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Artificial intelligence (AI) is impacting industries worldwide by introducing 
new methods and altering traditional practices. This book examines AI’s 
diverse effects, providing insights into its applications, challenges, and future 
prospects across education, healthcare, finance, and more.

The chapters explore how AI technologies, such as large language models, 
enhance feedback in higher education and influence legal studies while 
upholding academic integrity. A  review of key technical approaches—
knowledge-based systems, machine learning, and intelligent optimization—
lays the groundwork for understanding AI’s potential. Real-world examples 
illustrate AI’s role in medical imaging, presenting new diagnostic methods 
and the use of language models for image interpretation. The book also 
discusses financial applications, including techniques for credit card fraud 
detection and forecasting natural gas prices using innovative models. 
Additionally, it covers personalized federated learning models, highlighting 
the importance of data privacy and security in AI’s evolution.

This comprehensive guide is valuable for educators, researchers, 
practitioners, and students interested in AI’s current and future developments. 
By combining theory with practical examples, the book offers readers a clear 
understanding of how AI affects various sectors, enabling them to engage 
effectively with this rapidly evolving field.
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1
Utilising Large Language Models for 
Feedback Generation in Higher Education: 
Insights from Student Perceptions

Mehdi Rajaeian, Penny Wheeler, and Walayat Hussain

1.1  Introduction

Generative artificial intelligence (GenAI) has revolutionised numerous sec-
tors by transforming how we communicate and perform daily tasks. This 
transformation spans fields such as business, research, education, coding, 
healthcare, and employment. Users can prompt AI to create human-like text, 
programming code, images, audio, and video. Unlike traditional conver-
sational AI, which relies on predefined responses, Generative AI produces 
outputs that surpass its initial programming (Lim et  al., 2023), enhancing 
learning experiences, particularly in education. However, ensuring accuracy, 
avoiding overreliance, and addressing data privacy are essential for its suc-
cessful integration (Eke, 2023).

Despite various challenges posed by these Generative AI tools, including 
concerns about the impact of Generative AI on originality and assessment 
reliability (Yu, 2023; Dwivedi et al., 2023), such tools hold significant poten-
tial to assist in various educational endeavours (Ausat et al., 2023), the role 
of Generative AI remains significant. Despite challenges, these tools offer 
considerable promise, particularly for generating personalized feedback on 
assessments (Kaiss et al., 2023; Baidoo-Anu and Ansah, 2023).

Constructive assessment feedback is critical to improving student learn-
ing, though delivering timely, quality feedback for large cohorts remains 
challenging (Pardo et  al., 2019). As a result, students express significant 
shortcomings in the quantity and quality of the feedback they are provided 
with (Boud and Molloy, 2013). These challenges have motivated educators 
to leverage two other sources of external feedback: student peer feedback 
or automated feedback systems. In student peer review, students evaluate 
their peers’ work, present a means to foster collaborative learning, encourag-
ing active engagement and deeper understanding through interaction with 
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2 Cutting-Edge Artificial Intelligence

peers’ insights (Lerchenfeldt et al., 2019). Moreover, peer review can nurture 
a sense of accountability, as students assume responsibility for their evalua-
tions and contributions to the learning process. This approach also holds the 
potential to alleviate instructors’ workload, as students take on a more par-
ticipatory role in assessment. However, unhelpful feedback, as well as biases 
and inconsistencies in feedback, provided by peers must be acknowledged as 
its limitations (Lerchenfeldt et al., 2019).

Traditional automated feedback systems generate feedback based on pre-
defined set of rules for feedback delivery. The source of this rules is either 
domain experts (expert-driven), student data (data-driven) or both (hybrid) 
(Deeva et al., 2021). Available automated feedback systems (such as BEETLE 
II, ActiveMath, SQL-Tutor, and others) offer several advantages over instruc-
tor feedback such as speed and scalability (Deeva et al., 2021). However, they 
have limitations such as low levels of learner control and adaptiveness to 
student characteristics, as well as focusing more on feedback automation to 
address teacher’s workload, rather than mainly addressing the quality of the 
feedback given to the students (Deeva et al., 2021). With the increasing use of 
Generative AI in assessment evaluation and generating feedbacks (Teubner 
et al., 2023), the question arises as to whether it can be effectively used to gen-
erate automated feedback and how the usefulness of AI-generated feedback 
is compared to other types of feedback. Although some studies (Kochmar 
et al., 2020; Fui-Hoon Nah et al., 2023) reported the utility of intelligent AI 
tools for providing automated feedback to students and its impact on learn-
ing outcomes, studies on the use of LLM-based for providing student feed-
back are scarce. To gain an in-depth analysis of the effectiveness of feedback 
generated by LLM-based AI, it is imperative to assess the usefulness of AI-
generated feedback for delivering constructive comment to students.

Building upon the preceding discussion, the research question for the 
study is:

How do students perceive the usefulness of AI-generated feedback compared to 
peer review feedback?

To answer these research questions, first we administered a technology-
mediated peer review process in which students were tasked to provide 
feedback on essays submitted by their peers and rate the feedback they 
receive from their peers. Then we asked ChatGPT to provide constructive 
feedback on students’ essays written in response to an assessment task, pro-
vided the ChatGPT-generated feedback to students, and asked them to rate 
this feedback too. Finally, we conducted a survey asking students to provide 
their view on different dimension of feedback usefulness for both peer feed-
back and ChatGPT-generated feedback. Although many existing studies dis-
cuss the features and limitations of ChatGPT in academia, to the best of our 
knowledge, this is the first work that empirically investigates the perceived 
usefulness of ChatGPT-generated feedback from students’ perspective. Also, 
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based on the findings we identify some improvement opportunities for auto-
mated feedback and peer review systems.

The rest of the chapter is organised as follows. First, a brief review of related 
literature on Generative AI in education and students’ assessment feedback 
is presented. Then the research methodology and the results of data analysis 
are provided. Finally, the results and implications of the research as well as 
limitations and future directions are discussed.

1.2  Related Research

1.2.1  Feedback for Learning

Feedback is fundamental to the learning process, with various models and 
theories examining its mechanisms and influence on student engagement, 
teaching, learning, and assessment (Lipnevich and Panadero, 2021). Despite 
increased focus and investment in feedback research within higher educa-
tion, scholars indicate that both educators and students still struggle with 
understanding and effectively implementing feedback, as highlighted in 
studies by Dawson et al. (2019), Henderson et al. (2019), and Boud and Molloy 
(2013).

Although there is broad consensus on feedback’s importance, opinions 
diverge on what constitutes “effective” feedback. Dawson et al. (2019) con-
ducted a qualitative investigation to understand the perspectives of educa-
tors and students on the purpose of feedback and their criteria for effective 
feedback. The study found that both groups consider improvement as the 
primary purpose of feedback. Educators focus on feedback design elements 
like timing and modalities and connected tasks, while students emphasize the 
importance of high-quality comments that are usable, sufficiently detailed, 
and address their own work (i.e., personalised). Dawson et al. (2019)’s research 
uncovers some incongruous experiences of effective feedback, with some 
students valuing tailored feedback while others appreciate generic com-
ments. Dawson et al. (2019) also identified frontier topics that have not been 
fully explored, such as evaluative judgement, peer feedback, exemplars, and 
feedback moderation. They advocate for understanding the effects of feed-
back within the framework of individuals’ perceptions of feedback’s purpose 
and effectiveness.

As Henderson et  al. (2021) rightly argue, feedback is known to have a 
powerful influence on learning, only if learners can make use of it. From 
a learner-centred perspective that recognizes the active role of students in 
their own learning (Carless and Boud, 2018), feedback should be considered 
as a learner-centred process, in which learners need to be able to make sense 
of performance information and then act upon it in order to improve their 
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future performance (Boud and Molloy, 2013). Therefore, the feedback com-
ments must be useful to the learner (Henderson et al., 2021).

In this chapter, for measuring the feedback usefulness, we used the mea-
surement instrument developed by Henderson et al. (2016) and used for vari-
ous studies (e.g. Henderson et al., 2021). Feedback is considered useful if it is 
understandable, sufficiently detailed, usable personalised, and specific to the 
assignment (Henderson et al., 2016, 2021).

Feedback can be originated internally from the learner (self-assessments) 
or come from external sources, including peers, academic educators, or auto-
mated feedback systems.

A systematic review of the literature (Deeva et al., 2021) highlights the cur-
rent state of automated feedback technologies in education and emphasizes 
the need for a shift towards a more student-oriented approach. The exist-
ing technologies are predominantly teacher-oriented, focusing on automat-
ing feedback to reduce teacher workload rather than prioritizing the quality 
of feedback for students. The authors argue that a more student-oriented 
approach, with increased learner control and adaptiveness to student char-
acteristics, could significantly benefit students. They suggest that data-
driven personalization, where no teacher intervention is required, could lead 
to immediate and tailored feedback for students based on their needs and 
preferences. Deeva et al. (2021) also discusses the importance of leveraging 
the abundance of data available through learning analytics to enhance sys-
tem adaptiveness and support complex knowledge acquisition. The authors 
encourage future system developers to explore the possibilities offered by 
the age of data and modern data processing techniques in order to develop 
more advanced automated feedback systems capable of addressing complex 
tasks and promoting better learning outcomes.

Although student peer review is recognized as a valuable approach for 
providing feedback to enhance learning (Mulder et al., 2014), scholars have 
highlighted various limitations and difficulties associated with its imple-
mentation. For instance, in a study by Brammer and Rees (2007) investigat-
ing student perceptions of peer review in a master’s-level program, some 
students expressed strong dissatisfaction, considering the exercise a waste 
of time. They believed their peers were not capable of adequately identify-
ing errors in the submitted work. Similarly, Evans (2015) found that peer 
review did not yield equal benefits for all students, as the quality of feedback 
varied among participants. Another study (Mulder et al., 2014) showed that 
students’ expectations of peer review’s effectiveness were higher before the 
experience, but in conflicting findings in another study (Cheng and War-
ren, 1997), students who initially lacked confidence showed more positive 
attitudes after completing the review. Another challenge of student peer 
review, especially in larger classes, is managing the administrative tasks like 
distributing assignments and collecting reviews. However, these concerns 
have been largely resolved with the widespread adoption of online learning 
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management tools (Indriasari et al., 2020). In this study, peer review process 
was facilitated by FeedbackFruits, which is a learning management system 
integrated tool suite that automates the manual tasks involved in the peer 
review process.

1.3  Large Language Models

Large language models (LLMs) are deep neural network models with remark-
able capabilities in effectively processing and analysing intricate linguistic 
structures (Teubner et al., 2023). Their capacity to generate human-like text 
has sparked considerable interest in the realm of natural language process-
ing (NLP), making them a highly promising technology in educational con-
texts (Dai et al., 2023; Pardos and Bhandari, 2023).

Among the most notable LLMs is the Generative Pretrained Transformer 
(GPT) series developed by OpenAI. The GPT series, leveraging a Transformer 
architecture, excels in capturing long-range dependencies and positional 
information within text. These models combine large-scale architectures with 
huge amounts of textual training data. This scaling up has allowed LLMs to 
understand and generate text at a level comparable to that of humans (Teu-
bner et al., 2023). In addition to the ChatGPT application, which provides a 
chat user interface, an application programming interface (API) is available, 
which makes it possible to seamlessly integrate ChatGPT with various exist-
ing applications, including educational apps.

Considering the relatively brief period since the emergence of ChatGPT, 
the literature in this area is evolving, and early positive effects resulting 
from its utilization have been reported in some experiments. For instance, 
Dai et al. (2023) examined the agreement between ChatGPT and the instruc-
tor when assessing assignments of 103 students according to the marking 
rubric. The results show that, compared to instructors, ChatGPT can gener-
ate more detailed feedback on the student proposal reports, which fluently 
and coherently summarises students’ performance. In addition, ChatGPT 
achieved high agreement with the instructor when assessing the topic of stu-
dents’ assignments and could provide feedback on the process of students’ 
completing the task, which benefits students in developing learning skills. 
Pardos and Bhandari (2023) compared the efficacy of ChatGPT hints with 
hints authored by human tutors across two high school algebra topic areas 
and found 70% of hints produced by ChatGPT passed the manual quality 
checks and suggested that the technology still requires human supervision 
in its current form. In another study, Pankiewicz and Baker (2023) randomly 
assigned students to either the control group (N = 66) or the experimental 
group (N = 66) and automated the feedback generation process by employing 
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OpenAI’s GPT−3.5 model to create personalised hints for the experimental 
group students working on programming assignments. Almost half of the 
experimental group students (46%) positively rated the usefulness of GPT-
generated hints, with a median rating of 4 or 5 on a 5-point Likert scale. 
In the experimental group where GPT hints were enabled, students relied 
less on the platform’s regular feedback but demonstrated better performance 
in terms of the percentage of successful submissions across consecutive 
attempts for tasks where GPT hints were available. For tasks where GPT feed-
back was not provided, the experimental group required significantly less 
time to complete assignments. Additionally, when GPT hints were unavail-
able, students in the experimental group were initially less likely to solve 
the assignment correctly, indicating a potential over-reliance on GPT-gen-
erated feedback. However, they were able to correct their approach rapidly 
and eventually achieved the same percentage of correct submissions after 
seven attempts. The study found that the availability of GPT hints did not 
significantly impact students’ affective state (focused, frustrated, anxious, 
confused, bored) during the learning process.

1.4  Research Method

Our study adopts a quantitative research approach, focusing on the system-
atic collection and analysis of numerical data to evaluate the effectiveness of 
AI-generated feedback in comparison to peer-generated feedback within the 
context of student essay assessments.

We obtained ethics approval from an Australian university and followed 
the ethical guidelines, including informed consent, confidentiality, and ano-
nymity. The participants in this study were undergraduate students enrolled 
in a first-year university course on Introduction to Emerging Information 
Technologies and IT Ethics. As part of their formal assessment requirements, 
students were required to write a 400-word essay on the ethical aspects of 
using virtual reality (VR) technology in the context of a case study, partici-
pate in a peer feedback review process facilitated by an automated tool and 
rate the usefulness of the feedback they receive on a scale of 1 to 10 (0 not 
useful to 10 very useful). The essay writing task was adopted from a pub-
licly available online source (Ramirez, 2022). The FeedbackFruits platform 
assigned the submissions randomly and anonymously to the reviewers and 
recorded participants’ activity data (e.g., feedback comments, submission 
and review date/time, ratings on feedback, etc.) throughout the review pro-
cess. Students were asked to provide feedback based on two criteria: (1) the 
organization and development of ideas (writing) and (2) response to ques-
tion writing prompts (content). From the 290 students enrolled in the course,  
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228 students handed in essays for peer review, of which 156  students rated 
the feedback received from their peers.

After removing the personal identifiers from the 228 essays, each essay 
was submitted manually to the free version of Chat-GPT (GPT−3.5), using 
the prompt: “Please provide constructive feedback on this essay.” Then, we 
added the following disclaimer statement at the beginning of the obtained 
feedback to avoid misleading students: “This is AI-generated review feed-
back. Please read the feedback carefully and rate the review feedback (0 not 
useful <–> 10 very useful). If you think the feedback is not correct/relevant, 
please explain the issue in the comment section.” ChatGPT-generated feed-
back was provided to students via FeedbackFruits, and 86 students rated AI-
generated feedback. The ratings of 81 students who provided ratings for both 
types of feedback were used for evaluating the difference in their usefulness. 
As students received and rated multiple peer review feedback, the average 
rate was used as peer review rate.

1.5  Results

After examining data to ensure the assumptions of normality, homogene-
ity of variance, and independence, a paired samples T-test performed using 
SPSS v.29 which indicated significant differences between the student ratings 
two feedback types based on data obtained from FeedbackFruit. AI-generated 
Feedback was ranked higher than peer feedback (t = −3.93, p = 0.001), with a 
moderate effect size based on Cohen’s d (−0.437) and Hedges’ correction (−.433) 
(See Appendix Table A.1 and Table A.2.)

A summary of survey data is presented in Table 1.1, which shows students’ 
perceptions of AI-generated feedback in comparison to peer review feedback.

The analysis of survey data using a paired samples T-test (see Appen-
dix Table A.3) revealed significant differences between the two feedback 
types with respect to level of details in the feedback but no significant dif-
ferences across the other four dimensions (see Appendix Table A.4). AI-
generated feedback was perceived to be more detailed than peer feedback 
(395 3 212 0 001t p=− =. , . , with a moderate effect size based on Cohen’s d (−.395)  
and Hedges’ correction (−.391).

To triangulate, we compared peer feedback and AI-generated feedback 
across various metrics including the average word count per essay, along 
with the minimum, maximum, and standard deviation of word counts for 
both types of feedback. As shown in Table 1.2, the length of AI-generated 
feedback was indeed significantly higher than peer feedback.

From the five students’ comments on AI-generated feedback, four comments 
were positive, and one completely disagreed with the AI-generated feedback.
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The AI-generated feedback for the student who perceived it negatively and 
rated it 1 out of 10 is presented here:

This is an AI-generated feedback. Please read the feedback carefully and 
rate the review feedback (0 Not useful to 10 very useful). If you think the 
feedback is not correct/relevant, please explain the issue in the comment 
section.

Overall, your writing style is clear and easy to understand. However, it 
would be helpful to provide some evidence to support your claims, par-
ticularly around the potential health impacts of VR and the risks associ-
ated with sharing personal information with SuperFly.

When discussing the potential health impacts of VR, it would be benefi-
cial to provide references to studies or research that support your claims. 
Additionally, you could acknowledge that there may be some benefits to 
using VR in certain situations, such as for therapeutic purposes.

Regarding the risks associated with sharing personal information with 
SuperFly, it would be useful to provide specific examples of how this 

TABLE 1.1

Summary of Survey Data

Mean N
Std. 

Deviation
Std. Error 

Mean

a.	I understood the 
comments.

Peer feedback 4.03 81 1.022 .126
AI feedback 4.08 81 .997 .123

b.	The comments were 
detailed.

Peer feedback 3.50 81 1.218 .150
AI feedback 3.94 81 .990 .122

c. Peer feedback 3.91 81 1.173 .144
AI feedback 3.94 81 1.201 .148

d.	The comments were 
personalised to me.

Peer feedback 3.68 81 1.139 .140
AI feedback 3.65 81 1.130 .139

e.	The comments included 
statements about my 
specific assignment.

Peer feedback 3.88 81 1.103 .136
AI feedback 3.82 81 1.162 .143

TABLE 1.2

Comparison of Peer Feedback vs. AI-Generated Feedback

Peer Feedback AI Feedback

Count 433 228
Average word count per essay 83.99 221.74
Min. 5 75
Max. 1094 472
St. Dev. 90.87 53.48
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data could be misused or hacked. This would help to illustrate the poten-
tial harm to users and emphasize the importance of strong cybersecurity 
measures.

Overall, your arguments could be strengthened by providing more 
concrete evidence and examples to support your claims. Additionally, 
you may want to consider addressing potential counterarguments or 
opposing viewpoints to provide a more balanced perspective.

Despite the student comment, the teacher’s evaluation of the AI-generated 
feedback confirmed its validity.

1.6  Discussion

The results of this study demonstrate that students perceive ChatGPT-gen-
erated feedback to be more useful overall compared to student peer review 
feedback. The higher level of detail in ChatGPT-generated feedback was 
identified as a significant factor contributing to its perceived superiority. This 
finding aligns with previous research by (Dawson et al., 2019), which high-
lighted the importance of detailed feedback that is usable and specific to the 
assignment.

The use of AI-generated feedback has the potential to address some of the 
challenges associated with traditional teacher feedback, such as the resource-
intensive nature of providing personalised feedback to large cohorts of 
students. The scalability and speed of LLMs like ChatGPT make them a 
promising technology for automated feedback generation and can simulta-
neously facilitate the delivery of timely and detailed feedback to a large num-
ber of students, thereby enhancing the learning experience.

However, it is crucial to acknowledge the limitations of AI-generated feed-
back. While students appreciated the detailed nature of ChatGPT-gener-
ated feedback, it may produce invalid comments, lack nuanced judgement 
that human instructors can provide. As feedback plays a significant role in 
shaping student learning and motivation, it is essential to strike a balance 
between the efficiency of automated feedback and the personalized support 
that human instructors can offer. One promising approach could be coop-
eration between instructors and AI as an intelligent assistant (Dhiman et al., 
2022) by embedding LLMs in learning management systems to generate a 
draft feedback for the instructors to be provided to students after instructor’s 
review and revision.

The study also revealed no significant differences between ChatGPT-
generated feedback and student peer review feedback in other dimensions 
of usefulness, such as understandability, personalisation, and specificity. 
This suggests that both forms of feedback can be valuable in certain aspects, 
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and a combination of AI-generated feedback and peer review feedback may 
complement each other to offer a well-rounded feedback experience for 
students.

1.7  Limitations and Future Research

The study’s findings are based on a specific essay writing task and a limited 
sample of students and may not fully represent the diverse assessment types 
and population of learners in higher education. Also, the availability of the 
case study used for the essay writing task online raises the possibility that 
it could have been incorporated into the training data for ChatGPT, poten-
tially influencing the responses generated by the chatbot. In addition, the 
prompt we used for obtaining feedback from Chat-GPT could have impacted 
the quality of the provided feedback. Future research can explore the impact 
through examining various prompt engineering techniques. The percep-
tions and preferences of students from different disciplines, educational 
backgrounds, or cultural contexts might vary, limiting the generalizability 
of the results. The study focuses on comparing ChatGPT-generated feedback 
with student peer review feedback. However, it does not investigate the use-
fulness of AI-generated feedback in various learning domains or assess its 
adaptability to different types of assignments or assessments. To advance 
educational AI, it is crucial to conduct comprehensive research that explores 
AI feedback across various disciplines and assessment types, while also 
addressing bias and promoting transparency.

The integration of AI-generated feedback into educational settings raises a 
number of ethical considerations, such as transparency and data privacy, that 
need to be carefully addressed.

Transparency is key when it comes to information provided by AI. Stu-
dents have the right to know whether the information they receive was gen-
erated by AI or by human teachers. Clear communication of sources helps 
students understand the nature of the input they receive and manage their 
expectations accordingly. Failure to identify the source of feedback can lead 
to confusion and undermine trust between students and educational institu-
tions. This includes being transparent about limitations in AI-driven feed-
back, such as potential gaps in nuanced understanding.

Data privacy is another important ethical consideration. When students 
interact with AI systems for feedback, their data is collected and processed. 
Educational institutions must implement strong data protection measures 
to protect student information and to, safeguard data storage, transmission, 
and processing to prevent unauthorized access and possible breaches. Insti-
tutions must also clearly communicate how student information will be used 
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and stored and that it may be shared with third parties, in order to obtain 
informed consent from students. As an example, the process of submitting 
assessments could include providing students with guidelines to ensure that 
their assessment reports do not contain any personal data intended to be fed 
into the AI system.

Additionally, potential biases in data provided by AI must be addressed. 
ChatGPT and other AI models learn from large datasets, which can inadver-
tently introduce bias in the training data. These biases can lead to inappropri-
ate responses or discrimination. It is important for educational institutions to 
conduct frequent audits and mitigate AI-generated biases.

Further research is needed to explore the long-term effects of different 
feedback types on students’ academic performance and engagement. This 
study primarily captures student perceptions of feedback. Including instruc-
tor perspectives on AI-generated feedback could offer a more comprehensive 
understanding of the challenges and benefits of its implementation in higher 
education.

1.8  Conclusion

In conclusion, this study sheds light on the potential of using of AI-gener-
ated feedback as an effective strategy for enhancing the feedback process 
in higher education, especially by using large language models such as 
ChatGPT. The study reveals that students consider ChatGPT-provided more 
useful overall compared to student peer review articles, mainly due to its 
increased detail. This finding aligns with previous research highlighting the 
importance of detailed and usable feedback. The flexibility and efficiency 
of the information provided by AI offers a promising solution to address 
the resource-intensive nature of providing personalized feedback to large 
groups of students.

However, while the information generated by AI offers advantages in 
terms of speed and scalability, it is important to acknowledge its limitations. 
The information provided by AI may lack the nuanced judgment, empathy, 
and personal touch that human instructors can provide. Thus a balanced 
approach that combines the strengths of AI-provided feedback with human 
teacher feedback can provide students with a comprehensive and effective 
feedback experience.

The study also highlights the need for ongoing research and analysis of 
AI-driven feedback. It emphasizes the importance of analysing the data gen-
erated by AI in different learning environments, considering different appli-
cations and assessments, and understanding its appropriateness in student 
populations.
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Appendix: Statistical Analysis Results

TABLE A.1

Paired Samples Test Results

Paired Samples Test

Paired Differences

t df

Significance

Mean
Std. 

Deviation

Std. 
Error 
Mean

95% Confidence 
Interval of the 

Difference One-
Sided 

p

Two-
Sided 

pLower Upper

Peer—AI −.8272 1.8943 .2105 −1.2460 −.4083 −3.930 80 <.001 <.001

TABLE A.2

Paired Samples Test Effect Size

Paired Samples Effect Sizes

Standardizera

Point 
Estimate

95% Confidence 
Interval

Lower Upper

Pair 1 Peer—AI Cohen’s db 1.8943 −.437 −.663 −.207
Hedges’ correctionc 1.9123 −.433 −.657 −.205

a.	 The denominator used in estimating the effect sizes.
b.	 Cohen’s d uses the sample standard deviation of the mean difference.
c.	 Hedges’ correction uses the sample standard deviation of the mean difference, plus a correc-

tion factor.

TABLE A.3

Paired Differences Analysis

Paired Differences

t DfMean
Std. 

Deviation

Std. 
Error 
Mean

95% Confidence 
Interval of the 

Difference

Lower Upper

a.	I understood 
the comments.

PF*—AIF** −.045 .935 .115 −.275 .184 −.395 80

b.	The comments 
were detailed.

PF*—AIF** −.439 1.111 .137 −.713 −.166 −3.212 80
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Paired Differences

t DfMean
Std. 

Deviation

Std. 
Error 
Mean

95% Confidence 
Interval of the 

Difference

Lower Upper

c.	I will use/
have used the 
comments to 
improve 
subsequent 
work.

PF*—AIF** −.030 1.052 .129 −.289 .228 −.234 80

d.	The comments 
were 
personalised 
to me.

PF*—AIF** .030 1.095 .135 −.239 .299 .225 80

e.	The comments 
included 
statements 
about my 
specific 
assignment.

PF*—AIF** .061 1.108 .136 −.212 .333 .444 80

* PF: Peer feedback; ** AIF: AI-generated feedback.

TABLE A.4

Significance Results

Significance

One-Sided p Two-Sided p

a.	I understood the comments. PF*—AIF** .347 .694

b.	The comments were detailed PF*—AIF** .001 .002
c.	I will use/have used the comments to improve 

subsequent work.
PF*—AIF** .408 .816

d.	The comments were personalised to me. PF*—AIF** .411 .823
e.	The comments included statements about my 

specific assignment.
PF*—AIF** .329 .658

TABLE A.3 (Continued)

Paired Differences Analysis
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2
Balancing Innovation and Integrity: 
Integration and Implications of Generative 
Artificial Intelligence in Legal Education

Anne Pickering, Kunle Ola, and Khorsed Zaman

2.1  Introduction

The meteoric rise of artificial intelligence (AI), specifically Generative AI 
(GenAI) [1], has sparked increased interest in its impact on the future tra-
jectory of tertiary teaching and learning. An industry report suggests that 
GenAI could raise Australia’s economy by AUD$115 billion a year by 2030 
through enhancing existing industries and facilitating the development of 
new products and services [2]. A recent survey of top tech leaders identifies 
AI as the defining technology trend in Australia in 2024 [3]. Globally, AI was 
earmarked to contribute up to USD$15.7 trillion to the economy by 2023 [4]. 
Given these projections and the growing adoption of GenAI across various 
sectors, it is equally important to consider how GenAI impacts the educa-
tion sector, particularly legal education. Recent developments in AI technol-
ogy have the potential to drastically change traditional teaching methods, 
enhance student engagement, and, most importantly, personalise the learn-
ing experience. It is thus imperative to thoroughly investigate GenAI’s role in 
teaching and learning practices, including the opportunities and challenges 
it presents. This is an important juncture in legal education. Law schools 
are expected to train job-ready graduates, and universities must therefore 
navigate the integration of GenAI into curricula, teaching methods, and legal 
practice skills [5]. Integrating AI brings opportunities and threats, especially 
regarding academic integrity and ethical practices. To remain competitive 
and relevant, it is imperative that universities prioritise striking a balance 
between integrating AI technology and establishing clear guidelines for its 
use with attention to academic integrity and legal ethics.

This chapter focuses on the implications of GenAI on legal education and 
how universities are responding to its challenges. First, the chapter explores 
the rapid changes in university education driven by GenAI, particularly 

https://doi.org/10.1201/9781032632483-2
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following the release of improved versions of ChatGPT, a conversation-
oriented large language model (LLM) initially introduced by OpenAI in 
November 2022. Second, the chapter examines the recent evolution of uni-
versity teaching and the impact of teaching and learning on law students, as 
well as the future of AI on the legal profession: whether an AI-led profession 
is possible, the legal profession’s response, and potential ethical implications. 
Third, the focus is on the response of law schools to the challenges presented 
by GenAI. The conclusion provides suggestions on how to integrate GenAI 
into legal education and practice while preserving and maintaining the 
integrity of both.

2.1.1 � Human Intelligence, Artificial Intelligence, 
and Generative Artificial Intelligence

It is important to understand the fundamental distinction between human 
and artificial intelligence—a topic extensively researched that could warrant 
separate chapters, which is not within the focus of this chapter [6]. While 
acknowledging that one of the key questions would be whether machines 
can replicate or even surpass human cognitive abilities and development—
an issue that continues to be relevant to any discussion on AI and higher 
education—this chapter limits its scope to considering current implemen-
tations of GenAI and their impact [7]. Technology-driven learning is not a 
recent phenomenon, as various tools have been used in teaching and learn-
ing for some time. Nevertheless, adapting to virtual learning during the 
COVID-19 pandemic requires attention when considering the key objective 
of the chapter.

Simply explained, human intelligence is the ability to comprehend, rea-
son, learn and, importantly, to form the link between events and objects [8], 
which requires the skills of solving problems in a variety of daily contexts. 
Artificial intelligence has been described as “the science and engineering 
of making intelligent machines” [9]—the capacity of computers or other 
machines to mimic the cognitive functions of humans [10]. GenAI leverages 
generative modeling, a form of machine learning that learns patterns and 
structures from training data, to synthesise new content [11]. This allows 
for the development of GenAI tools such as chatbots, which are trained to 
interface with human instructions and provide content such as text, images, 
and audio—ChatGPT, for instance, is built around an LLM, a form of gen-
erative modeling, and is capable of producing content when prompted by 
a keyword or a query [12]. Given its broad training dataset, which includes 
books, journal articles, websites, blogs, and social media, it is capable of 
carrying out various tasks such as writing essays, conceptualising stories, 
summarising texts, and answering questions. Other prominent GenAI tools 
that are influencing university education include Google’s chatbot Gemini, 
Anthropic’s Claude, and Microsoft’s Copilot, to name a few [13]. Naturally, 
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the capabilities of these tools have the potential to impact virtually every 
aspect of human lives that is already driven by technological tools. One 
of the most important questions is what are the transformative effects of 
GenAI on legal education?

2.1.2 � Understanding the Broader Response and the 
Challenges Presented by Generative AI

GenAI has shown enormous potential in reshaping industries, with the 
world outside of universities appearing to embrace GenAI at a faster pace 
than universities. It is being rapidly integrated into industries such as health-
care, advertising, marketing, finance, and technology to enhance medi-
cal images, simplify patient notes and information, create new products, 
develop product descriptions, design marketing text and images for custom-
ers, enhance financial operations, integrate software into existing systems, 
and more. One example is the first drug designed and discovered by GenAI, 
developed by the biotech company Insilico Medicine, for the treatment of lung 
scarring [14]. A multitude of companies and multinational businesses such 
as Morgan Stanley, Master Card, Golden Sachman, Microsoft, Amazon, and 
Shopify have already integrated GenAI into their commercial activities. In 
contrast, universities have been slower in adopting GenAI-induced changes 
to curricula.

Those who are interested in engaging with GenAI face the challenge of a 
lack of understanding of how to use and evaluate recent technologies, which 
hinders their ability to effectively integrate AI into teaching and learning 
systems. As a result, there is a lack of published evidence of the use of GenAI 
by academics and students. This is confirmed by Universities Australia (UA) 
in a submission to the House Standing Committee on Employment, Educa-
tion and Training’s inquiry [15]. In December 2023, one of the authors of this 
chapter conducted a survey of undergraduate law students and academics 
from three states of the same university in Australia (the survey) to under-
stand the use of AI tools to assist with this particular law school’s future 
planning. The survey captured feedback from 77 students and 17 academics. 
The project used a mixed-method approach. A qualitative survey method 
was employed to gather information for the project by way of an anonymous 
online survey. According to the feedback of the students who completed the 
survey, 54 students (70.1%) said that they had never used ChatGPT to com-
plete an assignment in a law unit while 21 (27.3%) indicated that they used 
ChatGPT for activities other than to complete assessments. Based on the 
responses, 40% of student respondents was not comfortable with the idea of 
receiving assistance from AI systems while studying law. Students indicated 
that AI tools can be effectively integrated, but they were equally of the view 
that the use of AI tools like ChatGPT in legal education should be restricted 
to specific tasks such as research assistance or drafting documents. Four of 
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the survey questions captured students’ views on integrating AI tools into 
the learning process, particularly its importance in training law students to 
be lawyers of the future. A total of 304 comments were submitted by student 
respondents in response to the four questions. Four themes emerged from 
the analysis of these comments on the question regarding the role of the law 
school in incorporating AI to enhance the learning and teaching process. 
These four themes were—that GenAi can provide enhanced and person-
alised learning; the need for training on how to interact effectively with 
AI-generated content; that there is a need to be up-to-date with technology 
trends; and that AI threatens the cognitive abilities required of law students. 
The need for training highlighted in the survey feedback resonates with 
UA’s submission to the government, and the findings of a national survey 
undertaken to understand the extent and nature of AI adoption by Aus-
tralian universities. While this study found that almost 30% of university 
staff had never used GenAI for work, the majority of the participants of 
the survey recognised the potential of AI to enhance productivity [16]. The 
authors concluded that institutional support is needed through clear poli-
cies, focused training and strategic investment in AI technologies tailored to 
specific roles and disciplines.

Universities traditionally work within slow-moving frameworks involving 
processes and lines of approvals. A challenge for universities is how to keep 
up with the fast-moving AI developments. The slower pace of curriculum 
redesign contributes to the slower integration of AI into curricula, which 
prevents universities from adapting to technological developments. From 
the perspective of a law school, the slower integration reflects the broader 
struggle to balance the development of analytical skills and ethical standards 
required of future lawyers. In a vicious cycle, the slower integration into cur-
ricula leads to fewer opportunities to be familiar with AI tools. Moreover, 
slower integration questions the competitiveness of law schools where some 
schools are likely to be ahead of others purely by integrating AI tools into 
teaching and learning. For example, in 2023, Torrens University commenced 
streamlining its digital learning environment using Microsoft’s Azure 
OpenAI service to improve and standardise all course curriculums on one 
intuitive platform [17]. According to Torrens University, in doing so, the 
university achieved improved accessibility with all course materials acces-
sible from any mobile device, thereby saving approximately AU$2.4 million 
[18]. As AI tools are increasingly embraced as evidenced by Torrens Univer-
sity, other universities face growing pressure to ensure that their programs 
remain relevant. Students who pay high education fees are likely to demand 
programs that ensure their job readiness [18]. Thus universities must act 
swiftly to align their courses with technological development in order to 
demonstrate the value of their programs [19]. However, UA highlights that 
AI experts currently disagree on the expected pace of AI adoption due to a 
lack of full understanding of its threats [20].
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2.2 � Recent Evolution of University Teaching and 
Learning and the Use of Generative AI

In the recent past, teaching and learning in higher education has been sig-
nificantly transformed by the increased use of digital technology and tools, 
demonstrating a precedent for potential future AI-driven transformations. 
The most significant change in the landscape of higher education took place 
during the COVID-19 pandemic when universities transitioned to a fully 
online mode of delivery [21]. There is no doubt that the changes to teaching 
and learning during this time have caused a fundamental shift in the way 
courses will be offered in the future, particularly regarding the modes of 
delivery [22]. While many universities, particularly law schools, accustomed 
to traditional content delivery methods, were new to fully delivering online 
courses during the pandemic, distance education providers had long been 
using educational technologies for online teaching and assessment [22]. The 
rapid speed with which universities modified established methods is a testa-
ment to the human ability of both teachers and students to quickly adopt and 
adapt new technology in all aspects of learning, creating online classrooms, 
content delivery methods, and assessment tasks; this shift is evidenced by 
post-pandemic reflections on the transition to online teaching and indi-
cates that a well-executed integration plan for AI may also yield a positive 
response [23].

Web-based technology and tools now play a pivotal role in students’ learn-
ing experiences, changing the traditional education paradigms of teacher-led 
instruction and classroom-based teaching. The established university teach-
ing methods can be best described as teaching staff imparting knowledge 
by way of face-to-face, online, or blended methods of teaching, and guiding 
students through the learning process, organised and managed on learn-
ing management systems (LMSs) [24]. Over the years, LMSs have become a 
necessary web-based technology to plan, implement, and assess the learn-
ing processes of specific courses. LMSs have started to integrate AI-powered 
tools to facilitate personalised learning experiences, allowing teachers to 
tailor teaching activities to suit the needs of students. For instance, Can-
vas, a web-based management system, provides various built-in course cre-
ation and management tools that can be customised for each course [25] to 
gather information on engagement and performance, helping academics to 
make informed decisions to support students. Thus when COVID-19 forced 
a shift in course delivery and assessments, universities already had estab-
lished web-based systems in place to facilitate virtual teaching and learn-
ing. Although these changes did not always align with the best pedagogical 
practices, they highlight that teaching and learning has the capacity to adapt 
to new technologies [26].
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Data analytics within LMSs have enabled universities to gather informa-
tion, particularly by using tools to detect plagiarism. A key tool integrated 
into Canvas is Turnitin, which is a web-based text-matching software that 
provides academics with the ability to generate similarity reports to deter-
mine the originality of work submitted by students to detect plagiarism. Over 
the past 18 months, Turnitin has extended its offering to incorporate technol-
ogy to detect AI-generated content [27]. The AI writing detection reports are 
aimed at detecting students’ use of GenAI to complete their assessments. 
The drawback is unlike Turnitin similarity reports; its AI writing detection 
indicator merely highlights the AI-generated text in the submission indi-
cating the percentage of AI use, but it cannot provide links connecting the 
highlighted text to relevant sources. From an academic integrity stance, aca-
demics follow their universities’ policies and procedures, and in most cases, 
students are reported for academic misconduct if these reports indicate that 
students completed the assessment using GenAI tools. These considerations 
highlight how the pedagogy of teaching is ever-changing in the face of the 
new challenges introduced by the use of GenAI.

2.2.1 � Implications of Unauthorised Use of Generative AI 
on Law Students and Their Future Profession

Many Australian law schools have seen a rise in the unauthorised use of 
GenAI tools, particularly ChatGPT, to complete assessments, initially result-
ing in many students being reported for academic misconduct. While this 
initial approach has been effective, academics report that students continue 
to submit AI-generated assessments. The question is whether the similarity 
and AI reports are reliable. As teaching staff and academic integrity officers 
have found out, a key concern of relying on AI detection tools is the accu-
racy and the reliability of the content flagged as AI-generated, particularly 
where false positives may lead to students being penalised unfairly [28]. The 
collective experience of academics concerning AI detection tools [28] is that 
students are increasingly contesting referral to academic integrity teams on 
the basis that software like Grammarly that they use for checking spelling 
and grammar incorporates some GenAI capabilities that have been wrongly 
identified as intentionally using GenAI to complete assessment tasks. While 
students may have been unfairly penalised in the first six months of Chat-
GPT, in recent times, in response to false positives and other issues of the 
first versions of the Turnitin AI detection tool, Turnitin has updated its AI 
detection tool. Until recently, the Turnitin AI detection tool captured a per-
centage score of 1% to 100%, leading to false positives of the use of GenAI. 
In the early days of introducing its AI detection feature, the chief product 
officer of Turnitin encouraged universities to consider false positives within 
Turnitin’s AI writing detection capabilities [29]. However, as of July 2024, 
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Turnitin-generated AI reports will no longer display highlights or scores 
below 20% of the submission, which appears to introduce a margin of error. 
Instead, the Turnitin-generated AI reports will now display the AI-generated 
text that has been paraphrased using an AI-paraphrasing tool or AI word 
spinner such as QuillBot [30]. Regarding the accuracy and reliability of the 
Turnitin reports, an independent study evaluating 16 publicly available AI 
text detectors found that Turnitin has a very high accuracy rate [31].

Equally important is that false negatives may allow AI-generated content 
to go undetected. To make the issue worse, there are now YouTube chan-
nels [32] and other resources dedicated to showing students how to bypass 
AI detection, thus encouraging students to engage in academic dishonesty. 
Academic dishonesty undermines the integrity of law students’ training and 
their futures as lawyers, therefore jeopardising their credibility and the pros-
pect of obtaining a practicing certificate to work as lawyers. If caught, aca-
demic dishonesty can lead to academic misconduct. For law students, even 
if the matter is merely investigated without a penalty imposed for academic 
misconduct, this is sufficient grounds for refusal of admission as a lawyer 
due to strict rules concerning suitability for admission as lawyers in Aus-
tralia [33]. The underlying matter is that academic dishonesty compromises 
the learning process and assessment results, giving an unfair advantage to 
some students. Most importantly, it hinders the development of essential 
skills and ethical standards that are the hallmark of the legal profession and 
professionals.

What distinguishes lawyers from non-lawyers is the training, knowledge, 
and expertise in law that they gain in law schools. Clients depend on their 
knowledge and skills to represent them in legal matters and pay them for 
their expertise and skills. Even if lawyers produce AI-generated work, they 
must still be able to use their independent skills and expertise to assess the 
material before them. Otherwise, the court is bound to consider that law-
yers “abandoned their responsibilities” as in the New York case of Mata v. 
Avianca Inc, [34] (Mata case), where the lawyer submitted an AI-hallucinated 
case brief generated by ChatGPT containing fake case citations and judicial 
opinions. The tendency for ChatGPT to produce false information as fact is 
referred to as “artificial hallucination.”[35] The lawyers in that case, being 
unaware that ChatGPT can sometimes hallucinate, submitted a brief with-
out checking the cases leading to the court dismissing their client’s case and 
subsequent sanctions against the lawyers for acting in bad faith [35]. This 
case highlights the primary concern: whether students fully appreciate the 
importance of acquiring core knowledge and research skills during their 
legal education and training and whether they can effectively apply these 
competencies independently as practicing lawyers.

Despite the high-level performance of ChatGPT and similar GenAI chat-
bots, it is still not a complete replacement for human cognition and deduc-
tive reasoning. In fact, ChatGPT is prone to producing content that is false, 
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as evidenced by the widely publicised Mata case. [36] While the Mata case 
is a clear example of the use of GenAI by a legal practitioner, it is also an 
example of how it is not meant to be used. Users must remember that it is not 
a replacement for human methods of critical thinking. Therefore, lawyers 
must not completely rely on chatbot tools like ChatGPT but must instead use 
their own expertise and knowledge to undertake tasks such as legal research 
and document preparation. The case is instructive for students who com-
pletely rely on it to research and write. Ultimately, the responsibility rests 
on lawyers in legal matters, and the same principle applies to law students 
who intend to join the legal profession. Their future profession requires that 
they have the necessary skills to be able to identify the law. In light of this 
need, it is entirely appropriate to question whether students should be per-
mitted to use GenAI tools before being able to fully appreciate the essential 
skills required to function effectively as lawyers. The answer to this question 
remains a work in progress.

2.2.2  An AI-Led Legal Profession—Is It Possible?

The idea of an AI-led legal profession is as complex as much as it is a possibil-
ity. It is more than likely now than it was in 1984 when John Searle famously 
distinguished between syntax and semantics to point out that “no computer 
program can ever be a mind” [37]. Searle’s suggestion of a limitation in the 
capacity of computers is a thing of the past now with the progress of AI 
technology able to clone a voice [38]. The impact of AI extends to various 
aspects of legal practice, including legal research and document preparation, 
delivery of legal services, and the management of legal practice. Recently 
LexisNexis introduced Lexis+ AI Insider program, a legal GenAI solution 
providing drafting, research assistance, legal summaries, and conversational 
responses to requests and refining answers [39]. The Lexis+ AI Insider pro-
gram is available for all legal professionals and supports the legal industry 
with GenAI education [40]. However, despite law firms like Clayton Utz, Gil-
bert + Tobin, and Holding Redlich adopting Lexis+ AI and the impressive 
innovative approach to using AI in the legal industry, the Allens AI Aus-
tralian Law Benchmark (Allens Benchmark) cautions against using LLMs 
such as GPT-4, Perplexity, LLaMa2, Claude 2, and Gemini 1 for providing 
legal advice on Australian law without expert human supervision [41]. These 
observations are based on the assessment conducted by Allens in February 
2024, before Lexis+ AI was introduced [41] and became resonate elsewhere 
in the world where the European Union recently passed the first Act dealing 
with artificial intelligence in June 2024 [42]. The key principle upon which the 
Act is developed is that the approach to AI must be human-centric.

In Australia, the caution on absolute reliance on GenAI tools is reflected 
in the Allens Benchmark, and it is further supported by a survey conducted 
by ANZ Bank and LexisNexis in 2023 and 2024 (ANZ Survey 2023–2024). 
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The primary factors influencing this lack of confidence include ethical con-
cerns, information reliability and traceability, information accuracy, the 
inability to trace source information for answers generated, and the com-
pleteness of information generated [43]. From the perspective of an AI-led 
profession, the crux of the issue that underlines these concerns is applica-
bility of AI in human-based roles, which deserves attention. When consid-
ered from this angle, first, it is important to ask whether GenAI tools used 
for legal reasoning can replicate the complex reasoning, analysis, and cog-
nitive ability of humans. These tools are based on computational reason-
ing that is not inherently human-interpretable and instead mimics human 
reasoning to assess cases, apply logic, and define legal concepts [44]. The 
answer for now is that AI is evolving, and GenAI models have become 
more capable of mimicking certain aspects of human cognitive processes. 
For example, how GenAI is used by Lexis+ AI to produce research docu-
ments using its database of cases and other resources is a demonstration 
of legal research and deductive reasoning [45]. Yet GenAI lacks the subjec-
tive experience to understand the complexity and context of social, cul-
tural, and personal contexts, which is necessary when applying law. As 
the former Chief Justice of the Federal Court of Australia explains, the 
human element of public institutions like courts is assigned a special kind 
of power—judicial power, which involves human reasoning and emotion 
that are subject to abstraction and deconstruction—where complex human 
qualities, values, and institutions are organised into abstract definitional 
terms [46]. The exercise of judicial power requires both substantive and 
apparent impartiality, and the fair and accurate determination of ques-
tions of fact and law [46]. All of these are the human elements necessary 
for the functioning of courts and show the interposition of courts, law, and 
human elements.

A central part of the practice of law is the importance of explanations—for 
example, in a court case, the parties have a right to an explanation of the 
case decision to ensure that the decision was based on sound reasoning in 
order to be able to understand the basis of an appeal and for the public inter-
est [47]. Thus when applying the law, consideration of social objectives and 
social effects is important. Can computational models be trained to respond 
to emotional cues, and, if so, would their emotional intelligence reflect the 
knowledge, information, social, political, and racial biases of their devel-
oper? Can computational models be influenced by the subjective experience 
of someone who may not necessarily understand the law or holds biases? 
These are risks that must be considered, and in the context of universities, 
the risk of systematic biases and discrimination have been pointed out in the 
UA’s submission [48]. Nevertheless, Collenette et al., who undertook a sig-
nificant research project to design, implement, and evaluate explainable deci-
sion support tools for deciding human rights cases in the European Court of 
Human Rights (ECHR), state that their tool had an accuracy rate of 97% [49]. 
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Despite its success rate, the tool was used within an experimental setting 
focusing on human rights cases. The same results may not be achieved in 
complex human rights or other cases that require a nuanced understanding 
and decision-making based on fairness and compassion—the human ele-
ment. For instance, a human rights case involving leaving a country for fear 
of personal safety is significantly different from a person escaping actual 
physical torture. In such a case, empathy and compassion are required, but 
the concern is whether GenAI tools can accurately evaluate the personal fac-
tors and emotions involved.

Furthermore, Collenette did not explain the accountability of AI decision-
making. If an AI decision led to an unexpected outcome due to a technical 
error, it may be difficult to determine who is responsible and how to navigate 
the appeal process. From a social justice perspective, it is important to con-
sider the deeper implications of such a judgment on a person’s health and 
well-being. As noted, while AI is rapidly evolving and new developments are 
on the horizon, law schools and the legal profession must address the ethical 
implications of GenAI advancements.

2.2.3  Legal Profession’s Response and Ethical Implications

As machines grow more capable through training on large language models 
(LLMs), their evolution presents both challenges and opportunities. On the 
one hand, as evidenced by Lexis+ AI, [50] GenAI is capable of performing 
some of the basic functions, thereby allowing lawyers to focus on the more 
complex cases. On the other hand, the rapid development of GenAI raises 
significant ethical concerns for the legal profession and its impact on legal 
ethics. The LexisNexis GenAI tool leverages LexisNexis’s legal database to 
provide a means of reviewing documents, undertaking legal research, and 
producing predictive analytics [51]. As these technologies evolve, the legal 
industry must proactively establish guidelines and best practices to ensure 
responsible use.

According to Kirby, who had the foresight to consider the possibility 
of the use of AI in legal practice over 30 years ago, the “special strength” of 
the profession is that practitioners are “repositories and disseminators of 
special knowledge” [52]. Any time this knowledge is being integrated as 
is being done with GenAI, the issue of the future of the profession arises, 
which is why it is important to find out the response of the profession. The 
peak representative bodies for the legal profession in Australia continue to 
develop frameworks and guidance notes for the responsible and ethical use 
of artificial intelligence in legal practice. For example, the Queensland Law 
Society introduced a guidance statement for legal practitioners while the 
New South Wales Law Society announced that a task force of legal and tech 
experts will convene to explore how best to harness what AI has to offer the 
legal profession [53].
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Against this backdrop, Australian law schools face significant obstacles in 
embracing GenAI, as the difficulty strikes at the very core of the legal profes-
sion, challenging the foundational concepts that underpin it. A profession is 
a group of individuals who conform to ethical standards, who are seen by 
the wider community as having specialised knowledge and skills acquired 
through education and training, and who apply this expertise in the interest 
of others [54]. In the context of the legal profession, this definition refers to 
legal professionals who, having undergone legal training, uphold these ethi-
cal standards. This definition naturally includes a code of ethics that governs 
the activities of each profession that require a high standard of behaviour 
beyond the personal moral obligations of a person [55]. Ethical codes are 
enforced by the profession and accepted by the community, who set high 
expectations of conduct regarding the services and dealings with the pub-
lic and professional colleagues [55]. The structure and rules of professional 
conduct for barristers and solicitors align with the definition. Their conduct 
is governed by ethics and professional rules by a range of regulatory struc-
tures and bodies. For example, the Legal Profession Act 2007 (Qld) governs the 
professional conduct of lawyers in Queensland, Australia. Similarly, other 
states and territories have established comparable statutory frameworks on 
lawyers’ professional conduct.

In Australia, practicing law requires admission as a legal practitioner and 
holding a current practicing certificate as either a barrister or a solicitor [56]. 
When admitted to the legal profession, lawyers take an oath as officers of 
the court, and they owe a paramount duty to the courts, which includes the 
duties of being frank, honest, and candid in dealing with the court [57]. Law-
yers serve this paramount duty when they serve in the best interest of their 
clients. A certain level of competency is required of lawyers that encompasses 
the skill of communication and advocacy aimed at helping their clients navi-
gate legal matters. Thus lawyers have a special responsibility towards the 
courts, their clients, and the legal profession. The first issue is the question of 
how a lawyer who uses GenAI acts in the best interest of a client. The second 
issue is whether the lawyer is competent or merely reliant on technology. 
Cases from the US highlight how these matters were treated in that juris-
diction. In a Colorado Supreme Court case in the US in People v. Crabill [58], 
a client hired a lawyer to prepare a motion to set aside a judgment and the 
lawyer drafted a motion using AI, and included a case generated by Chat-
GPT in the motion. Unlike in the Mata case, here the lawyer initially blamed 
a legal intern for the accuracy of the cases used when the matter was heard 
but later admitted in an affidavit that he had drafted the motion himself [58]. 
The lawyer was suspended for misconduct for violating several ethical rules, 
including not competently representing the clients, acting without reason-
able diligence and promptness when representing a client, knowingly mak-
ing a false statement of material fact or law to a tribunal, and engaging in 
conduct involving dishonesty, fraud, deceit, or misrepresentation [59]. This 
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example highlights that, despite using GenAI, the lawyer is responsible for 
the accuracy of documents, and that responsibility is still very much con-
nected with the competency to act as a lawyer.

Ethical implications are not limited to lawyers’ responsibilities. Fairness 
and the affordability of legal services are also important considerations. 
Top-tier law firms can invest in costly GenAI systems to manage basic tasks, 
while smaller firms may struggle to afford such technology. This sparks up 
the “haves and have-nots” conflict and could widen the gap between wealthy 
firms and struggling ones, potentially leading to the elimination of smaller 
law firms [60]. There are also ongoing issues concerning plagiarism, privacy, 
and data protection that GenAI tools do not appear to address. For Lexis-
Nexis, this is not an issue because its Lexis+ AI prepares research documents 
using resources that are already available in its database, which already com-
plies with copyright and privacy standards. Although the LexisNexis tool 
offers positive benefits, affordability remains a concern for firms seeking 
access to it.

2.3 � How Must Universities Navigate the 
Challenges Presented by AI?

There is a need for universities to consider how technological advances affect 
teaching and learning. Lack of consensus on the use of AI in law schools can 
create a barrier between students who are exposed to GenAI in their learn-
ing journey to becoming lawyers and those who have not had this opportu-
nity. Universities are responsible for preparing future graduates, but if some 
students do not have the opportunity, they will be unfairly disadvantaged 
in the job market. Law schools have a compelling reason to lead an innova-
tive approach to this issue rather than completely disregarding GenAI. By 
collaborating with the private sector, industry, community, and students to 
revise curricula that are fit for purpose, law schools can effectively address 
the issue and, more importantly, prepare students for future employment 
opportunities. Such a collaborative approach will enable law schools to align 
with the skills needed by future lawyers while ensuring their graduates are 
well-prepared for the future.

2.3.1 � Striking a Balance Between Adapting to AI and Retaining 
the Integrity of the Training of Future Lawyers

Striking a balance will require academics’ asking the right questions. Cur-
rently, the questions are about how to avoid academic misconduct and main-
tain academic integrity instead of questions about how to integrate GenAI 
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into the curriculum, assessment, and learning outcomes. It should therefore 
not come as a surprise that there has been a sharp increase in academic mis-
conduct cases in many universities. This is connected to the fact that, when 
GenAI is viewed as a threat rather than a learning opportunity, we risk 
criminalising a widely accepted technology. As American legal scholar Law-
rence Lessig opined, when a system criminalises practices that have become 
entrenched and established, we must ask the question, who is the villain? [61] 
The primary focus should be on harmonising academic integrity with the 
integration of AI into the educational curriculum. To achieve this, it is perti-
nent to ask constructive questions about how GenAi can be effectively used 
as a learning tool rather than simply questioning its potential for cheating. By 
asking the right questions, we can ensure that AI is used constructively as a 
tool for academic advancement, not as a means to undermine it.

Some of the questions currently being considered within a university set-
ting include whether GenAI can automate routine tasks, and, if so, what are 
the implications? For instance, does that free up time for other teaching activ-
ities? Does it enhance efficiency? How does it impact the critical thinking 
skills and problem-solving skills required of law students? Can GenAI effec-
tively challenge and assist students in developing these skills? How reliable 
is the feedback it provides? These are the questions that need to be addressed 
by academics or universities that are in the process of integrating or have to 
some extent integrated GenAI into their curricula and assessment regimes. 
Most universities have not yet reached that stage, making it crucial to explore 
potential strategies, and that must be done by considering how law schools 
want to approach GenAI. Two options include completely ignoring GenAI 
and refusing integration, fully integrating GenAI (which is impractical due 
to the reasons examined in this chapter) or taking the middle path by foster-
ing ethical lawyering by integrating the use of GenAI into units that can 
benefit from integration.

The third option could involve incorporating GenAI into the legal cur-
riculum. One means of achieving this could be to offer one or more units 
(subjects) in the law degree to cover the fundamentals, capabilities, limita-
tions, and ethical considerations of AI in a legal context for law students. 
These units could also address broader ethical considerations—such as 
social, political, and racial biases, data, and privacy concerns. Emphasis 
would be placed on the importance of critical thinking, integrity, academic 
conduct, and ethics in using GenAI, as well as course content, could 
explore the analysis and evaluation of work generated by GenAI tools. 
Another valuable strategy for mitigating the overreliance of students 
on GenAI tools across all legal units is to explore the balance between 
supervised assessments—invigilated exams, oral presentations, and 
tutorials—and unsupervised assessments—assignments, online quizzes, 
and problem sets—so that students are monitored and assessed for their 
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performance in both. By thoroughly considering the role of GenAI in curri-
cula design, universities can ensure that students develop not only the nec-
essary critical thinking skills to fulfil the requirements of their studies but 
also a strong understanding of the capabilities and ethical considerations of 
GenAI within a legal context. To this end, recently, the three authors of this 
chapter received a teaching and development grant to undertake a project 
in 2025 to review three units in order to consider whether GenAI can be 
integrated. From a teaching and learning perspective, the project is based on 
two imperatives. First, education must be student-centred and aligned with 
industry needs to incorporate recent technologies, including AI to enhance 
content to promote ethical, efficient and future-ready graduates. To achieve 
this, the authors will collaborate with students and an industry partner in 
the curriculum development process. The second imperative of the project 
is evaluation. The aim is to assess whether our AI-integrated curricula are 
achieving the intended learning outcomes. This evaluation will allow us 
to identify areas for improvement and ensure that our curriculum remains 
aligned with both academic goals and industry expectations.

2.4  Conclusion

This chapter has considered the transformative potential of GenAI in 
legal education, highlighting its significant impact on both teaching and 
learning within law schools. While GenAI offers exciting opportunities 
to enhance the educational experience, it also presents significant chal-
lenges for law students, educational institutions, and the legal profession, 
which is deeply rooted in high ethical and professional standards. As law 
schools navigate these challenges, it is crucial to strike a balance between 
human expertise and artificial intelligence. By integrating GenAI thought-
fully into legal education, law schools can enrich the learning process 
while upholding the ethical principles essential to the legal profession. 
Adapting to the evolving nature of the legal field requires a proactive 
approach—one that not only embraces GenAI but also rigorously exam-
ines its implications.

The most effective strategy for achieving this balance is to incorporate 
GenAI into the legal curriculum through one or multiple specialised units 
dedicated to educating students on GenAI fundamentals, its capabilities, 
limitations, and ethical considerations. By doing so, law schools can equip 
future lawyers with the knowledge and critical thinking skills necessary to 
use GenAI responsibly, ensuring that they are prepared for the challenges 
and opportunities of a rapidly changing legal landscape.
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3
Three Technical Routes of AI

Weisi Chen, Francesco Cauteruccio, Yuan Li, 
Jiaxin Zheng, and Wulong Liu

3.1  Introduction

In recent years, the development of artificial intelligence (AI) has stunned the 
world and gradually become an integral part of modern technology, trans-
forming industries and shaping the future of human–computer interaction. 
There are multiple technical routes of AI, each with unique methodologies 
and applications. Among these, three primary pathways have emerged in the 
last decade: knowledge-based expert systems, data-driven machine learning, 
and intelligent optimization. This chapter will focus on these three routes, 
explaining concepts, relevant techniques, application scenarios, and case 
studies. Understanding these pathways provides a clear and comprehensive 
overview of the AI world and how AI systems can be designed, implemented, 
utilized, and integrated to solve complex problems across diverse domains.

Knowledge-based expert systems (ESs) (Shu-Hsien, 2005) represent one of 
the earliest forms of AI, developed to emulate the decision-making abilities 
of human experts. These systems rely on a rich knowledge base, consisting 
of domain-specific rules and facts, and an inference engine to derive con-
clusions or solutions. ESs are particularly effective in fields where human 
expertise is paramount, such as medical diagnosis, financial analysis, and 
legal reasoning. By codifying expert knowledge, these systems can provide 
consistent and reliable advice, supporting or even replacing human experts 
in specific tasks.

Data-driven machine learning (ML) (Sarker, 2021) has surged to the forefront 
of AI research and application in recent decades. Unlike ES, which depends 
on explicit structured knowledge like rules and knowledge graphs, ML sys-
tems learn patterns and relationships directly from data. This approach is 
powered by algorithms that can improve their performance over time as they 
are exposed to more data. Machine learning encompasses a wide range of 
techniques, including supervised learning, unsupervised learning, and rein-
forcement learning. It has been successfully applied in various fields, such as 
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image and speech recognition, natural language processing, and predictive 
analytics, driving significant advancements in these areas.

Intelligent optimization (IO) (Mohammadi & Sheikholeslam, 2023) 
involves finding and optimizing the best solutions to complex problems, 
often under constraints. This pathway leverages methods such as genetic 
algorithms (Sohail, 2023) and particle swarm optimization (Nayak et  al., 
2023) to navigate large search spaces and identify optimal or near-optimal 
solutions. Intelligent optimization is crucial in scenarios where traditional 
methods may fall short due to the scale or complexity of the problem. 
Applications of intelligent optimization are widespread, including logis-
tics, resource allocation, and engineering design, where finding the most 
efficient solution can lead to substantial cost savings and performance 
improvements.

The rest of this chapter will explore these three technical routes of AI in 
turn, ES (Section 2), ML (Section 3), and IO (Section 4), delving into their foun-
dational principles, methodologies, and real-world applications. Section  5 
will explore how these routes can be integrated with practical hints.

3.2  Knowledge-Based Expert Systems

Knowledge-based expert systems (ES) are a branch of artificial intelli-
gence designed to emulate the decision-making abilities of human experts 
in specific domains. These systems are built around a robust knowledge 
base and an inference engine. The knowledge base contains domain-spe-
cific information, often in the form of rules, facts, or knowledge graphs, 
while the inference engine applies logical rules to the knowledge base 
to derive conclusions or solutions. ESs are particularly valuable in areas 
where decision-making relies heavily on specialized knowledge and 
expertise.

3.2.1  Knowledge Inference Framework

ES is based on the assumption that intelligence consists of knowledge and 
inference capability:

Intelligence = Knowledge + Inference

Thus an ES generally works by coupling at least a knowledge base, which 
stores various types of knowledge, and an inference engine, which interprets 
and evaluates facts against the knowledge stored in the knowledge base to 
generate results (see Figure 3.1).
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3.2.1.1  Knowledge Base and Knowledge Representation

The knowledge base can be in various forms of representation, which define 
how knowledge is structured within the system. Effective knowledge rep-
resentation in the knowledge base enables the system to process and infer 
information efficiently. There are several types of knowledge representa-
tions, each suited to different types of knowledge and reasoning processes.

Logic-Based Representations: Logic-based representations use formal 
logic to represent knowledge (Calegari et  al., 2020). Propositional 
logic and first-order logic are common examples. These represen-
tations are powerful for expressing complex relationships and 
enabling formal reasoning, but they require sophisticated inference 
mechanisms.

Production Rules: Generally, these are if-then rules that represent 
knowledge in the form of condition–action pairs (Hanson & Widom, 
1993). Production rules are widely used in rule-based expert systems 
to model decision-making processes. They are easy to understand 
and implement but can become complex to manage as the number of 
rules increases.

Frames: Frames are data structures for representing stereotyped situ-
ations (Nazaruks & Osis, 2021). They consist of slots (attributes) and 
values (data or pointers to other frames). Frames are particularly use-
ful for representing objects, their properties, and their relationships 
in a structured way.

Ontologies: Ontologies provide a formal representation of a set of con-
cepts within a domain and the relationships between those concepts 
(Mora et al., 2022). They are used to model domain knowledge in a 
structured and reusable way. Ontologies are essential for interopera-
bility between different systems and for supporting complex queries.

FIGURE 3.1
General architecture of knowledge-based expert systems.
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Semantic Networks: These are graphical representations of knowledge 
where nodes represent concepts and edges represent relationships 
between them (Pereira et al., 2022). Semantic networks are intuitive 
and useful for representing hierarchical relationships and associa-
tions among concepts.

Knowledge Graphs: Knowledge graphs are more structured than 
semantic networks and focus on entities, their attributes, and their 
interrelationships (Ji et al., 2021). They allow for richer and more pre-
cise queries and integration of diverse data sources, often using stan-
dardized schemas and ontologies.

Equations/Formulas: These consist of mathematical representations 
of knowledge. Useful for domains requiring precise and quantita-
tive reasoning, such as physics or engineering. Such precision often 
requires ad hoc solutions to infer new knowledge from data.

Natural Language: Using human language to represent knowledge. 
Natural language processing (NLP) techniques enable the system to 
understand and generate human language, facilitating interaction, 
and information extraction. Natural language has historically been 
overlooked for knowledge representation due to its inherent com-
plexity, but in recent years, several approaches have focused on this 
challenge, thanks to the advent of models such as Transformers (Lin 
et al., 2022) and large language models (LLMs) (Chang et al., 2024).

Each type of knowledge representation has its strengths and is chosen 
based on the specific requirements of the expert system and the nature of the 
knowledge it needs to handle. Combining multiple types of representations 
can enhance the system’s capability to model complex domains and support 
robust decision-making processes.

3.2.1.2  Inference Engine

Several techniques are fundamental to the development and operation of ES:

Rule-Based Reasoning: This is the most common technique, where 
the knowledge base generally consists of if-then rules (Kierner et al., 
2023). The inference engine applies these rules to known facts to 
infer new facts. Two main types of rule-based reasoning are forward 
chaining and backward chaining. Forward chaining starts with 
known facts and applies rules to infer new facts. It is data-driven, 
meaning the inference engine starts from the available data and 
works its way forward to deduce conclusions. On the contrary, back-
ward chaining starts with a goal and works backward to determine 
whether the known facts support the goal. It is goal-driven, meaning 
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the inference engine begins with a hypothesis and searches for data 
that supports or refutes it.

Knowledge Graph Reasoning: Knowledge graphs structure informa-
tion in nodes (entities) and edges (relationships), allowing the infer-
ence engine to traverse these connections to infer new relationships 
or validate existing ones. This method supports more complex que-
ries and integration of diverse data sources, often leveraging ontolo-
gies to enhance reasoning capabilities. Nodes represent entities 
(e.g., objects, concepts), and edges represent relationships between 
these entities. For example, in a medical knowledge graph, nodes 
might represent diseases and symptoms, while edges represent the 
relationships (e.g., “causes” or “symptoms of”). Ontologies could 
be used to provide a formal representation of a set of concepts 
and their relationships within a domain. They enrich knowledge 
graphs by defining classes, properties, and rules that govern the 
relationships between nodes. This integration enhances the graph’s 
semantic understanding and enables more accurate reasoning. The 
inference engine can use graph traversal algorithms to explore 
paths between nodes, enabling it to infer new relationships or 
validate existing ones. For instance, if a knowledge graph contains 
nodes for “Fever” and “Infection,” and an edge indicating that fever 
is a symptom of infection, the system can infer a potential diag-
nosis based on observed symptoms. Knowledge graph reasoning 
often employs techniques like SPARQL (a query language for RDF 
databases) (Ali et al., 2022) to perform complex queries and retrieve 
relevant information. These queries can be used to find direct and 
indirect relationships, detect patterns, and generate insights from 
the interconnected data.

Uncertainty Management: Techniques like Bayesian networks (Kit-
son et al., 2023), fuzzy logic (Serrano-Guerrero et al., 2021), and cer-
tainty factors (Yu et al., 2023) are used to handle uncertainty in ES. 
Bayesian networks are probabilistic graphical models that represent 
variables and their conditional dependencies via directed acyclic 
graphs. They are used to compute the probability of different out-
comes given certain evidence, thus managing uncertainty effec-
tively. Fuzzy logic handles reasoning that is approximate rather 
than fixed and exact. In ES, it is used to deal with uncertainty by 
applying degrees of truth rather than the usual true or false (1 or 
0) Boolean logic. Certainty factors are a simpler approach, wherein 
each piece of information is assigned a confidence level (Sembiring 
et al., 2019). The inference engine adjusts these levels as the infer-
ence progresses, allowing for decisions to be made even when com-
plete certainty is not possible.
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3.2.1.3  Representative Applications

Medical Diagnosis Systems: A  prominent application of ES is in 
the field of medical diagnostics. One notable example is a generic 
knowledge-based system designed for diagnosing diseases based on 
symptoms (Saibene et al., 2021). This system uses backward chain-
ing to verify hypotheses about possible diagnoses and incorporates 
a user-friendly GUI to visualize decision-making processes. Such 
systems can significantly assist healthcare professionals by provid-
ing diagnostic support, especially in regions with limited access to 
expert medical practitioners​.

Civil Engineering Applications: ES has been employed in civil engi-
neering for tasks such as planning, analysis, design, and construction 
management. These systems integrate domain-specific knowledge 
to support engineers in decision-making processes, from designing 
structures to managing construction projects. The ability to simulate 
various scenarios and to predict outcomes based on expert knowl-
edge is particularly valuable in this field (Akram et al., 2014).

Overall, ES plays a crucial role in various domains by leveraging special-
ized knowledge to support decision-making processes. The combination of 
robust knowledge representation, effective reasoning techniques, and user-
friendly interfaces makes these systems invaluable tools in addressing com-
plex problems. Through case studies, we can see their practical applications 
and the significant impact they have in fields such as medicine, engineering, 
and service management.

3.3  Case Study: Financial ES for Data Preprocessing

Traditionally, data collection and preprocessing were conducted manually 
by finance domain experts for financial data analytics, which is a crucial task 
in obtaining the measures to be used and ensure the quality and reliability 
of financial data analysis results. This case study presents our previous work 
proposing an ES that features a rule-based knowledge base and an inference 
engine matching the rules and processing historical data downloaded from 
Refinitiv tick data provided by Datascope (Chen et al., 2023; Chen & Rabhi, 
2016). The rules define event patterns to be detected and the relevant actions 
to be taken if the condition is met. The ES handles these complex event pro-
cessing rules for financial studies, and, in this case study, we demonstrate 
six rules, each necessitating incremental modifications to the business logic 
rules, for one preprocessing task, i.e. calculating the price/earnings (P/E) 
ratios of different companies.
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The P/E ratio, which is the market value per share divided by earnings per 
share, is crucial for investors to assess a company’s potential for future earn-
ings growth. To calculate the P/E ratio, both price data (providing market 
value per share) and corporate action data (providing earnings per share) are 
required. The task involves determining the correct value of earnings per 
share from the earning data for each trading day (End Of Day event). The six 
rules involved in calculating the P/E ratio are shown in Table 3.1.

The ES architecture is shown in Figure 3.2. It comprises three main compo-
nents: a user interface that allows the user to define and execute rules, a rule 
component that manages the rules, and an inference engine that processes 
the rules in the rule base and executes reasoning. A prototype was developed 
using EventSwarm as the chosen inference engine, and the rules were man-
aged in a relational database. To ensure rapid and convenient development, 
event pattern definition constructs are provided as Ruby wrappers around 
the core Java library of EventSwarm. Event pattern types are specified in 
Ruby as directed acyclic graphs with nodes representing events and edges 

TABLE 3.1

Sample of Six Rules for Financial Data Preprocessing (P/E Ratio Calculation)

Rule ID Condition Action

1 An event with type “Earning” (E) 
happens before an event with type 
“End Of Day” (EOD).

Calculate the earnings of the EOD event 
using the following formula:

EOD.earnings = E.epsAmount * 
10EPS_scaling_factor

2 Two events E6(1) and E6(2) with type 
“Earning” (E6(2) before E6(1)) happen 
before an event with type “End Of 
Day” (EOD)

Calculate the earnings of the EOD event 
using the following formula:

EOD.earnings = (E6(1).epsAmount + E6(2).
epsAmount) * 10EPS_scaling_factor

3 Three events with type “Earning” 
(E3(2) before E3(1) before E6) happen 
before an event with type “End Of 
Day” (EOD)

Calculate the earnings of the EOD event 
using the following formula:

EOD.earnings = (E6.epsAmount + E3(1).
epsAmount + E3(2).epsAmount) * 
10EPS_scaling_factor

4 One 3-month earning and one 
9-month earning before End Of 
Day

Calculate the earnings of the EOD event 
using the following formula:

EOD.earnings = E9.epsAmount + E3.
epsAmount

5 Four 3-month earnings before End 
Of Day

Calculate the earnings of the EOD event 
using the following formula:

EOD.earnings = (E3(1).epsAmount + E3(2).
epsAmount + E3(3).epsAmount + E3(4).
epsAmount) * 10EPS_scaling_factor

6 One 9-month earning and one 
3-month earning before End Of Day

Calculate the earnings of the EOD event 
using the following formula:

EOD.earnings = (E3.epsAmount + E9.
epsAmount) * 10EPS_scaling_factor
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representing relationships and functions such as sliding windows, filters, 
and abstractions. Detected event pattern occurrences are then sent back to 
the rule component for subsequent calculations, actions, or alerts.

The event patterns defined in the rules were described in natural lan-
guage by a financial expert and communicated to the system developer, 
i.e., the knowledge engineer, who then coded the event pattern types in the 
CEP component. The finance expert used the rule component to define the 
six rules and selected the data to be processed. The inference engine then 
matches the rules to be executed, via an HTTP GET request to a configurable 
URL. Detected event pattern occurrences were returned in JSON format and 
sent back to the rule component for further processing, allowing the finance 
expert to download and review the results. The experimental results dem-
onstrated the application’s advantages, including a user-friendly API that 
facilitates easy integration of EventSwarm into various applications; efficient 
inference with an average processing rate of over 10 000,  events per second 

FIGURE 3.2
Rule-based expert system for financial data preprocessing.
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on the financial market data, comparable to the performance of a locally 
deployed specialized program; and well-structured output in JSON format, 
which is convenient for downstream analysis.

3.4  Data-Driven Machine Learning

3.4.1  Concept of Machine Learning

Data-driven machine learning (ML) involves creating models and algorithms 
that learn patterns and make decisions based on large volumes of data. Unlike 
traditional programming, where explicit instructions are provided, machine 
learning models improve their performance through exposure to more data 
over time. This approach is particularly effective in situations where deriv-
ing rules manually would be impractical due to the complexity and volume 
of data involved.

3.4.1.1  Definition

The core concept of data-driven machine learning is to utilize algorithms 
that can process data, recognize patterns, and make predictions or deci-
sions without human intervention. This involves various types of learning, 
including supervised learning, unsupervised learning, and reinforcement 
learning. Supervised learning uses labelled data to train models, unsuper-
vised learning finds hidden patterns in unlabelled data, and reinforcement 
learning involves learning optimal actions through trial and error. Ulti-
mately, ML aims to train a model that can be considered as a formula, Y = f 
(X) that takes data X as input and generates the output Y. Note that the 
formula can be as simple as a linear one containing just a few parameters 
or as complicated as an artificial-neural-network-based large model like 
GPT containing billions of parameters that one can hardly write down on 
paper. As shown in Figure 3.3, the representative products of OpenAI (Rou-
meliotis & Tselikas, 2023) are essentially such large models, GPT (X = text, 
Y = text), Dall E (X = text, Y = image), Sora (X = text, Y = video), and these 
can be combined into multimodal models (Wang et  al., 2023). Another 
example is Yolo (Jiang et al., 2022), which is a model for image classification 
and object detection where X could be an image and Y is the corresponding 
classification.

3.4.1.2  Taxonomy of Machine Learning

Supervised Learning: This technique involves training a model 
on a labelled dataset, which means that each training example is 
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paired with an output label. Algorithms such as decision trees, 
support vector machines (SVM), and neural networks are com-
monly used. These models are trained to predict outcomes based 
on input data by minimizing the error between the predicted and 
actual outputs.

Unsupervised Learning: This approach is used when the data is not 
labelled. The goal is to uncover hidden patterns or intrinsic struc-
tures in the input data. Clustering algorithms like k-means (Ahmed 
et al., 2020), hierarchical clustering (Murtagh & Contreras, 2017), and 
latent dirichlet allocation (LDA) (Al Qudah et al., 2022; Chen et al., 
2023), as well as association algorithms like Apriori (Wang & Gao, 
2021), are typical examples.

Reinforcement Learning: This involves training agents to make a 
sequence of decisions by rewarding them for correct actions and 
penalizing them for incorrect ones. Techniques such as Q-learning 
(Wang & Gao, 2021) and deep reinforcement learning (Ladosz et al., 
2022) are used to develop models that can handle complex decision-
making processes.

Deep Learning: A subset of machine learning, deep learning uses neu-
ral networks with many layers (deep networks) to model complex 
patterns in large datasets. Techniques like convolutional neural net-
works (CNNs) for image processing and recurrent neural networks 
(RNNs) for time-series data are prevalent in this field (Chen, Hussain, 
et al., 2024).

FIGURE 3.3
Concept of machine learning and representative example models.
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The most important fields of ML applications include computer vision (such 
as image classification and object detection) and natural language processing 
(such as topic modeling, sentiment analysis (Chen et al., 2022), named-entity 
recognition (Chen, Qiu, et al., 2024), etc.).

3.4.1.3  Representative Applications

ML has been applied in almost all fields. Here are some representative 
examples.

Healthcare Diagnostics: Data-driven machine learning models have 
revolutionized medical diagnostics. Many studies have attempted 
to develop machine learning and deep learning models to diagnose 
diseases from various datasets including medical records of symp-
toms, histories, test results, and relevant images, enhancing the accu-
racy and speed of diagnosis compared to traditional methods (Azad 
et al., 2021)​.

Cybersecurity: ML is crucial in identifying and mitigating cybersecu-
rity threats. Techniques such as anomaly detection and classification 
algorithms are used to analyze network traffic and detect potential 
security breaches. A recent review highlighted the use of deep learn-
ing in cybersecurity (Mahdavifar & Ghorbani, 2019).

Environmental Engineering: ML models have been applied to envi-
ronmental engineering problems, such as predicting the nutrient 
removal efficiency in sewage treatment plants using LSTM (Yaqub 
et  al., 2020). Such models help optimize the treatment processes, 
ensuring compliance with environmental regulations and improv-
ing operational efficiency​​.

In summary, ML leverages vast amounts of data to train models that can 
make accurate predictions and decisions across various domains. The tech-
niques involved range from supervised and unsupervised learning to deep 
learning and reinforcement learning, each suited to different types of prob-
lems and data structures.

3.4.2  Case Study: Depression Detection in Speech Using Deep Learning

The case study presents our recent work using ML to address the challenge 
of detecting depression in speech within low-resource environments by 
employing transfer learning with the wav2vec 2.0 model (Zhang et al., 2024). 
The primary goal is to develop an effective ML model that could leverage 
limited annotated data to accurately identify depression-related features 
in speech. Two main datasets were involved in this study: (1) the DAIC-
WOZ dataset, comprising 189 clinical interviews designed for diagnosing 
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psychological distress conditions such as anxiety, depression, and PTSD. The 
dataset includes audio recordings of interviews, which are divided into train-
ing, development, and test subsets. (The average length of each interview is 
approximately 15 minutes.) (2) The second is the CMDC dataset, a Chinese 
multimodal depression corpus consisting of 78 samples, including 26 cases 
of severe depression and 52 healthy individuals. The dataset includes semi-
structured interviews with fixed questions and is smaller in scale compared 
to the DAIC-WOZ dataset.

The study proposed a novel model framework that integrates several 
advanced techniques:

Audio Preprocessing: The audio data was segmented into fixed-dura-
tion intervals of 7 seconds, eliminating non-subject segments such as 
interviewer speech, silence, and background noise.

Feature Extraction: The wav2vec 2.0 model was fine-tuned to extract 
robust frame-level features from the segmented speech data. This 
model employs self-supervised learning techniques to generate 
meaningful speech representations.

Segment-Level Feature Encoding: A 1D-CNN combined with atten-
tion pooling was used to encode frame-level features into segment-
level representations, capturing temporal relationships within the 
audio frames.

Depression Classification: The model used a combination of long 
short-term memory (LSTM) networks and self-attention mechanisms 
to predict depression based on the learned segment-level features. 
The LSTM network captured temporal dependencies, while the self-
attention mechanism emphasized important segments related to 
depression.

The proposed method demonstrated significant improvements in depres-
sion detection performance compared to existing approaches. For the DAIC-
WOZ dataset, the model achieved an F1 score of 79.00%, outperforming other 

FIGURE 3.4
Deep learning model for depression detection in speech (Zhang et al., 2024).
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methods that relied on features like spectrograms and MFCC. The use of 
wav2vec 2.0 features and the incorporation of self-attention mechanisms 
were key factors in this improved performance. For the CMDC dataset: The 
model achieved an F1 score of 90.53%, highlighting its effectiveness even in 
datasets with limited samples. This performance was superior to previous 
methods, demonstrating the model’s ability to generalize well across differ-
ent languages and recording conditions.

3.5  Intelligent Optimization

3.5.1  Concept of Intelligent Optimization

Intelligent optimization involves the use of advanced algorithms to find the 
best solutions to complex problems, often under constraints. These tech-
niques are inspired by natural and artificial processes and are designed to 
efficiently navigate large search spaces to identify optimal or near-optimal 
solutions. Intelligent optimization encompasses a range of methodologies 
including evolutionary algorithms, swarm intelligence, and other heuristic-
based approaches. The goal is to improve decision-making processes in 
various applications by leveraging computational power and innovative 
algorithmic strategies.

3.5.1.1  Intelligent Optimization Algorithms

Some prevalent algorithms are illustrated as follows. Note that this is a non-
exhaustive list as many algorithms are available.

First, the A* Algorithm is widely used in pathfinding and graph traversal. 
It employs a best-first search approach and uses heuristics to efficiently find 
the shortest path to the goal. While it is better known as a graph traversal and 
pathfinding algorithm, it is extensively used in many subfields of computer 
science, thanks to its different properties such as completeness and optimal-
ity (Russell & Norvig, 2016).

Second, evolutionary algorithms are inspired by the process of natural 
selection. They involve mechanisms such as mutation, crossover, and selec-
tion to evolve a population of solutions toward better fitness. Genetic algo-
rithms (GA) are a prime example, where potential solutions are encoded as 
chromosomes and iteratively improved based on a fitness function.

Third, swarm intelligence comprises a group of algorithms inspired by 
the collective behavior of decentralized, self-organized systems. Examples 
include particle swarm optimization (PSO) (Shami et al., 2022) and ant col-
ony optimization (ACO) (Skinderowicz, 2022). PSO, for instance, models the 
social behavior of birds flocking or fish schooling to find optimal regions in 
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a search space by adjusting the trajectories of individual particles based on 
their own and their neighbors’ experiences.

Last but not least, simulated annealing is a probabilistic technique that 
searches for an optimal solution by mimicking the annealing process of met-
als. It allows for occasional uphill moves to escape local optima, gradually 
reducing the frequency of these moves as the “temperature” decreases.

3.5.1.2  Representative Applications

Fluid Machinery Optimization: An intelligent CFD-based optimi-
zation system was developed to enhance the performance of auto-
motive electronic pumps (Si et  al., 2020). This system integrates 
computational fluid dynamics (CFD) with multi-objective optimiza-
tion methods, including the use of a multi-island genetic algorithm 
(MIGA). The optimization process significantly improved the pump’s 
efficiency by redesigning the impeller geometries based on detailed 
fluid dynamic analyses and experimental validations​.

Industrial Process Optimization: Data-driven intelligent optimization 
algorithms have been increasingly applied in industrial processes 
to enhance efficiency, reliability, and adaptability. Techniques such 
as hybrid modeling, which combines fuzzy logic with the genetic 
algorithm, have been used to optimize parameters in complex sys-
tems, leading to improved performance and sustainability in vari-
ous industrial applications​ (Mariajayaprakash et al., 2015)​.

Traffic Congestion Management: An intelligent transportation system 
application has adopted ACO to optimize decreasing congestion in 
smart cities (Khoza et al., 2020).

Advanced Sequences Comparison: Sequence comparison is a valuable 
task for identifying similarities and differences between various 
sequences, such as DNA, proteins, or text strings, enabling research-
ers to infer evolutionary relationships, detect mutations, and under-
stand functional similarities. This technique is essential in fields like 
bioinformatics, for comparing genetic material, and in computer sci-
ence, for applications such as text analysis, data deduplication, and 
plagiarism detection. Lately, advanced algorithms have been pre-
sented exploiting intelligent optimization algorithms, such as hill 
climbing, evolution strategies, and more (Cauteruccio et al., 2020).

3.5.2  Case Study

In this case study, we demonstrate a prototype that we have developed and 
that leverages the genetic algorithm to optimize the formation of exam ques-
tions. The system can generate a set of exam questions that meet specific 
criteria. These criteria include coverage of various topics, varying difficulty 
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levels, and ensuring a balanced assessment. The process includes encoding 
potential solutions, evaluating their fitness, and applying genetic operations 
to evolve better solutions over successive generations.

First, by design, each chromosome represents a potential set of exam ques-
tions. A chromosome is encoded as a list of question IDs or a binary vec-
tor where each bit indicates whether a particular question is included in the 
exam. An initial population of chromosomes is generated randomly at the 
start of the execution.

The fitness function evaluates how well a set of questions meets the desired 
criteria, including the following key points:

Topic Coverage: Ensure all key topics are covered.
Difficulty Levels: Maintain a balance of easy, medium, and hard 

questions.
Question Quality: Include questions that are well-formulated and 

relevant.
Total Marks: Ensure the total marks of the questions match the exam’s 

requirements.

Fitness = w1⋅Topic Coverage + w2⋅Difficulty Balance +  
w3⋅Question Quality + w4⋅Total Marks

where w1, w2, w3, and w4 are weights assigned to each criterion based 
on its importance.

The core functions of the genetic algorithm include selection, crossover, 
and mutation. For selection, roulette wheel selection has been adopted, with 
the chromosome that has the highest fitness score kept in each iteration with-
out selection. The crossover operators are applied to pairs of selected parents 
to produce offspring. We have adopted single-point crossover to combine 
parent chromosomes. The mutation operator has been adopted to introduce 
variability and avoid premature convergence by flipping a bit in the binary 
representation or replacing a question ID with another in the list represen-
tation. The algorithm runs until a stopping criterion is met, including a 
maximum number of generations or a satisfactory fitness level. The best chro-
mosome (set of exam questions) is chosen as the final solution. Now we will 
demonstrate an example scenario. Suppose we have a pool of 100  questions 
categorized by topic and difficulty. The goal is to create an exam with ten 
questions covering five topics, with a balanced difficulty distribution, ensur-
ing the total marks are 100 . Each chromosome is a vector of ten-question IDs. 
The fitness function evaluates topic coverage, difficulty balance, question 
quality, and total marks. The initial population is generated randomly with 
50 sets of ten questions. The program runs for 100  generations of selection, 
crossover, and mutation or until a high fitness score is achieved.
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3.6  When These Routes Meet

The convergence of ES, ML, and IO creates powerful hybrid approaches that 
leverage the strengths of each method to enhance AI applications. In short, ES 
is advantageous when there is sufficient established knowledge and there is 
no need to train a new model. ML’s benefits include finding out new “knowl-
edge” from a large amount of data, which is previously unknown. IO is capa-
ble of searching, optimizing, and automatically finding out the best solution 
for a given problem. This integration can lead to more robust, efficient, and 
accurate AI systems capable of tackling complex real-world problems.

First, combining ES with ML allows the incorporation of expert knowledge 
into data-driven models (Kierner et al., 2023). For instance, a knowledge-based 
system can provide initial rules and constraints, which are then fine-tuned 
using machine learning algorithms to improve accuracy and adaptability. 
This approach is particularly useful in domains like medical diagnosis and 
predictive maintenance, where domain expertise and large datasets are both 
crucial. Also, it is often one of the most reliable ways to infer knowledge in 
an explainable way; that is, it is possible to explain, to a certain extent, the 
nature of the results given by the model. As another example, in recent years, 
researchers have focused on studying the evolution of diseases by exploiting 
the inferred knowledge of an ES along with ML. For instance, in (Calimeri 
et al., 2021), the authors coupled logic programming and machine learning 
to define an ES capable of analyzing the evolution of neurological disorders.

Second, IO techniques, such as genetic algorithms and PSO, can be used to 
optimize the parameters and structures of machine learning models (Guo et al., 
2020). This enhances model performance by finding optimal configurations that 
might not be achievable through traditional training methods alone. For exam-
ple, optimizing the architecture and hyperparameters of neural networks using 
evolutionary algorithms can lead to more efficient and effective models.

Third, integrating theoretical models with machine learning helps in cre-
ating models that are not only data-driven but also consistent with known 
physical laws and expert knowledge. This synergy ensures that the predic-
tions are both accurate and interpretable. An example is using physical laws 
as constraints in a machine learning model for better predictive performance 
in engineering applications.

3.7  Conclusion

In this chapter, we have explored three major technical routes of artificial 
intelligence (AI): knowledge-based expert systems, data-driven machine 
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learning, and intelligent optimization. Each of these pathways offers unique 
methodologies and applications, contributing significantly to the advance-
ment and versatility of AI.

Knowledge-based expert systems (ESs) leverage structured knowledge 
bases and inference engines to emulate human decision-making. These sys-
tems are particularly effective in domains requiring specialized knowledge 
and expertise, such as medical diagnosis, financial analysis, and legal rea-
soning. By formalizing and codifying expert knowledge, ES provides reli-
able and consistent solutions, supporting or even replacing human experts 
in specific tasks.

Data-driven machine learning (ML), powered by algorithms that learn 
from data, has become the cornerstone of modern AI applications. ML 
techniques, including supervised, unsupervised, and reinforcement 
learning, enable systems to identify patterns, make predictions, and 
improve over time. This approach has led to groundbreaking advance-
ments in fields like image and speech recognition, natural language 
processing, and predictive analytics. The ability to derive insights from 
vast amounts of data has transformed industries, driving innovation and 
efficiency.

Intelligent optimization (IO) encompasses a range of techniques designed 
to find optimal solutions to complex problems. Methods such as genetic 
algorithms, particle swarm optimization, and simulated annealing navigate 
large search spaces to identify the best possible outcomes under given con-
straints. IO is crucial in applications where traditional methods fall short, 
such as logistics, resource allocation, and engineering design. By optimizing 
processes and solutions, IO contributes to significant cost savings and perfor-
mance improvements.

The integration of these AI routes can lead to more robust and efficient 
systems. Hybrid approaches that combine ES with ML allow for the incor-
poration of expert knowledge into data-driven models, enhancing accuracy 
and adaptability. Similarly, IO techniques can optimize the parameters and 
structures of ML models, leading to more effective solutions. This synergy 
between different AI methodologies opens new avenues for innovation and 
application, addressing complex real-world problems with greater precision 
and effectiveness.

As we look to the future, the continuous evolution and integration of these 
AI techniques promise to further enhance the capabilities and impact of 
artificial intelligence across various domains. By leveraging the strengths of 
knowledge-based systems, machine learning, and intelligent optimization, 
we can develop AI solutions that are not only more intelligent and adaptable 
but also more aligned with human needs and societal goals. This conver-
gence of AI methodologies marks a significant step toward creating more 
comprehensive and powerful AI systems that can address the challenges of 
tomorrow.
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Multi-Criteria Decision-Making 
for Operating ATM Systems

Reetika Singh, Shivani Kalyan, and LN Das

4.1  Introduction

Multiple-criteria decision-making (MCDM) deals with cases of conflicting 
goals among decision-makers. Before explaining this in more detail, it is 
important to understand what we mean by the terms used in MCDM. There-
fore, the criteria in decision-making define the degree of the judgment of the 
course of action as more desirable than the other. Considering the different 
options that conflict on a large scale becomes a problem of MCDM.

MCDM is generally characterized by the presence of complex, contradic-
tory information that reflects different perspectives and changes over time. 
The MCDM’s approach aims to assist decision-makers by organizing infor-
mation in a certain way, considering possible conditions, and reducing the 
likelihood of remorse after the decision. It leads to a feeling of satisfaction 
and confidence about deciding which way is best. The best can be obtained 
by analyzing the different range of terms and conditional weights and choos-
ing the most appropriate ones. By systematically weighing and relating trade 
between terms, the MCDM results in clear and consistent decisions.

In this sense, multi-criteria decision analysis (MCDA) describes a set of 
legal mechanisms that explicitly consider multiple conditions in guiding 
individuals or groups to make critical decisions. It has also seen an amaz-
ing amount of use in the last few decades. Its role in the various areas of 
application has increased significantly, especially as new methods and older 
methods develop.

There are some myths about the MCDA, one of which is that it will provide 
a “correct” answer, provide an “objective” analysis that will relieve decision-
makers of the burden of making difficult decisions, and ease the pain of 
decision-making.

Despite the model used, we must understand that there is no such thing 
as a “correct answer.” Because the concept of optimality does not relate to 
a multiple-criteria framework, MCDA cannot be excused from within the 
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development approach commonly adopted by ordinary performance research 
or management science. By using the MCDA, compliance can be clarified and 
regulated by mixing objective measurement and value judgment. As such, 
this is not an invalid submission; the MCDA merely attempts to be more 
transparent in its subjective judgments and to be explicit in its needs. While 
this is not always an easy process—for instance, trading is difficult—it can-
not be avoided entirely. Through the MCDA, decision-makers will be able to 
identify these situations and assist in thinking of creative ways to overcome 
the need for complex trade, perhaps by promoting the development of new 
options. It can also maintain a level of equality by allowing inaccurate judg-
ments, but it cannot eliminate the whole need for harsh judgments.

Overall, the MCDM aims to reduce the incidence and impact of bias from 
decision-makers relying on their “gut feeling,” as well as the team’s decision-
making failure, which inevitably hampers decision-making. We believe the 
purpose of MCDA should be to evaluate the main benefits in order to help 
decision-makers learn about the problems they are facing, including priori-
ties, organizations, values, and goals, and to evaluate these in context. The 
problem is in guiding them in identifying the preferred course of action.

Automated teller machines (ATMs) are essential for consumers to access their 
bank accounts, yet the cash withdrawal process involves a series of intricate 
validation steps designed to ensure both security and operational efficiency.

The MCDM framework relates to ATM systems because it provides a frame-
work for prioritizing multiple conflicting factors that influence decision-mak-
ing. We will discuss how they are interconnected in the following points.

Criteria Assessment: At each stage of ATM operation, multiple crite-
ria are evaluated, such as the validity of the card, the accuracy of 
the PIN, the account balance, and the withdrawal limit. The MCDM 
automates the assessment and prioritization of these criteria to 
ensure that transactions are as secure and efficient as possible.

Decision-Making: At every stage of an ATM’s operation, conflicts 
between competing criteria must be balanced, such as whether to 
dispense cash or block a card. Through MCDM techniques, ATMs 
are set up within defined parameters of security and service by ana-
lyzing potential trade-offs.

User Preferences: ATM operations are customized according to user 
preferences and behaviors using MCDM. As an example, it can 
enhance user experience by speeding up transactions, making them 
easier to use and providing security.

Performance Evaluation: The MCDM assists in evaluating ATM per-
formance by analyzing various operational metrics, such as transac-
tion success rates, downtime, and user satisfaction. It is possible to 
improve ATM functionality and design based on the results of this 
analysis.



57Multi-Criteria Decision-Making for Operating ATM Systems

Resource Management: As MCDM manages cash availability and 
maintenance schedules, resource allocation can be optimized. In 
addition to determining the best locations for servicing ATMs based 
on usage patterns and operational criteria, it also helps determine 
the best schedule for servicing ATMs.

This chapter presents a detailed examination of the multiple selection criteria 
evaluated by ATMs during cash withdrawals, outlining the various stages 
involved in the transaction process. When a user initiates a transaction, the 
ATM evaluates various criteria at each stage to ensure security and func-
tionality. Initially, it checks the card’s authenticity, including the hologram 
and magnetic stripe. If valid, the system verifies the PIN, followed by criteria 
related to the withdrawal amount, such as account balance and cash avail-
ability. Each of these checks is crucial for a successful transaction and helps 
prevent errors and fraud. We developed an abstract transition model of the 
operating ATM system using multi-criteria decision-making (MCDM), which 
we define as a non-deterministic Turing machine referred to as DATAMST. 
We structure it as a seven-tuple (S, C, Σ, b, F, δ, γ), where S represents the set of 
valid states in the ATM system compassing 14 distinct operational states. C 
denotes the multiple criteria applicable at each state, while Σ includes binary 
events (0 or 1). The symbol b represents a blank state. The set F identifies the 
final state. The transition function, δ, defines how the ATM moves between 
states. In our model, we compute all the possible decisions that the ATM 
processor can make at each state with the help of the transition state table.

This paper is organized as follows: Section  2 provides a detailed litera-
ture review. Section  3 focuses on classification techniques for addressing 
the MCDM (multi-criteria decision-making) problem, specifically exploring 
multi-objective and multi-attribute decision-making approaches. In Sec-
tion  4, we examine the ATM operating system, covering the fundamental 
components of the ATM, its functionality, and key features. Section 5 delves 
into the theory of computation, with an emphasis on languages, grammars, 
finite automata, and a thorough exploration of deterministic and non-deter-
ministic finite automata, culminating in a discussion of the Turing machine. 
Section 6 presents our proposed methodology, outlining the various selec-
tion criteria at each operational stage of the ATM. Section 7 highlights the 
challenges encountered in ATM systems following the discussion of the pro-
posed model. Finally, Section 8 offers the conclusion of our work.

4.2  Literature Survey

The first official example of the MCDM approach is seen in Benjamin Frank-
lin’s “moral or intellectual algebra” from 1772, in which he discussed how 
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to determine important issues on a simple paper [1]. Write down the posi-
tive arguments for the decision on one side and write down the arguments 
against it on another side. Next, eliminate all issues on each side of the paper 
that are related and equally significant. In the absence of all disputes on one 
side, the side with the remaining arguments must be supported. Franklin 
used this method when making critical decisions.

Bernard et al. formed ELECTRE, a family of Europe’s multi-criteria deci-
sion-making techniques [2]. They aim to create a targeted network of prefer-
ences. By putting these methods into practice, you create superior decisions 
or decisions that are the best. Then the EURO Working Group called Mul-
tiple Criteria Decision Aiding was founded by Roy [3]. Ralph et al. [4] pub-
lished their final book, Decisions with Multiple Objectives: Preferences and Value 
Trade-Offs. This book was instrumental in establishing the refined methods 
for choosing between more than just two alternatives, and it involves many 
decision-makers who gave birth to a multi-qualification theory as a disci-
pline that has become a common indicator and text for many generations of 
decision-making research and the MCDM.

Surprised by the multicriteria crisis, Stanley Zionts met Jyrki Wallenius 
at the European Institute for Advanced Studies in Management in Brussels. 
Collectively, they have worked on methods and systems to support prob-
lem-solving decisions for many interactive multiple-objective mathematical 
programming systems. In 1979, the Zionists helped develop the MCDM sum-
mary with his management article: “MCDM—If Not Roman numerals, Then 
What?” [5]. Daniel et al. made significant contributions to the ethics of behav-
ioral decision theory, and Kahneman went on to win the Nobel Prize in Eco-
nomics in 2002 for his contributions to this field [5]. It is widely believed that 
if Tversky had lived, he would have shared the Nobel Prize with Kahneman.

MCDM is widely applicable across various fields, including economics, 
engineering, healthcare, and environmental management, where decision-
makers must assess numerous alternatives based on diverse criteria. Over 
the years, MCDM has evolved, with new methods and advancements emerg-
ing to improve decision-making accuracy, robustness, and computational 
efficiency. This review outlines recent developments in MCDM techniques, 
focusing on hybrid models, applications of machine learning (ML) and artifi-
cial intelligence (AI), fuzzy logic, and sustainability assessments. Kahraman 
et al. [6] provided a comprehensive literature review on the applications of 
fuzzy logic in MCDM, highlighting its flexibility in handling uncertainty. 
Petrovic et al. developed a hybridized IT2FS-DEMATEL-AHP-TOPSIS multi-
criteria decision-making approach to study the selection and evaluation of 
criteria for the determination of air traffic control radar position [7]. Addi-
tionally, Yazdani et al. incorporated machine learning techniques into hybrid 
MCDM models to enhance their predictive capabilities [8].

The use of MCDM has also expanded into new domains. Mardani et al. 
examined the integration of sustainability criteria into MCDM frameworks, 
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reflecting the growing importance of environmental and social factors [9]. 
Stojčić et al. explored the application of MCDM methods for risk assessment, 
demonstrating the versatility of these techniques in decision-making under 
uncertainty [10]. Building upon these developments, Alamri et al. introduced 
a hybrid entropy-based MCDM framework to analyze the economic evalua-
tion of hydrogen generation techniques [11].

In the context of automated teller machine (ATM) operations, multiple inter-
related factors, such as security, efficiency, cost, and user satisfaction, must be 
managed simultaneously. MCDM techniques have been increasingly applied 
to optimize decision-making processes within ATM systems. Recent appli-
cations include Tseng et al. utilizing a hybrid DEMATEL-ANP method to 
assess security risks and the interdependencies between security measures 
and operational factors in ATM networks [12]. Luthra et al. employed hybrid 
MCDM models, such as AHP-TOPSIS, to optimize cash replenishment and 
reduce logistics costs [13]. Yildiz et al. propose an integrated methodology 
combining interval-valued intuitionistic fuzzy analytic hierarchy process 
(AHP) and technique for order of preference by similarity to ideal solution 
(TOPSIS) to determine the safest routes for cash-in-transit operations in 
Istanbul, addressing uncertainties in the decision-making process [14]. Tunç 
et al. propose a hybrid fuzzy AHP and arithmetic optimization algorithm to 
optimize cash management in ATMs, enhancing operational efficiency and 
cost-effectiveness [15].

4.3  Classification for Solving MCDM Problems

Multi-criteria decision-making is classified into the following categories.

4.3.1  Multi-Objective Decision-Making (MODM)

This stems from the idea that multi-objective decision-making is concerned 
with problems in which we have a continuous decision space, such as math-
ematical programming problems with multiple objective functions. The first 
reference to this problem, also known as the vector-maximum problem, was 
given by Kuhn and Tucker in 1951. [16]

4.3.2  Multi-Attribute Decision-Making (MADM)

Multi-attribute decision-making concentrates on those decision problems in 
which we have discrete decision spaces. In these problems, the set of alterna-
tives has been predetermined. Even though its methods are wide-ranging, 
many of them share certain characteristics [17].
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FIGURE 4.1
Approach for solving the MCDM problem.
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Table 4.1 describes the key differences between these categories.

TABLE 4.1

Differences Between MODM and MADM

MODM MADM

1. When there are several objectives to make a 
decision. These objectives are the 
constraints.

When several alternatives are carried out 
based on various attributes of the object 
to make a decision.

2. The objectives considered are functions:
𝑓1, 𝑓2, 𝑓3, . . . 

We consider alternatives:
𝐴1, 𝐴2, 𝐴3, . . . 𝐴𝑛

3. The objectives or goals are explicitly 
defined as:

Example: While buying some products, we
need to maximize the quality as well as the 
savings.

The objectives are implicitly defined, i.e., 
we don’t directly say we need to 
maximize the profit.

Example: If we are selecting the candi-
dates out of 50 applicants for our 
company.

4. Attributes are defined implicitly.
Example: Maximize 𝑓(𝑥)
Subject to
𝑔(𝑥) ≤ 0

Attributes are defined explicitly
Example: To evaluate an applicant for a 
job, we need to evaluate his/her

• Resume.
• Experience.
• Knowledge.

5. Alternatives are infinite in number. That is, 
we can have a very large number of 
feasible solutions.

Alternatives are finite in number.
Example: While selecting a candidate we 
are taking not millions of alternatives but 
a small (finite) number of alternatives.

6. Alternatives are implicit. Alternatives are explicit.
7. The modeling paradigm is 

process-oriented.
The modeling paradigm is 
outcome-oriented.

4.4  ATM Operating System

The automated teller machine, also known as an ATM, is money transmis-
sion equipment that is one of the best developments in the banking sector. 
Using an ATM, customers can perform several quick self-help functions, 
including withdrawals, deposits, and transfers.

There were some groups around the world in the 1960s, working indepen-
dently to devise a way to withdraw money from the bank by committing 
no crime. In 1959, an American named Luther George Simjian founded the 
Bankograph, which allowed customers to place cash and checks on it [18]. 
The first ATM was established in June 1967 on the road in Enfield, London, at 
the Barclays bank branch [18]. The British founder John Shepherd-Barron is 
said to have been founded. Customers have been able to withdraw up to the 
GBP10 limit within a set period.
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Almost all countries now use ATMs. Over the past 50 years, ATMs have 
become ubiquitous. ATMs have eliminated the need to visit a bank branch 
for simple banking transactions, such as depositing cash or withdrawing 
cash. Gone are the days when customers primarily used bank branches dur-
ing business hours.

ATMs fall into two categories:

	 1.	Basic ATMs allow customers to withdraw cash and receive account 
balance information.

	 2.	Another one is the more sophisticated deposit processing machine, 
which provides credit card payment services and reports account 
details.

4.4.1  Basic Parts of ATM

Card Reader: Every ATM has a card slot. An ATM card’s magnetic stripe 
captures account information via the device’s card reader when the card is 
swiped or pressed against the reader [19].

The host processor uses this information to deliver the transaction to the 
cardholder’s bank.

Key Pad: A keypad is given in all ATMs where you can insert numbers to 
enter the PIN or the amount to be withdrawn. The keypad also allows the 
cardholder to tell the bank what type of work will be required such as with-
drawals, balance checks, etc. These keypads can either be physical buttons at 
an ATM or virtual keypad on the touch screen.

Speaker: There is a speaker in most of the ATMs where the auditory 
instructions for accessing the machine and doing transactions are given.

Display Screen: In addition to being a guide to the operator at every 
stage of the transaction, the display screen shows information to the card-
holder. Leased-line ATMs usually use a monochrome or CRT color (cathode 
ray tube) display while dial-up ATMs usually use a monochrome or color 
LCD [20].

Receipt Printer: It records all the details of the transaction, like the type of 
transaction, amounts withdrawn, date and time, and the remaining balance 
of your account in the receipt. On request, the printer prints out a worksheet 
receipt for the cardholder [21].

Cash Dispenser: It is called the heart of an ATM. From this, you can col-
lect cash after withdrawing a certain amount. The entire lower part of ATMs 
is a cash-containing filter. The cash dispenser calculates each bill and pro-
vides the required amount. Money is stored securely in the automated teller 
machine by bank officials.

All of these actions are performed by sensors of high accuracy. The ATM 
maintains a complete record of all transactions with the aid of the RTC.
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4.4.2  How Does the ATM Work?

First Step: You need to swipe your ATM card. A card reader is installed 
inside the machine. The card reader reads the magnetic stripe of 
the card and stores the amount recorded on it (which shouldn’t be 
scratched) [22].

Second Step: A  message is displayed on the screen i.e., “ENTER 
PIN.” First, the bank assigns each account holder a PIN, which is 
then changed by that account holder. As soon as the user enters 
the PIN, the machine encodes the PIN, and it is sent to the host 
processor, which then connects it to the bank terminal. To verify 
the accuracy of the PIN, the processor compares it to the recorded 
information.

Third Step: ATM sends the request i.e., “Request Amount.” Input from 
the ATM is sent to the host processor, which then forwards it to the 
networks for approval, such as Visa, Master Card, etc.

Fourth Step: As soon as the network requests the withdrawal, the bank 
checks to see whether that amount is available on the customer’s 
account.

Fifth Step: By saying YES, the bank makes an electronic transfer to the 
account of the host processor. The host will forward the authoriza-
tion code to the bank.

Sixth Step: Bills in the cash cartridges under or at the back of the com-
puter screen are calculated by the electronic eye and pushed out of 
the cash slot.

4.4.3  Features of ATM

	 1.	Versatility of ATM: ATM is not bound to only dispense cash, but 
also you can get certain facilities such as:
•	 Depositing the cash,
•	 Transferring funds between connected bank accounts,
•	 Paying bills,
•	 Finding the account balance,
•	 Printing a list of recent activities,
•	 Generating mini-statements.

	 2.	User-Friendly: It is designed in such a way that anyone can use it. 
Even illiterate individuals and especially abled people. With the 
introduction of biometric identification scanners and speakers, it has 
become easier for users.
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	 3.	Less Language Barrier: In a country like India where many lan-
guages are spoken, ATMs need to be multilingual to operate prop-
erly. You can use the ATM of your comfort language. You can also 
perform a range of features in your foreign language as well.

4.5  Theory of Computation

In the course of our research, we will explore the working of ATMs in the 
domain of theory of computation, which is defined in three fundamental 
ideas: languages, grammars, and automata. First, we discuss the definition of 
these parameters in formal languages and then illustrate the process of the 
Turing machine.

4.5.1  Language

According to the definition provided in the dictionary, language involves the 
use of symbols and ambiguous rules to convey ideas, facts, or concepts. This 
definition allows us to grasp the concept of language intuitively; however, it 
isn’t enough to define the meaning of the language used in formal languages. 
Language in a formal language is a subdivision of set Σ that’s defined for 
a finite and non-empty set of symbols known as the alphabet. Here set is 
denoted by this Σ [23]. From each symbol, we form strings, which are a finite 
sequence of symbols from the alphabet.

4.5.2  Grammar

Since we know that our daily language is vague and inaccurate, informal def-
initions in English are often inadequate. So we learn a common and powerful 
concept, namely grammar. In the English language, well-formed sentences 
are indicated by grammar. The same idea is expressed in formal languages.

In natural languages, Grammar indicates a finite set of syntactical rules 
for establishing meaningful conversations. Chomsky provided the math-
ematical model of grammar in 1956 who is very good at writing computer 
languages. Grammar plays a key role in defining ways to learn natural lan-
guages mathematically [24].

Definition: A grammar G is defined as a quadruple G = (V, T, S, P) where
V is a finite set of objects called variables,
T is a finite set of objects called terminal symbols,
S belongs to V, a special symbol called the start variable,
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P is a finite set of productions [25]. By defining the production rules, 
grammar is defined as a process of transforming one string into 
another, and, by doing so, the language associated with that gram-
mar is defined.

Here we also assume that the sets V and T are non-empty and disjoint. So, by 
applying the production rules in a different order, grammar can generate a 
variety of strings. All of these terminal strings are collectively referred to as 
grammar’s language, which is the language defined by the grammar.

Definition: Let 𝐺 = {𝑉, 𝑇, 𝑆, 𝑃} be a grammar. Then the set

𝐿(𝐺)  = {𝑤 ∈ 𝑇 ∶ 𝑆 ⇒ 𝑤}

is the language generated by the grammar G [25].
Here if 𝑤 ∈ 𝐿(𝐺) then the sequence 𝑆 ⟹ 𝑤1 ⟹ 𝑤2 ⟹ 𝑤3 ⟹. . . . . ⟹ 𝑤𝑛 ⟹ 𝑤 

is derived from the sentence w, the strings S, 𝑤1, 𝑤2, 𝑤3. . . . 𝑤𝑛, which contain 
variables as well as terminals, are called sentential forms of derivation.

4.5.3 Automata An automaton is an abstract digital computer model. It has 
an input reader. A series of characters, i.e., strings are assumed to be the input 
written on an input file, which is read by the automaton but not changed by it.

Figure 4.2 shows a schematic representation of a general automaton.
In this, each input file is divided into cells, and each input file can hold 

one symbol [26]. The input mechanism reads the input file one symbol at a 
time, left to right. It is also possible to sense the end of an input string via the 
end-of-file condition in the input mechanism. The automaton produces the 
output of some form, which may have a temporary storage device, consist-
ing of an unlimited number of cells, each capable of holding a single symbol 
from an alphabet that is not necessarily the same one as the input alphabet [26]. 
Automatons can read and change the content of storage cells.

FIGURE 4.2
Schematic representation of a general automaton.
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Last but not least, the automaton has a control unit that can be in one of a 
few limited internal states and can change its state in a defined manner.

It is assumed that the automaton operates in a distinct time frame. A con-
trol unit is in a particular state at any given time, and the input method scans 
a certain symbol on the input file. The next state or transition function estab-
lishes the internal state of the control unit at the next time step.

This transition function provides the following state depending on the 
current state, the current input symbol, and the information currently in 
temporary storage. The output may be generated or the temporary storage 
may be updated during the transition from one period to another. The term 
configuration is used whenever we refer to a specific state of a control unit, 
input file, and temporary storage [26]. Furthermore, the act of moving an 
automaton from one configuration to another is called a move.

4.5.3  Finite Automata

Finite automata, or finite state machines, are the simplest abstract machines 
that can recognize patterns. They have five elements or tuples. The input 
symbol determines the tool’s state and rules for moving from one state 
to another. In essence, it functions as an abstract digital machine model. 
Figure 4.3 describes some of the key components of general automation.

There are two types of automata:

	 1.	Deterministic automata
	 2.	Non-deterministic automata

4.5.3.1  Deterministic Finite Automata (DFA)

As the name suggests, deterministic automata determine their movements 
separately by the current configuration. Knowing the internal state, inputs, 

FIGURE 4.3
Key components of finite automata.
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and contents of temporary storage will provide us with an exact prediction 
of how the future automaton will behave.

Acceptors are automatons that respond with only a “yes” or “no” when 
asked. When presented with an input string, an accepter either accepts or 
rejects the string. There is a more general automaton known as a transducer 
that can produce strings of symbols as output. By deterministic, we mean 
that when the input symbols are read, the automaton changes its current 
state to another state or may remain in the same state.

Definition: A deterministic finite automaton (DFA) is defined by a quin-
tuple that consists of five-tuples {𝑆, 𝛿, 𝑠, 𝐹, ∑} where

S is a set of all states,
∑ is a set of input symbols that the machine takes as input,
s: is the initial state of a machine,
F: is a set of the final state,
δ: is the transition function, defined as 𝛿: 𝑆 × ∑ → 𝑆 [27].

The DFA machine stays in only one state at a time for particular character 
input. Every state has its transition function. Null (or ∈) moves are also for-
bidden in DFA; i.e., DFA cannot change state without input.

4.5.3.2  Non-Deterministic Finite Automata

On the other hand, a non-deterministic automaton may have a wide range of 
possible moves at any given point, so we can only anticipate a handful of pos-
sibilities. A non-deterministic finite automata is a state machine that consists 
of states and transitions capable of either accepting or rejecting a finite string.

Symbols in non-deterministic finite automata can undergo several transi-
tions from the same state. It is similar to deterministic finite automata, except 
for the following additional features:

It is allowed to perform a null (or 𝜀) move, which is to say it can proceed 
forward without reading symbols.

A particular input can be transmitted to any number of states.

An NFA consists of a quintuple (or five-tuple) such that 𝑀  = (𝑆, Σ, 𝛿, 𝑠, 𝐹), where

𝑆 is a finite set of all states,
Σ is a finite set of all symbols of the alphabet,
𝛿: 𝑆 × ({Σ 𝖴 𝜀}) →  2𝑆 is the transition function from state to state,
𝑠 ∈ 𝑆 is the start state, in which the start state must be in the set S,
𝐹 ⊆ 𝑆 is the set of accept states, in which the accept states must be in the set S. 

[28] Here, the order of the elements does matter.
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The standard Turing machine shows deterministic behavior as one can 
either go in the left direction or the right direction for a particular input, 
whereas, in the case of a non-deterministic Turing machine, one can go in 
both directions.

4.5.4  Turing Machine

A Turing machine is an imaginary machine that reads an infinite tape 
through which it interacts with the outside world. A tape is divided into cells 
with symbols (one symbol at a time) or blank spaces, and, as the reading 
progresses, the output is recorded on that tape as well. A “head” is placed 
on a specific cell of the tape that moves left (L) or right (R) one cell at a time 
as it performs reads and writes. We may say, therefore, that the computation 
in the Turing machine is done with the help of a transition function, which 
directs the machine on how to react to the symbols on the tape.

The Turing machine was first proposed by Alan Turing in 1936 [29]. Unlike 
physical machines, Turing machines are mathematical machine objects. Tur-
ing proposed that it is not necessary to discuss how the machine actually 
does its work. It is enough to believe that it can accomplish the actions as 
specified and to believe that those actions can be uniquely described.

Alternatively, Turing machines can be called general-purpose computers 
having infinite tapes.

It consists of the control unit that helps to read the current tape symbol, 
writes a symbol on the tape, moves one place to the left or right, switches to 
the following state, which is read as, “If the machine is in the current state, 
i.e., Statecurrent, and the cell being scanned contains Symbol, then move into 
the next state, i.e., Statenext taking action.”

A Turing machine can therefore mark a symbol on the tape in the current 
cell or move the head cell left or right while acting. However, if it reaches a 
point where it cannot make a particular/unique transition, it is said to halt.

FIGURE 4.4
Turing machine where each transition of the machine is a four-tuple, which can be represented 
as (Statecurrent, Symbol, Statenext, Action).
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Moreover, one could consider a Turing machine as a finite-state machine 
that resides in a horizontal form stretched across an infinitely long tape 
containing symbols from a finite alphabet Σ. Based on the symbol it’s cur-
rently reading and its current state, the Turing machine writes a new symbol 
“0” or “1” in that location, moves left or right, or stays in place, and then 
enters a new state. The numbers “0” and “1” denote blanks and symbols, 
respectively.

The transition function on the machine gives instructions on how to per-
form various tasks, such as overwriting a symbol, moving left or right, enter-
ing a new state, optionally stopping, and outputting an answer given the 
current state and symbol that the machine is reading.

Definition
Turing machines are composed of seven-tuples (𝑆, 𝑠0, Γ, b, Σ, F, σ), where:

𝑆 is a finite set of states with one of them 𝑠0 ∈ 𝑆 being a designated start-
ing state, which is defined as a state the machine starts its operation 
in,

Γ is a finite set of symbols with one of them 𝑏 ∈ Γ being a designated 
starting state, Σ ⊂ Γ is a subset of input symbols,

𝑃 ⊂  𝑆 is a subset of accepting states that finalizes the computation that is 
when the machine reaches F, the computation’s final state,

𝜎: 𝑆 × Γ → 𝑆 × Γ  × {L, R} is a partial transition function [30].

If the machine reaches a state and inputs that are not defined for 𝜎, the 
machine will halt. Here, in this transition function, 𝑠0 ∈ 𝑆 represents the start 
state, 𝑠𝑎𝑐𝑐𝑒𝑝𝑡 ∈ 𝑆 represents the accepted state, and 𝑠𝑟𝑒𝑗𝑒𝑐𝑡 ∈ 𝑆 represents the 
reject state, where 𝑠𝑎𝑐𝑐𝑒𝑝𝑡 ≠ 𝑠𝑟𝑒𝑗𝑒𝑐𝑡.

The transition function 𝜎 is referred to as the heart of Turing machines 
because it describes how the machine moves between different configurations.

Since the transition function 𝜎 tells us how the machine gets from one con-
figuration to another, it is also known as the heart of a Turing machine. In 
Turing machines, one’s current state, tape content, and head location describe 
its configuration.

The machine at state 𝑠 ∈ 𝑆 reads the current symbol 𝛾 ∈ Γ on the tape load-
ing to

σ γ γ( , ) ( , , )s s d= 1 1

where:
𝑠1 is the next state,
𝛾1 is the output symbol written by the head on the tape,
𝑑 ∈ {𝐿, 𝑅} is the movement of the head (left or right) on the infinite tape [30].
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Example
The following examples can be modeled as a Turing machine.

Text Editor as a Turing Machine: A text editor can be effectively mod-
eled as a Turing machine to formally represent its core functional-
ity and behavior. In this conceptual framework, the different states 
(S) of the Turing machine correspond to the various modes or states 
of the text editor software, such as insert mode, delete mode, copy/
paste mode, and so on. The set of tape symbols (Γ) represents the rep-
ertoire of characters that can be entered into the document, includ-
ing letters, numbers, special characters, and punctuation.

		  The transition function (𝜎) of the Turing machine then describes how 
the text editor transitions between these different states based on 
the user’s interactions—such as pressing a key, clicking a button, or 
invoking a command. As the user makes edits, the Turing machine 
updates the contents of the tape, which represents the evolving text 
document being edited, as well as the position of the tape head, 
which corresponds to the cursor location. Starting from an initial 
state (𝑠0) when the document is opened, the Turing machine fol-
lows a sequence of state transitions, modifying the tape contents 
and tape head position until it reaches a final state representing the 
completed, edited document. This formal model provides a rigorous, 
step-by-step account of how a text editor operates at a fundamental 
computational level.

Traffic Light Control System as a Turing Machine: Similarly, a traf-
fic light control system can be mapped to a Turing machine repre-
sentation to capture its core algorithmic logic and functionality [31]. 
In this case, the states (S) of the Turing machine correspond to the 
different phases of the traffic light cycle, such as red, green, yellow, 
and all-red. The tape symbols (Γ) represent the inputs received from 
vehicle and pedestrian sensors, as well as any user-initiated requests 
like pedestrian crossing buttons.

		  The transition function (𝜎) of the Turing machine then specifies how 
the traffic light control system transitions between these various 
states based on the sensor data and user inputs it receives, as well 
as the current state of the traffic lights. As vehicles and pedestrians 
interact with the intersection, the Turing machine updates the tape, 
which serves as a record of the changing traffic patterns. Through 
this sequence of state transitions controlled by the transition func-
tion, the Turing machine model governs the dynamic adjustment of 
traffic signal timing and sequencing to optimize traffic flow, enhance 
safety, and minimize congestion at the intersection. This formal rep-
resentation provides a rigorous framework for analyzing and rea-
soning about the core algorithmic principles underlying traffic light 
control systems.
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In both the text editor and traffic light control system examples, the Turing 
machine model offers a precise, step-by-step computational account of how 
these systems operate and respond to user/environmental inputs. By map-
ping the core components of state, tape symbols, and transition functions, the 
Turing machine framework enables a formal, algorithmic understanding of 
these real-world software and control systems.

4.6  Multiple Selection Criteria at Each Working Stage of ATM

FIGURE 4.5
Transition model of multiple selection criteria at each stage of ATM.
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4.6.1 � Notations/Terminologies for Determination 
of Transition Table and Graph

The formal model of an operating ATM system using MCDM is defined as a 
non-deterministic Turing machine DATAMST.

DATAMST | | (𝑆, 𝐶, Σ, 𝑠, 𝑏, 𝛿, 𝐹) represents seven-tuple relationships where:

•	 S is the set of valid states that represents the domain of the working 
of the ATM system; in 𝑆 =  {𝑠0, 𝑠1, 𝑠2, . . ., 𝑠13} here the states are:
𝑠0 −System
𝑠1 −Main menu
𝑠2 −Validity of ATM card
𝑠3 −Check PIN.
𝑠4 − Sorry! Can’t read the card.
𝑠5 − Enter amount.
𝑠6 −Card blocked
𝑠7 −Insufficient balance
𝑠8 −Transaction declined
𝑠9 −Insufficient funds
𝑠10 −Invalid transaction
𝑠11 −Check denomination
𝑠12 −Money withdrawn
𝑠13 −Eject card.

•	 𝐶 is the set of multiple criteria at each state considered by the ATM  
to make a decision before proceeding to the next state, where 𝐶 = {𝑐1, 
𝑐2, . . ., 𝑐8}:
𝑐1 −Hologram
𝑐2 −Magnetic stripe
𝑐21 −CVV matches with AVS or not.
𝑐22 −ATM card is expired or not.
𝑐23 −ATM card is blocked/reported or not.
𝑐3 −Placement of the ATM card
𝑐4 −When the number of unsuccessful trials is greater than 3
𝑐5 −�Account balance is greater than the amount to be withdrawn  

or not.
𝑐6 − Limit per transaction is crossed or not.
𝑐7 − Cash availability at ATM
𝑐8 − Minimum ATM withdrawal limit is crossed or not.

•	 ∑ is the set of events that the ATM may accept and process, Σ = {0,1}.
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•	 𝑠 is the start state of the ATM, 𝑠 = 𝑠1 (main menu).
•	 b is the blank symbol; this happens when we insert a card but do not 

perform any action.
•	 F is the set of ending set, 𝐹 = {𝑠13} (eject card).
•	 𝛿 is the transition function of the ATM that determines the next state 

of the Turing machine, 𝑠𝑖+1, based on the current state 𝑠𝑖 and a specific 
incoming event {0,1}, i.e.,

s s f S C Si t+ + = { } = ×∑→1 1 0 1d d( , , ), , : ( , ) .where

4.6.2  State Transition Table

Table 4.2 shows the state transition table.

TABLE 4.2

State Transition Table

States Σ Next State

(𝑠0) b {𝑠0}

(𝑠0) 0 {𝑠0}

(𝑠0) 1 {𝑠1}

(𝑠1) 0 {𝑠1}

(𝑠1) 1 {𝑠2}

(𝑠2, 𝑐1) 0 {𝑠4}

(𝑠2, 𝑐1) 1 {𝑠4, 𝑠3}

(𝑠2, 𝑐2) 0 {𝑠4}

(𝑠2, 𝑐2) 1 {𝑠4, 𝑠3}

(𝑠2, 𝑐3) 0 {𝑠4}

(𝑠2, 𝑐3) 1 {𝑠4, 𝑠3}

(𝑠3) 1 {𝑠5}

(𝑠3, 𝑐4) 0 {𝑠5}

(𝑠3, 𝑐4) 1 {𝑠6}

(𝑠4) 1 {𝑠1}

(𝑠5, 𝑐5) 0 {𝑠7}

(𝑠5, 𝑐5) 1 {𝑠11}

(𝑠5, 𝑐6) 0 {𝑠8}

(𝑠5, 𝑐6) 1 {𝑠11}

(𝑠5, 𝑐7) 0 {𝑠9}

(𝑠5, 𝑐7) 1 {𝑠11}

(𝑠5, 𝑐8) 0 {𝑠10}

(𝑠5, 𝑐8) 1 {𝑠11}

(𝑠11) 1 {𝑠12}

(𝑠12) 1 {𝑠13}
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Using all of the possible decisions based on the following criteria, Table 4.3 
illustrates the transition behavior of state 𝑠2.

Here we can observe from this table that the transition behavior of state 𝑠2 is 
determined by three criteria that are 𝑐1, 𝑐2, and 𝑐3. Therefore, the total number of 
possible decisions made from this criterion will be 23 = 8. This signifies that ATM 
can face eight possible scenarios on the state 𝑠2, out of which only one decision will 
lead to that next state 𝑠3 i.e. (1,1,1) case, and the rest will lead to the states {𝑠4, 𝑠13}.

Similarly, we can define the transition behavior for states 𝑠3 and 𝑠5. We can 
observe from Figure 4.6 that the transition behavior of state 𝑠3 is determined 
from a single criterion 𝑐4, and state 𝑠5 is determined by four criteria. There-
fore, ATMs can face 21 = 2, 24 = 16 scenarios on state 𝑠3 and 𝑠5, respectively.

4.6.3 � Explanation of Multiple Selection Criteria 
at Each Stage of the ATM System

In this section, we have described the multiple selection criteria evaluated 
by ATMs during cash withdrawal at each working stage. This is a multi-
attribute decision-making problem as it deals with multiple attributes and 
has a single objective, which is to withdraw money.

4.6.3.1  State 1: Main Menu

This is the first stage of ATM where it shows the main ATM functions. When 
withdrawing money from an ATM, a user selects the withdrawal option 
from the menu and inserts the respective ATM card.

4.6.3.2  State 2: Validity of ATM Card

When the user places the ATM Card inside the machine, the ATM first checks 
the validity of the card by considering the following criteria.

TABLE 4.3

Transition Behavior of State 𝑠2

𝑐1 𝑐2 𝑐3 F

0 0 0 {𝑠4, 𝑠13}
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1 {𝑠3}
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4.6.3.3  Criteria 1-Hologram

Payments can be processed more securely when using debit/ATM card holo-
grams. If someone pays you with a card, it is crucial that you look at the holo-
gram to confirm it is real. It indicates a valid card and is a valid identification. 
In the absence of a hologram, an issue may exist with the card or the card 
may be forged by the person using it.

FIGURE 4.6
Abstract transition model of multiple selection criteria at each stage of ATM.
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A card reader is installed in ATMs to perform this function. The ATM is 
designed with a hologram code reading system that utilizes reconstruction 
light from a light source to illuminate the recorded areas of the hologram that 
contain codified data recorded as image data, and a code reading sensor is 
positioned at the reconstruction position within the reconstruction image cre-
ated by the reconstruction light. The code reading sensor is provided with a 
control means to obtain codified data from the hologram reconstruction image.

Multiple layers of images are stacked on top of each other to create a holo-
gram on the ATM card. This adds to the illusion of motion when the card is 
moved even slightly. Due to the way the image is displayed on the ATM card, 
it appears raised above the plastic, giving it a sense of depth.

The security hologram, invented by MasterCard International in the early 
1980s, now appears not just on ATMs, credit cards, and passports, but also on 
electronic gadgets and banknotes.

The fact that holograms are multi-imaged prevents counterfeiting because 
the images of a hologram cannot be captured with an optical scanner or cop-
ied with a photocopier. Moreover, holograms are generally embedded with 
images that can be instantly verified to ensure immediate security.

In this way, ATMs verify whether the card inserted by the user is legal or 
not. In the case of a legal card, it will move forward with the process; other-
wise, it rejects the card and directs the user to the main menu.

4.6.3.4  Criteria 2-Magnetic Stripe

Magnetic stripes are an imperative criterion for checking the validity of an 
ATM card. This stripe appears on the back of an ATM card. A magnetized 
pattern can be recorded on this stripe to store digital data. Magnetic stripes 
have three tracks, each measuring 110  inches wide. In accordance with ISO/
IEC standard 7811, the bank follows these guidelines:

•	 There are 79 read-only characters on track one with 210 bits per inch 
(bpi).

•	 Track two is 75 bits per inch and can hold 40 four-bit plus parity bit 
characters.

•	 There are 107  four-bit plus parity bit characters on track three at  
210 bps.

The ATM card utilizes only the first two tracks. The third track consists of 
the country code, units of currency, PIN protected by cryptography, and 
the authorized amount. However, its use is not standardized among banks.

There are two formats of track one information, A, which is reserved for 
the card issuer, and B, which includes the start sentinel of 1 character with 
format code=“B”. The primary account number varies by up to 19 characters: 
separator; 1 character, country code: 3 characters, name; 2 to 26 characters, 
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separator; a single character, the expiration date or separator, which may 
differ from 1 character to 4 characters, discretionary data: 79 characters in 
total which is enough to fill out the maximum record length; end sentinel 
of 1 character, and longitudinal redundancy check (LRC); a computed check 
character, a single character [32].

Track two follows a format developed by the banking industry, with a start 
sentinel of 1 character, primary account number of up to 19 characters, a sep-
arator of 1 character, country code of 2 characters, expiration date or separa-
tor of up to 4 characters, discretionary data of 40 characters in total, which is 
sufficient to fulfill the maximum record length, and LRC of 1 character.

At an ATM, the validity of an ATM card is determined by electronic data 
capture (EDC) [33]. By inserting the ATM card through the card reader, the 
EDC software calls an acquirer by dialing a number stored in a modem. 
Acquirers are the computers that process ATM authentication requests and 
provide a transaction guarantee from the bank to the ATM.

As soon as the acquirer receives the card authentication request, it checks 
the transaction for validity and reads the record on the magnetic stripe. This 
record contains the valid card number, expiration date, ATM card limit, and 
usage.

It is probably either one of the following that is preventing the ATM from 
reading the card:

•	 The magnetic stripe is dirty or scratched.
•	 Magnetic stripes can be erased due to exposure to magnets and a 

store’s electronic article surveillance tag demagnetizer.

4.6.3.5  Mismatch in AVS and CVV (𝒄𝟐𝟏)

An AVS or CVV error can also result in a transaction being declined. Card 
verification value (CVV) is a three-digit number on the back of your ATM 
card that acts as a security code. Banks develop the address verification sys-
tem (AVS) to detect suspicious transactions.

There is a possibility of suspicious transactions when too many PINs are 
being fed at once at an ATM or observing spending patterns that differ from 
your usual habits. Many banks now have a whole upgraded system of secu-
rity in place which can be way too safe and block your card.

Consequently, when you insert your ATM card at an ATM and these two 
security systems are mismatched with the data stored at the bank, your 
transaction will not be processed.

4.6.3.6  Expiry Date of ATM Card (𝒄𝟐𝟐)

There is an expiration date on every ATM card. There is an expiration date 
on the back of the card, written as XX/XX (month and year). A card can be 
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used until the last day of the month in which it expires. For example: a card 
ending in 11/25 is valid until 30 November 2025. In such a case, your account 
will remain active but not your card.

Before proceeding with any transaction, the ATM checks whether the ATM 
card has passed its expiration date. Your old card will likely be declined if 
you try to use it after its expiration date, or the ATM will swallow it.

4.6.3.7  Blocked/Reported ATM Card (𝒄𝟐𝟑)

ATM also checks whether the user is using a blocked or reported card. Using 
such a card for the transaction will prevent the ATM from returning it and 
processing the transaction.

4.6.3.8  Criteria 3-Placement

When we swipe our ATM card into the card reader, a green light above the 
card reader will blink to indicate that the card has been properly inserted 
and access has been granted. A red light will blink, and the access will be 
rejected if the card is not positioned correctly.

Inserting an ATM card the right way requires the magnetic stripe to be at 
the bottom and the chip of the card must be facing up at the front.

You may be asked to return your card after your transaction has been com-
pleted by some ATMs, while others will simply ask for it back after reading 
the information stored on your card.

In most cases, the ATM will proceed with its process if the card is placed 
correctly; otherwise, it will prompt you to place it correctly.

4.6.3.9  State 3: Check PIN

If all the conditions of validity of the ATM card are met, then the processor 
will check whether the PIN is correct or incorrect.

So how do ATMs check your pin? It basically needs three things:-

•	 An algorithm that encompasses a complex formula embedded in the 
ATM software;

•	 A 16-digit number that encrypts your ATM card data;
•	 And the hash key, which is your PIN, which is not stored anywhere.

The bank gives you an account by combining these three items into an expo-
nential logical operation and then making junk of useless code that’s stored 
on the server via the internet. A  junk code is created from the algorithm 
which is performed again with the PIN and card number that you input into 
the software when you need money. This junk code is pulled from the bank’s 
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server and compared with the new one that has been generated, and if they 
match, you receive your money.

Interestingly enough, your PIN does not go anywhere beyond the ATM. 
Your card number, however, does go to the bank server to confirm that you 
have an account and to prepare for the operation. Unless the bank is pro-
vided with the PIN code, they have nothing more than this blob of encrypted 
information pertaining to our passwords.

After an operation, only junk code is compared. With only a one-bit out-
put, the algorithm says 1 if the PIN was correct to indicate that the requested 
amount was discharged and says 0 to indicate that the password was 
incorrect.

An ATM card is simply a piece of plastic with a 16-digit number on the 
black magnetic strip. It can be cloned by anyone in less than 2 minutes using 
the right hardware. When you lose your card, any person can use it to make 
purchases, which is a big loophole because the bank doesn’t use authentica-
tion. Nevertheless, a lost card cannot be used at an ATM without a pin. Using 
a brute force method, it would take billions of years to crack a key of this size. 
This is due to (the speed at which the computer cracks the code in flops)   
2the number of bits of encryption, usually 256.

Simply put, the bank has no idea what anyone’s PIN is, and they therefore 
ask you to reset it rather than remind you or show the original PIN to you if 
you forget it. You are the only one who knows your PIN as well as the people 
with whom you shared it.

4.6.3.10  Correct PIN

If the PIN you entered is correct, then the ATM will proceed to the next step.

4.6.3.11  Incorrect PIN

An ATM card PIN is a crucial piece of information when withdrawing cash 
from an ATM. At the ATM, it is ok to put in the wrong PIN twice, but when 
you do it thrice, it becomes an issue.

In accordance with RBI guidelines, only three attempts should be made 
to enter an ATM card PIN when withdrawing cash from an ATM. Once you 
exceed three attempts, your card will be blocked automatically. In addition, 
the RBI advises customers not to write their PIN on their cards, not to share 
their PIN with anyone, and not to let anyone see their PIN while carrying 
out transactions. The RBI also recommends not keeping an easy PIN that 
combines elements like birth date, age, etc. While this may make it hard for 
most cardholders to remember their password, it is a preventative measure 
to protect against fraud.

Hence you can be blocked if you have entered your ATM card PIN incor-
rectly thrice at an ATM.
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4.6.3.12  State 5: Enter Amount

When the user enters the amount, before proceeding to the next step, the 
ATM checks the following criteria.

4.6.3.13  Criteria 5—Account Balance

When the amount to be withdrawn ≤ Account balance:
This will successfully lead to the next step, and the machine will process 

the amount.
Amount to be withdrawn > Account balance
If the amount to be withdrawn from the ATM exceeds what is in your 

account, then the ATM can withdraw money, or it will decline the transac-
tion, depending on the arrangement with your bank.

4.6.3.14  Case 1: When You Cannot Complete the Transaction

A link is established between the ATM and the bank’s database that displays 
your account balance. Due to insufficient funds in the account, the ATM will 
not process withdrawals that exceed the balance in your account.

There are jurisdictions where withdrawing excessive amounts of money 
requires you to sign an agreement. In some cases, the bank takes a snap deci-
sion while the transaction is ongoing.

4.6.3.15  Case 2: When You Can Complete the Transaction

Banks may allow you to withdraw more than your account balance, but that 
will be enough to place your account in negative territory, depending on the 
terms of your overdraft arrangement (if any).

To determine whether the withdrawal exceeded the available funds, or 
whether it exceeded the total funds, is crucial. Banks will reject transactions, 
even when there seem to be funds in a bank account, because account holders 
can only access or withdraw funds that they have in available funds. Here’s 
how banks differentiate between these two types of funds:

An available fund is the amount a depositor can access at the time of 
withdrawal.

The total fund includes both available funds and funds that are not yet 
processed, such as uncleared checks or unpaid purchases/transactions.

There is a possibility of withdrawing funds beyond the account balance, 
but the withdrawals come with repercussions, bank terms, and fees. A with-
drawal that exceeds the available funds is regarded as an overdraft and is 
subject to penalties. In this case, overdraft penalties will be paid from new 
deposits, while the remaining balance will be available to account holders. 
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Account holders need to understand how to protect themselves from over-
drafts through overdraft protection.

The term “overdraft protection” refers to a service or program offered by 
financial institutions, i.e., account holders can opt in, which allows bank 
account holders to withdraw more than their account balance and be charged 
an overdraft fee. If you don’t opt for some type of overdraft protection and 
withdraw funds over the amount in your account, the transaction will “fail” 
that is, the recipient of the check will not receive the funds.

4.6.3.16  Criteria 6-Limit per Transaction

“Limit per transaction” refers to the maximum accumulated daily limit per-
mitted by the bank and communicated to the cardholder by the bank from 
time to time. This limit relates to each type of transaction to which the card-
holder may have access.

The machine checks whether the amount entered by the user is less or 
greater than the limit per transaction.

Amount to be withdrawn ≤ Limit per transaction
This will successfully lead to the next step, and the machine will process 

the amount.
Amount to be withdrawn > Limit per transaction
The amount will not be processed in this case, as there is a daily spending 

limit, and if the amount is exceeded, the card will be declined.
For example: You can withdraw more money from an ATM using your 

savings account, but you cannot withdraw more than six times per month. 
This is a federal law, so it applies to all savings accounts at all banks. It is vital 
to know your debit card and bank financial transaction limits thoroughly.

The main reasons a bank restricts withdrawals are cash availability limits 
and security concerns:

Cash Availability Limits: When you deposit a paycheck into your 
checking account, the bank doesn’t simply store it in a vault until 
you request it. Rather, banks use the money to lend to people and 
businesses, bundling it with other people’s deposits.

It would be impossible for the bank to know which ATM to keep stocked 
with cash in order to meet your needs. This is even if it kept your cash 
on hand. Would you rather use the ATM at your local bank branch or 
the one at the corner store? Having withdrawal limits prevents cus-
tomers from draining ATMs or causing the bank to run out of cash.

Security Concerns: In addition, banks limit ATM withdrawals out of 
concern for identity theft and unauthorized withdrawals. Often, it is 
difficult to get your money back if your rarely used credit card is sto-
len and you do not notice for a long time. By limiting withdrawals, a 
criminal is less likely to empty your account quickly.
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4.6.3.17  Criteria 7—ATM Cash

The ATM evaluates this criterion as well before processing any transac-
tion. It is the currency delivered to and maintained in each ATM before it is 
dispensed to the cardholder making a withdrawal transaction, to a person 
under an electronic check authorization transaction, or to a person under a 
credit card cash transaction.

Before processing any transaction, the ATM checks whether the amount 
entered by the user is less than the ATM cash.

Amount to be withdrawn ≤ Cash available in ATM
This will successfully lead to the next step, and the machine will process 

the amount.
Amount to be withdrawn > Cash available in ATM
This usually happens when an ATM runs out of cash. In such a scenario, 

an ATM can react in three ways:

	 1.	You are notified that your selection cannot be completed by the ATM.
	 2.	ATMs dispense less money than you entered. This occurs when the 

tray does not have all the available currency combinations.
	 3.	The amount is deducted from the account, but the ATM is unable to 

disburse the cash.

4.6.3.18  Criteria 8—Minimum ATM Withdrawal Limit

Minimum ATM withdrawal limits are the amounts of cash that custom-
ers can withdraw from an ATM at a minimum. When processing trans-
actions, ATMs evaluate this criterion. The machine determines whether 
the amount entered by the user is greater than the minimum ATM with-
drawal limit.

Amount to be withdrawn ≥ ATM withdrawal limit
This will successfully lead to the next step, and the machine will process 

the amount.
Amount to be withdrawn < ATM withdrawal limit
Attempting to withdraw less than the minimum withdrawal limit will 

result in a “technical error” or “invalid transaction.”
When all the four criteria, viz. once criteria c5, c6, c7, and c8 are satisfied 

together, the ATM will proceed to the next state. Here, the ATM will check 
the denomination of available cash from the cash tray.

4.6.3.19  State 11: Check Denomination

As we know, an ATM is an electromechanical device with a switch that 
knows how much and what denominations of cash are available. Upon enter-
ing your PIN and verifying that you have sufficient funds in your account, a 
switch instructs the ATM to withdraw the requested amount.
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Isn’t it curious how ATMs can decide which denominations and how many 
of each to give out?

Switches usually disburse the last note available in the ATM in the lowest 
denomination available at the time of withdrawal. For example, when with-
drawing Rs 900 from an ATM, it will offer one Rs 500 note and four Rs 100  
notes if the ATM has both Rs 500 and Rs 100  denominations. As an alterna-
tive to Rs 500 and Rs 100 , it has Rs 200 and Rs 100 , so the ATM will disburse 
four notes of Rs 200 and one note of Rs 100 .

Within the ATM, currency notes are stacked inside “cassettes.” Each cas-
sette contains notes of one denomination. Some older ATMs may only have 
two cassettes, while most ATMs in the country have four. A cassette must 
be calibrated according to the length, width, and thickness of the notes it is 
supposed to hold for the ATM to recognize what denominations are avail-
able and on which cassettes. At the ATM factory or on the ATM site, trained 
technicians perform this process.

Staff from the bank or the bank’s authorized agencies load currency notes 
into the cassettes in the ATM regularly. The banks must issue clean and crisp 
notes that are compatible with ATMs and ensure the notes are authentic. 
In security vans with armed escorts, cash is transported from the currency 
vaults of banks to ATMs.

ATMs are reloaded with cash depending on a vast array of factors, includ-
ing the number of transactions made in the past, the value of withdrawals, 
the beginning of the month (salary period), festivals, long weekends, and the 
distance from the cash vault.

During an ATM withdrawal, you may hear a great deal of noise coming 
from within the machine. An ATM generates this noise when its dispenser 
arm pulls out the number of notes it needs from its cassette. From the cas-
sette, notes are picked up one at a time and placed on dispenser belts, which 
then move and lead the notes up to the ATM outlet. Although ATMs accu-
rately dispense cash, there may be occasions where there is an error and all 
notes cannot be disbursed to you.

Then ATM proceeds to the next state while dispensing the entered 
amount. Upon successful completion of a transaction, the user is prompted 
to eject the card.

4.7  Issues Faced by ATM

Your card can be compromised by scammers when your ATM does not dis-
pense cash, despite a sufficient balance. What you can do is, get quick details 
of the ATM, time, and amount you were trying to withdraw. Visit your bank 
to notify them of the problem. They will immediately block your debit card 
and issue you a new one.
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What’s more frustrating is receiving an SMS telling you that the amount 
has been deducted from your account when the ATM declines your transac-
tion. It is especially concerning if the amount is large.

Generally, this is due to two factors:

Technical Error: The ATM may be malfunctioning. This is due to poor 
internet connections, power outages, and too many transactions pro-
cessing at once, among other factors. You can either wait a while and 

TABLE 4.4

Technical Errors of ATM Components

S. No. ATM Parts Technical Errors

  1 Card reader •	 Card read failures (magnetic strip or chip not read)
•	 Jammed cards
•	 Card detection errors
•	 Card skimming devices (fraudulent devices)

  2 Keypad •	 Unresponsive keys
•	 Ghost inputs (multiple/no keypresses)
•	 Damaged or stuck keys

  3 Cash dispenser •	 Cash jam
•	 Incorrect cash dispensing
•	 Out of service (low funds)
•	 Cash stacking issues (misfeeds or jams)

  4 Receipt printer •	 Out of paper
•	 Paper jams
•	 Ink/toner issues (poor printing or no output)
•	 Printer malfunction

  5 Display screen •	 Unresponsive screen
•	 Display failures (flickering, no output)
•	 Incorrectly displayed information

  6 Network 
communication

•	 Offline mode (no connection to servers)
•	 Slow response/timeout
•	 Transaction errors (failed communication with bank 

servers)
  7 Deposit module •	 Deposit jams

•	 Invalid deposit detection
•	 Rejected deposits (invalid bills/checks)
•	 Verification errors (miscounting deposit amount)

  8 Cash storage and 
vault

•	 Vault locking mechanism failure
•	 Low cash level alerts
•	 Cash overflow (full storage prevents operation)

  9 Power supply and 
battery

•	 Power failure (shutdowns or malfunctions)
•	 Battery malfunction (backup power failure)
•	 Surge protection failure (damage from electrical surges)

10 Security systems •	 Camera malfunction (security footage issues)
•	 Tamper detection failure (e.g., undetected card skimming 

devices)
•	 Motion detection failure (no user detection)
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try again or visit another ATM terminal. Otherwise, you can con-
tact your bank about the problem. A bank’s machines are normally 
checked periodically as normal procedure. All complaints received 
are resolved promptly. Therefore, your money should be credited to 
your account automatically in some time, and you will be notified of 
the same by the bank.

The following are the common errors faced by different ATM compo-
nents that make it easier to identify potential problems in the ATM 
machine.

Fraud: Check the slot before inserting your card to avoid fraud. There 
have been cases where a skimmer was inserted into the slot and read 
all the information on the magnetic strip. Stolen information can be 
used to clone your card, allowing money to be withdrawn from your 
account.

4.8  Conclusion

Our paper presents multiple criteria that the ATM considers at each state 
before deciding whether to proceed to the next. The basis of this research 
was largely shaped by the concept of multi-criteria decision-making. It’s a 
very vast and complex topic that helps to test many contradictory criteria and 
provide solid decisions in the most complex situations.

The concept of MCDM was first introduced, and then its origin and lit-
erature review were discussed. Having explained the approach to solve the 
MCDM problem through a flow chart, we have identified the differences 
between multi-attribute decision-making (MADM) and multi-objective deci-
sion-making (MODM) and have concluded that the problem considered is 
a multi-attribute decision-making (MADM) because, when operating ATM 
system multiple attributes are considered, here we have considered one 
objective, that is, to withdraw money.

An automated teller machine (ATM) is a money transmission equipment 
that is one of the best developments in the banking sector. We have briefly 
explained the workings of the ATM operating system followed by a discus-
sion of the ATM’s basic parts and the features involved. This chapter also 
shows the concept of the Turing machine and examines the working of ATM 
in the domain of theory of computation, which is defined by three key con-
cepts: languages, grammar, and automata. We represented the transition 
model of multiple selection criteria at each stage of the ATM system, followed 
by the formal model of the same that is defined as a non-deterministic Turing 
machine. This is a seven-tuple relationship, i.e., (𝑆, 𝐶, Σ, 𝑠, 𝑏, 𝛿, 𝐹) where the 
transition function of the ATM is defined as:
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s si i+ = { }1 0 1d( , , ), where:

d = × →f S C S: ( , ) Σ

Our model gives us a way to compute all the possible decisions that the 
ATM processor can make at each state with the help of the transition state 
table. Following this, we explained the whole process in detail as shown 
in the transition model of multiple selection criteria at each stage of ATM 
processing.
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5.1  Introduction

Deep learning has achieved notable success in medical image diagnosis 
but remains vulnerable to adversarial attacks, posing risks in high-stakes 
healthcare applications. Adversarial training, particularly K-PGD, has shown 
promise in improving robustness, yet faces challenges like high computa-
tional demands and limited explainability. This paper presents a free and 
feature-preserving (FFP) framework that addresses adversarial robustness, 
model light weight, and interpretability. Using ResNet-50 and DeiT (data-
efficient image transformers) backbones, we introduce a feature-preserving 
regularization term leveraging edge features from self-guided filters and 
propose an optimization framework that combines multiple distance metrics 
to handle worst-case uncertainty. Our approach also includes a robust prun-
ing strategy, resulting in a compact, interpretable CAD system that enhances 
healthcare accessibility in resource-limited settings.

Deep learning has shown remarkable performance in medical image diag-
nosis, including the detection of Alzheimer’s disease[1], diabetic retinopa-
thy[2], COVID-19[3,4], etc. However, deep neural networks are often vulnerable 
to adversarial samples, which are carefully designed inputs with perturba-
tions that are imperceptible to humans[5]. In medical domains, where security 
is of great importance, such vulnerability is dangerous. Statistics indicated 
that the healthcare industry suffers two to three times more cyberattacks 
than the average amount for other industries due to financial interests and 
that ransomware attacks on healthcare organizations were predicted to qua-
druple from 2017 to 2021 and 2022. Adversarial examples may present new 
opportunities for committing health insurance fraud against the AI system[6]. 
To make it worse, recent work has shown that small adversarial attacks on 
medical images can succeed with greater ease than those on natural images, 
since medical images are highly standardized and have complex biological 

https://doi.org/10.1201/9781032632483-5
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textures[7]. This has raised widespread safety concerns about the deployment 
of deep learning models in the medical images diagnosis system. Therefore, 
robustness against adversarial attacks has emerged as a critical factor when 
building trustworthy, reliable, and safe AI-based medical image classifica-
tion systems.

To effectively defend the adversarial attacks, different strategies have 
been developed, including adversarial training[8], Bayesian method[9], 
TRADES[10], etc. Among these methods, K-PGD adversarial training[8], 
which can be formulated as a saddle point (min–max) optimization, are 
considered to be the most effective in withstanding strong attacks. In medi-
cal image domain, adversarial defense is more challenging. Compared to 
natural images, medical images are more difficult to analyze due to complex 
imaging parameters, interactions between different diseases, and subtle 
differences between images for different diagnostic decisions[11]. Recently 
some studies applied adversarial training and its variants on medical 
images and achieved good performance[12]. They found that the robustness 
of a medical DL model can be improved significantly via adversarial train-
ing[13]. In addition, Margeloiu et al.[14] found that adversarial training can 
improving the interpretability of medical image diagnostic models. They 
showed that adversarially trained models have sharper and more visually 
coherent gradient-based saliency maps, which can assist doctor in locating 
the lesion precisely. Adversarial training can help to build a robust inter-
pretable computer-aided diagnostic (CAD) system for medical purposes, 
reducing the workloads for doctors.

Despite adversarial training proving to be effective, there remain problems 
in its implementation. First, K-PGD adversarial training is time-consuming. 
In fact, it takes 3–30 times longer to form a robust network with adversar-
ial training than forming a non-robust equivalent[15]. On high-resolution 
medical image datasets, including CXR14[16], adversarial training is nearly 
intractable. The great computational demands of adversarial training can 
also render training of 3D medical models prohibitive[17]. Second, improv-
ing adversarial robustness has been shown to require even larger neural 
networks[8], but large model sizes have high computation and storage costs 
that represent significant challenges for deployment in resource-constrained 
applications. Thus robust model compression techniques for natural images, 
e.g., HYDRA[18], have gained significant traction. Unfortunately, in medical 
domains, a plethora of work lacks the joint consideration of the robustness of 
countermeasures and the light weight of models[19]. Finally, many adversarial 
algorithm studies lack interpretable analysis of the results. Due to the nested 
nonlinear structure of deep learning models, explicitly understanding why 
they produced particular predictions remains notoriously difficult[20]. In 
medical image diagnosis, it would be irresponsible to trust predictions of 
a black box system’s lack of explainability. If a robust medical AI system is 
uninterpretable, we cannot consider it to have good generalizability.
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In this chapter, we use Resnet-50 and DeiT as backbones and take the joint 
consideration of adversarial robustness, model lightweight, and explain-
ability. We introduce a free and feature-preserving (FFP) framework for 
transparent and efficient adversarial training. In order to utilize the prior 
knowledge related to diagnosis, we generate a regularization term based 
on edge features extracted by a self-guided filter. Considering that a visual 
robust model should not rely on a single metric, we then propose an optimi-
zation framework with mixed distance metric. The framework uses different 
distance metrics in internal and external empirical risk calculations to correct 
the worst-case uncertainty. Finally, we lighten the robust pretraining model 
based on the optimization objective of FFP. We investigate the influence of 
adversarial training on the interpretability of convolutional neural networks. 
Results show that our method has good performance and good interpret-
ability. We build a device-friendly and robust CAD system, which can miti-
gate the lack of medical resources in rural areas, improving the accessibility 
of trustworthy social healthcare. The main contributions of this chapter are 
summarized as follows:

•	 We design a feature-preserving regularization term based on self-
guided filtering for medical images systems. The regularization 
introduces a soft constraint with interpretability, which injects 
the prior knowledge of organ contour and lesion texture into the 
networks.

•	 We apply a new robust training optimization mechanism for medi-
cal image classification, which improves the training efficiency and 
alleviates the trade-off problem. We update parameters and distur-
bances synchronously and use different distance measures in the 
min–max problem.

•	 We introduce a reliable robust pruning framework for medical image 
classification. we formulate pruning as an empirical risk minimiza-
tion problem (ERM) with the proposed FFP robust optimization 
objective.

5.2  Related Work

The related work in this chapter discusses key advancements in adver-
sarial training and model pruning to address vulnerabilities in medical 
image diagnosis systems. Adversarial training, formulated as a min–max 
optimization problem, is highlighted as one of the most effective defenses 
against adversarial attacks, despite its high computational cost. Methods 
like free adversarial training (FreeAT) offer faster solutions with minimal 
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accuracy loss. Additionally, this chapter reviews pruning techniques to 
create lightweight robust models, essential for deployment in resource-
constrained environments such as embedded systems. The chapter also 
explores various strategies to enhance the robustness of medical image 
analysis, emphasizing the need for efficient, interpretable, and clinically 
applicable solutions.

5.2.1  Adversarial Training

The existence of adversarial examples raises concerns from the public and 
motivates the proposals of defenses. Among various existing defense strate-
gies, adversarial training[3,5] proves to be the most effective against adver-
sarial attacks[8]. Mathematically, adversarial training is formulated as a 
min–max problem, searching for the best solution to the worst-case opti-
mum[2]. However, the min–max problem is solved iteratively. which deter-
mines that adversarial training methods are time-consuming. Considering 
the high computational cost of adversarial training, Shafahi et al. proposed 
free adversarial training (FreeAT), in which model parameters and image 
perturbations are updated simultaneously[6,10]. Research on CIFAR-10/100 has 
shown that FreeAT can be 3–30 time faster that standard adversarial training 
without a significant accuracy drop[6].

5.2.2  Pruning of Robust Model

Adversarial robustness requires a significantly larger architectural capac-
ity of the network than that for the natural training with only benign 
examples[9]. The required large network capacity by adversarial training 
may limit its use for security-critical scenarios especially in resource-con-
strained embedded and IoT systems. Therefore, weight pruning is becoming 
increasingly important for implementing robust DNNs. One such highly 
successful approach is a three-step compression pipeline[11], which involves 
pretraining, pruning, and fine-tuning. In the pruning step, the most 
straightforward way is to remove connections that have the lowest weight 
magnitude (LWM)[12]. Sehwag et al.[13] demonstrated early success of LWM 
pruning with adversarially robust networks, while Ye et al.[14] and Gui et 
al.[15] further improved its performance by integrating with the alternating 
direction method of multipliers (ADMM)–based optimization. While both 
LWM- and ADMM-based pruning techniques are successful with benign 
training[11,16], they performs poorly when integrated with robust training 
techniques, including adversarial training. Therefore, recent researches 
focus on the pruning of robust models. For example, Sehwag et al. formu-
lated robust network pruning as an empirical risk minimization problem 
with a robust training objective[7].
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5.2.3  Efficient and Robust Medical Image Diagnosis System

Many previous researches have analyzed the vulnerability of medical image 
analysis systems against attacks. Ma et al. have shown that complex biologi-
cal textures in medical images lead to more high-gradient regions that are 
sensitive to small adversarial perturbations[1]. Thus researchers attempted to 
defend the networks by various methods. Xue et al.[17] improved the robust-
ness of medical image classification systems by adding an auto-encoder 
on the CNN structure. However, embedding an auto-encoder into a CNN 
increases the complexity of the model. Vatian et al.[18] compared three differ-
ent ways (adversarial training, Gaussian data augmentation, and bounded 
RELU [rectified linear unit]) of decreasing incorrectly recognized images in 
these networks where the most successful way is recognized to be adversar-
ial training. In recent years, many studies applied adversarial training and 
its variants to improve the robustness of medical image analysis systems. For 
instance, Han et al.[19] improved both robustness and interpretation of model 
via adversarial training with dual batch normalization in datasets of X-rays, 
computed tomography, and magnetic resonance imaging scans. However, 
the acceleration of adversarial training has rarely been mentioned in the field 
of medical images.

Daza et al.[17] equip ROG (a novel lattice architecture for Robust Generic 
medical image segmentation, which is designed to segment organs and 
lesions on MRI and CT scans and can exploit increasingly larger recep-
tive fields while preserving high – resolution features) with FreeAT. How-
ever, they did not comparatively explore whether there is a performance 
gap between the FreeAT and the standard AT for medical samples. To the 
best of our knowledge, current research has not jointly considered the light 
weight and interpretability of robust models, which are often key to clinical 
implementation.

5.3  Methodology

The methodology section introduces the free and feature-preserving (FFP) 
framework, designed to enhance adversarial robustness, efficiency, and 
interpretability for medical image analysis. First, it employs a self-guided 
filter to retain organ contours and lesion textures through feature-preserv-
ing regularization, integrating prior diagnostic knowledge. The section then 
details a hybrid distance metric to improve the empirical risk calculation 
in min–max optimization, and it proposes a synchronous update method 
to accelerate adversarial training by updating model parameters and per-
turbations simultaneously. Finally, it discusses model pruning based on 
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robustness scores, focusing on retaining weights that enhance diagnostic 
accuracy, thereby achieving a compact, robust model suitable for clinical use.

5.3.1  Definition and Overview

Formally, for a given data point (x1, y1) sampled from the current C-class 
image dataset Di (x1, y1), its augmentation is denoted as (𝑥̃𝑖, 𝑦̃𝑖)~𝐷, where  
i ∈ {1, L, N}is the number of training examples. We represent f  to be the discrim-
inative model parameterized by q. The input adversarial noise is denoted as  
d, which is bounded by ‖𝛿‖𝑝 ≤ 𝜖.

In this section, we first employ a self-guided filter-based transformation 
for medical feature extraction. The prior information of organ contour and 
lesion texture is injected via a regularization term. Then we integrate hybrid 
distance metrics to formulate the empirical risk of min–max optimization. In 
order to accelerate the training process, we update the parameters and dis-
turbances of the model at the same time. Finally, we automatically search for 
the position of robust weights through optimization based on robust scores 
to achieve a model’s light weight. The diagram of our method is shown in 
Figure 5.1. We now discuss the technical details of our method.

5.3.2  Feature-Preserving Regularization

We first consider to leveraging strong prior knowledge acquired from practical 
diagnostic experience. In medical image diagnosis, organ contour and tis-
sue texture are important information. Accordingly, we designed a feature-
protected regularization mechanism to inject this prior information. Inspired 

FIGURE 5.1
Overall framework of the proposed FFP.
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by previous work, we adopt guided filter augmentation[2] to smooth artifacts 
and other interferences without losing texture edges details. We regard the 
image as a two-dimensional function that cannot be written analytically. 
Based on this, we assume that the output of the guided filter is linearly 
related to the input in a two-dimensional window. We assume the guidance 
image in pixel i is I i( ), and the filtered output image is x The transformation 
can be formulated as:

𝑥̃𝑖  = 𝑎̅𝑘 𝑥𝑖 +𝑏 ̅𝑘, ∀∈ 𝜔𝑖

where k is the position index of a local rectangle filter window É with size ak  
and bk are the average of linear coefficients ak  and bk, respectively, which can 
be optimized by minimizing the difference between the output xi and the 
input pixel xi. In order to avoid introducing deviations outside the current 
class, we assume the natural input image X as the self-guidance term I. The 
solution of this linear ridge regression is given as:
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Here, µk  and sk  are mean and variance of I in the window kth.xk is the 
average of X in Ék , and we use a scaling temperature I to control the degree 
of smoothness. Since the filter is an edge-preserving function, the machine 
noise and ground glass in original scans will be dropped, leaving only a 
few trachea tissues and pulmonary nodules. The prediction error for filtered 
image is used as a regularization term to impose a more interpretable and 
robust constraint. Considering TRADES loss as the AT objective, the final 
training objective TRADES is as follows:

L L LTRADES f x y f x y KL f
p

= ⋅ ( )( )+ −( )⋅ ( )( )+ ⋅
≤

α α βθ θ δ θ1 21, , max
||||



ε
xx f x( ) +( )( )θ δ

Our regularization forces the medical image with prominent features to 
have similar prediction with the original instance. Compared with the fre-
quency domain-based and interpolation-based methods, we highlight the 
semantic structures and global visual cues.

5.3.3  Synchronous Optimization Based on Hybrid Metrics

We improve the adversarial loss function with distance metric to substi-
tute 2  in LTRADES. Considering a well-trained model that achieves high 
accuracy on both natural and adversarial data distributions, we believe 
that the input robustness should not completely depend on how the model 



96 Cutting-Edge Artificial Intelligence

measures a specific distribution shift in the adversarial training process. 
Starting from this point, we attempt to make some changes to the original 
adversarial framework with different distance metrics. In previous studies, 
cross entropy loss is often used as the natural loss function of adversarial 
training. However, When the input of cross entropy loss is a one-pot label, 
part of the information with the vector median value of 0 will be discarded. 
A metric satisfying the distance axioms, such as square loss, will retain the 
distance from the model output to the label outside the ground truth. In FFP 
framework, with the purpose of making full use of label information while 
maintaining invariance, we denote the class posterior probability as p (xkxi) 
p y xk i( ). Following Golik et al.[3], the square error can be written by:

ℒ𝑠𝑒 = Σ Σ[𝑝(𝑦𝑘 |𝑥𝑖) − 𝜓(𝑦𝑘, 𝑦𝑖)]2

where ψ (∙,∙) is the Kronecker function. Our final optimization objectives can 
be summarized as follows:

L L LTRADES ce sef x y f x y KL
p

= ⋅ ( )( )+ −( )⋅ ( )( )+ ⋅
≤

α α βθ θ δ
, , max

||||
1 

ε
ff x f xθ θ δ( ) +( )( )

In the inner loop of the K-PGD adversarial training algorithm, the gra-
dient ∇ ( )x advl x y, ,q  for updating adversarial examples requires a forward–
backward pass of the entire network, which has similar computation cost 
as calculating the gradient ∇ ( )q ql x yadv , ,  for updating network parameters. 
Inspired by previous work, FreeAT, our adversarial training algorithm com-
putes the ascent step by reusing the backward pass needed for the descent 
step. Rather than using separate gradient computations for each update step, 
we update both the model parameters and image perturbations using one 
simultaneous backward pass. To update the network parameters, the current 
training minibatch is passed forward through the network. Then the gradi-
ent with respect to the network parameters is computed on the backward 
pass, while the gradient of the loss with respect to the input image is also 
computed on this same backward pass.

Algorithm 1 Free and Feature-Preserving Adversarial Training (FFP-m)

Require: Training samples x, perturbation bound Ò, learning rate t , hop 
steps m
 1: Initial θ, δ ← 0

 2: J E x y x y x yx y D kθ α α β δ( )= ⋅ ( )+ −( )⋅ ( )+ ⋅ +( )



( )∈, , , ,� � ��ce se l1

 3: forepoc = 1L N/m do
 4: for minibatchBÎ x do
 5: for i = 1L N/m do
 6: Update q with stochastic gradient descent:
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 7: g Jq q← ( )
 8: g l x yadv x←∇ +( )δ θ, ,

 9: θ θ τ← − gq

10: �Use gradients calculated for the minimization step to 
update d .

11: δ δ← + ⋅ ( ) sign gadv

12: δ δ← −( )clip , , 
13: end for
14: end for
15: end for

Unfortunately, this approach does not allow for multiple adversarial 
updates to be made to the same image without performing multiple back-
ward passes. Thus we perform training on the same minibatch m times 
in a row for multiple adversarial updates. This strategy provides multiple 
adversarial updates to each training image, thus providing strong/iterative 
medical adversarial examples. Finally, when a new minibatch is formed, the 
perturbation generated on the previous minibatch is used to warm-start the 
perturbation for the new minibatch.

5.3.4  Model Light Weight Based on Robustness Score

Even if we accelerate adversarial training, it still requires a significant amount 
of computing resources to deploying robust models that are larger than reg-
ular models. To make the robust model compact, we consider pruning the 
pretraining network. However, simply inheriting the heuristic assumption 
that connections with the least magnitude are unimportant in the presence 
of robust training will incur a huge performance degradation with adver-
sarial training. Inspired by previous work, HYDRA[1], we formulate pruning 
as an empirical risk minimization problem (ERM) with the FFP robust opti-
mization objective.

Instead of random values, we initialize feature-preserving scores (FPS) 
proportional to pretrained network weights. With scaled initialization, we 
thus give more importance to large weights at the start and let the optimizer 
find a better set of pruned connections:

s
max

i

pretrain i

pretrain i
0 1( ) ∝

( )
×

q
q

,

,

where qpretrain i,  is the weight corresponding to ith layer in the pretrained net-
work. We normalize each layer weight to map it to −[ ]1 1,  range. Given a pre-
trained network, we optimize FPS for each connection in the pruning step. 
Connections with the lowest FPS are pruned away:
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qm refers to the element-wise multiplication of mask (m) with the weight 
parameters (q ). The predefined pruning ratio of the network can be written 

as 1-
n
N

, where n is the number of parameters we keep after pruning, and 

N pretrain= θ  is the total number of parameters in the pretrained network. It 
assigns an FPS (floating point) to each weight, indicating its robustness to the 
predictions on all input samples, and optimizes based on the score. While 
making a prediction, it only selects the top k weights with the highest mag-
nitude of FPS. However, on the backward pass, it will update all scores with 
their gradients. As a result, we can introduce prior knowledge of medical 
image features into pruning, automatically removing weights that are not 
conducive to accurate diagnosis.

5.4  Experiments

The experiments section evaluates the proposed FFP framework on the 
SARS-COV-2 CT dataset, which includes 1252 COVID-19 and 1230 non-
COVID-19 CT scans. Using ResNet-50 and DeiT-Tiny backbones, we com-
pare FFP with baselines such as FGSM, FreeAT, and TRADES in terms 
of adversarial robustness and training efficiency. Results show that FFP 
achieves competitive robustness with reduced computational cost. The 
pruning effectiveness of FFP is further assessed, demonstrating a sub-
stantial reduction in model size while maintaining performance. Ablation 
studies validate the impact of key FFP components, including feature-pre-
serving regularization and hybrid distance metrics. These findings suggest 
that FFP offers an efficient, robust, and lightweight solution for medical 
image diagnosis.

5.4.1  Dataset

In this chapter, we introduce a public COVID-19 CT databases for evalua-
tion, i.e., SARS-COV-2[4]. The dataset is composed of 1252 CT scans of patients 
infected by the SARS-COV-2 virus and 1230 CT scans of patients who were 
non-infected by SARS-CoV-2 but who had other pulmonary diseases. Data 
was collected from hospitals of Sao Paulo, Brazil (2482 CT scans in total). 
Figure 5.2 illustrates some examples of the dataset.
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5.4.2  Setting

In this chapter, we use ResNet-50 and DeiT-Tiny as our backbones. We 
divided the dataset into 80% for training purposes and 20% for validation 
purposes. Images are resized to 224 224× . For adversarial pretraining, the 
proposed method FFP is compared with a series of AT baselines, i.e., FGSM[1], 
FreeAT[3], TRADES[2]. We choose AdamW optimizer with a cosine annealing 
learning rate of 0.0001 with 10 decay steps. Attacks are conducted for 10 steps 
with step size of 2/255 and l¥ perturbation budget = 8 255/ . We set radius 
r  = 9, regularization eps= 0 001.  with a kernel size of 16. For resnet50, we 
trained the model for 300 epochs, and for DeiT, we trained 600 epochs. We 
set different pruning rates k to lighten the model (the pruned network layer 
retains a parameter of k%). The training parameters of the pruning process 
are the same as those of the pretraining, and the number of training rounds 
and learning rate can be appropriately reduced when fine-tuning.

FIGURE 5.2
Sample CT images from the SARS-COV-2 dataset that we used for evaluation: (a) COVID and 
(b) non-COVID.
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5.5  Results

The results section demonstrates the effectiveness of the proposed FFP frame-
work through comprehensive adversarial testing and robust model pruning 
experiments. FFP has achieved improved adversarial robustness across vari-
ous attack methods and strengths, outperforming baseline models on both 
ResNet-50 and DeiT-Tiny backbones. The framework also retained high accu-
racy with significant model pruning, achieving up to 99% weight reduction 
while maintaining performance superior to traditional pruning methods. 
Visualization using GradCAM++ showed that FFP enhances interpretability 
by focusing on lesion areas. An ablation study confirmed the contributions 
of key FFP components, Feature-preserving regularization (FPR) and hybrid 
metric-based optimization (HMO), in boosting robustness and interpret-
ability, making FFP a promising approach for efficient and reliable medical 
image analysis.

5.5.1  Adversarial Pretraining

To evaluate the performance of our proposed method, we employ a wide 
range of white box adversarial attacks with a l¥  threat model: FGSM[1] 
and PGD[2]. As reported in Table  5.1, we achieve the best comprehensive 

TABLE 5.1

Comparison of Our Adversarial Training Approach (FFP) with TRADES, FGSM, 
and FreeAT

ResNet50

Method Clean
10-PGD 
(4/255)

10-PGD 
(8/255)

100-PGD 
(8/255)

FGSM 
(8/255)

10-PGD 
(16/255) Time

Base 0.9819 \ \ \ \ \ 66 m 36s
TRADES 0.9416 0.9195 0.8873 0.8832 0.8953 0.8269 879 m 59 s
FGSM 0.9819 0.9235 0.7867 0.7625 0.8551 0.4305 294 m 59 s
FreeAT 0.9356 0.8954 0.837 0.829 0.8531 0.7123 170 m 56 s
FFP (Ours) 0.9537 0.9195 0.8692 0.8632 0.8813 0.7767 211m 53 s

DeiT-Tiny

Method Clean
10-PGD 
(4/255)

10-PGD 
(8/255)

100-PGD 
(8/255)

FGSM 
(8/255)

10-PGD 
(16/255) Time

Base 0.9517 \ \ \ \ \ 124 m
TRADES 0.9497 0.9074 0.8289 0.827 0.8551 0.6962 614 m 51 s
FGSM 0.9638 0.1751 0.0684 0.0362 0.996 0.0241 69 m 3 s
FreeAT 0.9457 0.8692 0.7325 0.6881 0.8148 0.5654 122 m 16s
FFP (Ours) 0.9638 0.9014 0.8149 0.7762 0.8813 0.6962 151 m 2 s



101FFP

performance on the resnet-50 and DeiT under different attack methods and 
attack intensities. Results demonstrate that, for Resnet-50, we have achieved 
an average improvement of 0.074%, 3.847%, and 1.556%, respectively, on clean 
samples, samples attacked by PGD-10 (= 8 255/ ) and FGSM (= 8 255/ )  
compared with three SOTA baselines. For DeiT-Tiny, we gain an average 
improvement of 1.699%, 4.380%, and 5.259%, respectively, on clean samples 
attacked by PGD-10 (= 8 255/ ) and FGSM (= 8 255/ ), compared with 
two SOTA baselines (except FGSM). Although FGSM has the shortest train-
ing time, it does not perform well on adversarial samples, especially those 
under strong attacks. When training based on the DeiT model, FGSM can 
hardly resist PGD attack. Compared with TRADES, our method can save 4–5 
times of training time while maintaining a comparable performance and has 
higher accuracy in clean samples and samples attacked by a small perturba-
tion budget. Research shows that the performance of FreeAT is close to that 
of PGD on natural images, while our experiments show that the acceleration 
of FreeAT on medical images will sacrifice more performance. Our method 
can focus on the details of the steep gradient area of the medical image while 
accelerating the training, thus achieving better clean accuracy and robust 
accuracy than FreeAT.

5.5.2  Robust Model Pruning

Table 5.2 shows the lung CT data of novel coronavirus under three pruning 
ratios and two network architectures set of experimental results. The results 
indicate that, compared to the LWM pruning algorithm, our construction 
framework can maintain more robust weights without sacrificing clean accu-
racy. On the Deit-Tiny model, our method can still achieve a clean sample 
accuracy of 92.56%, a PGD-10 adversarial accuracy of 74.25%, and a FGSM 

TABLE 5.2

Comparison of Our Robust Pruning Framework with LWM

Model k

FFP (Ours) LWM

Parameters
File 
SizeClean

10-
PGD FGSM Clean

10-
PGD FGSM

ResNet50 1.00 0.9638 0.8149 0.8813 0.9638 0.8149 0.8813 100.00% 94.4M
0.10 0.9336 0.8813 0.8933 0.4426 0.4426 0.4426 48.75% 86.2M
0.05 0.9235 0.8531 0.8571 0.4426 0.4426 0.4426 45.90% 48.9M
0.01 0.9235 0.8753 0.8813 0.4426 0.4426 0.4426 43.62% 19.2M

DeiT-Tiny 1.00 0.9638 0.8149 0.8813 0.9638 0.8149 0.8813 100.00% 22.1M
0.10 0.9537 0.8511 0.8672 0.9517 0.7386 0.8430 11.13% 11.5M
0.05 0.9457 0.7847 0.7666 0.9456 0.7002 0.7786 6.19% 5.91M
0.01 0.9256 0.7425 0.7384 0.8531 0.5915 0.6056 2.24% 1.45M
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adversarial accuracy of 73.84% at a high pruning rate of 0.01 (i.e., with 99% 
weight removed). Compared to LWM, our method has improved robust 
accuracy by 7.25%, 15.10%, and 13.28%, respectively, with a greater improve-
ment compared to low pruning rates. In addition, networks pruned using 
our method are more likely to converge at very high pruning rates. For the 
ResNet-50 network, when the pruning rates are 0.1, 0.05, and 0.01, LWM can-
not converge, but our method can maintain excellent performance of the 
pruned model.

5.5.3  Visualization

We investigated the influence of our method on the interpretability of con-
volutional neural networks. The visualization tool we have chosen is Gad-
CAM++. From Figure 5.3, it can be seen that our adversarial training method 
FFP can better focus on the lesion area. From Figure 5.4, it can be seen that 
our pruning algorithm maintains good interpretability at a high pruning 
rate of 0.01.

5.5.4  Ablation Study

To further gain insights into the performance of our method, we performed 
an ablation study based on FreeAT for the reinforcement module of FFP 

FIGURE 5.3
GradCAM++ results of different adversarial training methods (Deit-Tiny).

FIGURE 5.4
GradCAM++ results of different pruning algorithms (Deit-Tiny), where k represents pruning 
rate.
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framework, including FPR (feature-preserving regularization) and HMO 
(hybric metric-based optimization). As shown in Table 5.3, both components 
improve the generalization, robustness, and interpretability of the model. 
First, we study the impact of HMO on adversarial training, that is, whether 
it produces better robustness and curtails the vulnerability of the network. 
One can observe that HMO improves the adversarial accuracy (1.41% for 
PGD-10 and 1.81% for FGSM). Note that the clean accuracy for FreeAT-HMO 
is approximately the same as FreeAT, which indicates that HMO may have a 
limited effect on standard accuracy but has a substantial impact on robust-
ness. Second, we investigate the impact of FRP on adversarial training. We 
know from these results that FPR for adversarial training can improve the 
clean accuracy (1.21%) and robust accuracy (1.61% for PGD-10, 1.81%) of the 
model at the same time. In addition, incorporating the two components 
together can further boost the performance (1.81% for clean, 3.22% for PGD-
10, and 2.82% for FGSM).

5.6  Conclusion

In this chapter, we propose a free and freature-preserving (FFP) framework 
to improve the model-wise adversarial robustness in medical image classifi-
cation task. The feature-preserving regularization is first introduced to inject 
a priori knowledge of organ contour and lesion texture into networks. We 
further optimize the min–max problem via distance metric. In addition, We 
accelerate the adversarial training by synchronously updating the gradient. 
Finally, we train the pruning mask based on the optimization target of FFP 
to compress the model size. We experimentally validate FFP framework on 
two model architectures against recent baseliness; results demonstrate that 
our method significantly improves the adversarial robustness and interpret-
ability in medical imaging diagnosis.

TABLE 5.3

Results of Ablation Experiment: Effectiveness of Two Key Enhancement 
Components in the FFP Framework Are Validated

HMO FPR Clean PGD-10 FGSM

× × 0.9356 0.8370 0.8531
√ × 0.9396 0.8511 0.8712
× √ 0.9477 0.8531 0.8753
√ √ 0.9537 0.8692 0.8813
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6
Grey Prediction Model Based on Fixed-Point  
Accumulation and Its Application to Predict 
Natural Gas Futures Contract Price

Lianyi Liu, Junliang Du, and Sifeng Liu

6.1  Introduction

6.1.1  Background and Purpose of the Study

Amid growing global emphasis on environmental protection and a low-
carbon economy, natural gas, as an efficient and clean energy source, has 
become increasingly vital in energy restructuring. Compared to traditional 
fossil fuels, natural gas offers higher combustion efficiency and lower emis-
sions, making it widely used in power generation, industrial applications, 
and residential needs [1]. In recent years, global demand for natural gas has 
surged, particularly in emerging markets and developing countries [2]. How-
ever, demand forecasting remains challenging due to the influence of mul-
tiple factors, including economic development, climate conditions, seasonal 
fluctuations, energy prices, and policy interventions.

Accurate natural gas demand forecasting is crucial not only for managing 
energy supply chains but also for ensuring scientific energy dispatch and 
effective policy-making. Accurate demand forecasts help optimize supply 
and demand planning, reduce waste and storage costs, and improve resource 
efficiency [3]. Especially against the backdrop of global energy transitions, 
the clean energy profile of natural gas is becoming more pronounced, mak-
ing demand forecasting a key area of focus for energy management in many 
countries [4].

While the demand and value of natural gas forecasting are rising, it 
still faces significant challenges. The complexity of natural gas demand 
stems from the combined effects of macroeconomic conditions, seasonal 
changes, policy interventions, and climate variables, leading demand data 
to exhibit nonlinear and cyclical characteristics [5]. Current time series 
models, such as ARIMA and exponential smoothing, rely on assump-
tions of linearity and stationarity, which often fall short in capturing the 
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complex fluctuations in natural gas demand [6]. To address these limita-
tions, machine learning and deep learning models, such as support vec-
tor regression and long short-term memory networks, have been widely 
applied to natural gas demand forecasting in recent years [7]. However, 
these models typically rely on large datasets and lack sufficient interpret-
ability, making them challenging to use directly for policy-making [8]. 
Relying solely on machine learning is insufficient to fully address the com-
plexities of demand forecasting [9].

In contrast, grey forecasting models, known for their suitability for small 
samples and uncertain systems, are gaining attention in natural gas demand 
forecasting. Grey models leverage fuzzy modeling to provide stable fore-
casts in limited and uncertain data environments. However, classic grey 
models still face limitations when dealing with highly nonlinear and multi- 
factor-driven systems. Recently, the integration of novel accumulation opera-
tors and nonlinear functions has opened new avenues for applying grey fore-
casting models in complex settings.

Based on these considerations, this study proposes an improved discrete 
grey model using a fixed-point cumulative operator. By combining grey 
system theory with buffer operator methods, this model aims to enhance 
adaptability and predictive accuracy in small-sample environments. By 
incorporating the nonlinear relationships of multiple factors, this model 
seeks to capture the dynamic trends in natural gas demand more accurately, 
offering an innovative approach to addressing the nonlinear and uncertain 
aspects of natural gas demand forecasting.

6.1.2  Literature Review of Grey Prediction Algorithms

Grey system theory is a combination theory of the automatic control science 
and operational research mathematical methods, which is often used in the 
modeling of uncertain systems. Diverging from conventional approaches 
such as fuzzy mathematics and rough set theory, grey system theory is spe-
cifically tailored to address the modeling intricacies inherent in scenarios 
characterized by limited data and pervasive uncertainty [10]. The notion 
of a grey system typically pertains to intricate systems besieged by scant 
information availability, exemplified by ambiguous market conditions or 
regions with deficient statistical data. Central to the tenets of grey system 
theory is the meticulous extraction and utilization of available information 
to navigate the labyrinth of uncertain systems [11]. Traditional prediction 
methodologies, such as the empirical model [12], moving average model [13], 
neural network [14], and support vector regression [15], predominantly rely 
on extensive statistical datasets for modeling and analysis, imposing strin-
gent prerequisites on data types and sample sizes. Nonetheless, during the 
nascent stages of system development, conventional methodologies often fal-
ter in rendering precise analyses owing to a paucity of information. In stark 
contrast, the grey model exhibits remarkable efficacy, requiring a mere four 
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data points for robust modeling and analysis. This unique advantage under-
scores its proficiency in compensating for the shortcomings associated with 
the analysis of “data-poor” scenarios. The essence of the grey model lies in 
its treatment of stochastic variables as manifestations of grey actions, repre-
senting temporal and spatial fluctuations within a continuum spanning from 
“white” to “black.” By harnessing the mechanisms of accumulation, genera-
tion, and whitening differential equations, the grey model unveils the under-
lying evolution patterns latent within the data, effectuating a transformative 
journey from “grey” to “white.” This study delves into the iterative process of 
data accumulation, culminating in the proposal of a novel grey accumulative 
generating operator aimed at enhancing the adaptive versatility of the grey 
model within complex systems.

Numerous scholars have made significant contributions to refining the 
structural underpinnings, delineating modeling conditions, and conducting 
theoretical analyses, thereby augmenting the theoretical scaffold of the grey 
model in discrete and nonlinear modeling. Substantial advancements have 
been achieved across several key domains, as follows:

Optimization of Model System Parameters: The correction of the 
background value can obtain the more accurate integral solution 
of the grey model, and can greatly reduce the systematic error [16]. 
The traditional background value is calculated by fixed geometric 
trapezoidal area, which has weak structural compatibility and poor 
generalization performance. A common method is to introduce an 
adaptive optimization factora into the background value generation 
equation z k x k x k1 1 11 1( ) ( ) ( )( )= ( )+ −( ) +( )a a , so as to reduce the estima-

tion error of the background value [17]. The basic form (
d
d

x
t

ax b+ = )  

of the grey model consists of two system parameters, development 
coefficient a , and grey action b . The pursuit of optimal parameter 
solutions has emerged as a primary objective in enhancing predic-
tion efficacy. Liu et al. [18], for instance, innovatively employed the 
Weibull cumulative distribution function to fashion a double-shape 
parameter, deviating from conventional static parameters. This 
novel approach substantially bolstered the grey model’s aptitude 
for fitting impure exponential sequences. Furthermore, the integra-
tion of intelligent algorithms for parameter optimization within 
the grey model has garnered widespread scholarly interest. Tech-
niques such as the particle swarm optimization (PSO) algorithm 
[19], the differential evolution method [20], the mixed gradient 
descent method [21], and various heuristic algorithms have been 
explored in this context. The optimization of parameter identifica-
tion methodologies represents a critical facet of modeling, neces-
sitating judicious selection in alignment with model structure and 
data characteristics.
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Structural Improvement of the Grey Differential Equation: The intro-
duction of the discrete grey model (DGM) [22] represents a signifi-
cant stride, rectifying the inherent instability plaguing traditional 
prediction models. Subsequent endeavors have focused on devising 
more adaptable model structures to cater to the diverse modeling 
requirements across various data characteristics [23]. Exploiting the 
interplay between univariate and multivariable, discrete and con-
tinuous time models, Wei and Xie [24] introduced a unified frame-
work for research and computation, facilitating the evaluation of 
multistep advance predictions. Moreover, extensions incorporating 
Fourier functions, time-delay effects, and seasonal factors [25] have 
substantially enriched the framework of the grey prediction model, 
broadening its applicability and efficacy.

Improvement of Buffer Operator: In modeling processes, the output 
results of systems affected by disruptive influences often deviate 
from anticipated qualitative analyses, underscoring the necessity of 
accounting for system disturbances. Confronted with the challenge 
of erratic growth rates in raw sequence data, the traditional mov-
ing average operator exhibits limited adaptability, failing to ensure 
sequence smoothness. The introduction of a novel fractional buffer 
operator has demonstrated considerable potential in minimizing 
prediction errors and exhibits promising performance in applica-
tions such as shale gas production forecasting [26]. In essence, the 
buffer operator serves to mitigate the stochastic interference inher-
ent in the original data, thereby endowing the grey system model 
with enhanced generalization capabilities.

Optimization of Grey Accumulative Generating Operator: Wu et al. [27] 
posited that distinctions exist among information, implying that data 
from disparate time nodes exert varying impacts on future data. In 
response, they introduced the fractional accumulative generating 
operator to handle the “in-between” information situated between 
adjacent data points. Subsequently, Ma et al. [28] advanced a novel 
conformable fractional grey model, streamlining the fractional calcu-
lation process. Furthermore, leveraging the concept of variable weight 
accumulation, a novel grey generating operator was introduced to 
modulate the weight of incoming information [29]. Recognizing the 
tendency for predicted results to exhibit expansion rates exceed-
ing anticipated expectations, a damped accumulative method was 
devised to refine predictive outcomes [30]. Additional enhancements, 
including convolution accumulation, reverse accumulation, and gen-
eralized accumulation, represent refinements of the first-order accu-
mulation generating operator (1-AGO). Given the pivotal role of the 
accumulation process in transitioning data information from “grey” 
to “white,” adherence to the “new information priority” [31] principle 
remains imperative in innovating the grey generating operator.
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6.1.3  Contributions of the Study

Given the importance of natural gas demand forecasting in energy 
management and the limitations of existing methods, this study aims 
to develop a forecasting model capable of addressing data uncertainty 
and complex nonlinear relationships to enhance prediction accuracy and 
applicability. Based on these advancements, grey models have garnered 
widespread utilization in modeling scenarios characterized by limited 
data availability. This chapter’s principal contribution and innovation 
reside in the exploration of modified grey models tailored specifically for 
energy price forecasting. The primary innovations of the proposed mod-
ified grey model are delineated as follows: (1) The model meticulously 
adheres to the modeling principle of “new information priority.” Employ-
ing variable accumulation weights, the model assigns greater importance 
to recent information x n0( ) ( ), thereby accentuating the timeliness of data. 
Subsequently, particle swarm optimization (PSO) is employed to ascertain 
the optimal accumulative parameters. (2) Leveraging matrix perturbation 
theory, the paper scrutinizes the impact of original data perturbations 
on predicted values. (3) In contrast to existing accumulative generating 
operators, the proposed FPAGO boasts simpler operational guidelines. 
Through the presentation of three numerical examples, the applicabil-
ity of FPAGO in addressing practical prediction challenges is empirically 
demonstrated.

6.2  Preliminaries

In this section, we give the definition of the grey model and some of its 
important properties. Then the fixed-point axiom of grey system and the 
effectiveness of basic buffer operator are analyzed.

6.2.1  Original GM (1,1) Model

GM (1,1) is the basic form of the grey model, which has been widely used 
in the “poor data” forecasting problems in many fields. The modeling pro-
cess of GM (1,1) mainly includes the steps of 1-AGO, background value gen-
eration, differential equation modeling, and response reduction solution. 
Among them, the data accumulation is the basis of grey model modeling, 
which ensures that the accumulation sequence meets the grey exponential 
characteristic of modeling.

Definition 1: ([1]) With the original sequence X x x x n0 0 0 01 2( ) ( ) ( ) ( )= ( ) ( ) ( ){ }, , , ,  
the 1-AGO is defined as
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                          x k x i
i

k
1

1

0( )

=

( )( )= ( )∑ .	 (6.1)

After the operation of 1-AGO, X 1( ) can be used in the differential equation 
modeling of the grey model. Then the main modeling steps of GM (1,1) are 
as follows:

Step 1: Assume X 1( ) and X 0( ) are defined as in Definition 1, 
d
d

x
t

ax b+ =  is 

the differential equation of GM (1,1), then we can get that the integration form 

of GM (1,1) is 
k

k

k

k

k

k
x t t a x t t b t

+ ( ) + ( ) +

∫ ∫ ∫( ) = ( ) +
1 0 1 1 1

d d d . Thus its approximate 

discrete form can be given as

                        x k az k b0 1( ) ( )( )+ ( )= .	 (6.2)

where the parameters a  and b  are called the growth coefficient and 
grey action value, respectively. z k1( ) ( ) is the background value in which 

/z k x k x k1 1 11 1 2( ) ( ) ( )+( )= ( )+ +( )( ) .
Step 2: The least square method can be used to estimate the parameters, 
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Step 3: Notice that the initial value is x̂ x1 01 1( ) ( )( )= ( ) and that the response 
function of GM (1,1) is

                    x̂ k x
b
a

e
b
a

ak1 01 1( ) ( ) −+( )= ( )−






 +  	 (6.4)

Step 4: By the inverse operation of 1-AGO, the reduced value can be 
obtained as

              ˆ ˆ ˆ , , ,x k x k x k k0 1 11 1 2 3( ) ( ) ( )+( )= +( )− ( ) = .	 (6.5)
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Step 5: The mean absolute percentage error (MAPE) is used to test the accu-
racy of the prediction results, as follows:

                MAPE=
( )− ( )
( )

×
=

( ) ( )

( )∑1
100

1

0 0

0n

x k x k

x kk

n ˆ
%.	 (6.6)

Compared with other time series forecast algorithms, we can find that the 
data accumulation operation is a unique modeling tool of the grey model, 
which enables the grey model to have better prediction performance for 
exponential trend time series. However, GM (1,1) is only applicable to expo-
nential trend data series. In the face of a nonlinear trend sequence, the fixed 
1-AGO operation greatly limits the predictive ability of the model and may 
lead to inevitable modeling errors. In the process of accumulation, the impor-
tance of new information is not reflected. Therefore, it is necessary to prop-
erly optimize 1-AGO.

6.2.2  Fixed-Point Axiom and Grey Buffer Operator

The impact disturbance system has always been an important problem in the 
prediction field, which has become a great obstacle to the quantitative predic-
tion [1]. This is mainly because the collected statistical data is often distorted 
due to the interference received by the system itself; that is, the system data 
fails to correctly describe the actual regularity of the system change. In this 
case, the original data should be preprocessed to eliminate the interference 
of distorted data.

The fixed-point axiom stipulates that, under the action of sequence oper-
ator, the latest data x n( ), which is the basis of future trend development, 
remains unchanged. Thus it can eliminate the system interference of previ-
ous imprecise data to the greatest extent. Based on the fixed-point axiom, a 
simple grey buffer operator is defined as follows:

Definition 2: Assume a raw sequence is X x x x n= ( ) ( ) ( ){ }1 2, , , , D1 is the 

buffer operator, the sequence XD x d x d x n d1 1 1 11 2= ( ) ( ) ( ){ }, , ,  is the buffer 

generation sequence, defined as

        x k d x k x n x k x n x k( ) = ( )+ −( ) ( )= ( )+ −( ) ( )− ( )( )1 1 1l l l . 	 (6.7)

If l<1, then the D1 is the weakening buffer operator. If l> 1, then the D1 is 
the strengthening buffer operator.

To verify the validity of the buffer operator, a set of random numbers  
obeying normal distribution is generated as X ={0 8699 1 1028 2 0735. , . , . ,
1 8308 0 5950 1 9105. , . , . } , and its standard deviation is 0.6192. The effect of the 
buffer operator on the original sequence is shown in Figure 6.1. As we can 
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see, when l= 0 7. , the new sequence becomes smoother than the original 
one, and the standard variance of sequence XD1 is 0.4334. Meanwhile, the 
latest data x n( ) remains unchanged, which serves as the basis for our next 
prediction.

6.3  Fixed-Point Cumulative Discrete Grey Model

According to the fixed-point axiom, this section gives the definition of 
fixed-point accumulation and establishes a new grey prediction model. The 
important properties and parameter solution of the proposed model are also 
given.

6.3.1  Fixed-Point Accumulation Grey Generating Operator

Reasonable data accumulation generation technology is beneficial to reduc-
ing modeling error and improving the accuracy of prediction [32]. The tradi-
tional 1-AGO does not conform to the “new information priority” principle, 
and its fixed model structure also limits the adaptation range of the model. 
To improve the accuracy of prediction, a modified grey generating operator 
FPAGO is proposed as follows:

FIGURE 6.1
Mechanism of fixed-point buffer operator.
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Definition 3: X x x x nl l l l( ) ( ) ( ) ( )= ( ) ( ) ( ){ }1 2, , ,  is the l-order fixed-point 

accumulative sequence of X 0( ), and the l-order (0 1< ≤l ) FPAGO can be rep-
resented as

          x k x i k x n k n
i

k
l l l( )

=

( ) ( )( )= ( )+ −( ) ( ) =∑
1

0 01 1 2, , , , .	 (6.8)

FPAGO is an optimization of 1-AGO. The 1-AGO regarded data as infor-
mation points of equal importance, then performed fitting and reduction 
operations through differential equations. However, it is very unreasonable 
to have the same data weights for all data points. If the raw sequence does 
not have the approximate exponential trend, the prediction effect of the grey 
model will be limited. In order to improve the data processing effect, the new 
information priority principle is an important basis for grey system theory 
modeling. By setting a fixed point, the proposed FPAGO is able to adjust the 
cumulative sequence, so that new information has a greater weight on the 
predicted results. Meanwhile, the selection of the cumulative parameter l is 
an adaptive process, which can ensure that the new sequence is more in line 
with the modeling needs of exponential fitting than the traditional method. 
Then the following properties of FPAGO can be concluded:

Property 1: The fixed-point accumulative sequence X l( ) is a monotone 
increasing sequence.

Property 2: The accumulated parameter l can adjust the weight of the lat-
est data. The smaller l is, the greater weight it has.

6.3.2  Fixed Point Cumulative Discrete Grey Model

The differential equation 
d
d

x
t

ax b+ =  is the traditional form of grey model. 

However, in many practical cases, the fitting effect of the model will be 
greatly reduced due to systematic errors in the construction of background 
values (see Eq. [6.2]). Thus we use the DGM [24] instead of the traditional 
form to establish the fixed-point accumulative discrete grey model (FPDGM). 
The discrete formula is as follows:

                        x k x k( ) ( )( ) ( )λ λβ β+ = +1 1 2 .	 (6.9)

The system parameters of the Eq. (6.9) is solved by the least square method 
that

                        ˆ ˆb b1 2

1



 = ( )−
T

B B B YT T .	 (6.10)
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The initial point is set as x̂ xl( ) ( )( )= ( )1 10 ; then the fitting results of FPDGM 
is given:

                  ˆ ˆ ˆ ˆ , , ,x k x k kλ λβ β( ) ( )+( )= ( )+ =1 1 21 2 .	 (6.12)

The fitting sequence ˆ ˆ ˆ, ,X x xl l l( ) ( ) ( )= ( ) ( ){ }1 2   is the fitting results of X l( ). 

Thus the predicted results can be obtained, as follows:

ˆ
ˆ ˆ ˆ

, , , , ,
x k

x k x k x n
k n n0

01 1
1 2 1( )

( ) ( ) ( )

( )=
( )− −( )− −( ) ( )

= −
l l l

l
 ++ +

( )− −( ) =










( ) ( )

1 2

1

, ,

,ˆ ˆ

n

x n x n k n



l l

.� (6.13)

Unlike 1-AGO, the inverse of FPAGO should first calculate the predicted 
fixed-point value x̂ n0( ) ( ). The fixed point is the basis for us to calculate the 
fitting results and the next prediction. In addition, when the accumulative 
parameter of FPDGM model satisfies l¹ 1, the predicted result of the initial 
value satisfies x̂ x0 01 1( ) ( )( )≠ ( ). The traditional grey model takes initial point 
x̂ x0 01 1( ) ( )( )= ( ) as the basis of the further forecast (see Eq. (4)), but the infor-
mation of the initial value is not used effectively. A common method is to 
assume the initial condition as x̂ x c1 01 1( ) ( )( )= ( )+  [17], and the variable c is 
solved by minimizing the fitting error, which may bring huge computational 
complexity. Based on the fixed-point axiom, FPDGM can smooth the initial 
data, and the prediction results depend on the information priority of the 
fixed point. Therefore, it is clear that the grey prediction model with FPAGO 
is more reasonable than 1-AGO.

6.3.3  Analysis of Modeling Conditions

The use of each model must meet certain modeling conditions. The quasi-
exponential regularity of original sequence acts as an important modeling 
condition to evaluate the data reliability [33]. For an equidistant data sample, 
the grey model modeling criteria are as follows:
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Lemma 1: ([1]) Assume Y y yn={ }y1 2, , ,  is the raw time series; then it has 
the following provisions:

	 1.	∆ = −+( )k y yk k1  represents information difference.

	 2.	s( )k
y

y
k

k

=
+1

 is the stepwise ratio of the sequence Y . If "k ,s( ) ,k a b∈[ ], 

b a− = d , then the sequence Y  obeys the grey exponential regularity 
with absolute grey value. When d< 0 5. , the sequence Y  is considered 
to have a quasi-exponential regularity.

	 3.	r( )k
y

y
k

ii

k+ = +

=∑
1 1

1

 is the smooth ratio of the sequence Y .

		  If Y  satisfies

r
r
( )

( )
k

k
+
<

1
1 and r( ) , .k+ ∈[ ]1 0 0 5 ,

the sequence Y  is regarded as the quasi-smooth sequence, and its first-order 
accumulation generating sequence has a quasi-exponential regularity.

The stepwise ratio is an index describing the randomness of data series. 
After the accumulation generation operation, the randomness of the accumu-
lative data series X 1( ) will decrease and show the characteristics of approxi-
mate exponential regularity. It is generally believed that if the sequence X 0( ) 

satisfies that s k
x k

x k
e en n( )=

( )
+( )
∈










( )

( )

−
+ +

0

0

2
1

2
1

1
, , then the raw data meet the high-

precision modeling requirement of the grey model [32].
Theorem 1: Assume X l( ) is the l-order fixed-point accumulated generating 

sequence of X 0( ). If the sequence X l( ) satisfies the stepwise ratio condition of 
modeling, then the raw sequence X 0( ) of FPDGM should meet the condition 
that r x k0 0 1( ) ( )( ) [ ] , .

Proof.

According to Lemma 1, r x k0 0 0 5( ) ( )( )∈[ ], . , then the sequence X l( ) satisfies that

σ
ρ

λx k
x k

( )

( )
( )( )=

+ ( )( )
∈











1

1

2
3

1
0

, .

Therefore, we can have

0
1

1≤
+ −

≤
x k x k

x k

( ) ( )

( )

( ) ( )
( )

l l

l
.
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According to Property 1, x k x k( ) ( )( ) ( )l l+ >1 , so the preceding formula can 
be decomposed as

l l l lx k k x n x k k x n( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )1 0 1 01 1 1
3
2

3
2

1+ + − + ≤ + − .

Then we can get

ρ
λ
λ

x k
x k

x k

k x n

x k
0

0

0

0

1
1

1 1
2 2

1
1( )

( )

( )

( )

( )
+( )( )= +( )

( )
≤ + −

− ( )
( )
≥( )

11
2 2

1
1

3

0

1
+ −

− ( )
( )


















≥

( )

( )
max min ( )
λ

λ
λk

k x n

x k






= 1 .

Therefore, the smooth ratio condition of FPDGM is that r x k0 0 1( ) ( )( ) [ ] , .
Proof completed.
From Lemma 1, the modeling of traditional 1-AGO is subject to the smooth 

ratio requirement that r x k0 0 0 5( ) ( )( ) [ ] , . , so the use of traditional models is 
limited by data. Comparing with 1-AGO, FPAGO has low requirements for 
modeling the original sequence that the smooth ratio condition r x k0 0 1( ) ( )( ) [ ] ,
, which can expand the adaptive range of the grey model.

6.3.4  Properties of the FPDGM Model

6.3.4.1  Smoothness Analysis of Accumulative Sequence

For the high accuracy of the prediction results, only non-negative upconcave 
sequences are suitable for grey models. By improving the smoothness of the 
sequence, the stepwise ratio of the raw sequence can be reduced. Through 
reasonable function transformation, the smoothness of the sequence can 
be improved for modeling accuracy. Wei et al. [34] gave the sufficient and 
necessary conditions for monotone functions to improve the smoothness of 
sequences in the grey prediction model.

Lemma 2 ([34]): Assuming f x( ) as a differentiable concave or convex 
function on an interval, the necessary and sufficient condition of f x( ) 
can improve the smoothness of any monotone; increasing/decreas-
ing data sequence is that f x( ) is a monotone decreasing function on x.  
That is

                          ∀ ∈x a b[ , ], 
xf x
f x

’( )
( )

<1.	 (6.14)

Theorem 2: Assume the sequence X x x x n0 0 0 01 2( ) ( ) ( ) ( )= ( ) ( ) ( ){ }, , ,  is the 

monotone sequence on the interval a b,[ ], The accumulative sequence of 
FPAGO has a higher smoothing ratio than that of 1-AGO.
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Proof.
FPAGO can be seen as the combination of the sequence buffering and then 

first-order accumulation. Then the function transformation of FPAGO can be 
denoted as

f x k x k x n( ( )) ( ) ( )( ) ( ) ( )0 0 0= +l l .

Thus we can easily deduce that

x k f x k

f x k

x k

x k x n

( ) ( )

( )

( )

( ) ( )

( ) ’( ( ))

( ( ))
( )

( ) ( )

0 0

0

0

0 0
1=

+
<

l
l l

.

Proof completed.
FPAGO can be regarded as a functional transformation on the basis that a 

1-AGO will smooth out the modeling sequence. Reasonable data conversion 
technology can improve the smoothness of the accumulative sequence, thus 
reducing the modeling requirements for the raw sequence X 0( ) (see Theo-
rem 1). In addition, the influence of convexity must be taken into account to 
ensure that the transformed sequence has non-negative upconcavity during 
data transformation.

6.3.4.2  Stability Analysis of Solution

An effective forecasting model can predict the future uncertain trend with 
available information. However, the obtained “known information” often 
contains noise factors, which affects the stability of the results. Therefore, the 
stability of the model in the face of unknown factors is an important guaran-
tee for the accuracy of the solution.

Lemma 3 ([35]): Assume A Cm n∈ × , b CmÎ ,A†  is the generalized inverse 
of A ,B A E= +  and c b k Cm= + ∈ . Then x andx h+  are the solutions of 
min Ax b-

2
 and min Bx c-

2
, respectively. If A E†

2 2
1< , then the pertur-

bation bound is

                  h
E

A
x

k

A

E

A

r

A
x≤ + +











κ
γ

κ
γ

†

†

†

†

2 2 2 .	 (6.15)

where k†
†= A A

2
,g†

†= −1
2 2

A E  and r b Axx = − .
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Lemma 4 ([36]): Let the solution of the DGM (x k x k( ) ( )( ) ( )1 11 1 2+ = +b b ) is x.  
If only a disturbance happens that x̂ x0 01 1( ) ( )( )= ( )+e , then the perturbation 
bound is

              L x n
x

B B B

r

B
x( ) ( )0 1 1

1 1



 − + +
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






= ε
κ
γ

κ
γ

†

†

†

†

.	 (6.16)

If only a disturbance happens that ˆ , , , ,x k x k k n0 0 2 3( ) ( )( )= ( )+ =e  , then the 
perturbation bound is

        L x k n k
B

x n k
B

n k
B

r
B
x( )  

 

 

 

( )0 1





−
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− +
+

−









= ε
κ

γ

κ

γ
.	 (6.17)

Theorem 3: According to the least square method, min Bx Y-
2
,x is the solu-

tion of FPDGM. If only disturbance e  happens on x 0 1( ) ( ), then the perturba-
tion bound of the solution is

          L x n
B

x
B B

r

B
x( ) ( )0 1 1

1 1 1
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
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=λ ε
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†

†

†

†

.	 (6.18)

If only disturbance happens that ˆ , , , ,x k x k k n0 0 2 3 1( ) ( )( )= ( )+ = −e  , then the 
perturbation bound of the solution is

        L x k
n k
B

x
n k

B
n k
B

r

B
x( ) ( )0 1
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†

†
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. 	 (6.19)

If only disturbance e  happens on x n0( ) ( ), then the perturbation bound of the 
solution is
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.	 (6.20)

Proof.
If only disturbance e  happens on x 0 1( ) ( ), substituting x x0 01 1( ) ( )( )= ( )+e  

into Eq. (6.8), we have

x k x kλ λ λε( ) ( )( )= ( )+ .
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Then
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Assume the solution of the optimization problem min Bx Y-
2
 is Dx. Con-

sidering that the columns of B are linearly independent, min Bx Y-
2
 has a 

unique solution x Y b= † .
Given that

∆ = −Y n
2

1λ ε , ∆ ∆ =
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2 2
1∆ <  and B† are Moore–Penrose, the perturbation bound of 

the solution can be given by Lemma 3, that is,
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If e  is regarded as a disturbance of x 0 2( ) ( ), then
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The perturbation bound for the solution of FPDGM is
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Similarly, if e  is the disturbance happening on x k( ) ( )0 , k n= −3 4 1, , , , we 
can get
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If e  is the disturbance happening on x n0( ) ( ), then
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The perturbation bound of FPDGM is
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Proof completed.
The matrix disturbance theory verifies that the model can keep the solu-

tion stable when the system is disturbed. Lemma 4 gives the stability analy-
sis of the traditional DGM with 1-AGO. From Eq. (6.17), it is clear that the 
perturbation bound of the solution increases with n. This is the main reason 
why the grey prediction model cannot carry out large sample prediction 
[37]. Theorem 3 analyzes the stability of the solution of the FPDGM model. 
From Eq. (6.19), it can be found that the stability of the FPDGM model is 
related to the accumulated parameter l. In addition, the perturbation of the 
latest point will have the greatest impact on the predictions, so the FPDGM 
model must guarantee the accuracy of the “fixed point” x n0( ) ( ). Accurate new 
information is used to reduce the influence of interrupted old information 
on the prediction results. And the accumulated parameter l can adaptively 
adjust the importance of information. From Lemma 4 and Theorem 3, it is 
obvious that the perturbation bound of the FPDGM is improved compared 
with the traditional DGM with 1-AGO, and the influence degree of infor-
mation disturbance can be changed by using the accumulated parameter 
values. Then the following properties of the perturbation bound of FPDGM 
can be obtained:

Property 3: For the predicted results, the new information x n0( ) ( ) has a 
larger perturbation bound than the old information x k k n0( ) ( ) <, .
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Property 4: If e  is a disturbance that happens on x k k n0( ) ( ) <, , the FPDGM 
model has a smaller perturbation bound than the DGM model. The smaller 
the accumulative parameter l is, the more stable the results of the FPDGM 
model are.

6.3.5  Solution of Hyperparameter

The selection of the system hyperparameter has an important effect on the 
forecasting results. In addition to the traditional method, this paper provides 
a method to solve a more reasonable parameter l according to the error of 
the verification set.

The traditional method typically uses the MAPE error between all the fit-
ted data and the actual data to select the hyperparameter. Thus the value of 
the cumulative parameter l can be determined by the following nonlinear 
optimization problem:

            min
l

MAPE %.=
( )− ( )
( )

×
=

( ) ( )

( )∑1
100

1

0 0

0n

k x k

x k

x

k

n


	 (6.21)

The purpose of this simple method is used to minimize the fitting MAPE 
of input data. However, the future state of the system may be uncertain and 
abrupt. Our desire is to be able to use the latest data to test the reasonableness 
of the hyperparameter. Therefore, if the sample size of the data is sufficient, 
it is a better way to divide the sample data into training set and verification 
set reasonably. And then the parameter l can be identified by the predicted 
MAPE of recent data, as shown in Figure 6.2. Thus the following nonlinear 
optimization problem can be established:

FIGURE 6.2
Partitioning of data sets for accurately estimating the system status.
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        min
l

MAPE %
m
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n

n m

i x i

x i

x
=
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( )− ( )
( )

×
=

( ) ( )

( )∑1
1

100
0 0

0



.	 (6.22)

To solve this optimization problem, a brute force method can increase 
the λ from 0 to 1 by 0.001at a time for choosing a satisfactory solution. But 
this often requires considerable computational resources. Considering that 
only one hyperparameter of FPDGM model needs to be solved, the heuristic 
algorithms [30] are convenient to solve the hyperparameter of the FPDGM. 
Figure  6.3 shows the flowchart of solving the accumulative parameter of 
FPDGM by the PSO algorithm.

FIGURE 6.3
Flowchart of parameter optimization of FPDGM by PSO algorithm.
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6.4  Validation

6.4.1  Practical Examples

The fixed-point axiom provides a new idea for the research of the weighted 
grey model. To verify the prediction effect of the FPDGM model, this section 
provides three numerical examples to analyze the prediction performance 
of FPDGM from different perspectives. Example analysis I  shows the fit-
ting effect of the FPDGM model. Example analysis Ⅱ verifies the predictive 
stability of the FPDGM in the face of the impact disturbance series. Finally, 
example analysis Ⅲ shows the comparison of the FPAGO with other existing 
grey generating operators.

6.4.1.1  Example Analysis I: Lorenz Chaotic System Forecasting Example

This example is from reference [38]. A  chaotic system is a deterministic 
system with a seemingly random irregular movement, whose behavior is 
uncertain, unrepeatable, unpredictable chaotic phenomena. For the data pre-
processing process, the absolute value of the original data is taken, and then 
the 1-AGO is performed in chronological order to generate a raw sequence. 
Zhang et al. [38] pointed out that the accuracy of a grey prediction model 
will definitely decrease with the increase of sequence length, so the tradi-
tional GM (1,1) model cannot make high-precision prediction when facing 
the sequences generated by Lorenz chaotic system. As we can see from 
Table 6.1, traditional GM (1,1) and DGM models are unable to predict with 
high accuracy (MAPE>10%). However, the FPDGM model can improve the 
fitting effect by choosing flexible parameter values. When the accumulative 
parameter l is 0.8, 0.5 and 0.3, respectively, it can be found that the fitting 
accuracy of FPDGM is improved gradually. The best parameter l is 0.277, and 
The MAPE of FPDGM is 3.80%, which is much higher than the prediction 
performance of GM (1,1).

6.4.1.2  Example Analysis II: Forecast of China’s Shale Gas Output

This example is from reference [26]. The modeling of impact disturbance 
sequence is an important research content of grey system theory. Because 
the statistical data is distorted by unknown factors, it must be preprocessed 
to restore the true characteristics of the data. From Table 6.2, we can find that 
the fitting and prediction accuracy of GM (1,1) for the impact disturbance 
series are not ideal, and the raw data does not meet the requirement of the 
grey model. Therefore, the data must be preprocessed first. According to the 
method in reference [26], the average buffer operator is used to preprocess 
the raw data:
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TABLE 6.1

Predicted Results of the FPDGM Model with Different Accumulative Parameter

Raw 
sequence GM (1,1) DGM FPDGM0.8 FPDGM0.5 FPDGM0.3 FPDGM0.277

0.155 0.16 0.16 0.07 0.08 0.14 0.15
1.11 2.29 2.30 1.83 1.46 1.36 1.35
1.92 2.54 2.55 2.15 1.89 1.85 1.85
2.24 2.83 2.84 2.51 2.34 2.35 2.36
3.03 3.15 3.16 2.89 2.81 2.86 2.87
3.3 3.50 3.51 3.30 3.29 3.39 3.40
4.16 3.89 3.90 3.74 3.80 3.92 3.94
4.64 4.33 4.34 4.22 4.32 4.47 4.49
5.18 4.81 4.83 4.73 4.87 5.02 5.04
5.6 5.35 5.37 5.28 5.44 5.59 5.61
6.25 5.95 5.97 5.88 6.03 6.18 6.19
6.39 6.62 6.63 6.52 6.64 6.77 6.79
7.35 7.36 7.38 7.21 7.28 7.38 7.39
8.18 8.18 8.20 7.96 7.94 8.00 8.00
8.57 9.10 9.12 8.76 8.63 8.63 8.63
9.27 10.12 10.14 9.63 9.35 9.27 9.27
MAPE 13.97% 14.11% 12.71% 8.33% 4.32% 3.81%

TABLE 6.2

Predicted Results of China’s Shale Gas Output

Year
Raw 

Value
Relative 
Growth GM (1,1)

Processed 
Value: XD2

Relative 
Growth

GM 
(1,1) FPDGM

2012 0.25 / 0.25 38.12 / 27.76 36.39
2013 2.00 700.00% 18.43 45.70 19.87% 37.45 45.70
2014 13.00 550.00% 29.63 56.62 23.91% 47.01 55.98
2015 44.71 243.92% 47.65 71.16 25.68% 59.02 67.03
2016 78.82 76.29% 76.62 84.39 18.58% 74.09 78.91
2017 89.95 14.12% 123.20 89.95 6.59% 93.02 91.67
Fitting MAPE 165.96% 4.21% 3.31%

108.81 20.97% 198.10 / 116.78 105.37
Forecast MAPE 82.06% 7.32% 3.16%

                  x k d XD
n k

x i
i k

n

( ) ( )2 2

1
1

= =
− + =

∑ .	 (6.23)

After buffering, the original raw of inconsistent growth rate becomes 
smooth. For the preprocessed sequence XD2 , GM (1,1) has high fitting accuracy 
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and its fitting MAPE is 4.21%. Then the parameter solving of FPDGM is done 
in the traditional method (see Eq. [6.21]), and l= 0 4979. . As we can see, the 
FPDGM has the smaller prediction MAPE than GM (1,1). Based on the fixed-
point axiom, the prediction MAPE of FPDGM is reduced from 7.32% of the 
traditional GM (1,1) to 3.16%. Therefore, it is clear that FPDGM can better adapt 
to the impact disturbance series modeling and improve the model accuracy.

6.4.1.3 � Example Analysis Ⅲ: Annual Electricity 
Consumption Forecast in China

Data of this example is from the reference [39]. Annual data on electricity con-
sumption in China tends to grow monotonically and has the high smooth-
ness, so the data can be adapted to the direct modeling of the grey model. The 
data from 2005 to 2016 were used for modeling, leaving 2 data points from 
2017 to 2018 as tests. In addition to GM (1,1), DGM and non-homogeneous 
discrete grey model (NDGM) [40], we combine three existing grey gener-
ating operators with DGM models to construct three optimized discrete 
grey models. The formula and the abbreviations of the modified models are 
shown in Table 6.3. Since the sample size for the observations is greater than 
8, the validation set can be used to perform the selection of the accumula-
tive parameter of FPDGM. The FPDGM model with accumulative parameter 
l selected by the fitting error of all data samples (see Eq. [6.21]) is denoted 
as FPDGMa. And the FPDGM model with validation set (see Eq. [6.22]) is 
denoted as FPDGMb. Then three data points from 2014 to 2016 are used as 
the validation set. Then the parameter optimization process of FPDGMb is 

TABLE 6.3

Modified Grey Generating Operator

Accumulative 
Generating 
Operator Formula

DGM with the 
Grey Generating 

Operator

Fractional 
accumulation [27] x k

k i r

k i
x i rr

i

k( )
=

( )( )=
− + −
−









 ( ) < ≤∑ 1

01
0 1,

F-DGM

New information 
priority 
accumulation [29]

x k x i
i

k
k ix x( )

=

− ( )( )= ( )∑
1

0 , 0 1< ≤x
NIP-DGM

Damping 
accumulation [30] x k

x i

i

k

i
z

z
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Fixed-point 
accumulation x k x i k x n

i

k
l l l( )

=

( ) ( )( )= ( )+ −( ) ( )∑
1

0 01
FPDGM



127Grey Prediction Model Based on Fixed-Point Accumulation

shown in Figure 6.4. We can see that, after 20 iterations of the PSO algorithm, 
the optimal parameter minimizes the prediction error can be found. With 
the optimal parameter l= 0 9562. , we can make the next prediction.

The prediction results of the eight models are shown in Figure  6.5 and 
Table 6.4. The DGM with four modified grey generating operators all have 
better fitting MAPEs than the traditional three 1-AGO grey models. How-
ever, the performance of their prediction results is uncertain. Since the raw 
data approximates the quasi-exponential data (see Lemma 1), the accumu-
lative parameter l > of the FPDGMa model is 1, and its prediction result is 
equivalent to that of the DGM model. This is obviously unreasonable that the 
FPDGMa model fails to correctly estimate the importance of the new infor-
mation on the future state of the system. In contrast, the FPDGMb can make 
more accurate predictions by reasonably estimating the system state from 
the predicted errors in the validation set. Compared to other comparison 
models, the FPDGMb has the lowest forecast MAPE (3.42%). Therefore, when 
facing limited information for modeling, it is crucial to consider the different 
value of available information.

6.4.2  Validation with Benchmark Datasets

The Occam’s razor principle tells us, “Under similar generalization error con-
ditions, simpler [solutions] tend to be more effective.” There is no need to 
waste time to determine whether you can achieve great results with fewer 

FIGURE 6.4
Optimal parameter optimization of FPDGM by the PSO algorithm.
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FIGURE 6.5
Predicted performance of the eight models on the electricity consumption in China.

TABLE 6.4

Predicting Results of the Grey Models

Date
Actual 
Value

GM 
(1,1) DGM NDGM F-DGM

NIP-
DGM D-DGM FPDGMa FPDGMb

2005 1911 1911 1911 1911 1911 1911 1911 1911.00 1918.82
2006 2272 2312.92 2315.32 2342.35 2272.00 2314.24 2303.38 2315.32 2341.41
2007 2596 2514.72 2517.31 2532.63 2502.19 2516.70 2505.80 2517.31 2545.48
2008 2726 2734.14 2736.92 2741.85 2737.42 2736.73 2726.00 2736.92 2765.28
2009 2941 2972.69 2975.68 2971.91 2985.42 2975.85 2965.55 2975.69 3002.00
2010 3298 3232.07 3235.28 3224.88 3249.98 3235.71 3226.16 3235.28 3256.96
2011 3635 3514.07 3517.52 3503.04 3533.82 3518.11 3509.66 3517.52 3531.56
2012 3794 3820.68 3824.39 3808.90 3839.33 3825.01 3818.08 3824.39 3827.32
2013 4083 4154.04 4158.03 4145.22 4168.77 4158.54 4153.60 4158.03 4145.85
2014 4223 4516.49 4520.77 4515.03 4524.45 4521.00 4518.61 4520.77 4488.93
2015 5117 4910.56 4915.15 4921.67 4908.78 4914.90 4915.69 4915.15 4858.43
2016 5390 5339.01 5343.95 5368.80 5324.30 5342.97 5347.66 5343.95 5256.39
Fitting MAPE 2.17% 2.18% 2.17% 2.13% 2.18% 2.12% 2.18% 2.44%
2017 5430 5804.85 5810.15 5860.45 5773.72 5808.18 5817.60 5810.15 5685.01
2018 5916 6311.33 6317.02 6401.07 6259.96 6313.75 6328.83 6317.02 6146.65
Forecast MAPE 6.79% 6.89% 8.06% 6.07% 6.89% 7.06% 6.89% 4.30%
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resources. Therefore, we chose benchmark datasets to evaluate the superior-
ity of the FPDGM model against the existing algorithms.

6.4.2.1  Benchmark Datasets

The M4-competition datasets are used as benchmark datasets to test the fore-
cast performance of the FPDGM. The M4 competition [41] is an open compe-
tition that evaluates the predictive performance of participating statistical 
algorithms or machine learning algorithms using the given training and test 
sample datasets,1 specifically designed for time series forecasting research. 
The M4 dataset has the following characteristics:

Multi-Frequency Coverage: The M4 dataset comprises 100 000,  time 
series spanning five distinct frequencies: yearly (23 000,  series), quar-
terly (24 000,  series), monthly (48 000,  series), weekly (359 series), and 
daily (4 227,  series). This wide range of frequencies makes it well-
suited for evaluating a model’s predictive performance across differ-
ent time scales.

Diverse Domains: The time series in the dataset are sourced from vari-
ous application domains, primarily including finance, economics, 
demographics, industry, and other areas. This diversity reflects the 
complexity and variability across fields, supporting a comprehensive 
evaluation of model applicability and robustness in different sectors.

Varying Series Lengths: Series lengths range from a few dozen to sev-
eral hundred data points, assessing models on both short- and long-
term forecasts.

Data Stability and Volatility: Differences in seasonality, trend, and 
stability across series challenge model adaptability and highlight 
generalizability.

This paper is to verify the effectiveness of the FPDGM in the small sample 
prediction problems, so the original data samples need to be segmented. We 
selected the first 10 000,  annual samples (Y1~Y10000) and kept only the first 
13 data of all samples. Then, for each sample, the first 10 data are used for 
modeling analysis, leaving the last 3 data to test the 1-step, 2-step, and 3-step 
prediction errors of the model, as shown in Figure 6.6.

6.4.2.2  Model and Parameter Settings

In addition to the grey models, the simple exponential smoothing model 
(SES), the moving average method (MA), and the naive forecasting method 
(NF) are used as the benchmark models. These traditional statistical meth-
ods are simple to model and do not require much computational resources. 
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Then the fractional grey model (FGM (1,1)) [27], conformable fractional grey 
model (CFGM (1,1)) [28], and new information propriety grey model (NIPGM 
(1,1)) [29] are used as comparison. For the fairness of the calculation results, 
these three models and the FPDGM model are all solved with the parameter 
solution of Eq. (6.21).

6.4.2.3  Experimental Results and Analysis

A summary of the results of 10 000,  data samples is shown in Table 6.5. It can 
be seen that the traditional GM (1,1) algorithm has its unique advantage over 
other statistical methods for the small sample prediction problem. FPDGM 
has the best one-step prediction performance with an average prediction 
MAPE of 7.94%. The average prediction accuracy of all models decreases as 
the number of prediction steps increases. And the three-step forecast aver-
age MAPE of the FPDGM is greater than 10%, which may be no longer reli-
able. Then the maximum error shows the worst performance of the models 
in 10 000,  samples. SES has the smallest maximum error, which proves that 
the simple method is also highly stable. In addition, the performance of the 
other six grey models is similar. Therefore, we can conclude that FPDGM has 
better predictive stability and more accurate prediction results compared to 
the traditional models.

6.5  Forecast of International Natural Gas Futures Contract Price

6.5.1  Data Sources

Natural gas is a kind of precious nonrenewable energy. The futures price of 
natural gas is mainly affected by international energy price, supply–demand 
relationship, season, monetary policy and other factors. In order to fully ver-
ify the generalization of the FPDGM model, this case selects the international 

FIGURE 6.6
Multistep verification of time series predictions.
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TABLE 6.5

Predictive Performance of the Models on 10000 Sample Sets

Accuracy Criteria

SES MA NF

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

MAE Average 238.17 304.89 373.79 290.85 354.53 422.67 225.06 292.90 362.47
Maximum 1.37E+04 1.37E+04 1.38E+04 1.48E+04 1.31E+04 1.26E+04 1.28E+04 1.26E+04 1.22E+04

MAPE Average 9.74% 12.54% 15.11% 12.32% 14.90% 17.37% 9.25% 12.11% 14.71%
Maximum 4.31 4.02 3.92 4.31 4.68 4.51 4.94 4.07 3.93

RMSE Average 238.17 326.15 411.78 290.85 373.75 457.80 225.06 314.80 401.41
Maximum 13705.68 14370.25 14940.42 14838.00 13223.32 12673.88 12762.00 14370.25 14940.42

Accuracy Criteria

GM (1,1) DGM FGM (1,1)

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

MAE Average 270.81 333.73 408.09 250.50 303.61 362.07 255.56 336.10 438.25
Maximum 1.45E+05 2.20E+05 3.48E+05 6.72E+04 9.89E+04 1.51E+05 1.45E+05 2.20E+05 3.48E+05

MAPE Average 10.59% 14.07% 16.13% 9.22% 11.67% 13.30% 10.64% 14.87% 17.84%
Maximum 177.20 327.33 357.86 82.12 146.56 156.82 177.20 327.33 357.87

RMSE Average 270.81 354.64 449.16 250.50 322.91 397.25 255.56 361.10 491.48
Maximum 144950.53 232763.42 397615.24 67177.17 103852.75 170432.93 144952.62 232767.02 397621.86

Accuracy Criteria

CFGM (1,1) NIPGM (1,1) FPDGM

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

MAE Average 249.89 300.13 355.30 252.36 325.22 416.04 229.73 278.79 330.20
Maximum 1.44E+04 1.45E+04 1.93E+04 1.45E+05 2.20E+05 3.48E+05 1.27E+04 1.20E+04 1.30E+04

MAPE Average 8.72% 10.47% 12.05% 10.13% 13.93% 16.52% 7.94% 9.73% 11.24%
Maximum 4.99 6.79 6.62 177.20 327.33 357.86 4.93 5.02 5.13

RMSE Average 249.89 318.34 388.51 252.36 348.86 465.11 229.73 297.58 363.33
Maximum 14408.27 14691.92 20597.64 144950.69 232763.69 397615.75 12671.73 12003.96 14245.10
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natural gas futures contract price for prediction. The used data can be  
downloaded free from the website (http://www.eia.gov/dnav/ng/hist/rng 
c1w.htm).

6.5.2  Compared Models and Parameter Settings

The case intercepts the transaction price data of 1009 consecutive natural 
weeks. Using the sliding window method, the data of every ten consecu-
tive weeks is taken as a sample, and a total of 1000  experimental samples 
are generated. Then, for each sample, the first seven data points are used for 
modeling, and the last three data points are used as tests to verify the single-
step and multistep prediction ability of the grey model in the small sample 
prediction problem. The FPDGM model are all solved with the parameter 
solution of Eq. (6.21). GM (1,1) and FGM (1,1) models are used as comparison 
models, and the prediction results are evaluated by MAPE, mean absolute 
error (MAE), and mean square error (MSE).

MAE= ( )− ( )
( ) ( )

= +

+

∑1 0 0

1m
x i x i

i n

n m
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= +

+

∑1 0 0

1

2

m
x i x i

i n

n m
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6.5.3  Predicted Results of Natural Gas Futures Contract Price

Table  6.6 lists the predicted average error and maximum error of 1000  
groups of samples. It’s obvious that the grey models can reasonably forecast 
the short-term changes of international natural gas futures contract price. 
Although the uncertainty of the data fluctuates greatly, the average predic-
tion error of the models is acceptable (MAPE < 10%). The average prediction 
error of the FPDGM model is the smallest in comparative models, that is, the 
MAPE of one-step prediction is 4.96%. Figure 6.7 shows the single-step pre-
diction result curve of the three models. In addition, the Diebold–Mariano 
(DM) test [42] is used to evaluate the model performance of the prediction 
results in Figure 6.7. The model comparison results are shown in Table 6.7. 
The results of the DM test show that the prediction performance of the grey 
model is significantly improved after introducing the proposed fixed-point 
accumulation operator. FPDGM has better generalization and more accurate 
prediction results than the existing GM (1,1) and FGM (1,1) models.

6.5.4  Practical Implications

This study develops a FPDGM model for forecasting international natural 
gas futures contract prices, with a focus on validating its generalization and 

http://www.eia.gov/dnav/ng/hist/rngc1w.htm
http://www.eia.gov/dnav/ng/hist/rngc1w.htm


TABLE 6.6

Error Statistics of Grey Models

Error Criterion

GM (1,1) FGM (1,1) FPDGM

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

MAE Average 0.29 0.36 0.43 0.25 0.34 0.43 0.23 0.32 0.4
Maximum 3.72 4.66 5.47 2.78 4.89 9.04 3.4 5.21 7.11

MSE Average 0.2 0.33 0.52 0.15 0.32 0.61 0.14 0.3 0.51
Maximum 13.85 22.55 31.84 7.75 31.17 120.99 11.59 30.39 59.92

MAPE Average 6.11% 7.62% 9.07% 5.31% 7.19% 9.13% 4.96% 6.74% 8.46%
Maximum 42.57% 55.22% 65.55% 29.47% 50.18% 79.87% 48.55% 84.51% 124.80%
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accuracy in small-sample prediction scenarios. Natural gas, as a nonrenew-
able energy source, not only plays a crucial role in the energy markets but 
also has significant implications for the global economy, environmental pol-
icy, and international trade. Hence accurate forecasting tools are essential for 
market stability, energy policy formulation, and corporate risk management.

The FPDGM model demonstrates superior performance in forecast-
ing under high uncertainty, achieving an average MAPE of less than 10%, 
significantly outperforming the traditional GM (1,1) and FGM (1,1) models 
in both prediction accuracy and generalization capacity. This advantage 
extends beyond natural gas markets and may be applicable in other markets 
with similar characteristics, such as oil and metals futures, where prices are 
similarly influenced by factors like supply–demand dynamics, policy shifts, 
and seasonal fluctuations. The practical applications of the FPDGM model 
include several potential use cases:

FIGURE 6.7
Forecast results of international natural gas futures contract prices.

TABLE 6.7

DM Test of Prediction Results of Three Models

Error 
Criterion

FPDGM vs GM (1,1) FPDGM vs. FGM (1,1) FGM (1,1) vs. GM (1,1)

DM 
Statistic p Value

DM 
Statistic p Value

DM 
Statistic p Value

MAE −8.52 0.00 −2.94 0.00 −5.44 0.00
MSE −3.57 0.00 −0.52 0.61 −3.69 0.00
MAPE −10.51 0.00 −4.11 0.00 −6.21 0.00

Note:	 Model I vs. model II. If the DM statistical value is less than 0, it indicates that the predic-
tion performance of model I is better than that of model II; If the p value of DM test is less 
than 0.05, it indicates that the statistical results are significant.
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Short-Term Trading Decisions: Traders can leverage the FPDGM 
model to capture short-term price trends more accurately, enhancing 
decision-making precision and market responsiveness.

Long-Term Price Forecasting: By extending the FPDGM model’s multi-
step forecasting capabilities, policymakers can use it as a tool for devel-
oping adaptive supply–demand strategies to manage market volatility.

Risk Management and Portfolio Optimization: Given the high vola-
tility in energy markets, accurate price forecasting models like the 
FPDGM model provide institutional investors and fund managers 
with more diversified strategy options for effective risk control.

6.6  Conclusions

In this paper, we proposed a novel fixed-point accumulative grey generat-
ing operator (FPAGO) and then built the fixed-point discrete grey model 
(FPDGM). It has been proved that the proposed FPAGO can increase the 
smoothness of the accumulative sequence and thus increase the adaptive 
range of the grey model. Meanwhile, the solution of the constructed improved 
grey prediction model has higher stability than its traditional form. In addi-
tion, to accurately estimating the future state of the system, a parameter solu-
tion based on minimizing forecast error of validation set is proposed.

Numerical examples are used to validate the performance of the proposed 
FPDGM model. Based on the experimental results, the following conclu-
sions can be drawn: (1) A reasonable parameter selection is beneficial for the 
FPDGM model to achieve better prediction results. (2) The validation set can 
effectively prevent the model from overfitting and make accurate predic-
tion. (3) FPAGO can be used in combination with extended structures of the 
grey model. Based on the fixed-point axiom, the proposed FPDGM can have 
higher accuracy than other existing models in forecasting the natural gas 
futures contract price.

While the proposed FPAGO significantly enhances the grey model’s per-
formance in small sample forecasting, certain limitations warrant discus-
sion: (1) The FPDGM model’s performance is sensitive to parameter choices, 
which may require significant computational effort for optimization, partic-
ularly for large datasets or those with high volatility. (2) The current model 
assumes a fixed-point applicable to the entire sequence, which may not be 
ideal for highly nonstationary data. (3) Integrating different grey generating 
operators could leverage their respective advantages, which is a promising 
direction for further improving prediction accuracy across diverse datasets. 
These limitations suggest potential avenues for future research. Subsequent 
work will focus on developing variable structures, refining data processing 
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techniques to better handle perturbation, and exploring the combined use of 
different grey generating operators.

The M4-competition datasets are available at the website https://github.
com/Mcompetitions/M4-methods.

Note

1	 The M4-competition datasets are available at the website https://github.com/
Mcompetitions/M4-methods.
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7
Large Language Models in Medical 
Image Understanding

Ghada Khoriba, Muhammad Nouman, and Essam A. Rashed

7.1  Introduction

Medical image analysis involves a series of tasks to assist physicians in quali-
tative and quantitative analyses of lesions or anatomical structures. These 
tasks can significantly improve the accuracy and reliability of medical diag-
noses and prognoses. These tedious tasks were traditionally completed by 
experienced physicians or medical physicists and were marred by two major 
problems: low efficiency and bias (Huilin et al., 2023). In recent years, many 
deep learning (DL) medical applications have been proposed for the auto-
matic analysis of various imaging modalities, including magnetic resonance 
imaging (MRI), computed tomography (CT), ultrasound (US), or histopatho-
logical images (Puttagunta and Ravi, 2021).

Large vision models (LVMs) could enhance medical imaging research by 
significantly improving image synthesis, reconstruction, and segmentation 
and enabling precise surgical scene reconstruction. These advanced capabili-
ties make LVMs crucial tools in medical imaging, where their proficiency in 
processing large datasets facilitates accurate and exhaustive interpretation of 
medical images—an essential aspect of diagnosing and treating various dis-
eases. Additionally, LVMs can assist in generating clinical documentation, 
such as radiology reports, thereby streamlining healthcare workflows and 
improving patient outcomes. Despite their promise, generic LVMs trained 
on diverse datasets filled with everyday images often struggle with domain-
specific tasks, particularly in medical imaging. However, when tailored to 
medical contexts, LVMs can substantially enhance image analysis, leading 
to quicker and more accurate diagnoses and, ultimately, better patient care.

Several tasks are commonly considered in this track, such as medical image 
captioning (MIC), diagnostic captioning (DC), and automatic medical report 
generation. The image captioning task involves tackling two fundamental 
questions: visual understanding and linguistic processing, as they repre-
sent the convergence of computer vision and NLP. Diagnostic captioning is 
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a subset of MIC that goes further to provide a diagnostic interpretation of 
the image. This involves describing what is seen and judging what those 
observations mean regarding a diagnosis (Reale-Nosei et  al., 2024). Using 
LLMs and LVMs highlights the significant advantage of focusing on atten-
tion mechanisms and utilizing them through the Transformers architec-
ture. Hence, methodologies relying on attention scores can remain relatively 
independent of specific MIC and DC methods as long as these methods are 
grounded in the Transformer architecture.

7.1.1  Medical Image Understanding

Medical image understanding has emerged as a cornerstone of modern med-
ical imaging and radiation therapy, fundamentally shaping the landscape of 
diagnosis, treatment planning, and patient care (Shen et al., 2017). With the 
rapid advancements in generative artificial intelligence (GenAI), particularly 
in LLMs and LVMs, there is a growing potential to enhance the analysis and 
interpretation of medical images significantly. These cutting-edge models, 
which represent a convergence of language and vision processing capabili-
ties, offer new avenues for linking visual data with textual understanding in 
medical contexts (Hartsock and Rasool, 2024). Integrating LLMs with LVMs 
makes it possible to generate detailed descriptions, annotations, and even 
preliminary diagnostic insights directly from medical images.

Moreover, the incorporation of noninvasive imaging modalities such as 
X-ray, positron emission tomography (PET), CT, MRI, and US has improved 
the accuracy and significance of medical therapies. Medical image process-
ing (MIP) has played a key role in promoting these techniques, improving the 
capability to predict, detect, analyze, and evaluate diseases. The data derived 
from MIP are now being utilized in machine learning (ML) and DL mod-
els, leading to the development of intelligent systems that augment medical 
decision-making and improve the accuracy of image interpretation—an area 
traditionally vulnerable to human error and subjectivity. The pursuit of pre-
cision in medical imaging has driven a significant body of work in this field, 
underscoring the critical importance of accuracy in delivering high-quality 
healthcare (Abhisheka et al., 2024).

Multimodal large language models (MLLMs) mark a significant paradigm 
shift in artificial general intelligence (AGI) research. MLLMs are models 
based on LLMs that can receive and reason with multimodal information, 
extending beyond the traditional single “language modality” to include 
“image,” “speech,” and other “multimodal” data (Zhang et al., 2024b). Gem-
ini (Gemini Team, 2023) and GPT-4 (Achiam et al., 2023) are notable exam-
ples. These models could be utilized for automated image interpretation and 
report generation, improved diagnostic accuracy, and assistance in medical 
education and training. However, deploying foundation models in medical 
image analysis requires a rigorous examination of their trustworthiness, 
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encompassing privacy, robustness, reliability, explainability, and fairness. 
Explainability is crucial in medical image analysis, especially when apply-
ing foundation models in healthcare, due to the demand for trustworthy and 
actionable decision-making in clinical settings (Shi et al., 2024).

7.1.2  AI in Healthcare

Artificial intelligence (AI) is increasingly being integrated into healthcare, 
offering potential improvements in diagnostics, treatment, patient care, and 
operational efficiency (Bai et al., 2024; Chen et al., 2024; He et al., 2024; Hus-
sain et al., 2024; Liu et al., 2023; Qin et al., 2022; Shin et al., 2017; Singhal et al., 
2023a; Thirunavukarasu et al., 2023; Zhang et al., 2023a). This section explores 
the key ways AI can contribute to public health, drawing insights from recent 
research findings. AI models, particularly DL and ML, improve diagnostics, 
prevention, and treatment but face privacy and patient autonomy challenges 
(Bhattamisra et al., 2023; Okeibunor et al., 2023). Examples of medical imag-
ing tasks in healthcare are shown in Figure 7.1. AI techniques, such as NLP 
and spatial modeling, have improved public health surveillance. This kind of 
research analyzes large volumes of data from social media and other sources 
to predict disease outbreaks and understand barriers to care while address-
ing algorithmic biases in health data analysis (Flores et al., 2023; Olawade 
et al., 2023). Addressing biases in AI algorithms is crucial to avoid misrepre-
senting populations and exacerbating health disparities.

In addition, AI and digital health technology can improve primary health-
care service delivery in resource-poor settings (Saif-Ur-Rahman et al., 2023). AI 
has demonstrated the potential to enhance clinical efficiency and cost-effec-
tiveness by reducing specialists’ time and improving patient outcomes (Jiao 
et al., 2023). (Sharma et al., 2024) propose a mHealth-based patient monitoring 
system (mHealth-PMS) based on AI for Healthcare 4.0 (Jayaraman et al., 2020).

FIGURE 7.1
Overview of medical imaging tasks in healthcare: from diagnosis to treatment monitoring.
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AI has the potential to significantly improve healthcare service outcomes 
through enhanced disease detection, risk prediction, and health monitoring. 
However, addressing ethical concerns, biases, and public perception issues is 
essential for successfully integrating AI into healthcare. Continued research 
and collaboration are necessary to maximize AI’s benefits while mitigating 
its challenges.

7.1.3  Purpose of This Chapter

The primary objective of this chapter is to provide a comprehensive introduc-
tion to the key concepts, recent advancements, and emerging trends in LLMs 
within the realm of medical image understanding. As this area of research is 
rapidly evolving, we aim to highlight the foundational principles that under-
pin the use of LLMs in this field and explore their potential applications. 
By presenting this information concisely yet informatively, we strive to offer 
readers a clear understanding of how these advanced models are shaping the 
future of medical imaging and diagnostics.

7.2  Large Language Models

The current state of LLMs in the medical field reveals many applications, 
from clinical decision support and patient communication to medical educa-
tion and research analysis. However, several key challenges and limitations 
exist, such as the lack of domain-specific knowledge, limited understand-
ing of medical terminology, potential biases and errors, and scalability 
issues. Despite these challenges, there is a promising future for LLMs in the 
medical field, with opportunities for integration with other AI technologies, 
the development of domain-specific models, improved transparency and 
explainability, and strategies to address ethical concerns and biases. Over 
the past few years, LLMs have shown impressive performance on natural 
language processing tasks.

LLMs can revolutionize healthcare through applications such as biomedi-
cal information retrieval, question answering, medical text summarization, 
information extraction, medical education, personalized treatment recom-
mendations, predictive health analytics, and more (Ray, 2024). The limitations 
of LLMs include hallucinations, fairness and bias, privacy, legal and ethical 
concerns, and the need for comprehensive evaluations. The author adds new 
challenges, such as adapting to medical knowledge, personalizing healthcare 
information, interpreting complex medical data, augmenting doctor–patient 
communication, and addressing dynamic healthcare policies (Ray, 2024). 
Knowledge graphs could be used to minimize the hallucinations. A system 
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that includes a knowledge update crawler to keep the medical knowledge 
base current, ensuring that the system’s guidance remains accurate and up-
to-date, is presented in (Dou et al., 2024).

7.3  Large Vision Models

LVMs have advanced considerably, entangling visual recognition and lan-
guage understanding to generate content that is not only coherent but also 
contextually attuned. Constructing large-scale annotated medical image data-
sets for training deep networks is challenging due to data acquisition com-
plexities, high annotation costs, and privacy concerns (Cheplygina et al., 2019; 
Kaissis et al., 2020). Vision language pretraining has emerged as a promising 
approach for developing foundational models that support various AI tasks. 
LVMs have shown impressive skills in understanding and generating image 
descriptions (Nguyen et al., 2023). A large margin local estimate (LMLE) model 
for medical image classification is presented in (Song et al., 2015). The LMLE 
model is independent of the feature design and was applied to ILD classifica-
tion in lung HRCT images, phenotype classification, and regression in brain 
MR images. (Li et al., 2024b) proposed LViT, which utilizes text embeddings to 
improve medical image segmentation performance. LViT performs superior 
segmentation in semi-supervised settings and outperforms other state-of-the-
art methods. BiomedGPT (Zhang et al., 2024a) is an open-source, lightweight 
vision–language foundation model for various biomedical tasks. It achieved 
state-of-the-art results in 16 out of 25 experiments. It demonstrated impres-
sive performance in radiology applications, with a low error rate of 3.8% in 
visual question answering and 8.3% in generating complex radiology reports. 
BiomedGPT achieved state-of-the-art results in 16 out of 25 experiments while 
maintaining a computing-friendly model scale.

7.4  Techniques and Methods

The application of LLMs represents a significant advancement in the rapidly 
evolving field of medical imaging. These highly advanced models, devel-
oped and standardized for natural language processing applications, are 
now undergoing training to comprehend medical data sets that encompass 
both textual and graphical information. This section examines the special-
ized approaches and tools required to properly leverage the strengths of 
LLMs to improve the analysis of medical datasets.
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The use of LLMs for medical imaging also poses difficulties, primarily due 
to the inherent attributes of medical images. Managing the complexities of 
these models demands the rigorous preparation of the input data to make it 
suitable for supported models. Also, a complex and specific modification is 
required for the models’ architecture to be compatible with medical imaging 
tasks. This section will describe the process for reformulating these large 
language models to integrate with medical images seamlessly. We will delve 
into the application of various stages of data preprocessing, from basic ones 
such as data cleaning and normalization to more complex ones. All steps 
are essential in preparing the data for analysis to ensure that the integrated 
model produces accurate and efficient outputs.

Moreover, we will discuss the application of advanced strategies such as 
transfer learning and fine-tuning (Pham et al., 2018). These strategies are cru-
cial when someone intends to fine-tune the pretrained language models for 
unique medical tasks. The discussion will provide awareness of the methods 
of optimizing hyperparameters. This is crucial in determining whether the 
models are well-tuned and aligned to the medical imaging data characteristics.

To present the current and future development of LLMs for medical imag-
ing, this chapter will focus on a concise theoretical outline of current LLMs, 
followed by real-world applications that demonstrate the practical usefulness 
of the concepts and, finally, true case studies that give sound insight into how 
LLMs can actively be used and further developed today. This section aims to 
help readers gain all the essential information and methodologies that would 
allow them to move from theoretical ideas to their practical implementation 
in solving the given task in medical practice. It can potentially change the 
existing paradigm of diagnostics and treatment.

7.4.1  Data Preprocessing

Data preprocessing is the foundational step for integrating large language 
models (LLMs) within medical imaging systems. It improves the quality and 
consistency of textual and image data. This preparation is critical to enabling 
simple and robust analysis because it allows for blending different well-
suited data types for combined analysis. This section discusses the essential 
procedures involved in preprocessing in detail to demonstrate how prepro-
cessing helps enhance the performance of the models. The data preprocess-
ing pipeline for medical applications involving LLMs incorporates several 
steps, as depicted in Figure 7.2. These steps are crucial to preparing both the 
textual and visual data for correct analysis.

7.4.1.1  Textual Data Preprocessing

Medical texts like patient report documents, doctors’ prescriptions, and 
diagnostic documents contain clinical information. However, we also have 
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issues with the format, use of terms, symbols, and noises (Savova et al., 2010). 
Adequate preprocessing of these texts is essential when integrating or ana-
lyzing them with medical imaging data using LLMs.

Cleaning and Normalization: Text cleaning involves removing extra for-
matting, correcting typographical errors, and eliminating irrelevant sections 
like headers or footers. It is necessary to minimize noise and increase the 
concentration of any health-related information. The purpose of this process 
is to focus solely on health-related information that is crucial for accurate 
analysis. Normalization goes further by standardizing terms or abbrevia-
tions among patients’ medical records (Meystre et  al., 2017). For instance, 
acronyms such as HTN for hypertension or DM for diabetes mellitus are 
spelled out so that there is no misunderstanding. This method eliminates 
noise and replaces standard terms, ensuring the model receives only data in 
a consistent format. Additionally, it ensures a smooth and accurate analysis.

In a clinical facility, notes can be provided to radiologists containing a 
blend of common, normalized language and non-normalized abbreviations. 
Standardizing these terms effectively ensures that the different names for the 

FIGURE 7.2
Data preprocessing workflows for medical imaging applications.
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variables do not affect the model when the LLM analyzes the data. It leads to 
more accurate results, analyses, and predictions. The following Python code 
can be used to preprocess medical texts. It expands all medical abbreviations, 
making the language less complex and more specific. The cleaning and nor-
malization Python code example is in Figure 7.3.

Medical text cleaning impacts healthcare by transforming raw text data 
into a structured form. It influences the analysis of patient data and the effec-
tiveness of electronic health record systems. This change is essential as an 
appropriate foundation for providing efficient and individualized patient 
care regarding their health status.

Tokenization and Lemmatization: Tokenization is the process of breaking 
down a text into parts known as tokens. Tokenization implies erasing the 
punctuation marks and dividing the text into tokens, making it convenient 
for machine learning models. Lemmatization, a more complex process than 
tokenization, reduces words to their base form, known as a lemma. By taking 
these tokens out of their stemmed form (lemma), lemmatization makes it eas-
ier to analyze them even more (Jiang et al., 2019; Liu et al., 2015). The reason 

FIGURE 7.3
Python code example for text cleaning and normalization.
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is that the differences in each word form make each token unique. Tokeni-
zation and lemmatization aid in the extraction of essential details such as 
symptoms, diagnosis, and medications when handling discharge summaries 
or clinical notes. This structural data can easily be linked to patient outcomes 
or clinical parameters. Breaking down sentences into base words simplifies 
the structure. It allows models to analyze each word separately, which helps 
detect symptoms or diagnoses. A Python code example is in Figure 7.4.

Tokenization and lemmatization techniques are beneficial for improving 
text data in medicine. Using text tokenization and lemmatizing the tokens 
aids in opening the level of analysis to semantic similarity and categorization.

Semantic Tagging: Semantic tagging is an advanced technique for adding 
meanings or classifying words in a text. Semantic annotation of domain-spe-
cific data requires text mapping based on clinical importance, such as symp-
toms, diagnosis, or treatment (Névéol et al., 2018). Studies such as Abdelaziz 
et al. (2023), Demir et al. (2023). and Rimjhim and Dandapat (2023) suggest that 
data preprocessing involves steps like feature identification, extraction, and 
assignment, with semantic tagging crucial for improving accuracy and per-
formance in various applications. Semantic tagging is primarily motivated 
by the structured context around clinical data, enabling language models to 
better understand and categorize medical information. Consider an example 

FIGURE 7.4
Python code example for tokenization and lemmatization.
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(a clinical decision support system); tagging “chest pain” as the symptom 
and “aspirin” as a treatment will enable the model to associate the symptom 
better with the relevant treatments. This reduces the time needed to organize 
medical texts to reflect clinical reasoning and thus improves diagnosis and 
recommendation accuracy.

This is the case with medical questions tagged and processed by LLMs 
since it helps build a better structured context in which the LLM can accu-
rately recognize other medical concepts. This process allows LLMs to catego-
rize data, making identifying and interpreting medicine-related texts easier.

For instance, clinical decision support systems often use semantic tagging 
and medication reconciliation to identify pertinent clinical data from unfor-
matted text. Diagnosing the illness and recommending corrective action 
becomes easier when you key in a symptom code such as “chest pain, com-
plaints” or a treatment code like “aspirin use.”

Some semantic tagging systems rely on machine learning algorithms 
such as conditional random fields (CRF) or neural networks to tag medi-
cal terms automatically (Zhu et al., 2018). These models are developed from 
the annotated corpora available for clinical data usage and use POS tags 
and medical ontologies like UMLS. Further improvements in transformer-
based language models have demonstrated better prediction accuracy than 
conventional techniques (Devlin et al., 2018). Indeed, these models can offer 
contextual details and utilize prelearned knowledge from extensive bio-
medical corpora.

Semantic tagging aims to define and compare named entities (people, orga-
nizations, diseases, etc.) appearing in the text to their types. For example, it 
assigns “Chronic Obstructive Pulmonary Disease” as a category of a medi-
cal description or “Ms. Khan” as an individual. In the Python code example 
(Figure 7.5), we utilize Python’s spaCy (a popular NLP tool) to apply semantic 
tagging to medical text.

Semantic tagging is not the process of transforming text into a new form. 
It generates a set of labels linked to parts of the text. Each entity is identified 
and classified into one of the categories. Semantic tags are a way to tell the 
model what a specific part of the text means in a coded manner. However, 
semantic tagging does not include any extra or altered semantic details of the 
text. It only provides information about the text. This extra layer of informa-
tion is useful to help the model enhance the level of accuracy where a basic 
understanding of the text is concerned.

The spaCy loads the medium-sized English model. It is effective at rec-
ognizing entities from English text. In this stage, the process takes the lem-
matized text for semantic analysis. This integration presents an end-to-end, 
fine-grained text analysis process, from text preprocessing to deep under-
standing at the linguistic level. Before extracting entities from the text, the 
output from the NLP model is analyzed to determine the entities present in 
the text based on the context and terminology.
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In the spaCy model (Honnibal and Montani, 2017), named entity recogni-
tion (NER), the code ORG usually refers to “organization.” However, entities 
that do not represent organizations may mistakenly use this model. This is 
due to the inherent challenges of categorizing entities in medical data. In the 
output, entities like “Chronic Obstructive Pulmonary Disease” and “Simvas-
tatin” have been tagged as “ORG,” which is incorrect in a clinical or medical 
context. This misclassification shows one of the problems of applying gen-
eral NLP models in medicine. The model may not possess adequate medical 
domain knowledge to analyze such specific terms. However, it is advisable 
to use NLP models trained on medical texts or at least enhance general ones 
with knowledge from the medical field. Such adaptations can improve the 
model and help it better identify specific medical entities in the domains.

Vectorization: LLMs can process text input by converting it into numbers 
or vectors (Mikolov, 2013). In medical documents, vectorization lets the mod-
els identify patterns and correlations between the data. Vectorization enables 
a degree of quantification of the words used in patient feedback. Earlier stud-
ies in medical text analysis have used BoW and TF-IDF, basic approaches to 
vectorization. However, it cannot manage semantic relations, the context of 
meaning between terms, or text data (Zhang et al., 2018). Recently, methods 
like Word2Vec and GloVe have been used for vectorization to enhance the 

FIGURE 7.5
Python code example for semantic tagging.
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process, especially when capturing semantic similarity and syntactic pat-
terns (Chiu et al., 2016; Pennington et al., 2014).

Moreover, transformer-based language models such as BERT and its ver-
sions, like BioBERT and Clinical BERT, have indeed brought changes in con-
verting text into vectors (Alsentzer et al., 2019; Lee et al., 2020). These models 
can produce “contextualized word embeddings,” which would decode medi-
cal terms and provide better analysis of clinical texts compared to other mod-
els—appropriate vectorization aids in various areas, ranging from disease 
detection to finding prescriptive treatments.

There are two main approaches to converting text into vectors. The first 
translates each word to its vector, while the second reduces the entire 
document to a single vector. Table  7.1 summarizes the variation between 

TABLE 7.1

Comparison of Word-Level and Document-Level Vectorization

Word-Level 
Vectorization

Document-Level 
Vectorization

Definition It converts each word into a 
vector representation.

It converts an entire document into a 
single vector.

Dimensionality Each word is represented by a 
vector of fixed dimensions.

The document is represented by a 
single vector, which might be an 
average or aggregate of word vectors.

Context	
sensitivity

Traditional methods (e.g., 
Word2Vec, GloVe) lack context 
sensitivity; more advanced 
embeddings from transformers 
(BERT, GPT) provide context-
sensitive vectors for each word 
occurrence.

Captures the overall context of the 
document but loses individual word 
contexts.

Use cases Ideal for tasks requiring 
fine-grained analysis such as 
word similarity, part-of-speech 
tagging, and named entity 
recognition.

Suited for tasks where the overall 
semantic content is more important, 
such as document classification, and 
information retrieval.

Advantages In LLMs, word-level embed-
dings are crucial for maintaining 
the richness of language 
understanding and allow models 
to leverage context-dependent 
meanings dynamically.

Simplifies modeling by reducing the 
input size; useful for quick 
summaries or when detailed 
word-level semantics are less critical.

Computational 
complexity

Higher computational cost for 
processing as each word is 
treated separately.

Lower computational overhead 
post-vectorization since it deals with 
a single vector per document.

Memory usage Requires substantial memory
to store vectors for each word.

More memory-efficient when dealing 
with large volumes of text.

Interpretability Higher interpretability for in-
dividual words in the model’s 
decisions.

Lower interpretability of how specific 
words or phrases affect the overall 
document’s representation.
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word-level vectorization and document-level vectorization while highlight-
ing the technical aspects that concern NLP and LLMs. Figure  7.6 shows a 
word-level vectorization example code.

7.4.1.2  Image Preprocessing and Annotation

The quality and precision of the annotations have a considerable effect on the 
model’s performance. This section describes the techniques used for medical 
imaging annotations, starting with the manual method.

Manual Annotation: In this process, specialists draw marks, boxes, or 
circles to underline specific image features. For example, outline a lesion in 
dermatological images or circle the tumor in an MRI. The primary purpose 
of manual annotation is to obtain high-quality and accurate datasets, which 
serve as the ground truth for training diagnostic models. This is essential for 
developing models to assist in patient prognosis and aid in clinical decisions 
(Alsentzer et al., 2019). Experts often employ software to delineate ROIs in 
medical images. These could be simple rectangles, detailed contours, or pixel 
masks, depending on the problem domain of the annotations. However, as 
medical experts do the manual annotation, it also brings a high degree of 
subjectivity. Experts make judgments on the subjects based on their experi-
ence and knowledge. It is argued that manual approaches enable more pre-
cise decisions than automated ones, seeing some information that a piece of 
software cannot discern (Aljabri et al., 2022). However, manual annotation is 
time-consuming and requires high labor intensity for handling large datas-
ets. Also, images labeled by different experts may display variations due to 
varying perceptions regarding the images and their attributes. Interobserver 
variability, including professional backgrounds, can also impact machine 

FIGURE 7.6
Python code example for world-level vectorization.
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learning algorithm training. Because image annotation requires well-trained 
medical personnel, it is not always convenient. Researchers employ differ-
ent imaging tools, including 3D Slicer, ITK-Snap (see Figure 7.7), OsiriX MD, 
Labellerr, Encord, and LabelBox, or tools developed in MATLAB and Python 
for manual annotation purposes.

These tools can manage multimodal image data (MRI, CT, PET, etc.) and 
require the basic facilities of 3D view and annotation in complex cases.

Semi-Automated Annotation: Semi-automated annotation methods in 
medical imaging combine human experience and computational support. 
This approach can aid in expediting the annotation process and reducing the 
likelihood of check errors. Such techniques are helpful in medical imaging 
because manually creating annotations is time-consuming and costly. We 
divided the semi-automated annotation techniques into two classifications.

Smart-Assist Annotation: In this process, a human expert fine-tunes the 
already developed algorithms and aims to annotate the images automatically. 
Experts use machine learning models based on regression models derived 
from an annotated database to identify areas of interest. For instance, radiolo-
gists refine potential lesions or tumors identified by models in neuroimaging. 

FIGURE 7.7
ITK-SNAP (Yushkevich et  al., 2006) user interface for manually segmenting a stroke lesion. 
This single visualization accurately captures the level of detail required in the manual annota-
tion of biomedical images, which forms the foundation for building robust machine learning 
models.
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This method relies on the computational capability of models to accomplish 
the first and most time-consuming steps of annotation, letting highly knowl-
edgeable professionals do the final adjustment and assessment.

2. Tools-Sync Annotation: In this approach, experts use software tools to 
interact with the algorithm in real-time. For example, the annotator provides 
the input for segmentation, and the algorithm calculates the remaining seg-
mentation results based on that input. The functionalities in ITK-SNAP create 
the annotation in the organ or lesion analysis, while the software approxi-
mates the organ or lesion’s boundary. It remains fair to mention that the pro-
posed interactive approach allows the final annotations to incorporate the 
advantages of manual workflow and algorithmic assistance (see Figure 7.8).

Semi-automated methods offer advantages in terms of efficiency and less 
of a work burden for experts. These techniques are helpful because they use 
predictive algorithms that provide first-set annotations and reduce the time 
spent on detailed annotations. This efficiency gain enables medical profes-
sionals to spend more time reviewing and refining these annotations rather 
than building them from scratch. In addition, semiautomated tools reduce 
the human errors that arise from fatigue. Manual expertise and speed in 
algorithm execution also permit working with larger datasets, which is 
essential for creating stable AI models in diagnostics and analytics.

Fully Automated Annotation: Deep learning solutions for image anno-
tation have recently developed new fully automated approaches. These 
approaches can annotate the images without expert intervention. In the cur-
rent scenario, where medical data volumes are generating exponentially, 
such automated approaches seem ideal. These approaches increase efficiency 
in handling enormous quantities of medical images and generating qual-
ity annotations in less time. Automatic annotation relies on deep learning 
models, specifically CNNs or convolutional neural networks. These models 
are particularly adept at recognizing grid-like data, such as images, which 
makes them suitable for medical use. Elaborate architectures like U-Net, 
V-Net, and Mask R-CNN have extended it for medical image segmentation 
and object detection (Ronneberger et al., 2015; Shu et al., 2020).

Deep learning in medical imaging systems is one of the most notable fea-
tures of fully automated annotation. This allows for real-time annotation of 
scans during the imaging process and can alert radiologists to areas of inter-
est. In such cases, real-time analysis improves diagnosis speed and accuracy 
(Topol, 2019). The advantages of fully automated systems are considerable, as 
shown in Figure 7.8.

Scalability: They can handle large datasets that cannot be processed 
manually.

Speed: Automatic annotations minimize the time it takes to process a 
dataset.

Consistency: These systems provide a degree of annotation standard-
ization that human annotators can hardly achieve.
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FIGURE 7.8
Flowchart shows steps for semi-automated annotation techniques in medical image annotation.
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However, there are still challenges in deploying fully automated annotation 
systems:

Accuracy: The interpretation of medical images can be complicated for 
systems due to their various levels of abstraction.

Data Quality: The effectiveness of these systems are directly linked to 
the quality and diversity of available training data.

Ethical and Legal Implications: Reducing human intervention in diag-
nosis raises important legal and ethical concerns.

Recent studies seek to identify solutions to these problems. For example, 
emerging strategies for integrating multiple AI models, such as ensemble 
and federated learning, can improve accuracy and resilience (Rieke et  al., 
2020). Furthermore, researchers developed methods like few-shot and self-
supervised learning to lessen the requirement for massive, labeled data 
sets (Chen et al., 2020). In practical applications, there has been an increased 
development of fully automated annotation systems directly in medicine. 
Radiologists use AI-based systems to help detect tumors or bone fractures. 
Digital pathology also involves using AI to assist pathologists in identifying 
tissues with several types of diseases. Imaging systems use NLP to generate 
detailed descriptions and annotations from images. Moreover, other health-
care domains, like surgical skills and medical services tailored to specific 
patient conditions, also utilize NLP.

7.4.2  Model Adaption and Configuration

Adopting LLMs for medical imaging is complex because of the model’s com-
plexity and capabilities. We need to tailor LLM models for specific medi-
cal applications. The LLM models, primarily designed for text-based data 
processing, require modifications. Such changes enable LLMs to handle vast 
amounts of imaging data. Essentially, the modifications made to LLMs aim 
to achieve three key objectives: (1) improving diagnostic outcomes, (2) ensur-
ing task automation, and (3) advancing treatment plans.

These models can interpret the medical text with corresponding images, 
such as the radiology report with the patient’s scanned images. This capa-
bility eradicates the gap between text and image analyses. This approach 
is more advanced and efficient than traditional ones (Bhayana, 2024). It 
extends the model knowledge base with modality-specific conditions. This 
process involves training the LLM to search for specific characteristics and 
features.

•	 Specific types of anomalies.
•	 Various noise patterns.
•	 Typical anatomical structures and pathological patterns.
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Further refinement of the LLMs for each modality enables the identification 
of certain features distinctive to the different modalities. Multiple modalities 
make detecting patterns that are challenging to recognize in text or images 
easier, enhancing the model’s viability and real-world applicability. One of 
the requirements for LLM adaptation is the ability to process text with image 
information.

LLM makes comprehensive and accurate medical diagnostic models. Com-
bining text and image data forms the foundation of LLM adaptation for med-
ical imaging. This process involves:

•	 Preparing LLMs to “recognize” medical images and analyze them.
•	 Assisting in the understanding of relevant medical texts.
•	 Developing models to integrate and analyze findings from both 

image and text data.

This approach produces a practical model based on visual and textual 
analysis (Hu et al., 2024) and can identify patterns that human experts may 
overlook. For instance, we train an LLM to identify breast cancer symp-
toms from mammography and patient health reports. By combining the 
textual and visual data, the model can detect subtle signs that may not be 
apparent with the usual approach. This enables models to identify signs 
that conventional assessments may overlook, enabling an early and accu-
rate diagnosis. This adapted approach paves the way for additional archi-
tectural enhancements and standardizes the models to fit specific medical 
scenarios better.

7.4.3  Transfer Learning and Fine-Tuning

The cheXReport (Zeiser et  al., 2024) is a fully transformer-based encoder–
decoder framework designed to generate chest X-ray reports. It uses Swin 
Transformer blocks (Liu et al., 2021b) in the encoder and decoder, improving 
the extraction and integration of visual and textual features from chest X-ray 
images. CheXReport is evaluated on the publicly available MIMIC-CXR 
dataset comprising 377110images and corresponding free-text reports. Spe-
cifically, CheXReport achieves state-of-the-art performance on the MIMIC-
CXR dataset, outperforming other leading models on BLEU-4 and ROUGE 
metrics.

LVLMs have emerged as powerful tools in computer vision, extending the 
capabilities of LLMs. These advanced systems utilize a pretrained visual 
encoder to embed visual features, which the LLM then processes to extract 
image descriptions and perform diagnoses. In recent years, several special-
ized LVLMs have been developed and pretrained for various medical image 
analysis applications. One such model is an instruction prompt-tuned version 
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of Flan-PaLM specialized for the medical domain (Singhal et  al., 2023a). 
Another notable advancement is the Large Language and Vision Assistant for 
BioMedicine (LLaVA-Med) (Li et al., 2024a), which aims to integrate visual and 
textual information in biomedical contexts. LLaVA-Med++ (Xie et  al., 2024) 
LLaVA-Med++ achieves state-of-the-art performance in two of the three VQA 
benchmarks and ranks third in the remaining. Pretraining on MedTrinity-
25M improves performance by approximately 10.75% on VQA-RAD, 6.1% on 
SLAKE, and 13.25% on PathVQA compared to the model trained without it. 
For ultrasound imaging, researchers have introduced LLaVA-Ultra, a Large 
Chinese Language and Vision Assistant designed to interpret and analyze 
ultrasound images (Guo et al., 2024). Additionally, the Med-MoE model (Jiang 
et al., 2024) employs a Mixture of Domain-Specific Experts’ approaches to cre-
ate lightweight medical vision-language models, potentially improving effi-
ciency and performance in specialized medical tasks.

TABLE 7.2

Medical Image Understanding Datasets

Dataset Tasks Size Details

CheXpert (Irvin 
et al., 2019)

Automated chest 
X-ray interpretation

224,316 Chest radiographs of 65,240 patients with 
both frontal and lateral views available.

VQA-RAD (Lau 
et al., 2018)

Visual Question 
Answering in 
Radiology

3,515 Question–answer pairs on 315 radiology 
images

PathVQA (He 
et al., 2020)

Medical Visual 
Question Answering

32,799 Open-ended questions from 4,998 
pathology images where each question is 
manually checked to ensure correctness.

PMC-VQA 
(Zhang et al., 
2023b)

Medical Visual 
Question Answering

227 K VQA pairs of 149k images that cover 
various modalities or diseases.

PMC-OA (Lin 
et al., 2023)

Language-Image 
Pre-training using 
Biomedical 
Documents

1.65 M Biomedical image-text pairs

MIMIC-III 
(Johnson et al., 
2016)

Medical Code 
Prediction

112K Clinical reports records (average length 
709.3 tokens) and 1,159 top-level ICD-9 
codes. Data includes vital signs, 
medications, laboratory measurements, 
observations, survival data, and more.

VietMed-Sum 
(Le-Duc et al., 
2024)

Real-time speech 
Summarization for 
Medical 
Conversations, 
English-translated 
and Vietnamese

24,357 Utilize LLM and human annotators 
collaboratively to create gold standard 
and synthetic summaries for medical 
conversation summarization.

(continued)
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7.5  Medical Imaging Applications

Medical image analysis is a critical field in healthcare, enabling precise diag-
nosis, medical report generation, and chatbots for disease monitoring. Recent 
advancements in deep learning, federated learning, and transformer models 
have significantly enhanced the capabilities of medical image analysis, offer-
ing improved accuracy, efficiency, and privacy.

7.5.1  Disease Diagnosis

Medical image understanding is critical in disease diagnosis, utilizing 
advanced deep learning modeling to enhance accuracy and efficiency. 

Dataset Tasks Size Details

MultiMedQA 
(Singhal et al., 
2023b)

Medical question 
answering

About 
202K

Includes the MedQA (Jin et al., 2021), 
MedMCQA (Pal et al., 2022), PubMedQA 
(Jin et al., 2019), MMLU clinical topics 
(Hendrycks et al., 2021), LiveQA 
(Abacha et al., 2017), and Medication QA 
(Singhal et al., 2023c) datasets

MedConceptsQA 
(Ben Shoham 
and Rappoport, 
2024)

Benchmark for 
medical concepts 
questions answering

Over 
800K

Questions of various medical concepts 
across different vocabularies: diagnoses, 
procedures, and drugs

SLAKE (Liu 
et al., 2021a)

Medical visual 
question answering

7,000 With 642 images, Comprehensive semantic 
labels annotated by experienced 
physicians, and a new structural medical 
knowledge base for Med-VQA

QUILT-1M 
(Ikezogwo et al., 
2024)

Medical visual 
question answering

1M Histopathology paired image-text 
samples

MedPromptX-
VQA (Shaaban 
et al., 2024)

medical visual 
question Answering

6,485 Distinct patients records n-context visual 
question answering dataset 
encompassing interleaved image and 
EHR data derived from MIMIC-IV and 
MIMIC-CXR databases.

OVQA (Huang 
et al., 2022)

Medical visual 
question answering

19,020 Medical visual question question and 
answer pairs generated from 2,001 
medical images collected from 2,212 
EMRs in orthopedics.

MedTrinity-25M 
(Xie et al., 2024)

Medical visual 
question answering, 
medical report 
generation

25M Large-scale multimodal dataset for 
medicine, covering over 25 million images 
across ten modalities, with multigranular 
annotations for more than 65 diseases

TABLE 7.2 (Continued)

Medical Image Understanding Datasets
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Figure 7.9 shows a positive trend in the number of publications, especially 
in recent years, with a significant acceleration after 2019. This highlights 
the growing research interest and increasing investments in medical image 
understanding for disease diagnosis.

Deep learning has shown significant success in cancer diagnosis using 
various medical imaging modalities, including X-ray, ultrasound, CT, MRI, 
PET, and histopathological images. Techniques like transfer learning, ensem-
ble learning, and vision transformers are particularly effective (Jiang et al., 
2023). The main challenges include the need for high-quality labeled datas-
ets, model explainability, and generalization, especially for rare cancers and 
multimodal image fusion. The Hercules model proposed by (Abdar et  al., 
2023), a deep hierarchical attentive multilevel fusion model with uncertainty 
quantification, improves medical image classification accuracy in retinal 
OCT, lung CT, and chest X-ray datasets compared to other methods.

7.5.2  Medical Report Generation

LVMs enhance medical report generation using advanced vision–language 
pretraining, efficient fine-tuning strategies, and domain-specific adaptations. 
These models address challenges in data annotation and improve the accu-
racy and coherence of generated medical reports, demonstrating significant 
potential in the medical field. Customizing off-the-shelf general-purpose 
large-scale pretrained models, such as vision transformers and language 
models, can significantly improve medical report generation. This approach 

FIGURE 7.9
Number of publications till 2023. (Criteria “Medical Image Understanding for Disease Diagno-
sis,” Data Source [Science and Inc., 2024]).
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leverages the strengths of models like EVA-ViT-g and ChatGLM-6B to enhance 
the generation of medical reports by focusing on efficient transfer learning 
and parameter tuning (Yang et al., 2023). MedEPT, a parameter-efficient medi-
cal report generation approach, improves performance using less trainable 
parameters and 30% less training time than previous methods (Li, 2023).

Nakaura et al. presented a comparative assessment done on a retrospective 
study involving 28 patients (Nakaura et al., 2024). Results show that GPT−3.5 
and GPT-4 can generate radiology reports with high readability and rea-
sonable image findings from concise keywords; however, concerns persist 
regarding the accuracy of impressions and differential diagnoses, thereby 
requiring verification by radiologists. There were no significant differences 
in qualitative scores about grammar, readability, image findings, and over-
all quality between radiologists and GPT−3.5 or GPT-4 (p > 0.05). However, 
qualitative scores of the GPT series in impression and differential diagnosis 
scores were significantly lower than those of radiologists (p < 0.05). Saab et al. 
(Saab et al., 2024) investigated the capabilities of Gemini models in medical 
applications. Gemini models are specialized AI models that integrate mul-
tiple data types, such as textual and image data, to improve diagnosis and 
treatment predictions. The study highlights their potential in advancing pre-
cision medicine.

7.5.3  Medical Chatbots

XrayGPT integrates vision and language models to analyze and summa-
rize chest radiographs effectively. This model aligns visual and textual data, 
improving the understanding and interpretation of radiographic images 
(Thawakar et al., 2023). Medical chatbots could be used in medical education. 
Hirano et al. (Hirano et al., 2024) assess the performance of GPT-4 Turbo with 
Vision (GPT-4TV) by comparing its ability to process both text and image 
input with that of the text-only GPT-4 Turbo (GPT-4T) in the context of the 
Japan Diagnostic Radiology Board Examination (JDRBE). GPT-4TV correctly 
answered 62 questions (45%), whereas GPT-4T correctly answered 57 ques-
tions (41%). A  statistical analysis found no significant performance differ-
ence between the two models (P = 0.44). The GPT-4TV responses received 
significantly lower legitimacy scores from both radiologists than the GPT-
4T responses. Huatuo is a model fine-tuned with a vast corpus of Chinese 
medical knowledge (Wang et al., 2023). The paper explores how incorporat-
ing traditional and contemporary Chinese medical information enhances the 
model’s performance in medical-related question-answering and decision-
making tasks.

7.5.4  Medical Image Segmentation

LVM-Med, a self-supervised vision model trained on large-scale medical 
datasets, significantly improves performance on various medical imaging 
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tasks. It bridges the gap between natural and medical image domains through 
effective self-supervised learning techniques (Nguyen et al., 2023). The seg-
ment anything model (SAM) demonstrates remarkable performance in 
medical image segmentation by leveraging self-prompting techniques. This 
approach significantly improves segmentation accuracy with minimal data, 
outperforming fine-tuning methods by over 15% (Wu et al., 2023).

7.6  Challenges and Limitations

Medical image analysis is critical to modern healthcare, enabling precise 
diagnosis, treatment planning, and disease monitoring. However, despite 
significant advancements, several challenges and limitations hinder the full 
potential of medical image analysis, particularly when using LLMs and LVMs.

7.6.1  Data Privacy and Security

LLMs reveal significant variations in privacy protection capabilities across 
different architectures. In (Sun et al., 2024), the Enron email dataset analysis 
demonstrates that specific models, such as Oasst-12b, ERNIE, Baichuan-13b, 
and the Llama2 series, exhibit robust privacy safeguards, with Llama2 vari-
ants showing exceptional resistance to email address disclosure. Conversely, 
models like GPT-4, ChatGPT, and Vicuna display vulnerability to privacy 
leakage, particularly under five-shot prompting conditions, with Total Dis-
closure scores frequently exceeding 48%. A  positive correlation between 
model size and privacy risk was observed within similar architectural fami-
lies, as evidenced by higher disclosure rates in larger models.

Furthermore, prompting techniques significantly influence privacy leak-
age, with five-shot prompting scenarios generally resulting in increased 
Total and Conditional Disclosure scores compared to zero-shot configura-
tions. The vulnerability of few-shot learning models to backdoor attacks was 
examined (Liu et al., 2024). This study emphasizes that these models are sus-
ceptible due to their limited data exposure. This research underscores the 
need for more resilient training techniques to mitigate such risks. Fast adver-
sarial training enhanced with prior-guided knowledge to strengthen model 
defense mechanisms is explored in (Jia et al., 2024). This approach leverages 
prior information to accelerate training while maintaining defense effective-
ness and addressing security issues in sensitive applications like medical 
imaging. On a broader scale, Xu et al., 2024 conducted a comprehensive anal-
ysis of jailbreak attacks and their defenses in large language models. This 
study is relevant to medical image analysis due to the increasing integration 
of these models in automated reporting and diagnostic systems. It highlights 
potential risks and defenses against adversarial manipulations. The work of 
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Clusmann et al. (2023) and Thirunavukarasu et al. (2023) provided forward-
looking perspectives on the role of large language models in medicine. They 
discussed the implications of using such models for privacy, security, and 
regulatory compliance in medical systems, highlighting the importance of 
aligning technological advancements with ethical considerations.

7.6.2  Data Generalization and Variability

Medical image analysis is crucial for accurate diagnosis and treatment plan-
ning. However, the variability and generalization of data across different 
imaging systems and conditions pose significant challenges. Many deep 
learning segmentation methods struggle with unseen data due to cross-
domain distribution shifts. Techniques like Bayesian modeling (BayeSeg) 
and domain-aware dual attention networks have been proposed to enhance 
generalizability by modeling domain-stable and domain-specific features 
separately (Gao et al., 2023; Lai et al., 2023). The domain-aware dual attention 
network effectively segmented medical images in unseen domains, outper-
forming existing advanced approaches. Such research aims to bridge the gap 
between current capabilities and the need for reliable, generalizable medical 
image understanding in clinical settings; however, it’s still a challenge.

7.6.3  Accuracy and Hallucination Prevention

Hallucination prevention in medical language models is a critical area of 
research, particularly in medical applications where accuracy and reliability 
are paramount. Diverse sources and types of hallucinations in multilingual 
settings and the proposed strategies to mitigate them are discussed in Guer-
reiro et al. (2023). A model introspection technique to detect and understand 
when and why these hallucinations occur is presented in Xu et al. (2023). By 
analyzing internal states and activations of the model, they develop meth-
ods to identify hallucinated outputs. The study also provides insights into 
improving the reliability and faithfulness of neural machine translation sys-
tems by focusing on introspection and detecting hallucinations.

7.6.4  Uncertainly Quantification

Uncertainty quantification methods are essential for determining the con-
fidence level of deep learning model predictions in radiologic image analy-
sis. These methods help identify when a model lacks sufficient information, 
allowing medical experts to reassess uncertain cases and build trust in AI 
systems (Faghani et al., 2023). It is essential to consider uncertainty evalu-
ation to assess structural reliability, codified design, performance-based 
design, and risk-based decision-making. Ma et al. (2023) proposed a trust-
worthy deep learning framework, TRUDLMIA, for medical image analysis. 
It addresses challenges like limited data availability, class imbalance, and 
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model trustworthiness. The framework combines supervised and self-super-
vised learning, utilizes a novel surrogate AUC margin loss function, and 
aims to build high-performing and high-trust models. The trustworthiness 
of medical image analysis can be significantly enhanced by implementing 
explainable AI frameworks, trustworthy deep learning models, uncertainty 
quantification methods, and privacy-preserving techniques such as feder-
ated and continual learning. These approaches collectively address the core 
concerns of transparency, reliability, and data privacy, fostering greater con-
fidence in AI-driven medical diagnostics and treatment planning.

7.6.5  Model Interpretability and Explainability

It is important that an AI model has its predictions explained for clinical 
use. Medical practitioners need to comprehend the reasoning behind the 
decisions made by the AI model. Current LLM and LVM models lack trans-
parency, making it difficult for clinicians to understand how predictions are 
made. The application of explainable AI (XAI) methods, such as attention 
maps and feature importance, enhances the interpretability of the conclu-
sions clinicians could derive regarding model decision-making. Addition-
ally, meeting the interpretability requirements will be key to meeting the 
ethical and regulatory expectations associated with healthcare.

7.7  Future Perspectives

Integrating LLMs in medical image understanding promises to revolution-
ize the field by enabling more precise and personalized healthcare solutions. 
Future advancements may focus on enhancing the interpretability and trans-
parency of these models, addressing current limitations related to data biases 
and ethical concerns. The synergy between LLMs and multimodal data, 
such as combining imaging with clinical notes or bioinformatic data, could 
also lead to more comprehensive diagnostic tools. Regarding the potential 
for LLMs to support real-time decision-making, automating complex image 
analysis tasks and facilitating cross-disciplinary collaboration will likely 
drive significant innovations, ultimately improving patient outcomes and 
medical practice efficiency.
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8.1  Introduction

The increasing adoption of online shopping and electronic payment systems 
highlights the necessity for robust fraud detection techniques. Especially in 
the context of the COVID-19 epidemic, wherein there has been a noticeable 
surge in the use of digital payment methods and online transactions, crimi-
nals engaged in fraudulent activities have identified new ways for conducting 
their illegal activities [1–3]. Considering this situation, financial institutions 
need to maintain awareness in detecting and analysing emerging patterns 
of fraudulent activities. Furthermore, they must develop specific plans to 
respond appropriately to protect customers who are at risk. Consequently, 
credit card fraud spiked during this time period, with fraudsters manipulat-
ing the economic crisis to target vulnerable individuals and enterprises.

Due to the growing complexity of fraudster techniques, conventional fraud 
detection systems face challenges in keeping up. These challenges include 
managing large amounts of data and finding the right balance between secu-
rity and user experience. In order to effectively identify fraud in the current 
constantly evolving area, it is necessary to utilise a prompt and visionary 
strategy that is flexible, robust, and able to navigate the complexities of recent 
financial fraud.

As depicted by [4], the illustration presented in Figure  8.1 illustrates a 
conventional framework for detecting fraudulent activities that are com-
monly implemented in commercial systems. Upon successful card verifica-
tion, financial institutions such as VISA, MasterCard, and Citibank utilize 
an online predictive model to evaluate every transaction. In contrast to 
a basic rule-checking system that emphasizes card blacklists, budgetary 
assessments, and fraud regulations, the predictive model is constructed to 
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autonomously identify fraudulent patterns and generate a score indicative of 
the risk of fraud. As a result, investigators are able to concentrate on transac-
tions that pose high risk efficiently and subsequently provide the analysis 
outcomes to the predictive model for updating purposes systems [5]. Given 
the dynamic nature of the attacking strategies employed by potential fraud-
sters, it is compulsory that a well-functioning system can effectively adjust to 
these evolving attack methods.

Fraudulent transactions frequently display unusual patterns when exam-
ined from the perspectives of space and time, encouraging the incorporation 
of spatial and temporal analysis into fraud detection. For example, conven-
tional detection methods may fail to notice a possible case of fraud if there 
is a rapid sequence of transactions from distant places. The same principle 
applies regarding suspicious patterns of transactions that occur at incon-
venient times. The system can identify fraudulent actions and grasp their 
context and method of operation due to these analyses, which improves the 
overall efficacy of the detection procedure.

The integration of spatial-temporal analysis in credit card detection sys-
tems for fraud has great potential. Through this approach, such systems may 
obtain another level of accuracy and precision that was previously unachiev-
able using conventional approaches. The combination of these features 
enables a sophisticated detection process that can effectively adjust to the 
constantly shifting methods used by fraudsters. It guarantees an enhanced, 

FIGURE 8.1
Framework of credit card fraud detection.
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adaptable, and accurate method for detecting fraud that can recognize com-
plex and intricate patterns that signal fraudulent activity.

The main contribution of this chapter is to design and assess an innova-
tive system for detecting credit card fraud by combining machine learning 
and deep learning techniques, balancing, geolocation monitoring, and tem-
poral attention systems and advanced balancing techniques in order to con-
sider the data imbalance challenge in datasets. This system aims to solve the 
weaknesses of current fraud detection techniques, which frequently encoun-
ter difficulties in adjusting to the swiftly changing strategies employed by 
fraudsters in the worldwide financial arena.

This chapter is structured as follows: The Introduction addresses the 
problem of credit card fraud and the necessity for efficient detection tech-
niques. The Literature Review analyses current methodologies and high-
lights research shortcomings. The Research Methodology defines the 
analytical approaches and machine learning methodologies applied. The 
Results and Discussion section evaluates model efficacy and examines 
implications for fraud detection. The Conclusions summarise the principal 
findings and outline the study’s contributions to the world of digital bank-
ing security.

8.2  Literature Review

This section explores the literature on systems that identify credit card 
fraud. It focuses explicitly on tracing the development of credit card fraud 
detection. It also covers the evolution from basic techniques to advanced, 
technology-driven alternatives. A  conventional fraud detection system 
typically incorporates an automated fraud detection model and a man-
ual review operation conducted by the organization’s investigator [6]. The 
automated fraud detection technique is designed to monitor and evaluate 
every transaction that comes in using data mining methods, resulting in 
a scoring system [7, 8]. The manual process involves corporate investiga-
tors’ examining transactions that are suspicious and have been flagged by 
an automated fraud detection system due to their high fraud scores. The 
investigators then provide responses indicating whether the transactions 
are illegal or valid [9]. An automated fraud detection system may be con-
structed with either expert-driven approaches, data-driven methods, or a 
mix of both [10].

Spatial analysis has become essential in numerous scientific fields, includ-
ing epidemiology and geoscience, where it pertains to examining the char-
acteristics, locations, and interconnections of elements within spatial data. 
It comprises the investigation and construction of models to depict spatial 
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trends and patterns. Spatial analysis plays a crucial role in detecting credit 
card fraud by identifying transaction location abnormalities. This enables 
the identification of potentially fraudulent activities when cardholders con-
duct transactions in distant or uncommon areas that differ from their regular 
routine.

Fraudsters often act in certain areas to efficiently move cash between 
their accounts and optimise their earnings within a short time frame 
instead of regularly changing their transaction locations. This behaviour 
sets them apart from authorised customers in terms of geographical pat-
terns [11–13]. Hence the spatial transactional behaviour of users is an addi-
tional crucial factor in identifying fraudulent attributes. Additionally, the 
transactional behaviour of users is a crucial component in temporal analy-
sis for identifying fraudulent attributes. Users’ transactional behaviours 
tend to evolve over time [14, 15]. The transactional behaviour of genuine 
customers is notably developing with their living conditions and income 
levels. Conversely, in order to counteract the evolving transactional pat-
terns of authentic users and the perpetual revisions to credit card fraud 
detection models, fraudulent actors consistently modify their methods of 
operation [11].

Various strategies and approaches have been developed and applied to 
identify credit card fraud. Examining the complex, thorough, and constantly 
evolving character of fraud is essential to comprehending the effectiveness 
and suitability of these numerous methods.

The comparative study of the existing literature demonstrates that various 
approaches have been utilised in the field of credit card fraud detection. In 
addition, this comparison demonstrates that while the literature describes 
the variety of approaches that have already been applied in identifying credit 
card fraud, gaps in the existing literature still need to be filled. One gap is 
that these approaches could be further improved by simultaneously integrat-
ing the spatial-temporal element, resampling technique, machine learning, 
and deep learning.

Although a substantial amount of study has focused on credit card fraud 
detection systems, notable gaps and shortcomings need more investigation 
and advancement. A significant deficiency in the existing body of research is 
the lack of a comprehensive framework that integrates spatial analysis, tem-
poral analysis, resampling methods, and the collective capabilities of both 
machine learning and deep learning algorithms. An integrated approach is 
crucial for improving fraud detection systems’ precision, accuracy, and effec-
tiveness. An advanced system would possess the ability to not only accu-
rately detect fraudulent activity but also to adapt to the changing nature of 
credit card fraud, eventually enhancing the security of financial transactions. 
The existence of these gaps emphasises the need for more thorough and uni-
fied strategies that can effectively tackle the intricacies of fraud detection in 
the present-day digital landscape.
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TABLE 8.1

Critical Evaluation of Existing Literature of Credit Card Fraud Detection System 
Approaches

Source

Spatial-Temporal 
Analysis

Imbalance 
Technique

Machine 
Learning

Deep 
LearningSpatial Temporal

Abd El-Naby et al. [16] ✖ ✖ ✔ ✔ ✖
Afriyie et al. [17] ✖ ✖ ✔ ✔ ✖
Almazroi and Ayub [18] ✖ ✖ ✔ ✔ ✔
Barz et al. [19] ✔ ✔ ✖ ✔ ✖
Cheng et al. [4] ✔ ✔ ✖ ✔ ✔
de Sá et al [6] ✖ ✖ ✖ ✔ ✖
Esenogho et al. [20] ✖ ✖ ✔ ✔ ✔
Fanai and Abbasimehr [21] ✖ ✔ ✔ ✔ ✔
Ghaleb et al. [22] ✔ ✖ ✔ ✔ ✔
Gupta et al. [23] ✖ ✖ ✔ ✔ ✖
Khalid et al. [24] ✖ ✔ ✔ ✔ ✔
Li et al [25] ✖ ✖ ✔ ✔ ✔
Lucas et al. [26] ✖ ✔ ✖ ✔ ✖
Lunghi et al. [27] ✖ ✔ ✔ ✔ ✔
Nguyen et al. [28] ✖ ✖ ✔ ✔ ✔
Ni et al. [29] ✖ ✖ ✔ ✔ ✖
Xie et al. [11] ✔ ✔ ✖ ✔ ✔
Xie et al. [30] ✖ ✔ ✖ ✔ ✔
Xie et al. [31] ✖ ✔ ✖ ✔ ✔
Zhu et al. [32] ✔ ✖ ✔ ✔ ✔

8.3  Research Methodology

This section outlines the methods for detecting credit card fraud, beginning 
with the processing of data, which includes providing an overview of the 
information and preparing it for modeling. This section also encompasses 
the process of exploratory data analysis (EDA) in order to gain insights into 
the qualities of the data, followed by the building of a model, wherein the 
methods used are described. It also explores various resampling approaches 
that aim to mitigate class imbalance. It also assesses the efficacy of the model 
by using classification performance indicators.

8.3.1  Proposed Approach

The proposed approach used in this chapter is shown in Figure  8.2. The 
methodology begins by analysing the unprocessed history user data, 
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performing data processing on the historical user data, and then assess-
ing several machine learning and deep learning algorithms. The first step 
involves subjecting the raw historical user data to a thorough data cleaning 
procedure to eliminate any inconsistencies, inaccuracies, or unnecessary 
data, hence ensuring the dataset’s quality. Following that, an important fea-
ture selection phase is conducted, explicitly focusing on the indispensable 
spatial and temporal attributes for our analysis. After the dataset is refined, 
it is divided into sets for training and testing. This partition enables us to 
train our models efficiently while allocating a portion of the data for future 
evaluation of their predicting capabilities. Subsequently, the data balanc-
ing techniques are implemented to ensure a balanced portrayal of classes 
within the dataset, mitigating any possible biases that may compromise 
the correctness of our model. Various algorithms, including both machine 
learning and deep learning, are implemented to develop fraud detection 
models. Following the training process, a comparative analysis is conducted 
to evaluate and compare the performance of each algorithm systematically. 
This phase is of the utmost importance, as it enables us to determine each 
algorithm’s robustness and comparative efficacy when implemented on our 
dataset.

FIGURE 8.2
Framework for detecting credit card fraud using spatial–temporal data and machine learning, 
from data collection through model evaluation.
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8.3.2  Data Processing

The dataset utilized in this research encompasses a variety of simulated 
credit card transactions, including both authentic and fraudulent activities. 
The dataset comprises transactions that occur between January 1, 2019, and 
December 31, 2020, providing an extensive examination of temporal trends. 
By capturing the interactions of 1000 consumers with 80 distinct merchants, 
this dataset offers a wealth and variety of transactional information.

The data was produced utilizing the Sparkov Data Generation utility, a 
specialized instrument developed for the purpose of simulating authen-
tic credit card transaction data. This GitHub-hosted utility, which was 
created by Brandon Harris, functions as a resilient instrument for gen-
erating synthetic datasets that simulate real-world transactional patterns 
exceptionally well. Using predefined merchant and consumer categories, 
the transactions were generated with the assistance of the “faker” Python 
library. By following this methodology, a diverse and authentic dataset 
is obtained, comprising various consumer profiles that differ in terms 
of location, gender, age, and transactional attributes like quantities and 
frequency.

The data has been split into two main files: fraudTrain.csv, which com-
prises training data and primarily consists of transactions and labels, and 
fraudTest.csv, a distinct set of transactions provided for model evaluation in 
the interest of testing.

Data cleaning is crucial for the integrity of the model. The “trans_date_
trans_time” column is converted to a date-time object and then into a 
numerical format for analysis. Missing values are addressed using forward 
filling. This step is critical for maintaining the continuity and relevance of 
the data. Our data cleaning process involved handling missing values and 
inconsistencies. We employed a forward-fill method (fillna (method=“ffill”)) 
to address missing values, maintaining the sequential integrity of the data-
set. Additionally, the trans_date_trans_time column, initially in date-time 
format, was converted to a numeric format for analytical compatibility. This 
transformation was crucial for integrating time-based features into our 
models.

The target variable, which distinguishes between legitimate and fraudu-
lent transactions, was precisely delineated and kept distinct from the fea-
ture set. This separation is crucial for supervised learning models, in which 
the model’s objective is to make predictions regarding the target variable. In 
our feature engineering phase, we focused on the features trans_date_trans_
time, lat, and long, which are pivotal in identifying fraud patterns. We used 
one-hot encoding (pd.get_dummies) to convert categorical variables into 
a machine-readable format. This step is essential in preparing the data for 
input into machine learning models, ensuring that each feature contributes 
effectively to the model’s predictive power.
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8.3.3  Data Analysis

Our research investigates the spatial patterns of fraudulent transactions, a 
crucial step in the fight against financial fraud. Collecting and analysing 
location data associated with fraudulent transactions is the first stage, which 
provides the opportunity to identify “hotspots” of fraudulent activity. This 
knowledge assists in identifying regions or locations that are particularly 
susceptible to fraud. Having identified these potential locations, the next 
step is to utilize advanced mapping tools. These tools graphically depict the 
geographical distribution of fraud, thereby generating a clear picture of the 
fraud landscape.

Visual representation facilitates the understanding of spatial patterns of 
fraud, emphasizing the urgency and specific areas of focus of our anti-fraud 
strategies. When spatial data is integrated, it can provide a comprehensive 
perspective on fraudulent activity, greatly enhancing the effectiveness of 
fraud prevention techniques. By integrating these insights into the research, 
you have the potential to provide a valuable viewpoint on addressing finan-
cial crime at both the local and global levels.

Figure 8.3 illustrates the occurrence of transactions over a period of time, 
differentiating between fraudulent and non-fraudulent transactions. Analys-
ing the evolution of fraud patterns over time assists in detecting periods of 
increased risk, which may be associated with spatial susceptibility. Observ-
ing unique surges in fraudulent transactions may indicate the existence of 
coordinated fraud activities in particular places.

FIGURE 8.3
Transaction frequency over time.
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Integrating location data with time patterns enables a comprehensive 
understanding of fraudulent conduct from multiple perspectives. By exam-
ining the timing and location of fraudulent activities, one can acquire a more 
complete comprehension of the matter. The analysis can provide information 
to guide preventive measures. For example, if there is a sudden increase in 
fraudulent activities on specific days, it would be prudent to introduce extra 
verification measures during transactions on those days.

8.3.4  Implemented Methods

Our research study integrates several types of machine learning models to 
tackle the problem of credit card fraud, with a particular focus on the use 
of ensemble and boosting techniques in improving prediction accuracy and 
mitigating overfitting. Random Forest and CatBoost are very effective in 
dealing with categorical data and mitigating overfitting using innovative 
methodologies. Additionally, methods like AdaBoost and XGBoost aim to 
improve the performance of models, focusing on fixing the problems caused 
by complicated and unbalanced datasets that are common in fraud detec-
tion situations. The use of logistic regression with Ridge Classifier offers a 
robust statistical framework for addressing binary classification tasks, using 
regularization strategies to mitigate the risk of overfitting. In the context 
of fraud detection, the Gaussian naive Bayes approach is used, which uti-
lizes probabilistic principles and assumes feature independence to enhance 
efficiency.

The entire approach to fraud detection is shown by the integration of 
many methods, ranging from stochastic gradient descent to the Extra 
Trees Classifier. This comprehensive strategy utilizes the advantages of 
each model to manage extensive and complicated datasets successfully, 
emphasizing the significance of flexibility and accuracy in combating digi-
tal fraud.

8.3.5  Data Balancing Techniques

This study investigates and uses different resampling techniques to address 
class imbalance in credit card fraud detection. Initially, we replicate minor-
ity class instances using random over-sampling (ROS) to adjust class dis-
tribution. SMOTE produces synthetic samples to increase dataset variety 
and reduce overfitting risks. Also, adaptive synthetic sampling (ADASYN) 
is used to provide synthetic data for underrepresented classes, focusing on 
harder instances to learn. Random under-sampling is examined to reduce 
the number of majority class samples, making the dataset more manageable. 
However, this method may lose crucial information. These methods address 
class imbalance, which is crucial to detecting complex fraud patterns, to 
improve model performance.
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8.3.6  Performance Metrics

To address class imbalance, a variety of assessment criteria are used to evalu-
ate a credit card fraud detection model. Precision and accuracy are key to this 
study. Precision is the ratio of correctly predicted positive events to all posi-
tive predictions, while accuracy is the percentage of real positives and nega-
tives across all forecasts. Sensitivity, or recall, is more important when failing 
to detect a fraudulent transaction has serious consequences. This confirms 
the model’s ability to detect all real fraud. The F1 score, which balances accu-
racy and recall, is ideal for biassed datasets. However, the AUC-ROC score 
assesses classification performance across thresholds, which is crucial for 
distinguishing fraudulent from legitimate transactions. The combination of 
these measures provides a comprehensive assessment framework, enabling 
a detailed review of the performance of the model.

8.4  Results and Discussion

This section utilises a range of machine learning and deep learning meth-
odologies, including Random Forest, CatBoost, Bagging, logistic regression, 
XGB, AdaBoost, Gaussian naive Bayes, Extra Trees, SGD, GRU, and neural 
networks. Each of these techniques presents distinct approaches for handling 
unprocessed data and addressing the issue of class imbalance. Our evalua-
tion of these models included the use of comprehensive measures such as 
recall, precision, F1 score, specificity, ROC-AUC, and accuracy. These met-
rics were employed to examine the performance of each model in accurately 
identifying real positives and negatives, as well as to evaluate the precision 
and accuracy of the models. The metrics mentioned are crucial in the field of 
fraud detection, namely recall, which quantifies the ability of the model to 
correctly detect fraudulent transactions.

8.4.1 � Impact of Implementing Various Machine and 
Deep Learning Algorithms on Raw Data

The assessment of machine learning models for credit card fraud detection 
customarily centres on their capacity to distinguish between legitimate and 
fraudulent transactions. Prior to employing data balancing methods, it is 
imperative to evaluate the effectiveness of these models on unprocessed, raw 
datasets. The performance of the Bagging classifier and Random Forest clas-
sifier on the raw dataset was encouraging in terms of the majority class, as 
evidenced by their accuracy, precision, and F1 score values approaching per-
fection. Conversely, upon closer examination of the minority cohort, a sub-
stantial decline in both recall and F1 score was observed. The recall metric for 
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the Bagging classifier’s performance in identifying fraudulent transactions 
was 0 85476. , while its balanced performance metric (F1 score) was 0 89501.  
The Random Forest classifier exhibited a marginally enhanced recall value of 
0 93138. , signifying a moderate level of proficiency in fraud detection.

The examination of models performing fraud detection tasks using raw data 
supports the established belief that class imbalance substantially impedes 
the effectiveness of the models, specifically about the minority class. The dis-
crepancy in model performance highlights the criticality of implementing 
class balancing methods to correct the imbalance of class distribution before 
continuing the training process. By implementing corrective measures, the 
complete potential of machine learning models can be realised, guaranteeing 
their optimal performance in practical situations that require precise identi-
fication of fraudulent activities.

8.4.2  Impact of Balancing Techniques on Model Performance

We examine several balancing strategies, including random over-sampling, 
synthetic minority over-sampling technique (SMOTE), adaptive synthetic 
sampling (ADASYN), and random under-sampling to the proposed problem.

The details analysis in Table 8.3 is essential in directing us towards more 
accurate and reliable fraud detection models. The Bagging classifier and Ran-
dom Forest classifier demonstrated outstanding performance across almost 
all measures, mainly when random over-sampling and SMOTE approaches 
were used. The capacity to maintain elevated performance measures demon-
strates their resilience in addressing class imbalance. The slight differences in 
performance metrics observed across various balancing approaches under-
score the complicated influence of each strategy on the model’s performance. 

TABLE 8.2

Results of Implementing Various Machine and Deep Learning Algorithms on Raw 
Data

Model Name Recall Score
Precision 

Score F1 Score
ROC AUC 

Score
Accuracy 

Score

Bagging classifier 0.85476 0.93924 0.89501 0.99884 0.92722
Random Forest classifier 0.93138 0.91974 0.92552 0.99913 0.96545
Logistic regression 0 0 0 0.99421 0.5
AdaBoost classifier 0.00133 1 0.00266 0.99422 0.50067
CatBoost classifier 0.16256 0.86833 0.27385 0.96353 0.99501
XGB classifier 0.03598 0.83077 0.06897 0.99438 0.51797
Extra Trees classifier 0.9527 0.92199 0.93709 0.99926 0.97611
GNB classifier 0 0 0 0.52726 0.99421
GRU 0 0 0 −1 0.99421
NN 0 0 0 1 −1
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TABLE 8.3

Comparative Analysis of Model Performance Metrics Before and After the 
Application of Resampling Techniques

Model 
Name Balancing Technique

Recall 
Score

Precision 
Score F1 Score

ROC AUC 
Score

Accuracy 
Score

Bagging 
classifier

None 0.85476 0.93924 0.89501 0.99884 0.92722
Random over-sampling 0.8521 0.94671 0.89691 0.99574 0.99887
SMOTE 0.84544 0.93861 0.88959 0.99968 0.9876
ADASYN 0.84477 0.93235 0.8864 0.98961 0.99875
Random 
under-sampling

0.82079 0.93475 0.87407 0.99164 0.99863

Random 
Forest 
classifier

None 0.93138 0.91974 0.92552 0.99913 0.96545
Random over-sampling 0.94337 0.92731 0.93527 0.99884 0.99924
SMOTE 0.91939 0.92867 0.924 0.99959 0.99669
ADASYN 0.92005 0.92128 0.92067 0.99806 0.99908
Random 
under-sampling

0.82079 0.93475 0.87407 0.99164 0.99863

Logistic 
regression

None 0 0 0 0.99421 0.5
Random over-sampling 0 0 0 0.5 0.99421
SMOTE 0 0 0 1 0.5
ADASYN 0 0 0 0.5 0.99421
Random 
under-sampling

0 0 0 0.5 0.99421

AdaBoost 
classifier

None 0.00133 1 0.00266 0.99422 0.50067
Random over-sampling 0.00067 1 0.00133 0.61351 0.99422
SMOTE 0.002 1 0.00399 1 0.60933
ADASYN 0.002 1 0.00399 0.61844 0.99422
Random 
under-sampling

0.00133 1 0.00266 0.59928 0.99422

CatBoost 
classifier

None 0.16256 0.86833 0.27385 0.96353 0.99501
Random over-sampling 0.17189 0.86 0.28651 0.96831 0.99505
SMOTE 0.17322 0.86667 0.28873 0.99984 0.9681
ADASYN 0.15789 0.82867 0.26525 0.96505 0.99494
Random 
under-sampling

0.13924 0.86008 0.23968 0.96099 0.99489

XGB 
classifier

None 0.03598 0.83077 0.06897 0.99438 0.51797
Random over-sampling 0.03531 0.76812 0.06752 0.95674 0.99435
SMOTE 0.03464 0.8125 0.06645 0.99995 0.95257
ADASYN 0.03664 0.85938 0.07029 0.95633 0.99439
Random 
under-sampling

0.03864 0.80556 0.07374 0.94331 0.99438

Extra Trees 
classifier

None 0.9527 0.92199 0.93709 0.99926 0.97611
Random over-sampling 0.95936 0.92131 0.93995 0.99925 0.99929
SMOTE 0.92805 0.93115 0.9296 0.9996 0.99789
ADASYN 0.93538 0.91705 0.92612 0.99889 0.99914
Random under-sampling 0.93738 0.90599 0.92141 0.99854 0.99907
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The models showed proficiency in reducing false positives while effectively 
detecting fraudulent transactions.

Logistic Regression: Although this model achieved a high level of accu-
racy, it was unable to detect any cases of fraud, suggesting its ineffectiveness 
in handling datasets with significant imbalances.

The AdaBoost classifier showed a restricted capacity to detect fraudulent 
transactions in its unprocessed state, with only a little improvement after 
adjusting for imbalances. This underscores some models’ difficulties when 
dealing with highly unbalanced data and the modest but significant influ-
ence of data balancing. The CatBoost classifier and XGB classifier showed 
enhanced fraud detection capabilities after the use of data balancing strate-
gies, particularly with SMOTE. This suggests that both models can be use-
ful when adequately preprocessed. Nevertheless, their performance in its 
unprocessed form highlights the difficulty posed by class disparity.

The Extra Trees classifier demonstrated robust performance across all mea-
sures, with small improvements or stability seen when balancing approaches 
were used. This model’s robustness and efficacy make it a suitable contender 
for fraud detection systems.

The GNB classifier, GRU, and NN models show a lack of capability in 
detecting fraudulent transactions both before and during data balancing. 

Model 
Name Balancing Technique

Recall 
Score

Precision 
Score F1 Score

ROC AUC 
Score

Accuracy 
Score

GNB 
classifier

None 0 0 0 0.52726 0.99421
Random over-sampling 0 0 0 0.52704 0.99421
SMOTE 0 0 0 1 0.53482
ADASYN 0 0 0 0.54986 0.99421
Random 
under-sampling

0 0 0 0.53197 0.99421

GRU None 0 0 0 -1 0.99421
Random over-sampling 0 0 0 0.99421 0.5
SMOTE 0 0 0 0.99421 0.5
ADASYN 1 0 0 0 0.99421
Random 
under-sampling

0 0 0 0.99421 0.5

NN None 0 0 0 1 -1
Random over-sampling 0 0 0 0.99421 0.5
SMOTE 0 0 0 0.99421 0.5
ADASYN 0 0 0 1 0.99421
Random under-sampling 0 0 0 0.99421 0.5

TABLE 8.3 (Continued)

Comparative Analysis of Model Performance Metrics Before and After the 
Application of Resampling Techniques
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This suggests that these models may not be appropriate for unbalanced data-
sets often seen in fraud detection scenarios without significant modifications.

Methods such as SMOTE and random sampling have shown notable effi-
cacy, highlighting the need to carefully choose an appropriate balancing 
strategy that aligns with the unique characteristics of the model and dataset.

The comprehensive examination and sophisticated comprehension of 
the interplay between various models and balancing procedures provide 
useful insights for developing efficient fraud detection systems. Ensemble 
approaches, such as the Bagging classifier and Random Forest classifier, have 
shown significant efficacy in addressing the challenges posed by unbalanced 
datasets. This research highlights the significance of using a multi-metric 
assessment methodology and giving due attention to class imbalance when 
designing systems aimed at mitigating fraud within the digital financial 
industry.

8.5  Conclusion

The incorporation of machine learning and deep learning techniques with 
spatial-temporal analysis has become a key advancement in this area of study. 
This chapter offers a practical examination of the impact of various balanc-
ing strategies on the efficacy of these techniques in the domain of credit card 
fraud detection despite obstacles such as data imbalances and the constantly 
changing techniques used by fraudsters.

The thorough assessment utilising a range of metrics, including recall, 
precision, F1 score, ROC AUC, and accuracy, has emphasised the efficacy of 
ensemble methods, specifically the Bagging and Random Forest classifiers. 
These classifiers consistently demonstrate superior performance across all 
metrics following the implementation of Random over-sampling, SMOTE, 
and ADASYN techniques.

The findings illustrate the importance of balancing the dataset to 
enhance the model’s capacity to identify fraudulent transactions, which 
is necessary to be emphasised by the significant increase in digital trans-
actions following the COVID-19 pandemic. Although class imbalance in 
datasets presents inherent challenges, the findings highlight the potential 
of ensemble methods to provide reliable fraud detection capabilities. Basic 
models such as logistic regression, despite their high accuracy, are unable 
to detect fraudulent cases. This highlights the inadequacy of depending 
entirely on accuracy as a performance measure when dealing with imbal-
anced classes.

This chapter provides an extensive fraud detection technique that 
uses effective machine learning algorithms and challenges data balance 
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preprocessing. This ensures that models are accurate and respond to minor-
ity fraud transactions. Geolocation and temporal attention systems enhance 
the proposed system, solving a current problem.
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