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Preface

Achieving sustainability is a dream of everyone. People plan for sustainability
through setting personal goals, milestones. However, addressing global challenges
requires a more complex approach to developing goals and milestones. The United
Nations (UN) has tackled this complexity by creating the Sustainable Development
Goals (SDGs), a comprehensive framework designed to address the world’s most
pressing issues. The 17 goals cover a broad spectrum of areas, including poverty,
inequality, climate change, education, environment, and health, with SDG 3 specifi-
cally focusing on “Good Health and Well-Being” for all at all ages. The UN expects
nations and individuals to work collaboratively toward achieving the SDGs by 2030.
This requires a multifaceted approach where governments, private sectors, civil
societies, and individuals must play critical roles.

Government all across the globe are striving to contribute to SDGs by taking
diverse approaches. Various fundings have been made available, targeting specific
SDGs and encouraging individuals and organization to pitch in their efforts. SDG 3
has been a key target area particularly for developing and under-developed regions
where mostly lack of access to healthcare facilities is a major cause of high mortal-
ity. Some of the strategies developed to achieve SDG 3 include developing health
infrastructure, investing in health workforce, managing nutrition and food security,
developing/revising/implementing health policies and regulations, conducting pub-
lic health programs, ensuring environmental health, and encouraging research and
development. Using advanced information technology has also become a global
norm for improving healthcare access, creating personalized healthcare service, and
managing population health.

The next-generation technologies of Internet of Things (IoT), Data Science (DS),
and Artificial Intelligence (Al) are expected to revolutionize the healthcare opera-
tion. Using these technologies, the patients can connect to the doctors and emer-
gency service providers from anywhere, anytime; they can monitor their health
trends right on their mobile applications and can also receive alerts about potential
risks for their chronic diseases. Moreover, the governments can get detailed insights
into population health trends, the probability of disease outbreaks, and future needs
of resources. Based on these analytics, the policymakers are enabled for managing
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emergencies as well as for conducting routine awareness, training, and prevention
programs to support health and well-being for their citizens.

We have designed this book to present the role of IoT, DS, and Al toward the
global healthcare sector. We have dedicated a couple of chapters to explain the
SDGs and fundamentals of IoT, DS, and Al technologies to provide a solid back-
ground for from diverse fields, including both computer scientists and social scien-
tists. We have proposed IoT-DS-AI nexus that takes data from the users/patients
using various forms of devices and apps, performs advanced analytics, and provides
predictions. The advanced tools and techniques from each domain of this nexus
would ensure effective individual and population health management.

From Chap. 3 onwards, we have described the detailed foundations, implementa-
tion, and challenges for IoT-DS-AI nexus for various healthcare applications. These
include continuous health monitoring, m-Health and personalized medicine, digital
imaging, population health surveillance, and resource optimization. In the end, we
have presented overall challenges and opportunities for implementing the proposed
technology nexus for achieving SDG 3.

Karachi, Pakistan Shama Siddiqui
Karachi, Pakistan Anwar Ahmed Khan
Islamabad, Pakistan Muazzam Ali Khan Khattak

Karachi, Pakistan Raazia Sosan
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Chapter 1 )
Pioneering Health Technologies il
for Sustainable Development

1.1 What Are SDGs?

On September 25, 2015, the United Nations (UN) adopted the 2030 Agenda for
Sustainable Development, which includes 17 Sustainable Development Goals
(SDGs) aimed at addressing global challenges such as poverty, inequality, climate
change, and peace and justice. The focus of SDGs is to achieve global sustainability
and improved quality of life by 2030, through balancing economic, environmental
and societal aspects; this 2030 agenda promises that “no one will be left behind” [1].
The SDGs are interwoven in such a way that achieving any one would have a lasting
impact on the others. For example, reducing social inequalities is only possible by
ensuring quality education, safe drinking water, and affordable healthcare for all.
From all over the world, 193 countries (all members of the United Nations) have
committed to work towards achieving this global sustainability agenda through
developing cross-border strategies [2]. SDGs can be thought of as a comprehensive
guidance framework for individuals, businesses and governments to work together
in order to build a sustainable future. In this context, digital technologies can play a
crucial role for the achievement of each SDG.

Prior to SDGs, UN had developed Millennium Development Goals (MDGs) in
2000, that were expired in 2015. The MDGs focused on reducing extreme poverty
and improving basic health and education, whereas the SDGs expand the agenda to
include a wider array of global challenges and set more ambitious targets [3]. SDGs
have a much wider scope by addressing issues such as economic inequality, sustain-
able development, and stronger governance, which were not addressed earlier. Let’s
look at the evolution of SDGs as implemented by the UN.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 1
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1.2 History and Evolution: SDGs Versus MDGs

Just like SDGs, MDGs were also developed by the UN to address the most pressing
global challenges through offering a guidance framework. The MDGs comprised
eight specific targets aimed primarily at reducing extreme poverty and improving
basic health and education outcomes [4]. These goals included eradicating extreme
poverty and hunger, achieving universal primary education, promoting gender
equality, reducing child mortality, improving maternal health, combating HIV/
AIDS, malaria, and other diseases, ensuring environmental sustainability, and
developing a global partnership for development.

The MDGs were instrumental in directing international efforts and resources
towards addressing some of the most critical challenges faced by developing coun-
tries; these provided a clear and concise framework that allowed for measurable
progress and accountability. As a result, significant strides were made in reducing
the proportion of people living in extreme poverty, increasing primary school enroll-
ment rates, and improving health outcomes, such as reductions in child mortality
and the incidence of infectious diseases. However, the MDGs also faced criticisms
and limitations: they were often considered too narrow in scope, as they focused
primarily on the symptoms of poverty rather than its underlying causes. Additionally,
the goals did not adequately address issues such as economic inequality, sustainable
development, and the need for stronger institutions and governance.

In response to the above-described critiques and to build on the progress made by
the MDGs, the UN introduced SDGs in 2015. The SDGs consist of 17 goals with
169 targets, encompassing a broader range of global challenges. These include not
only the continuation of efforts to eradicate poverty and hunger but also the promo-
tion of sustainable economic growth, decent work for all, innovation, infrastructure
development, and the reduction of inequalities within and among countries.

In contrast to the MDGs, SDGs place a stronger emphasis on environmental
sustainability, addressing climate change, conserving natural resources, and pro-
tecting biodiversity. They also highlight the importance of peace, justice, and strong
institutions, recognizing that sustainable development cannot be achieved without
inclusive and accountable governance [5]. Furthermore, the SDGs advocate for a
holistic and integrated approach to development, acknowledging the interconnect-
edness of social, economic, and environmental dimensions. They aim to leave no
one behind, ensuring that the benefits of development are shared equitably among
all people, particularly the most vulnerable and marginalized populations.

In addition, the SDGs also recognize the vital role of technology, innovation, and
global partnerships in achieving these ambitious targets. SDGs regards it mandatory
to have collaborative efforts between governments, the private sector, civil society,
and international organizations to mobilize resources, share knowledge, and foster
sustainable development practices worldwide.

While the MDGs focused on immediate needs such as reducing extreme poverty,
hunger, and improving basic health and education, the SDGs propose a more com-
prehensive and long-term approach. The MDGs targeted urgent issues that directly
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affected the poorest populations, laying the foundation for human development. In
contrast, the SDGs address a broader range of global challenges, including inequal-
ity, climate change, and environmental sustainability [6]. They emphasize reducing
inequalities, protecting ecosystems, promoting responsible consumption, and ensur-
ing inclusive economic growth. Additionally, the SDGs highlight the importance of
strong institutions, peace, and justice as essential components of sustainable
development.

There has been a consistent review mechanism to audit the status of SDG
achievement globally. Every year, the UN Secretary General delivers an annual
SDG Progress report, created in collaboration with the UN System. This report is
based on the global indicator framework and utilizes data produced by national
statistical systems and information gathered at the regional level.

1.3 Sustainable Development Goals (SDGs): An Overview

The 17 SDGs outlined by United Nations are listed in Fig. 1.1. These goals are
developed after identifying the most critical global challenges and announced as a
global call for action. By developing the SDGs, United Nations has provided an
opportunity for different sectors, countries and agencies to come together and work
towards achieving sustainability [7]. All goals are closely linked to each other, with
the overall objective of reducing inequalities and, improving peace, quality of life
and health; the goals have to be achieved by ensuring innovation in technology
development, policy making, sustainable practices, global partnerships, and active
engagement of all stakeholders, including governments, private sector, civil society,
and local communities.

SDGs provide a comprehensive framework to tackle the major global issues in
an integrated way; these include poverty, hunger, inequality, climate change, and
environmental degradation. Each Sustainable SDG has been strategically defined
with key targets and implementation strategies to ensure measurable progress and

_ 6. Clean Water and Sanitation 7. Affordable and Clean Energy
_| 9. Industry Innovation and Infrastructure |

_ 11. Sustainable Cities and Communities

Fig. 1.1 17 SDGs by United Nations [7]




4 1 Pioneering Health Technologies for Sustainable Development

accountability. The designed targets outline specific, actionable steps that countries
and stakeholders must take to achieve the overarching goals. For example, SDG 1
aims to end poverty in all its forms everywhere by targeting areas such as social
protection systems, equal rights to economic resources, and resilience to environ-
mental, economic, and social shocks. Similarly, SDG 13 focuses on combating cli-
mate change and its impacts through targets that promote climate resilience, improve
education and awareness, and integrate climate change measures into national poli-
cies. Implementation strategies for each SDG emphasize the need for multi-
stakeholder partnerships, adequate financing, technology transfer, capacity-building,
and inclusive governance frameworks. This structured approach ensures that the
SDGs are not only aspirational but also actionable, providing a clear roadmap for
sustainable development efforts worldwide.

1.4 Technology and SDGs

For implementation of the 2030 agenda, Technology, science and capacity building
have been identified as the major pillars. The environmentally sound technologies
are very closely associated with the means of implementation for each SDG through
innovation, business development, trade finance and capacity building [8]. Some of
the common technologies, along with their contributions towards SDGs are pre-
sented in Fig. 1.2.

Information and Communication Technology (ICT) can particularly help to
achieve each of the above-mentioned SDGs. Table 1.1 lists some of the ways in
which ICT can contribute to achieve each SGD.

The emerging ICTs can address a wide range of global challenges ranging from
individual health to global climate change. The major facility offered by ICT is
internet connectivity, which provides access to data of any sector, to anywhere, any
time. If we look closely at the ICT contributions listed in Table 1.1, it is evident that
all SDGs are supported by means of data generation, sharing, storage or analytics.
Secondly, there have been rapid advancements in the sectors of IoT, Al and data
science, which further provides an opportunity to analyze the collected data in
unique ways, leading to helpful insights and better productivity/performance [9]. As
a result, ICT holds potential for contributing towards social cause by improving
accessibility to fundamental services such as healthcare, reducing inequalities by
providing uniform learning/financial/development opportunities and by improving
chances of learning/income through novel applications and tools such as Generative
Al and Remote clinics.

Although ICT can play a role towards all the SDGs, the focus of this book is on
SDG 3: Good Health and Wel Being. ICTs hold the potential to revolutionize the
way healthcare is delivered by ensuring wide-scale accessibility and improving
health outcomes. Let’s have a brief look at this SDG, followed by the discussion of
key ICTs which can be used to achieve SDG 3.
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Fig. 1.2 Mapping between technologies to SDGs

1.5 What Is SDG 3?

The focus of SDG 3 is on ensuring health for all people of every age. UN has set
well-defined targets to ensure access to quality healthcare services for everyone
globally. The key targets and indicators of SDG3 are illustrated in Fig. 1.3 and dis-
cussed below:

1.6 Key Targets of SDG 3

The following targets are set to be achieved by 2030:
e Target 3.1: Maternal Mortality



Pioneering Health Technologies for Sustainable Development

Table 1.1 Ways in which ICT support SDGs

SDG
SDG 1: No Poverty

SDG 2: Zero Hunger

SDG 3: Good Health and
Well-being

SDG 4: Quality Education

SDG 5: Gender Equality

SDG 6: Clean Water and
Sanitation

SDG 7: Affordable and Clean
Energy

SDG 8: Decent Work and
Economic Growth

SDG 9: Industry, Innovation, and

Infrastructure

SDG 10: Reduced Inequality

ICT contribution

Mobile banking and fintech solutions for financial inclusion
Digital platforms creating freelancing and job opportunities.
E-commerce enabling small businesses to reach global
markets

Precision farming using IoT sensors and drones.
Blockchain for transparent supply chains

Data analytics for optimizing agricultural practices
Telemedicine and m-Health applications for remote
healthcare

Al for predictive analytics and personalized treatment plans
Big data for disease surveillance and management
E-learning platforms for accessible education

Developing digital skillset for futuristic career options

AR and VR for immersive learning experiences

Online collaboration tools for global learning communities
Digital literacy programs for women’s empowerment
Mobile apps for health, safety, and support

Online platforms for advocacy and networking

Promoting Female leadership for tech sectors

IoT for water quality monitoring and management

ICTs for wastewater management

Data analytics for resource allocation and managing
consumption

Smart grids for efficient energy distribution

Renewable energy technologies such as solar and wind
Smart cities and vehicles

Sustainable communities and economies

IoT for energy consumption monitoring and management
Job matching platforms using AL

Digital marketplaces for economic development

Novel ICT based entrepreneurship ventures, for example,
digital health and transportation apps.

E-commerce for expanding business opportunities
Improve the extent and quality of ICT infrastructure.

IoT and Al for automated and secure industry infrastructure
Blockchain for secure and transparent transactions

Cloud computing for scalable and collaborative innovation
hubs

Assistive technologies for physically challenged people.
Extending digital platforms for economic and educational
inclusion

Online advocacy for marginalized communities

(continued)
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Table 1.1 (continued)

SDG

SDG 11: Sustainable Cities and
Communities

SDG 12: Responsible
Consumption and Production

SDG 13: Climate Action

SDG 14: Life Below Water

SDG 15: Life on Land

SDG 16: Peace, Justice, and

Strong Institutions

SDG 17: Partnerships for the
Goals

ICT contribution

Urban planning using GIS and Al

Smart public transit systems

IoT for monitoring and managing urban infrastructure
Advanced recycling and waste management technologies
Blockchain for transparent supply chains

Data analytics for sustainable production and waste
management practices

Green technologies for emission reduction

Modeling using Digital Twin technologies.

Satellite and Al for climate monitoring

IoT and big data analytics for tracking environmental
impacts

Marine drones and sensors for monitoring ocean health
Blockchain for sustainable fisheries

IoT for pollution detection and management

IoT for protection of endangered animals such as Dolphins
Smart Buoys for remote monitoring of sea environment
Remote sensing for forest and wildlife monitoring
Precision farming for sustainable agriculture

GIS for land use planning and conservation

IoT for protection of endangered animals such as Tigers and
Elephants

E-government for better relationship between state and
citizens

Blockchain for transparent governance

Al and big data for improving legal processes.

Digital platforms for citizen engagement and participation
Digital collaboration tools for multi-stakeholder
partnerships

Cloud computing for shared data and resources

Online platforms for tracking and reporting SDG progress

¢ The global maternal mortality ratio is to be reduced to less than 70 per 100, 000

live births.

e Target 3.2: Neonatal and Child Mortality

¢ For newborn children, the mortality ratio is to be reduced to at least 12 per 1000

live births. Also, mortality rates for the children under 5 is to be reduced to as low
as 25 per 1000 live births.

Target 3.3: Infectious Diseases

The epidemics of AIDS, tuberculosis, malaria are to be ended. Moreover, the
prevention also has to be ensured for neglected tropical diseases, combat hepati-
tis, waterborne diseases and other communicable diseases.

Target 3.4: Noncommunicable Diseases

Non-communicable diseases need to be prevented and treated in order to reduce
by one third premature mortality.

Target 3.5: Substance Abuse
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Fig. 1.3 Achieving SDG 3

The substance abuse, including alcohol and narcotics, needs to be prevented and
treated.

Target 3.6: Road Traffic

The number of global deaths happening due to road traffic accidents needs to be
reduced by 50%.

Target 3.7: Sexual and Reproductive Health

The agenda of reproductive health shall be included into national strategies and
programs for all countries. In addition, access to sexual and reproductive health-
care services will be ensured for everyone.

Target 3.8: Universal Health Coverage

Access to quality and affordable healthcare services, vaccines, and essential
medicines will be ensured for everyone.

Target 3.9: Environmental Health

The number of deaths caused by environmental hazards such as air, soil and
water pollution need to be substantially reduced.

1.7 Means of Implementation for SDG 3 Targets

The following means of implementation have been designed to achieve the above-
listed targets of SDG 3.

3.a: Tobacco Control

* The WHO framework for Tobacco control needs to be implemented across all the

countries.
3.b: Medicines and vaccines
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* Medicines and vaccines need to be developed primarily for the communicable
and non-communicable diseases that affect developing countries. Access to
essential medicine and vaccines needs to be ensured for everyone in accordance
with the guidelines offered by Doha Declaration on TRIPS and Public Health
[10]; this declaration holds the right of developing countries to fully utilize the
provisions in the Agreement on Trade-Related Aspects of Intellectual Property
Rights (TRIPS agreement) to protect public health. Specifically, it emphasizes
their ability to ensure access to medicines for all.

* 3.c: Health financing and workforce

e Health financing and recruitment need to be improved by a great deal for the
developing, least developed and small island countries. There is not only a need
to enhance training and development initiatives, but addressing the key challenge
of health staff retention is also included in the implementation means.

* 3.d: Emergency preparedness

* The capacity of all countries, particularly, developing needs to be improved in
terms of early warning, risk reduction and management of national and global
health risks.

1.8 Internet of Things (IoT), Artificial Intelligence (AI)
and Data Science (DS): Enabling Intelligent
and Connected Health

Internet of Things (IoT) deals with using smart devices and sensors to collect and
report real-time data for a wide variety of applications ranging from agriculture to
healthcare. Data is collected periodically or on-demand and then communicated
using conventional networking technologies such as 5G to the remote cloud servers
[11]. From those servers, the data can be shared with interested stakeholders for
remote monitoring, management of resources and data analytics. IoT has appeared
as one of the major digital technologies to achieve SDGs through offering real-time
data and insights. For example, IoT can provide agricultural data such as soil mois-
ture level, humidity level and temperature to guide the farmers about optimal
irrigation.

Data Science (DS) is an emerging field that works on scientific methods, pro-
cesses, algorithms, and systems to extract knowledge and insights from structured
and unstructured data. It is an interdisciplinary field which builds on the foundations
of computer science, statistics, information theory and domain specific knowledge
for analyzing and interpreting complex datasets. DS has been used in various indus-
tries for driving new insights from the data, leading to effective decision-making
and process optimization [12]. Using advanced data analytics techniques, organiza-
tions become able to exploit their opportunities of exploring their environment and
operations.
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Artificial Intelligence (Al) is a transformative technology that enables machines
to perform tasks that typically require human intelligence. Al systems can process
large amounts of data, learn from it, and make decisions or predictions with mini-
mal human intervention, using high computation power and advanced algorithms
[13]. Al encompasses a wide range of subfields and applications, making it a versa-
tile and powerful tool for nearly every domain: some sub-fields of Al include
Machine Learning (ML), Natural Language Processing (NLP), Computer Vision,
Robotics, Expert Systems and Reinforcement Learning.

The three technologies, IoT, Data Science and Al in fact, forms a nexus, termed
as “IoT-DS-AI Nexus”, as illustrated by Fig. 1.4. Data is generated and transmitted
by the IoT devices which exist at the lowest level; it is stored and processed by data
analytics algorithms existing at the middle level, and finally, trends and patterns in
the data are identified using Al techniques that are present at the top level. These
technologies along with their core concepts, will be discussed in detail, in the next
chapter.

Using the above-described emerging technologies, can speed up progress on the
17 United Nations SDGs, as earlier indicated in Table 1.1. For example, all of these
technologies may be used for upsurging the efficiency of urban industries, reducing
the cost of urban services, increasing the productivity and competitiveness of the
natural and human resources, and developing climate resilience [14]. However,
SDG 3 can be regarded as the one most impacted; the application of these technolo-
gies in healthcare can lead to significant improvements in disease prevention, diag-
nosis, and treatment, ultimately enhancing the overall health and well-being of
populations. For example, IoT solutions in healthcare track patient’s data using
wearable devices, monitor the health state remotely, connect with the remote

Fig. 1.4 IoT-DS-AI Nexus
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physicians, maintain health records and deliver personalized and/or emergency ser-
vices as needed. Al and Big data techniques can subsequently build on the data
provided by IoT and can analyze large datasets to identify patterns, predict health
trends, enhance diagnostic accuracy, and develop personalized treatment plans,
thereby improving overall healthcare outcomes and efficiency [15].

1.9 Contents Overview

In this chapter, we set the foundation for the present book by providing details about
SDGs and specifically SDG 3. The subsequent chapters are designed to describe
each technology, IoT, DS and Al in their relation to SDGs. The contents are briefly
described below:

Chapter 2 covers the fundamental concepts of IoT, Al and DS. It begins with an
introduction to IoT, explaining its significance, components, architecture, applica-
tions, and the challenges it faces in driving sustainable development. The chapter
then delves into Al, exploring its various branches, applications, ethical consider-
ations, and future trends, all within the framework of contributing to SDGs.
Following this, it introduces Data Science, discussing its key components, tools,
applications, and associated challenges, emphasizing its role in data-driven decision-
making for sustainable progress. The chapter concludes by highlighting the integra-
tion of IoT, Al, and Data Science, showcasing their synergies, practical case studies,
and future directions, and demonstrating how these technologies collectively sup-
port the achievement of SDG 3.

The subsequent chapters deal with major applications supported by IoT, Al and
DS as they have a direct contribution towards achieving SDG 3. Chapter 3 presents
a detailed account on continuous monitoring which has been one of the major
domains where IoT, ML and DS come into play. It highlights key applications such
as wearable health devices, remote patient monitoring systems, and predictive ana-
lytics for early disease detection. The chapter also discusses the challenges and
future trends in continuous monitoring, demonstrating how these technologies are
crucial for enhancing public health and achieving the targets set by SDG 3.

Chapter 4 focuses on m-Health, and offers an insight into the use of mobile tech-
nologies for achieving SDG 3. Here, the history of m-Health is presented, followed
by common categories and applications of m-Health apps. The emerging technolo-
gies supporting m-Health solutions and platforms have been discussed. By examin-
ing the integration of these technologies, the chapter illustrates how m-Health
contributes to improved healthcare accessibility, efficiency, and quality. Therefore,
this chapter demonstrates the transformative potential of mobile health technologies
in driving progress towards the targets set by SDG 3, ultimately promoting healthier
lives and well-being for all.

Chapter 5 has been designed to cover the aspect of personalized medicine which
has become possible due to the integration of cutting-edge technologies of 10T, Al
and DS. First, we describe the factors assessed for developing personalized
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medicine, such as genetic makeup, medical history, lifestyle, and environmental
influences. These elements are critical in creating tailored healthcare solutions that
meet individual patient needs. Subsequently, the deployment protocols of IoT, Al
and DS for developing personalized medicines are presented, detailing how each is
utilized to gather, analyze, and interpret patient data for personalized treatment
plans. Hence, Chap. 5 highlights the profound impact of personalized medicine on
patient outcomes and its significant role in advancing SDG 3.

Chapter 6 presents a detailed insight on how the conventional digital imaging
techniques have been revolutionized using wearable/implantable sensing technolo-
gies, ML and Data Science. The chapter investigates the synergistic effects of these
technologies, highlighting their collective impact on enhancing diagnostic accuracy,
improving treatment outcomes, and fostering new avenues for research and devel-
opment in healthcare and beyond. Ultimately, these advancements are aimed at con-
tributing to the achievement of SDG 3.

Chapter 7 focuses on describing the role of IoT, DS and Al for fostering health
surveillance among the population, and also, resource optimization which is a cru-
cial need for governments. Here, we explore how these technologies enable real-
time monitoring of health data, predictive analytics for disease outbreaks, and
efficient allocation of resources. By using IoT, DS, and Al, governments can proac-
tively address public health challenges, enhance surveillance capabilities, and opti-
mize resource allocation strategies. These efforts aim to foster healthier populations
and sustainable healthcare systems, aligning with the goals of SDG 3 to ensure
healthy lives and promote well-being for all.

In Chap. 8, we conclude the book by addressing significant ethical consider-
ations and implementation challenges associated with IoT, Al, and DS. This chapter
explores the complexities of integrating these technologies into healthcare systems,
highlighting ethical dilemmas and proposing strategies for responsible implementa-
tion. By navigating these challenges thoughtfully, stakeholders can work towards
enhancing healthcare delivery and achieving SDG 3.
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Chapter 2

Fundamentals of Internet of Things (IoT), <o
Artificial Intelligence (AI) and Data
Science (DS)

2.1 Overview of IoT

10T refers to a network of physical objects embedded with software and hardware,
capable of sensing and transmitting data. The most common task of IoT devices is
to send data over internet for remote monitoring and management of resources.
Today (2024), the estimated number of IoT devices connected to internet is
17.02 billion and the number is estimated to reach 32.1 billion in 2030 [1].
However, the technology originated from the fundamental desire to connect and
monitor remote objects; initially, a student at Carnegie Melon university wanted
to know the status of soda machine that operated at his department. Subsequently,
the objects such as toaster and coffee machines were connected, and today we
have entire smart homes and healthcare facilities connected and operated over
internet [2]. A brief timeline indicating evolution of IoT has been illustrated in
Fig. 2.1.

Thus, starting with a connected vending machine in 1982, the trend of connect-
ing things to internet followed by connected toasters and coffee machines in 1990
and 1993 respectively. The technology gained further traction in 1999 with the
implementation of RFID for supply chain management. Significant milestones
included the International Telecommunication Union’s formal acknowledgment of
IoT in 2005 and the first [oT conference held in 2008, marking a pivotal moment for
the industry. By 2012, the integration of Al into personal assistants demonstrated
the advanced capabilities of IoT systems, showcasing their growing sophistication
and application in everyday technology.

Next, we describe the architecture and key components of IoT.
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Fig. 2.1 Evolution of [oT

Fig. 2.2 Basic architecture of IoT

2.1.1 10T Architecture

The most basic architecture of 10T, as applicable for most scenarios is illustrated in
Fig. 2.2. At the foundation of all IoT solutions, there are sensing devices which
could sense physical parameters such as temperature, humidity etc. The sensed data
is transmitted using any communication technology such as Wi-Fi/4G/Bluetooth to
the cloud servers; subsequently, the data can be accessed via diverse types of mobile
apps and dashboards.
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In terms of layers, IoT is generally defined as a three-layered architecture; it
comprises of perception, network and application layers [3]. Each layer has distinct
responsibilities but works together to collect, transmit, process, and utilize data. At
the lowest level, perception Layer, also known as device or sensor layer, is respon-
sible for data acquisition. It includes all the physical devices and sensors that gather
data from the environment. At the middle level, network layer, also known as the
communication layer, is responsible for transmitting the data collected by the per-
ception layer to the next layer for processing. It handles the communication and
connectivity aspects of the IoT system. Finally, the topmost layer is application,
where data processing, analysis, and user interactions take place. It provides the
end-user services and applications that make use of the collected data to deliver
actionable insights and functionalities. The essential components of each layer are
shown in Fig. 2.3.

2.1.2 Key Applications of IoT

Emerging IoT solutions can be deployed to serve a large number of public and pri-
vate applications, of varying scales. For example, a person might locate their pet
using RFID tag or a state official may look for the flood prone areas for disaster
prevention, using ultrasonic sensors. A list of common IoT applications has been
presented in Fig. 2.4. Since the focus of this book is on SDG 3, let’s discuss IoT for
healthcare in some detail.

« User Interfaces (Web & Mobile applications)

Data processing and analytics
(Cloud services, big data analytics, AI/ML models)

»Gateways and Routers

» Communication protocols
(WiFi, Bluetooth, Zigbee, LORA-WAN, NB-IoT)

*Sensors
* Actuators
*RFID tags and Readrs

Fig. 2.3 Layered architecture of IoT
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Smart Homes

Home automation (lighting, HVAC)
Smart security systems

Energy management

Healthcare

Remote patient monitoring
Wearable health devices
Intelligent diagnostic systems

Industrial IoT (IIoT)

Predictive maintenance
Asset tracking

Process optimization.

Smart Cities

Traffic management
Waste management.

Public safety and surveillance

Precision farming
Livestock monitoring

Smart irrigation

=
=

= Agriculture
wn

=

S

=

<

= .
= Retail
>y

<

Smart shelves and inventory management
Personalized customer experiences

Supply chain optimization.

Transportation and Logistics

Fleet management.
Real-time tracking of goods
Autonomous vehicles

Environmental Monitoring

Air and water quality monitoring
Weather forecasting

Natural disaster prediction

Energy

Smart grids
Energy consumption monitoring

Renewable energy management

Buildings and Infrastructure

Fig. 2.4 Common IoT applications

Smart building management
Structural health monitoring

Intelligent lighting systems
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2.1.3 IoT in Healthcare

The use of IoT for sensing and communicating has potential to revolutionize the
healthcare sector. Fundamentally, use of IoT for health-related applications deal
with continuous monitoring, real-time data collection, and intelligent diagnostics.
The major drivers for the increasing use and acceptance of IoT for health include
increasing cost of healthcare, low access to facilities for population, increasing
elderly population with one or more chronic disease that needs continuous monitor-
ing and the desire of patients and doctors for remote connectivity [4]. By integrating
IoT into healthcare systems, we can enhance patient outcomes through timely inter-
ventions, reduce overall healthcare costs, and make healthcare services more acces-
sible and efficient.

Some of the key benefits of IoT for the healthcare domain have been highlighted
in Fig. 2.5. First and foremost, IoT solutions are used for remote monitoring of the
patients for management of different chronic diseases, or simply for fitness monitor-
ing. The healthcare become much more cost-effective and accessible due to the use
of wearable and environmental IoT devices as the information continuously flows to
the doctors and the need of physical clinical visit significantly reduces. The data
about monitored vital parameters such as blood pressure, glucose levels, ECG, etc.
is stored locally or online; this provides an opportunity of maintaining detailed
health analytics which is not possible otherwise. The patients and doctors both ben-
efit from the availability of customized health trends just by accessing already
stored data; clearly, this feature of health IoT solutions help in early intervention as
well as informed decision making. Earlier, patients often face the hassle of main-
taining paper-based health records and presenting the same to their doctors; how-
ever, [oT makes this task easier through offering a large number of mobile apps and
digital platforms.

Patient engagement and empowerment are also strongly affected with the help of
IoT solutions. The apps mostly encourage the patients to regularly enter the data

Enhanced Patient
Monitoring

Improved Emergency Informed Decision
Response Making

Better Resource
Management

Improved Medicine
Adherence

loT for Healthcare

Improved Patient
Engagement

Reduced Cost

Increased Access to
Healthcare

Improved Chronic
Disease Management

Enhanced
Collaboration

Fig. 2.5 Key benefits of IoT for healthcare
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about their medication/diagnostic tests/fitness goals etc. Subsequently, the apps
automatically send reminders about activities such as taking medicine, working out,
visiting doctor and engage with community. Moreover, by looking at the health
records and trends, the chronic patients feel more interested to maintain or improve
their records. Also, by engaging with a community through these platforms, patients
receive support and motivation from peers. Therefore, the continuous patient
involvement realized due to IoT devices fosters a sense of control and responsibility,
leading to better adherence to treatment plans and proactive health management.
Moreover, the emergency access to healthcare has also become a lot easier by
virtue of 10T, as the doctors and emergency service providers are always connected.
Data through patient wearable is continuously assessed and in case of elevated risk,
the alerts are transmitted to the hospital for sending in the emergency support. The
feature of emergency detection has gained a wide popularity in the countries having
a large ratio of independently living elderly; a concept termed Ambient Assisted
Living (AAL) has been coined [5], which refers to creating a smart environment
that could assist the elderly in managing the emergency situations and also,

Fig. 2.6 Use of IoT for providing Ambient Assisted Living (AAL) to elderly
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Fig. 2.7 Cardiology

completing their day-to-day tasks. A typical model for transfer of care using AAL is
depicted in Fig. 2.6.

There are also several 10T benefits for the hospitals and state. The hospitals can
efficiently plan their resources including equipment, wards and staff using the data
collected from IoT sensors. Using various sensors and RFID tags, it becomes easy
for the healthcare facilities to track the location of their staff and equipment. Also,
based on the data about use, logs and health of equipment, the hospitals can engage
in predictive maintenance of medical equipment, leading to reduced downtimes and
increased rate of patient service and satisfaction. The collaboration among doctors
and medical experts also become more practical and simpler using IoT solutions;
the data can seamlessly flow from patients’ wearables to multiple doctors who
might be involved in the patients’ treatment. As a result, all the experts can collabo-
rate and reach a consensus about the diagnosis and personalized treatment plan for
the patients. An example case of medical collaboration achieved using Health IoT
has been illustrated in Fig. 2.7, where a patient may need constant assistance from
multiple doctors including cardiologist, diabetologist and endocrinologist. Having
access to patient data, all the doctors will ensure that no treatment strategy conflict
takes place.

2.2 Overview of Al

Artificial Intelligence (AI) refers to the simulation of human intelligence in
machines, enabling them to perform tasks that typically require human cognition,
such as learning, reasoning, problem-solving, and decision-making. Al systems use
algorithms and models to process large amounts of data, identify patterns, and make
predictions or decisions based on that data. The most common application of Al is
to enhance automation and improve efficiency across various industries. Today, Al
technologies are integral to numerous applications, including virtual assistants,
autonomous vehicles, and predictive analytics.
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The concept of Al has its roots in early computer science and cognitive psychol-
ogy. Initially, researchers aimed to create machines that could mimic basic human
reasoning and problem-solving abilities. Early Al systems were developed to play
games, solve mathematical problems, and understand natural language [6]. Over
time, advancements in computing power, data availability, and algorithmic tech-
niques have propelled Al to new heights. Today, Al systems are capable of learning
from vast datasets, recognizing speech and images, and even understanding and
generating human language, transforming fields such as healthcare, finance, and
manufacturing.

A brief timeline of Al evolution has been indicated in Fig. 2.8.

In 1940, the decryption of the Enigma machine by Alan Turing and his team at
Bletchley Park laid the groundwork for computational techniques foundational to
Al The 1950s saw Alan Turing introduce the Turing Test, a criterion for determin-
ing whether a machine can exhibit human-like intelligence, and in 1955, John
McCarthy coined the term “Artificial Intelligence,” formally inaugurating the field
[6]. By 1961, the introduction of Unimate, the first industrial robot, signified the
beginning of automation in manufacturing. In 1964, Eliza, the first chatbot created
by Joseph Weizenbaum, was capable of simulating conversation with users, while
in 1969, Shakey, developed by SRI International, became the first mobile robot
capable of making decisions about its actions by perceiving its environment.

The 1990s and 2000s saw substantial advancements in Al In 1995, ALICE
(Artificial Linguistic Internet Computer Entity) showcased progress in natural

Fig. 2.8 Al evolution timeline
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language processing. IBM’s DeepBlue defeated world chess champion Garry
Kasparov in 1997, marking a significant achievement. In 1998, MIT’s Kismet
became the first robot designed to recognize and simulate emotions. The early
2000s brought Al into everyday life with the 2002 launch of Raamba, an Al-powered
vacuum cleaner by iRobot. The introduction of voice recognition on the iPhone in
2008 with Siri further integrated Al into consumer technology. In 2011, IBM
Watson, the first question-answering machine, was developed. Amazon’s Alexa, the
first virtual assistant, was released in 2014, followed by the creation of Sophia, the
first robot citizen, in 2016. The creative potential of Al was highlighted in 2017 with
the introduction of Amper, the first AI music composer. The release of GPT-3 by
OpenAl in 2020 represented a major leap in Al capabilities, providing a powerful
tool for automated conversation and demonstrating the convergence of Al and
Natural Language Processing.

2.2.1 Key Techniques of Al

The AI landscape encompasses a wide range of technologies and applications that
enhance various aspects of human-computer interaction and data analysis. Some of
these have been shown in Fig. 2.9:

Clearly, each emerging technology from the domain of Al has a potential to revo-
lutionize the computing tasks. Speech Recognition technologies enable systems to
interpret and respond to voice commands, provide transcription services, and
authenticate users through voice biometrics. Natural Language Processing (NLP)
involves text classification, sentiment analysis, machine translation, chatbots, vir-
tual assistants, and named entity recognition, allowing systems to understand and
generate human language effectively. Computer Vision technologies facilitate
image classification, object detection, image segmentation, facial recognition, and
optical character recognition (OCR), enabling machines to interpret and analyze
visual information. Predictive Analytics is used for risk management, customer
behavior prediction, demand forecasting, and fraud detection, helping organizations
make data-driven decisions. Recommendation Systems personalize content, prod-
uct recommendations, target marketing, and social media suggestions based on user
preferences. Finally, Robotic Process Automation (RPA) streamlines workflow
automation, data extraction, task automation, process optimization, and system inte-
gration, improving efficiency and productivity across various industries.

2.2.2 Key Applications of Al

The key applications of Al span across various industries, driving innovation and
enhancing efficiency. From healthcare and finance to entertainment and transporta-
tion, Al technologies are transforming how businesses operate and how services are
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Fig. 2.9 Enabling technologies of Al

delivered. By leveraging advanced algorithms and data analysis, Al enables intelli-
gent decision-making, automation, and personalized experiences, making it an
indispensable tool in the modern world. Some of the key applications are listed in
Fig. 2.10:

2.2.3 Al in Healthcare

Al has a diverse set of applications in healthcare; it has been used for robot-assisted
surgeries, personalized medicine recommendations, health-trend analysis, genetic
code analysis, etc. typically, the technologies of NLP, ML and DL have been used
in healthcare. Over the past decade, Al has increasingly been used for performing
the tasks that were done by human; by using predictive analytics and data process-
ing capabilities of Al, the healthcare professionals can take a more proactive
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Fig. 2.10 Key applications of Al
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approach for managing their resources and developing treatment strategies. As a
result, the burden on doctors and hospital administrators has been significantly
reduced. Some of the key applications of Al for the healthcare sector have been
identified Fig. 2.11:

Diagnostics is one of the most promising applications of Al that is expected to
reduce the preventable harm for patients. Al reduces the chance of medical errors by
providing accurate and timely analysis of massive, distributed and complex medical
data. For example, it could offer a consolidated response about multiple medical
images through applying novel ML and DL algorithms, which clearly surpasses the
human vision and interpretation. ML has started to serve as an integral component
of computer-aided diagnosis (CAD) tools which incorporates the data from various
domains including genomics, pathology and radiology to offer a detailed diagnosis.
Similarly, the integration of Augmented Reality (AR) and Virtual Reality (VR) with
Al for medical imaging analysis provides immersive environment for clinical prac-
tice as well as professional trainings [7]; these technologies enhance the visualiza-
tion of medical images, leading to a more efficient diagnosis and treatment planning.
This subject has been covered in more detail in Chap. 6, where we discuss cutting-
edge techniques about digital medical imaging.

Robotic surgery was among one of the initial Al applications in the healthcare.
Today, advanced robots are being used for surgeries ranging from minimally inva-
sive surgeries (such as laparoscopies), to open heart surgeries. Robots can be used
at various levels for surgeries; the surgeons could just use robot’s hands for pre-
cisely performing surgeries, while they sit at a distance, or the robots can autono-
mously execute complex surgical tasks under the supervision of the surgeons,
ensuring high precision and minimal invasiveness. At a more basic level, virtual
health assistants have been used for facilitating the doctors and patients; mobile
applications, chatbots and voice-activated systems have been used as a common
example of virtual health assistant. These assistants generally focus on applications
such as clinical decision making, online consultations and image diagnosis. The
major advantage of virtual assistance is their guaranteed 24/7 availability/accessi-
bility, which is never possible with the conventional medical assistance.

Al also has a huge potential for predicting the infectious diseases and epidemics
[8]. Epidemics cause significant setback for the healthcare industry, mainly due to

Al for Healthcare

Medical Diagnosis Drug Discovery Patient Experience Genomics

Natural Language Processing Population Health Disease Outbreak
for Medical Records Management Prediction

Virtual Health Assistants ‘ ’ Robotic Surgery ‘ ’ Medical Imaging Analysis

Fig. 2.11 Applications of Al
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the resulting shortage of medicines, supplies, protective equipment, staff and facili-
ties. Traditional epidemiological models developed during the early twentieth cen-
tury have helped us understand disease spread. However, today’s complex global
interactions and vast amounts of data require more advanced predictive tools. Al
uses real-time monitoring and data integration for precisely predicting the infec-
tious diseases; the accuracy of Al algorithms is significantly better in contrast to the
conventional models. This development brought by the Al is expected to particu-
larly uplift the healthcare in the developing regions where it is highly likely to have
large-scale disease outbreaks. Thus, the population health management is improved
through efficient resource allocation and preventive strategy implementation.

Personalized medicine and predictive analytics gained a wide popularity due to
the integration of modern computing technologies including Al. Al provides in-
depth analysis into the patient’s profile not only by providing comprehensive medi-
cal history, but also by performing detailed genetic analysis. Genome sequence is
performed to aid in identifying the diseases which is not possible otherwise.
Generative Al also enhances the capacity of Al models for data analysis and inter-
pretation, facilitating various applications such as identification of biomarkers for
drug discovery, analysis of EHR data, assessment of medical images and supporting
clinical decisions [4]. Hence, the use of Al for personalized medicine would trans-
form the healthcare because as proactive treatment strategies shall be implemented
instead of the conventional reactive.

Drug discovery is another domain which has been influenced by AL It is the
process of identifying and developing new medicines, and conducting clinical trials
before launching into the markets. It has been a very complex and costly process,
which has been improved through the data processing and analytics capability of
ML algorithms. For example, DL can be used for accurately identifying the efficacy
of medical compounds, as well as to identify the best participants for clinical trials
[9]. Moreover, Al techniques can also predict the toxic effects of medicines; particu-
larly, based on the genetic analysis used in personalized medicine, it has become
possible for the ML algorithms to identify the possible side effects of medicines for
unique patient profiles.

2.3 Overview of DS

Data Science (DS) refers to the interdisciplinary field that uses scientific methods,
processes, algorithms, and systems to extract knowledge and insights from struc-
tured and unstructured data. Data Science combines principles from statistics, com-
puter science, and domain-specific knowledge to analyze and interpret complex
data. The primary goal of Data Science is to uncover hidden patterns, generate valu-
able insights, and drive data-driven decision-making across various sectors. Data
scientists use tools and techniques such as machine learning, data mining, and big
data analytics to process large volumes of data and transform it into actionable
information [10]. Today, Data Science is crucial for a wide range of applications,
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including business intelligence, healthcare analytics, financial forecasting, and per-
sonalized marketing, helping organizations enhance their operations and strategic
planning.

A brief timeline of Data Science evolution covering past few decades has been
illustrated in Fig. 2.12:

Starting in 1962, John Tukey’s work on data analysis laid the groundwork for the
field. The term “Data Science” was first used in 1974 by Peter Naur [11]. The intro-
duction of the Box-Jenkins model in 1977 provided a comprehensive methodology
for time series forecasting. The formalization of Knowledge Discovery in Databases
(KDD) in 1989 and the rise of data warehousing in the 1990s further advanced the
field. In 1995, the CRoss Industry Standard Process for Data Mining (CRISP-DM)
methodology offered a structured approach to data mining projects. The early 2000s
saw the recognition of data science as a discipline by William S. Cleveland and the
launch of Apache Hadoop in 2005, revolutionizing data processing and storage.

The 2010s witnessed exponential growth in data science, driven by technological
advancements and increased data availability. The introduction of Big Data in 2006,
the emergence of the data scientist job title in 2009, and the development of Apache
Spark in 2010 were pivotal. By 2012, data science was dubbed the “Sexiest Job of
the 21st Century” by Harvard Business Review [12]. Python became the dominant
programming language in 2014, enhancing data science’s accessibility. The success
of deep learning models in 2017, the release of Google’s Bidirectional Encoder
Representations from Transformers (BERT) for Natural Language Processing in
2018, and the convergence of Al and data science with OpenAI’'s GPT-3 in 2020
highlighted the field’s progress. In 2023, the development of cloud-based platforms
made advanced data analytics and machine learning more accessible, marking the
latest milestone in the dynamic evolution of data science.

Fig. 2.12 Timeline for Data Science evolution
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2.3.1 Key Techniques of DS

Firstly, statistical analysis, including descriptive statistics like mean, median, and
standard deviation, and inferential statistics such as hypothesis testing, confidence
intervals, and ANOVA, are used for interpreting data distributions and relationships.
Deep learning techniques, particularly neural networks like CNNs, RNNs, and
GAN:s, are employed for modeling complex patterns. Natural language processing
(NLP) facilitates text mining, sentiment analysis, and machine translation, enhanc-
ing the interpretation of textual data. Time series analysis and forecasting, including
trend analysis and seasonal decomposition, are crucial for predicting future data
points. Pattern recognition through anomaly detection and signal processing identi-
fies irregularities within data sets. Moreover, Big data analytics, leveraging data
processing tools like Hadoop and Spark and storage solutions such as NoSQL data-
bases and data warehousing, manages extensive datasets efficiently.

Data visualization, through interactive dashboards like Tableau and Power BI,
and various graphical representations, simplifies data interpretation. Data mining
techniques, including association rules, cluster analysis, and predictive modeling,
uncover hidden patterns and trends. Optimization methods, including linear, inte-
ger, and non-linear programming, refine decision-making processes. Data engineer-
ing ensures seamless data flow through ETL processes, pipeline management, and
integration into data lakes and warehouses. Finally, Artificial intelligence has been
integrated with the DS tools, which is one of the recent breakthroughs in the domain.
Al deploys knowledge representation, expert systems, planning and scheduling, and
robotics, along with machine learning techniques such as supervised, unsupervised,
and reinforcement learning, for reshaping data processing and analysis (Fig. 2.13).

2.3.2 Key Applications of DS

The core applications of Data Science span across various industries, driving inno-
vation and enhancing efficiency. From healthcare and finance to retail and manufac-
turing, Data Science technologies are transforming how businesses operate and how
services are delivered. By leveraging advanced analytics and data processing, Data
Science enables informed decision-making, optimization, and personalized experi-
ences, making it an indispensable tool in the modern world. Some of the major
applications of Data Science have been listed in Fig. 2.14.

As previously discussed, the use of DS for healthcare combines data from mul-
tiple sources and provides a greater insight into the medical and disease history of
the patient, improving the predictive analytics about the future health risks and dis-
ease progression. This is not only limited to individual patients, but also holds true
for population health management. The advanced tools of DS, particularly Big Data
Analytics algorithms facilitate quicker processing of massive real-time data col-
lected from various sources; this benefit of DS is associated with accurate diagnosis,
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Fig. 2.13 DS techniques

pattern recognition and faster drug development. Clinical decision support systems
are largely facilitated by Data science due to offering an insight into the large vol-
umes of data in an organized and comprehensive manner, often using customized
reports and visuals.
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2.3.3 DS in Healthcare

The global healthcare sector generates massive amount of data; it has been esti-
mated that 30% of global data comes from the healthcare [13]. The global health-
care big data market size in 2023 was estimated as USD 42.64 billion, and by 2032,
it is predicted to reach 137.05 billion [14]. Also, it has been estimated that the annual
growth rate of healthcare data is 36% which is faster than several critical sectors
such as finance and manufacturing. Some of the major sources of data generated by
various healthcare processes include prescriptions, diagnostic reports, invoices,
medical history and records, results of clinical trials, databases, findings of clinical
studies, patient monitoring systems, wearable devices, electronic health records
(EHRs), pharmacy records, etc. With the advanced data science tools, the processes
of disease progression, drug development, disease prevention, identification of dis-
ease spread, and social determinants of health risks, personalized medicine and
population health management become accurate and faster.

Additionally, predictive analytics can identify at-risk patients, optimize treat-
ment plans, and enhance patient care. By analyzing large datasets from various
sources, predictive models can flag patients who are at a higher risk of developing
certain conditions, enabling early intervention and preventive care. This approach
helps healthcare providers to tailor treatment plans based on individual patient data,
leading to more effective and personalized care. The ability to predict health trends
and outcomes also facilitates better management of chronic diseases, reducing hos-
pital readmissions and improving overall patient health outcomes.

Furthermore, real-time data processing improves clinical decision-making, oper-
ational efficiency, and resource allocation in healthcare systems. Instant access to
up-to-date patient information allows healthcare professionals to make more
informed decisions quickly, enhancing the accuracy and timeliness of diagnoses and
treatments. This real-time capability also streamlines operations by optimizing
scheduling, reducing wait times, and ensuring that resources such as medical staff,
equipment, and facilities are used efficiently. In turn, this leads to cost savings and
improved patient satisfaction, as well as better preparedness and responsiveness in
emergency situations.

The major benefits of using Data Science in healthcare sector have been sum-
marized in Fig. 2.15:

Data Science for Healthcare

Insightful Data Visualization Integrated Health Data

Improved Predictive
Analytics

Enhanced Real-Time
Data Processing

Optimized Resource
Management

Accurate Disease
Progression Analysis

Advanced Clinical
Decision Support

Accelerated Drug
Development

Effective Population Health
Management

Effective Pattern
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Fig. 2.15 Benefits of Data Science for healthcare
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Chapter 3 )
Innovations in Continuous Patient Check or
Monitoring

3.1 Foundations of Continuous Monitoring

Conventionally, the continuous monitoring, specifically, remote was meant for the
patients belonging from the rural areas or those who suffer from the chronic dis-
eases. However, since the COVID period, the continuous monitoring of hospitalized
patients has also become a norm; this not only ensures better quality of care for the
patients but also reduces burden on the hospitals due to the reduction in staff visits
to each patient. Mostly, the starting point of the continuous monitoring technology
is either wearable or ambient sensor. The network formed by wearable devices is
often termed as Wireless Body Area Network (WBAN), and when it connects to the
personal handheld devices and computers, it is enhanced to Personal Area
Network (PAN).

Initially, the focus of wearable devices was only on real-time communication
about patients’ state to the remote caregivers, which was mainly served by IoT or
IoMT (Internet of Medical Things). However, as the technology evolved, advanced
techniques from the domains of DS and Al also began to be applied on the continu-
ous data streams received from the patients. The role of each technology in the IoT-
DS-AI nexus has been illustrated in Fig. 3.1:

3.2 I0T: The Data Collecting Technology

As earlier illustrated in Fig. 2.2, the basic architecture of 10T involves collecting
data from sensors, processing it over handheld device (edge computing) and for-
ward it to fog or cloud layer. This section describes the key protocols used for IoT
communication, the features of underlying software (the mobile apps) and the cloud
platform.
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Fig. 3.1 Role of IoT, DS and Al for continuous monitoring application

3.2.1 Sensors

Various sensors are used for continuous patient monitoring, with the choice largely
governed by the application. For example, heart rate monitors use optical sensors to
detect blood flow, while accelerometers and gyroscopes measure movement and
posture. Temperature sensors track body heat, and electrocardiogram (ECG) sen-
sors monitor heart rhythms. Additionally, glucose sensors are employed for diabetes
management, and pulse oximeters measure oxygen saturation levels. Most of these
sensors are embedded within the wearable devices such as smart watches or wrist-
bands; however, there are also commercial variant of the conventional vital measur-
ing devices that embed Bluetooth modules. With the help of Bluetooth enabled
devices such as blood pressure or Glucose monitors, there is a significant enhance-
ment in the scope of continuous monitoring applications; use of communication
protocols within the conventional medical devices helps to reduce the digital divide;
for example, the elderly or majority users from under-developed regions might not
be able to use even the simplest of health monitoring mobile apps, however, they
can comfortably use the Bluetooth-enabled medical devices, which would directly
input the measured values into the relevant mobile app, for subsequent transmission
to the central dashboards and physicians’ app interfaces. Today, we even have
ingestible and implantable sensors that track the parameters which are not possible
to be collected from on-body devices. These sensors can be thought of as an
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advanced version of pacemakers as they can also transmit data using advanced
means of wireless communication such as molecular and THz [1].

In addition to the wearable sensors or connected medical devices, ambient sen-
sors are also used for continuous monitoring. The concept of AAL has already been
discussed in Sect. 2.1.3; the AAL has been derived from the two areas of “Ambient
intelligence” and “Assisted Living”, and makes use of emerging computing and
communication technologies for facilitating the independently living elderly. The
drivers for the recent increase in the acceptance of AAL technology is the globally
increasing elderly population, known deterioration of their physical and mental
health and the long hours they spend at home, usually alone.

The goal of AAL technology is to detect the presence of users, recognize their
activities, detect behaviors and report to the interested stakeholders [2]. In this con-
text, various sensors are used such as light, temperature, humidity, vibration, sound,
air quality, of course, camera. These ambient sensors enhance the capability to mon-
itor and analyze the environment, providing comprehensive data that can be used to
improve patient care, detect anomalies, optimize energy consumption, and ensure
safety. Novel applications of AAL integrating IoT, Al and DS have been proposed;
for example, an alert could be generated for the family members in case an elderly
patient does not get out of bed by a certain time; this information can be detected by
applying ML and DL algorithms received from camera feed. Similarly, the use of
bathroom showers or kitchen coffee makers can provide an insight into the health
states of patients. By integrating data from various sources, it is possible to gain a
holistic understanding of the patient’s environment and health status, leading to
more accurate and timely interventions.

3.2.2 Key Protocols

Recently, various short-range protocols are being developed for IoT devices such as
WiFi, Zigbee, BLE and Bluetooth. The choice of protocol is dependent on the band-
width requirement which is application-specific; for example, BLE could easily be
used for a sensor signal that requires 0.5 Hz, such as SPO, signal. On the other hand,
if the application is set to send 25 lead ECG signals with a bandwidth requirement
of 500 Hz, WiFi should be used for meeting the required quality. Some of the key
IoT protocols used in healthcare are illustrated in Fig. 3.2, in terms of their range
and data rate.

Many of the recent protocols shown in Fig. 3.2 are designed with the features of
low cost, low energy consumption and low bit rate, while operating over Low Power
Wide-Area Networks (LPWAN). Some examples include NB-IoT, Sigfox and
LoRaWAN. Another common feature of these protocols is their capability to con-
nect a large number of devices. To exemplify these features, we may consider IEEE
802.15.6 standard, that supports data rates up to 10 Mbps within a range of 1-2 m,
while ensuring low power consumption and high reliability [3]. Recent advance-
ments in IoT communication infrastructure feature the latest 3GPP standards
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Fig. 3.2 Comparing Recent Protocols of IoT in terms of Range and Bandwidth

development for 5G 10T, aimed at providing low-power, low-data-rate, and wide-
area coverage for various IoT devices. This development includes two types of con-
nections: direct 3GPP connection via narrowband IoT (NB-IoT) and indirect
non-3GPP connection. NB-IoT requires only 180 kHz of bandwidth for both uplink
and downlink. To support non-3GPP 5G IoT connections, combining a low-power
wide-area network (LPWAN) with cellular networks through relay user equipment
(UE) offers a promising solution.

3.2.3 Mobile Applications

Various mobile apps have been developed to provide an interface between the
devices and users. The apps are commonly used for remote health monitoring for
offering device to device communication (often termed as Machine-to-Machine or
M2M communication), device to human and human to human communication [3].
Based on the patient requirement, the app should be accessible, present information
in an intuitive manner, present the solutions to patients’ problems, and collect their
feedback. Particularly for the remote and continuous health monitoring purposes,
the app should seamlessly connect with the wearable devices [4]. Mostly the health
apps are used by fitness enthusiasts or chronic patients. Some of the major features
healthcare apps should offer are listed below:

Measurement: It often involves device-to-device communication; for example, for
monitoring blood pressure or blood sugar, the relevant devices of glucometers or
sphygmomanometer generally communicate with the hand-held devices. The
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users may see their statistics and attempt modifying their lifestyle/diet and habits
to improve the trends.

Maintaining History: This is related to device-to-human interaction. The patients
as well as physicians can see the health trends as and when required. This is an
essential feature of continuous health monitoring apps as it reduces the burden of
managing health records and offers a detailed insight not only into the health
trends, but also into the previous diagnostics, prescriptions, etc.

Survey Questionnaires: In addition to the wearable or other medical equipment
connecting to the hand-held devices, it is also a norm to ask users about their
health/wellness. These questionnaires are commonly used for chronic and men-
tal health issues. This feature exemplifies device-to-human communication.

Training and Awareness: This feature also belongs from the category of device-to-
human communication. The users are often offered health training and aware-
ness using their mobile phone. These are low-cost and effective awareness
programs, due to their customization for specific patients, designed based on
their health stats. Today, advanced Al tools have been such as generative Al have
been used for providing customized services such as therapies, diagnosis, etc. [4].

Diary and Reminders: A common feature offered by mobile apps is to provide
reminders to the patients about their upcoming appointments, medicines, exer-
cise and diet routines etc. This helps patients stay organized and adhere to their
treatment plans more effectively. This functionality represents a crucial aspect of
device-to-human interaction, where technology is utilized to support and enhance
patient engagement and self-management of their health. Moreover, mobile apps
can send real-time alerts and notifications for critical health events. For example,
if a patient’s heart rate exceeds a certain threshold, the app can immediately
notify the patient and their healthcare provider. This feature ensures timely medi-
cal intervention, which is the most critical requirement of continuous monitoring.

Communication and Collaboration: The modern apps also provide multi-user and
community interfaces for human-to-human communication. Using this feature,
the patients may talk to their physicians, to their family members or extended
community; in fact, today, healthcare apps also provide an opportunity to physi-
cians for sharing medical advice or patient history. This concept has already been
discussed in Sect. 2.1.3.

Emergency Response: Certain apps are equipped with emergency response fea-
tures, which could trigger certain pre-defined actions in case of vitals reaching a
threshold, or patients’ actions such as use of a panic button. Such actions may
alert emergency contacts and provide the user’s location in case of a medical
emergency. Moreover, the emergency service providers such as ambulance ser-
vices can also be timely intimidated. This feature adds an extra layer of security
for patients with serious health conditions. It can be categorized as device-to-
human and/or human-to-human interaction.

Further details on health-specific mobile applications are discussed in Chap. 5.
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3.2.4 Cloud Computing

Cloud services are used for continuous health monitoring in order to perform vari-
ous tasks on the data obtained from different wearable/ambient sensors and devices.
First and foremost, these platforms provide infrastructure to store and organize the
data; these also provide servers for processing the collected data, intelligent systems
for producing alerts and assist physicians in the decision-making. By considering a
specific patient example, we may clarify the role of each component: the server is
responsible for storing the patient’s vital data, the intelligent (feature extraction)
module analyses the patient data and extract high-level features/trends from the raw
patient data, and finally, the decision support system (DSS) uses dynamic rules to
assess the physicians in their clinical decision making.

Deploying cloud into the IoT architecture ensures that the patient data will
remain protected and available whenever needed. In this context, various cloud
architectures including Infrastructure as a Service (IaaS), Platform as a service
(PaaS) or Software as a Service (SaaS) are available to be used for healthcare appli-
cations. The cloud platforms commonly used for the continuous health monitoring,
along with their characteristics have been summarized Fig. 3.3:

In addition to the features shown above, the selection criteria for cloud services
also include pricing model, flexibility and deployment type. Flexibility, scalability
and interoperability are the core design features of cloud services and these are
essential for the remote health monitoring applications. Hence, to achieve interoper-
ability, HL7 FHIR is adopted which is an electronic health record handling standard
and ensures seamless integration between heterogenous systems. Moreover, flexi-
bility and scalability are addressed through ensuring that the cloud APIs would not
need to be changed while adding the new resources to the network.

3.3 DS: The Data Processing Technology

Once the data is collected by the wearable and sent to the hand-held device, and
subsequently to the cloud, the role of DS comes into play. Various techniques of
data science starting at mere data aggregation and extending to complex big data
analytics techniques are applied to achieve the desired goals of risk identification
for the patients being continuously monitored. Once the data is cleaned and pre-
processed, analytics and visualization are the major DS techniques that add value to
the continuous monitoring applications. This section addresses the major DS tech-
niques involved including time series analysis, predictive analytics, clustering,
anomaly detection and data visualization.
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Fig. 3.3 Cloud platforms and their features

3.3.1 Time Series Analysis

Timer series analysis can easily be integrated with continuous/remote patient moni-
toring applications, as most of the scenarios are designed to collect and report con-
tinuous vital data. Particularly for chronic patients, the time series analysis would
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Fig. 3.4 Time series analysis for continuous health monitoring

provide an in-depth insight into the patients’ health condition. Some of the diseases
for which time analysis can offer a promising solution are summarized in Fig. 3.4.
It is interesting to note that a single vital parameter can be used for more than one
application; for example, time-series analysis of Electrocardiogram (ECG) would
not only provide general information about the heart health, but can also be used for
the applications of sleep quality monitoring, activity monitoring and seizure moni-
toring. Even continuous fetal monitoring has become possible with the help of
advanced wearable devices, mobile application and data analytics [5].

3.3.2 Predictive Analytics and Clustering

Various statistical and mathematical techniques are used for identifying the past and
present health data of patients to predict the disease risk. Regression analysis is the
most common technique used for analyzing the patterns of vital parameters and
detect the risk levels. Clustering also plays a crucial role for the continuous patient
monitoring applications as it groups similar data points (similar values of vital signs
in our case). It helps in identifying trends, patterns and anomalies. Some of the com-
mon clustering techniques include K-means, hierarchical clustering and Density-
Based Spatial Clustering of Applications with Noise (DBSCAN). Predictive
analytics and clustering are often integrated together when it comes to predict the
patterns of vitals in the chronic patients. For example, similar values of vitals are
clustered together, and predictive analytics is then used for predicting the future
situation.

3.3.3 Anomaly Detection

Anomaly detection holds importance for the continuous monitoring patient as it
may deviate the entire trend of monitored data, if not efficiently dealt with. If anom-
alies are not properly addressed, they could result in misinterpretation of diagnosis;
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for example, if the blood pressure or blood sugar value shows a certain spike, it
could be just an anomaly, but it could also be a critical event for the patient. Also,
the patients could also unknowingly be responsible for recording outlier values, in
case they do not observe the necessary precautions given by the app or doctor. As an
example, we may consider a chronic hypertension patient who is using a continuous
monitoring mobile health app; this patient uses a Bluetooth enabled sphygmoma-
nometer to periodically record their blood pressure via mobile app. The patient has
been advised not to measure the values after 30 min of exercise; now, in case the
patient is showing a stable trend otherwise, but just one time, they do not take care
of the waiting precaution after exercise, there will be a clear disruption in the entire
trend. Same situations may also happen due to technical malfunction of the devices
or connectivity issues, where certain values might not be uploaded to the cloud,
although correctly measured by the devices. Hence, it becomes crucial to detect and
delete the outlier values.

Some of the major statistical techniques of anomaly detection include Z-score,
Grubb’s test and Chi-Square test. Z-Score measures how many standard deviations
adata point is from the mean. A high Z-score indicates a potential anomaly. Grubbs’
Test identifies outliers in a univariate dataset using statistical tests and by assuming
that the data is normally distributed. Finally, Chi-Square Test is used for categori-
cal data to detect anomalies by comparing observed frequencies with expected fre-
quencies. For the continuous monitoring application, Z-score is more likely to be
used as it suits more for the real-time continuous data streams; it would help to
detect unusual patient metrics like blood pressure, glucose levels, or heart rate.
Moreover, this score is also easy and quick to calculate and interpret which is one of
the core requirements of remote health monitoring systems as it is crucial to reach
quickly to the inference, for subsequent intervention planning.

3.3.4 Data Visualization

For visualizing the patients’ data on central dashboards or hand-held devices, DS
offers various reporting tools. The global healthcare data analytics industry is
expected to grow up to $85.9 billion in 2027 [6]. Customized dashboards and graphs
are developed for providing a quick overview of patient’s health to the physicians.
The visualization tools offer various benefits including improved patient care, trends
and pattern recognition, as well as detection of errors/frauds. The modern tools can
offer user-friendly and interactive interfaces for presenting the complex data, and
their associations. For example, instead of looking at long logs of medical history, a
physician or caregiver is likely to be more interested in quickly looking at a graph
that shows trend of patient’s blood pressure over past 24 h. The most common
choices of medical visualization tools are discussed next.
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3.3.5 Interactive Dashboards

Dashboards integrate data received from various sources and are known as one of
the most common visualization tools. They are often built with data analysis func-
tionalities, and even have ML components embedded. It is crucial to have efficient,
fast and customized dashboards to facilitate the continuous patient monitoring func-
tionality. There are three major types of dashboards: operational, strategic and ana-
Iytical. The operational dashboard is used for displaying real-time patient data
coming as a continuous stream; strategic dashboard is used for presenting the trends
and patterns developed over time, and analytical dashboard provides more advanced
tools for performing customized analytics.

3.3.6 Interactive Apps and Sites

Interactive apps and websites help the patients as well as physicians to quickly iden-
tify the important trends and other information. For example, based on the patient’s
vitals and emergency/risk level, their mobile health app may inform about the near-
est available care provider. Similarly, the physicians might identify the patients with
highest risk levels on their phone apps.

3.3.7 Visualization Tools in Practice

Commonly used visualization tools for the healthcare sector include Tableau and
Power BI. Tableau is the most widely used due to its ability of handling large data-
sets. It also offers highly interactive and customized visualization while providing
powerful data integration. Moreover, Microsoft’s tool Power Bl integrates well with
other Microsoft products and offers robust data visualization and business intelli-
gence capabilities.

3.4 Al The Decision-Making Technology

Al has been used for data collected through IoT, and processed through DS while
doing continuous patient monitoring. The major focus of this technology is on ana-
lyzing medical data and images while also corelating the clinical data such as bio-
markers and symptoms; using all these information pieces, Al identifies the illnesses,
as well as their prognosis. The advancement in the computation speed also contrib-
utes to more efficient real-time decision making while analyzing the complex pat-
terns in the data received from patients. For example, Artificial Neural Networks
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and Deep Learning algorithms can now handle and optimize complex datasets
quickly, assisting continuous monitoring; this was clearly not possible few years
back. Commonly, Al methods are adopted for predicting vital signs and classifying
the diseases or risk levels for patients being continuously monitored. Some of the
major areas in which Al is being integrated with continuous monitoring applications
are detailed below:

3.4.1 Monitoring Vital Signs

Wearable devices such as smart watches continuously track pulse rate and other
vital parameters. Such devices generate bulk of data which can easily be used as
input by key Al algorithms like Support Vector Machine (SVM). For example, the
cloud server may use SVM for analysis of the continuous data stream, and the
insights can be shared with patients as well as physicians. There is a high probabil-
ity of diseases risk detection by these systems, which subsequently facilitate plan-
ning early interventions [5]. One such study was conducted in 2020 where decision
tree classifier was trained for identifying ECG signals; 20-fold cross-validation and
31 features were used in the training of CatBoost learning kit. The topmost features
were extracted based on their importance. The trained CatBoost model was able to
process 30 s ECG data in 0.5 s, with an accuracy of 99.62% and sensitivity of 96.1%
[71 Another study deployed IoT-based wearable 12-lead ECG SmartVest system for
assessing ECG quality using SVM; the average accuracy achieved from this system
was 97.9% and 96.4% for acceptable and unacceptable ECG segments, respectively
[8] Similarly, there are various other examples where Al methods of Multilayer
perceptron (MLP) neural network, recurrent neural network (RNN), deep convolu-
tional neural network (DCNN), auto-encoder, restricted Boltzmann machine
(RBM), and deep learning LSTM have been used for detecting cardiac diseases.

3.4.2 Monitoring Physical Activity

Powerful AI methods are also being used for activity recognition of the patients at
risk. For example, a fall detection method has been developed using random forest
(RF) algorithm that works by fusing data collected through various sensors as well
as camera (feature). The researchers have even conducted simulation studies where
hundreds of volunteers have participated for making the algorithms learn the activi-
ties and fall movements. Similarly, multiphase falls identification algorithms have
been developed using ML techniques, where the goal is not only to detect fall, but
also the stages of pre-fall, free-fall, impact, resting. These algorithms make use of
more than one ML technique including SVM, KNN, naive Bayes, decision tree, and
adaptive boosting [9]. Moreover, signal reflection model has also been used for
detecting fall, where the strength of RSSI from RFID tag is monitored. Again,
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various ML classifiers are used for the purpose including RF, multilayer Perceptron-
based Neural Network, Decision Tree, SVM, Naive Bayes, and Quadratic
Discriminant Analysis [10]; this approach also identifies various activities such as
raising the hand up or down, walking, sitting, falling, rotating and no activity.

3.4.3 Monitoring Chronic Diseases

As mentioned earlier, managing chronic illnesses remains one of the major causes
of using technology for continuous monitoring. Al has widely been used for model-
ing the risks and predicting the occurrences of issues such as cardiac diseases, dia-
betes, pain and chronic respiratory conditions. Al and ML algorithms can be
deployed for analyzing large amounts of patient data in real-time, to identify pat-
terns and potential health risks; this proactive approach helps them to plan early
interventions before the risks become critical and life-threatening. In this context,
various studies have been done for predicting diabetes. For example, external fac-
tors other than blood Glucose Levels could also be considered for modeling the
diabetes risk as done in [11], where ML algorithms SVM, Decision Tree, Extra
Tree, Neural Networks, Ada Boost, Gaussian Naive Bayes, K-Nearest Neighbor,
Logistic Regression and Gradient Boost Classifier have been used. The external fac-
tors evaluated in this study included age, insulin dosage and Body Mass Index
(BMI). Similarly, AI can also be used for innovative applications for diabetic
patients; for example, ANN and SVM have been used for predicting the best exer-
cise routines based on the blood sugar levels [12]. Al can also be used for pain
management through continuous monitoring; the wearable device and mobile apps
are integrated together to record the pain levels and identify the pain patterns. As a
result of this analysis, developing customized pain management strategies becomes
possible.

Several commercial solutions have also been made available that help to track
the vital signs and detect disease risks using Al. For Example, AliveCor provides
Al-driven ECG monitors that patients can use at home; the product uses Al algo-
rithms to analyze ECG to detect abnormalities such as atrial fibrillation, arrhyth-
mias, and other cardiac conditions [13]. Similarly, IBM Watson Health uses Al to
identify patients at risk of heart failure [14]; the company’s solutions in addition to
monitoring vitals, also monitor the lifestyle factors such as diet and fitness routines,
genetic information and medical history to predict the likelihood of heart attacks or
strokes. Al tools have also been used form monitoring chronic respiratory condi-
tions; Propeller Health’s smart inhalers track medication usage and environmental
factors to predict and prevent asthma attacks or COPD exacerbations [15]. Moreover,
Al algorithms are also capable to assess spirometry data to assess lung function and
predict the progression of respiratory diseases.

In addition to above, there are several innovative and unconventional AI models
trained for continuous monitoring solutions. Google Al subsidiary DeepMind
developed an ML model for predicting kidney injuries [16]. The team did a study on
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a large dataset and the model was able to predict kidney injury up to 48 h in advance.
Clearly, this time margin would allow the physicians to intervene and treat the
patient, saving them from life-threatening situations. As another disruption to the
conventional diagnostics, Food and Drug Administration (FDA) has approved sev-
eral Al tools for screening cancers of brain, breast, lung, prostate, skin, and thyroid
[17]. The major reason behind success of Al for predicting the cancer is its ability
of analyze image based on its training that is done on million of images. Such accu-
rate and vast knowledge is never possible to be contained within a human brain,
hence, Al surpasses human decision making for cancer detection.

3.5 Mental Health Monitoring

Mental health has also been facilitated by Al for predicting various conditions such
as bipolar disorder, suicidal tendency, major depressive disorder and schizophrenia.
Initially, various mobile apps were developed for identifying the issues such as anx-
iety and depressions only to facilitate the remote consultation and counseling.
Subsequently, trend monitoring was included in the apps so the patients and physi-
cians can have an insight into the occurrence of anxiety/depression episodes. Today,
we have advanced Al algorithms embedded with the mental health mobile apps and
digital platforms. These algorithms identify the symptoms and risk factors for men-
tal health issues. Moreover, Al techniques also help to predict the progression of
disease, which is then used for developing customized therapies and other treatment
strategies. Recently, the concept of Conversational Al agents has also been pro-
posed where chatbots play the role of psychologists and develop a human-Al thera-
peutic relationships [18]. Such techniques of using Al for offering therapy and
counseling would not only make the mental healthcare more effective, but will also
make the service more accessible by eliminating the taboo associated with receiving
therapy in a conventional setting.

The use of Al for mental health has particularly been affected by the recent
development of Chat Generative Pre-training Transformer (ChatGPT), which is a
powerful Al-based chatbot. The bot utilizes transformer-based neural network sys-
tem, that makes it capable of producing human-like content [19]. ChatGPT has the
capability of responding to the users in a conversation style as it is trained on Large
Language Model (LLM). Due to the diverse capabilities of ChatGPT such as writ-
ing papers, composing music, writing computer programs, offering counseling etc.;
therefore, the tool is expected to impact the mental healthcare delivery positively by
offering free services any time. With the development of ChatGPT, the users would
not even need to have access to any dedicated mobile app; rather they can just log in
at any time and can ask questions from the bot. For example, if a mother is feeling
anxiety due to postpartum depression, she can seek help from ChatGPT and same is
valid for the elderly who might need an assistant just for chatting. Since ChatGPT
is a multilingual platform, this feature would also add to the flexibility it could offer
to the users.
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3.6 Continuous Patient Monitoring Leading to SDG 3

The use of 10T, Al and DS for continuous patient monitoring at home or hospitals
has a considerable potential for contributing towards achieving SDG 3. First and
foremost, these technologies provide access to healthcare for those who live at
remote areas, for those who could not afford to visit expert clinics, and also for
those who avoid to avail care due to social taboos (such as women not receiving
reproductive care or people in general not receiving psychological counseling).
Secondly, chronic disease monitoring and management becomes very cost-effective
and easy using the technology, which is not possible otherwise. People suffering
from chronic diseases (majority elderly) often tend to miss their medicine and doc-
tor’s appointments due to forgetfulness or busy schedules. With the help of continu-
ous monitoring, their health state is always communicated to the doctors, regardless
of whether the patients show up on the scheduled appointment. As a matter of fact,
the continuous monitoring facilities even outperform the conventional check ups
method because following that, the patients interact with the doctors only once in a
while, whereas while using wearable and other technologies discusses in the chap-
ter, the patients always remain connected. There are various proposals in literature
and some commercial implementations where the doctors can find the risk levels of
each patient for various diseases on central dashboards [20].

Hence, the technologies presented in this chapter can ensure healthy lives and
promote well-being for all regardless of their location, age and economic class.
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Chapter 4 ®
Mobile Health (m-Health) S

4.1 Defining m-Health

According to World Health Organization (WHO), Mobile Health (m-health) is
defined as “the use of mobile wireless technologies for public health” [1]. Today,
tens of healthcare mobile applications have been commercialized that either take
input from wearable sensors, or from sensors embedded within the smart phones.
These mobile apps help the patients to access continuous care at an affordable price,
regardless of their physical location. The patients are empowered via m-Health for
self-management of their health as they get customized tools to track various health
metrics such as physical activity, diet, medication adherence, and vital signs. The
quality and coverage of care significantly improves with the advent of m-health as
compared to the conventional healthcare systems due to the increase in access to
health services, skills and information. Moreover, the technology also promotes
awareness and positive changes in lifestyle of users, which in turn, improves the
chronic disease management probability. Let’s look at the brief history and evolu-
tion of m-Health Concepts.

4.2 History and Evolution

The areas of mobile app development, wireless communications, [oT and Al have
been increasingly integrated with healthcare. A brief timeline for m-health evolu-
tion has been illustrated in Fig. 4.1.

It was during 1980s that the concepts of telemedicine were first introduced.
Primarily, the focus of telemedicine during the early days was on ensuring accessi-
bility in remote and underserved regions, including rural areas, isolated communi-
ties, and environments where traditional medical facilities were not available. The
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Fig. 4.1 Timeline for evolution of m-Health

major communication methods used for telemedicine were telephone, radio and fax
machines; telephones were used for physician consultations, fax machines were
used for transmitting medical records, and radio and television was used for aware-
ness programs broadcast.

During 2000s, SMS-based health messaging services were introduced: health
tips and preventive health advisory were sent to the patients’ mobile phones; emer-
gency alerts were sent during health crisis or disasters for ensuring the users’ safety;
appointment reminders were sent by clinics to reduce the no-show rates; similarly,
medication reminders were sent to improve adherence, as well as health campaigns
were also run via SMS for promoting the vaccination drives.

In 2003, Professor Robert Istepanian first coined the term “m-health” and defined
it as “emerging mobile communications and network technologies for healthcare”.
Although transmission of preventive information and medication/appointment
alerts had already begun with SMS based systems, the m-health opened up the new
era of mobile applications and continuous health monitoring. The patients could
now also consult their doctors using videoconferencing, which not only improved
the quality of healthcare services but also significantly influenced the patients’
behavior by supporting behavior change interventions through multimedia content,
gamification, and personalized feedback.

In 2014, new opportunities in terms of health history management and trend
monitoring developed with the launch of Apple HealthKit, which was a robust
framework introduced to serve iOS ecosystem. The objective of this launch was to
offer a centralized repository for health and fitness data; with this, users become
able to maintain all their health records at one place. One of the key features of
Healthkit was its possibility to share data with other applications: it offers a very
high level of flexibility and abstraction to the developers as Healthkit offers a pow-
erful API [2]. It also ensures the user privacy as any application connecting to it asks
for the user’s permission for reading or writing their data.

U.S. Food and Drug Administration (FDA) began to regularize the health-related
mobile apps in 2014. FDA is responsible for protecting public health by ensuring
the safety, efficacy, and security of drugs, biological products, and medical devices.
With the advent of mobile health technology, the FDA extended its oversight to
include mobile medical applications that could impact patient health. FDA recog-
nized the importance of mobile apps, as it states “Mobile apps can help people man-
age their own health and wellness, promote healthy living, and gain access to useful
information when and where they need it.” [3]. The purpose of issuing approvals for
mobile apps was not only to ensure patients’ safety and confidence, but also to pro-
vide a guideline for the future developers about the components required in such
apps. An example app that got approval during the early period is Mobile MIM app
[4], which allowed doctors to view medical images like X-rays and MRIs on their
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Fig. 4.2 Basic architecture of m-Health system

mobile devices. Similarly, another example is AliveCor Heart Monitor [5], which
allowed users to record and monitor their heart rhythms using a mobile device. FDA
approvals also increased the innovation rate for healthcare mobile apps as the devel-
opers had a clear pathway.

By 2015, the scope of m-health enhanced beyond mobile apps as the use of wear-
able devices gained popularity. The wearable devices connect with smart phones via
communication standards such as Bluetooth and offered accessibility, independence
and activity tracking via using smart sensors [6]. The patients, as a result, may get
detailed health insights, customized treatments and long-term management at a
reduced cost. Due to the regular monitoring, the wearables devices can inform the
patients and physicians about the efficacy of ongoing treatment as well. The wear-
ables are not only used for self-management by patients, but healthcare facilities
also adopt these at a large-scale for better patient management and resource optimi-
zation. A typical m-Health architecture has been illustrated in Fig. 4.2, where the
data goes from patient to the internet, and subsequently stored at the servers, and
shared with the medical experts and emergency services.

2020s is the era where Artificial Intelligence and big data have been integrated
with m-health to further enhance the health services. First, these technologies pro-
vide an opportunity to analyze vast amounts of data from various sources (like elec-
tronic health records, wearable devices, and genetic information) to provide
personalized treatment plans, leading to better outcomes and more effective treat-
ments. Second, Al models significantly help in preventive care as they predict dis-
ease outbreaks, patient deterioration, and potential health risks based on historical
data and real-time monitoring. Early diagnosis and intervention also become pos-
sible due to the AI’s capability of analyzing medical images such as MRIs, Xrays
with high accuracy.
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4.3 Major Categories of m-Health Apps

Mobile apps today, provide tools for monitoring, education, and support for a wide
range of diseases. Most of these apps offer personalized care and facilitate commu-
nication between patients and healthcare providers, for enhancing the overall
healthcare service delivery and improving the quality of life. Figure 4.3 illustrates
some of the diseases for which mobile apps are mostly being developed. Some of
the diseases can be categorized as physiological, some as mental, whereas some can
be categorized as either of these.

Moreover, the most common categories of mobile apps that target a specific
application/disease are shown in Table 4.1. Example applications from each cate-
gory are also listed.

4.4 Achieving SDG 3 Through m-Health

As the focus of SDG 3 is on providing accessible healthcare for all at every age,
m-health can certainly help to achieve it. For each of the targets and means of imple-
mentation detailed in Sects. 1.6 and 1.7, m-Health offers the relevant solution. Some
of the ways in which m-Health contributes to achieving SDG3 are listed in Fig. 4.4,
and discussed next.

4.4.1 Ensuring Healthcare Accessibility and Quality

First and foremost, m-Health solutions focus on making the healthcare accessible to
everyone. Majority of the platforms not only allow remote monitoring, but also
offer remote consultations, mostly valuable for the people from rural communities,

Fig. 4.3 Diseases treated by mobile apps
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Table 4.1 Categories, purpose and examples of apps used for m-health

S.
no | Category

1 Fitness and wellness
tracking

2 | Remote monitoring

3 | Telemedicine

4 | Medical reference
and information

5 Mental health

6 | Chronic disease
management

Purpose

Exercise tracking and diet monitoring.
Weight loss tracking and dietary
guidance.

Step counting and fitness tracking.

Quick and effective workout routines.

Personalized coaching on lifestyle
choices.

Continuous monitoring of patients’
vital signs and chronic conditions.

Symptom assessment and healthcare
guidance.

Virtual consultations with doctors.

Finding doctors and booking
appointments.

Managing medications and reminders.

Medical reference and drug
information.

Mental health support and mindfulness
exercises.

Supporting cognitive function and
mental agility.

Supporting behavioral change for
better health outcomes.

Online therapy and counseling.

Managing self-harm urges and
providing mental health support.

12-week psychotherapy intervention
for suicide prevention

Manages employees’ mental health
Self-assessment opportunity for health
state

Blood pressure tracking and
management.

Diabetes logbook and blood sugar
tracking.

Heart rate monitoring and health
tracking.

Mobile ECG and heart health tracking.

Example apps
MyFitnessPal, Fitbit
Lose It!, Noom

Pacer, Withings Health
Mate

7 Minute Workout
Fabulous, Lifesum

Glucose Buddy,
Cardiogram

Ada, iTriage

Doctor on Demand,
Amwell

Zocdoc, Heal

Medisafe, Mango Health
Epocrates, WebMD

Calm, Headspace,
BetterHelp, Shine,
Moodpath

Lumosity, CogniFit
Lark Health, Omada
Health

Talkspace, BetterHelp
Calm Harm

WellPATH

Whatsup?
Interaktor

SmartBP, Simple
MySugr, Glucose Buddy
Cardiogram, AliveCor

Kardia, AliveCor

(continued)
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Table 4.1 (continued)

S.
no

7

10

11
12

13

14

15
16

18

20

21

22

23

24

25

26

Category
Women’s health

Substance abuse

Allergy management
Sleep health

Hearing
Vision

Health information
management

Child and infant care
Dental health

Relaxation and
meditation

Emergency services

Environmental health
Genetic information
Infectious disease
tracking
Occupational health
Travel health
Pharmacy and
medication delivery
Health communities
Clinical decision

support
Rehabilitation

Purpose
Tracking menstrual cycles, ovulation
and reproductive health.

Pregnancy tracking and infant care
information.

Managing and overcoming addiction.
Support for quitting smoking.
Tracking and managing allergies.
Monitoring sleep patterns and
improving sleep quality.

Hearing tests.

Vision exercises.

Tracking and improving vision health.

Managing health information and
medications.

Health tracking and information for
children.

Dental care tracking and reminders.
Sleep and relaxation support.

First aid information and emergency
response.

Quick access to emergency medical
services and instructions.
On-demand house calls from doctors.
Monitoring environmental factors like
air quality.

Genetic testing information and
personalized health advice.

Tracking outbreaks and providing
information on infectious diseases.
Improving health and safety in the
workplace.

Health information and vaccination
requirements for travelers.

Ordering medications and managing
prescription deliveries.

Comparing prescription drug prices
and finding discounts.

Connecting patients for support and
information sharing.

Assisting clinicians in making
informed decisions.

Supporting physical rehabilitation and
recovery.

Mobile Health (m-Health)

Example apps

Clue, Ovia, Flo, Period
Tracker by GP Apps

Pregnancy+, BabyCenter

Leafly

Quit Genius
Allergy Alert
Sleep Cycle, Aura

hearScreen USA
EyeQue
GlassesOff, VisioCare

CareZone, Withings
Health Mate

BlueLoop

iDental
Aura, Calm

First Aid by American Red
Cross

First Aid by American Red
Cross

Heal

AirVisual, Plume Labs

23andMe, MyHeritage

HealthMap, Outbreaks
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Fig. 4.4 Support of m-Health for SDG 3

who do not have such facilities otherwise. Similarly, m-Health platforms are widely
used for raising health awareness. Secondly, the use of wearable devices in conjunc-
tion with mobile apps provide the advantages of continuous monitoring and medical
recordkeeping; this leads to efficient management of chronic diseases. The quality
of care delivered via m-Health has also been subsequently enhanced due to the use
of Al and big data; now the professionals are able to drive detailed insights about
patients’ health and make informed decisions accordingly. In addition to collecting
data from various sources, m-Health platforms also improve adherence to medicine
and other medical advice. As indicated previously in Table 4.1, various mobile apps
offer reminders for medications, exercise schedules, doctor appointments etc.
Furthermore, preventive care has become possible as Al driven tools create person-
alized health and fitness plans based on individual data.

4.4.2 Strengthening Health Systems

Health resource management is another key area targeted by m-Health. Use of
m-Health technologies reduce the cost, improves the resource utilization and
reduces inefficiencies. Due to the continuous use of m-Health platforms, the need
for physical clinic visits reduces, which in turn reduces the healthcare burden on
clinical facilities and state budget; hence, the available physicians can manage more
patients while maintaining the quality of care. Similarly, hospitalizations and emer-
gency interventions also reduce as patients are continuously monitored and preven-
tive strategies are in place. The administrative tasks are streamlined as patients are
increasingly relying on m-Health platforms for scheduling appointments; the auto-
mated scheduling reduces the hassles of queuing as well as the need of extensive
administrative staff. Moreover, m-Health platforms are not only beneficial for the
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patients, but they are also used for providing training and awareness to the health-
care workers.

4.4.3 Managing Maternal and Neonatal Health

m-Health appears as a valuable solution for managing the maternal and neonatal
health, which is the first key target area addressed by SDG 3. Throughout the preg-
nancy and postpartum, mobile apps (often integrated with wearable devices) offer
monitoring and care guidelines for women; this could result in reducing mother and
child mortality rates, specially for those residing at remote areas. It has also been
found by some recent studies that use of mobile health technology holds the poten-
tial for affecting parental relationships in unique ways; for example, the pregnancy
apps mediate the mother’s relationship with her unborn child, the parents’ aware-
ness about the pregnant body and sharing of experience between the partners [7].
Similarly, for new born and older children, mobile apps help parents to track the

Table 4.2 Al for fetal health monitoring

S.
no. | Al algorithm Fetal abnormality monitored
1 Convolutional Neural Networks Congenital heart defects
(CNN)
2 Support Vector Machines (SVM) Neural tube defects
3 Random Forests Chromosomal abnormalities (e.g., Down
syndrome)
4 U-Net Fetal growth restriction
5 ResNet Fetal echocardiography analysis
6 Recurrent Neural Networks (RNN) Abnormal fetal heart rate patterns
7 Logistic Regression Preterm birth prediction
8 Decision Trees Placental abnormalities
9 k-Nearest Neighbors (k-NN) Fetal distress detection
10 Gradient Boosting Machines (GBM) | Intrauterine growth restriction (IUGR)
11 Bayesian Networks Risk assessment for fetal abnormalities
12 Genetic Algorithms Prediction of genetic disorders

13 Artificial Neural Networks (ANN) Detection of fetal alcohol syndrome
14 Ensemble Methods (e.g., XGBoost) | Comprehensive fetal health monitoring

15 Principal Component Analysis (PCA) | Dimensionality reduction in fetal anomaly
detection

16 Reinforcement Learning Optimization of monitoring protocols

17 Autoencoders Anomaly detection in fetal ultrasound images

18 Clustering Algorithms (e.g., Grouping of fetal abnormalities for analysis

K-Means)
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vaccination schedules, be aware about the disease outbreaks and monitor their chil-
dren’ growth milestones.

Moreover, there have been Al-powered m-Health solutions developed to inform
the parents and caregivers about any diseases or abnormality in the fetus [8].
Table 4.2 lists some of the common Al algorithms that can be used to detect specific
fetal abnormality.

4.4.4 Dealing with Infectious and Noncommunicable Diseases

m-Health tools have been used for various use cases related to infectious diseases.
During the recent surge of COVID-19, hundreds of mobile apps were used and
developed for real-time disease surveillance and outbreak tracking, enabling quick
responses to infectious disease threats. Some of the most common uses of mobile
apps during COVID-19 are listed in Fig. 4.5. Starting from collecting symptoms and
reminding to wash hands, there were apps that offered mental support using com-
munity building and alternative medicine techniques such as music therapy [9]. The
mobile apps are also used for conducting awareness campaigns during infectious
disease outbreaks; hence, m-health could reduce the rate of disease spread as well
as anxiety and depression caused by it.

m-health platforms have also been offering great assistance to patients with
chronic (non-communicable) diseases. Wearable technology has been used at homes
and hospitals to ensure that patients vitals are maintained within healthy limits. The
chronic conditions such as hypertension, asthma, diabetes, heart diseases and can
easily be managed via m-health platforms, reducing the healthcare costs and
improving the quality of life. As discussed above, mobile health apps provide tools
for tracking vital signs, medication reminders, and lifestyle management, empower-
ing patients to take an active role in their own care. Moreover, through the

Fig. 4.5 Applications of m-Health during COVID-19 epidemic
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integration of Al and big data, patients as well as their physicians are informed
about the health risks; in this regard, various health monitoring dashboards have
been developed in order to providing customized risk tracking for patients [10].
With the help of Al-powered dashboards, personalized treatment strategies and
timely interventions are become possible.

4.4.5 Managing Sexual and Reproductive Health

As indicated in Table 4.2, there are various mobile applications specifically devel-
oped for menstrual period or fertility monitoring. These apps offer women a conve-
nient way to track their menstrual cycles, ovulation, and fertility windows. Most of
these apps use data input by users, such as period start and end dates, symptoms,
and basal body temperature, to predict future cycles and fertile days. Some apps are
also being proposed to be connected to implanted sensors, for a better monitoring of
ovulation. An example architecture of m-health platform integrating implanted sen-
sors for fertility monitoring, is shown in Fig. 4.6. Here, the nano-sensors will collect
data from the Fallopian tubes, and would communicate by using THz and molecular
communication links within the human body to transmit the information to the on-
body device; subsequently, the information about presence of eggs/any disease etc.
shall be transmitted to hand-held device using conventional means of Bluetooth/
WiFi/5G. this way, information about the fertility window or any disease could be
timely communicated, ensuring the health of women and their future children.
Many of the fertility monitoring apps also provide educational content on repro-
ductive health, reminders for taking medications or supplements, and personalized
health insights. By leveraging these tools, women can better understand their bod-
ies, plan for pregnancy, and manage conditions like polycystic ovary syndrome

Fig. 4.6 A hybrid m-Health architecture for fertility monitoring using implanted sensor nodes
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(PCOS) or irregular periods. The community support is also available on most of the
fertility apps so the women may learn from each others’ experiences, share their
emotions and have a sense of relatability and support. These platforms provide
forums and chat groups where users can share their personal stories, seek advice,
and offer encouragement leading to a better experience, whether a woman is going
through challenging phase of conceiving a child, menopause or even fighting with
various types of cancers.

4.4.6 Monitoring Environmental Health

m-Health solutions also assist the user in managing their health based on the envi-
ronmental data. Most health apps, in addition to collecting vital data, also collect
information about environment such as air quality, temperature, humidity, and other
environmental parameters in real-time. Based on this information, the users are kept
informed about any environmental hazards, pollution levels, unsafe water condi-
tions, or chemical spills. To facilitate the movement and activities of users, m-Health
apps also integrate GPS for identifying the hazardous locations. For example, the
users while planning their day-out or exercise may consult their app to check the
pollution level and choose the locations accordingly. In addition to the routine envi-
ronmental monitoring for aiding individual users, m-Health apps also have a poten-
tial to collect information from satellite for having an insight into large-scale
environmental state. Deforestation, urban sprawl, and changes in water bodies for
various locations can be identified; such information is intended to help the users to
plan their movement/activities, and also to the state for managing their environmen-
tal conservation efforts and urban development strategies effectively.

The deployment of environmental data by the m-Health apps also opens new
dimensions of health research. The environmental data, in its association of impact
on public health can be assessed, leading to identification of correlation between
these. For example, it is well-known that there is a correlation between environmen-
tal pollution and respiratory diseases; however, using mobile sensing technologies
and apps, it becomes possible to quantify the impact of pollution on patients belong-
ing from various age groups, disease history etc. Similarly, health risks, and out-
breaks can also be predicted. Hence, the prevention strategies can be planned much
more effectively.

4.4.7 Support for Mental Health

m-Health has significantly broadened the scope of mental healthcare. Despite hav-
ing serious affects, mental health is not often prioritized. There are various factors
responsible for their ignorance including lack of awareness, accessibility and
resources. Moreover, in many cultures, seeking mental health assistance is a taboo
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Fig. 4.7 Managing mental health via m-Health apps

as yet, which also causes hinderances in accessing assessment and therapy services.
Through the use of m-Health platforms, users get an opportunity of getting their
mental health assessed, and monitored on a continuous basis, while eliminating the
associated stigma. Various apps offer remote video consultations which reduces the
need for physical clinical visits, making the process cost effective and accessible.
Hence, the use of m-Health solutions bridges gaps in traditional mental health ser-
vices, ensuring more people receive the care they need, which is a direct contribu-
tion to SDG 3.

There are also a large number of services that are offered by mental health apps,
and platforms that integrate wearable devices for continuous assessment of issues
such as anxiety and depression. A basic taxonomy indicating the features offered by
common mental health apps/platforms is illustrated in Fig. 4.7:

4.5 Enhancing Health Research

Due to the enormous data generated by m-Health apps and platforms, novel oppor-
tunities for improving health outcomes through research have been developed.
m-health has enabled continuous data collection. For example, earlier the data about
blood pressure, blood sugar, heart rate, sleep patterns etc. was only recorded when
the patients used to visit the clinical facilities; also, the scope of this data was lim-
ited to only the patients who could visit. Now with the advent of m-health, the data
may be collected several times a day not only from the regular patients who have
physical access to the clinics, but also from those who reside at far-off locations and
could not get their data recorded. There are multiple sources of data entry, wearable
devices using communication standards such as Bluetooth, clinical information
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systems, patient surveys, pharmacy information systems, ambient home sensors,
etc. Moreover, data from users’ social media accounts is also often integrated with
the m-health apps. Hence, the volume of data has increased exponentially which
facilitates health research in the areas of enhanced predictive modeling, personal-
ized medicine, population health management, resource management, drug discov-
ery and development and real-time response strategies.

4.6 Challenges and Opportunities

Figure 4.8 presents a framework indicating the major challenges and future oppor-
tunities associated with m-Health, highlighting key factors that influence the imple-
mentation and impact of mobile health technologies. Let’s briefly discuss each
of these.

4.7 Key Challenges

4.7.1 Technology Integration

This appears as one of the most critical and immediate challenge for wide-scale
global adoption of m-Health. For decades, there have been manual systems used for
health data management; now, mobile technology requires the stakeholders to inte-
grate novel solutions with the existing conventional healthcare systems. Many
healthcare providers use diverse and even outdated electronic health record (EHR)
systems, making interoperability a complex issue. Ensuring that mobile health
applications and devices can seamlessly exchange data with these systems requires
robust standardization and cooperation among technology providers. Without effec-
tive integration, the potential benefits of m-Health, such as real-time data sharing

Fig. 4.8 Framework presenting challenges and opportunities of m-Health
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and comprehensive patient records, cannot be fully realized, leading to
inefficiencies.

Another major concern is to ensure privacy and security while using m-health
platforms. These solutions deal with highly personal and sensitive information,
which is stored and transmitted over mobile devices, cloud or both. The extensive
usage of patient information does not only create security threats for individuals but
also for hospitals. For example, a patient expects the clinical information system to
provide access so they may schedule appointments, access their health trends,
download their reports etc. which clearly increases security threats, by creating
more possibilities of intrusion. Ensuring the Confidentiality, Integrity, and
Auvailability (CIA) of this data requires robust encryption methods, secure commu-
nication protocols, and stringent access controls. Despite these measures, mobile
health applications remain vulnerable to cyberattacks, data breaches, and unauthor-
ized access, which can erode trust among users and healthcare providers. Therefore,
ongoing efforts to enhance cybersecurity measures and comply with regulatory
standards, such as HIPAA in the United States, are essential to safeguard patient
information.

Finally, regardless of how advanced or useful a m-Health app may be, it always
needs a reliable and secure internet connection to be fully functional. Most of these
applications either focus on storing patient’s data on cloud, or telemedicine facili-
ties. As of present, many rural and far-off areas lack even the basic internet infra-
structure which could hinder the use of these apps. If the use of m-Health apps
become more prevalent, the presence of digital divide would affect the accessibility
to healthcare facilities even more. Addressing this challenge involves investing in
telecommunications infrastructure, exploring alternative connectivity solutions
such as satellite internet, and developing offline functionalities for mobile health
applications to ensure continuous care in the remote areas.

4.7.2 Regulatory and Legal Framework

Due to the unique nature of m-Health, novel legal requirements have surfaced, in
contrast to the conventional healthcare settings. Issues such as licensure require-
ments for healthcare providers practicing across state or national borders, liability
for medical errors or malpractice in virtual consultations, and the establishment of
patient-provider relationships in digital settings require legal frameworks.
Furthermore, ensuring informed consent and patient confidentiality in remote con-
sultations poses challenges distinct from traditional face-to-face interactions. There
are also issues pertaining to data ownership, authority and the management of
patient information. Clear policies and agreements are necessary to establish data
rights and responsibilities for efficient implementation of m-Health solutions.
Moreover, the authority to make medical decisions is significantly complicated in a
remote context, especially for the cases where multiple healthcare providers are
involved.
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For ensuring efficient and ethical clinical practices while using mobile technolo-
gies, it is crucial to comply with the regulatory frameworks discussed above. Since
the technology of m-Health is still in infancy, it is a major challenge to integrate the
regulatory guidelines of different countries/regions and different healthcare sectors.
For example, each country and healthcare organization may have distinct laws and
standards concerning aspects of patient privacy, data protection, medical device cer-
tification, and telemedicine practices. Also, lack of awareness and expertise of med-
ical professionals with the legal requirements may cause hinderance in ethical and
legal implementation of m-Health solutions. Failure to adhere to these regulations
can result in fines, or even the suspension of m-Health services. Therefore, a col-
laboration of legal and medical experts is often required to ensure smooth and effi-
cient implementation of m-Health.

4.7.3 Financial Sustainability

Since the technology of m-Health is in infancy at most places globally, it is not
intuitive to prove the financial sustainability. Evaluation of financial sustainability
of m-Health systems actually needs comparison with the conventional healthcare
systems. Although, theoretically m-Health promises to lower the healthcare costs by
reducing the needs of physical clinical visits, improving the preventive care etc., it
does require initial investments to build m-Health infrastructure, train the staff,
developing legal frameworks and raising patient awareness. Moreover, the cost-
savings can be demonstrated by conducting longitudinal studies and public health
surveys, which have not yet been realized.

There are also issues related to compensation of medical staff providing m-Health
services. Since there are no relevant regulations developed so far, there is significant
variability among mobile apps in terms of compensation for services such as tele-
consultations, remote monitoring, and digital therapeutics. Also, there is yet a lack
of clarity regarding reimbursement of insurance claims made for services availed
via m-Health platforms; this lack of standardized reimbursement policies can dis-
courage healthcare providers from adopting m-Health solutions [11]. Thus, there is
a need for relevant stakeholders to devise efficient compensation and reimburse-
ment policies governing the m-Health transactions.

4.7.4 Staff Trainings

The maximum potential of m-Health technologies can only be achieved by provid-
ing trainings to the healthcare staff. In the m-Health architecture shown in Fig. 4.2,
medical experts are the key stakeholders responsible for integrating the m-Health
technologies with healthcare systems. They monitor the patient conditions, manage
the health trends and make key decisions regarding diagnostics, treatments or
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procedures. To ensure smooth operation of m-Health solutions, it is required that
medical staff is comfortable with the use of common tools such ash smart phone
applications, wearable devices, centralized dashboards and clinical information sys-
tems. Due to the diversity of the m-Health devices and systems, continuous training
and education is required for keeping them updated with the latest technology trends.
In addition to offering the technical guidance, the medical staff also need to be
trained for the revised information flows and patient management. With the integra-
tion of m-Health solutions, the key processes and ways using which the staff inter-
acted with patients has changed. Now, the patients are empowered and clinical
workflows are mostly aligned with the patients’ preferences offering the utmost
flexibility which is the unique feature of m-Health. Hence, Empowering healthcare
professionals with the knowledge and skills to motivate and support patients in
using m-Health tools can significantly improve patient outcomes and satisfaction.

4.7.5 Patient Engagement

As the primary goal of m-Health is to provide accessibility to a broad range of users,
one of the main challenges is developing user-friendly interfaces that cater to diverse
populations. Personalized and user-friendly interfaces can significantly enhance the
patients’ experience, making it easier for them to integrate m-Health tools into their
daily routines. Just like the staff trainings, there is also a need to conduct awareness
and education programs for patients, which should provide enough confidence to
the patients for taking charge of their own health. Also, offering a chance of sharing
concerns regarding m-Health experience with the medical experts improves patients’
engagement. Moreover, regular feedback and support, such as through reminders,
progress tracking, and virtual check-ins, help maintain patient motivation and
adherence.

4.8 Key Opportunities

m-Health presents numerous opportunities to revolutionize healthcare delivery by
enhancing accessibility, personalizing care, and improving health outcomes. Let’s
discuss some of these briefly.

4.8.1 Improved Healthcare Access

First, m-Health offers opportunity for improved healthcare access for patients
belonging from far-off locations as it attempts at eliminating the needs for physical
visits. The patients can benefit from remote monitoring and consultations,
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particularly for chronic health conditions where data can be entered via numerous
sources including patient reported questionnaires as well as wearable devices. The
emergence of new sensing technologies also provides an opportunity of timely pre-
diction of the diseases, which could have gone unnoticed otherwise; for example, a
range of optical sensors has been developed for identifying Diabetes and cardiovas-
cular conditions [12].

The use of m-Health platforms also reduces costs through enabling timely medi-
cal interventions, which lowers the burden on healthcare facilities and state.
Furthermore, due to the continuous monitoring, the need of readmissions also
reduces which helps the medical facilities to deal with more patients. The chances
of effective coordination and collaboration between physicians belonging from
various locations also improve due to m-Health: the real-time data streams as well
as all the previous history of patient can be shared quickly through m-Health apps.

4.8.2 Personalized Health Solutions

m-Health offers an opportunity to develop highly personalized treatment plans
based on the real-time data. Unlike the conventional healthcare systems, where the
treatment could only be modified once the patient visited the clinic and either
reported their symptoms or their vitals were measured using ordinary devices. Now,
the vital parameters data is continuously transmitted to the medical experts in the
real-time; this data transmission helps the doctors to make any change in the treat-
ment/medication plan without even the need of patient to visit the clinic. Similarly,
there are apps which monitor the impact of medication on the patient’s vitals; this
information is continuously shared with the doctors, who could devise a personal-
ized treatment plan to foster a more proactive approach to healthcare.

Predictive analytics is another technique offered by m-Health where large datas-
ets generated from real-time health monitoring activities are analyzed. Based on
these analytics, correlations, patterns, and potential health risks can be identified in
the patients even before they show symptoms. This proactive approach allows for
early intervention and preventive measures, improving outcomes and potentially
saving lives.

4.8.3 Integration with Cutting-Edge Technologies

Integration of m-Health with advanced computing techniques of Artificial intelli-
gence and Big Data Analytics has exponentially enhanced the scope of remote
health management. Al algorithms can process vast amounts of health data col-
lected through m-Health devices, identifying patterns and generating insights that
would be impossible for humans to detect manually. For example, machine learning
models can predict patient outcomes and suggest personalized treatment plans
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based on individual health data, continuously learning and improving as more data
is collected. Big Data Analytics further enables the aggregation and analysis of mas-
sive datasets from diverse sources, including electronic health records, wearable
devices, and patient-reported outcomes. For example, big data techniques can reveal
population health trends, track the spread of infectious diseases, and identify risk
factors for chronic conditions. The integration of these advanced computing tech-
niques with m-Health facilitates real-time decision-making, predictive analytics and
personalized medicine, empowering healthcare providers to deliver timely and
effective interventions.
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Chapter 5 )
Personalized Medicine Check or

5.1 Limitations of Traditional Medicine

By design, the traditional medicine is focused on treating symptoms and disease
rather than prevention. There are various limitations of the traditional medicine,
due to which their effectiveness may be compromised. First and foremost, the
traditional medicine takes one-size fits all approach; often the standardized treat-
ment protocols and medication dosages are set based on the results obtained from
broad clinical trials. Although, the participants for such clinical trails are selected
using specific sampling strategies, the resulting outcomes may not be relevant for
every individual due to differences in lifestyle, genetics and environment.
Secondly, the objective of the standardized treatments is to treat and average
patient; as a result, the subtle differences among patient profiles may result in side
effects.

Thirdly, there is no consideration of monitoring patient’s response to the medi-
cine in the traditional medicine; the physicians recommend a dosage based on the
patient’s condition, history and physician’s own past practice and evidence-based
research; however, the patient’s response to the medicine is not monitored, which
could be different for everyone due to their genetic, metabolic and other attributes.
Now in case the patient develops some reaction or side effect after taking a dose or
two, there is no monitoring and control to stop/alter the treatment right away. Hence,
a delay is naturally involved in the processes of diagnostics and treatment, as the
patients generally report after completing one failed cycle of medication. The situ-
ation might become critical if traditional medicine leads to adverse effects such as
toxicity for some patients. Moreover, it is also challenging to manage the long-term
chronic conditions by using traditional medicine.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 69
S. Siddiqui et al., Connected Health Insights for Sustainable Development,
https://doi.org/10.1007/978-3-031-81433-4_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-81433-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-81433-4_5#DOI

70 5 Personalized Medicine

5.2 How It Works?

The process of developing personalized medicine involves patients and their data is
continuously collected for feedback and adjustment. A typical cycle of personalized
medicine development and modification has been illustrated in Fig. 5.1. The first
step in the process of personalized medicine development is data collection from the
patient. The data about physiological parameters can be collected using wearable
sensors; however, more invasive methods are used for collecting DNA samples and
genetic information through blood, saliva and tissue samples. Moreover, genetic
testing is also done for identifying unique genetic variations and mutations that may
influence disease risk and drug response. Next, the obtained information is inte-
grated together; for example, the genetic information is integrated with the data
about previous diseases history, lifestyle and environmental factors. All of the avail-
able data is then assessed to develop a unique patient profile; this helps to identify
the prevailing risks for each patient based on their genetic makeup and other factors.
These predictions can be used for managing early interventions, such as suggesting
lifestyle changes or taking a certain vitamin. Since the treatment plans are made
highly tailored to an individual, the chances of side effects and treatment failure are
reduced significantly as compared to traditional medicine.

The next step is to continuously monitor the patient’s response to treatment
through regular follow-ups and biomarker analysis. As shown in Fig. 5.1, this moni-
toring helps to identify the impact of treatment plan on the patient. Finally, feedback
is generated and required improvement/modification is made in the treatment plan/
medicine development.

Data Data Analysis Personalized Feedback and
Integration and and Treatment Plan Continuous
Storage Interpretation Development Improvement

Patient Data Implementation
Collection of Treatment | Monitoring

Fig. 5.1 Process of personalized medicine development and implementation
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5.3 Factors Governing Personalized Medicine

There are several key factors that govern the successful development and implemen-
tation of personalized medicine. Some of these are personal, whereas others are
external such as cultural and environmental. Let’s briefly look at some of the most
crucial factors:

5.3.1 Genetic Makeup

Unique genetic code of every patient can significantly impact their response to the
medications. For example, Single nucleotide polymorphisms (SNPs) are common
genetic variations that usually affects drug metabolism, efficacy, and the risk of side
effects. Genetic variations can also affect the structure and function of drug targets
(e.g., receptors, enzymes), altering the drug’s effectiveness. Similarly, Copy Number
Variations (CNVs) can also influence gene expression and can contribute to differ-
ences in disease susceptibility and drug response. The genetic makeup interacts
with environmental factors which also influences the risk of diseases and outcomes
of treatments. For example, individuals with certain genetic profiles might be more
susceptible to environmental toxins, which can affect disease progression and
response to therapies.

In addition, some genetic variations increase the risk of side effects and reac-
tions. For example, variations in the HLA-B gene can predict severe hypersensitiv-
ity reactions to certain drugs, such as carbamazepine and abacavir. Testing for
genetic makeup also helps to identify the mutations responsible for hereditary dis-
eases such as those found in Huntington’s disease (HTT gene) and cystic fibrosis
(CFTR gene).

5.3.2 Medical History

Medical history plays a significant role to affect the process of medicine personal-
ization. Since each patient has a unique medical history, it is used for developing
customized treatment plans; for example, the medicines which have worked well in
the past may be continued with the patients, while those which have caused allergic
or other reactions could be avoided. The customized chronic disease management
plans can also be developed based on the knowledge about previous history of dia-
betes, asthma or hypertension. Furthermore, having continuous monitoring and his-
tory management, it becomes possible to identify the trends of chronic disease
prevention, which helps to modify the treatment plans in the correct direction. In
addition to having the disease history, knowledge about lifestyle factors such as
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exercise routines, substance use and diet also helps to develop customized treatment
and lifestyle recommendation plans.

Moreover, knowledge about patient’s family history is also critical for personal-
ized medicine. There are various diseases which are governed by the genetic predis-
positions including diabetes, heart diseases and cancer. If the automated system or
physicians know about the family history, the patients can easily be advised for
taking preventive measures, early interventions can also be planned. Similarly, rel-
evant genetic testing may be conducted for patients with unique family histories; for
example, individuals with a family history of breast or ovarian cancer might undergo
BRCAL1 and BRCAZ2 testing. Subsequently, the history also affects interpretation of
genetic tests and distinguishing between pathogenic variants and benign ones.

5.3.3 Lifestyle Factors

Lifestyle factors highly motivate the need and development of personalized medi-
cine, due to having a large influence of disease prevalence and medication effi-
ciency. First and foremost, varying dietary habits significantly influence the disease
risk, such as for diabetes and cardiovascular diseases. Similarly, fitness level and
exercise routines affect the health outcomes. The substance use also affects the dis-
ease risks and treatment response; moreover, stress, sleep patterns also impact men-
tal health. In addition to having an influence on the disease risk, activity level and
diet also affect the treatment response and effectiveness. Based on the assessment of
lifestyle factors, personalized medicine offers customized treatment strategies to
mostly deal with the chronic conditions like hypertension, diabetes, and obesity.

Personalized medicine addresses the needs of individual by developing the inter-
vention plans that align well with their lifestyle. For example, dietary recommenda-
tions and exercise plans are made based on an individual’s genetic predispositions
and lifestyle. Medicine dosages are adjusted to improve efficacy and reduce side
effects for each patient based on their unique profile. Targeted screening programs
are made using the risk profiles created after assessment of the patients’ lifestyle
data; this helps to achieve efficient risk assessment and ensure prevention and/or
early intervention. Even efficient behavioral interventions can be designed using
holistic data and medical history about each patient. Since the treatment plans are
developed according to the lifestyle, the adherence is usually higher as compared to
the conventional medication.

5.3.4 Environmental Influences

There are various environmental factors that encourage the development of person-
alized medicine as it could tailor the medication needs for individuals. The exposure
to certain types of environments can lead people to various serious diseases;
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therefore, knowing about the environmental risk factors for people can help to
develop preventive strategies and customized medicine. For example, air and water
pollution as well as soil contamination increase the risk of various diseases includ-
ing certain types of cancers and, cardiovascular and respiratory diseases. Similarly,
contaminants such as heavy metals and pesticides often present in water and soil
can also affect health negatively.

The environmental factors related to climate and weather also pose significant
risks for individuals, based on their unique vulnerabilities. Many of the environ-
mental factors vary geographically and seasonally, encouraging the use of personal-
ized medicine. Heat waves, extreme weather and exposure to allergens all can be
dealt by developing personalized prevention and treatment strategies. Another pre-
vailing issue of the present times is increased exposure of populations to natural,
medical and occupational radiations. Exposure to natural radioactive gas radon
increases the risk of lung cancer; similarly, people may be subject to high radiation
exposure due to their occupations or medical treatment. For example, the workforce
in certain factories/mines is exposed to numerous harmful chemicals and gases,
often leading to serious health risks. As a matter of fact, routine exposure to house-
hold chemicals such as plastics, cleaning agents can also affect health. In all such
cases, personalized monitoring is essential to ensure that the risks associated with
radiation can be minimized for everyone.

In addition to pollutants and radiation exposure, the socio-economic and cultural
factors also motivate the use of personalized medicine. Accessibility to healthcare
and healthy lifestyle facilities is largely governed by the socio-economic status of
people. Personalized medicine is based on the monitoring of these factors and offers
customized healthcare solutions. Particularly, access to and awareness about mental
health is very limited in the low-income groups and developing countries. The use
of personalized medicine and associated technologies of IoT and Al help to improve
the reach of mental healthcare. For example, online mental health assessment
through survey questionnaires, and mobile apps has become common with various
psychologists [1]. Affordable wearable devices are also playing a crucial role in
remote monitoring and management of physical and mental health. Based on the
data collected from patients and mobile apps, customized therapy sessions are con-
ducted that fit to the needs of patients coming from diverse backgrounds.

5.4 Deploying IoT, AI and DS

Numerous techniques from the domains of 10T, Al and DS have been deployed for
achieving the major goal of personalized medicine, i.e., to improve patient out-
comes by improving the healthcare service delivery. This section sheds light on
some of the emerging computing techniques, for their association with personalized
medicine.
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5.4.1 Wearable Devices

As previously discussed in Sect. 5.2, the first point of data collection for personal-
ized medicine is the wearable devices. These devices collect data about various
physiological parameters to facilitate continuous real-time tracking of patient’s
health state. Some of the major parameters that are being monitored using smart
watches, fitness trackers and wi-fi/Bluetooth enabled devices include blood pres-
sure, pulse rate, blood sugar, physical activity level, body temperature and others.
Also, with the advancements in material sciences, the flexibility and stretchability
of wearable devices/patches has increased. There are various categories of wearable
sensors, as illustrated in Fig. 5.2.

The most common categories of wearable sensors include biometric, motion and
activity, environmental, chemical/biochemical, respiratory, neurological, optical,
pressure & force, temperature & humidity and multi-modal sensors. Let’s briefly
define each category below:

Fig. 5.2 Categories of wearable sensors
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* From the biometric category, heart rate monitors, measure the heart rate using
electrical or optical sensors. Electrocardiogram (ECG) sensors detect cardiac
conditions such as arrhythmias by recording the electric activity. Blood Oxygen
Sensors (SpO,) sensors use pulse oximetry technique to measure blood oxygen
levels. Blood Pressure Sensors use pressure-based or optical methods for track-
ing systolic and diastolic blood pressure. Temperature sensors monitor the body
temperature either to detect fever or to detect fertility status by monitoring
changes in the basal temperature.

* From the category of motion and activity sensors, accelerometers detect move-
ment, activity levels and orientation by measuring acceleration. Gyroscopes pro-
vide data about orientation and balance by tracking rotational movements.
Magnetometers are also used to detect orientation and direction; these are often
used in combination with gyroscopes and accelerometers for having more pre-
cise and accurate information about motion.

* From environmental sensors category, ambient light sensors measure and help to
regulate light intensity with a focus on regulating cardia rhythms and improving
sleep quality. Ultraviolet (UV) sensors monitor exposure to UV light for preven-
tion of skin damage. Similarly, air quality sensors detect allergens and pollutants
present in the environment to guide the users about prevention strategies; these
sensors often play a crucial role for managing diseases like asthma and develop-
ing customized treatment plans.

* From chemical and biochemical sensors category, Glucose sensors are often
used for diabetic patients for continuous and/or remote monitoring of glucose
levels. Lactate sensors are used to measure fatigue by detecting the levels of
Lactate in sweat. Electrolyte sensors measure the concentration of various elec-
trolytes in blood or sweat; they mostly detect Chloride, Sodium and Potassium.
Similarly, hydration sensors also detect the level of body hydration by measuring
skin impedance or sweat composition.

» From the category of respiratory sensors, breath sensors use wearable patches or
chest straps to measure the breathing rate and patterns. Capnography Sensors
measure the efficiency of ventilation by measuring the concentration of carbon
dioxide in exhaled air.

* From the neurological sensors category, Electroencephalogram (EEG) sensors
record electrical activity of brain and, are often used in neurological monitoring
and sleep study. Electromyography (EMG) sensors, on the other hand monitor
muscle activity by detecting the electrical energy generated by muscle fibers.

* From the optical sensors category, Photoplethysmography (PPG) sensors mea-
sure changes in blood volume by using light; these are used for the applications
of SPO, and heart rate monitoring. Spectroscopy sensors measure various physi-
ological and biochemical properties by analyzing light absorption in tissues.

* There are various other sensors commonly used for the wearable applications:
force sensors are used in posture monitoring and gait analysis as they could mea-
sure force exerted on a surface. Pressure sensors detect pressure changes and are
used for detecting body position and respiratory functions. Humidity sensors can
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detect the moisture level of human skin which could aid in the applications of
comfort monitoring or hydration assessment.

* The above sensors may also be used in combination to achieve some advanced
goal which might not be possible using a single sensor; a concept referred as
multi-modal sensors. For example, health and activity monitoring could be done
more efficiently by integrating gyroscope, accelerometer and heart rate sensor in
a combined system.

Most of the wearable devices collect the required vital parameters continuously,
however, they may also be configured to collect data at a pre-defined interval. In
either case, the prevention and timely management of diseases become possible as
compared to if the vitals are only monitored on the hospital visits. Therefore, con-
tinuous and remote health monitoring that is achieved by using wearable devices is
one of the major driving forces behind the development of personalized medicine.

From the perspective of personalized medicine, the smart phones and wearable
devices collect data that is being used for novel applications. For example, as dis-
cussed above, sleep tracking applications are being used in conjunction with smart
watches to identify the sleep patterns; this information is then used for developing
sleep-improving strategies and therapies for the patients. Previously, the patients
had to stay at hospital facilities to get their sleep patterns studied, but now similar
study has become possible from the comfort of patients’ homes. Another common
example is diabetes management, where the patients can use Bluetooth enabled
glucose monitors or glucose monitoring patches to collect their glucose level infor-
mation; this information can then be fed into simple IoT application, or into an
advance Al based application, where predictions can be made for the next insulin
dosage or diet plans. Even for the general population without having risk of any
serious disease, the wearable devices may play a significant role by collecting data
about their physical fitness and activity levels. This information is then used by the
mobile apps and/or remote fitness experts to develop the customized exercise and
diet plans. Hence, the wearable devices not only help to provide the customized
diagnostics and diseases management opportunity, but also offer a tailored fitness
management and disease prevention plan.

In addition to wearables that can be worn by the patients as a routine practice,
there are also more advanced applications that require the patients to wear an IoT/
Al enabled device while being physically present at a healthcare facility. One such
example is the development of wearable device that measures ketone bodies [2],
which play a crucial role in energy metabolism; these bodies are produced in the
liver from fatty acids and various tissues/organs used them in the shortage of glu-
cose. Particularly for diabetes patients, it is important to ensure that the level of
ketone bodies remain satisfactory as their absence could affect the performance of
brain/heart and other crucial organs. Therefore, electrochemical sensing platforms
in the form of wearable devices have been developed to sense the presence of essen-
tial ketone bodies such as p-hydroxybutyrate (BHB).

Wearable chemical sensors have also been gaining popularity due to their poten-
tial of detecting biomarkers from human sweat, tears and saliva [3]. As compared to
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blood, the bio-fluid such as sweat is easier to acquire in order to measure proteins,
hormones and metabolites. The mechanisms of field-effect transistor (FET), enzy-
matic recognition, frequency shift and ion-selective electrode (ISE) are often used
for translating chemical information into electrical signals. The technologies mainly
used for developing integrated wearable chemical sensors include flexible microflu-
idics and tattoo. Interestingly the chemical sensors can even be disposable, which
offer an affordable and customizable solution for collecting data to be fed into per-
sonalized health systems. In addition to monitoring for bio-markers, wearable
chemical sensors can also detect presence of pollutants in the environment.

Therapeutic Drug Monitoring (TDM) is another clinical practice where wearable
sensing can offer guidance about the level of drugs available within the bloodstream
of patients at fixed intervals [4]. The information about drug concentration is then
used to adjust the subsequent drug dosages. Conventionally, TDM was done using
chromatographic methods coupled with special detectors or immunoassays; how-
ever, these techniques suffered from the issues such as high instrumentation cost,
lack of standardization and long turn-around time. Advancements in sensing and
wearable technologies are expected to revolutionize this field of TDM by providing
a quick and timely insight about the drug concentration in patient’s bloodstream or
other body fluids.

5.4.2 Smart Home Healthcare Solutions

Smart home offers a range of unique and customized services in addition to mere
automation and control of home appliance. Ambient Assisted Living (AAL) is an
emerging concept focused on providing independence to the elderly or physically
challenged people living alone. AAL is supported mainly by wearables, biometric
sensors, ambient environmental sensors, motion and activity sensors, telehealth
platforms, mobile apps, smart home assistants/hubs, emergency response systems,
and the technologies of IoT, Al, ML, big data analytics, cloud computing and
Augmented and Virtual Reality (AR & VR). The core computing/communication
technologies used by smart home, with a focus on healthcare service delivery are
listed in Fig. 5.3: All these components come together for continuous health moni-
toring, chronic disease management and emergency alerts generation.

A typical smart home equipped with healthcare functionality is illustrated in
Fig. 5.4. Fundamentally, a smart home collects data from wearable and implanted
sensors as well as from ambient environmental sensors such as temperature, humid-
ity and air quality. High-resolution webcams form an essential component of the
home healthcare solutions as they not only monitor the presence of person in a
certain location, but also detects situations such as fall; webcams integrated with
advanced Al solutions can also detect the health conditions such as heart attacks or
seizures. Al algorithms continuously analyze the footage received from smart
home’s webcams and detect abnormal postures, behaviors or movements such as
facial twitching and rapid eye blinking which are often associated with seizures or
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Fig. 5.3 Core technologies embedded with smart homes for healthcare

Fig. 5.4 Healthcare enabled smart home

heart attacks. ML models, furthermore, are trained on large seizures and cardiac
diseases datasets to recognize the seizures which may occur in a smart home
resident.

Digital Twins (DTs) are also being used to support the deployment of smart
home as a healthcare solution. DT refers to a real-time physical replica of any physi-
cal object that is often used for simulation and analysis. DT is modeled as a smart
home equipped with healthcare functionalities, focused on areas such as healthcare
prediction, graphical monitoring and intelligent control [5]. The patients’ vital data
from the smart home can be simulated and fed into specialized ML algorithms for
applications like fall detection, cardiovascular disease identification etc. As
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compared to other simulation systems, DT offers more varied datasets that reduce
disparity between real-world and training data.

5.4.3 Smartphone Based Immunosensors

Conventionally, immunosensors have been known as solid-state biosensors that are
used for measuring antibodies generated by certain bacteria. The major categories
of immunosensors include electrochemical, microgravimetric and optical each used
for detecting and quantifying specific antigens or antibodies in various samples with
high sensitivity and specificity. Electrochemical immunosensors measure changes
in electrical properties upon antigen-antibody binding, providing rapid and precise
results. Microgravimetric immunosensors, such as quartz crystal microbalance
(QCM) sensors, detect mass changes on a sensor surface due to antigen-antibody
interactions, making them useful for real-time monitoring of binding events. Optical
immunosensors, including surface plasmon resonance (SPR) and fluorescence-
based sensors, rely on changes in light properties, such as intensity or wavelength,
upon antigen-antibody binding, offering highly sensitive and label-free detection
methods.

With the increasing advancements and application scope of smartphones, smart-
phone based immunosensors have been developed. These have been used for col-
lecting samples for quick on-site screening of various bio-markers in an efficient
and cost-effective way [6]. As smartphones are used by majority of the global popu-
lation today, their use for clinical purposes offers a semi-automated method that can
serve with a minimal intervention; users can perform common diagnostic tests from
the comfort of their homes, which further enhances the scope of remote monitoring
(which was earlier relying on data collected merely from the wearable sensors). For
example, a smartphone-based device using advanced methods of magnetoelastic
immuno-sensing has been developed to measure C-Reaction protein (CRP), which
is a marker of nonspecific immunity for vital signs and wound assessment [7].
Conventionally, measuring CRP has been a complex process which required
hospital-based instruments and high-cost reagents; now, the smartphone can be
combined with system-on-chip (SoC) hardware architecture for performing the
same test.

5.4.4 Artificial Intelligence for Cancer Medication

Advancements in Al and their integration with smart health systems have enhanced
the diagnostic accuracy and drug development efficiency. Al speeds up the pro-
cesses of customized vaccine and medication development for patients based on
their continuous monitoring and genetic analysis. Particularly for cancer, personal-
ized medicine appears as a game changer as Al algorithms offers a considerable
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opportunity for early detection and customized therapies for targeting specific
genetic mutations. Today, various Al techniques are being used for diagnosing,
treating cancers; some of them are listed in Table 5.1:

The major motivation for using Al for cancer medication is highly heterogenous
effects of surgical methods or drugs used in patients; the patients with same tumor
may have different curative effects after undergoing similar treatment. Therefore,
there is a crucial need of assessing the impact of medication on tumors of specific
patients, such as changes in their proteins, genes and cancer cell phenotypes. With
the help of Al and big data, it becomes possible to identify the hidden patterns in
enormous amount of data. For example, detailed insights about digital pathological
images, radiomics, proteomics, transcriptomics and genomics can be mined using
machine and deep learning algorithms [8]. Moreover, new biomarkers can also be
identified from the bulky data for assisting the processes of tumor screening, detec-
tion, diagnosis, treatment as well as prediction of prognosis.

5.4.5 Healthcare Recommender Systems (HRSs)

HRSs are specialized information systems designed to assist patients, healthcare
providers, and other stakeholders in making informed health-related decisions.
These systems use technologies of AI, ML and data analytics to identify the health
patterns of users and make the required recommendations about medication dos-
ages, diet plans, exercise routines, diagnostic tests, physician appointments etc. A
typical recommender system learns from the user behavior and past health history
and recommends the best options with a goal of optimizing the patient outcomes.
The use of advanced Al algorithms improves the prediction and hence, the recom-
mendation accuracy; the Al techniques used for healthcare recommender system
include deep neural networks, active learning, transfer learning, reinforcement
learning and fuzzy logic and rules.

Despite having numerous advantages of deploying Al algorithms for personal-
ized recommender systems, there are also some challenges that incur while using
them. First, data sparsity often arises due to the users only providing feedback about
limited items; this could result in the recommender system offering unreasonable
recommendations to the users who had not provided any feedback [9]. The issue of
data sparsity can be solved by relying on the social connections of users and draw-
ing inferences from the feedback provided by them. Second, diversity may occur if
the recommender system tends to recommend the items which are either way too
similar to the users’ preferences or are very different from them. Clearly, in both of
these situations, the recommender system might leave some systems which it would
have recommended in case it had not considered the user preferences. The tech-
nique of linear time closed itemset miner (LCM) is used to increase the diversity of
recommender system by identifying the frequent item sets. Third major challenge is
known as cold start: it often happens with both new or existing users, when the sys-
tem does not find enough metadata. For example, when a new user joins and the
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Table 5.1 Key Al algorithms used for cancer diagnosis and treatment

S.

no.

1

10

11

12

13

14

19

20

21

22
23

Al algorithm
Convolutional Neural
Networks (CNNSs)

Support Vector Machines
(SVMs)

Random Forest
Deep Learning

Natural Language
Processing (NLP)

Artificial Neural
Networks (ANNs)

K-nearest neighbors
(KNN)

Decision Trees

Genetic Algorithms
Bayesian Networks

Gradient Boosting
Machines (GBM)

Long Short-Term Memory
(LSTM)

Principal Component
Analysis (PCA)

Fuzzy Logic

Clustering Algorithms
(e.g., K-means)

Markov Models
Ensemble Learning (e.g.,
AdaBoost)

Deep Belief Networks
Reinforcement Learning
Autoencoders

Logistic Regression

Naive Bayes
Survival Analysis

Purpose

Image analysis for cancer detection in medical imaging.
Classification of cancer types based on biomarkers.

Feature selection and prediction of cancer outcomes.
Complex data analysis for personalized cancer treatment.

Analysis of clinical notes and research data for cancer
research and treatment.

Pattern recognition and data mining in cancer research.

Classification of cancer types based on similarity to known
cases.

Interpretation of complex datasets to guide cancer treatment
decisions.

Optimization of cancer treatment plans based on genetic data.

Probabilistic modeling of cancer risk factors and treatment
outcomes.

Ensemble learning for predicting cancer prognosis and
treatment response.

Deep learning model for analyzing sequential medical data in
cancer progression.

Dimensionality reduction technique to identify key features
and patterns in cancer datasets.

Handling uncertainty in medical data for cancer diagnosis and
treatment decision-making.

Grouping similar patient profiles to personalize cancer
treatment plans.

Analyzing sequential data to predict cancer progression and
outcomes.

Combining multiple algorithms to improve accuracy in cancer
classification and prediction tasks.

Unsupervised learning for feature extraction and
representation in cancer research.

Optimizing treatment strategies over time based on patient
responses and outcomes.

Unsupervised learning for dimensionality reduction and
feature extraction in cancer genomics and imaging data.

Modeling the probability of cancer occurrence based on risk
factors.

Probability-based classification for cancer subtype prediction.
Modeling time-to-event outcomes in cancer prognosis and
treatment planning.

(continued)
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Table 5.1 (continued)

S.

no.

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Al algorithm

Hidden Markov Models
(HMMs)

Gaussian Processes

Radial Basis Function
Networks (RBFNs)

Metaheuristic Algorithms

Swarm Intelligence
Algorithms

Anomaly Detection
Algorithms

Recurrent Neural
Networks (RNNSs)
Transfer Learning
Multi-task Learning
Graph Neural Networks
Deep Reinforcement
Learning
Self-organizing Maps
(SOMs)

Bayesian Optimization
Elastic Net

Manifold Learning

Ordinal Regression

5 Personalized Medicine

Purpose

Analyzing temporal patterns in cancer progression and
treatment response.

Bayesian approach for modeling uncertainty and predicting
cancer outcomes based on prior data.

Non-linear data modeling for cancer diagnosis based on
features.

Optimization techniques for personalized cancer treatment
planning based on patient-specific data.

Mimicking natural swarm behavior to optimize cancer
treatment strategies.

Identifying unusual patterns in cancer data that may indicate
novel or rare cases requiring specialized treatment
approaches.

Analyzing sequential data such as time-series patient data for
cancer progression monitoring.

Utilizing pre-trained models to adapt knowledge from one
cancer type to another with limited data.

Simultaneously learning multiple related tasks in cancer
research and treatment, enhancing prediction accuracy.
Analyzing relationships and interactions between genes or
proteins in cancer molecular networks.

Optimizing cancer treatment plans dynamically based on
patient responses and clinical outcomes over time.
Unsupervised learning for clustering and visualizing complex
cancer datasets.

Efficiently optimizing hyperparameters in machine learning
models used for cancer prediction and treatment.
Combining L1 and L2 regularization techniques for feature
selection in cancer genomics and biomarker identification.
Dimensionality reduction techniques for visualizing high-
dimensional cancer data in lower-dimensional spaces.
Predicting ordinal outcomes in cancer prognosis, such as
stages or grades, based on patient data and biomarkers.

recommender system does not have any user preference data to offer recommenda-
tions, the cold start problem arises. Naive Bayes techniques are usually implemented
to deal with the cold start where items can be estimated without having the previous
history. Finally, scalability has also become a challenge with the modern recom-
mender systems as they are expected to process lots of data and generate quick
recommendations. One-dimensionality reduction techniques are used to deal with
scalability by eliminating data sparsity and dividing data into smaller chunks for
quick processing.
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5.4.6 Quantum Computing for Sequencing Bioinformatics

Quantum computing is the futuristic technology which is also expected to play a
major role in personalized medicine due to its capability of examining geonomics
data at a very high speed. Although Bioinformatics technology has matured enough
to apply computational tools for analyzing the biological data, these tools often lack
capacity to deal with the complexity and volume of biological data. Therefore,
when Al and cloud computing will be combined with quantum computing, it would
become possible to develop highly scalable health solutions focused on sequencing
(a process to determine the order of nucleotides in DNA or RNA) [10]. First, quan-
tum computing would allow solving complex problems involving large datasets and
algorithms; secondly, most of the tasks related to genome sequencing such as
genome assembly, alignment, and motif finding requires optimization, which is a
key feature of quantum computing; for example, the algorithms Grover’s and Shor’s
would significantly increase the processing speed [11].

When used in sequencing, quantum computing can support various applications.
It could optimize the process of genome assembly, where short reads are assembled
into complete genomes. The time required for this process with traditional comput-
ing is in months and days, which could be reduced to hours through quantum com-
puting methods. Similarly, another critical task in bioinformatics is aligning
sequences to reference genomes; quantum computation can also offer more efficient
and faster alignment algorithms. Quantum computing can also influence the area of
protein folding, which requires the understanding of how proteins fold based on
sequence data; accurate predicting the protein folding can lead to advances in drug
discovery and development. Furthermore, quantum computing could also enhance
the complex statistical models required for Identifying genetic variants from
sequencing data; this could lead to Identifying genetic variants from sequenc-
ing data.

5.4.7 Gene Sequencing and Editing

Next-Generation Sequencing (NGS) technologies have been used for analyzing
genomes of patients. Various genetic variations and mutations can be identified
through NGS, such as SNPs and CNVs. Genome-Wide Association Studies (GWAS)
is another technique that has been used for identifying associations between genetic
variations and specific diseases by scanning the genomes of multiple patients, gen-
erating large datasets; it helps to identify the genetic factors contributing to the risk
of each disease and response to each drug. Moreover, another gene-editing technol-
ogy commonly used is CRISPR-Cas9 that can correct the genetic mutations at
their source.
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5.5 Ethical Challenges

Deploying the cutting-edge computing technologies for personalized medicine cre-
ate many ethical challenges. The efficiency of data analytics and Al techniques
totally depends on the availability of data; lack of data quality or availability for
specific population sector may result in inaccurate analysis or recommendations,
even for the personalized systems. In addition to data, it is also a crucial task to
select the best machine learning algorithm for each healthcare problem; unlike other
domains, the choice of algorithm would be of utmost importance for the healthcare
sector, as it could risk the entire diagnostic and treatment plan. The diversity of
health-related problems also creates challenges for the selection of best algorithm;
here, it is to be noted that the algorithm that works well for one patient may not offer
an optimal performance for another patient with a similar disease; as previously
discussed, this mainly happens due to the unique genetic make-up and other charac-
teristics of patients.

Similarly, there is an associated lack of evidence and reproducibility for every
machine learning model which could also affect the efficiency of healthcare systems
relying on these technologies. There are also issues related to the lack of under-
standing for Al model process and prediction; the computer scientists and medical
practitioners need to work in close collaboration for the sake of efficient develop-
ment/implementation of Al algorithm for a specific healthcare problem. Moreover,
developing the accountability framework/guidelines regarding the deployment and
continued use of computing systems in the domain of personalized systems is also
a challenge.

The increased reliance on the computing systems and devices (such as wear-
ables) is expected to significantly impact the physician-patient relationship and
interaction, which may reduce the human-level emotional understanding and empa-
thy during the treatment/therapy process. Moreover, there are major privacy chal-
lenges associated with the creation, sharing and distribution of patient data. There
are various possibilities when it comes to access and rights over patient data; for
example, the users not actually authorized might have access to patient data, whereas
the stakeholders which should actually be given access may only have a partial
access. Clearly, for personalized medicine, there is a lot of data to be shared includ-
ing patients’ family and medical history and the issues such as data ownership and
patient consent for data sharing or analysis have not yet been fully addressed; the
privacy concerns, therefore, make one of the major reasons why these technologies
are not largely adopted despite having a proven socio-economic and health benefit.
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Chapter 6 ®
Revolutionizing Digital Imaging il

6.1 Evolution of Digital Imaging

Medical imaging is a means of visualizing the interior of a body for clinical analysis
and medical intervention. Many imaging modalities were developed by the start of
the digital era, all with different strengths and weaknesses [1]. Plain film radiogra-
phy represented an inexpensive and available first-line technique useful in trauma
and joint diseases where high spatial resolution exists, but it had poor soft-tissue
contrast. Fluoroscopy, the first ionizing radiation technique, enabled live imaging
useful for diagnostic and procedural work but involved a large amount of radiation
exposure and poor soft tissue detail. Computed Tomography (CT) provided detailed
cross-sectional images and was relatively inexpensive but required high dosages of
radiation, had poor spatial resolution, and was time-consuming. Nuclear medicine
provided important functional information using radioactive material but involved
radiation exposure, patient preparation, and poor spatial resolution. Though
Magnetic Resonance Imaging [MRI] held an unbeatable position regarding soft tis-
sue contrast without ionizing radiation, it was time-consuming, less available, and it
required patient cooperation. Angiography provided highly detailed vascular images
but was invasive, with risks from contrast agents in the procedure. Interventional
radiology reduced surgical risks and costs by imaging guidance for procedures but
required specialized equipment and expertise [2].

Modern digital imaging techniques have contributed much to completely revolu-
tionize medical imaging for more accurate diagnosis and planning of treatment.
Some key advances include digital X-ray detectors, such as flat panel detectors,
considerably improved the image quality with a reduced radiation exposure in com-
parison to film-screen radiography. Advances in computed tomography scanners
achieved higher resolution images acquired within faster times and with a lower
radiation dose. Improvements in magnet strength, gradient performance, and the
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design of pulse sequences have improved the quality of MRI images, enabling bet-
ter tissue contrast to be obtained with faster scanning. In ultrasound imaging, digital
beamforming and improved transducer technology have yielded higher-resolution
images with better tissue penetration. Specifically, digital mammography has ben-
efited from the introduction of full-field digital mammography systems that provide
better contrast, image quality, and reduced radiation exposure compared to screen-
film mammography. The advances in these digital imaging modalities have there-
fore enabled the development of computer-aided detection systems, which would
aid radiologists in the detection and diagnosis of diseases. Digital images can also
be stored, retrieved, and transmitted easily to enable telemedicine and remote diag-
nosis [3, 4].

Moreover, growth in computational powers has brought in its wake burgeoning
image processing algorithms. Machine Learning (ML), Deep Learning (DL), and
data science are major drivers of this revolution as they have stormed the field of
medical imaging. Accurate interpretation through ML and DL algorithms of a
myriad of medical pictures aids timely diagnosis, thus personalized disease-
tailored treatment, for improved patient outcome. At the same time, data science
uses these huge volumes of data produced as by-products from medical imaging
to display deep insights into trends in diseases, treatment outcomes, and patient
results [5].

6.2 Role of Machine and Deep Learning in Digital Imaging

The advent of ML and DL has revolutionized the field of digital imaging. These
technologies have enabled unprecedented advancements in various applications,
including image classification, segmentation, object detection, in medical imaging.
This chapter explores the fundamental principles and major contributions of ML
and DL techniques in digital imaging, emphasizing key architectures, methodolo-
gies, and their practical implications.

6.2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) [6], are the cornerstone of many deep
learning applications in digital imaging. Their design inherently enables automatic
and adaptive learning of spatial hierarchies of features from the input images, so
they are very suitable for image classification, segmentation, and object detection
tasks. The taxonomy for a better understanding is presented in Fig. 6.1.
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Fig. 6.1 Taxonomy of CNN models used in digital imaging

6.2.2 Image Classification

Image classification involves categorizing images into predefined classes [7].
Several CNN architectures have been pivotal in advancing image classification:

AlexNet

AlexNet [8], was a groundbreaking model that won the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC). There are eight layers in the model:
five convolutional layers and three fully connected layers. Major innovations
taken out from the AlexNet model are concerned with ReLU activation for add-
ing non-linearity, dropout to avoid overfitting, and efficient use of GPUs during
the training of large datasets.
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Trained for large datasets of medical images, AlexNet can tell the presence of
cancerous tissues represented on mammograms, MRI scans, and histopathology
slides. Convolutional layers will help AlexNet retrieve features distinguishing
normal from abnormal tissues, all of which can contribute to early cancer diag-
nosis, for example, breast, lung, and skin cancer.

Subsequently, AlexNet has been applied to detecting diabetic retinopathy and
age-related macular degeneration from retinal images. It supports timely diagno-
sis and treatment by recognizing subtle changes in retinal structures.

Furthermore, AlexNet can classify various organs/tissues from CT and MRI
scans, thereby helping in the automated radiological image interpretation pro-
cess. It has also been trained to classify diseases from chest X-rays, identifying
conditions such as pneumonia, tuberculosis, and lately, COVID-19, thereby
helping radiologists to prioritize cases.

VGGNet

VGGNet [9], proposed by the Visual Geometry Group at the University of
Oxford, is known for its simplicity and depth. The most noted version would be
VGG-16, which has 13 convolutional layers and 3 fully connected layers.
VGGNet uses small 3 x 3 filters and max-pooling layers with consistency, which
is an excellent balance between depth and computational efficiency. With the
deep architecture of VGGNet, it can extract intrinsic features from medical
images; therefore, disease classification using these images goes very well with
this approach.

VGGNet can classify histopathology images to help distinguish between benign
and malignant tumors. It is deep, allowing it to note lines of very fine differences
in tissue structure indicative of cancer. VGGNet also evaluates chest X-rays and
CT scans for illnesses like pneumonia, tuberculosis, and COVID-19. With its
high accuracy, it supports radiologists in early diagnosis.

GoogLeNet (Inception)

Fang et al. proposed GoogLeNet [10] also known as an Inception network, which
majorly differs in the use of Inception modules. This module makes it use mul-
tiple convolution filters in parallel to capture different levels of abstraction. Use
of 1 x 1 convolutions reduces dimensionality, hence computational cost, there-
fore is economical. This also gives the needed flexibility to GoogLeNet in medi-
cal imaging, where the potential ability to capture multiscale features becomes
highly significant.

The Inception modules strongly empower GoogLeNet, enabling the extraction of
features in one pass at multiple scales. This is a very useful characteristic of
medical imaging, since different structures, such as tumors or even organs like
the brain, liver, and lungs, are basically of different sizes and shapes. It makes the
network recognize tumors of various sizes and shapes within the medical images
like MRI and CT scans. Itis able to process at different scales, making GoogLeNet
more effective at lesion identification and analysis within the dermatological
images, hence more accurate at diagnosing conditions relating to the skin.
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* Low computational load makes GoogLeNet feasible for deployment in clinical
settings where fast processing times are a requirement for real-time diagnostics.
Deep architecture and the use of Inception modules utilize the high accuracy and
robustness of GoogLeNet in distinguishing different diseases, such as types of
cancers or lung conditions, from X-rays and CT scans. The model supports
automated interpretation and diagnosis by accurately classifying different organs
and tissues from radiological images.

* ResNet

» Residual Networks, or ResNet [11]. This architecture makes it possible to train
deep networks due to residual blocks with skip connections that help maintain
gradient flow during backpropagation, hence much deeper—ResNet-50,
ResNet-101—without causing degradation. The implementation has specific
advantages for medical image classification.

* The main innovation of ResNet was that it linked residual learning with the con-
cept of shortcut connections, which enabled it to train much more depth without
suffering the vanishing gradient problem. Since deeper networks can extract
more complex or abstract features from medical images, this will lead to more
accurate classification. For instance, in the case of histopathological image anal-
ysis, deeper layers can capture very small variations in cellular structure indica-
tive of different cancers. By residual connections, deeper architectures are less
prone to overfitting, a primordial consideration in most medical imaging applica-
tions where the amount of labeled data may be scarce.

* ResNet applies to multi-class classification problems within medical imaging,
specifically the identification of different types of pneumonia, lung cancer stages,
and brain tumor types from a CT or MRI scan. Most of the medical images are
noisy and contain several artifacts. Residual connections add depth to ResNet
and enable the model to emphasize relevant features and reduce false positives,
thereby being more robust.

* Medical image tasks can be performed using variants of ResNets tailored to dif-
ferent applications, such as ResNet-50 and ResNet-101. In this way, balance
between computational efficiency and performance can be attained. It can be
combined with other models like U-Net for segmentation, further enhancing
results for tasks which require both classification and localization of medical
features.

* DenseNet

* DenseNet stands for Densely Connected Convolutional Networks [12], connects
every layer to all other layers through feed-forward. The dense connectivity does
not lose any information during forward diffusion from one layer to another; on
the contrary, it enhances feature reusage, reducing the total number of parame-
ters required compared to traditional networks. This unique approach provides
several advantages for medical imaging tasks.

* DenseNet connects each layer to every other layer in a feed-forward way: each
layer takes all of the feature maps computed up to that point as input. This archi-
tecture makes sure that the features computed in the early layers are directly
available to all the later layers during feature learning. Similar to ResNet,
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DenseNet avoids the vanishing gradient problem but does so by maximizing
information flow between layers, thus being enormously successful in training
very deep networks.

* It has more parameter efficiency due to the dense connections within this net-
work. By encouraging feature reuse, DenseNet achieves comparable or better
performance with fewer parameters than other deep networks, which is very vital
in medical imaging, where computational resources can sometimes be limited.

* DenseNet does well on fine-grained image classification tasks, such as the differ-
ent stages of diseases picked out from imaging data and the stages of diabetic
retinopathy from retinal images. Spatial feature learning is further enhanced by
dense connections, which are advantageously applied in segmentation tasks like
delineating tumors in MRI or segmenting organs in CT scans.

 EfficientNet

» EfficientNet [13], employs compound scaling to balance network depth, width,
and resolution. This balances the scaling approach with the highly efficient
architecture of EfficientNet, which is particularly useful for tasks in medical
imaging. It attains high accuracy with fewer parameters, hence appropriate for
mobile and edge devices. This method is pushing forward new state-of-the-art
benchmarks on image classification tasks based on performance and efficiency.

 EfficientNet scales depth, width, and resolution uniformly by using a compound
coefficient, which is the design obtained by balancing the three magic variables
through the technique of compound scaling. This ensures a proper use of the
parameters and computational resources instead of relatively arbitrary scaling of
architectures. The balanced approach thus leads to state-of-the-art performance
in a list of various image classification benchmarks, which does channel to the
medical imaging domain with high accuracy.

 EfficientNet has been proven to be more accurate in image classification, which
is a big deal in medical applications, where the smallest detail can affect the life
of a patient. And researchers/developers can select different model scales (e.g.,
EfficientNet-BO to EfficientNet-B7) according to the specific requirements of
medical imaging while reaching a good trade-off between speed and accuracy.
The efficient architecture of this model enables it to be deployed in edge devices,
under such a setup that makes it feasible to be used in point-of-care settings or
very remote locations.

6.2.3 Image Segmentation

Image segmentation divides an image into meaningful segments, often used to iden-
tify objects or regions of interest. Accurate segmentation of medical images is
essential for tasks such as identifying tumor boundaries, delineating anatomical
structures, and guiding surgical procedures [14]. This section explores how advanced
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deep learning models, specifically U-Net, SegNet, Fully Convolutional Networks
(FCNs), Mask R-CNN, DeepLab, and PSPNet (Pyramid Scene Parsing Network),
contribute to the field of medical image segmentation.

U-Net

U-Net [15] is widely used in biomedical image segmentation by using an
encoder-decoder architecture along with skip connections that merge the high-
resolution features of the encoder with up sampled features of the decoder for
location accuracy. It excels in tasks where exact localization is required, such as
the segmentation of tumors from MRI, extraction of organs from CT images, and
cell boundaries from microscopy images. Skip connections between encoder and
decoder conserve spatial information and hence deliver accurate segmentations.
U-Net works very well on a limited amount of annotated training data, which
happens to be quite common in medical imaging.

SegNet

SegNet [16] which is an encoder-decoder network for pixel-wise image segmen-
tation. The encoder is what makes up the convolutional layers, while the decoder
utilizes corresponding pooling indices from the encoder before up sampling the
same. Thus, SegNet remains very useful for real-time applications such as intra-
operative image analysis and segmentation of large datasets like whole-slide his-
topathology images. Using pooling indices can reduce the number of parameters
and, more importantly, the computational cost; hence SegNet is very suitable for
real-time processing. It is also good at handling changes in input data, a very
important point in medical imaging where the quality of imagery may be very
different from one image to another.

Fully Convolutional Networks (FCNs)

FCNs [17] replace fully connected layers with convolutional layers, which makes
the network capable of processing images of any size and returning a segmenta-
tion map. They are able to capture spatial hierarchies efficiently and turn out to
be very basics in many segmentation tasks. They have applications for organ
segmentation of CT and MRI scans, detection of brain lesions, and segmentation
of retinal vessels in fundus images. FCNs enable end-to-end trainability and
inference, greatly simplifying the segmentation pipeline. FCNs can exploit and
generalize quite a good number of medical imaging tasks by incorporating
domain-specific modifications.

Mask R-CNN

Mask R-CNN [18] are extensions of Faster R-CNN that append another branch
to predict segmentation masks on each Rol. In view of this, the architecture is
very outstanding for tasks related to object detection and segmentation. Mask
R-CNN is especially good in situations where instance segmentation should be
done as different instances include the case of individual cells in microscopy
images or segmenting multiple tumors in radiology scans and sometimes even
segmenting/delineating overlapping anatomical structures. Especially in applica-
tions where differentiation among individual objects is most needed, the instance
segmentation ability gives it high value. Mask R-CNN provides fine details of
segmentation masks, thereby increasing the accuracy in medical image analysis.
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e DeepLab

* DeepLab [19], uses atrous (or dilated) convolutions to encode multiscale context
and Conditional Random Fields for accurate delineation of boundaries. Further
variants, such as DeepLabv3+, still improve the accuracy in segmentation.
DeepLab has applications for segmenting complex structures from medical
images, like the brain tissues from MRI, lung fields in chest X-rays, and patho-
logical regions from histopathology images. Thus, atrous convolutions combined
with ASPP allow DeepLab to encode fine details and broader contextual infor-
mation. The architecture of DeepLab is flexibly adaptable to many segmentation
tasks, making it a flexible tool within medical imaging.

* SPNet (Pyramid Scene Parsing Network)

* PSPNet [20] uses a pyramid pooling module that recovered the global context
information in different scales, improving the segmentation of scenes that have
complex structures. PSPNet can be used for segmentation of large anatomical
structures and modeling of spatial relations between different regions in medical
images, like whole-body MRI segmentation and delineation of organs in CT
images. Another key component of PSPNet is the pyramid pooling module,
which allows the network to capture local and global context and, therefore, help
to improve the segmentation accuracy in complex scenes. It has leading perfor-
mance on various segmentation benchmarks, making it a reliable choice for
medical image segmentation tasks.

6.2.4 Object Detection

Object detection in medical imaging is a critical task for the identification and local-
ization of regions of interest within medical images such as X-rays, CT scans, and
MRIs. Diagnosis of diseases, planning of treatments, and follow-up on progress rely
on this process. Traditional methods almost always rest on manual inspection by
radiologists, which can be time-consuming and prone to human error. Object detec-
tion systems have been enabled to be quite effective with advances in machine
learning, more specifically Convolutional Neural Networks or CNNs. Such systems
permit quick and highly accurate detection of abnormalities like tumors, lesions,
and fractures, hence greatly improving diagnostic efficiency and accuracy. State-of-
the-art detection models with large datasets and sophisticated algorithms, like
YOLO, Faster R-CNN, and RetinaNet, will engulf the associated complexity and
variability of medical imaging, hence forming robust tools to help bring better
patient outcomes and support a physician in his or her decision-making.

* YOLO (You Only Look Once)

* YOLO [21], is a real-time object detection system reassembling the object detec-
tion as a single regression problem, straight from full image pixels to bounding
box coordinates and class probabilities. This paper divides an entire input image
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into a grid and predicts bounding boxes and probabilities for each grid cell. Due
to this unified model architecture in YOLO, it enables the framework to be very
fast in comparison to traditional approaches of object detection, which involve
several stages of processing.

* YOLO processes images in real-time and achieves high frames per second rates.
Hence, it can be applied in all those areas where decisions have to be made in a
very short span of time. Although fast, YOLO exhibits impressive accuracy in
applications for object detection tasks. In its design, there are very minimal back-
ground errors. It correctly identifies the objects in the images. The unified archi-
tecture makes the training process easy to implement and fine-tune.

* YOLO identifies and localizes bones, fractures, and other important anatomical
features from an X-ray image quickly and with great accuracy. Badging YOLO
into noisy, varied data, it can be applied to the detection and classification of
varied structures like organs, tumors, and other abnormalities in CT imaging,
thus offering rapid diagnostic support. In YOLO, the speed and accuracy help in
detecting lesions, tumors, or any other abnormal tissue regions using MRI scans.
It helps quickly interpret vast amounts of imaging data.

* Faster R-CNN

» Faster R-CNN [22], is a more advanced object detection model based on an inte-
grated framework of Fast R-CNN and an ‘in-house’ Region Proposal Network.
The latter generates region proposals, which are used by the detection network to
further refine such proposals and classify objects. This kind of integration makes
it possible for Fast R-CNN to improve in efficiency and accuracy in detecting
objects, due to the streamlining of the process for generating region proposals
and object classification.

» Faster R-CNN is known for its capability to detect with high accuracy, thus offer-
ing this accuracy in object identification and localization within images. It gener-
ates region proposals efficiently via the RPN, which reduces computational cost
compared to traditional methods.: It can process different scales of objects within
an image, thus very versatile for a number of medical image analysis tasks.

» Faster R-CNN methods can identify microcalcification, masses, and other indi-
cators of breast cancer from a mammogram image with high accuracy. Hence, it
helps in the earlier diagnosis of this disease. This method has done admirably
well at the tasks of identification of abnormalities like nodules, tumors, and
organ irregularities from CT images with accurate localization and classification.
Faster R-CNN applied in MRI imaging can cover a wide variety of recognition
and classification, including brain structures, lesions, and other anomalies, hence
helping neurological assessment and formulation of a treatment plan.

» RetinaNet

* RetinaNet [23] is the state-of-the-art object detection, which fundamentally
improves class imbalance through the uses of a focal loss function. Integrating
the Feature Pyramid Network into the model, then, is a better and more efficient
scheme for detecting objects at multiple scales and improving accuracy on small
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objects and densely packed scenes. The focal loss function raises weights on
hard examples, making a model do better in imbalanced datasets.

» RetinaNet architecture with a focal loss function empowers this model to detect
small and densely packed objects easily missed by other models. Applying FPN
on RetinaNet Making use of features at all scales for improving accuracy in
detecting objects at different sizes. Certainly, RetinaNet works best in identify-
ing small lesions within medical images, as tiny tumors or even microaneurysms
are always terribly critical for diagnostic processes and consequent treatment. It
will work well for the detection and classification of small abnormalities on
X-ray images, such as small fractures, nodules, and other vital findings often
missed by less sensitive models. This places RetinaNet in a very special position
due to its inherent class imbalance property and small object detection ability,
making it more appropriate for the identification of subtle anomalies in CT and
MRI scans.

6.3 Recurrent Neural Networks (RNNs)

RNNs [24] tend to play a big role in medical imaging, with most tasks involving
sequential data and time series analysis. Most medical imaging data comes in
sequences: video frames in ultrasound imaging, slices in MRI or CT scans, and time
series data in echocardiograms. RNNs, especially their variants—Long Short-Term
Memory and Gated Recurrent Units—are particularly tailor-made for analyzing
such sequential data. The paper discusses current applications of RNNs in medical
imaging, alluding to how they help advancement in the area.

One class of neural networks whose functionality is majorly associated with
sequential data is recurrent neural networks. Each representational unit of informa-
tion—a hidden state—is maintained internally to capture information about all past
elements in the sequence. In basic RNNs, at every time step, the hidden state gets
updated by the current input and the prior hidden state. The information may be
extracted from the hidden state to study a forecast or passed on to the next time step.
Taxonomy of RNNs is presented in Fig. 6.2.

Recurrent
Neural
Networks
I
I I I I ]
Long Short- Gated © s . Sequence to
Term Memory Recurrent Bldéﬁggtlonal Sequence Tr?ﬁiﬁ;ﬁ?er
(LSTM) Unit (GRU) Models

Fig. 6.2 Taxonomy of RNN models used in digital imaging
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6.3.1 Long Short-Term Memory (LSTM)

Basically, Long Short-Term Memory [25] networks are a class of RNNs specifically
designed to help the basic RNN overcome the limitations involved in very long-
term dependencies. LSTMs do this with memory cells and three major gates: an
input gate, a forget gate, and an output gate. Those gates control the flow of infor-
mation in such a way that the LSTM is able to maintain and update information of
the cell state over these long sequences.

The most useful areas of application for LSTMs in medical imaging involve
image sequences, such as slices in an MRI or CT scan. By doing so, they manage to
capture long-range dependencies and temporal patterns that are crucial for disease
advancement identification and context comprehension in a series of images. For
instance, using a series of MRI scans, LSTMs can be used to track changes in tumor
size over time, helping in assessing the effectiveness of treatment. Furthermore,
LSTMs can generate medical reports while processing sequences of image features
in a coherent and contextually accurate description.

These are recurrent neural networks that have been developed to be able to finally
capture long-term dependencies in sequential data. This structure consists of an
encoder and a decoder. The encoder processes the input sequence and encodes it
into a context vector. The decoder then makes use of this context vector for output
generation at every subsequent step.

In medical imaging, LSTM-based models find a fine description of medical
reports based on sequences of images. LSTM-based models go through image fea-
ture sequences, which are extracted from modalities like MRIs, CT scans, or ultra-
sounds, to bear the logic of how a medical condition evolves over time. The LSTMs
can generate coherent and contextually relevant text reports owing to the encoding
of the sequence of observations. For instance, the sequential growth of a tumor in
MRI images or summary of findings from a series of ultrasound frames. This model
helps in bringing out consistency in the reports because the dependencies are kept
along the time axis. The logic of the LSTM model ensures accurate and appropriate
descriptions of medical conditions.

6.3.2 Gated Recurrent Unit (GRU)

GRUs [26], are a simplification of an LSTM. There is an update gate in the input
and forget gates, cutting down parameters, thus leading to a more computationally
efficient model. Along with the update gate, there exists another gate within the
GRU, the reset gate, which helps to decide how much past information the model
needs to forget.

GRUs have been quite effective in medical image analysis tasks involving
sequential data. For example, a series of medical images could be used to track the
progression of some diseases. Their features also lend themselves to scenarios that
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are computationally efficient, speedy, and therefore applicable—for example, real-
time monitoring of patient vitals or continuous data streams from wearable medical
devices. Such methods, like GRUs, can be applied not only to medical image cap-
tioning, which generate concise and relevant descriptions by processing sequences
of image features.

6.3.3 Bidirectional RNNs

Bidirectional RNNs [27], belong to the category of recurrent neural network pro-
cessing sequences in both forward and backward directions; therefore, there exist
two hidden states for every time step. These capture information from the past and
future context, hence developing a richer understanding of the sequence.

Bidirectional RNNs in medical imaging are useful for tasks that require context
from the ends of the sequence. On this note, a bidirectional RNN will have better
information about a complete cardiac cycle, considering the beginnings and the end
of echocardiogram sequences in analyzing them. This approach, therefore, improves
the accuracy of anomaly detection and assessment of heart function. This bidirec-
tional RNN can make the results for the generation of medical reports further out-
standing, giving a more holistic view of the image sequence and hence more accurate
and full details of the reports.

6.3.4 Sequence-to-Sequence Models

Seq2Seq models [28], are a class of neural network architectures specially designed
for tasks in which the input and output are sequences. Normally, a pair of encoders
and decoders form them; this might be either RNNs, LSTMs, or even GRUs.
Whereas an encoder is used to convert an input sequence into a context vector, the
decoder is used to generate an output sequence from that vector.

Taking medical imaging to an even higher level are the structured and detailed
reports given by Seq2Seq models. An example is that the encoder can process a
sequence of medical observations, or features can be previously extracted from an
image, such as a sequence of slices of a 3D MRI or even an ultrasound time-series
data. At this level, the decoder will be able to generate a medical report to corre-
spond with the given image. Complicated image data will be changed to a text file
that is easily readable. The automation will put fewer workloads to the radiologists
and make the report turnaround time better. It will summarize the most important
findings and suggest possible diagnosis and require further tests with the help of the
Seq2Seq model to help clinicians for proper action to be taken.
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6.3.5 Transformer Models

Transformer models [29], are architectures that manage dependencies across long-
range sequences lacking any recurrent structure. They adopt an encoder-decoder
approach, and each of the elements involves self-attention and feed-forward layers.
The self-attention mechanism determines the relative importance among different
elements of the input to make the weight dynamically.

Transformers, by instance, have emerged as models that are capable of learning
complex data dependencies and, thus, are revolutionizing medical report genera-
tion. In transformers, all sequences are processed at one go rather than sequentially,
hence much faster and more efficient in processing. Because of the self-attention
mechanism, transformers can capture relationships between different parts of the
input sequence. This helps in improved context understanding—a major requisite in
generating medical reports. Transformers provide a more coherent and contextually
accurate report by dynamically centering more on the important sections of the
input data. For instance, a transformer model in radiology can generate detailed
descriptions of abnormalities found in various regions of an X-ray or CT scan.
Multimodal Integration: Transformers can process multivariant inputs very easily
and fuse them together to generate single output, i.e., it can integrate, say, image
data with the patient’s history or the lab results into the report being generated.

6.4 Applications of RNN and CNN in Medical Imaging

6.4.1 Sequence Analysis in Medical Imaging

Although the recording and analysis of temporal dynamics in most of the medical
imaging modalities are essential. For instance, the heart’s motion is observed over
time during echocardiography, and temporal patterns of such motion are important
for making diagnoses for heart abnormalities. Such temporal dynamics are well
modelled using RNNs, through the hidden state and learning over the dependence
over time steps. In sequences of image frames, RNNs can identify abnormalities
produced in a motion pattern, such as irregular heartbeats or valve dysfunctions.

MR and CT volumetric data typically consist of many slices, which need to be
analyzed contextually. RNNs can process sequences of slices while working out
both spatial and temporal dependencies that are important for the accurate detection
and segmentation of anatomical structures and pathological regions. For example,
adjacent slices’ arrangement relationships are taken into consideration by RNNs
when determining and segmenting tumors in brain imaging.
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6.4.2 Image Captioning and Report Generation

¢ Automatic Generation of Medical Reports

» This emerges to be one of the promising applications of RNNs in medical imag-
ing. Radiologists and clinicians must put a lot of effort into analyzing medical
images, making reports, and sometimes making lengthy detailed reports. RNNs,
especially combined with CNNs, can automate this procedure. CNNs are used to
extract features from medical images, and RNNs, more specifically LSTMs or
GRUE, establish a coherent and contextually accurate textual description. This
would involve training the RNN to understand the relationships between image
features and related medical terminology for which it then creates full-fledged
reports describing the findings and diagnosis recommendations.

¢ Image Captioning

* RNNs also find applications in image captioning, in which the description of a
sentence is generated for every medical image and hence quite useful to sum-
marize findings in words. For instance, an RNN could be trained to generate a
caption for an X-ray image in the following terms: “normal lung fields” or “pres-
ence of pulmonary nodules.” That will help optimize radiologists’ workflow and
improve locative efficiency during medical image interpretation.

6.4.3 Predictive Modeling and Risk Assessment

¢ Modeling the Progression of Disease

¢ RNNS are exquisitely good at modeling disease progression with respect to time.
In sequences of medical images taken at different times, RNNs can capture
dynamics related to disease progression. For example, sequences of MRI images
in oncology can let them learn the growth and spreading of tumors to understand
the process of planning treatment and estimating prognosis. Similarly, in chronic
disease management, RNNs can also be applied to changes in organ structure, or
changes in function over time, by evidencing how the diseases progress, and it
helps to make good judgments by the clinicians.

* Risk Assessment

¢ The implementation of RNNs provides opportunities for predictive modeling
and risk assessment through the analysis of time-series data acquired from medi-
cal imaging. For example, an application for cardiology could process sequences
of echocardiographic images with RNNs to predict the risk of adverse cardiac
events. Ability to capture the overall temporal trend of heart motion, the RNN
could detect incipient signs of conditions like heart failure or arrhythmias, hence
actually leading to early interventions for better patient outcomes.
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* Multimodal Data Integration

e RNNs are also more powerfully multimodal, with the integration of information
from sources of different information, enhancing the accuracy and robustness in
medical image analysis. Imaging data and EHR information have different infor-
mation to describe a patient’s condition. The RNNs process sequences of imag-
ing data mixed with textual data from EHRs; with this, the model considers
visual and clinical information while generating a prediction or report. This mul-
timodal approach enhances the diagnostic accuracy and gives an all-around
patient health description.

* Improvement in Image Segmentation and Classification

* The embedding of temporal and contextual information through RNN can also
enhance certain operations, such as segmentation and classification of images.
Traditional approaches to image segmentation often work on an image-to-image
or slice-to-slice basis and are not sensitive to useful contextual information.
Clearly, the segmentation process can be improved in terms of accuracy and reli-
ability, processing with the RNN model sequence composed of the images,
which in turn provides an understanding of the temporal context. For instance,
RNN would enable a model to consider image or feature order, especially in clas-
sification tasks, which implies better discriminative power of the model between,
let’s say, benign and malignant classes.

6.5 Transfer Learning in Medical Imaging

Transfer learning [30] is a machine learning technique that applies to the tuning of
a pre-trained model on some large dataset, which in turn helps improve performance
in a domain-specific dataset. A model borrowed from knowledge obtained during
initial training, this approach leads to improved performance on target tasks with
fewer labeled examples while reducing training time. Transfer learning is a very
important constituent of medical imaging as it bridges the gap between having lim-
ited annotated data and needing highly accurate models for various applications [31].

6.5.1 Pre-training on Large Datasets

Pre-training on datasets, such as ImageNet, leads to learning generic features such
as edges, textures, and shapes to be learned. As the medical image consists of such
features, these models work fine for medical tasks after fine-tuning. Since the model
starts with pre-learned initial layers, training on the medical dataset happens faster,
being much lighter on computational power for that matter.
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6.5.2 Fine-tune for Specific Tasks

It is by fine-tuning that the pre-trained model finally adjusts to the specific charac-
teristics of the medical image, e.g., contrast, or noise variation in MRI or CT scans.
Fine-tuning may enhance the capability of a model that recognizes some patterns of
importance for diagnosis in medicine—tumors, lesions.

6.5.3 Applications in Medical Imaging

Through transfer learning, detection of diseases, comprising cancer, is enhanced by
the ability to further improve the model performance in identifying deviation from
normal patterns in radiological images. This can be done on anatomical structures
together with pathologic regions of images for either therapy or monitoring pur-
poses. Furthermore, transfer learning allows for the classification of different tissue
types and organs together with the states of diseases; hence, improved diagnosis
systems.

6.6 Deep Reinforcement Learning in Medical Imaging

Deep reinforcement learning [32] combines deep learning with the principles of
reinforcement learning, whereby an agent learns from an environment to maximize
cumulative rewards through interaction. DRL works with problems meant for
sequential decision-making and high-dimensional data environments. Deep rein-
forcement learning has revolutionized how processes are optimized, decisions are
taken, and images are interpreted better in medical imaging.

6.6.1 Automated Image Interpretation

It learns to enable the detection of anomalies in medical images through feedback
from the accuracy of the predictions made by the DRL models. They keep improv-
ing their performance through this feedback loop. In image-developing, DRL can
optimize image quality by learning the best methods for noise reduction, increase of
contrast, and artifact removal for clearer images to be diagnosed.
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6.6.2 Segmentation and Annotation

The progressive decision making of the DRL models can be used interactively for
the segmentation of medical images wherein, it decides which pixel corresponds to
a certain structure. This feature is highly expected to be useful in a very complex
and variable anatomical structure. DRL can guide radiologist in the annotation of
the images, thus suggesting the region of interest or naming the structure and makes
the annotation process faster and lessens the human error.

6.6.3 Planning and Monitoring of Treatment

In radiation therapy planning, DRL may help optimize the dose distribution because
it learns from prior data, further customized to the special needs of any individual,
in order to deliver an effective and safe treatment. Models in DRL can help in the
planning and guidance of surgeries by learning an optimum path discovery and not
hitting critical structures to help in enhancing surgical result.

6.6.4 Image Registration

DRL would learn the ideal transformation parameters to enhance alignment from
images coming from different modalities, like MRI and CT. This will help integrate
complementary information to get a complete view of the patient’s condition. DRL
would hence be applied in the alignment of images that have been acquired during
different time points. This would be greatly useful towards progress monitoring
related to the disease during treatment.

6.6.5 Real-time Analysis

DRL will facilitate dynamic imaging types like ultrasound or functional MRI since
measures are continuously trained to adapt to new incoming data. Consequently, it
will allow the possibility of changing clinical decisions and treatment plans on the
fly. The DRL can bring further optimization to imaging protocols on the fly by ana-
lyzing the images being acquired for the best quality of images and the best possible
diagnosis while minimizing the dose of radiation to the patient.
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6.7 Role of Data Science in Digital Imaging

In the realm of digital imaging, enhancing and restoring image quality is paramount.
Data science has revolutionized this field with sophisticated algorithms that address
noise reduction, image super-resolution, and color correction. Taxonomy of the
image processing algorithms is presented in Fig. 6.3.
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Fig. 6.3 Taxonomy of image processing algorithms used in data science
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6.8 Image Processing Algorithms

6.8.1 Noise Reduction

Noise in digital images can originate from several sources, such as imperfections in
the sensor of capturing device, environmental conditions, or transmission errors.
Noise reduction is very important to have a clear and accurate image. So far, many
algorithms have been developed for noise reduction, all with different strategies.

* Gaussian Filtering

* One of the essential techniques in noise reduction of images is Gaussian filtering
[33]. The algorithm performs a Gaussian filtering that convolves an image with
a Gaussian kernel, thus giving a smoothing effect by averaging pixel values with
those of their neighbouring pixels. The Gaussian filter blurs the image, which
reduces high-frequency noise but retains some details. This technique works
quite well on Gaussian noise, but at the same time, it smoothens out edges and
fine details.

* Median Filtering

* Median filtering [34] is a non-linear approach to filter salt-and-pepper noise, in
which white and black pixels occur randomly. The algorithm replaces each pixel
value with the median of pixel values in its neighbourhood.

* This method does not blur edges, since it selects a median value. It has many
applications in image processing, more precisely in real-time noise reduction.
Noise sometimes happens to be sporadic and extreme.

* Non-Local Means Denoising

* Non-local means denoising [35] is a sophisticated algorithm that works on the
principle of comparing and averaging similar patches in the whole image, con-
trary to local filters. It includes information about patch similarity at different
locations. Noises are efficiently removed while preserving textures and fine
details by averaging patches with similar patterns. This technique has wide appli-
cations where high fidelity and texture preservation are required, including appli-
cations in high-resolution imaging.

* Wavelet Thresholding

*  Wavelet thresholding [36] refers to the decomposition of an image into wavelet
coefficients, thresholding these coefficients in a manner that reduces noise, and
then reconstructing the image. The technique decomposes the image into differ-
ent frequency components, thereby targeting noise reduction in this domain.
Since the technique operates in the wavelet domain, it is very good at reducing
noise while retaining features and edges. It works well with images that contain
different levels of noise and fine details.
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6.8.2 Super Resolution

The term super-resolution describes an increase in quality of an image above the
quality of the individual images that make up this output. This is normally done for
obtaining sharper and more detailed images from lower-resolution sources [37, 38].

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks are the backbone of many state-of-the-art super-
resolution approaches in use today. Models like Super-Resolution CNN
(SRCNN) are trained with pairs of low-resolution and high-resolution images to
learn the mapping from low to high resolution. Spatial patterns and features are
learned during the training; hence, a high-resolution image from a low-resolution
input can be generated using the same CNNs. This technique has very broad
applications in digital imaging and computer vision, from the quality enhance-
ment of images in consumer electronics to satellite imagery.

Generative Adversarial Networks (GANSs)

Generative Adversarial Networks are applied in several techniques, such as
SRGAN or Super-Resolution GAN, for generating high-resolution images. Here,
GAN consists of a generator network that must be trained to generate a high-
resolution image and another discriminator network that judges the quality of the
generated images. Iterative improvements by the generator in generating more
real images with details are due to the feedback received from the discriminator
during the adversarial training process. GAN finds its applications in the creative
field and practical applications that require high realism with fine details, such as
art restorations and virtual reality.

Deep Learning-Based Up Sampling

Deep learning-based up sampling methods, especially EDSR, concentrate on the
high-frequency details and residual learning. These networks perform image up
sampling by refining the details of the image through residual connections to
ensure the overall quality and resolution. Applications include mainly in cases
where high quality images are derived from sources of low resolution, such as
medical imaging and high-definition video.

6.8.3 Color Correction

Color correction ensures that the colors in an image are accurate, besides being
aesthetically consistent. Sophisticated algorithms have been developed for adjusting
colors to correct the distortions and achieve desired color effects.

¢ White Balance Adjustment

* White balance adjustment [39] algorithms correct color casts introduced by dif-

ferent lighting conditions so that white objects remain neutral. Various tech-
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niques, ranging from simple assumptions of the gray world to more sophisticated
techniques, are used. Colors are adjusted by the algorithm according to the esti-
mated color temperature of the light source and hence show a natural appearance
in an image. This method is used in the photography and video production indus-
tries to create a natural color appearance under various lighting conditions.

* Histogram Equalization

* Histogram equalization [40] is a method that modifies image contrast by re-
adjusting the intensity levels of the image. The details in the bright and dark parts
of an image become more vivid. This principle spreads the intensity values over
the whole range, resulting in improved contrast and brightness. This has no flaws
when it comes to the correction of under/overexposed images; therefore, it’s very
useful in medical imaging and scientific research.

* Color Transfer

* The algorithms of color transfer modify an image’s color distribution to exactly
match a reference image. Some common ways through which this is done include
histogram matching and some other learning-based methods. Transfers the color
characteristics of the reference image to the target image, balancing color imbal-
ances or attaining certain color tones. Application: It could be of use in artistic
applications, color grading for film, and enhancing visual consistency
across images.

* Deep Learning-Based Colorization

* Colorization algorithms using deep learning, such as those in DeOldify, would
colorize grayscale images or correct color imbalances. Such models learn from
large datasets in a self-supervised manner to apply realistic colors to mono-
chrome images. Trained neural networks on colored images to predict and apply
colors to grayscale images for a plausible result. This approach gets applied in
restoring historical photos and enhancing black-and-white films. The algorithms,
in medical imaging, are supposed to enhance the resolution of the images
acquired from MRI, CT, and ultrasound machines, thereby reducing diagnostic
errors due to noise interference.

6.8.4 Edge Detection

Edge detection is a basic technique in image processing, which helps identify the
boundaries and some of the important features of an image. A lot of algorithms are
in use to detect edges, each with its own peculiar approach and application.

* Sobel Operator

* The Sobel operator [41] is another traditional way of edge detection; the operator
computes the gradient of image intensity at each pixel. It uses convolution with
Sobel kernels to detect edges in the horizontal and vertical directions. Computes
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gradient magnitude and direction to highlight areas of rapid intensity change.
Has broad applications in image processing, object detection, and feature
extraction.

e Canny Edge Detector

* The Canny edge detector [42] is a multistep algorithm: first, Gaussian smooth-
ing; then, gradient calculation; after that, non-maximum suppression; and lastly,
edge tracking by hysteresis. The Canny detector was designed for the detection
of a wide range of edges in images with high accuracy. It makes use of gradient
magnitude and direction to detect edges, and hysteresis in tracing them accu-
rately. Applications: Known for its precision, it is frequently used in computer
vision tasks such as image segmentation and object recognition.

» Laplacian of Gaussian (LoG)

* The LoG [43] approach combines a Laplacian operator with smoothing, done by
a Gaussian filter. A Gaussian filter smoothes the image first, and afterward this
preprocessed image is applied to compute the Laplacian to find regions with
rapid changes in intensity. It uses second-order derivative information towards
edge detection with least noise. It is good for edge detection in noisy images and
where accurate edge location is required.

* Roberts Cross Operator

* The Roberts Cross operator [44] detects edges by finding the differences in pixel
values in the diagonal directions. The operator uses Roberts kernels, Similar to
that of the Sobel operator, it emphasizes the diagonal edges by calculating gradi-
ent components in the x and y directions. This operator is particularly useful in
applications where edge detection needs a simple and efficient method for high-
lighting the diagonal edges.

* Prewitt Operator

* The Prewitt operator [45] represents a modification of the Sobel operator, only
using other convolution kernels for edge detection. It calculates gradients in the
horizontal and vertical directions for finding edges. Compute gradient magnitude
for edge detection, but with kernels specially designed to have high responses to
edges in certain directions. In many image processing applications, like edge
detection and feature extraction.

* Deep Learning-Based Edge Detection

* Deep learning edge detection techniques learn and detect edges using convolu-
tional neural networks (CNNs) from the training data. Such methods use large
datasets to improve the accuracy of edge detection and adapt to different image
types. A technique that trains neural networks on ground truth images to learn
complex patterns of edges and detect edges efficiently with high accuracy.
Applied in state-of-the-art applications of Computer Vision, Scene Understanding,
and Object Recognition.



6.9 Computer-Aided Diagnosis Systems 109

6.9 Computer-Aided Diagnosis Systems

6.9.1 Detection Algorithms

These algorithms allow CAD to randomly locate abnormalities or markers of dis-
ease within medical images. Deep learning architectures and configurations, par-
ticularly convolutional neural networks, are among the most popular and widespread
techniques used in the field of pathology for pattern recognition. For instance, CAD
systems help identify entities related to breast cancer on mammograms, increasing
the rate of diagnosis accuracy and patient recovery.

6.9.2 Classification Algorithms

These algorithms basically categorize medical images into different classes based
on the extracted features or patterns. SVM, random forests, and neural networks are
widely applied in this domain. In use, these algorithms not only classify an image
into benign or malignant categories but also help in disease staging and determine
the priorities of patient care by identifying critical cases that require immediate
attention.

6.9.3 Decision Support Systems

Decision support systems incorporate the results of detection and classification
algorithms to create actionable results for healthcare providers. One such system
uses imaging data in conjunction with clinical information to provide diagnostic
recommendations, suggestions of treatment options, and prognosis predictions.
Such capability helps individualize medicine, optimizes workflow efficiency, and
can refine strategies for the management of patients in radiology and beyond.

6.10 Data Mining Techniques

6.10.1 Association Rule Mining

Association rule mining realizes the relationships and dependencies among vari-
ables within these large medical image datasets. Apriori [46] and FP-Growth algo-
rithms extract frequent patterns that allow determination of the associations
co-occurrences of radiological findings or correlations between imaging biomarkers
that help in understanding mechanisms of diseases, guiding further research, and
refining diagnostic protocols.
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6.10.2 Clustering Algorithms

This is a batch of algorithms that groups medical images with similar features, such
as intensities, textures, or shape characteristics. Algorithms like k-means and hier-
archical clustering enable unsupervised analysis, uncovering hidden patterns and
subgroups in patient cohorts. Clustering helps in personalization of treatment plans
for patients, stratification in clinical trials, and health interventions in populations.

6.10.3 Anomaly Detection Algorithms

These are methods for anomaly detection that outline the outliers or deviation from
normal patterns, which may indicate some abnormality or rare conditions. Isolation
forests, one-class SVMs, and deep autoencoders are some of the techniques applied
in detecting subtle anomalies which might have usually been missed by other tradi-
tional methods. This capability aids in early disease detection, surveillance of dis-
ease progression, and monitoring treatment responses.

6.10.4 Predictive Modeling

Models of Regression Analysis for Predicting Continuous Clinical Variables: The
relationship between imaging features and continuous clinical variables. For exam-
ple, tumor size, patient’s age, or physiological parameters can be predicted by mod-
els of regression analysis. Linear, polynomial, and ridge regression predict the
outcome and the effect of imaging biomarkers on the progression of the disease.
Predictive models inform treatment decisions, prognostic assessments, and thera-
peutic response assessments in clinical practice.

Classification models for predicting binary/categorical outcomes: These models
identify binary or categorical outputs representing either the presence or absence of
a disease or the staging of the disease based on imaging features and other data
derived from the patient. Here, logistic regression, decision trees, and ensemble
methods like gradient boosting classifiers help in the stratification of risk with accu-
racy for the management of patients. Such models allow interventions early in the
process, treatment planning at the bedside of the patient, and prediction of outcomes
in oncology, cardiology, and neurology.

Survival analysis methods evaluate imaging biomarkers with respect to their
effects on patient survival as a function of time. Specifically, censored data is ana-
lyzed using Cox proportional hazards models, Kaplan-Meier estimators, and accel-
erated failure time models while accounting for different durations of follow-up.
Such techniques allow for the prediction of the rate of recurrence of the disease,
progression-free survival, and overall survival rates. These can help therapeutic
strategies, patient counsel, and improvement of clinical trial design.
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6.10.5 Natural Language Processing (NLP)

¢ Text Mining Algorithms

* Algorithms used in text mining are then applied to obtain structured information,
like radiology findings or clinical notes, from unstructured medical reports.
Among these natural language processing techniques, in particular, tokenization,
NER, and sentiment analysis consider the challenges in rendering textual data
into meaningful and actionable insights. NLP increases information retrieval,
helps clinical decision-making, and enables secondary use of healthcare data for
further activities in research and quality improvement initiatives.

¢ Named Entity Recognition

» This requires identifying and classifying entities within the medical text about
anatomical terms, medical conditions, and treatment modalities. Advanced NLP
models, especially bidirectional transformers such as BERT and clinical BERT,
bring state-of-the-art performance in the recognition of domain-specific entities.
This capability accelerates information extraction from EHRs, offers support in
clinical coding, and enables interoperability between healthcare systems.

¢ Sentiment Analysis Techniques

* Sentiment analysis techniques assess emotion and subjectivity within narratives
of patients, physicians’ notes, and healthcare reviews. The machine learning
models used are deep neural networks and support vector machines that perform
the quantification of sentiment polarity, including positive, negative, and neutral,
and their intensity levels. Products of sentiment analysis will inform patient sat-
isfaction surveys, health-care provider feedback, and sentient-aware applications
for improving patient-centered care.

6.11 Future Directions of Digital Imaging

Digitized imaging is an ultra-fast-moving area of development, as it gets pushed and
pulled by equally rapid improvements in technology and novel applications across
industries. The present chapter talks about new emerging technologies, future pre-
dictions, and their possible impacts on the user industries of digital imaging.

6.11.1 Artificial Intelligence and Machine Learning

Artificial intelligence and machine learning enable digital futures of imaging:
increasing diagnostic accuracy, optimizing workflow efficiency for radiologists, and
tailoring medicine. Al algorithms, brominated under the auspices of DL models and
Neural Networks, have been intensely analyzing complex images of health and dis-
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ease with accelerated speed and accuracy. Such technologies automate
tasks related to image analysis and interpretation but find other hidden patterns and
biomarkers that are useful in the very early detection of diseases and treatment
planning.

6.11.2 D and 4-D Imaging

The transition from the conventional 2D imaging to 3D and 4D imaging modalities
allows better spatial and temporal information to be conveyed to the clinician.
Techniques of volumetric rendering, multi-planar reconstruction, and dynamic
imaging document minute anatomical structures and physiologic processes in vivo.
This will be much more helpful in many sub-specialties, especially cardiology,
oncology, and orthopedics, where correct visualization along with navigation is key
to both surgical planning and intervention.

6.11.3 AR and VR: Augmented and Virtual Reality

These technologies merge physical and digital worlds to allow for, amongst others,
immersive medical training, surgical navigation, and patient education. AR overlays
will supersede 3D visualization in the representation of patient-specific anatomy to
improve accuracy and lower operative time during procedures. VR simulations
develop skills and proficiency for complex procedures on the part of trainees in a
risk-free environment.

6.12 Predictions for the Future

6.12.1 Artificial Intelligence in Clinical Workflows

This will become a standard integration of Al-driven tools and decision
support systems within the clinical workflow. Continuously, Al algorithms will ana-
lyze vast imaging data, patient records, and genomic information to present real-
time insights on personalized treatment strategies. Predictive analytics and machine
learning models will predict progression, responses, and patient outcomes, ulti-
mately changing the fabric of clinical decision-making forever and ensuring quality
in patient care.
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6.12.2 Advancements in Precision Medicine

Digital imaging will lead the way toward accelerating precision medicine efforts.
Coupling the resolution of imaging modalities to genomic data allows tailoring of
therapies based on genetics and features of disease processes. Radio genomics, by
coupling detailed relations between imaging phenotypes to genomic data, will open
a new armamentarium of disease diagnosis and prognosis biomarkers that will
allow for targeted therapies and tailored treatments. Quantum Imaging and
Nanotechnology.

Quantum imaging and nanotechnology are emerging technologies that have the
promise of new breakthroughs in sensitivity, resolution, and contrast enhancement.
Quantum sensors and nanoprobes enable ultrahigh resolution imaging of cell and
molecular processes in all aspects of in vitro and in vivo studies. Thus, the possibil-
ity is created for early diagnosis of diseases at a molecular level, which will have
far-reaching implications for cancer diagnosis, drug delivery systems, and biomedi-
cal research applications.

6.13 Potential Impacts on Various Industries

6.13.1 Healthcare and Medical Imaging

Advanced digital imaging technologies is going to bring efficient workflows,
reduced diagnostic errors, and better patient outcomes in healthcare. Al-driven
diagnostics and telemedicine applications will make specialized care reachable in
far-flung areas, hence expanding health delivery for better patient satisfaction.
Hence, digital pathology, molecular imaging, and wearable devices bring together
an integrated ecosystem in personalized healthcare management.

6.13.2 Pharmaceutical and Biotechnology

The pharmaceutical companies will digitally enable their imaging technologies to
accelerate drug discovery, optimize clinical trials, and monitor treatment responses.
Al algorithms would analyze imaging biomarkers for stratification of patient
populations, identification of therapeutic targets, and real-time evaluation of drug
efficacy. Virtual drug screening and pharmacokinetic modeling that 3D imaging
data enables will expedite the development of novel therapies against complex
diseases.
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6.13.3 Automotive and Manufacturing

It will also lead to innovation outside healthcare in the field of automotive safety,
manufacturing quality control, and augmented reality applications. Autonomous
vehicles use advanced imaging sensors and computer-vision systems that help such
vehicles navigate complex environments with precision and reliability. Advanced
3D imaging methods are applied in manufacturing to monitor product quality,
increase the efficiency of production, and even offer maintenance remotely.

6.14 Challenges and Ethical Issues in Digital Imaging

6.14.1 Image Quality and Standardization

One of the large challenges of digital imaging is related to ensuring that image qual-
ity is consistent for a given modality and among various healthcare facilities.
Equipment differences, preparation methodology, and technical skill will have an
impact on accuracy and reliability in the diagnosis in question. Professional organi-
zations indeed have guidelines about this and support quality assurance programs to
dampen the aforementioned challenges and optimize reproducibility in imaging.

6.14.2 Integration and Interoperability of Data

Integrating radiological images, pathology slides, molecular imaging data, and
other such diversified sources of imaging creates interoperability challenges. The
challenges stem from information silos, incompatible formats, and unstandardized
metadata that lower further exchange and complete coordination of care. The
interoperability frameworks and HIE seek to advance the integration of information
to better coordinate patient care and collaboration in research amongst disciplines.

6.14.3 Technological Complexity and Its Adoption

The rapid evolution of digital imaging technologies, from artificial intelligence
algorithms and advanced imaging modalities to associated system complexities in
implementation, training, and maintenance, leads to the predicament of healthcare
providers’ acquisition and deployment of state-of-the-art technologies. In conjunc-
tion with this, there are a number of regulatory issues and workforce readiness.
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In this regard, continuous education and clinical validation studies through strategic
partnerships become all the more relevant to surmount technological barriers to the
fullest and maximize the benefits of innovation.

6.14.4 The Privacy and Security of Patient Data

The protection of patient information and data security has become very critical in
the case of digital imaging. Sensitive medical information will be stored in elec-
tronic health records, imaging archives, and cloud storage solutions that are always
prone to breaches or unauthorized access—some even to cyber-attacks. It is impor-
tant to ensure that health data privacy regulations, such as HIPAA in the US and
GDPR in Europe, are applicable; that effective encryption, access controls, and
audit trails for legal compliance on health data privacy rest within these guidelines
to protect the integrity of patient data and preserve trust in healthcare systems.

6.14.5 Informed Consent and Patient Autonomy

Procedures for informed consent in imaging describe to the patient real risks, ben-
efits, and alternatives. Meaningful consent to be achieved may be challenged by
complex medical terminology, time constraints, and comprehension levels of the
patients. It creates an obligation on the part of healthcare providers to ensure trans-
parent communication, respect for the autonomy of patients, and address cultural
and linguistic barriers in the informed decision-making process. Sharing decision
making and protection of rights at all levels of the imaging continuum is under-
pinned by ethical guidelines and patient advocacy efforts.

6.14.6 Algorithm Bias and Clinical Validity

Al algorithms for use in digital imaging—in particular, machine learning models
used for diagnosis or treatment planning—may be biased either by differences or
biases in training data or internal to the algorithm. This may result in greater inad-
vertent biases, falling more heavily on underserved populations, increasing health-
care delivery and subsequently health outcome inequities. Ensuring a lack of bias in
algorithms involves having diversified and representative training data sets, rigorous
algorithm validation processes, and continuous monitoring for bias in practices.
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6.15 Strategies to Address Ethical Concerns

6.15.1 Education and Training

Sustained education and training of all healthcare professionals, technologists, and
data scientists are necessary for improving ethical sensitivity, updating knowledge
of the latest clinical practices, and enhancing competence in the field of digital
imaging. Curricula should include ethical reflections, regulatory provisions, and
best practices for data handling, communication with patients, and transparency of
algorithms. Collaboration among experts in the field of medical ethics, specialists in
imaging, and technology developers leads to ethical decision-making and respon-
sible innovation in healthcare.

6.15.2 Policy Development and Regulation

Government agencies, Health Organizations, and industry players are all in the
development and enforcement of policies, standards, and guidelines that
govern digital imaging practices. Some regulatory frameworks would therefore be
of cardinal importance to keep all imagings within agreed ethical principles, data
privacy laws, and standards of quality. Transparent reporting of Al algorithms with
adherence to clinically validated protocols in aCallCheck of clinical validation pro-
tocols by robust governance frameworks ensures patient safety, mitigates risks, and
promotes ethical accountability of digital imaging research and its clinical
applications.

6.15.3 Stakeholder Engagement and Advocacy

Engagement of the patient, caregiver, advocacy group, and community stakeholders
offers an avenue for inclusive dialoguing on concerns, value development, and prac-
tice in ethics for digital imaging. This will help set up patient-centered activities,
open forums, and participatory research partnerships that stakeholders can leverage
to express their views and influence policy and ethical guidelines. Ethical advocacy
campaigns sensitize on patients’ rights and data privacy issues and the social impli-
cations that emanate from emerging technologies, hence entailing trust and account-
ability within healthcare delivery.
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6.16 Conclusion

Driven by digital imaging, the reshaping of health practices arises from characteris-
tics that are typical of health innovation: technology advances, data-driven insights,
and ethical considerations. It is in this setting that the chapter has tried to point out
some ways data science is impacting digital imaging. Digital imaging algorithms
enhance image quality by reducing noise, detecting edges, and segmenting the
images, all of which are features that facilitate the diagnosis of many diseases using
different modalities. CAD systems aid health professionals in detecting diseases
automatically and improve workflow through advanced detection and classification
algorithms. Some data mining techniques applied to these vast imaging data sets
extract useful patterns that help in understanding mechanisms of diseases and treat-
ment responses. It applies predictive modeling with regression and survival analysis
using imaging biomarkers to predict clinical outcome, facilitating evidence-based
decisions, while NLP strengthens the extraction and analysis of clinical insights
from unstructured medical reports to improve coordination and quality of care.

The huge potential that emerging technologies in artificial intelligence, 3D and
4D imaging, and augmented reality hold for innovations in diagnostic and therapeu-
tic strategies and possible future breakthroughs with precision medicine and quan-
tum imaging have to be considered. At the very same time, however, challenges and
ethical considerations like image quality standards, interoperability issues, and arti-
ficial intelligence complexities are some of the major concerns to be taken into
consideration. Such strategies in terms of standardization, education, and policy-
making must be designed to reduce biases and ensure equity in access to health care.
About data handling and patient privacy, informed consent is a very serious ethical
consideration for the maintenance of people’s trust in health care systems. It is
through responsible innovation, transparency, and stakeholder engagement that we
can really exploit all the potential that digital imaging technologies can offer toward
the advancement of patient-centered care and scientific discovery, thereby setting
the future for healthcare delivery generations ahead.
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Chapter 7 ®
Public Health Surveillance and Resource Creck o
Optimization

7.1 Introduction

The computing and communication technologies, in addition to managing physical
and mental health of individuals, also promise to reshape the public health.
According to WHO, public health surveillance can be defined as “continuous and
systematic collection, orderly consolidation and evaluation of pertinent data with
prompt dissemination of results to those who need to know, particularly those who
are in a position to take action” [1]. In the past, data collection was limited to con-
ventional methods, such as through conducting public events at clinics or public
spaces. Moreover, the data was also frequently gathered using survey forms, which
was again slow, costly and cumbersome. The conventional approach yielded a
restricted amount of data and made it impractical to reach millions of citizens within
a country. As a result, it was not possible to collect realistic data about health trends
or disease prevalence among the population. Similarly, it was also a challenge to
communicate the population health risks to the authorities due to the lack of analyt-
ics and visualization tools.

Using 10T, DS and Al, it has become possible to collect massive amount of data
from large populations which leads to a significantly better opportunity for the state
to get an insight into the actual statistics. Today we have advanced forms of data
sources such as smart phones, wearable and ambient devices, social media, search
histories and EHRs; all of these and others can be regarded as health surveillance
data and can be fed into advanced data analytics systems [2]. Through the use of
technology, not only the current population health state can easily be communicated
to the authorities, but advanced ML algorithms also offer an opportunity to predict
the possible diseases and their impact.

The technologies of 10T, DS and Al are not only used for managing population
health but they also focus on healthcare resources such as staff and equipment.
Almost all over the world, there is a shortage of medical professionals and
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equipment; there is always a need to manage the available resource efficiently. The
technologies discussed in this book offer help in this domain by providing a means
of monitoring the patients as well as healthcare facilities in the real-time. At one
hand, continuous patient monitoring reduces the chances of hospitalization/re-
hospitalization and on the other hand, the facilities are being increasingly auto-
mated. For example, automated appointment systems and RFID-embedded
equipment reduces the need of healthcare workforce.

This chapter describes some of the major techniques of IoT-DS-AI nexus which
help to achieve effective public health surveillance and resource optimization.

7.2 10T Collects Population Data

IoT appears as a simple yet cost-effective technology for collecting population
health data. Wearable health monitors, smart watches, wristbands, environmental
sensors and connected hospital equipment provide enormous amount of population
health data. As discussed in the previous chapters, once the data enters the IoT-
DS-AI nexus, it offers unlimited opportunities for analyzing health trends, predict
patient outcomes and diseases and monitoring the effectiveness of health interven-
tions. Thus, public health authorities can get an early insight into the population
health risks and can engage in more effective intervention planning.

Various IoT applications were developed during COVID-19 period, due to the
specific requirements of social distancing and quarantine management. Some exam-
ple use cases of using IoT for managing population health are discussed in this
section.

7.2.1 IoT During COVID

Various IoT solutions and centralized dashboards were developed during COVID to
monitor the spread of virus, direction of spread and even the severity for affected
people belonging from different regions, ages, medical backgrounds etc. In this
context, not only the wearable devices, but also connected hospital systems come
into play for providing a comprehensive health insight. At the US, Kinsa developed
FDA approved smart thermometers which are generally used for monitoring flu and
flu-like illnesses. The device could synchronize with a mobile app, which subse-
quently sends data to the company’s dashboard. To maintain the user privacy, before
transmission to the company’s server, the data is anonymized. Before COVID,
Kinsa thermometers were already in use to predict the spread of flu. During 2020
and later, these thermometers were used to assess the direction of COVID spread in
various counties of the US. Also, novel applications for the Kinsa users were
reported, for example, a study was conducted to identify the impact of children
presence at home on the spread of COVID within the family [3]; another study
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focused on identifying the epi-center of COVID using connected thermometers pro-
vided by Kinsa [4]. This trend shows that not only IoT plays a major role in com-
municating the present health state to the authorities, but innovative insights can
also be developed, which would in turn be useful for planning customized interven-
tion based on the need of each family.

Due to the high number of patients, particularly at the regions with lesser medi-
cal workforce or infrastructure, wearable devices offered significant assistance in
managing the pandemic. The patients with high risks were continuously monitored
at their homes before hospitalization or after discharge. Such strategies did not only
improve the survival rate for patients but also considerably reduced the burden on
hospitals as the staff as well as beds fell short at most of the world. The most com-
mon parameters monitored remotely during COVID were temperature and pulse
oximetry, however, in certain cases, remote ECG was also performed for managing
higher risks of respiratory failures. Although, conventional ECG is taken by using
patches on the chest, the product facilitating predictive algorithm-based wristband
based ECG has also been made commercially available.

Travelling within and beyond countries was very limited during COVID-19
period. However, for the necessary travel, the airports made it mandatory for the
passengers to bring negative PCR results and be in isolation for the first 3 days of
their arrival. To still be safe from spread of COVID due to travel, various airports
across the globe deployed IoT technology. For example, upon arrival, passengers
were given RFID and GPS embedded wristbands [5]; in case the users leave from
their designated quarantine locations, the authorities would know via central dash-
board interfaces and the appropriate action could be taken. Moreover, RFID tags
were also used for automated baggage handling systems and e-passports to prevent
staff from coming into contact with the luggage or travel documents.

Contact-Tracing was another major concept emerged during the surge of COVID,
just like social distancing and quarantine monitoring. Various companies developed
Bluetooth enabled wristband and similar solutions that kept the record of who had
come nearby the person who later got infected by the virus. These wristbands mostly
connected to the mobile apps, which transmitted the data to centralized databases;
such contact tracing measures were taken both at organizational and state levels [6].
Similarly, the wristbands also participated in maintaining social distancing; an alert
was generated if a person came near to someone else.

At organizational level, various novel developments were made to control the
spread of COVID. Innovative mobile apps were generated to remind about washing
hands, keeping hands away from the mouth and maintaining social distancing.
Alerts were also sent to the people if someone who had come near over the past
week had developed COVID; this helped in detecting the suspicious cases so they
could be advised to be at quarantine. IoT solutions also helped to trace the crowd
while entering the premises of offices, markets or airports. Smart cameras and infra-
red sensors were used by the staff posted at the points of entry to detect the suspi-
cious cases. Since high grade fever was the common symptom of COVID, the use
of contactless infrared thermometers became the norm for quickly monitor-
ing people.
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7.2.2 Mobile-Based Crowdsensing Platforms

In Chap. 4 we discuss the paradigm of mobile health and the most commonly used
mobile applications and digital platforms for various healthcare applications.
However, mobile sensing can also serve as a population health management tool.
Although the core underlying technologies such as wearable devices, cloud comput-
ing, mobility monitoring and mobile data offloading remains same for both domains
of personalized and population health management, the goals are significantly dif-
ferent [7]. Various population health determinants about mental and physical health
can be collected using mobile crowdsensing platforms, which can subsequently be
used for developing predictive models. Some of the major areas in which mobile
apps and sensing platforms can aid the population health surveillance include
depression and anxiety monitoring, tracking sleep quality and insomnia patterns
and assessing connection between human mobility and spread of epidemics Fig. 7.1
lists these applications and the discussion follows next.

¢ Pandemic/Epidemic Tracking

* The wearable devices as well as ambient sensors could provide a great insight
into the degree to which population is at risk. As the use of IoT devices for
COVID management has been discussed above, other pandemic and epidemics
may also be tracked based on the vital parameters they affect. For example,
Influenza can most easily be monitored as it causes fever and may affect respira-
tory rate and heart rate variability; all of these can be measured using cost-
effective and easily available commercial devices. Ebola can be monitored as it
also causes fever; the spread can be tracked and patients can be quickly isolated.
Moreover, the ambient devices installed at the patient’s home can also shed light
on their health state, offering authorities with an opportunity to map the risks.

* The environmental sensors can also be used for detecting the risk of virus at the
given regions. The presence of mosquitoes, temperature and humidity of the
environment can help to predict the risk of Malaria, Dengue and other related

Mobile Based Crowdsensing

Mental Health Management Pandemic/Epidemic Tracking
Social Determinants Identification Warning and Awareness Systems
Policy Efficacy Measurement Chronic Disease Management

Fig. 7.1 Major applications of mobile-based crowdsensing for healthcare
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viruses. Even Zika can also be predicted by detecting and studying the mosquito
population dynamics.

* Mental Health Management

* Mobile based crowdsensing offers unique methods for assessing the mental
health issues of population. Data from mobile apps, wearable devices (such as
pulse rate sensors and SPO, monitors), ambient devices and social media usage
is integrated together to identify the anxiety, depression and other mental health
parameters, as earlier discussed in Chap. 4. Similar applications are also used for
detecting the mental health issues of population and various approaches have
been designed in this way. For example, data from user surveys designed based
on standard psychological tools and wearable devices can be integrated to get a
comprehensive insight into the mental health challenges; techniques of alterna-
tive medicines such as music therapy can be introduced based on the anxiety
detection using wearable devices; sleep patterns of a population can be identified
and its linkage with the occurrence of psychological issues can be studied.

* Various mobile apps targeting mental health issues, as already discussed in Chap.
4 provides community support. Elderly population all across the world are the
most prone to developing anxiety, depression and other psychological disorders.
Among many others, one of the major reasons is the lack of support system, as
many of them are empty nesters and they develop sense of loneliness. Although
there are community and religious centers often available for supporting them,
but in the presence of situations such as epidemic or lack of access to such loca-
tion because of residing at far-off areas, the mobile Apps, social media and IoT
all come together for offering community support. Based on the social trait and
risk assessment of elderly, relevant community support is offered through inter-
net by suggesting other users who are similar in attributes. Thus, people can have
a sense of human connectivity through using technology.

* Managing Chronic Diseases

* The massive data collected from participants using IoT wearable or ambient
devices sheds light on the lifestyle patterns as well as medical and family history
of the users. When such users are identified for suffering from chronic diseases
such as hypertension, diabetes or cardiac issues, it becomes possible to find out
the social determinants in a certain set of population. For example, it may be
identified that population at a certain region is used to of sedentary lifestyles
which might become the major reason behind obesity and cardiac diseases.

¢ The real-time monitoring and customized reporting which is the core functional-
ity of IoT further adds value to the population health systems, when combined
with alert generations. In case the values of vitals are found to be above threshold
for the patients, alerts are generated for the patients, doctors and also other
selected caregivers (such as family members). This functionality provides an
opportunity to the physicians and care providers for identifying the users at risk
and develop early intervention for them. For example, if many people belonging
from a group with common social determinants are facing any chronic issues, the
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medical experts and policy makers may approach others with the same attributes
for early interventions. This would prevent a larger set of population from devel-
oping the same high risks for chronic diseases.

* Warning and Awareness Systems

* Generating timely alerts for informing the patients, caregivers and physicians has
been one of the core reasons for using automated healthcare technologies. This
includes the usual fitness monitoring and chronic disease management platforms
for individuals as well as risk identification systems for the population. Many
recent applications of alerts and warnings were seen during the COVID. At an
individual level, the wristbands and mobile apps used to send alerts to the users
in different situations: when their body temperature rose, when they were in the
high-risk areas, when they were not maintaining the social distance, when they
were not allowed to get outside due to quarantine etc. similarly, the central dash-
boards were used by organizations and state to study the patterns of COVID
spread. For example, the hospitals used to enter the data about admission, death
and re-occurrence of COVID patients, which was subsequently fed into the cen-
tral dashboards for review of the decision-making authorities.

* In addition to generating warnings, the IoT based connected mobile apps also
play a crucial role for generating population health awareness. In the past, these
sessions were restricted due to physical access, schedule and cost. Today, the
community health systems collect population data using IoT devices, do analyt-
ics and conduct online awareness sessions. For example, a population sector at a
high risk of developing obesity and relevant diseases such as Diabetes type II
may be scheduled for a session with diabetologists and fitness experts to raise
awareness about the diet and exercise routines. The online awareness sessions
increase access, reduce cost and at the same time, also develop the sense of com-
munity as the participants may motivate each other.

* Monitoring Policy Efficacy

* In addition to monitoring the health statistics of population, the mobile based
sensing applications can also provide an insight into the effectiveness of the gov-
ernment’s policies. For example, the technology was widely used during
COVID-19, where the impact of government’s policies regarding lockdown,
social distancing, travel restriction and quarantine was monitored. Moreover, the
degree of implementation of the policies was also measured using the same tech-
nology by monitoring the number of devices at home, and those at public places.
Similarly, mobile app based survey can easily be conducted to identify the men-
tal and physical health of population by taking their own feedback. The public
satisfaction with the health-related policies of the government can quickly be
identified using survey; this would not only improve the public trust on state, but
would also offer the policy makers with a chance to integrate broader perspective
in the future policies.
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7.2.3 Healthcare Resource Management

The crucial resources of healthcare sector that include the workforce and healthcare
inventory, equipment/facilities and medications can be optimized using real-time
data obtained by IoT. Wireless sensors, tags and devices associated with medical
equipment and facilities help to collect data and optimize usage and allocation of
public resources. Eventually, the data is transmitted to the remote servers, from
where policymakers can get access via comprehensive reports and graphs; this helps
in allocating sufficient resources to each region. Some of the areas in which IoT
plays an important role for resource management are highlighted in Fig. 7.2:

* Inventory Management

» Using connected sensors, hospitals can deploy smart shelves and cabinets for
asset management. Such modern shelves automatically track the inventory levels
of medical supplies, medications, and equipment, ensuring timely restocking and
reducing waste. Moreover, RFID tags are often placed on assets and equipment
to track their location. Smart refrigerators also contribute to the inventory man-
agement by maintaining and logging the required temperature by diverse medi-
cal supplies. All these initiatives help to collect real-time data about medical
inventory, prevent loss and preventive maintenance.

e Smart Shelves and Cabinets

Inventory Management « RFID Tags

I ¢ Bed Management

Patient Flow Optimization : « Queue Management

. e Resource Allocation

Emergency Management | ¢ Disaster Preparedness

. Intrusion Detection
Supply Chain Management ¢ Cold Chain Monitoring
e Automated Ordering

loT for Healthcare Systems

™ " 1 ¢ Environmental Monitoring
Facility/Equipment Management * Predictive Maintenance

1 ¢ Intrusion Detection
¢ Cold Chain Monitoring
e Automated Ordering

Staff Management

Fig. 7.2 Applications of IoT for public healthcare resource management
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* Patient Management

* Bed management has been one of the first IoT application for the hospitals.
Sensors are embedded with hospital beds which inform the centralized patient
information systems as well as state authorities about the occupancy of each bed.
The occupancy information helps to reduce the staff workload and improves the
processes of discharge and admissions. Moreover, the sensors can also be
deployed for informing about the malfunction of various components of bed,
which reduces the downtime and improves the patient service quality.

* Also, patient flows are optimized using IoT devices as the patients are continu-
ously monitored using wearables which reduces the need for hospital visits over-
all, and particularly the re-hospitalization rates [8]. Once the patients are at
hospitals and they visit various departments such as Out Patient Department
(OPD), diagnostic labs, X-rays, etc., their flow can be monitored using wrist-
bands, RFID, cameras and location sensors. This also helps to identify the bottle-
neck process. As a result of these measures, hospitals need to manage shorter
queues, result in cost-savings as the staffing needs are reduced. Automated
check-ins have also been installed at various facilities, which reduces the queu-
ing time as patients can check-in from multiple kiosks and even from their own
mobile applications.

» Staff Management

* Asdiscussed above, IoT facilitates inventory and patient flow management in a
way that staffing need at each hospital is reduced, hence, providing opportunity
to the state to allocate staff at the most required locations instead of random
assignments without any real-time monitoring. There are various approaches
taken by healthcare systems based on their needs and shortages. Smart wrist-
bands or RFID integrated wearables are used at the most places to identify the
location of each staff member; these can also be used in integration with patient
ID cards or room tags in order to identify the response time. Since healthcare
staff is short at almost all of the world, IoT also helps in staff retention; the wear-
ables for nurses, doctors and other staff, data from smart time machines and
performance dashboards all can be integrated to reduce the possible burnout.

* Supply Chain Management

* As compared to other sectors, supply chain management in healthcare is critical
as it directly impacts the quality of treatment for patient and may cause serious
harms. First and foremost, it directly impacts patient safety, regulatory compli-
ance, and cost management by ensuring the timely delivery of essential medical
supplies. Its complexity, need for rapid emergency response, and integration with
advanced technologies make efficient management vital for high-quality health-
care delivery. Among many other aspects, IoT helps to manage intrusion detec-
tion for healthcare supply chain; this is particularly relevant for the medicines
that travel long distances before reaching the patients. Today, RFID based con-
tainers and vehicles are used for ensuring that the medicines which were packed
and dispatched by the manufacturers reach in their original form to the hospitals
and patients. There is a high risk involved in case intrusion happens enroute and
some medicine which do not satisfy the quality criteria or are expired are added
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to the consignments. To avoid these, RFID technology is used and each package
is checked by the readers at multiple locations to ensure that all the packages are
intact and meet the quality standards. GPS sensors also help to identify the loca-
tion of vehicles as well as to identify exact points where intrusion has taken place.

» Further to avoiding intrusions, it is also critical to ensure that medicines reach
desired locations, while be in their required temperature range. Various medi-
cines are categorized as per their requirement of having specific temperature
ranges and the temperature should not go up or down the specified threshold else,
they would not remain effective; for example, the medicines to be maintained at
the temperature range of 2—8 °C should not be frozen. This process of maintain-
ing the temperature of medicine products at the required values throughout the
supply chain is referred as cold chain management. IoT temperature sensors col-
lect real-time data about the temperature and send to the remote dashboards. The
stakeholders may immediately know about the temperature variations and may
arrange for alternative methods to protect the medicines. Moreover, there are
also dataloggers present within the containers which keep all the record of tem-
perature; these logs are then checked at the points of entry at distribution centers
and pharmacies. In case the logs show that temperature had gone down or up
during a journey, entire consignments worth thousands of dollars can be rejected,
hence, guaranteeing patient safety.

* Automated ordering for medicines and medical supplies has also become possi-
ble due to the use of smart refrigerators, shelves and cabinets. When the sensors
integrated with this equipment identify the shortage of supplies, they could place
automatic orders. This reduces human intervention and streamlines the procure-
ment process. At one hand, this technology ensures that the supplies never get
short on shelves and remain available at the required time, on the other hand, it
eliminates the problems of over-ordering and stocking of medicines and sup-
plies. For example, this problem is often faced during the incidents such as
COVID when people and private hospitals were stocking on necessary life sav-
ing medicine. In case IoT and relevant technologies are used, the state gets an
insight about the exact point where problem is introduced in the system, leading
to better administration.

* Facility/Equipment Management

» Using environmental sensors such as temperature and humidity, the healthcare
facilities can be optimized to perform. For example, the lightning and cooling/
heating systems can be monitored in real-time and can be remotely operated to
reduce the energy consumption. Cameras and proximity sensors can also be used
in integration with environmental sensors to further automate the facility man-
agement. Various logics can be designed in smart healthcare facility manage-
ment scenario; if there is no one present at a facility, the cooling/heating system
may be shut down despite the temperatures.

e IoT also serves well for healthcare equipment management, again due to the
basic functionality of real-time monitoring. The use of vibration, pressure, flow,
gas, load and position sensors have been common for industrial equipment moni-
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toring. The sensors relevant to hospital equipment are now used to inform about
the need of repair and identification of expected malfunction due to the routine
wear and tear such as rusting. When informed timely, the hospital authorities
may timely replace or repair the equipment which improves the service quality.
If the need be, the hospitals can request state authorities for the procurement of
new equipment well in advance, instead of waiting for actual crash to happen. At
the level of state, this will not only reduce the cost of repair, but would also
reduce the risks for patients. As ideally, all the hospitals should be connected, the
state will also have information if similar equipment is lying underused or unused
at some other location, it can also be relocated to the place where it is most needed.
* Emergency Management

» Disaster and emergency response planning is one of the core responsibilities of
the state healthcare authorities. With the help of connected devices and systems
feeding data into central dashboards, it becomes possible for the authorities to
identify the best suited locations for offering care to those affected by the disas-
ter/emergency. Just like the patients, the healthcare staff can also be allocated to
the location with the most patient influx, rather than staying idle at their regular
workplace. The ambulance drivers can also be tracked and sent alert about the
locations they must reach; in this context, the handheld devices of drivers and
GPS trackers of vehicles come into play. It becomes possible for the authorities
to route the nearby ambulances to the affected location which improves the
chances of survival of the affected by reducing the response time.

* The state can be better prepared for dealing with disasters with the help of
IoT. As discussed above, the authorities are regularly updated about the factors
such as bed occupancy, equipment malfunction and shortage of staff. Based on
this data, the policymakers can easily assess their capacity to accommodate casu-
alties in case some disaster happens. For example, if 80% of the healthcare
resources remain occupied all the time under normal circumstances, the planning
division might need to allocate more budgets to develop more healthcare infra-
structure to deal with emergencies.

7.3 Data Science for Population Health Analytics

With the massive volumes of data available, population health management has
become easier than never before. These systems have three major tasks: collecting
and integrating data from multiple sources, applying best suited analytics to the col-
lected data and providing the required care to the population through appropriate
policy development and implementation.
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7.3.1 Data Integration

As discussed in Sect. 1.7, the second level in the IoT-DS-AI nexus is DS, which
takes data from the IoT devices. Although due to availability of electronic health, it
has become easier and practical to gain quick insights into population health trends,
there is a need of integrating data obtained from multiple sources. Previously, there
was no concept of continuous data streams flowing through wearable/ambient sen-
sors or mobile apps; all data available used to be the medical history of patients
available with their doctors; however, now we have distributed system of health data
generation, with significantly increased number of stakeholders. Data is generated
by separate hospitals, clinics, diagnostic centers and patients’ devices; all sources
claim ownership of their data and often do not share even with the patients. This is
particularly valid for the developing and under-developed countries where it is more
critical to develop and implement laws governing data ownership and sharing.
Therefore, there is a need to integrate health data generated from various points in
order to develop a clear picture of the patient health both at individual and popula-
tion level. The key steps used for data integration in the healthcare domain facili-
tated by DS are shown in Fig. 7.3:

Data Science has developed various tools for data integration simplifying the
interpretation for healthcare stakeholders. Some of the examples of data integration
tools include Talend, Informatica, Apache NiFi, and Microsoft Azure Data Factory.
These tools provide built-in functionalities for data extraction, transformation, and
loading, as well as for handling complex data integration workflows. While integrat-
ing data from various sources, it is also crucial to manage the synchronization. DS
tools set up processes for regularly updating the integrated data and resolving any
discrepancies that may arise between the source systems and the integrated
repository.

7.3.2 Population Risk Identification

Through applying data science, the governments are mainly interest to develop their
health contingency plans to deal with any emergencies. These plans aim to ensure
that healthcare systems can continue to operate effectively during events such as
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Fig. 7.3 Data integration for population health using data science
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pandemics, natural disasters, bioterrorism attacks, or other public health emergen-
cies. The key components of health contingency planning served by data science
include predictive analytics through using ML models and simulations, resource
allocation, and managing public health surveillance measures. DS also supports to
identify the impact of emergency/disaster by providing large scale data.

As discussed above, collecting data from multiple population sectors help the
authorities to define certain population groups. For example, some population
groups can be defined based on their risks towards chronic diseases or viruses.
Subsequently, the risks are stratified based on the risk level of each patient; this
helps to further narrow down the risk assessment and prioritize the patients for their
hospital visits, hospitalizations etc. Thus, risk assessment and population categori-
zation takes place. Next, based on the risk stratification, the reports and visualiza-
tion are produced for communication with all the stakeholders including policy
makers. Finally based on the risk assessments, the governments allocate resources
to each sector according to their demographic assessment of the population
health risks.

7.3.3 Social Media and Health Data Analytics

Social media has emerged as a major source of big health data. Data analytics are
increasingly being performed over social media data which help to identify public
health trends, disease outbreaks, patient experiences, and perceptions about/satis-
faction with healthcare delivery. As a first step, health-related information, opin-
ions, and experiences are collected through various social media platforms like
Twitter, Facebook, Instagram, and Reddit; APIs (e.g., Twitter API) and web scrap-
ing are often used for this extraction. Next step is data processing, as people use
natural language to write their opinions on social media; therefore, to infer the rel-
evant information, text preprocessing steps, including tokenization, stop-word
removal, stemming, and lemmatization, are applied to clean the data. Moreover,
multi-language content can be dealt with by using language detection and transla-
tion services. For data analysis, the techniques of Natural Language Processing,
Statistical Analysis, Predictive Modeling and visualization are often used for social
media health related analytics; these techniques are summarized in Fig. 7.4:

Data analytics performed over social media posts helps the authorities to gain
knowledge about disease surveillance and public perceptions. Once the comprehen-
sive reports and visualizations are developed, the governments can then make effec-
tive policies to promote public health education, public health research, health and
behavioral modification, professional development and doctor-patient relation
development [9]. Social media has often been used for creating health awareness
among population. The impact of policy and training influence can also be effi-
ciently identified by mining relevant public opinions from social media.
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Fig. 7.4 Data science techniques for social media analytics

It is also important to note that despite having numerous advantages for using
social media to infer population health trends, there are also various challenges. For
example, there could be misinformation as anyone can post about anything on the
social media, which could often lead to false interpretation about disease outbreaks,
risk factors, unavailability of medical resources, etc. There are always privacy con-
cerns which may restrict users from sharing their complete information on social
media; this on one hand will protect the user’s confidentiality, but on the other hand,
may restrict the use of analytics as the lack of information may create hurdles for
population health assessment. Moreover, social media is known to cause mental
health issues due to creating anxiety about various social issues; this trend could
also lead to false interpretations of population mental health inferred by data analyt-
ics. There are also legal, ethical and professional concerns about using social media
for posting health-related information. All these challenges will affect the potential
of data analytics for true identification of population health trends and risks.

7.4 Artificial Intelligence for Population Health Management

Artificial intelligence tools such as ML and DL algorithms have introduced novel
applications in the domain of healthcare. The data generated from the lower levels
of IoT-DS-AI nexus is finally fed into Al for developing preventive measures target-
ing improving population health outcomes. Most of the time, the applications of Al
in healthcare with a focus on individual health can also be scaled to incorporate the
public health. In this section, we present some of the approaches that deployed Al
for managing population health:
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7.4.1 Al for Managing COVID

Al firstly facilitated the expert community through offering Natural Language
Processing (NLP) based text processing. During the years of COVID-19, hundreds
of reports and research papers were published every day. Without using advanced
Al based text mining algorithms, it could not have been possible to identify the
trends and patterns of disease spread, high risk areas, etc. Al offers assistance to
identify and summarize the literature for the experts on urgent basis. Several high
quality and authentic datasets were developed as a result of advanced Al algorithms;
some examples include WHO’s COVID-19 database [10] COVID-19 Open Research
Data Set [11] and LitCOVID [12].

7.4.2 Al for Staff Management

The data from the IoT and DS algorithms is fed into Al tools for managing the hos-
pital staff, particularly doctors and nurses. Al algorithms can optimize shift schedul-
ing by considering various factors such as staff availability, qualifications, and
patient needs, ensuring adequate coverage while minimizing overtime and reducing
burnout. Al also plays an important role in the modern workforce allocation systems
through skill matching; this also ensures the retention and engagement of employ-
ees. As previously mentioned, IoT devices and data analytics algorithms help to
streamline the patient flows; Al is next in the nexus and facilitates predicting the
patient flows, which in turn help to manage the shift hours and allocate resources to
wards and hospitals according to the expected workload.

Various innovative proposals have been made for using Al for healthcare staff
monitoring. A simple algorithm SVM could be used for monitoring drowsiness in
the nursing staff [13]. Again, IoT and ambient sensors can be used to identify the
work habits, and physiological indications of employees, which are used to detect
sleepiness using SVM that has been trained over extensive sleep dataset.
Subsequently alerts can be generated for the relevant employee and their team leads
to reduce the chances of accidents. This would not only reduce the medical errors
but would also assist the authorities to review and evaluate their working hours/staff
shifts policies. Similarly, Al based tools and simulators have been developed for
offering trainings to the staff, which also improves the quality of services they offer.

Al algorithms also provide various insight about the performance analysis of
workforce, as well as predictions about the turnover rate. The top performers in each
hospital can quickly be identified by running the AI algorithms that work on various
performance related metrics of employee; some metric would be number of errors
made, number of absences, average response time for patient requests, patient satis-
faction rates, number of tasks completed, team collaboration, etc. Hence, use of Al
for workforce management at the hospitals facilitates the state decision making
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about new hirings in the sector, relocation of the existing staff, required number of
new medical graduates, etc. Since the availability and retention of healthcare staff
has a direct influence over quality of care extended to the patients, Al serves the
governments for effective human resource planning.

7.4.3 Al for Health Disaster Detection

Natural disasters are often associated with healthcare crises for affected states. Al
models assist to predict these disasters through assessing the data received from
various sources such as IoT sensors. Algorithms of logistic regression, KNN, SVM
and decision tree can predict earthquakes and their severity for specific regions;
neural networks can be trained to predict floods; random forest can be used to pre-
dict typhoons. Most of these predictions can be made on low computing intensive
edge devices which further adds to the cost-effectiveness of using technology for
disaster monitoring [14]. All these computations are then transmitted to central state
dashboards to facilitate analysis about the impact of disaster, observation of trends,
and planning for resource allocation to manage the public health emergencies.

7.4.4 Al Integration with Social Media

Big data generated from social media is also analyzed by Al algorithms for identify-
ing various aspects of population health. The hierarchy of public health actions
taken with the help of Al applied on social media data has been presented in Fig. 7.5:
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AT algorithms ranging from simple to complex, all can be applied for predicting
and detecting various health issues and public perceptions/concerns about them. For
example, DL models are widely used for interpreting the datasets generated by
social media. DL model has been developed for assessing the impact of COVID on
population’s mental health [15]; similar models have been proposed for early detec-
tion of disaster achieved through aggregating data from millions of social media
accounts; furthermore, ML algorithms can also provide insight into disaster by
quickly analyzing the camera feeds received from social media account and public
cameras. Clearly, the early detection helps the authorities to plan efficient allocation
of resources which improves the chances of minimizing casualties.

As shown in Fig. 7.5, the Al tools, using social media data can predict the upcom-
ing health disaster or concerns of population. These algorithms could also detect the
occurrence of disasters quicker as compared to the conventional methods. The data
received from GPS sensors in integration with social media posts facilitate to iden-
tify the pin-point location of disaster. Once detected, the decision support systems
fueled by AI algorithms and tools such as ChatGPT can offer advise to the policy-
makers for efficient strategies based on the learning from best global practices.
Furthermore, the impact of the policies implemented can also be evaluated using
social media feed again. Interestingly, the policymakers also get an opportunity to
even modify their policies with the help of social media analytics and Al as also
illustrated by Fig. 7.5.

7.4.5 Al for Large-Scale Lab Diagnostics

The modern healthcare systems rely largely on the labs and other assessment. All
the processes of diagnosing, treating and managing the diseases are influenced by
the quality of lab tests. Al clearly surpasses human understanding and interpreta-
tion of lab samples mainly due to learning from millions of data points. Several
ML algorithms have been developed and tested for detecting microorganisms and
their accuracy has been found comparable with the conventional testing equip-
ment. These ML algorithms deploy various modern techniques to develop diagno-
sis such as microscopic imaging, gene sequencing and metagenomic sequencing
results of the original specimen [16]. Mostly, the use of Al has been recommended
for susceptibility testing and blood cultures as accuracy in these areas has been
remarkable. By using Al algorithms, the governments get benefits of having accu-
rate, faster and cost-effective test results. When conducting tests on a massive
scale, such as happened during COVID-19, Al can make the process efficient
and fast.
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7.5 Critical Factors for Using Technology for Population
Health Surveillance and Resource Optimization

As discussed in this chapter, the integration of IoT, Data Science (DS), and Artificial
Intelligence (AI) offers transformative potential for population health surveillance
and healthcare resource optimization. These technologies, provide real-time, com-
prehensive insights into public health trends, emerging health threats, and health-
care resource usage. In this section, we present some of the critical factors which
must be taken care of, while deploying these technologies.

7.5.1 Data Collection and Integration

The role of IoT devices is fundamental to the IoT-DS-AI nexus. The deployment of
wearable and/or ambient IoT devices is crucial for gathering diverse health-related
data. These devices enable continuous and remote monitoring of individuals’ health
metrics, such as heart rate, blood pressure, and air quality, which provides the basis
of population health analytics and risk predictions. Once the data is obtained, next
phase is of data integration, which is also a crucial requirement for population health
assessment. Data from diverse sources must be integrated including those generated
by IoT devices, electronic health records (EHRs), social media, and public health
databases.

7.5.2 Ensuring Quality of Data

It is essential to ensure the quality, reliability, accuracy and precision of the IoT
devices at the lowest tier of [oT-DS-AI nexus, as it would govern the entire process
of population health management. In case data sensed and transmitted by IoT
devices is inaccurate, all the reliability of decision-making process may be compro-
mised. It is also important to deploy effective data science methodologies to clean
and preprocess the vast amounts of data collected, removing noise and addressing
inconsistencies.

7.5.3 Advanced Analytics and Predictive Modeling

Once the cleaned data is available, advanced ML and DL techniques are used for
analyzing large datasets and identifying patterns, trends, and anomalies. Predictive
modeling helps in forecasting disease outbreaks, identifying at-risk populations,
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and optimizing resource allocation. It is critical to identify and deploy the most suit-
able ML/DL models to be able to reach the correct population health inferences. In
this context, the capabilities and limitations of various algorithms must be taken
care of.

7.5.4 Interoperability and Standardization

As we have seen, each layer of the IoT-DS-AI nexus makes use of a large number
of devices and software platforms, the heterogeneity of these platforms makes it a
challenge to exchange the information between them. It is vital to developing
interoperable systems that can communicate and share data efficiently, for a com-
prehensive population health surveillance. In this regard, standardization would
facilitate the seamless exchange and utilization of data across various platforms.

7.5.5 User Adoption and Training

For both the aspects of population health surveillance and healthcare resource opti-
mization, it is mandatory that patients and healthcare professionals agree to use the
required hardware/software/mobile apps, etc. Resistance to change and the learning
curve associated with new technologies must be mitigated through comprehensive
training programs, for both the sectors of patients and professionals. For patients,
engaging the public and raising awareness about the benefits of IoT and data analyt-
ics for health surveillance can enhance user adoption and participation. On the other
hand, training healthcare professionals to effectively use IoT devices and interpret
data analytics is essential for achieving efficient population health surveillance and
resource optimization.

7.5.6 Policy and Regulation

There is still a lack of policies, laws and regulations that govern the use of comput-
ing and communication technologies for individual and population health manage-
ment. Regulations that address data privacy, security, and ethical considerations
need to be developed and implemented. Government and institutional support
through policies that promote the adoption of these technologies is crucial to achieve
their full potential in the domain of public health.
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7.5.7 Privacy and Security

When particularly managing individual or population health using technology, the
focus is mostly on generating and sharing human subject data. In the past, the
patient history was managed on paper files and also the survey forms were usually
collected on paper; hence, there was much lesser probability of sensitive informa-
tion leakage as compared to today. Therefore, robust data privacy measures, includ-
ing anonymization and encryption, must be implemented to safeguard sensitive
information.

In addition, we not only have to be cautious for the human element, but also for
the IT infrastructure security. It is critical to ensure the security of IoT devices,
cloud servers and data analytics platforms to sustain the public trust on technology.
Failing to do so will lead to limited or no deployment of IoT-AI-DS nexus for indi-
vidual as well as population health surveillance.
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Chapter 8 )
The Way Forward i

8.1 Challenges

8.1.1 Outdated Infrastructure

The outdated computing infrastructure of medical facilities causes one of the major
hurdles in the deployment of IoT for numerous applications. Since the core of IoT
integration exists in data collection, processing and analytics, the computing facili-
ties available should be advanced enough to accommodate these needs. Unfortunately,
many medical facilities still rely on legacy systems that lack the capacity to handle
the vast amounts of data generated by IoT devices. This limitation not only hampers
the efficiency of data processing but also affects the real-time analysis and decision-
making crucial for patient care.

8.1.2 Volume of Generated Data

Integrating IoT solutions within the healthcare domain creates tremendous amount
of data. The typical IoT applications for the hospitals involve monitoring the hospi-
talized and at-home, integration with Electronic Health Records, monitoring the
resources, monitoring the staff, monitoring/managing the medical equipment and
improve the overall operations such as reducing the waiting time for Emergency
Room or reducing the electricity consumption [2]. All of these processes generate
massive amounts of data, which must be realized by all the stakeholders. The hos-
pitals and other relevant facilities should have secure space available for storing the
data, either online or offline. In addition to the capacity of storing and processing
data, the hospitals also need to develop/implement efficient policies for secured
access to patients’ data. In case the organizations are not prepared for managing the
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challenges such as data ownership, access rights, authorization and accountability,
there could be serious obstacles caused for attaining the full potential of health IoT
systems.

8.1.3 Increased Vulnerabilities

Connecting massive number of IoT devices into the healthcare sphere simply means
offering more points of intrusion to the attackers. Health IoT devices provide a good
opportunity to hackers, not only for breaching into the hospital’s IT infrastructure
but also to alter the medical equipment/apps to send altered medical information;
hence the use 10T does not only risks hospital’s infrastructure, but also the life and
well-being of patients. There is a serious lack of standards for the IoT equipment
often used in healthcare due to the diversity of manufacturers and platforms; this
further complicates the enforcement of robust security measures.

8.1.4 Confidentiality and Privacy

As discussed throughout the book, the users of healthcare technology are required to
provide details about their present and past medical history, family, lifestyle etc. For
the innovative applications such as population health surveillance requires more and
more personal data. Sharing this information makes the users prone to breaches and
attacks. People are always doubtful about unauthorized access which could happen
due to vulnerabilities in IoT devices or network security. Also, patients may have
limited control over their data once its collected and shared among various systems
as there is still a lack of framework for data sharing and data ownership; there is also
no specific consent-management techniques for digital patient data, that used to be
a norm for older paper-based survey forms. Modern data integration also creates
challenges for assuring confidentiality and privacy because even after anonymiza-
tion, it is possible that personal identities are revealed due to combining multiple
data sources. Similarly, people are increasingly becoming aware of the data analyt-
ics and Al biases which could lead to discriminations in healthcare decision for them.

8.1.5 User Adoption

One of the major challenges in implementing health IoT solutions is the need for
extensive training for healthcare professionals. Doctors, nurses, administrative staff,
and other healthcare workers must learn to use new IoT technologies effectively,
which can be time-consuming and costly. Resistance to change is common, as many
professionals may be skeptical about the reliability of automated systems for critical
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diagnostics and treatment decisions. The steep learning curve associated with these
advanced technologies can further hinder adoption, as healthcare workers might
find it difficult to integrate new workflows into their established routines.
Additionally, patients often struggle with understanding and using personal IoT
health devices, which can lead to incorrect data collection and reduced effectiveness
of these technologies. Particularly, due to the existing digital divide in the develop-
ing countries, it would be a challenge to convince people to put IoT devices to a
regular usage [3]. Since both the healthcare professionals and patients in these
regions may lack the necessary skills and resources to effectively utilize IoT tech-
nologies, it would be even tougher to deploy them.

8.2 Managing the Challenges

The users need to be first convinced about the expected benefit of health 10T sys-
tems, and subsequently basic trainings must be offered to reduce the hesitation with
the use of technology/apps. Healthcare professionals need to be trained to use new
IoT technologies effectively. This includes not only doctors but also nurses, admin-
istrative staff, and other healthcare workers who interact with IoT systems.
Resistance to change and the learning curve associated with new technologies can
impede the adoption of IoT solutions. Doctors may be hesitant to rely on automated
systems for critical diagnostics and treatment decisions, while nurses and other staff
might find the new workflows disruptive and challenging to integrate into their daily
routines. Moreover, patients also need to be educated on how to use personal IoT
health devices accurately to ensure they benefit from these technologies.
Comprehensive training programs and ongoing support are essential to ensure all
users feel confident and proficient in using IoT technologies, which is crucial for the
successful implementation and maximization of IoT benefits in healthcare settings.
Some of the major recommendations offered as a result of in-depth analysis pre-
sented in this book follows next:

8.2.1 Reliability and Performance

The core requirement of the development and implementation of ambitious deploy-
ment of JoT-DS-AI nexus is to ensure its reliability and satisfactory performance at
various levels of hierarchy. To begin with, a scalable and fault-tolerant architecture
must be designed to store and process large volumes of data. Efficient computing
and communication strategies must be adopted as per the requirements; for exam-
ple, distributed computing should be used for reducing latency and managing the
real-time processing, such as use of fog, edge and cloud computing. To maintain the
functionality and reduce downtime, redundant systems should also be developed.
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Since the healthcare decision making is largely governed by data analytics and
AT algorithms in the IoT-DS-AI nexus, it is crucial to ensure the quality and authen-
ticity of data. High-quality data collection, preprocessing, and cleaning must be
practiced to improve the reliability of Al models and DS analyses. Also, robust data
integration frameworks should be adopted to seamlessly combine data from various
IoT devices and sources. Before any healthcare technology is implemented, signifi-
cant level of testing and validation should be done to ensure satisfactory operation
from end-to-end. Extensive testing, including unit tests, integration tests, and sys-
tem tests, should be performed to ensure each component functions correctly.
Similarly, performance of AI models should be validated against real-world data to
ensure accuracy, reliability, and relevance.

Once tested and implemented, continuous monitoring and regular audits of these
systems should follow. Since the new vulnerabilities emerge every day, it is crucial
to ensure safety of these systems, as individual as well as population health could be
at stake. For the entire system including IoT devices, DS models and Al algorithms,
regular audits should be performed to detect and address issues promptly. Moreover,
as discussed previously in Chap. 3, predictive maintenance should be practiced to
further improve the reliability of system.

8.2.2 Security, Privacy, Ethics and Law

It has been universally accepted that there is a need to develop and implement stan-
dards, regulations and laws for governing the uses of computing and communica-
tion technologies for the healthcare domain. Some actions have been taken in this
regard; for example, a digital psychiatry task force has been formulated by American
Psychiatric Association (APA) for monitoring and evaluating the technology and
particularly Al solutions being used for mental health assessment and therapies.
Such taskforces will be responsible for assessing the technology solution for their
safety, efficacy, tolerability in addition to the usual evaluation of efficiency/quality
of offered services. Similarly, standards for evaluation of technology tools have also
been developed. APA has developed an App Evaluation Model called App Advisor
which could provide assistance to the users in choosing the health apps. This model
has also been replicated and used by other companies such as Division of Digital
Psychiatry and BIDMC at Harvard University App Evaluation [4]. It is hence,
expected that the healthcare solutions will be standardized soon.

There are various measures adopted by healthcare users and authorities to main-
tain security, privacy and ethics. First and foremost, the hospitals and other stake-
holders have to ensure adherence to the available standards and regulations such as
HIPAA (Health Insurance Portability and Accountability Act), GDPR (General Data
Protection Regulation); this measure guarantees that health data is handled in a
legally compliant and secure manner. Also, there are regular security audits and
compliance checks which help to identify and address potential security weaknesses
in the system. Secondly, there are technical measures such as encryption; it is ensured
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that all data transferred or stored remains protected by preventing unauthorized
access. Strict access controls have to be implemented; most commonly role-based
access controls or multi-factor authentication methods are used. Another common
method of ensuring patient privacy is anonymization of patient data; all such infor-
mation that can lead to identifying the patients is removed before analyzing the data
or sharing it with third parties. Moreover, data minimization is also an important
technique which refers to restricting to collecting only that data which is crucial.

8.2.3 Interoperability

Adopting the standards and legal framework is the major approach to ensure interop-
erability between the systems within each level and between the levels of IoT-DS-AI
nexus. Similar communication protocols (such as MQTT, CoAP, and HTTP/HTTPS
for IoT devices) must be used by different manufacturers, and wherever needs, APIs
and middleware should be used for creating a hub between multiple products. For
the efficient transmission and processing of data between cross-systems, common
data models and ontologies should be used to represent healthcare data, such as
SNOMED CT and LOINC. Moreover, data transformation and normalization pro-
cesses should also be developed and implemented. Another best health industry-
wide practice could be to develop interoperability frameworks that support multiple
protocols and standards to act as a bridge between IoT, Al, and DS systems; for
example, Service-Oriented Architecture (SOA) principles can be used to design
systems.

It is to be noted that maintaining interoperability will also in turn facilitate the
aspects of flexibility and scalability. The population health systems are expected to
enhance in the coming future, and ensuring that new systems can continue to be the
part of initially developed infrastructure is the key to success for individual and
population health management.

8.2.4 User Training and Support

Despite increasing deployment of technical solutions in the domain of healthcare,
there still remain significant user resistance to adopt these. Some of these reasons
include the fear of technology, lack of digital literacy and concerns about privacy
and security. For the goal of achieving good health for all, it is mandatory that users
accept and adopt the technology as they are the major stakeholders and mostly, also
the first point of data entry. Trainings must be provided to healthcare staff to effec-
tively use and manage IoT, DS, and Al systems. Throughout the lifecycle of IoT-
DS-AI nexus, comprehensive technical support must be offered to the hospital staff
to address any issues that arise. Likewise, awareness campaigns and trainings should
be developed for the public in order to convince them to use and appreciate the
technology.
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