution of points.

4.2.2  Shortest Path and Diameter

In a network, the number of edges in a path connecting vertices i and j is called the 

length of the path. The distance dij between nodes i, j defined as the length of the 

shortest path connecting them. The network’s diameter D is the longest shortest 

path distances between any pair of nodes of a network. The average distance <di,j> 

is the average distance of a network connecting any pair of points i, j. In other 

words, the average path length is the mean number of edges in the shortest paths 

connecting all nodes in the network:

 

D d
i j

i j

= max
,

,  

(4.3)
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Fig. 4.9 Example of distance in a network
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(4.4)

Diameter is an important characteristic that depends on the overall network structure.

In Fig. 4.9, we present a network with examples of distances.

To calculate the network diameter of the network, the following script needs to 

be executed in Matlab.

 

In the command window of Matlab, we type the following command:

 

Figure 4.10 shows the shortest path between nodes in the network of Fig. 4.6. 

Specifically, we can see two shorter paths: the first where it connects the two distant 

red nodes and the one that connects the two blue nodes.
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Fig. 4.10 Example of shortest paths of network consisting of 100 nodes

4.2.3  Clustering Coefficient

The clustering coefficient of a network quantifies the local link density by counting 

the triangles in the network and for a node i can be defined as:
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(4.5)

where ki is the number of neighbors of i and ei is the number of connected pairs 

between all neighbors of i in a network. We can say that if a node i has ki neighbors 

or friends, then all possible connections among neighbors pairs of the nodes in a 

graph are ki(ki − 1)/2.

The average clustering coefficient C of a network is the average ci and it is 

defined as
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(4.6)

An alternative definition of the clustering coefficient of a node i is the ratio E/M, 

where E is the number of edges between the neighbors of node i, and M is the maxi-

mum number of edges that could potentially exist between those neighbors. The 
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clustering coefficient of a node ranges between 0 and 1. Therefore, the local cluster-

ing coefficient measures the probability of the neighbors of a node i being con-

nected which is the probability that first step neighbors of a node i (called “friends” 

of the node i) are connected directly to each other. Clustering coefficient is a mea-

sure of network transitivity, which indicates how much neighbors of a node are 

neighbors of each other. Transitivity measures the probability that adjacent vertices 

of a node are connected. A network is considered transitive, if for any three nodes a, 

b, and c, when there is an edge between a and b, and between b and c, then there 

exists an edge between a and c as well.

Figure 4.11 illustrates clustering coefficient for a representative node. In this 

case, node 2 presents a degree equal to 4 and thus based on Eq. (4.5), the corre-

sponding clustering is found equal to 1/6.

In the following, we present a Matlab script (4.5) that calculates the clustering 

coefficient of a network.

 

In the command window of Matlab, we type the following commands and the 

results are presented in Fig.  4.12, where we can see the value of the clustering 
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Fig. 4.11 Example of clustering coefficient of a network

Fig. 4.12 Clustering coefficient of the nodes of a network consisting of 100 nodes

coefficient for each node of the network. In Fig. 4.13, the network nodes are repre-

sented in a color scale based on their value of clustering coefficient. The darker the 

node, the higher the value of the clustering coefficient.
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Fig. 4.13 Graphical representation of clustering coefficients of nodes of network consisting of 

100 nodes

4.2.4  Centrality Measures/Betweenness Centrality

 Centrality Measures

Centrality measures indicating the importance of node in the network (is deciding 

on whether there are any vertices “more important” than others). Below we discuss 

the various measures.

 Betweenness Centrality

Betweenness centrality is calculated based on the position of the node in the net-

work paths. Thus, nodes with high betweenness can have significant influence 

within a network for the transmission of information. The betweenness centrality of 

a node v is given by the following equation:
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(4.7)
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where σst is the total number of shortest paths from node s to node t and σst(v) is the 

number of those paths that pass-through v.

The following script (4.6) can be used in Matlab to calculate the betweenness 

centrality.
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Fig. 4.14 Betweenness centrality of network consisting of 100 nodes

Fig. 4.15 (a) The network and (b) betweenness centrality of network consist of 100 nodes. The 

color map indicates the intensity of the measure. The darker the node, the higher the value, and the 

node with the largest value of the clustering coefficient has a larger size

For the calculation in the Matlab, we type the following command in the corre-

sponding window. The corresponding results for each node of the network appear in 

Fig. 4.14.

 

In Fig. 4.15, the network is shown on the left, while on the right is the network 

layout with a color scale based on the betweenness centrality of each node. Α bright 

purple color in the case of node N = 55 is employed to represent the highest value 

and thus the larger circle size. It is also visually perceptible according to the impor-

tance of the variable that this node will have the highest value as we can see that it 

is on a critical path. Such nodes are usually called hubs in analogy with the airport 

hubs (i.e., airports presenting connections with many other airports, not necessarily 

connected directly between them).
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4.2.5  Closeness Centrality

Closeness centrality represents the flow of information from one node to others and 

measures how short the shortest paths are from node i to all nodes. The closeness 

centrality can be calculated using the following equation:
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(4.8)

where i ≠ j, dij is the length of the shortest path between nodes i and j in the network 

and N is the number of nodes.

The closeness coefficient can be calculated using script 4.7.

 

For the calculation, we type in the Matlab command window the following 

command:
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Fig. 4.16 Closeness centrality of network consists of 100 nodes

Fig. 4.17 (a) The network and (b) closeness centrality of nodes of a network consisting of 100 

nodes. Nodes with a bright green color and a larger circle size than the rest are the nodes that pres-

ent a higher closeness centrality value than the others

The result of the calculation is illustrated in Fig. 4.16 where we can see the close-

ness centrality for each node of the network.

Figure 4.17 shows in the left the network and in the right their representation in 

color scale based on the value of closeness centrality of each node. Nodes with a 

bright green color and a larger size than the rest are the nodes with a greater close-

ness centrality value than the others.

4.2.6  Eigenvector Centrality

Eigenvector centrality is a measure of a node’s influence within a network while 

considering the importance of its neighbors. This measure takes into account not 

only how many connections a node has (i.e., its degree), but also the centrality of the 

vertices that it is connected to. The eigenvector centrality is based on the eigenvalue, 

meaning that the value of an entity is based on the value of the entities connected to 

it: the higher the latter is, the higher the former becomes.
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The following script (script 4.8) permits to calculate the eigenvector centrality 

in Matlab.

 

In the Μatlab command window, we type:

 

Figure 4.18 shows the values of the indicator for each node, while Fig. 4.19b 

shows the network and its colored representation based on the value of eigenvalue 

centrality, where we can see in bright green the nodes with a higher value.

Fig. 4.18 Eigenvector centrality of the nodes of network consisting of 100 nodes
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Fig. 4.19 (a) The network and (b) Eigenvector centrality of network consist of 100 nodes. The 

color variation indicates the value of the measure. The darker the color, the higher the value

4.2.7  Modularity

Modularity measures the effectiveness of a network’s division into communities. 

Communities with high modularity values have dense edge connections between 

the vertices within a community, but sparse connections between nodes in different 

communities.

We can use the script 4.9 to calculate modularity of network in Matlab.

 

In Matlab command window, we can type the following commands:

 

In Fig. 4.20, the results are presented, and we see the modularity values for each 

node. Figure 4.21 shows these groups of nodes in different colors. We can distin-

guish six different groups of nodes (modules), which are depicted in different col-

ors. Within these groups, there are strong connections between nodes and sparse 

connections between groups (modules).
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Fig. 4.20 Modularity class of each node of the network

Fig. 4.21 (a) The network and (b) modularity of network consisting of 100 nodes. The different 

colors represent nodes in different communities

4.3  Types of Networks

A network is essentially a system that can be represented as a graph, consisting of 

elements known as nodes or vertices and a set of connecting links (edges) that rep-

resent the interactions between them [1, 7, 8, 9, 13].

4.3.1  Small-World Network

A small-world network is a type of graph where most nodes are not directly con-

nected to each other, but most nodes can be reached from every other node within 

few steps. A small-world network is a network where the typical distance L between 

two randomly chosen nodes grows proportionally to the logarithm of the number of 

nodes N in the network, L ∝ log N. Watts and Strogatz introduced this type of net-

work as follows [13]:

Consider a set of n vertices {v1, v2, …, vn} and an (even) number k. In order to 

ensure that the graph will have relatively few edges (i.e., it is sparse), choose n and 

k such that n ≥ k ≥ ln(n) ≥ 1.

• Order the n vertices into a ring and connect each vertex to its first k/2 left-hand 

(clockwise) neighbors, and to its k/2 right-hand (counterclockwise) neighbors, 

leading to graph G
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• With probability p, replace each edge {u, v} with an edge {u, w} where w is a 

randomly chosen vertex from V(G) other than u, and such that {u, w} is not 

already contained in edge set of (the modified) G

Watts–Strogatz model presents high clustering coefficients while maintaining short 

average path lengths. The resulting graph is known a Watts–Strogatz random graph 

or WS graph.

To make a Watts–Strogatz (WS) graph, we start with a ring lattice. First, a ring 

lattice with N nodes of mean degree 2K will be created. Each node is connected to 

its K nearest neighbors on either side. Next, for each edge in the graph, rewire the 

target node with probability p. We can employ script 4.10 to create a WS network 

in Matlab.

t = s + repmat(1:K,N,1);

t = mod(t-1,N)+1;

for source=1:N    

SE = rand(K, 1) < p;

NT = rand(N, 1);

NT (source) = 0;

NT (s(t==source)) = 0;

NT (t(source, ~ SE)) = 0;

[~, ind] = sort(NT, 'descend');

t(source, SE) = ind(1:nnz(SE));

end

WS = graph(s,t);

end

 

In order to generate a network, consist of 20 nodes, a network degree of 5 and 

probability 0, we write in Matlab the following commands.

% Example of Watts-Strogatz (WS) network 

>> WS = WattsStrogatz(20,5,0);

>> plot(WS,'NodeColor','k','Layout','circle');

>> title('Watts-Strogatz Graph with N = 20 nodes, degree K = 5, and 

p = 0')
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The results are presented in Fig. 4.22. The graph is a perfect ring lattice. When 

p = 0, no edges are rewired and the model returns a ring lattice. Conversely, when 

p = 1, all of the edges are rewired, converting the ring lattice is transformed into a 

random graph.

Then we increase the probability to 0.1 and we type in Matlab the following 

commands. The results are presented in Fig. 4.23.

Fig. 4.22 A perfect lattice network with 20 nodes

Fig. 4.23 Network with 20 nodes and p = 0.1
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% Example of Watts-Strogatz (WS) network 

>> WS = WattsStrogatz(20,5,0.1);

>> plot(WS,'NodeColor','k','Layout','circle');

>> title('Watts-Strogatz Graph with N = 20 nodes, degree K = 5, and 

p = 0.1')

 

Then we increase the probability to 1 by typing the command, and the result is 

presented in Fig. 4.24. As we can see by comparison to Fig. 4.23, as probability 

increases, the number of random connections increases too.

>> WS = WattsStrogatz(20,5,1);

>> plot(WS,'NodeColor','k','Layout','circle');

>> title('Watts-Strogatz Graph with N = 20 nodes, degree K = 5, and 

p = 1')

 

The degree distribution of the nodes in the different Watts–Strogatz graphs var-

ies. When beta is 0, all nodes preset the same degree, 2K. However, as p increases, 

the degree distribution changes. This can be seen in Fig. 4.25.

Fig. 4.24 Random network with 20 nodes
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Fig. 4.25 The Watts–Strogatz model of the small world. For p = 0, the network is regular and as 

it increases, it is characterized as small world until for p = 1 where it is a random graph

4.3.2  Scale-Free Network

A scale-free network is one in which the distribution of links to nodes follows a 

power law. The power law means that the vast majority of nodes have very few con-

nections, while a few important nodes (named Hubs) have a huge number of 

connections.

Albert-László Barabási mapped the network of a portion of the World Wide Web 

(WWW). The analysis of that network had led to some interesting findings:

 1. A number of nodes (hubs) have more connections than others.

 2. The WWW network has a power law distribution of the number of links con-

nected to web pages.

From the above, we can conclude that scale-free networks have the following key 

features:

 1. Several nodes with high degrees are known as hubs; they appear as a result of 

preferential attachment.

 2. The degree distribution follows a power law.

 3. Hubs usually have links from all around the network, serving as links between 

different parts of the network, therefore showing a small-world property.

Figure 4.26 represents an example of a network with scale-free behavior and the 

corresponding degree distribution in Fig. 4.27, which was generated by running the 

commands of script 4.11.
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Fig. 4.26 Scale-free 

network

Fig. 4.27 Degree and degree distribution of scale-free network of Fig. 4.26

4.3.3  Random Network

A random network consists of N nodes where each node pair is connected with 

probability p [8]. To construct a random network, we follow these steps:

 1. Start with N isolated nodes.

 2. Select a node pair and generate a random number between 0 and 1.

If the number is larger than the probability p, then connect the selected node pair 

with a link otherwise leave them disconnected.

 3. Repeat step 2 for each of the N(N − 1)/2 node pairs.
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Fig. 4.28 Random 

network consists of 225 

nodes

Fig. 4.29 Degree and Degree Distribution of the Random network of Fig. 4.28

The network obtained after this procedure is called a random graph or a random 

network. A representative example is presented in Fig. 4.28 along with the degree 

value for each node and the degree distribution in Fig. 4.29.

Random networks’ degree distribution follows either a Poisson or Binomial 

distribution.
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4.4  From Time Series to Complex Network/Methods 

of Construction

The concept of analyzing the dynamic characteristics of a time series by transform-

ing it into a complex network system has been introduced [1, 6, 9, 10, 12]. Several 

studies have shown that distinct features of a time series can be mapped onto net-

works with different topological characteristics such as correlation, phase space 

reconstruction, visibility, and recurrence.

4.4.1  Phase Space Network: Recurrence Network

Recurrence networks are a technique used to analyze complex dynamical systems 

based on the recurrence properties of states in the system’s phase space. They are 

particularly useful for understanding the underlying dynamics of nonlinear and cha-

otic systems. Recurrence networks offer a graph-based representation of time series 

data, providing insights into the system’s recurrent patterns and structures. 

Recurrence networks offer a unique perspective on time series data by emphasizing 

the spatial relationships between states in a reconstructed phase space. They are a 

valuable tool for researchers seeking to understand the complex behaviors of 

dynamic systems.

First, recurrence networks start with a time series dataset, which consists of a 

sequence of data points recorded over time. This data can originate from various 

domains, such as physics, biology, finance, and engineering just to mention few 

ones. Then, to create a recurrence network, we first transform the one-dimensional 

time series data into a higher-dimensional representation known as a phase space. 

This is often done using time delay embedding, a technique that constructs a multi-

dimensional space by stacking lagged copies of the time series. The choice of 

embedding dimension and time delay is important and should be determined based 

on the characteristics of the system under study.

The core of a recurrence network is the construction of a recurrence plot. A 

recurrence plot is a binary matrix where each element indicates whether two points 

in the phase space are close to each other. Typically, a threshold or distance measure 

is used to determine when two points are considered close or “recurrent.” If the 

distance between two points falls below the threshold, the corresponding entry in 

the recurrence plot is set to 1; otherwise, it’s set to 0. Recurrence plots reveal regions 

in phase space where the system revisits similar states over time. Finally, the recur-

rence plot can be further transformed into a network or graph. In this network, nodes 

represent the states in the phase space, and edges connect pairs of states that are 

recurrent. The edges can be weighted, representing the strength of recurrence 

between states. Recurrence networks can be applied to a wide range of dynamic 

systems, including ecological systems, physiological data (e.g., EEG signals), 
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climate data, financial time series, and more. They have found applications in fields 

like physics, biology, engineering, and neuroscience.

Advantages of recurrence networks include their ability to capture complex, 

nonlinear dynamics and their robustness to noise in the data. They can reveal impor-

tant features of a system’s behavior that may not be apparent through traditional 

time series analysis techniques.

Overall, recurrence networks provide a powerful tool for understanding the 

underlying structure and behavior of complex systems, making them valuable in 

various scientific and engineering disciplines.

4.4.2  Correlation Network

A correlation network is a type of network that is constructed based on the statistical 

relationships between variables or data points, specifically through measures of cor-

relation. These networks are used to visualize and analyze the associations or 

dependencies among variables in a dataset. Correlation networks are particularly 

useful for understanding patterns and connections in multivariate data.

In this approach, we calculate the pairwise correlations between time series data 

points (e.g., Pearson correlation coefficient or cross-correlation) and use these cor-

relations to construct a network. Nodes in the network represent time series vari-

ables, and edges between nodes represent significant correlations. Such networks 

can help identify which variables are strongly related over time.

To create a correlation network, we start with a dataset that contains multiple 

variables (features) and data points. These variables can represent anything from 

financial indicators, biological measurements, to social interactions, and more. 

Then, the next step is to calculate pairwise correlations between all pairs of vari-

ables in the dataset. The most commonly used correlation measure is the Pearson 

correlation coefficient, but other measures like Spearman’s rank correlation or 

Kendall’s tau can also be used, depending on the nature of the data.

Once we have computed the correlations, we typically apply a threshold to 

decide which correlations to include in the network. Correlations above a certain 

threshold (e.g., absolute correlation value >0.5) are considered significant and are 

used to establish connections in the network. The choice of threshold can impact the 

network’s density and structure.

Based on the significant correlations, we construct a network where each vari-

able is represented as a node (or vertex), and edges (or links) between nodes repre-

sent correlations above the threshold. The edges can be weighted to reflect the 

strength of the correlation.

The resulting correlation network can be visualized using various techniques, 

such as node-link diagrams or adjacency matrices. Visualization tools like network 

graphs can help you explore and interpret the relationships between variables.

Correlation networks have applications in various fields like finance, biology, 

climate science, and other.
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4.4.3  Visibility Network

We remind that the structure of complex network can be represented as a graph 

G = (N,E), which consists of a set of N = (n1,n2,…,nN) vertices or nodes connected 

by a set of E = (e1,e2,…,eE) links or edges. A network can be represented by its adja-

cency matrix A =  [aij]. The adjacency matrix contains the information about the 

connectivity structure of the graph, and for a graph with N nodes is an N × N matrix. 

The elements aij are equal to 1 whenever there is an edge connecting the vertices i 

and j, and equal to 0 otherwise. When the graph is undirected, the adjacency matrix 

is symmetric, i.e., the elements aij = aji for any i and j.

In the visibility method, each value of time series is converted to a node and each 

node is connected with all the other nodes that exists visibility between them. There 

are two main categories and several variations of them, converting time series to 

network, horizontal graph, and natural graph. The natural graph is described below.

Mathematically, the visibility criterion can be defined as follows: two time series 

points x(ti) and x(tj) in the time series have visibility and consequently become two 

connected nodes in the graph, if any other data (tk, x(tk)) placed between them 

(ti < tk < tj) fulfills the following constrain:

 

x t x t x t x t
t t

t t
k i j i

k i

j i

( ) < ( )+ ( )- ( )( )
-

-
 

(4.9)

Hence, i and j are connected if a straight line can be drawn in the time series joining 

the two points i and j, such that, at all intermediate points (ti < tk < tj), x(tk) fall below 

this line. In a network mapped using the visibility algorithm, each node is visible at 

least by its nearest neighbors (left and right). An illustration of a time series trans-

formed into a visibility graph is shown in Fig. 4.30.

To understand the methodology of converting time series to network, below we 

present an example of converting a time series of ten values to a network and a time 

series of 10 points to a network (Fig. 4.31).

Fig. 4.30 Schematic representation of transformation of time series to a network via the visibil-

ity method
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Fig. 4.31 Example of time series with ten values (two different plot type)

Then the algorithm for converting a time series into a graph is based on the vis-

ibility algorithm as presented in script 4.12.

txV=[1:1:N]';

xV=xn;

for i=1:N

if (i<N)

Net(i,i+1)=1;

Net(i+1,i)=1; 

end

end

for i=1:N

for j=(i+2):N

Dyt(i,j)=(xV(j)-xV(i))/(txV(j)-txV(i));

Net(i,j)=1;    

Net(j,i)=1; 

for k=(i+1):(j-1)   

temp(k) = xV(i) + Dyt(i,j)*(txV(k)-txV(i)); 

if temp(k) <= xV(k) 

Net(i,j) = 0;

Net(j,i) = 0; 

break

end

end

end

end

 

Suppose we have NetA1_10 time series, and we want to transform it into a net-

work named NETA1_10. We have to write the following in Matlab (Fig. 4.32).
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Fig. 4.32 Adjacency 

matrix of time series with 

ten values (two different 

plot type)

Fig. 4.33 Network of time 

series with ten values

 

As we have already seen for the adjacency matrix wherever there are dots, it 

means that there is a connection between the corresponding nodes. That is, there are 

a total of ten nodes as many as the points of the time series. Connections are derived 

from the criterion of visibility graph. In the adjacency matrix, where there is a dot 

means connection between the nodes. That is, we can see that node 1 is connected 

only to node 2, while node 2 is connected to node 1, 3, 4, 5. In Fig. 4.33, the graph 

formed by the adjacency matrix is shown.
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4.5  Extended Example of Transforming Time Series 

to Network and Analyzing Them Using 

Network Properties

4.5.1  Examples of Field Measurement Data (Environmental 

Time Series)

Below we will present some examples of converting time series into networks. The 

time series have been selected on the base of their different dynamical behavior. 

Specifically, these are field meteorological time series, which have been obtained 

through the Poseidon system of buoys maintained by the Hellenic Center for 

Marine Research (HCMR) www.poseidon.hcmr.gr. The sampling interval was 3 h 

for all variables, and every measurement is an average over 10 min, resulting in 

eight values per day. Thus, the length of the time series is 3.730 values (in units of 

Δt = 3 h).

At first, time series of water temperature (Water Temp.) is displayed in Fig. 4.34. 

In order to plot the time series, we write the following command.

 

In order to convert this time series into a network using the visibility method, we 

write the following command in Matlab. We remind that in this way, the number of 

nodes of the network is equal to the number of the time series recordings (3730 in 

the present case).

Fig. 4.34 Water temperature time series
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Fig. 4.35 Adjacency matrix of water temperature time series of Fig. 4.34

 

In this way, we have transformed the time series into a network. To see the adja-

cency matrix we write in Matlab (Fig. 4.35):

 

In order to be able to visualize the network in the design software Gephi [2], we 

write in Μatlab the following command.
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Using the above routine, the file can now be processed by the Gephi program, the 

visualization of which based on modularity measure is shown in Fig. 4.36.

Looking at the network, we can see that few groups (modules) of nodes are cre-

ated where nodes have strong connections within the same group and sparse con-

nections of nodes between different groups (modules). This observation is linked to 

the dynamic evolution of time series values.

In the following, we present another example of a time series transformation into 

a network. After executing the following command in Matlab, the time series is 

shown in Fig. 4.37.

Fig. 4.36 Network of water temperature time series

Fig. 4.37 Atmospheric pressure time series
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We observe that the values of this time series have different dynamic behavior, 

where the periodicity of the data is no longer clear, and these values fluctuate more.

We convert this time series into a network by typing the following command 

in Matlab.

 

We can see the adjacency table by writing in Matlab (Fig. 4.38).

 

The next figure illustrates the network using the Gephi program, in the property 

of modularity.

In the network representation in Fig. 4.39, we can distinguish several groups of 

nodes where there are strong connections, and more sparse connections 

between groups.

The third example of converting a time series to a network involves a time series 

that fluctuates more than the two previous one. After executing the following com-

mand in Matlab, in Fig. 4.40 the time series is shown.
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Fig. 4.38 Adjacency 

matrix of atmospheric 

pressure time series of 

Fig. 4.37

Fig. 4.39 Network of atmospheric pressure time series

To convert this time series into a network using the method of visibility, we write 

the following command in Matlab.
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Fig. 4.40 Wind speed time series

Fig. 4.41 Adjacency 

matrix of wind speed time 

series of Fig. 4.40

In this way, we have transformed the time series into a network. To obtain and 

visualize the adjacency matrix, we write in Matlab (Fig. 4.41):

 

To visualize the network in the design software Gephi, we write the following 

command in Matlab.
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In Fig. 4.42, the corresponding network is shown, using the modularity measure 

for illustration.

It is appropriate to present the three cases in the figure below and then comment 

on the network analysis method (Fig. 4.43).

In the left part, we plot the variable as recorded, in the middle, we present the 

network’s adjacency matrix, and on the right, we represent the network graph, 

where we mention the modularity classes.

Fig. 4.42 Network of wind speed time series
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Fig. 4.43 Time series, adjacency matrix, and network graph generated, respectively, for (a) air 

temperature, (b) water temperature, and (c) wind speed time series using the visibility algorithm

A first overview suggests that differences in the dynamical behavior of the obser-

vations are mapped onto corresponding network topologies. These differences are 

associated with the fluctuations of the time series. Specifically, in the water tem-

perature network, there are relatively few communities (modularity classes) each 

containing a large number of connected nodes. In contrast, the air temperature net-

work exhibits a greater number of communities compared to those of water tem-

perature network with a corresponding reduction of the connected nodes in each 

hub. Finally, the wind speed network presents a lot of communities with the least 

connected nodes in each hub. This network profile is consistent with the physical 

state, as it increases the fluctuation of the time series values. Hence, the network 

graphs provide an initial indication that the dynamic variability of the time series is 

effectively captured through network topology.

Below, we present in detail the calculation of the network’s topological measures 

derived from the time series of water temperature.

To calculate the degree of the network and the distribution of the degree, we 

write in the command line of Matlab.

4.5 Extended Example of Transforming Time Series to Network and Analyzing Them…



144

 

The result is reflected in Fig. 4.44 which shows the time series of the degree of 

each node of the network.

 

Below we present the degree and the degree distribution (Fig. 4.45).

The calculation of the diameter and the clustering coefficient are done by execut-

ing the following commands in Matlab.

 

Fig. 4.44 Degree of water temperature network
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Fig. 4.45 Degree (left) and degree Distribution (right) of network of water temperature

Fig. 4.46 Clustering coefficient of network of water temperature

 

Figure 4.46 shows the clustering coefficient of water temperature network.

As we have mentioned, the betweenness centrality is calculated by typing the 

following command, and the result is represented in Fig. 4.47.
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Fig. 4.47 Betweenness centrality of network of water temperature

Fig. 4.48 Closeness centrality of network of water temperature

 

To calculate the closeness centrality, we write in Matlab, while in Fig. 4.48, we 

observe the values of centrality of each node.
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Fig. 4.49 Eigenvector centrality of network of water temperature

Fig. 4.50 Modularity class of each node of the network of water temperature

 

Figures 4.49 and 4.50 illustrate the results of the calculation of eigenvector cen-

trality and modularity, respectively, for the case of the water temperature network.
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4.5.2  Examples of Simulation Data (Magnetohydrodynamics 

Time Series)

In this section, an example of the application of the methodology for transforming 

a time series into a network, in a time series derived from simulation, will be pre-

sented. In particular, velocity time series of hydrodynamic and magnetohydrody-

namic (MHD) turbulent flow are analyzed. The main scope is to understand the 

mechanism of fluid patterns modification due to the external magnetic field. The 

time series used was extracted from direct numerical method simulation, consisting 

of 3600 values.

In order to be able to complete all the steps of the analysis, below is the complete 

script file from plotting the data to converting to a graph and calculating the topo-

logical measures of the network.
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%Script file example of time series to network

% %  Analysis of magnetohydradynamic time series

%    m_mu1 the name of the times series

%% plotting

figure (1)

plot(m_mu1)

title ('Time series','fontSize',11)

xlim([0 3601])

xlabel('time') 

ylabel('Velocity') 

figure (2)

DM_mu1=diff(m_mu1)

plot(DM_mu1)

xlim([0 3601])

title ('First Difference Time series','fontSize',11)

xlabel('time') 

ylabel('Velocity') 

%% convert to network

Net_x_nmu1=visibilitynet(DM_mu1); 

%% plot adj

% Net_x_nmu1 the name of the network

figure ()

spy(Net_x_nmu1)

title ('Adjacency matrix','fontSize',11)

print -DMeta

%% convert to GEPHI file

writetoPAJ(Net_x_nmu1, 'Net_x_adnmu1', 0)

 

The results of the analysis are presented in the following figures. The first figure 

shows the time series of speed, while the second is the time series of the first differ-

ences (Figs. 4.51 and 4.52).

Figure 4.53 illustrates the connectivity table of the network nodes. We can see 

that there are small–large squares which are connected in a range of points (≈800, 

≈2100, ≈3000).

In Fig. 4.54, the corresponding network is shown, using the degree measure for 

illustration.
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Fig. 4.51 Time series of velocity

Fig. 4.52 First difference of time series of Fig. 4.51

Fig. 4.53 Adjacency 

matrix of the 

corresponding network
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Fig. 4.54 Network of magnetohydrodynamic time series. The most intense color and largest 

nodes are the nodes that have the highest degree

The network of Fig. 4.54 is plotted based on the property of the degree of the 

nodes of the network; there is a color scale, and the greater the degree of the node, 

the larger the size of the corresponding marker. In this way, we can easily locate the 

nodes and then the corresponding values of the time series, since as we have men-

tioned there is a correspondence in the numbering of the values of the time series 

with that of the nodes of the network.

In this case, we can identify the points of the time series where they have a higher 

value/fluctuation than the rest. In general, in this way we identify the points of 

change of the dynamic state in the evolution of the time series. In the next figure, we 

present only the nodes with the maximum value of node degree measure. From 

Fig. 4.55, we can identify the points of the time series where there is a change in the 

dynamic evolution of the time series.

In Fig. 4.56, the corresponding network is shown, using the modularity measure 

for illustration. We can distinguish four groups–communities of nodes. These dif-

ferent communities can characterize different regions in the time series.
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Fig. 4.55 Time series and part of the corresponding network based on the degree measure. The 

network shows the nodes with the highest values of the degree

Fig. 4.56 Network from time series, based on the modularity measure
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Chapter 5

Extended Case Studies

In this chapter, extensive examples of time series analysis are presented, based on 

the theory covered in previous chapters. The purpose of this chapter is to help the 

reader understand the theoretical concepts while simultaneously being able to 

reproduce the presented results by applying the routines provided in the book. In 

this way, we believe that the reader will be capable of applying these routines to 

other datasets as well. Example 1 includes field data, Example 2 used experimental 

data, while Example 3 performed simulated data.

5.1  Example 1: “Detection of Low-dimensional Chaos 

in Wind Time Series”

In this extended example, we explored the presence of low-dimensional determinis-

tic chaos in wind time series obtained from a meteorological station [5]. Initially, we 

utilized techniques such as power spectrum and average mutual information func-

tion to extract characteristic times. Our examination of correlation dimension sug-

gested the potential existence of a low-dimensional attractor, which provided 

significant evidence supporting the existence of low-dimensional chaotic dynamics 

within the wind time series.

The series consists of 30 years of weekly observations, provided by a meteoro-

logical station of horizontal wind speed measured as a weekly mean average, 

including all directions, resulting in a total number of 1488 records. In Fig. 5.1, the 

weekly mean wind speed vs time is presented, using script 5.1.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92628-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-92628-0_5#DOI


156

Fig. 5.1 Weakly mean wind speed (http://www.emy.gr/emy/el/)

%Script 5.1 

plot(wind,'b.-','MarkerSize',10);   %'wind' the name of time 

series 

title('Environmental data','FontSize',20)  

ylabel('wind velocity','FontSize',10)

xlabel('time (weeks)','FontSize',10)

 

We can obviously observe from the figure above the existence of periodicity.

To determine if the data contains trends, we apply the following script (5.2) 

(Fig. 5.2).

% Script 5.2

% Test for trend using the mean value 

TS=input('Give the time series_:');  

Size_segment=input('Give the time series (segment) length_:');  

%50

Overlap=input('Give the overlap of segments_');  

[TS_segments,index,reject] =slideWindow(TS, Size_segment, Ovelap);

TS_segments(TS_segments==0)=NaN;

columnMeans = mean(TS_segments,'omitnan');

plot(columnMeans,'o')

xlabel('Points'); 

ylabel('mean');

 

As we can see, using linear regression, the dotted line is created which indicates 

the trend. Then, the trend is removed using the first differences approach (script 

5.3), and the corresponding time series appear in Fig. 5.3.
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Fig. 5.2 Successive segments mean the wind speed time series

Fig. 5.3 Original and detrended time series using first difference

% Script 5.3

% Detrend data with applying first difference

TStrend = input('Give the time series with trend_:'); 

length = input('Give the time series length_:');

t=1:length;

Diff_detreded=diff(TStrend)   % Diff_y1 the time series without 

trend

plot(t,TStrend,'.-');

hold on

plot(Diff_detreded,'.-');

legend('Data with trend','Detrended time series')

xlabel('Time (t)'); 

ylabel('y(t)');

title('Detrended time series by First Difference','FontSize',14) 

 

Then we employ the mutual information analysis in order to extract a time lag for 

the reconstruction of space phase following the script 5.4, and the results appear in 
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Fig. 5.4. As we can see the first minimum of the mutual information of the first dif-

ferences occur at τ = 1. For the calculation of the lag time, it is recommended to be 

done on the time series where the trend has been removed.

% Script 5.4

% Plot time series and compute mutualinformation

data=input('Time series name_'); 

tmax=input('Time Lag_'); 

figure

subplot(2,1,1);

plot(data,'b.-','MarkerSize',6);

axis([0 1480 2 5])

title('Time series','FontSize',10) 

ylabel('y(t)')

xlabel('(t) Time')

subplot(2,1,2);

[mutM] = mutualinformation_b(data, tmax)

 

In order to determine that it is necessary to remove the trend, below is given the 

initial time series as well as the result of finding the lag time using mutual informa-

tion function. We can see from Fig. 5.5 that there is a smooth decline without show-

ing a sharp plunge in values.

Next we employ the false nearest neighbor method in order to select the minimal 

embedding dimension. This method is based on the assumption that two points that 

are near to each other in the sufficient embedding dimension should remain close as 

the dimension increases. We obtain the results appearing in Fig. 5.6 using the script 

5.5, where tau = 1 and nmax = 10.

Fig. 5.4 Results of mutual information function of detrended time series
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Fig. 5.5 Results of mutual information function of initial time series

Fig. 5.6 False nearest neighbor function with time embedding 10

% script 5.5

% False Nearest Neighbors

% calculate the embedding dimension

function FnM = falsenearest(wind,1,10)

% FnM = falsenearest(xV,tau,mmax,escape,theiler,tittxt)

% Computes the false nearest neighbors starting from 1 to 'mmax' 

%embedding dimensions. 

% INPUT 

%  xT : time series

%  tau      : delay time. If empty, tau=1

%  mmax     : maximum embedding dimension.

%  
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Fig. 5.7 Estimation of correlation dimension

Then we evaluate the correlation dimension, using the code presented in previ-

ous subchapter, which is an indicator of existing low-dimensional chaos (Fig. 5.7).

From the above figures, we can see that the time series of wind speed presents 

low-dimensional chaos, with a correlation dimension between 2 and 3.

5.2  Example 2: “Identification of Spatiotemporal 

Phenomena Using Non-linear Time Series Analysis 

and Network Analysis Methods”

In this example, we describe a methodology for analyzing a spatiotemporal problem 

and specifically the identification of regions in a liquid turbulent flow problem in an 

experimental arrangement [2–4].

Discriminating the state of the fluid region as a function of the distance from the 

jet axis is crucial challenge. We provide a methodology for studying turbulent flows, 

specifically for identifying different regions of the jet (from the point of view of 

their dynamical behavior) through nonlinear methodologies and also employed the 

complex network analysis. In order to understand the example, first we present the 

basic elements of the problem, which are common to both approaches to analysis, 

and then we focus on the two methods separately.
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The data originate from temperature recordings in a vertical turbulent heated jet 

where time series were recorded along a horizontal cut through the jet axis by trans-

forming them to complex networks. The time series are transformed into complex 

networks using the visibility graph method, and then for each network, we evaluated 

the main topological network properties to demonstrate how they can effectively 

distinguish different dynamical regimes of the liquid regions.

A schematic flow representation of the turbulent jet is sketched in Fig. 5.8, where 

in the case of fully developed turbulence, three different regions are expected:

 (a) The boundary region (BR) located at large distances from the jet axis (boundary 

with ambient fluid).

 (b) The inner region (IR) positioned between the boundary region and the center of 

the jet.

 (c) The jet axis region (JR) close to the jet axis.

In this study, 21 recordings of temperature time series obtained at various mea-

surement locations along a horizontal cut of the flow were employed. The sampling 

period at each location was 40 s at a frequency of 60 Hz. The first time series was 

recorded at position x = 32.40 cm (the first at top) and the last one at x = 46.50 cm 

(the last at the bottom), and the corresponding time series are displayed in Fig. 5.9. 

On the horizontal axis, time (t) is presented, while the vertical axis refers to each 

time series which is located as we move from the left boundary (position 

x = 32.40 cm) of the tank to the right (position x = 46.50 cm) (Fig. 5.10).

Fig. 5.8 A schematic 

turbulent jet flow
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Fig. 5.9 The time series recorded at various measurement distances from the jet axis. The green 

time series correspond to the boundary region, while the blue and red time series represent the jet 

axis region and inner regions, respectively

Fig. 5.10 A shadowgraph 

view of the experimental 

setup. The green areas 

indicate the boundary 

region, while the blue and 

red areas represent the jet 

axis region and inner 

regions, respectively

5.2.1  Nonlinear Analysis

In this approach, for each temperature time series measured at different locations, 

we estimated mainly nonlinear measures such as mutual information combined with 

descriptive statistics measures, as well as some linear and nonlinear dynamic detec-

tors such as Hurst exponent, detrended fluctuation analysis (DFA), and Hjorth 

parameters.

First for each time series, we evaluate the Hurst exponent, using the following 

command in Matlab (Fig. 5.11).
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Fig. 5.11 Hurst exponent of the time series as a function of measurement positions with R/S method

%%

%Hurst Exponent 

H= HurstExponent(XV)% XV is the name of each time series 

 

The Hurst exponents exhibit their lowest values within the range of 

36.25–38.40 cm, corresponding to the jet axis region, thereby distinguishing these 

time series and their respective measurement regions from others. Generally, the 

Hurst exponent values exceed 0.5, except at x  = 46.5, which lies outside the jet 

region in the ambient water region, reflecting a persistent behavior.

Figure 5.12 presents the Hjorth parameters, mobility, and complexity, of the 

time series. Notably, the highest mobility values are observed in the time series 

originating from the jet core, where the complexity values are at their lowest. In 

order to calculate the Hjorth parameters, we write the following in Matlab.
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Fig. 5.12 Hjorth parameters mobility and complexity of the time series as a function of measure-

ment positions

5 Extended Case Studies



165

function [mutM_all] = mutualInformationMatrixavr(timeSeriesMatrix, 
tmax, partitions, tittxt, type)
% MUTUALINFORMATIONMATRIXSINGLEPLOT computes and plots mutual 
information for
% each column of a matrix of time series, with all results shown 
in one figure.
% INPUTS:
%  timeSeriesMatrix : Matrix where each column represents a time 
series
%  tmax             : Largest delay time to compute mutual 
information

% OUTPUT:
%  mutM_all         : A cell array where each element contains the 
mutual information for one time series
'b');

% Validate input
[n, FGMSeries] = size(timeSeriesMatrix);
if nargin < 3 || isempty(partitions)

partitions = ceil(sqrt(n / 5));
end
if nargin < 4

tittxt = '';
end
if nargin < 5

type = 'b';
end

% Initialize results

mutM_all = cell(FGMSeries, 1);

% Prepare figure

figure;

hold on;

% Loop through each time series (column)

for col = 1:FGMSeries

xV = timeSeriesMatrix(:, col);

mutM = computeMutualInformation(xV, tmax, partitions);

mutM_all{col} = mutM; % Store results

% Plot results

if type == 'd'

plot(mutM(:, 1), mutM(:, 2), '.', 'DisplayName', 

['Series ', FGM2str(col)]);

elseif type == 'c'

plot(mutM(:, 1), mutM(:, 2), '-', 'DisplayName', 

['Series ', FGM2str(col)]);

else

plot(mutM(:, 1), mutM(:, 2), '-o', 'MarkerSize', 6, 

'DisplayName', ['Series ', FGM2str(col)]);

end

end

% Customize plot

grid on;

xlabel('Delay (lag)', 'FontSize', 10, 'FontWeight', 'bold');

ylabel('Mutual Information', 'FontSize', 10, 'FontWeight', 

%Script 5.6

% Mutual Information of a matrix of time series
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xV = (xV - xmin) / (xmax - xmin + eps); % Avoid division by 

zero

% Assign to partitions

arrayV = min(floor(xV * partitions) + 1, partitions);

% Initialize mutual information results

mutM = zeros(tmax + 1, 2);

mutM(:, 1) = (0:tmax)'; % Lag values

% Compute mutual information for each lag

for tau = 0:tmax

ntotal = n - tau;

h12M(:) = 0; % Reset joint histogram

for t = 1:ntotal

h12M(arrayV(t + tau), arrayV(t)) = h12M(arrayV(t + 

tau), arrayV(t)) + 1;

end

% Compute marginals

h1V = sum(h12M, 2); % Sum over rows

h2V = sum(h12M, 1); % Sum over columns

% Normalize probabilities

h12M = h12M / ntotal;

h1V = h1V / ntotal;

h2V = h2V / ntotal;

% Calculate mutual information

mutS = 0;

for i = 1:partitions

for j = 1:partitions

if h12M(i, j) > 0

mutS = mutS + h12M(i, j) * log(h12M(i, j) / 

(h1V(i) * h2V(j) + eps));

end

end

end

mutM(tau + 1, 2) = mutS;

end

end

function [mutM] = computeMutualInformation(xV, tmax, partitions)

% Computes mutual information for a single time series

n = length(xV);

h1V = zeros(partitions, 1); % Marginal for x(t+tau)

h2V = zeros(partitions, 1); % Marginal for x(t)

h12M = zeros(partitions, partitions); % Joint probabilities

% Normalize data

xmin = min(xV);

xmax = max(xV);

'bold');

title(tittxt, 'FontSize', 12, 'FontWeight', 'bold');

legend('show', 'Location', 'Best');

hold off;

end
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Fig. 5.13 Mutual information of the time series as a function of measurement positions

Using the following command in Matlab, we calculate the mutual information 

for each time series plotted in the same figure, giving as input the matrix with the 

time series (Fig. 5.13).

 

It can be observed that time series coming from different positions on the hori-

zontal axis of the experiment show a different distribution of the values of the 

mutual information function. In this way, we can separate the time series in relation 

to their recording location.

Using the previously methods, it is evident that the jet regions can be distin-

guished through the analysis of the corresponding time series. Additionally, cluster-

ing technique can be applied in an effort to better discriminate the various regions 

of the jet as well as locate the jet axis. The hierarchy built by the clustering algo-

rithm from each time series is represented by the dendrograms given in Fig. 5.14.

The horizontal axis represents each time series, while the vertical axis indicates 

the distance. At the top of the dendrogram, the position of each time series measure-

ment along the horizontal axis is schematically displayed.
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Fig. 5.14 Dendrogram based on the time series. The sketch above is a schematic representation of 

the location of the various regions in the measurement setup

5.2.2  Complex Network Analysis

In this approach, the main idea is to analyze and investigate temperature fluctuations 

from a vertical turbulent heated jet where temperature time series were recorded 

along a horizontal cut through the jet axis by transforming them to complex net-

works [1].

We convert each time series to a network and then we calculate the topological 

measures.

In Fig. 5.15, the diameter, modularity, and clustering coefficient are presented as 

functions of the horizontal position along the reconstructed visibility algorithm, 

presented in Chap. 4. The horizontal axis represents the measurement locations of 

each time series. The diameter profile using the visibility algorithm exhibits its low-

est value at x = 37.40 cm. Notably, measurements on the far right and far left cor-

respond to ambient water, representing a distinct dynamical regime compared to the 

flow region, which spans approximately from 35 to 42 cm. Therefore, when refer-

encing minimum or maximum values, we focus on the flow region, excluding the 

full extent of the measurement data.

From the modularity results, it is observed that the lowest modularity values 

within the flow region occur for the time series at x = 37.40 cm. Generally, higher 

modularity values imply fewer communities, while the lowest modularity value at 

x = 37.40 cm indicates a network with many smaller communities. This behavior is 

linked to the underlying physics: near the jet axis, the dynamics are influenced by 

small, short-lived vortices that frequently perturb the system, reducing connectivity 

between successive states. Conversely, closer to the boundaries, large, long-lived 
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Fig. 5.15 Diameter, modularity, and clustering coefficient of the networks along the hori-

zontal axis

structures dominate, leading to more connected states and fewer, larger 

communities.

In the inner region (x = 36.40 cm to x = 40.25 cm), the clustering coefficient 

reaches its lowest value at x = 37.40 cm. The clustering coefficient reflects the prob-

ability that the neighbors of a node are connected, indicating the likelihood that a 

node’s “friends” are also “friends” with each other. For the network derived from 

the time series at x = 37.40 cm, nodes exhibit greater independence compared to 

networks constructed from other time series in the flow region. This behavior again 

reflects system dynamics, as the small, short-lived vortices near the jet axis lead to 

frequent disruptions, resulting in faster memory loss in system evolution and fewer 

connected neighboring points (nodes) in the network. Moving toward the boundar-

ies, the presence of long-lived structures promotes longer memory effects, resulting 

in greater connectivity among network nodes.

In summary, the lowest values of diameter, average path length, modularity, and 

clustering coefficient are observed for the time series at x = 37.40 cm. The interpre-

tation of these topological properties identifies this position as corresponding to the 

jet axis. Interestingly, conventional hydrodynamic methods, using exponential fit-

ting, estimate the jet axis position at x = 37.75 cm. More broadly, the spatial varia-

tion in network topological properties enables clear differentiation between the jet 

axis region and other parts of the jet.
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Fig. 5.16 Average degree of the networks along the horizontal axis

The average degree profile of each network constructed by visibility graph is 

displayed in Fig. 5.16. The average degree of a network is the average of the degrees 

over all nodes in the network.

The profile of the average degree is quite symmetric. Near the boundary (except 

for the location x = 32.40 cm on the left and the region x = 42.50–46.50 cm on the 

right, which lies outside the increased turbulence region and in fact corresponds to 

ambient water) degree presents high values. As we move away from the boundary 

toward the inner region, the degree value decreases and obtains its lowest value at 

the position x = 37.40 cm.

Another noteworthy aspect is that the degree distribution of a network is consid-

ered one of the most significant properties of a network. According to Lacassa et al., 

the visibility graph network of a time series has a power law degree distribution 

P(k)  =  k-γ and is characterized as a scale-free network. Figure  5.17 presents the 

degree distribution of the networks constructed from selected time series recorded 

in the three different regions of the flow as discussed already: one from the bound-

ary region, one from inner region, and one from the jet region.

The results show that the networks follow a power law tail distribution, P(k) = k−γ, 

for k  >  10 with varying power exponents γ. This suggests that the networks are 

scale-free in this range and may exhibit fractal characteristics. The number of high- 

degree nodes (k > 70) is limited to one or none, so they are excluded from the slope 

calculation. Notably, the exponent γ decreases as we move from the jet region to the 

boundary, indicating a variation in slopes: γ = 3.22 in the jet region, γ = 2.78 in the 

inner region, and γ = 1.68 at the boundary. The jet region exhibits the steepest slope 

among the three.

As we move away from the boundary region toward the jet axis region, the pres-

ence of small short living structures is enhanced resulting in a more frequent disrup-

tion of the dynamics of the corresponding fluid regions which results in a faster loss 

of memory in the time series and as a result less nodes connected. Such events 
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Fig. 5.17 Degree distribution of networks from time series near the boundary (blue), near the 

inner region (green), and close to jet region (red)

reduce significantly the number of nodes with high number of neighbors which are 

a result of the larger and longer living structures which dominate far from the jet 

axis. Notably, there is also a variation of the low neighbor nodes (k < 10) depending 

on the location of the measurement station.

5.3  Example 3: “Analysis of Magneto-hydrodynamic 

Channel Flow Through Complex Network Analysis”

In this example, we analyze hydrodynamic (HD) and magnetohydrodynamic 

(MHD) velocity time series from direct numerical simulations (DNS) using the vis-

ibility graph method [2]. We investigate whether the flow can be classified into three 

distinct regions based on turbulent boundary-layer theory. Additionally, the study 

explores the identification of different dynamical regions and hidden characteristic 

patterns in the presence and absence of a magnetic field.

First, it is shown that the velocity time series recorded in different regions of the 

flow exhibits distinct topological network structures. Additionally, various topologi-

cal properties of the resulting networks effectively capture and distinguish the three 

turbulent regions—viscous sublayer, buffer layer, and log-law layer—in both hydro-

dynamic and magnetohydrodynamic (MHD) flows.

Figure 5.18 illustrates a schematic representation of the flow field geometry in a 

turbulent channel flow, following the principles of turbulent boundary-layer theory. 

According to wall-bounded turbulence theory, such flows consist of three distinct 

regions. The region closest to the walls, known as the “Viscous Sublayer” (VS), is a 
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Fig. 5.18 Schematic flow of turbulent channel flow near a wall

Fig. 5.19 A schematic of the 3D channel flow simulation setup, along with instantaneous stream- 

wise velocity profiles at three different wall-normal heights, is shown

thin layer where viscous effects dominate. Above this lies the “Buffer Sublayer” 

(BS), characterized by a high time-averaged velocity and fully developed turbu-

lence. The outermost region, referred to as the “Log-Law Sublayer” (LLS), is domi-

nated by turbulent shear stress, with turbulence exhibiting significantly larger flow 

structures compared to those near the boundary (Fig. 5.19).

The left panel represents the case without a magnetic field, while the right panel 

illustrates the flow behavior under the influence of a magnetic field. The blue time 

series refer to the VS region, while red and green time series refer to the BS region 

and LLS region, respectively.

A closer examination of the time series reveals that, in the presence of a magnetic 

field, the fluctuations are significantly reduced and appear smoothed out. Table 5.1 

provides a summary of the expected regions and the approximate measurement 

positions along the wall-normal direction (Fig. 5.20).
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Table 5.1 Expected flow regions

Region name

Measurement position along wall-

normal direction (approximately) Description

Viscous sublayer (VS) From y+ = 0.21 to y+ = 6.39 Area close to the channel wall

Buffer sublayer (BS) From y+ = 7.60 to y+ = 29.76 Region next to the boundary

Log-law sublayer 

(LLS)

From y+ = 34.75 to y+ = 177.11 The area at higher distance 

from the channel wall

Fig. 5.20 Time series measurement at y+ = 0.85

 

Each time series was first transformed into networks using the visibility graph 

algorithm, as previously described in detail. To transform the time series into a net-

work, we use the following script (5.) in the Matlab. Figure 5.21 shows the network 

connectivity (adjacency matrix) using script 5.7.
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Fig. 5.21 Adjacency 

matrix of time series 

measurement at y+ = 0.85

 

In order to be able to visualize the network in the Gephi software, we use the 

following script 5.8. Figure 5.22 shows the network layout.

 

Subsequently, we analyzed the topological properties of the resulting complex 

networks using the following script files. The computed metrics, degree, closeness 

centrality, clustering coefficient, eigenvector centrality, and betweenness centrality 

are presented as functions of the measurement position along the wall-normal direc-

tion in inner units (y+). These results are illustrated in Fig. 5.23a–e, where dashed 

lines indicate the boundaries of different flow regions.
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Fig. 5.22 Network layout of time series measurement at y+ = 0.85
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Fig. 5.23 (a–e) Topological properties of the network derived from time series measurement at 

y+ = 0.85
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Both in the absence and presence of a magnetic field, the network properties 

exhibit a similar profile but on different scales. A closer examination reveals that 

near the channel wall (viscous sublayer, VS), the degree value initially increases up 

to approximately y+ = 7 (marked as a light blue area), then gradually decreases until 

around y+ = 30 (buffer layer, BS), and remains nearly constant beyond this point in 

the log-law sublayer (LLS). This average degree profile aligns with the physical 

interpretation of the data and the network construction method, as time series from 

the buffer and log-law sublayers exhibit greater variability compared to those from 

the viscous sublayer.
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