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Preface

The advent of artificial intelligence (AI) has catalyzed rapid technological 
progress, driving advancements in complex problem-solving, optimization, 
and predictive modeling. In the realm of animal ecology, AI has emerged as 
a transformative tool, enabling detailed analyses of behavioral ecology, habitat 
utilization, conspecific and heterospecific interactions, and species’ adaptive 
mechanisms in response to environmental variability. AI’s computational 
frameworks are intrinsically linked to natural and ecological processes, drawing 
from the Darwinian principle of survival of the fittest. This interconnectedness 
reflects a dual approach: a bottom-up perspective, where ecological systems 
inspire AI development, and a top-down perspective, where AI deepens 
our understanding of ecological complexities and aids in the conservation  
of biodiversity.

Artificial Intelligence and Animal Ecology: A Review, delves into this 
reciprocal relationship, illustrating how AI models are shaped by biological 
phenomena and, conversely, how AI enhances ecological research. The book 
spans diverse interdisciplinary domains, highlighting bio-inspired optimization 
methods—such as swarm intelligence, evolutionary computation, and predator-
prey dynamics—alongside AI-driven ecological modeling and conservation 
strategies. Techniques like Genetic Algorithms, Particle Swarm Optimization, 
and Ant Colony Optimization replicate natural processes to improve ecological 
forecasting, species distribution modeling, and conservation planning.

Contributions from eminent researchers and ecologists provide critical 
insights into AI’s evolution through ecological principles and its application 
in solving real-world environmental challenges. The chapters explore AI’s role 
in replicating natural behaviors, interpreting species communication networks, 
understanding interspecific dynamics within fragmented habitats, and addressing 
ecological stressors in rapidly shifting environments. Additionally, the book 
examines advanced conservation technologies, predictive ecological models, and 
resilience strategies. It also projects future trends, positioning AI as a pivotal force 
in ecological science—offering innovative pathways for biodiversity preservation, 
ecosystem management, and sustaining ecological equilibrium amid accelerating 
global environmental change.
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We hope this book serves as a valuable resource for researchers, 
conservationists, and policymakers alike, fostering further innovations in AI-
driven ecological research. We extend our sincere gratitude to all contributors, 
reviewers, and institutions that have supported this endeavour.

Lidia Ghosh
Amiyangshu De
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Department of Computer Application, RCC Institute of Information Technology,  
Kolkata, West Bengal, India

This chapter provides a comprehensive overview of bio-inspired optimization 
algorithms, focusing on evolutionary and swarm intelligence techniques that 
draw on natural processes. By mimicking behaviors observed in biological 
entities—such as the survival strategies of animal groups, evolutionary 
adaptations, and swarm dynamics—these algorithms offer robust solutions 
for complex optimization problems across various domains. Core algorithms 
discussed include Genetic Algorithms (GAs), Differential Evolution (DE), 
Particle Swarm Optimization (PSO), Firefly Algorithm (FA), and others, each 
representing unique strategies to balance exploration and exploitation within 
the search space. Additionally, the chapter explores recent applications of these 
algorithms in fields such as engineering, healthcare, and finance, highlighting 
their adaptability and efficiency in solving real-world optimization challenges.

Introduction

Artificial intelligence (AI) has become a cornerstone in tackling a vast array of 
scientific and engineering problems, from information processing to intricate 
optimization challenges. Over the years, a range of techniques, including genetic 
algorithms, neural networks, evolutionary algorithms, and fuzzy logic, has 
evolved to meet the demands of these complex tasks (Fathi & Parian, 2021; 
Unal & Basiftchi, 2022; Kouhalvandie et al., 2022; Al-Qaysi et al., 2023). 
These intelligent optimization methods have proven invaluable across domains 
such as engineering, science, medicine, and satellite technology, especially 
in anomaly detection and system fault management. The driving inspiration 
for these advancements often stems from the natural world, particularly 
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the balanced processes observed in ecosystems, commonly referred to as  
“ecological equilibrium”.

The collaborative behaviors observed in various species, like ant colonies, 
bird flocks, and bee swarms, have significantly influenced algorithm development 
in fields such as computer science (Sharma et al., 2022). By emulating these 
interactions, researchers have created swarm intelligence algorithms that exhibit 
properties such as adaptability, scalability, and self-organization—qualities that 
enhance performance in problem-solving applications (Kaswan et al., 2023). 
These metaheuristics mimic animal and insect strategies, allowing for the efficient 
search of optimal solutions across numerous fields without requiring gradient 
information (Turgut et al., 2023).

Optimization, in essence, is the pursuit of an ideal solution, though this can be 
impractical for complex problems that would require exhaustive searches (Wu et 
al., 2022). Instead, metaheuristic algorithms solve such issues by imitating group 
behaviors observed in nature. For instance, algorithms like Artificial Bee Colony 
(ABC), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO) 
mimic the behaviors of bees, fish, birds, and wolves, respectively (Hackett, 2020, 
Darvishpoor et al., 2023). The foundation of these optimization algorithms is 
rooted in natural evolution, with significant contributions from Charles Darwin 
and John Holland, who pioneered Genetic Algorithms (GAs) in the 1960s, 
utilizing concepts such as selection, crossover, and mutation. The 1980s saw the 
advent of swarm intelligence techniques inspired by the behavior of ants, bees, 
and birds. Ant Colony Optimization (ACO), introduced by Marco Dorigo in the 
1990s and modeled on ant foraging, alongside Kennedy and Eberhart’s Particle 
Swarm Optimization, which simulates bird and fish social behaviors, exemplify 
this approach.

The synergy of swarm intelligence with evolutionary algorithms has produced 
robust optimization techniques that harness the strengths of both methods (Li, 
Ke, 2021; Chong et al., 2021; Rojas et al., 2022). These bio-inspired algorithms 
support a wide spectrum of applications, from optimizing construction parameters 
and aerodynamic designs to coordinating robotics and telecommunications 
networks (Tang et al., 2021; Suchi et al., 2023; Sahu et al., 2022). In healthcare, 
they assist in tasks like molecular docking and image segmentation, while 
in finance, they are used for portfolio management. They also contribute to 
sustainable development by optimizing renewable energy systems and improving 
neural network architectures, demonstrating versatility in solving large, nonlinear, 
and constraint-laden problems (Roni et al., 2022; Berditchevskaia et al., 2022; 
Ünal et al., 2022).

Evolutionary Algorithms

Genetic Algorithms

The natural world has long inspired technological innovation, and Genetic 
Algorithms (GAs) are a prime example, drawing on principles of natural 



	

selection and genetics to solve complex optimization problems (Liu et al., 
2023). GAs use a ‘population’ of candidate solutions that undergo processes 
akin to genetic recombination and mutation, gradually evolving towards optimal 
solutions based on a fitness function that reflects the problem’s objectives 
(Omidvar et al., 2021; Jiang et al., 2024). Higher-fitness solutions are more likely 
to be reproduced, aligning with Darwin’s “survival of the fittest” (D’Angelo 
& Palmieri, 2021). GAs introduce randomness while using historical data 
from previous generations to guide searches, distinguishing them from simple 
random methods. Key elements include the population of candidate solutions, 
chromosomes (representing solutions), genes (solution elements), and alleles 
(gene values), as shown in Figure 1. The algorithm iterates through processes 
of fitness evaluation, selection, reproduction, and adaptation to evolve solutions 
(Crespo-Herrara et al., 2021).

Figure 1: Example of genetic algorithm.

In computational applications, GAs represent solutions as genotypes (encoded 
forms) that may differ from phenotypes (real-world representations) (Haghrah et 
al., 2021; Banzhaf, & Bakurov, 2024). For instance, in the 0/1 Knapsack Problem 
(Setzer, et al., 2020), the phenotype solution is a chosen set of items, while the 
genotype represents this as a binary sequence. Through selection, crossover, and 
mutation, GAs achieve a balance between diversity and convergence. Selection 
is critical, with methods like Fitness Proportionate Selection (e.g., Roulette 
Wheel) and Tournament Selection ensuring that fitter candidates are more likely 
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to reproduce (Al Hijjawi & Awajan, 2024). Rank Selection bases selection on 
rank rather than fitness, preserving diversity, while Random Selection is less 
commonly used due to lack of direction.

Crossover combines parental genes to create offspring. Techniques include:
	•	 One-Point Crossover: Swaps genes after a random crossover point, balancing 

simplicity and efficiency.
	•	 Multi-Point Crossover: Allows more diversity but can disrupt beneficial gene 

sequences.
	•	 Uniform Crossover: Randomly selects genes from either parent, preserving 

diversity but risking disruption of effective gene combinations.
	•	 Whole Arithmetic Recombination: Useful for real-valued chromosomes, 

averaging parental genes.
	•	 Order Crossover (OX1): Preserves sequence order for scheduling or routing 

problems.

Mutation introduces diversity, with methods like:
	•	 Bit Flip Mutation: Flips bits in binary chromosomes, simple but limited to 

binary cases.
	•	 Random Resetting: Assigns random values within the gene range, good for 

integer encodings.
	•	 Swap Mutation: Swaps gene positions to vary sequence order, particularly for 

permutations.
	•	 Scramble Mutation: Shuffles gene subsets to explore new solutions.
	•	 Inversion Mutation: Reverses gene order within a subset, useful for problems 

needing sequence integrity.

Through these mechanisms, GAs effectively navigate complex search spaces, 
adapting solutions iteratively for enhanced optimization.

Differential Evolution

Differential Evolution (DE) is a nature-inspired optimization algorithm (Sheta et 
al., 2020), drawing on principles from animal ecology rather than specific animal 
behaviors. DE’s mechanisms reflect the adaptive dynamics seen in ecosystems, 
where populations evolve in response to environmental pressures.

	 1.	 Population-based Search (Ecosystem Analogy): DE maintains a population 
of candidate solutions throughout the optimization process, akin to a group of 
species adapting within an ecosystem.

	 2.	 Mutation (Ecological Adaptation): DE modifies individuals by adding 
the scaled difference between two random solutions to another. This 
mirrors genetic variation in ecosystems, where mutation aids adaptation to 
environmental changes.

	 3.	 Crossover (Combination of Genetic Traits): In DE, solutions recombine 
similarly to gene exchange in nature, which increases genetic diversity and 
enhances resilience to changing environments.
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	 4.	 Selection (Survival of the Fittest): DE selects individuals based on 
performance, akin to Darwin’s “survival of the fittest”, where the best-suited 
organisms are more likely to survive and reproduce.

	 5.	 Exploration and Exploitation (Ecosystem Dynamics): DE balances 
exploration (searching new areas) and exploitation (refining existing 
solutions). This mirrors how species expand into new niches or optimize 
behaviors to thrive in their environments.

	 6.	 Diversity in Population (Biodiversity): Maintaining diversity in DE 
helps avoid premature convergence and enhances robustness, much like 
biodiversity strengthens ecosystems against disturbances.

	 7.	 Self-organizing Behavior (Emergence): DE’s iterative process of self-
organization resembles ecosystems, where populations adapt and balance 
interactions within their environment.

While DE does not imitate specific animal behaviors, its principles—
population dynamics, adaptation, variation, and selection—are rooted in ecological 
processes, showing how nature-inspired algorithms can effectively tackle complex 
optimization challenges.

Swarm Intelligence Algorithms

Particle Swarm Optimization

Particle Swarm Optimization (PSO) (Gad, 2022) draws inspiration from the 
collective behavior of organisms like birds and fish working together toward 
a shared objective. In PSO, a swarm of particles, each representing a potential 
solution, explores the solution space to identify the optimal result (Passaro  
et al., 2008; Kiranyaz et al., 2009). Each particle updates its position based 
on its personal best-known position (pbest) and the global best position (gbest) 
achieved by the swarm, allowing for iterative convergence towards optimal 
solutions (Jain et al., 2022). This collaborative approach makes PSO particularly 
effective for diverse optimization problems.

Unlike GAs, where competition drives selection, PSO relies on cooperation, 
with successful particles influencing their neighbors (Li et al., 2017). Particles 
continuously share information, adjusting their search paths based on personal 
and collective successes, thereby moving closer to the global optimum. PSO has 
been successfully applied in fields like agriculture, finance, geology, and climate 
science. In some cases, particles also consider a local best (lbest) when interacting 
within a subset of neighbors, further refining the search process (Rahmani et al., 
2012; Turgut & Turgut, 2020; Hu et al., 2020). A flowchart in Figure 2a outlines 
the organized execution steps for a clearer understanding of the PSO process.

Firefly Algorithm

Fireflies are small, nocturnal insects known for their ability to produce 
bioluminescent light, which is generated chemically in the lower abdomen and 
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lacks infrared or ultraviolet frequencies (Carlson & Copeland, 1985). Fireflies 
use this light primarily for mating, predation, and as a defense mechanism (Evon, 
2020). Their flashing patterns inspired the Firefly Algorithm (FA), a metaheuristic 
optimization method based on attraction behavior. The FA relies on three  
core principles:

	 1.	 Fireflies are unisexual, allowing any firefly to attract another.
	 2.	 A firefly’s brightness (linked to the optimization objective) determines its 

attractiveness, with brighter fireflies attracting others more strongly. This 
attraction decreases with distance.

	 3.	 Fireflies with the same brightness move randomly, aiding exploration.

The FA’s attraction mechanism leads fireflies to cluster around local 
optima, while random walks help explore new solutions. This balance enables 
FA to efficiently solve both global and local optimization problems, including 
constrained and NP-hard challenges, often outperforming traditional algorithms 
with parallel processing capabilities.

FA has been applied across numerous domains due to its versatility and 
effectiveness. In engineering, it has optimized structural designs like pressure 
tanks, beams, and springs, consistently outperforming algorithms like PSO, DE, 

Figure 2: Flowcharts explaining the various Swarm Optimization Algorithms.
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and SA. In clustering, FA is effective for data grouping in data mining, pattern 
detection, and customer segmentation. In routing, it has been used to find optimal 
paths in transportation and communication networks, reducing delays in logistics. 
FA also supports industrial scheduling, improving resource utilization and meeting 
deadlines, while in image processing, it enhances segmentation quality and 
reduces image size. In healthcare, FA aids in image denoising, tumor detection, 
and optimizing drug delivery systems.

Ant Colony Optimization

In the 1950s, French entomologist Pierre-Paul Grassé introduced ‘stigmergy’, a 
form of indirect communication where insects modify their environment, leaving 
cues that guide others (Abdolrasol et al., 2021). This concept explains collective 
behaviors like those seen in ant colonies, where ants deposit pheromones along 
paths to food, prompting others to follow the most marked routes. This process 
optimizes resource gathering through positive feedback and autocatalysis, as 
demonstrated by Deneubourg et al. in the “double bridge experiment”. In this 
study, ants initially chose between two equal-length bridges randomly, but over 
time, the bridge with more pheromones became the preferred path, showing their 
capacity for optimizing path selection (Heylighen, 2011; Way & Khoo, 1992; Chen  
et al., 2021).

In ant colony optimization (ACO), this behavior is applied to solve problems 
like the traveling salesman problem, where ants (simulated agents) move across 
a graph that represents cities, with each edge representing a route (Dorigo et al., 
2003; Ariyasingha and Fernando, 2015). The traveling salesman’s problem has 
a set of cities which are given and all the distances between them are known. 
The goal is to determine the minimum distance that would be needed to pass 
through each city exactly once and come back to the starting city. More precisely, 
the problem is to identify a Hamilton cycle that is of minimum cost in a fully 
connected graph. In ACO, the problem is tackled by simulating a number of 
artificial ants moving on a graph that encodes the problem itself: in it, each vertex 
indicates a city and each edge stands for a relationship between two cities and 
means a route that can be used. Every edge is coupled with a variable referred 
to as pheromone collected and then read and modified by ants (Montgomery, 
2005). ACO is a metaheuristic algorithm and it is used iteratively (Dorgio & 
Stuzle, 2003). At each of the iterations, a number of artificial ants are taken into 
consideration. Each of them constructs a solution by proceeding from vertex to 
vertex on the graph with the provision that a vertex, which the current girl has 
not visited in her walk, must be visited. Indeed, at every step of the solution 
construction, an ant chooses the following vertex to be visited according to a 
stochastic mechanism that is biased by the pheromone. In the case of the vertex 
i, the next conduct is chosen randomly with the new holes that have never been 
visited before (as shown in the Figure 3a). Notably, if j has not been visited 
before, then the minimum distance within j is equal to the first element of the 
Distance list. chosen with probability that depends on the pheromone related to 
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edge (i, j), which must be proportional to the given pheromone. At the end of 
an iteration, depending on the quality of the solutions that ants have built, the 
values of the pheromones are changed with the intention that in the following 
iterations the ants will lean toward building better solutions.

Figure 3: Various swarm optimization algorithms inspired by animal behavior.

Artificial Bee Colony

The Artificial Bee Colony (ABC) algorithm (Karaboga et al., 2011) is inspired 
by the complex, efficient behaviors observed in natural bee swarms, particularly 
their foraging process (Figure 3b). Bees in a swarm are divided into employed 
bees, onlooker bees, and scout bees, each playing a specific role in gathering 
food and communicating its location, quality, and distance to the rest of the hive 
(Tasgetiren et al., 2013). Employed bees explore and exploit food sources, then 
share their findings through specific dances. Onlooker bees select food sources 
based on these dances, while scout bees search for new sources when existing 
ones are depleted (Beekman & Lew, 2008).

Honey bees use two primary dances to convey food source information: the 
round dance, indicating nearby sources, and the more detailed waggle dance, 
which communicates direction and distance relative to the sun. This form of 
communication optimizes the foraging process and exemplifies self-organization 
and division of labor (Gardner et al., 2008; Rohrseitz & Tantz, 1999). The ABC 
algorithm replicates this behavior as a metaheuristic for optimization. It begins 
by generating initial food sources (solutions), which the employed bees evaluate 
and communicate to onlookers. Scout bees search for new sources if needed, 
iterating this process until the best solution is found. Enhancements to the basic 
ABC, such as the Interactive ABC (IABC) and ABCgBest variants, improve 
convergence and solution diversity through modified selection and control 
parameters, outperforming other heuristic methods in some cases (Srinivasan, 
2011; Awadallah et al., 2019).

ABC has been widely applied across domains, including function 
optimization, job scheduling, and the Traveling Salesman Problem (TSP). In 
engineering, it optimizes assembly line balancing and parameter tuning in machine 
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learning models. ABC has also proven effective in neural network training, image 
processing, medical applications like tumor detection, and ECG signal denoising. 
In wireless sensor networks, it manages energy and data transmission, while in 
finance, it supports portfolio optimization (Karboga & Oztu, 2011). Through these 
applications and continuous improvements, the ABC algorithm—rooted in the 
natural foraging behaviors of honey bees—has become a versatile and powerful 
tool in computational intelligence.

Bat Algorithm

The Bat Algorithm (BA) is a bio-inspired optimization method that mimics 
the echolocation behavior of bats (Russ, 2021). In nature, bats use bio-sonar 
to navigate and hunt by emitting ultrasonic waves that bounce off objects; the 
returning echoes provide spatial information to help them avoid obstacles. BA 
replicates this process, treating each virtual bat as a potential solution that 
‘navigates’ the search space using echolocation (shown in Figure 3c). The 
algorithm uses parameters such as loudness and pulse frequency to balance 
exploration and exploitation, similar to how bats modulate these factors in 
response to their environment. Higher loudness values facilitate broader 
exploration, while lower values focus on refining known solutions, increasing 
the chances of finding a global optimum.

The algorithm updates the frequency, velocity, and position of each bat at 
each time step using the following equations:

	 fi = fmin + (fmax − fmin) . β	 (1)

	 vit = vi(t − 1) + (xi(t − 1) − x*) . fi	 (2)

	 xit = xi(t − 1) + vit	 (3)

Here, β∈[0,1] is a random number, and fi represents the frequency for each 
bat. The best global solution x* is determined by comparing all bats’ positions 
at each iteration. A new solution is generated based on the best solution when a 
random number exceeds the pulse emission rate, as shown in equation (4): 

 	 Xnew = Xold + ϵAt	 (4)

where ϵ∈ [−1,1] is a random number, and At represents the average loudness 
of all bats at the current iteration. Loudness Ai and pulse emission rate ri are 
updated as follows:

	  Ai(t + 1) = αAit ,                                                                   (5)

and	 ri(t + 1) = ri0 [1 − exp exp (γt)]                                                        (6)

where α and γ are constants. The algorithm continues iterating until a 
termination condition is met.

BA is widely applied due to its flexibility and effectiveness. In feature 
selection, it optimizes classification models by reducing features while 
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preserving accuracy. In image processing, it aids in thresholding, compression, 
and enhancement, improving quality and reducing file size. BA is also effective 
in control engineering for tuning parameters to maintain system stability. In 
speech and signal processing, it reduces noise and enhances quality, and in image 
segmentation, it determines optimal intensity thresholds, making BA a versatile 
tool across multiple fields.

Nature-Inspired Algorithms

Cuckoo Search Algorithm 

The Cuckoo Search Algorithm (CSA) is a metaheuristic inspired by the parasitic 
breeding behavior of certain cuckoo species (Figure 4a). These birds lay their 
eggs in the nests of other species, sometimes removing host eggs to improve 
their own offspring’s chances of survival. By mimicking host eggs and hatching 
earlier, cuckoo chicks often push out the host’s eggs, thus ensuring their own 
survival and enhancing reproductive success. CSA captures this strategy in 
its algorithmic structure, where ‘nests’ represent potential solutions, and new 
solutions (eggs) replace poorer ones based on a probability factor.

Figure 4: Cuckoo search algorithm and gray wolf optimizer algorithm  
inspired by animal behvior.

CSA incorporates the Levy flight mechanism, a natural foraging pattern, 
which enhances its ability to explore large search spaces effectively (Singh, 
2021). This blend of behaviors creates a strong balance between exploration 
and exploitation, making CSA well-suited for diverse optimization tasks. 
Applications include neural networks, where it optimizes weights and biases, 
and support vector machines for parameter tuning. CSA is also used in wireless 
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sensor networks for node deployment and clustering, and in image processing 
for tasks like enhancement and compression. In engineering, it improves traffic 
flow, tunnel construction, water distribution, and aerodynamics (Bunde, 2018; 
Ouallane et al., 2022).

In CSA, each cuckoo represents a candidate solution, while nests symbolize 
the search space. Levy flights (paths L1 and L2) guide cuckoos through the search 
space, helping them locate the “best nest” (optimal solution). Poor solutions are 
discarded, and better solutions form the next generation. This iterative process 
continues until the algorithm converges toward the optimal solution, balancing 
exploration and exploitation to identify high-quality results.

Gray Wolf Optimizer 

Social Hierarchy and Hunting Behavior 

The gray wolf (Canis lupus) is an apex predator that lives in packs, typically 
consisting of 5–12 members (El-Kenawy et al., 2020), organized in a strict 
social hierarchy essential for survival and hunting efficiency (Figure 4b). At the 
top are the alpha wolves, a dominant male and female, responsible for making 
key decisions on hunting and daily activities (Hajihosseini & Hutcherson, 2021). 
Alphas lead by example and command respect, although they may occasionally 
mirror other pack members’ actions to maintain group harmony (Dubey et al., 
2021, Nakra et al., 2024).

Supporting the alphas are the beta wolves, who assist in decision-making and 
uphold the pack’s structure (Ghasemi et al., 2021). In the alpha’s absence, a beta 
may take on leadership. Omega wolves occupy the lowest rank, often diffusing 
pack tensions by assuming submissive roles, and sometimes nurturing younger or 
injured pack members (Entrikin, 2023). Wolves that are neither alphas, betas, nor 
omegas are classified as deltas; they act as community leaders, guards, and hunters, 
maintaining pack security and resources. The hunting behavior of gray wolves 
also reflects their complex social structure and is characterized by several phases:

	 a.	 Tracking, chasing, and approaching the prey.
	 b.	 Stalking and encircling the prey until it can no longer escape.
	 c.	 Coordinated attacks to subdue the prey.

Algorithmic Framework 

The GWO algorithm models these social dynamics within the wolf pack. In 
this framework, the optimal solution is represented by the Alpha wolf (α), the 
second-best solution by the Beta wolf (β), and the third-best solution by the 
Delta wolf (δ). The remaining solutions correspond to Omega wolves (ω).

	 a.	 Encircling the Prey:

	
→→→ →

D = |C  . Xp (t) − Xp (t)|  	 (7)
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→ → → →
 X (t + 1) =  Xp (t) − A .D   (8)

Here, t indicates the current iteration, → → →A and C are coefficient vectors, Xp is 
→the position vector of the prey, and X indicates the position vector of a gray wolf. 

The following equations describe the position updates of the wolves:
→ → → X1 (t + 1) = X(t) − A1 . D  (9)

→ → A = 2→a →r → →
1 − a and C  = 2r2  (10)

The components of decrease linearly from 2 to 0 over the course of iterations, 
and →r →

1 , r2  are random vectors in [0,1]. Omega wolves adjust their positions 
based on the positions of the alpha, beta, and delta wolves, benefiting from their 
superior knowledge of potential prey locations:

→ → → →
 Dα = | C .1  Xα(t) − X (t) | , (11)

→ → → →
 D .β = | C2  Xβ(t) − X (t) | , (12)

→ → . → →
 Dγ = | C3  Xγ(t) − X (t) |  (13)

Updating positions for the wolves is performed as follows:
→ → → →

 X1 (t + 1) = Xα(t) − A .1  Dα  , (14)
→ → → →
X2 (t + 1) =  Xβ(t) − A .2  Dβ , (15) 
→ → → →
X3 (t + 1) =  Xγ(t) − A .3  Dγ  (16)

Finally, the overall position is determined by:
→ → →

 → X  + X  + X   (17)X (t + 1) = 1 2 3
3

	 b.	 Attacking	Prey	(Exploitation):
  To simulate the gray wolves’ attacking behavior, the value of →a should be 

less. The coefficient →A varies randomly within the interval [–2a,2a], with 
|A| <1 leading to an assault on the target (exploitation).

	 c.	 Searching	for	Prey	(Exploration):
  When exploring for prey, gray wolves may deviate from their current 

targets in pursuit of more suitable options. The component →
C in the GWO 

encourages exploration, with a random value ranging from [0,2]. A value of 
C > 1 emphasizes attack, while C < 1 de-emphasizes it.

 GWO has been widely applied across various fields due to its flexibility and 
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effectiveness in solving complex optimization problems. In engineering design, 
it has been used for optimizing operations and tuning controllers with superior 
results compared to other algorithms. It has also been applied in scheduling, 
particularly in solving the unit commitment (UC) problem, demonstrating its 
efficiency across different system scales. In robotic path planning, GWO has 
been integrated with other algorithms for enhanced localization, while in power 
dispatch problems, it has outperformed several algorithms in finding optimal 
solutions. Additionally, GWO has been utilized for clustering tasks and in financial 
applications like bankruptcy prediction, where it evolves advanced models for 
higher accuracy and performance.

Conclusion

Bio-inspired optimization algorithms have demonstrated exceptional adaptability 
and effectiveness in addressing a diverse array of optimization problems. 
By leveraging principles from evolution, swarm behavior, and ecological 
interactions, these algorithms have achieved notable success across industries, 
from engineering and robotics to healthcare and finance. The collaborative, 
adaptive characteristics of swarm intelligence models, coupled with the 
selection-driven mechanisms of evolutionary algorithms, contribute to their 
broad applicability and continued relevance. Future advancements may focus 
on hybrid models and improved convergence rates, fostering innovations in 
optimization methodologies. The continuous development of these algorithms, 
inspired by nature, promises significant contributions to complex problem-
solving in both theoretical and practical contexts.
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Introduction

Nature-inspired optimization algorithms (Yang, 2020; Odili et al., 2018; Mandal, 
2023) have garnered considerable attention due to their capacity to address 
complex problems that often challenge traditional methods. Within this broad 
category, algorithms modeled after the behaviors of marine and terrestrial 
animals have exhibited remarkable efficiency and versatility across fields such 
as engineering, economics, and artificial intelligence (AI). These bio-inspired 
algorithms harness the adaptive, cooperative strategies observed in animals to 
find optimal or near-optimal solutions within multidimensional spaces.

The appeal of bio-inspired optimization techniques (Johnvictor, 2022; 
LaTorre et al., 2021) lies in their ability to emulate natural behaviors like hunting, 
foraging, and social cooperation. These algorithms are frequently compared with 
conventional optimization methods such as linear programming, gradient descent, 
and brute-force search (LaTorre et al., 2021). However, bio-inspired techniques 
often provide more robust solutions for non-linear, multimodal, and dynamic 
problems. The historical evolution of these algorithms suggests vast potential for 
innovation by continuing to draw inspiration from the natural world. The major 
surprising fact is that the majority (more than ~70%) of the planet earth surface 
are water-bodies; hence, marine ecology has come out as a thriving resource for 
bioinspired AI techniques. 

One prominent example is the Whale Optimization Algorithm (WOA) (Rama 
et al., 2020), inspired by the hunting techniques of humpback whales, particularly 
their bubble-net feeding behavior. This algorithm simulates the spiral motion 
whales use to encircle prey, and it has been widely applied in image processing, 
feature selection, and network design. Various WOA variants have been 
developed to improve convergence speed and accuracy. Similarly, the Dolphin 
Echolocation Algorithm (DEA) (Buchanan et al., 2021) mimics dolphins’ ability 
to use echolocation—emitting sound waves and processing their reflections—to 
locate objects underwater. Its applications extend from signal processing to 
the optimization of engineering design parameters, with algorithmic variations 
enhancing performance across different constraints. The Sperm Whale Algorithm 
(SWA) (Chambault et al., 2021) is another marine-inspired approach, drawing 
on the deep-diving and social behaviors of sperm whales. It is primarily used 
for tasks like resource allocation and environmental monitoring, leveraging the 
whales’ structured group dynamics for solution exploration.

Ecological niches from the terrestrial realm, Elephant Herding Optimization 
(EHO) (Li et al., 2020) models the tight-knit family units and herding behavior of 
elephants, particularly the matriarch-led social structure. The algorithm simulates 
individuals’ movements within a herd to explore and exploit the search space 
effectively. EHO variants are applied to solve intricate engineering complexities 
and improve multi-objective optimization. In a similar vein, Lion Optimization 
Algorithm (LOA) (Hussain et al., 2022) draws on the unique social structures 
and coordinated hunting tactics of lion prides, emulating both cooperative and 
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competitive behaviors. LOA has been applied in areas like energy management and 
scheduling, with improvements focused on enhancing global search capabilities. 
The Giraffe Kicking Optimization Algorithm (GKO) (Menaka, 2023), though 
less widely known, is inspired by giraffes’ powerful defensive kicks. Its unique 
approach has been applied in specific engineering contexts, providing alternative 
strategies for global optimization. Likewise, the Wolf Search Algorithm (Sangwan 
& Bhatia, 2020) replicates the pack-hunting behavior of wolves, simulating 
how they communicate and strategize to locate prey. This algorithm has been 
successfully employed in network optimization and resource management, with 
enhancements aimed at improving convergence speed and balancing exploration 
and exploitation.

Insect-inspired optimizations include the Dragonfly Algorithm (DA) 
(Elkorany et al., 2022), which is based on the swarming behavior of dragonflies, 
and displays collective movement patterns during hunting or migration. This 
algorithm has been applied in data clustering, robotic path planning, and other 
fields requiring dynamic adaptability. It excels at balancing exploration and 
exploitation in large, complex search spaces. Moth-Flame Optimization (MFO) 
(Hou et al., 2022), inspired by the navigation of moths using moonlight, simulates 
their spiral movements toward light sources. It has proven useful in real-world 
optimization tasks such as feature selection and machine learning model training, 
with numerous variants focusing on improving convergence accuracy and stability. 
Additionally, the Salp Swarm Algorithm (SSA) (Tubishat et al., 2021), based on 
the chain-like swarming behavior of salps, explores the search space effectively. 
Its applications span medical imaging, control system design, and optimization 
in uncertain environments, with ongoing development of variants to better handle 
large-scale optimization problems.

Marine Ecology-inspired Algorithms

Whale Optimization Algorithm

The WOA is a nature-inspired meta-heuristic algorithm that models the unique 
hunting behavior of humpback whales, particularly their bubble-net feeding 
technique (as shown in Figure 1a) (Brodzicki et al., 2021). This hunting technique, 
primarily observed in humpback whales, involves the creation of a spiral bubble 
net to trap schools of fish or krill. The whales swim in circles around the prey, 
releasing air bubbles from their blowholes to create a cylindrical net of bubbles. 
This disorients and traps the prey in a shrinking circle, making it easier for the 
whales to lunge upward and capture them.

The WOA translates this intelligent and complex hunting behavior into an 
optimization process aimed at finding optimal solutions to problems (Ibrahim et 
al., 2024). The algorithm is built around two key phases—exploitation (encircling 
and spiral attack) and exploration (search for new prey)—to balance local and 
global searches for solutions.
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Encircling Prey (Exploitation)

In WOA, the prey (representing the optimal or near-optimal solution to a 
problem) is encircled by the whale (search agent). The best-known position of 
a whale (optimal solution found so far) is constantly updated as the algorithm 
runs. Other whales move towards this best solution, adjusting their positions 
iteratively. This mimics the behavior of a whale tightening its bubble net to 
encircle its prey (Cirion, 2021). Mathematically, this is achieved through the 
following equations:

→ → → →
 D = | C . *

   X  (t) − X (t)| , (1)
→ → → →

 X (t + 1) = X * (t) − A . D  (2)
Here,

→
 • X * (t) represents the best-known position (optimal solution),

→ • X (t) represents the current position,
→ • A and →C are coefficient vectors that control the whale’s movement,

 • →D is the distance between the current position and the best solution.
→ A is gradually reduced over the iterations to simulate the tightening of the 

bubble net, which brings the search agents closer to the best solution.

Spiral Attack (Exploitation) 

The spiral attack mimics the upward spiraling movement of the whale as it 
moves toward the surface to capture prey trapped within the bubble net, as 
depicted in Figure 1b. In WOA, this spiral movement is integrated to ensure a 
diverse approach to refining the search around the best solution.

Figure 1: (a) Bubble-net feeding technique of whale and (b) spiral movement.
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The mathematical representation of this spiral movement is:
→ → →

 X (t + 1) = D ′ . ebl cos cos (2πl) + X * (t), (3)

where:
 • D′ is the distance between the whale’s current position and the prey,
 • b is a constant defining the shape of the spiral,
 • l is a random number between −1 and 1,

→
 • X * (t) is the best-known position.

This logarithmic spiral movement allows the algorithm to search around the 
best solution in a non-linear fashion, improving the chances of finding the true 
global optimum.

Exploration (Global Search) 

While exploitation focuses on refining solutions near the best-known solution, 
exploration allows WOA to search for potentially better solutions elsewhere in 
the search space. This is critical in optimization algorithms to avoid premature 
convergence on local optima. The exploration phase is mathematically modeled 
by selecting a random whale instead of the best one to update the positions of 
the other whales (Jin et al., 2021).

The position update in the exploration phase is given by: 
→ → → →

 D = |C . Xrand (t) − X (t)| (4)

 → → → →
X (t + 1) = Xrand (t) − A. D , (5) 

→
where Xrand (t) is the randomly chosen position of a whale.

→ The coefficient vector A plays a key role in controlling the balance between 
exploration and exploitation. It decreases linearly over time, allowing the 
algorithm to shift from exploration in the early stages to exploitation in the later 
stages. When |A|>1, the whales move towards random positions (exploration), 
and when |A|<1, the whales move towards the best solution (exploitation).

Hybrid of Exploitation and Exploration 

In WOA, exploitation and exploration are combined in a probabilistic manner to 
ensure the algorithm searches both locally and globally. At each iteration, there 
is a 50% chance that the algorithm will either update the position using the spiral 
movement (exploitation) or perform an encircling mechanism (exploration). 
This hybrid approach ensures a robust search for the global optimum (Kang  
et al., 2022)].

Key Advantages of WOA
	 1.	 Balance of Exploration and Exploitation: WOA efficiently balances the 

exploration of new solutions and the exploitation of known good solutions. 
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This helps in avoiding local optima while improving the convergence rate 
towards the global optimum.

	 2.	 Simple	Yet	Effective: The algorithm is relatively simple to implement yet 
powerful enough to solve complex optimization problems.

	 3.	 Multidimensional	Applicability: The WOA can be extended to n-dimensional 
search spaces, making it applicable to a wide range of optimization problems 
across different fields.

The WOA has been applied in diverse fields, such as engineering design for 
structural optimization and control tuning, machine learning for feature selection 
and classification, image processing for segmentation, and robotics for path 
planning (Gharehchopogh & Gholizadeh, 2019). It is also used in communication 
networks for bandwidth allocation, energy systems for load dispatch, finance for 
portfolio optimization, and bioinformatics for gene selection and protein folding 
(Meraihi et al., 2022).

Dolphin Echolocation Algorithm

Echolocation Principles

The DEA is a meta-heuristic optimization method inspired by the natural 
echolocation behavior of dolphins. Like other meta-heuristic algorithms, DEA 
consists of a group of search agents that explore the feasible solution space 
using randomization and predefined rules, which are often based on natural 
phenomena. In DEA, dolphins use sonar—a specialized sound wave—known as 
a ‘click’ to detect and identify objects in their environment (Gracic et al., 2024), 
as described in Figure 2. Upon emitting the sound wave, dolphins analyze the 
reflected echo to estimate the distance, size, and position of an object. This 

Figure 2: Natural echolocation behavior of dolphin.
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process is then repeated in rapid succession, allowing the dolphin to refine its 
understanding of the object’s location and characteristics.

In the context of optimization, DEA mirrors this echolocation process by 
simulating how dolphins emit sound waves, receive feedback (echoes), and 
adjust their position to locate the optimal solution (Kipnis et al., 2022). Each 
search agent in the DEA represents a dolphin that ‘clicks’ to evaluate a solution 
in the problem space. The reflected echo provides information about the quality 
of the solution, enabling the algorithm to adjust the dolphin’s position iteratively 
in search of better solutions. The key element here is the use of feedback to 
fine-tune the search, analogous to how dolphins lock onto and track a target  
using echolocation.

DEA also incorporates randomization to avoid getting stuck in local optima, 
and it uses sound wave propagation models to explore new solutions. As dolphins 
adjust the frequency and intensity of their sonar to study objects more closely, DEA 
adapts its parameters during the optimization process to enhance convergence and 
search efficiency (Su et al., 2022). Through iterative adjustments, the algorithm 
gradually hones in on the global optimum, just as dolphins zero in on their prey. 
Variants of DEA, such as Adaptive Echolocation Mechanism and Multi-objective 
DEA, have been introduced to improve the algorithm’s performance. For example, 
in the Adaptive Echolocation Mechanism, parameters like signal frequency and 
amplitude are adjusted dynamically to enhance convergence. In multi-objective 
problems, DEA is tailored to handle multiple conflicting objectives by modifying 
the standard approach to generate a set of optimal solutions, rather than a single 
solution. The scheme of DEA is listed below: 

Algorithm 1: Dolphin Echolocation Algorithm

	 1.	 Initialize Search Agents: Set up a population of agents (dolphins) with 
random positions in the solution space.

	 2.	 Emit Sonar Clicks (Evaluate Solutions): Each agent emits a sonar click to 
evaluate the quality (fitness) of the current solution.

	 3.	 Receive Echo (Feedback): Agents receive feedback in the form of echoes, 
which reflect the quality of their current position in the solution space.

	 4.	 Update Position of Agents: Based on the intensity of the echo (feedback), 
agents adjust their position to move closer to better solutions.

	 5.	 Adjust Sonar Frequency and Amplitude: Dynamically modify the 
frequency and amplitude of the sonar clicks to fine-tune the search process, 
improving exploration or exploitation as needed.

	 6.	 Check Termination Condition: Evaluate whether the stopping criteria are 
met (e.g., a maximum number of iterations or a satisfactory fitness level).

	 •	 If the termination condition is met, proceed to Step 7.
	 •	 If not, repeat from Step 2.
	 7.	 Output Optimal Solution: Once the stopping criteria are satisfied, the best 

solution found is output as the optimal solution.
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Sperm Whale Algorithm

The Sperm Whale Algorithm (SWA) is an optimization method inspired by 
the behavior of sperm whales, particularly their deep-sea hunting and surface 
breathing cycles (Sadayappan et al., 2023). The algorithm uses these behaviors 
to explore and exploit a solution space effectively. Here’s how optimization is 
performed in SWA:

Algorithm 2: Sperm Whale Algorithm
	 1.	 Initialization: A population of sperm whales (agents) is initialized with 

random positions in the search space, representing potential solutions.
	 2.	 Upward and Downward Movement: Each whale undergoes two phases in 

its search cycle:
	 •	 Surface Breathing (Exploration): Whales ascend to the surface, 

representing exploration of the search space (Das, 2023). During this 
phase, whales move to new random positions, encouraging global search 
and exploration of diverse regions.

	 •	 Deep Dive (Exploitation): Whales dive deep to hunt for food (squids), 
symbolizing the exploitation phase. Here, the whales refine their search 
by moving toward better solutions in the deeper parts of the search space.

	 3.	 Mirroring Mechanism: For each whale, a mirror image of its position is 
created in the search space. This mirror image provides an additional solution 
candidate, and the quality of the original and mirror solutions are compared 
(Darvishpoor et al., 2023). However, only the most promising local solution 
is kept, enhancing convergence by focusing on the best candidates.

	 4.	 Best and Worst Individual Comparison: The positions of the worst-
performing whales are updated using information from the best-performing 
whales. The worst solutions are replaced by new positions, which are 
influenced by the positions of the best whales, ensuring that the population 
evolves toward better solutions.

	 5.	 Optimization Loop: The whale population repeatedly performs the surface 
and deep dive cycles, adjusting positions based on feedback from the 
objective function and improving the quality of solutions over time.

	 6.	 Termination Condition: The optimization process continues until a 
termination condition is met (Wu, et al., 2022), such as reaching a maximum 
number of iterations or achieving a satisfactory solution.

This process allows the SWA to balance between global search (exploration) 
and local search (exploitation), making it effective in optimizing complex problems 
with multiple objectives or constraints. Variants of SWA, such as the Improved 
Sperm Whale Algorithm (ISWA) and Hybrid Sperm Whale Algorithm (HSWA), 
have been developed to enhance its performance by improving convergence speed 
and incorporating features from other optimization techniques.
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Terrestrial Animal-inspired Algorithms

Elephant Herding Optimization

Elephant Herding Optimization (EHO) is inspired by the social herding behavior 
of elephants ( Figure 3), particularly how elephant clans are organized and led 
by a matriarch. The optimization process in EHO mimics these social dynamics 
through specific mechanisms that update the position of each elephant in a 
population of clans (Li & Wang, 2022).

Figure 3: EHO inspired by social herding behavior of elephants.

	 1.	 Herding Behavior: Elephants in the wild live in groups called clans, which 
are predominantly led by a female matriarch. The female elephants prefer to 
stay with their relatives, while the male elephants eventually leave the group 
to live independently. This natural separation of male elephants is reflected in 
the optimization process, where some elephants are separated from the clan 
and live far away.



	 When Optimization Techniques are Inspired from Marine Ecology... │ 27

		  In the EHO algorithm, assumptions include:
	 •	 The size of elephant clans remains constant.
	 •	 Male elephants leave the clan at a certain point to live separately.

	 2.	 Clan-updating Operator: The clan-updating operator simulates the 
leadership of the matriarch and the social influence she has on the other 
elephants in the clan. Each elephant’s new position is updated as a function of 
the best-performing elephant (matriarch) in the clan. The position of elephant 
j in clan ci is updated using the following formula: 		

			   Xnew,ci,j
 = Xci,j 

+ a × Xbest,ci 
− Xci,j

× r	 (6)
		  where,
	 •	 Xnew,ci,j 

is the new position of elephant j in clan ci.
	 •	 Xci,j 

is the current position of elephant j in the same clan.
	 •	 Xbest,ci, 

is the position of the matriarch (best-performing elephant in clan 
ci).

	 •	 a∈ [0,1] is a scaling factor.
 	 •	 r∈ [0,1] is a random value to introduce variability.

	 3.	 Center of Clan: In addition to following the matriarch, elephants are also 
influenced by the center of the clan. The center is calculated as the average 
position of all elephants in the clan, representing the collective behavior. The 
position of the center in the d-th dimension is calculat

n1 ci

,c = 
i,d n  × ∑  Xcc i,,j,d i j=1

ed as:

	 Xcenter (7)

		  where,
	 •	 Xnew,ci,j 

is the center of clan ci in the d-th dimension.
	 •	 nci 

is the number of elephants in the clan.
	 •	 Xci,,j,d 

is the d-th dimension of elephant j in the clan.

		  Elephants move toward the center as follows:

	 Xnew,ci,j
 = β × Xcenter,ci	

(8)

		  where, β∈[0,1] controls the influence of the center on the elephant’s new 
position.

Thus, EHO effectively balances exploration (by separating male elephants and 
using randomization) and exploitation (by following the matriarch and moving 
toward the clan center). Through these mechanisms, EHO adapts to solve various 
continuous and discrete optimization problems.

Lion Optimization Algorithm

The Lion Optimization Algorithm (LOA) is inspired by the social behavior, 
hunting, and territorial dynamics of lions. The key steps in optimization through 
LOA can be described as follows:
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	 1.	 Social Structure and Initialization: The algorithm mimics the lion’s 
social structure, dividing the lion population into two categories: nomads 
and residents (organized into prides). A percentage of lions are designated 
as nomads and the rest as resident lions, who form prides randomly. Each 
pride consists of females and males in specific proportions (LeFlore, 2022). 
Resident males dominate a pride, while nomads roam independently in search 
of better territories. The nomad lions wander freely through the search space, 
attempting to explore new areas and improve the quality of their solutions.

	 2.	 Territory and Position Representation: Each lion’s position represents a 
potential solution, and its territory refers to its best-known solution found 
so far, akin to the best position in previous iterations. The optimization goal 
is to update these positions iteratively to find better solutions. The pride’s 
territory is defined as the collection of the best positions held by the members 
of the pride, and each member strives to improve its position based on local 
information (its past best solution) and interactions with others.

	 3.	 Hunting Process: Female lions, known for their group hunting abilities, play 
a significant role in the optimization process (Nhalungo, 2024). In each pride, 
a certain number of female lions go hunting, exploring the search space more 
effectively. They surround the prey (the best solution) and attempt to improve 
upon it. While some females actively hunt, others migrate within the territory, 
contributing to exploration and exploitation.

	 4.	 Territorial Defense and Male Competition: The male lions defend their 
pride’s territory. Occasionally, nomad males challenge resident males for 
dominance. If a strong nomad male defeats a resident male, it takes over the 
pride, pushing out the weaker male. This process helps ensure that stronger 
solutions replace weaker ones, driving the optimization process forward. In 
LOA, this corresponds to replacing suboptimal solutions with better ones.

	 5.	 Mating and Lion Pride Dynamics: Mating takes place between resident 
males and females, potentially producing new offspring (solutions) that 
inherit qualities from their parents (Allen, 2022), similar to genetic crossover 
in other evolutionary algorithms. As young males mature, they are forced to 
leave the pride and become nomads, leading to increased exploration of the 
search space.

	 6.	 Nomad Exploration: Nomads (both males and females) continually roam 
through the search space, seeking better regions (solutions). Their primary 
role is to explore areas outside the pride’s current territory. If a nomad finds a 
better solution, it might challenge a resident lion, displacing it and improving 
the population’s overall quality.

	 7.	 Death and Survival of Lions: Weaker lions (suboptimal solutions) may 
be eliminated due to competition, famine, or other pressures. This ensures 
that only the strongest solutions survive, improving the overall quality of the 
population over time.

	 8.	 Stopping Condition: The process of pride formation, hunting, male 
competition, nomadic exploration, and mating continues iteratively until a 
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predefined stopping condition (such as a maximum number of iterations for 
convergence criteria) is met.

By modeling the social and territorial behaviors of lions, LOA effectively 
balances exploration (via nomads) and exploitation (via resident prides), allowing 
it to search the solution space for optimal or near-optimal solutions.

Giraffe Kicking Optimization Algorithm

Giraffe Kicking Optimization (GKO) is based on the behavior of mother giraffes, 
specifically the way they kick. This kicking action serves as a metaphor for the 
algorithm’s ability to maintain a balance between exploration and exploitation 
during optimization processes (Bridle, 2022). The biological background of the 
algorithm is inspired by the kicking action of mother giraffes, which is used to 
protect their young from predators. This action is mapped into an optimization 
technique that ‘kicks’ nodes in a Vehicular Adhoc Network (VANET) to wake 
up the minimum number of sensor nodes necessary for network efficiency, thus 
conserving energy and prolonging network lifespan (Lee, 2021).

The optimization process involves the following key aspects:
	 1.	 Exploitation vs Exploration: The kicking action is modeled to strike a 

balance between refining known solutions (exploitation) and searching 
for new solutions (exploration). This ensures that the optimization process 
doesn’t overly focus on local optima and instead continues to explore better 
global solutions.

	 2.	 Fitness Function: GKO utilizes a multi-fitness function based on factors like 
residual node energy, intra-cluster distance, and the degree of sensor nodes 
within a network. This helps in determining which sensor nodes should be 
activated or serve as cluster heads.

	 3.	 Clustering: GKO is combined with the C-mean clustering algorithm to group 
sensor nodes and designate cluster heads for efficient data transmission. This 
reduces unnecessary node activations and improves throughput.

	 4.	 Energy Efficiency: The algorithm minimizes energy consumption by 
ensuring only the necessary number of sensor nodes are awake, optimizing 
network resources and prolonging the overall network lifetime.

In short, GKO uses the biological metaphor of a giraffe’s kicking behavior 
to manage sensor networks by enhancing network throughput, reducing energy 
consumption, and prolonging the life of the network (Prakash et al., 2022). This 
is achieved through intelligent node activation and efficient routing, striking a 
balance between exploration and exploitation. The flowchart of GKO is shown 
in Figure 4.

Wolf Search Algorithm

The Wolf Search Algorithm (WSA) is a bio-inspired optimization algorithm 
modeled after the hunting behaviors and social interactions of wolves. The 
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Figure 4: Flowchart of giraffe kicking optimization algorithm.

key characteristics of WSA are its blend of individual search efforts and semi-
cooperative behavior among wolves (Dragoi & Dafinescu, 2021), which makes 
it distinct from other swarm intelligence-based methods like Particle Swarm 
Optimization (PSO) or Firefly Algorithm.

Key Features of WSA
Individual Search and Self-organization: Each wolf in the WSA operates 
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independently, performing localized random searches based on its own traits, 
and does not engage in long-range communication with others. This differs from 
algorithms where communication is central, such as PSO, where agents follow 
the leader. The wolves can only merge and share information if a neighboring 
wolf is in a better position (i.e., a better solution).
Visual Range and Flocking Motion: Wolves maintain awareness of their 
environment within a defined visual range, allowing them to detect prey (the 
global optimum), peers (other wolves), or threats. They tend to move based on 
this sensory input, but if no significant targets are detected, they exhibit random 
movement (Brownian motion) to explore new areas.
No Central Leader: Unlike many bio-inspired algorithms that rely on a 
centralized leader (as in PSO or Firefly), WSA distributes the search responsibility 
across all wolves. Each wolf acts as an independent leader, moving toward the 
best solution it can find, thereby exploring multiple regions of the search space 
simultaneously (Wolf, 2022).
Threat Evasion and Escaping Local Optima: Wolves are cautious hunters 
and are designed to evade threats in their environment. If a wolf encounters 
a predator (modeled as being trapped in a local optimum), it performs a large 
jump away from the current position to explore new regions of the solution 
space. This mechanism helps prevent the algorithm from getting stuck in  
local optima.
Memory and Long-distance Sensing: Wolves in nature are known for their 
ability to remember locations, track prey over long distances, and mark their 
territory. Similarly, the WSA incorporates memory mechanisms that allow 
wolves to retain information about past search areas and optimal solutions. 
This feature aids the exploration of the search space without revisiting  
unfruitful regions.
Semi-Cooperative Behavior: Although wolves hunt in packs, their coordination 
is loose, and they make individual decisions. This behavior is mirrored in WSA, 
where wolves may benefit from their peers’ positions but are not tightly bound to 
follow one another. This balance between cooperation and individuality ensures 
efficient search space exploration and exploitation. The flowchart is given in 
Figure 5.

Search Strategy in WSA
	•	 Local Search: Each wolf searches its local region based on its current position 

and traits, continuously updating its location as it seeks to improve its standing.
	•	 Flocking and Swarming: Wolves can merge with others in their visual 

range if another wolf offers a superior position, but they avoid rigid flocking 
behaviors seen in other swarm-based algorithms. Each wolf remains somewhat 
independent in its movements.

	•	 Brownian Motion (BM): When no prey or threat is detected, wolves move 
randomly to explore new areas of the solution space.
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Figure 5: Flowchart of wolf search algorithm.
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	•	 Threat Response: If a wolf encounters a ‘threat’ (analogous to a local optimum 
or worse-performing solution), it makes a long-distance move to escape the 
trap, allowing it to continue exploring more promising areas.

WSA offers a unique optimization approach that blends independent, local 
searches with semi-cooperative swarming behavior. By allowing wolves to act 
as independent search leaders and incorporating mechanisms to escape local 
optima, WSA can effectively explore and exploit solution spaces without being 
constrained by rigid communication protocols or leadership structures seen in 
the other algorithm (Dong, 2022).

Insect-inspired Algorithms

Dragonfly Algorithm

The DA is inspired by the swarming behavior of dragonflies in nature, particularly 
their dynamic and static swarming movements, which serve as the basis for 
the two main optimization processes: exploration and exploitation (Alshinwan 
et al., 2021). Exploration helps dragonflies (and the algorithm) search for new 
areas in the solution space, while exploitation focuses on refining the current 
solutions to reach the global optimum. 

Dragonflies exhibit two key types of swarming:

	 1.	 Static Swarming: This occurs when dragonflies group together in one area, 
often for feeding. It is primarily associated with exploitation because the 
focus is on refining and improving the solutions around a local optima.

	 2.	 Dynamic Swarming: Dragonflies move over larger areas in search of food 
or avoiding predators. This phase is associated with exploration, helping 
the algorithm search broadly across the solution space to discover new  
potential solutions.

In DA, these behaviors are simulated using attraction and repulsion forces, 
as well as alignment mechanisms:

	•	 Attraction: Ensures dragonflies (solutions) are drawn toward the best 
candidate solutions.

	•	 Repulsion: Helps them avoid poor solutions or obstacles.
	•	 Alignment: Ensures that solutions move coherently, maintaining a balance 

between exploration and exploitation.

Figure 6 illustrates the behavior of dragonflies in the DA through five key 
mechanisms: separation, alignment, cohesion, attraction towards food, and 
distraction from enemies. Let’s break them down:

	(a)	 Separation: This is the tendency of each dragonfly to avoid collisions with 
its neighbors by maintaining a minimum distance from nearby individuals. It 
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helps in preventing overcrowding and ensures a spread-out exploration of the 
search space.

	(b)	 Alignment: In this step, the dragonflies adjust their velocities based on 
the average heading of neighboring individuals. It ensures that they move 
cohesively in a unified direction, guiding the swarm collectively during the 
search process.

	(c)	 Cohesion: Cohesion represents the tendency of dragonflies to move toward 
the centre of their neighbors (Emambocus et al., 2022). This helps the 
dragonflies (solutions) cluster together, which is crucial for exploitation and 
focusing on promising regions in the search space.

	(d)	 Attraction towards food: Dragonflies are attracted to potential food sources, 
represented here by the butterfly. This mechanism guides dragonflies toward 
the best solutions found so far, contributing to the exploitation of the  
solution space.

	(e)	 Distraction from enemies: This step shows the dragonflies avoiding 
predators (represented by the bird). In terms of the algorithm, this corresponds 
to repulsion from bad solutions or traps, ensuring that the dragonflies move 
away from poor solutions.

These behaviors are combined dynamically in the algorithm to balance 
between exploration and exploitation, ensuring an efficient search for optimal 
solutions. DA is effective because of its ability to balance exploration and 

Figure 6: Steps of dragonfly algorithm.
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exploitation, making it suitable for solving a wide range of optimization problems, 
including scheduling, feature selection, image processing, and economic dispatch. 
Its simplicity and versatility have also led to the development of multiple variants 
like Binary DA, Multi-objective DA, and hybrid models that further enhance its 
performance for specific tasks.

Moth Flame Optimization

The Moth Flame Optimization (MFO) algorithm is a population-based algorithm 
inspired by the navigation method used by moths in nature called “transverse 
orientation”. Moths maintain a fixed angle with the moon’s light as they fly in a 
straight path (Storms et al., 2022). However, in artificial light, they tend to spiral 
around it, as they mistakenly treat it like the moon. This biological behavior is 
mimicked in the MFO algorithm to explore a solution space effectively.

Optimization Process in MFO
	 1.	 Initialization and Population: MFO begins by generating a population of 

moths, each representing a potential solution in the problem’s search space. 
Each moth’s position corresponds to a candidate solution, and the objective 
function evaluates how good the solution is (i.e., the moth’s fitness).

	 2.	 Flame Generation: The flames are considered the best solutions found so far 
by the moths. As the optimization process progresses, these flames represent 
the elite solutions towards which the moths are attracted. This process allows 
the algorithm to perform a global search by scouting for better solutions.

	 3.	 Exploration and Exploitation: MFO balances exploration (searching 
new areas of the solution space) and exploitation (refining the current best 
solutions). The position of moths is updated by calculating a spiral-shaped 
path towards the flames, simulating the moths’ natural flight pattern around 
light sources.

	 •	 Exploration: During early stages, moths explore the search space widely 
to find promising regions.

	 •	 Exploitation: As the optimization progresses, moths converge towards 
the flames, focusing on exploiting the best solutions.

	 4.	 Spiral Movement Mechanism: The key feature of MFO is the spiral path 
formula ( Figure 7), where each moth moves closer to a flame in a logarithmic 
spiral. This movement is mathematically modeled to guide moths in spiraling 
towards the flames, reducing the distance between the moth and its respective 
flame over time.

	 5.	 Adaptation of Flame Number: The number of flames decreases over 
iterations to ensure convergence. In the initial stages, the algorithm allows 
more flexibility by maintaining a higher number of flames. As the algorithm 
proceeds, this number is reduced to help focus on refining the top solutions, 
thereby improving exploitation.
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	 6.	 Update of Flames: Flames are updated at each iteration, meaning that as 
moths find better solutions, they replace the flames (previous best solutions). 
This dynamic flame adjustment ensures that the algorithm consistently refines 
the quality of the best solutions.

The strengths of MFO algorithm are stated below:

	•	 Global Search Capability: MFO uses a powerful local and global search 
strategy through spiral movements, ensuring both diversity (exploration) and 
convergence (exploitation) (Sahoo et al., 2023).

	•	 Versatility: MFO is simple and flexible, and it can be applied to a wide range 
of optimization problems, such as scheduling, parameter estimation, image 
processing, machine learning, and more.

The MFO algorithm and its variants are applicable across various domains, 
including engineering design, energy systems, telecommunications, healthcare, 
and cybersecurity, due to its ability to handle complex optimization problems 
efficiently.

Figure 7: Moth flame optimization algorithm inspired by navigation  
method used by moths.
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Salp Swarm Algorithm

The optimization in the SSA is inspired by the swarming behavior of salps 
in nature, specifically their coordinated movement in a chain formation  
(Figure 8). This biological behavior is modeled mathematically to solve 
optimization problems by balancing exploration (global search) and exploitation 
(local search).

Figure 8: Salp swarm algorithm inspired by the swarming behavior of salps.

Key Elements of SSA Optimization

	 1.	 Swarming Behavior and Chain Formation: Salps move in interconnected 
chains, and this coordinated movement improves their swimming efficiency 
and feeding rates. Similarly, SSA models a population of salps where:

	 •	 The first salp in the chain acts as a leader, guiding the direction of 
movement, akin to an exploration phase where global search of the 
solution space is conducted.

	 •	 The following salps in the chain update their positions based on the 
movement of the leader, representing the exploitation phase, where 
solutions are fine-tuned locally by following the leader’s trajectory.
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	 2.	 Mathematical Modeling: The position of each salp in the population 
represents a candidate solution to the optimization problem. The leader 
updates its position based on its distance from the global best solution, using 
a formula that mimics the pulsating swimming of salps (Darvishpoor et al., 
2023). The followers then adjust their positions relative to the leader to ensure 
a harmonious movement toward the global optimum. The mathematical 
equations governing this process ensure a balance between exploration and 
exploitation:

	 •	 Leader update: The leader searches the space by making significant 
jumps toward promising areas.

	 •	 Follower update: The following salps move incrementally, based on 
their predecessors, to exploit regions close to the best solutions found by 
the leader.

	 3.	 Filter Feeding Mechanism: Salps’ filter-feeding behavior, where they pass 
water through their bodies to collect plankton, symbolizes how the algorithm 
evaluates solutions. As the salps move, they “capture” better solutions 
through coordinated efforts. The SSA optimizes by continuously refining the 
population of solutions, similar to how salps adjust their filter-feeding while 
swimming through nutrient-rich waters.

	 4.	 Coordination and Efficiency: The energy-efficient pulsating motion of 
salps, where they contract and relax their gelatinous bodies, is mirrored in the 
SSA by a dynamic adjustment of search intensity. When the leader detects 
better solutions, the followers can coordinate their movement toward that 
direction. This coordination is key for efficiently exploring the solution space 
without wasting computational resources.

	 5.	 Exploration and Exploitation Balance: In SSA, the exploration is ensured 
by the leader’s random and large steps in the solution space (Romeh & 
Mirjalili, 2023), while the exploitation is managed by the followers who 
refine their positions relative to the leader. This chain formation is crucial for 
maintaining a balance between exploring new areas of the search space and 
exploiting known good areas to optimize solutions.

By leveraging the natural behaviors of salps, SSA efficiently explores large 
solution spaces while fine-tuning local areas, making it suitable for solving a 
wide variety of complex optimization problems.

A Comparative Assessment of Optimization 
Techniques

Table 1 compares three different categories of bio-inspired algorithm categories—
Marine animal-inspired, Terrestrial animal-inspired, and Insect-inspired—across 
three criteria: exploration vs. exploitation, flexibility in dynamic environments, 
and scalability. This will highlight the similarities and uniqueness of such 
optimization techniques in solving real-life problems. 
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Table 1: Comparative analysis

Criteria Marine Animal-
inspired Algorithms

Terrestrial Animal-
inspired Algorithms

Insect-inspired 
Algorithms

1. Exploration 
vs. 
Exploitation

Generally, have an 
inclination toward 
exploration

Provide both 
value propositions 
(Kasaragodu, 2023)

Strengths in 
exploration while 
at the same time 
may require 
some fine-tuning 
in exploitation 
(Lahari & 
Janamala, 2024)

2. Flexibility 
in dynamic 
environments

Usually, better suited 
for these environments

Of moderate 
flexibility, and 
suitable for many 
environments but 
often more complex 
models needed 
(Rafeeq et al., 2021)

Flexible for many 
environments 
with similar 
characteristics 
but likely to 
involve the use of 
behavioral models

3. Scalability Some of them may 
not be very scalable 
in a number of 
contexts because 
of their principle 
of broad sampling 
(Gharehchopogh & 
Gholizadeh, 2019)

Moderately scalable Highly scalable, 
particularly those 
grounded on 
swarm intelligence

Discussion and Future Directions

The optimization techniques evolved from mimicking ecological behaviors 
of living organisms from marine and terrestrial behaviors has unveiled a rich 
tapestry of algorithms capable of addressing complex, real-world challenges 
across various fields. These bio-inspired algorithms draw upon the efficiency 
and adaptability observed in natural systems, offering novel ways to approach 
optimization problems. Techniques such as the WOA and DEA have demonstrated 
their potential in solving problems in fields such as engineering, data science, 
and AI. Similarly, terrestrial-inspired algorithms, such as the LOA and GFO, 
have shown promise in addressing multi-objective and constrained optimization 
problems. By mimicking behavioral patterns of species in the natural world, 
these algorithms not only expand the toolbox for solving complex problems but 
also open avenues for more sustainable and adaptive approaches in optimization. 
The integration of marine and terrestrial behaviors into computational paradigms 
represents a burgeoning field that will likely continue to evolve as more species 
behaviors are studied and translated into algorithmic form.
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 Several promising avenues remain open for future exploration. Firstly, hybrid 
algorithms that combine marine and terrestrial behavior inspirations could enhance 
the performance of individual techniques. For example, blending strategies from 
both environments might result in algorithms that are more robust and flexible 
in addressing dynamic and real-time optimization challenges. Additionally, 
there is significant scope for integrating these algorithms with machine learning 
frameworks, particularly in areas such as deep learning optimization and 
reinforcement learning. The adaptability of natural systems could offer more 
efficient learning processes for intelligent systems, leading to breakthroughs in 
artificial intelligence applications. Moreover, the exploration of novel behaviors 
from less-studied species, both marine and terrestrial, could yield even more 
powerful optimization strategies. As new biological insights emerge, they could 
be directly translated into computational models, fostering a continuous cycle 
of innovation. Finally, further empirical studies on the application of these bio-
inspired algorithms in real-world problems, such as climate modeling, healthcare, 
and resource management, will be crucial. Such applications will not only validate 
the effectiveness of these algorithms but also inspire further refinements and 
adaptations to meet the ever-evolving demands of complex systems in the natural 
and technological world.
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Introduction

Animals are essential to our ecosystem, deserving care and attention to their 
welfare. Concurrently, artificial intelligence (AI) has advanced significantly, 
particularly in machine learning and deep learning, showcasing potential 
across various domains (Obaid, 2023; Baduge et al., 2022; Arrieta et al., 2020; 
Chan et al., 2023; Ajagbe et al., 2023). AI enhances our ability to identify and 
understand animal behavior, benefiting animal welfare, breeding, research, and 
farm management. Traditional visual recognition methods (Zhang et al., 2024) 
have limitations, but AI-powered solutions improve accuracy in monitoring 
animal behavior and individual identification (Neethirajan, 2022) .

Visual recognition has typically relied on human assistance, lacking accuracy 
and long-term effectiveness (Ketkar et al., 2021; Han et al., 2020; Cheeseman et 
al., 2022). Efficient individual recognition can swiftly provide critical information 
for animal welfare. For instance, deep learning techniques like Convolutional 
Neural Networks (CNNs) (Ketkar et al., 2021) have proven effective in identifying 
individual giant pandas, a species previously on the brink of extinction due to 
limited breeding and habitat (Duan et al., 2020; James et al., 2023). CNNs excel 
at extracting features from images, enabling the differentiation of subtle intra-
species differences (Liu et al., 2021). A model recently achieved 95% accuracy 
in identifying individual giant pandas (Swarup et al., 2021).

Deep learning accelerates animal identification and monitoring, yielding vital 
data for conservation planning (Nathan et al., 2022). This data aids in understanding 
migratory patterns, significant habitats, and conservation effectiveness. Accurate 
identification of individual research animals allows for in-depth analyses of 
behavior and ecology (Raihan, 2023) . By automating identification, deep learning 
models enable researchers to focus on data interpretation, enhancing insights into 
social structures and species dynamics. Integrating deep learning into wildlife 
management promises advancements in animal population understanding and 
welfare (Zhang et al., 2024).

Sensor technologies, such as accelerometers, GPS trackers, and RFID (Radio 
Frequency IDentification) tags, provide detailed behavioral information, including 
feeding habits and social interactions (Carlslake et al., 2020). For example, 
accelerometers can detect subtle motions, while GPS monitors animal movements 
over distances. AI systems can optimize farm management using this data to 
improve feeding schedules and predict disease outbreaks (Biase et al., 2022).

Combining sensor technology with AI enhances productivity, animal welfare, 
and sustainability in agriculture and wildlife management (Lockie et al., 2020). 
This technology supports ethical resource stewardship and fosters resilience in 
agricultural systems. AI has transformed animal behavior assessment, making 
processes faster and more accurate, though challenges remain in visually 
identifying individual animals on farms.

Recent research has leveraged deep learning to develop a face recognition 
model using CNNs for giant pandas (Chen et al., 2023). These models enhance 
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animal detection accuracy. AI also improves animal management efficiency by 
analyzing behavior data from sensors. For instance, a machine learning system 
(Figure 1) analyzed data on 80 cows over five years, predicting milk yield and 
composition with over 80% accuracy, enhancing dairy operations (Ji et al., 2022). 
Similarly, a poultry welfare approach using robots and sensors ensures the well-
being of chickens (Park et al., 2022).

K. Jiang et al. (2022) improved a deep learning algorithm (CBAM-YOLOv7) 
for intelligent duck counting, demonstrating its potential for real-time monitoring 
in agriculture (Jiang et al., 2022). These advancements present opportunities 
to enhance animal husbandry, contributing to sustainable and ethical resource 
management. The upcoming sections will explore AI applications in ecological 
issues like animal emotion, health, nutrition, and disease prevention. 

AI in Animal Emotion Recognition

AI applications in animal emotion recognition offer significant benefits for 
understanding animal behavior, human-animal ecological interactions, and 
animal welfare. By utilizing image processing and machine learning, including 
CNN models like ResNet50, AI can identify animal emotions, thereby aiding in 
addressing their emotional states and improving quality of life (Neethirajan et al., 
2021). In a study on domestic shorthair cats, ResNet50 combined with catFACS-
based geometric analysis achieved over 72% accuracy in recognizing pain levels 

Figure 1: AI-integrated robotic milking systems to predict milk production with quality 
checking, optimize milking strategies and enhance cow welfare.
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post-Ovariohysterectomy (Feighelstein et al., 2022; Neethirajan et al., 2021). 
Similar methods, such as the Horse Grimace Scale (HGS), achieved 75.8% 
accuracy in categorizing pain in horses and 88.3% accuracy in distinguishing 
pain presence (Neethirajan et al., 2021). These AI-driven advancements facilitate 
early disease identification and improve animal management, opening new 
opportunities for enhancing animal welfare.

Overview of Traditional Methods vs. AI-based 
Approaches

Surveys and questionnaires have traditionally assessed animal emotions through 
potentially biased human observations (Meagler, 2009). While some studies 
use blood tests for hormonal changes related to stress (Man et al., 2023; James  
et al., 2023), this method is invasive and impractical for large-scale assessments. 
Researchers often analyze several minutes of animal activity to infer emotional 
states, a time-consuming process that may miss subtle cues. Regular caregiver 
interactions can mask true emotional signs, while individual interviews disrupt 
farming practices.

AI-based methods offer an alternative by using machine learning to 
identify and analyze animal emotions (Zhang et al., 2024). These approaches 
collect substantial labeled data, including images, videos, sound recordings, 
and physiological measurements. Features such as facial expressions and body 
gestures are extracted using video imaging technology, with deep learning 
techniques like CNNs and RNNs (Recurrent Neural Networks) enhancing model 
accuracy. Evaluation metrics such as accuracy, precision, and recall are used to  
assess effectiveness.

AI methods provide advantages over traditional approaches by capturing 
data objectively, handling large volumes efficiently, and reducing costs through 
automation. Research shows that trained AI models can achieve high accuracy in 
emotion recognition and are applicable across various species and environments. 
However, challenges like data availability, annotation quality, and concerns 
over data privacy and animal protection remain (Marzi et al., 2023). Therefore, 
further research and collaboration among experts in animal behavior, computer 
technology, and ethics are essential.

Case Study 1: Automated Pain Recognition in 
Domestic Cats

Analyzing Domestic Shorthair Cat Facial Image Data Using 
Machine Learning Models

Identifying pain in animals and evaluating stimuli are crucial for effective pain 
management and assessing well-being. Non-verbal cues, particularly facial 
expressions, are key indicators of pain in both animals and humans. Building 
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on Langford et al.’s pioneering work, various methods have been developed to 
assess painful facial expressions in species such as mice, rats, rabbits, horses, 
pigs, sheep, ferrets, and cats (Domínguez-Oliva et al., 2022; Fischer-T. et al., 
2022; Onuma et al., 2024; Whittaker et al., 2023).

Pain management in cats poses unique challenges due to limited research on 
specific painful conditions, potential analgesic side effects, difficulty in assessing 
ambiguous pain behaviors, and humans’ struggle to interpret cats’ body language 
accurately. Consequently, cats often receive fewer analgesic drugs than dogs. To 
address this, Finka and colleagues developed a method using geometric facial 
landmarks to detect changes in facial expressions due to pain in short-haired 
domestic cats (Bonesh-S. et al., 2022)]. These landmarks were derived from facial 
musculature and the Cat Facial Action Coding System (catFACS), considering 
variations in facial structures across species and differences in stance.

Facial images from 29 cats were captured at four time points: before surgery, 
immediately post-surgery, before post-operative pain medication, and during 
peak post-surgery pain (Feighelstein et al., 2023). Principal Components analysis 
assessed facial shape variation related to pain intensity, revealing a significant 
correlation between PC scores and the UNESP-Botucatu MCPS tool, a standard 
post-surgery pain measure in cats (Finka et al., 2019). This correlation supports 
the validity of the geometric face model for detecting pain, indicating that these 
facial landmarks provide essential signals for machine classification. The method’s 
successful validation suggests potential for new, objective pain assessment 
approaches, enhancing pain management and animal welfare.

Specific Techniques and Algorithms used for Pain Recognition

The automated recognition of emotions and pain in animals remains 
underexplored, focusing mainly on a few species. A key component in this area 
is the single-frame Inception V3 CNN, trained to detect Action Units (AUs) 
relevant to the grimace scale for pain detection, achieving 94% sensitivity in 
identifying pain in mice (Broome et al., 2022). Mahmoud et al. presented a 
pipeline for automating pain detection in sheep by identifying nine specific AUs. 
This method involved facial detection, landmark detection, feature extraction, and 
face recognition using a Support Vector Machine (SVM) based on Histogram of 
Oriented Gradients (HOG) features (Chandrakala & Durga Devi, 2021). Broome 
et al. applied a CNN to automate pain evaluation in horses during castration, 
achieving an overall accuracy of 75.8% in classifying pain into three levels: 
absent, moderately present, and obviously present, with an 88.3% accuracy in 
distinguishing between present and absent pain.

Various histogram-related features commonly used in image processing, such 
as HOG, Local Binary Patterns (LBP), and Scale-Invariant Feature Transform 
(SIFT), were extracted along with key features from a VGG16 deep CNN model 
(Ahadit et al., 2022). Combining these classifiers enhanced outcomes, achieving 
a response time of 0.51–0.88 seconds for pain estimation in tilted poses and 
an F1 score of 0.53–0.87 for correctly classified images after decision fusion. 
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However, automatic landmarking and pose estimation methods were not entirely 
feasible for donkeys.

Correia-Caeiro et al. developed a prototype Automatic MaqFACS coding 
system using 53 videos of five Rhesus macaques, manually coded with AUs 
for each frame. The system, trained with an average of six MacFACS AUs, 
achieved a categorization accuracy of 89% (Correia-C. et al., 2021). These 
studies highlight the potential of AI and machine learning in automating pain and 
emotion recognition in animals, paving the way for improved welfare through 
more accurate pain assessment methods.

Results and Implications for Veterinary Care

In Feighelstein et al. (2022), cats’ emotions were recorded at different time 
points corresponding to varying intensities of pain:

	 i.	 Pre-surgery (18–24 hours prior to surgery)
	 ii.	 1-hour post-surgery (30 minutes to 1 hour after the end of the surgical 

procedure, before the administration of additional analgesics)
	iii.	 After rescue analgesia (about 4 hours after post-operative analgesia)

These landmarks were selected based on their connection with the musculature 
and the Cat Facial Action Units (catFACS), which were included as additional 
labels. Figure 2 illustrates the placement of 48 such landmarks on a cat’s face. 

Figure 2: Placement of facial landmarks on different animals’ face appearing 
contralateral to their origin.
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We employed two methods to create models: a landmark-based approach 
(LDM) and a deep learning approach (DL). The LDM uses predefined landmarks 
on the cat’s face to analyze expressions and detect pain, chosen based on their 
relevance to facial musculature and specific facial action units (catFACS). For the 
DL approach, we utilized the ResNet50 architecture after appropriate training. In 
the LDM, we developed a Multilayer Perceptron (MLP) neural network with three 
hidden layers. Both methods were trained with and without data augmentation 
and feline face alignment to assess the impact of these actions. To validate our 
models, we applied standard performance metrics:
Accuracy: The percentage of correctly classified instances.
Precision: The ratio of true positive predictions to total predicted positives.
Recall: The ratio of true positive predictions to all actual positives.
F1 Score: The weighted average of precision and recall, useful for imbalanced 
class distributions.

These metrics evaluate our models’ effectiveness in detecting and classifying 
pain levels in cats, as summarized in Table 1. It is evident that the DL approach 
generally outperforms the LDM. In Table 1, “Alignment YES” denotes the spatial 
alignment of facial landmarks through rotation, scaling, and translation to reduce 
geometric variations, enhancing face processing tasks like recognition. Conversely, 
“Alignment NO” indicates unaltered images without these adjustments, potentially 
retaining natural geometric variations. “Data augmentation YES” refers to 
modifying existing data to create variations that still represent the original data, 
enhancing the training set’s diversity. “Data augmentation NO” means no such 
techniques are applied, leaving the training set unchanged.

Table 1: Comparison between DL and LDM approach to detect different  
pain levels of cats

Approach Alignment Data 
Augmentation

Accuracy Precision Recall

DL YES NO 0.7239  
(± 0.1837 )

0.7526  
(± 0.2139 )

0.7353  
(± 0.3215 )

DL YES YES 0.7051  
(± 0.1855)

0.7725  
(± 0.2385 )

0.6853  
(± 0.3195)

DL NO NO 0.7360  
(± 0.1782)

0.8186  
(± 0.2045)

0.7010  
(± 0.2889 )

DL NO YES 0.7344  
(± 0.1780 )

0.84512  
(± 0.1948 )

0.6636  
(± 0.3614 )

LDM YES NO 0.7196  
(± 0.1464)

0.7441  
(± 0.1600)

0.7457  
(± 0.1943)

LDM YES YES 0.7239  
(± 0.1290)

0.7315  
(± 0.1451)

0.7512  
(± 0.1955)

LDM NO NO 0.6747  
(± 0.1151)

0.7056  
(± 0.1442

0.6892  
(± 0.2639)

LDM NO YES 0.6805  
(± 0.1087)

0.6807  
(± 0.1103)

0.6933  
(± 0.2278)
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Case Study 2: Intelligent Detection of Pain Signals

Training Vision Algorithms with Automatic Computational 
Classifiers to Detect Pain in Horses

Hummel et al. (Ewence & Whitcock, 2024|) applied a landmark-based approach 
for pain recognition in horses. Unattended pain can significantly impact horses’ 
health, leading to issues like central sensitization, altered pain thresholds, and 
hyperalgesia, which may result in life-threatening complications. Assessing 
pain in animals is as crucial as monitoring vital signs like blood pressure and 
body temperature, as continuous evaluation can enhance pain management 
and recovery. However, frequent pain assessments can increase stress and 
potentially elevate pain levels due to constant physical interventions, adversely 
affecting overall health. Assessing pain presents challenges, as it requires 
skilled observers to identify behavioral changes or physiological indicators. 
The practical implementation of these assessments in settings like hospitals or 
equestrian centers is complicated by the need for trained personnel and the time 
necessary for thorough observations.

The Facial Action Coding System (FACS) (Ask et al., 2024) is commonly 
used to measure pain and emotions in non-verbal individuals, such as infants and 
disabled patients. A recent study using the Equine Facial Action Coding System 
(EquiFACS) supported the efficacy of horse facial expressions in indicating pain, 
showing that the facial regions identified by EquiFACS align with those recognized 
by the Horse Grimace Scale (HGS) and the Equine Pain Face. However, effective 
pain recognition protocols require training observers to accurately interpret these 
facial cues to prevent bias, and trained observers must be available for evaluations 
throughout the day, which can be time-consuming. Furthermore, as prey animals, 
horses may suppress pain behaviors in the presence of potential threats, revealing 
pain only when humans are not around.

Description of the Dataset, Model Training, and Performance

Seven horses, including six young Brazilian sport horses and one Mangalarga 
Marchador, were filmed during benign surgical castration at approximately one 
year of age. The University of São Paulo required castration for the study, adhering 
to its anesthesia, surgery, and post-operative pain control protocol. Analgesia and 
sedation were achieved with intramuscular morphine and intravenous xylazine, 
while anesthetic induction involved ketamine, diazepam, and glyceryl guaiacol 
ether. Continuous monitoring ensured stable anesthesia depth and vital signs 
during the procedure, with heart and breathing rates checked every five minutes 
and fundamental tests like eye placement, nystagmus movements, and palpebral 
reflex evaluations confirming optimal anesthesia levels (Eaton et al., 2022).

Local anesthesia involved 100 ml of 2% lidocaine, with 10 ml administered 
along the scrotal median raphe and 5 cc intra-testicular for each testicle. 
Orchiectomy was performed using a closed approach with an 8 mm incision 
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perpendicular to the scrotal median raphe. The skin and dartos tunic were 
opened, the testicle was delivered with intact vaginal tunics, and a ramming 
pad was applied to the spermatic cord for 5 minutes (King, 2021). This process 
was repeated for the contralateral testicle. The entire procedure lasted about 40 
minutes, with 20 minutes for anesthetic administration and 20 minutes for surgery. 
The horses were monitored via a camera system positioned in front of the feeder 
station two days before and four days after the procedure, at four different times 
of day: 7 am, 10 am, 12 pm, and 4 pm. This setup resulted in the collection of 
320 video sequences, each lasting 30 minutes, recorded with Intelbras VHD 
1220 B–G4 Multi HD cameras.

Potential Benefits for Equine Health and Welfare

Equine husbandry and nutrition are vital for horses’ well-being. Inadequate 
feeding and care can impair essential bodily systems, jeopardizing their health 
and welfare, and diminishing their ability to meet human expectations. Horses 
serve various roles globally, often as working animals crucial for their owners’ 
livelihoods. Poor welfare affects both horses and their owners, particularly when 
horses cannot perform optimally.

As horses age, they increasingly face conditions like arthritis, underscoring 
the necessity for tailored care to ensure good welfare. Welfare is defined as an 
animal’s ability to cope with its environment, requiring a thorough understanding 
of the specific group of horses to thrive in their context (Scialabba, 2021). 
However, quantifying a horse’s thriving under different management practices 
is challenging due to limited comparative information on their health impacts. 
Managers often rely on experience and intuition, contrasting with historical 
practices where specialized personnel cared for horses.

Klecel and Martynuik’s article, “Horse Husbandry and Management in the 
Ancient World”, highlights that many effective prehistoric husbandry and breeding 
practices are still relevant today (Klecel & Martiniuk, 2021). Initially tamed for 
food, horses became vital for transportation and warfare, paving the way for their 
role in racing. Iron Age horse racing, akin in scale and significance to modern 
racing in Great Britain and France, emphasized the importance of factors like 
rider weight, a topic still under investigation today.

AI in Animal Nutrition and Health

AI has become a tool that refines or even revolutionizes the assessment of how 
to provide animals with the best conditions for a healthier life. The fields where 
AI technology revolutionizes the animal nutrition and health as stated in (Zhang 
et al., 2024), are as follows:

	 1.	 Overcoming Challenges in Tracking Feeding Behaviors Via AI 
Technology: Advances in AI enable precise, continuous tracking of 
individual animal feeding behaviors, including time spent near feeders, 
feeding frequency, and feed consumption. This monitoring helps detect 
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changes in feeding patterns, often indicative of health complications, and 
provides solutions to address these challenges (Ezanno et al., 2021).

	 2.	 AI for Disease Detection and Prevention: AI methods solve complex 
problems in disease diagnosis and prevention by using predictive-analytical 
models that incorporate patient data, hereditary status, and geographical 
location (Bao & Xie, 2023). This early detection system saves time and costs, 
allowing for prompt preventive measures.

	 3.	 Pervasive Computing for Health Assessment and Detection: AI-powered 
technology allows accurate remote monitoring and diagnosis of animal health 
conditions, helping farm managers and health professionals identify and 
treat health complications early, especially in large-scale farming operations 
(Aharwal et al., 2023).

	 4.	 Benefits of AI in Optimizing Diet and Health: AI improves animal health 
and farming productivity through precision nutrition and automated diets 
(Saha & Pathak, 2023). Technologies like Real Appetite AI and drones 
optimize feed intake, minimize waste, and maintain appropriate feeding 
conditions.

	 5.	 Nutrition: The Pareto Principle and Data-Driven Diet Optimization: 
AI utilizes data from health, climate, and disease history databases to create 
targeted animal diets that meet nutritional needs for optimal growth. It 
analyzes genetic, historical, and environmental data to understand factors 
impacting health and develop specific feeds. AI also adjusts feeding regimes 
based on physiological indices like metabolism and nutrient absorption.

Case Study 3: Intelligent Learning Model for Cow 
Feed Intake

Development of Intelligent Models for Collecting Cow Feed 
Intake Data

Regarding the structure of the datasets provided, they consisted of tensors 
containing information about individual meals. Each tensor was created 
by subtracting a lower weight image from a higher weight image for four 
attributes (RGB, depth tensors). To achieve this, the following transformations 
were applied: (a) assembling meals ranging from 0–6 kg per meal or ‘as fed’ 
without adjusting for dry matter basis, (b) data augmentation by horizontally 
and vertically flipping original images, (c) stacking the resulting RGB and depth 
images to form 4-channel images, and (d) resizing dimensions to preferred sizes 
of 160, 120, and 4, respectively. Additionally, two categorical variables were 
derived per tensor: feed type (dichotomized as feed A = 1, feed B = 0) and 
time period (dummy coded as morning/afternoon/night). Approximately 30% 
of the images underwent augmentation to enrich the dataset while avoiding 
redundancy. From manually collected data, around 30,000 RGB D (red, green, 
blue, depth) tensors were generated per feed type (Bennadji, 2020). These tensors 



54 │ Artificial Intelligence and Animal Ecology: A Review

were divided into three datasets for training: 46 tensors each for feed type A 
and feed type B, and 46 mixed tensors equally distributed between feed types 
A and B. An additional 7,000 RGBD tensors were generated for model fine-
tuning using 300 images acquired in March 2021. The models developed and 
compared included: (1) a combined model trained on 40,000 tensors from both 
feed types without specifying the feed type in each tensor, (2) Transfer Learning 
(TL) models fine-tuned on tensors from each feed type sequentially, and (3) a 
Multilayer Perceptron and Convolutional Neural Network (MLP-CNN) model 
incorporating additional categorical variables (Ehteram et al., 2023). 

These models utilized an architecture inspired by EfficientNetB0 (Figures 3 
a, b), comprising six inverted residual blocks with normalization, convolutional, 
and depthwise convolutional layers. Early stopping was employed to prevent 
overfitting during training, using mean squared error as the loss function and 
root mean square propagation as the optimizer.

Figure 3: (a) Modified CNN and (b) Modified MLP-CNN model developed  
following EfficientNet
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 Mixed data consisting of categorical variables (type of feed and time period) 
and image data were processed using the MLP-CNN architecture developed 
specifically for this study, illustrated in Figure 3b. The MLP network handled 
categorical data transmission, while CNN extracted features from tensors. The 
MLP network included more Fully Connected layers compared to the CNN, which 
shared the same architecture as models (a) and (b) except for the final output 
layer. Finally, outputs from both convolutional networks were merged and passed 
through several FC layers to predict the weight of each meal. Table 2 depicts the 
values of the hyperparameters of the modified CNN.

Table 2: Convolutional Neural Network (CNN) models’ hyperparameter values

Hyperparameter Value
Learning Rate (maximum) 0.001
Learning Rate (minimum) 6.25 × 10-5

Batch Size 16
Dropout Rate 0.25

Application of Automatic Feeding Systems and Their Impact 
on Feeding Schedules

Over the years, automated feeding systems have seen remarkable advancements, 
with the latest innovation being on-demand feeding capabilities that provide 
cows with precise Total Mixed Rations (TMR) instantly as needed, eliminating 
potential losses compared to conventional once or twice daily feeding (Valoppi 
et al., 2021). Using advanced laser technology, these systems monitor feed levels 
continuously and deliver feed to low bunks based on real-time consumption data, 
ensuring optimal feed management throughout the 24-hour cycle. This approach 
not only reduces feed shrinkage and enhances accuracy and consistency but also 
lowers operational costs. Automated feeding significantly decreases feed refusal 
rates, from 3–5% in TMR-fed groups to 1% or less in automated systems, 
offering precise timing and eliminating human errors, thereby ensuring high 
reliability and consistency over time.

Analysis of the Model’s Accuracy and Benefits for Dairy 
Farming

The application of communication technologies in dairy farming, especially 
through software and hardware aids, has greatly improved decision-making for 
farmers (Baldin et al., 2021). These technologies enable efficient management 
and scaling of animal groups without increasing human resources. Their 
effectiveness is largely due to the high accuracy of machine learning algorithms, 
which continually adapt to new data inputs. Machine learning enhances decision-
making by addressing challenges such as data multicollinearity, variable 
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distributions, and missing values, while also capturing interactions and nonlinear 
effects in regression and classification problems. Supervised learning algorithms, 
like random forests, extract patterns from training data, whereas unsupervised 
methods, such as k-means clustering, identify patterns without specific training 
sets. The accuracy of on-farm predictions depends on the quality of input data 
and proper validation methods to prevent overfitting.

The integration of machine learning in dairy farm management is expanding, 
providing opportunities for future research. Systematic mapping studies, including 
those by Cockburn and Slob et al. (Cockburn 2020; Slob et al., 2021), have 
outlined the evolution and application of machine learning in dairy farming. These 
reviews assess literature across various subdomains, such as animal physiology, 
reproduction, behavior, and feeding, highlighting methodologies, algorithms, and 
evaluation metrics used, while identifying challenges and discussing research 
design implications. Slob et al.’s review (2021) specifically focused on disease 
detection in milk, milk production forecasting, and milk quality estimation, 
ensuring robustness through defined search protocols and selection criteria. They 
compared regression and classification problems, evaluation criteria, validation 
methods, and algorithm accuracies across studies (Huang et al., 2020), though 
their scope was limited to key articles within the dairy research domain.

In contrast, this synthesized mapping review covers a broader scope, from 
January 1999 to December 2021, with an extensive search strategy across 
scientific databases. It includes all relevant dairy farming subdomains, offering a 
comprehensive mapping of studies based on geographical distribution and research 
areas. This study tracks publication behavior over time and ranks evaluation 
metrics separately for classification and regression problems, providing a detailed 
analysis of their usage frequencies. Overall, the adoption of machine learning in 
dairy farming promises advancements in efficiency, accuracy, and sustainability, 
driven by ongoing research and technological innovation (Neethirajan, 2024).

Case Study 4: Intelligent Feeding System for Pet 
Obesity Control

Implementation of AI-based Systems for Managing  
Pet Obesity

The automation of pet obesity management through AI systems offers 
personalized advice and interventions tailored to each individual pet (Tauseef  
et al., 2024). This process involves several key steps:

	 1.	 Data Collection: Collect comprehensive data from various sources including 
(a) veterinary records such as detailed history from the veterinarian, 
including the animal’s species, weight history, diet, and any existing medical 
conditions, (b) fitted devices such as Data from activity monitors and other 
wearable devices that track the pet’s daily activities and behaviors, and  
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(c) owner input like information provided by the pet owners about daily 
routines, diet specifics, and observed behaviors.

	 2.	 Machine Learning Algorithms: Utilize machine learning algorithms to 
analyze the collected data and classify it in relation to pet obesity. These 
algorithms can (a) analyze feeding patterns by identifying and evaluating 
feeding habits and diet composition, (b) assess activity levels by monitoring 
exercise regimens and physical activity, and (c) predict obesity risk by 
estimating the likelihood of a pet becoming obese based on its current 
lifestyle and health metrics.

	 3.	 Personalized Recommendations: Develop an AI solution that provides 
tailored care and intervention strategies for each pet. This includes: (a) 
feeding recommendations, i.e., suggesting appropriate diet plans, portion 
sizes, and feeding schedules, (b) exercise programs, i.e., design exercise 
routines suitable for the pet’s breed, age, and health status, and (c) behavioral 
management of offering tips for managing behaviors that may contribute to 
obesity, such as overeating due to stress or boredom.

	 4.	 Monitoring and Feedback: Implement a system to continuously monitor and 
provide feedback on the pet’s progress. This could involve: (a) platforms like 
mobile applications/websites, where owners can log daily or weekly updates 
on their pet’s activity, diet, and weight, and (b) automated AI feedback and 
adjustments to recommendations based on the logged data 

	 5.	 Integration with Veterinary Care: Ensure the AI-based system complements 
traditional veterinary care by (a) database connectivity by integrating a 
companion animal database with the veterinary practice management 
software, and (b) collaborative care by enabling pet owners to share AI-
generated insights and recommendations with their veterinarians for further 
advice and intervention.

	 6.	 Behavioral Insights: Use AI to analyze behavioral and activity diary data 
to identify triggers for obesity, such as (a) stress or boredom to determine 
if emotional factors are influencing overeating or lack of activity, and (b) 
adjustments to suggest modifications in the pet’s environment or routine to 
mitigate these triggers and promote healthier behaviors.

By automating these processes, managing pet obesity becomes more efficient 
and effective, leading to better health outcomes for pets and more informed care 
for pet owners.

Mechanisms of Intelligent Feeding Systems and  
Their Effectiveness

Smart feeding systems feature mechanisms that dispense pre-programmed 
amounts of food, allowing pet owners to provide correct portion sizes based 
on age, weight, activity level, and dietary needs (Valencia et al., 2022). These 
systems effectively minimize overfeeding, a leading cause of obesity. Some 
include weight control algorithms that calculate daily caloric needs, which can 
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be adjusted per portion to help pets maintain a healthy weight. Many feeders can 
also dispense food at specific intervals, aiding pet owners in managing their pets’ 
feeding schedules (Kulaikaret et al., 2023). Scheduled feeding establishes better 
eating habits and controls calorie intake, contributing to weight management.

In certain regions, intelligent feeding systems calculate daily caloric 
requirements using measurements like age, weight, activity levels, and metabolic 
rates to recommend appropriate portion sizes, ensuring precise daily calorie 
supply and preventing excessive intake that leads to weight gain. Pets have unique 
energy demands and nutrient needs based on species, breeds, and individual 
characteristics, so intelligent feeding systems should be flexible to cater to these 
requirements (Hobbs Jr., 2023).

Successful weight loss for pets relies heavily on owners entering accurate 
information about their pet’s weight, activity level, and diet, and adhering to 
recommended feeding times and portions. Systems with enhanced functionalities—
such as weight management algorithms, preset feeding times, portion control, and 
internet-based monitoring—are valuable tools for preventing pet obesity. Kulaikar 
et al. highlighted the need to address behavioral aspects, like food-seeking 
behavior and emotional eating, which are crucial for regulating ideal body weight 
in pets. Other feeding methods, such as slow feeders or puzzle feeders, can also 
promote proper eating habits and prevent overfeeding.

A Comparative Analysis of Traditional and AI-based 
Models in Understanding Animal Behavior

Conventional techniques in understanding animal behavior rely heavily on 
manual data collection, which, while offering high ecological validity, is 
often subject to observer bias and limited in temporal and spatial resolution. 
These methods are labor-intensive and can be costly, especially for extensive 
studies. In contrast, AI-based approaches leverage automated data collection, 
providing higher data quality and the ability to analyze complex behaviors with 
advanced algorithms. These methods offer continuous monitoring, improving 
both temporal and spatial resolution. However, they require significant initial 
investment and expertise in AI and data analysis. While AI-based methods can 
sometimes struggle with ecological validity, they hold the potential for more 
objective and comprehensive insights into animal behavior. A comparative 
analysis of traditional vs AI-based approaches has been depicted in Table 3.

Conclusion

This chapter explored some of the significant ways AI benefits animal welfare. 
AI enables precise identification of animal behaviors and emotional states, 
and accurate diagnostics of diseases and their potential progression. This level 
of accuracy facilitates rapid responses, enhancing overall animal healthcare. 
Additionally, AI systems efficiently manage operational tasks like environment 
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regulation, facility cleaning, and standardizing animal care services, minimizing 
errors. AI also advances animal health and nutrition by developing tailored 
feeding plans and predicting diseases before they become problematic. However, 
there are inherent limitations in applying AI techniques. For example, CNNs 

Table 3: Comparative analysis of traditional and AI-Based approaches

Aspects Traditional Methods AI-Based Approaches
Data Collection Manual data collection, 

surveys, experiments, and field 
studies play essential roles 
in animal behavior research, 
providing valuable insights 
into the behavior, ecology, and 
conservation of animals in their 
natural habitats.

May involve manual data 
collection initially but can 
also leverage automated data 
collection methods such as 
sensor networks or camera 
traps.

Data Quality Due to human intervention, it 
can be subject to observer bias. 
It is complementary where 
the access is limited to human 
capacity (Blanco, 2022).

In remote or challenging 
environments where automated 
data collection methods may 
be impractical or unfeasible, 
manual observation remains a 
valuable tool for gathering data 
on animal behavior (Nazir & 
Md. Kaleem, 2021).

Interpretation Relies on human expertise and 
interpretation.

Requires expertise in AI 
algorithms and data analysis 
(Bao & Xie, 2022).

Ecological 
Validity

High, reflects the actual 
behavior experienced in daily 
life (Hertel et al., 2020).

Variable, unpredictable 
depending on the data used for 
the analysis.

Temporal 
Resolution

Depends on the observation 
period or studies.

It can monitor continuously 
given the use of sensors 
and algorithms (Bownik & 
Wlodkowic, 2021).

Spatial 
Resolution

Depends on the observation 
period or studies.

It can monitor continuously 
given the use of sensors and 
algorithms (Carlslake et al., 
2020).

Complexity of 
Behavior

Pertaining to complexity 
restricted only to the cabaret of 
behavior.

Possibility to analyze even 
complex behaviors using 
intelligent algorithms (Bao & 
Xie, 2022) .

Cost Cost variable, contingent 
on equipment and human 
resources.

Immediate cost for acquiring 
equipment, possible savings 
over recurrent tests.
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are effective for animal detection and action recognition but may struggle with 
images captured at nighttime or complex scenes. Sensor-based approaches are 
more effective for collecting behavioral data but may fail to identify complex 
emotions, due to lack of documented varieties of behavioral patterns. Machine 
learning algorithms can identify nutrition and health variables but may lack an 
understanding of animal needs, since the animal farming environment overlaps 
only partially to the natural habitats. Artificial Intelligence Models (AIMs) are 
effective in disease diagnosis but rely on rule-based systems and have limited 
learning capabilities. Thus, no single AI method is without weaknesses or risks.

 To advance AI for animal care, several areas need consideration. Integration 
of AI with the Internet of Things (IoT) can create more advanced animal care 
facilities, enabling continuous monitoring and improvement of care aspects 
like feeding and environment. AI algorithms can analyze real-time data from 
connected IoT devices to ensure animals receive optimal care. Future AI models 
could enhance care plans based on individual animal behaviors, emotions, and 
health states, personalizing care for better outcomes. Interdisciplinary cooperation 
between technologists, veterinarians, and animal behavior researchers is crucial 
for these advancements.
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Communication in all living organisms is a basic form of survival criteria, 
amongst which vocal communication is a significant type. Animal vocalization 
triggers specific socio-sexual behavior that reveals information about the 
evolutionary, ecological, and social context of the species. In nature, sound is 
widely used for communication. It is important for species specific interactions, 
mating attraction, defense of territories, predator avoidance, warning signals, 
and social cohesiveness. The vocal communication for different species is not 
majorly comparable, though they have similarities in syllable structures and some 
patterns. The patterns in vocal repertoire across various animal kingdoms reveal 
their evolutionary distributions. The vocalization pattern and an animal’s capacity 
for auditory communication are determined by complex brain connections and 
physiological adaptations. The vocal repertory has also been greatly impacted 
by both physiological and ecological influences. Through numerous examples 
of species-species interaction, the chapter provides a clear understanding of 
the various vocal repertoire forms and the ecological significance of vocal 
signals in response to conspecific and heterospecific interactions and effects of 
environmental noise. The pattern in which various animal species communicate is 
also covered, emphasizing the value of vocal communication for everything right 
from mating calls to emotion exchange. Artificial Intelligence (AI) has nowadays 
revolutionized the recording of animal interaction patterns and is helping vastly 
in analyzing these vocalizations. Cutting-edge AI is aiding in deciphering the 
vocal signals and AI algorithms are being utilized to automate the process of 
data collection. The potential of AI in deciphering vocal communication in 
the animal kingdom is also elaborated. The chapter thus concludes with the 
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discussion of the various forms of animal vocal signals showing a contrast 
between the traditional methods of interpretation and the modern transformative 
impact of AI in understanding the vocal communication of the animal kingdom.

Introduction

Vocal communication results from macro-evolutionary events that lead to 
neuronal innovations for social interaction. While humans instinctively associate 
vocal communication with speech, animal vocalizations are equally complex and 
vital for various species. Such behaviors arise from specific sounds, gestures, and 
patterns essential for interactions, mating, or foraging, providing evolutionary 
advantages for survival and growth (Bass et al., 2010). Vocal learning, voluntary 
control over vocal apparatus, and diverse vocal repertoires are crucial for the 
evolution of human vocal communication. In contrast, non-human animals 
may have undergone significant vocal brain changes during evolution, lacking  
these capabilities.

Animal vocal patterns are genetically pre-programmed, with selective pressures 
influencing how genes and environments shape communication and species 
adaptation to ecological niches (Belyk & Brown, 2017). Through vocalizations, 
animals express diverse information, including warning signals, territory claims, 
mating calls, and social relationships. This rich tapestry of expressive behaviors 
is evident in primates, reptiles, and birds. Non-human primates, particularly apes 
and monkeys, like Callimico goeldii, Macaca radiata, Miopithecus talapoin, 
Macaca fuscata, Macaca silenus, and Daubentonia madagascariensis, utilize 
intricate vocalizations for social functions like marking territory and group 
coordination (McComb & Semple, 2005; Ghazanfar, 2013; Fischer & Price, 2017). 
Their vocal structures are closely linked to emotional and motivational states, 
although their understanding of communicative intent is limited (Snowdon, 2017). 
Reptiles like Chelonoidis carbonarius, Caiman crocodiles, Micrurus lemniscatus, 
Testudo horsfieldii, Calotes versicolor, Chrysemys picta, Anolis chlorocyanus, 
Eublepharis macularius, Alligator mississippiensis, Crocodylus acutus, Vipera 
berus, Acanthodactylus erythrurus, Hemidactylus mabouia, Ptyodactylus guttatus, 
and Crotalus durissus, despite lacking vocal cords, use acoustic signals for mating 
and territory defense (Frankenberg, 1975; Vliet, 1989; Macedonia & Stamps, 1994; 
Gagno, 2013; Russell & Bauer, 2021). Birds like Sayornis Phoebe, Taeniopygia 
guttata, Zonotrichia leucophrys, Procnias tricarunculatus, Procnias nudicollis 
exhibit a remarkable variety of vocalizations, including complex calls and songs, 
crucial for communication and mate selection (Read & Weary, 1992; Pepperberg, 
2013; Loo & Cain 2021).

Since Darwin’s 1871 observations, scientists have sought to understand 
animal communication mechanisms (Darwin, 1888). Recent research, particularly 
by Sueur and Farina, has focused on the ecological significance of vocalizations 
(Sueur & Farina, 2015). Understanding vocal communication requires an 
integrated approach that combines behavioral observations, acoustic analyses, and 



	

advanced computational tools, including bioacoustic monitoring and spectrograms 
(Takahashi et al., 2021). Decoding the intricate interactions of sounds, gestures, 
and social contexts across avian, reptilian, and primate populations offers vital 
insights into ecology, conservation, and animal behavior.

Artificial intelligence (AI) equips researchers with advanced tools for 
analyzing animal vocal communication, enhancing our understanding of its 
diversity and complexity. By utilizing AI, we can uncover insights into the 
behavioral, ecological, and evolutionary dynamics of vocal communication across 
the animal kingdom (Suzuki et al., 2020; Congdon et al., 2022). Current research 
explores the intersection of biology and technology to deepen our understanding 
of the intricate language of the natural world.

The Ecological Significance of ‘Eco-Symphonies’ 

Animal vocalizations, often called ‘eco-symphonies’, are vital to communication 
networks across various species. These vocalizations serve multiple functions, 
including mate attraction, territorial defense, and social cohesion among 
offspring, exemplified by birds’ melodic songs and whales’ complex cries (Janik, 
2014; Verpoten, 2021).

The diversity of animal vocalizations is remarkable, with different species 
utilizing various vocal signals characterized by unique frequencies, lengths, 
volumes, and patterns to fit their social systems and ecological niches. For 
instance, mice produce ultrasounds for social interactions, mating, and isolation 
of pups, while mammals like wolves, elephants, and primates use vocalizations 
to communicate reproductive intentions and maintain social relationships. These 
signals are crucial for announcing dominance and facilitating mate selection 
within groups.

Hunting animals, such as the African wild dog (Lycaon pictus), use vocal 
sounds to coordinate efforts with their pack. Similarly, bats employ vocal 
communication during hunting and in social settings. Birds like the zebra finch 
exhibit elaborate vocal patterns for courtship, while whales and dolphins utilize 
vocalizations for communication, social bonding, and navigation. Songbirds, for 
instance, engage in intricate vocal routines during courting rituals (Carouso-Peck 
et al., 2021), and primates use distinct calls for group coordination and predator 
warnings. Advances in bioacoustics allow scientists to decode these vocal 
repertoires, providing insights into their development and function.

Vocalizations are essential for social interactions and have implications for 
reproductive success, as shown in birds where song complexity correlates with 
male quality and territory. Male birds often use various tunes to attract mates, 
indicating their genetic quality and health. This dynamic of mate attraction 
through vocal communication is well-documented. In marine environments, 
vocalizations maintain group cohesion and facilitate activities like hunting and 
navigation among dolphins and whales (King & Jensen, 2023). Whales produce 
a wide range of sounds, from eerie groans to beautiful melodies, used for social 
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bonding and navigation. Notably, different humpback whale populations exhibit 
unique song patterns, suggesting cultural transmission akin to human societies 
(Schall et al., 2020; Whitehead et al., 2023).

Dolphins use various vocalizations—whistles, clicks, and pulsed calls—for 
communication, aiding in locating prey and expressing emotions. AI-powered 
acoustic analysis enhances our understanding of these communication patterns, 
which is crucial for dolphin conservation (Huijser et al., 2020; Premoli et al., 
2023). Similarly, marine mammals use high-frequency clicks to navigate and 
locate prey (Clink et al., 2020; Brualla et al., 2023; Jordan et al., 2023). In dense 
jungles, frogs and insects rely heavily on audio signals for mate identification 
and territory establishment. On land, carnivores and birds of prey employ 
vocal communication to coordinate hunting strategies. African wild dogs use 
complex exchanges to crowd and isolate prey, while bats utilize echolocation 
and vocalizations for hunting. Raptors like eagles and falcons use piercing 
calls to coordinate aerial attacks, showcasing the relationship between vocal 
communication and predatory behavior.

Dawn bird choruses influence plant community dynamics and ecosystem 
structure by controlling seed distribution and insect populations (Farina et al., 
2014). Predator vocalizations can impact energy flows and trophic cascades, 
affecting ecosystem resilience and stability. Understanding the ecological relevance 
of animal vocalizations has significant conservation implications (Guyette & Post, 
2023). Recognizing the importance of eco-symphonies can guide conservation 
initiatives aimed at preserving acoustic environments and mitigating human 
impacts on vocalizations.

The study of animal vocalizations offers a glimpse into the intricate ecological 
interactions and adaptive mechanisms that shape life on Earth. Eco-symphonies 
resonate throughout diverse habitats, creating a tapestry of sounds that reflects 
the complexity of the natural world. By deciphering the ecological significance 
of these vocalizations, scientists deepen our understanding of animal behavior 
and the intricacies of life.

Evolutionary Perspectives on Vocal Communication

Cortical mechanisms for producing and learning vocalizations vary across 
species, reflecting selective pressures shaped by different ecological and social 
niches. Vocal adaptations are species-specific, indicating that animals possess 
varying singing abilities based on their environments. Recent research suggests 
that high intelligence does not exclusively correlate with rich vocalization, as 
some reptiles exhibit vocal signaling. Neuroimaging studies have identified 
brain regions in reptiles, such as green tree pythons, responsible for processing 
diverse vocalizations, indicating independent evolution of vocal communication 
(Armstrong et al., 1991). Comparative genomic studies confirm the conservation 
of genes related to vocal behavior across reptile groups.
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Monkeys exhibit extraordinary vocal repertoires, with technological advances 
like computational modeling revealing the social meanings behind their cries 
(Moore & Gockel, 2012; Mello et al., 2015; Garcia & Ravignani, 2020). 
Neuroimaging techniques, including EEG and fNIRS, have identified networks 
in signal voices and socio-emotional memory, highlighting the involvement of 
the prefrontal cortex and anterior cingulate cortex (ACC) in vocal modulation 
(Klink et al., 2021; Searcy & Nowicki, 2023). In birds, vocal communication 
research has provided insights into the neurology of song production (Coffey  
et al., 2019; Elemans et al., 2008). Recent mapping experiments have clarified the 
neuronal architecture in songbirds that underpins vocalization, revealing the role of 
neurotrophic factors and epigenetic processes in avian vocal circuits. Comparative 
genomic analyses have identified common genetic modules associated with vocal 
learning across bird lineages, enhancing our understanding of the evolution of 
vocal communication abilities (Hage et al., 2013; Mello & Clayton, 2015).

AI-infused Interface in Deciphering Animal Ecology

AI addresses complex problems across various fields, including statistics, 
information science, software development, computational modeling, and data 
analysis. Evolving since the 1980s, machine learning (ML) has become a 
key technique, while deep learning has gained popularity for managing large 
datasets since the 2000s. Although AI techniques can solve problems and 
integrate information, they are often underutilized in animal health research. 
The capacity to collect and share extensive information has heightened the need 
for effective data analysis methods. ML has emerged as a valuable strategy in 
ecology, bridging large datasets with meaningful ecological insights. Recent 
advancements in ML technology have enhanced the traditional ecological study 
pipeline. The rising demand for ML in animal ecology and conservation stems 
from the challenges posed by complex ecological data. Thus, the relationship 
between ecology and ML should be reciprocal, as accurate model creation 
requires integrating ecological knowledge into ML techniques (Saareenma et 
al., 1988; Matsuzawa, 2003; Tabak et al., 2019; Ditria et al., 2020; Eikelboom 
et al., 2021; Maharani et al., 2021; Han et al., 2023).

The Benefits and Drawbacks of AI vs. Conventional 
Approaches in Animal Communication Research

Animals communicate in intricate and fascinating ways, using vocalizations, 
gestures, postures, and chemical signals. Gaining an understanding of these 
exchanges can provide novel perspectives on animal cognition, social connections, 
and behavior. However, it can be difficult to understand animal communication; 
it requires careful monitoring, evaluation, and evaluation of data. This is where 
the potential of AI comes into play. While traditional methods have established 
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the foundation for studying animal communication, AI provides new resources 
and opportunities to further explore this intricate field (Christin et al., 2019).

Conventional Approaches 

Animal communication research has typically relied on observational studies, 
ethnographic methods, bioacoustics, and field experiments. Observational 
studies capture animal postures, vocalizations, and interactions, offering insights 
into communication systems. Ethnographic methods immerse researchers in 
animal cultures, uncovering nuances and social contexts often overlooked in 
controlled settings. Bioacoustics analyzes animal sounds through spectrographs 
and sound localization techniques, quantifying complex vocalizations. Field 
experiments test hypotheses by manipulating environmental factors or animal 
behavior. However, these conventional approaches face limitations, including 
subjectivity, restricted data, and scalability challenges, which can result in 
incomplete information, time-consuming manual analyses, and difficulties in 
handling large, complex multimodal datasets (Dall et al., 2005; Sutherland, 
2006; Thessen, 2016; Valletta et al., 2017; Christin et al., 2019; Khalighifar, 
2020; Droge et al., 2021).

AI-based Approach

AI offers a powerful toolbox for overcoming these limitations and revolutionizing 
animal communication research. Machine learning algorithms can analyze vast 
amounts of data, including audio, video, and sensor data, with unprecedented 
speed and accuracy (Dall et al., 2005).

Automatic Detection and Classification

AI algorithms can automatically detect and classify animal communication signals, 
reducing observer bias and allowing for large-scale analysis of communication 
events. For example, deep learning models can identify specific bird calls within 
hours-long recordings, a task that would take humans significantly longer (Ditria 
et al., 2020).

Pattern Recognition

AI excels at uncovering hidden patterns and relationships within complex data. 
Algorithms can identify subtle variations in vocalizations, postures, or behaviors 
that might be missed by human observers, potentially revealing new information 
about communication intent or individual differences (Petso et al., 2021).

Real-time Analysis

AI algorithms can analyze data in real-time, enabling researchers to track and 
respond to ongoing communication events in the field. This opens up possibilities 
for dynamic experiments and interactive studies of animal communication 
(Panigrahi et al., 2023).
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Integration of Multiple Data Sources

AI can analyze data from diverse sources such as acoustics, video, and GPS tracking, 
offering a comprehensive understanding of communication signals (Freenders  
et al., 2008). This multimodality provides richer insights into animal interactions 
than a single data type alone. However, AI has several drawbacks in animal  
communication research:

	•	 Data dependency: AI algorithms require extensive training data, which can be 
costly and time-consuming to collect, especially for non-vocal communication 
signals (Weber et al., 2023).

	•	 Interpretability: Understanding how “black box” AI models reach conclusions 
can be difficult, potentially hindering scientific insight and researchers’ ability 
to refine their hypotheses (Aamodt & Nygard, 1995).

	•	 Overfitting: AI models may perform well on training data but struggle to 
generalize to new data, leading to inaccurate conclusions and limiting the 
broader applicability of research findings (Rang et al., 2021).

Primate, Reptiles, and Avian Vocalization Patterns

The capacity for vocalization-based communication is essential for social 
relationships, reproduction, and survivability in the animal kingdom. This 
chapter explores the rich and varied vocal repertoires of three different animal 
groups: birds, reptiles, and primates. Each group has evolved distinct and 
sophisticated vocalizations that fulfill a range of purposes, despite the fact 
that their evolutionary trajectories separated millions of years ago (Petkov &  
Jarvis, 2012).

Primate Vocalization Pattern

Primates, our closest living relatives, exhibit a diverse range of flexible and 
complex vocalizations. For example, chimpanzees use around 30 different 
vocalizations, each with distinct meanings and contexts (Zimmermann, 2017). 
Their notable pant hoots serve to warn of danger or summon group members, 
while whimpers indicate submission, and barks signal hostility. Chimpanzees are 
also skilled vocal mimics, imitating not only their calls but also human speech 
and ambient sounds (Filippi et al., 2017).

Despite their peaceful social relationships, bonobos primarily use vocalizations 
to maintain harmony. High-pitched trills, resembling laughter, occur during play 
and reconciliation, promoting social bonding. In contrast, gorillas rely on low-
frequency vocalizations, such as grunts and roars, to assert dominance and protect 
their territory (Seyforth & Cheney, 2010).

Monkeys and other non-human primates also engage in complex vocal 
communication. Vervet monkeys have a sophisticated warning system where 
distinct cries signal different predators, enhancing group survival by enabling 
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effective responses to threats (Newman, 2004). Gibbons possess a complex 
singing system, utilizing elaborate choruses and duets for social cohesion, mate 
attraction, and territorial defense (Lierbal & Kaminski, 2012). Solitary orangutans 
use long-distance calls to find mates and alert others to danger, reflecting their 
intricate social lives (Nurcahyo et al., 2017). Studies suggest that primates like 
chimpanzees and bonobos can adapt their vocalizations in response to social cues 
and environmental changes, demonstrating vocal learning (Capshaw et al., 2021).

Reptile Vocalization Pattern

Reptiles have long been thought to possess a limited range of vocalizations, 
although they do have some. For instance, lizards produce whistles, chirps, 
and clicks to mark territory, attract mates, and interact with each other. Despite 
lacking vocal cords, snakes use hisses, thumps, and vibrations for signaling 
hostility and attracting mates. Rattlesnakes ‘vocalize’ using their distinctive 
rattles to warn off predators and competitors (Russell & Bauer, 2021).

Crocodilians boast a diverse vocal repertoire for various life stages. They 
use softer sounds for courting and social interactions, while bellows and roars 
serve territorial purposes. Interestingly, crocodile hatchlings ‘chirp’ in unison 
during hatching, suggesting early communication (Cooke, 1893). Some turtles, 
like snapping turtles, vocalize and hiss to communicate with mates and deter 
predators (Baker, 2022). Additionally, certain snakes and lizards produce 
infrasonic vocalizations that may aid in social interactions and territory defense  
(Blythe, 2020).

Avian Vocalization Pattern

Birds are renowned for their complex songs, crucial for maintaining social bonds, 
attracting mates, and defending territories. Songbirds, like mockingbirds and 
nightingales, exhibit exceptional vocal control, allowing them to imitate human 
speech and other birds’ melodies (Anastasi, 2017). The purpose of bird songs 
varies by species. Male songbirds often use elaborate songs to signal health and 
reproductive fitness to attract females (Liu et al., 2013). Vocalizations also serve 
to defend territories, alert others to danger, and facilitate flock communication.

Other bird groups use different vocalizations. Parrots are particularly adept 
at mimicking noises, including human speech, while owls hoot to attract mates 
and establish territory (Anastasi, 2017). Penguins employ diverse vocalizations, 
such as growls and trumpets, to assert dominance and coordinate group 
movements. Hummingbirds produce intricate vocalizations for aggression, 
territorial defense, and courtship (Anastasi, 2017). Crows and ravens showcase 
a range of vocalizations, including mimicking human speech, highlighting their 
cognitive abilities (Liu et al., 2013). Recent research suggests that non-songbirds, 
like parrots and hummingbirds, may also possess vocal learning skills, adding 
complexity to avian communication (Anastasi, 2017).
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Body Language of Primates, Reptiles, and Avians in 
Decoding Eco-social Dynamics

The study of vocal communication and body language in animals reveals 
the complexities of social interactions and ecological adaptations. Primates, 
reptiles, and birds utilize diverse vocalizations and nonverbal cues for inter- 
and intra-species communication, providing insights into their eco-social 
dynamics, including social hierarchies and environmental adaptations. Primate 
body language is essential for navigating habitats, resource distribution, mate 
selection, territorial defense, and foraging. Rodents, particularly rats, also rely 
on body language to regulate social interactions and reproductive strategies, 
fostering social cohesion.

Vocal communication is crucial for maintaining social order and nurturing 
offspring. Studies highlight tactile interactions between parent birds and their 
young, shedding light on social learning and foraging skills passed within avian 
families. Birds exhibit significant variations in body language across species, 
with research comparing wild and captive populations revealing differences in 
vocal dialects, mating rituals, and foraging strategies, underscoring the influence 
of environmental factors and social learning mechanisms (Arakawa et al., 2008; 
Liebel & Call, 2012; Fusani et al., 2014; Roberts & Roberts, 2016; Kenny et al., 
2017; Liebel & Ona, 2018; Graham et al., 2018; Riters et al., 2019; Demuru et 
al., 2020; Ebbesen & Froemke, 2021; Jablonsky et al., 2021, Lewis et al., 2021; 
Knaebe et al., 2022; Kitano et al., 2022; Pereira et al., 2022; Kalan et al., 2023; 
Petkov & Jarvis, 2023).

AI-driven Tools and Outcomes in Interpreting 
Primate, Reptiles, and Avian Vocalization Patterns

AI-driven tools analyze acoustic data using advanced algorithms, offering insights 
into animal vocalizations. These tools efficiently handle large vocalization 
datasets, employing ML techniques like deep neural networks and support 
vector machines to classify and categorize calls based on acoustic properties. 
This capability helps researchers identify unique calls and correlations with 
behaviors such as social interactions, territorial defense, and mating displays 
(Picciulin et al., 2013; Zhang et al., 2023; Das et al., 2024).

AI techniques enable automatic vocalization detection and real-time 
monitoring in natural habitats, allowing extended data collection on animal vocal 
behavior. This is particularly valuable for studying nocturnal or elusive species. 
For instance, the software DeepSqueak, developed in 2019, detects and classifies 
ultrasonic vocalizations in animals like mice and lemurs, facilitating cross-taxa 
studies (Hoy, 2018; Romero-M. et al., 2021). EAIGLE Inc. has created a tool to 
analyze Sumatran orangutan vocalizations and gestures in real-time, also applied 
to various primate species. Passive acoustic monitoring (PAM) enhances data 
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storage for tracking primates in hard-to-reach areas (Lemasson & Hausberger, 
2011; Bouchet et al., 2012; Riondato et al., 2013; Valente et al., 2019; Congdon 
et al., 2022; Clink et al., 2023).

Reptiles typically have low-frequency vocalizations and smaller repertoires. 
Raven Pro 1.5 was used to study several reptile species, while deep learning tools 
examined vocal patterns in American alligators and Nile crocodiles (Ligges et al., 
2018; Anikin, 2019; Zhou et al., 2023; Jensen et al., 2024). Bird vocalizations 
are extensively studied using deep learning. BirdNET identifies 984 bird species 
in North America and Europe, analyzing their social behavior through sound. 
The program processes audio to create visual sound representations and trains 
a complex model with about 27 million parameters. Kaleidoscope Pro clusters’ 
sounds using a hidden Markov model, suitable for long-term species monitoring. 
RavenPro aids in classifying birdsong, interpreting seasonal behavioral changes 
and daily activity patterns (Ruff et al., 2020; Kahl et al., 2021; Symes et al., 2022).

Comparative Analysis from Empirical Studies

AI technology, including neural networks and ML algorithms, has transformed 
our understanding of vocal communication across species. These tools have 
categorized and analyzed monkey vocalizations, revealing social contexts and 
species-specific patterns. They highlight unique calls in primates, such as the 
mating and alarm calls of various monkeys and great apes, which are crucial 
for interpreting social interactions and territorial behaviors. AI algorithms 
have shown that primates possess diverse vocalizations—each serving distinct 
communicative purposes within their social groups. Convolutional Neural 
Networks (CNNs) (Hoy, 2018; Clink et al., 2023) utilize audio analysis to 
classify these vocalizations and elucidate their roles in social cognition.

Reptile vocalizations indicate mating displays, territorial conflicts, and 
predator-prey interactions. AI tools enhance the detection of subtle acoustic 
variations in reptilian vocalizations, producing clearer results than traditional 
methods. By employing spectrogram analysis, machine learning, and audio 
recording, AI-based research has improved the understanding of these weak 
acoustic signals. In avian studies, AI methods allow researchers to analyze 
large datasets and identify subtle auditory patterns, facilitating insights into the 
evolutionary origins of bird vocalizations. However, significant variations exist 
in the vocalizations and behaviors of different species, affecting methodologies. 
Primates produce complex vocalizations, reptiles offer basic hisses and clicks, 
and birds display varied harmonic patterns. Deep learning techniques like CNNs 
and Recurrent Neural Networks are commonly used for primate analysis, while 
Support Vector Machines (SVMs) and Decision Trees are applied to reptiles. AI 
systems for bird vocalization analysis often incorporate advanced deep learning 
models to capture intricate spectral and temporal patterns (Noda et al., 2017; 
Corneanu, 2019).
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Conclusion

Animals rely heavily on vocal communication for various aspects of their lives, 
including mating, territory defense, danger alerts, and social bonding. They use a 
wide range of vocalizations, from simple alarm calls to complex songs. Primate 
vocalizations, including those of monkeys and apes, are particularly intricate, 
encompassing screams, grunts, calls, and gestures that help organize group 
activities and express emotions like anger, fear, or affection. While birds utilize 
diverse vocalizations such as calls and mimicry, reptiles, despite lacking vocal 
cords, also communicate through various sounds and behaviors. Traditionally, 
interpreting these acoustic signals has been challenging, but the advent of AI has 
revolutionized the study of animal vocal communication. AI provides advanced 
tools for analyzing large volumes of acoustic data, enabling researchers to 
identify species-specific vocalizations, measure vocal characteristics, and detect 
subtle variations in communication patterns. Overall, AI’s application has 
enhanced our understanding of the complex communication patterns in primates, 
reptiles, and birds, revealing the ecological roles these acoustics play in animal 
behavior and survival.
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Understanding inter-species interactions within ecological niches is the key to 
addressing the Eltonian shortfall, predicting novel interactions of introduced 
species, and understanding endangered species’ preferences. Initial models, 
limited by rigid assumptions, were unable to fully capture the complexities of 
real-world interaction networks. However, with advances in computing and 
access to vast databases, machine learning (ML) models like Boosted Regression 
Trees, Random Forests, k-Nearest Neighbor, SVM, and neural networks now 
offer the flexibility needed for dynamic species interaction models (SIMs). SIMs 
leverage morphological, ecological, ethological, geographical, and genetic traits 
to predict interactions, with evolutionary relationships providing additional 
predictive power. Integrating functional traits with phylogenetic data and ML 
could significantly enhance SIM accuracy and ecosystem management strategies.

Despite this progress, SIMs’ comprehensiveness across various species 
groups and regions remains untested. This review provides an analysis of existing 
ML-based SIMs, organized by application, model parameters, and data types 
used. Improved understanding of species interactions would link community 
and network ecology with spatial ecology, bridging gaps in knowledge about 
inter-species relationships and informing conservation strategies across species, 
communities, and ecosystems at multiple scales.
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Introduction

The unbridled ecological destruction and systematic exploitation of nature have 
jeopardized the natural cycles which are catalysts to regeneration of ecosystems 
(Clark and Foster, 2010). Change of land/sea uses, pollution, overuse (Hall, 
1972), climate change (Weiskopf et al., 2020; Muleneh, 2021) are amongst the 
drivers of biodiversity loss. Despite global conservation efforts, biodiversity 
is declining at an unprecedented rate (Ceballos and Ehrlich, 2023; Schickhoff 
et al., 2023). This is evident by the inability to reach any of the 20 Aichi 
Biodiversity Targets outlined in 2010. It is imperative to fill the information 
gaps in biodiversity because appropriate conservation and restoration strategies 
can never be strategically planned without a thorough knowledge base of the 
ecosystem (Hortal et al., 2015). Although there has been significant progress in 
quantifying the different types of organisms (Linnean shortfall), understanding 
their geographic distributions (Wallacean shortfall) (Diniz-Filho et al., 2023), 
and understanding their evolutionary relationships (Darwinian shortfall) (Diniz-
Filho et al., 2013), the knowledge of the interactions between them (Eltonian 
shortfall) is trifling primarily due to dearth of the volume of empirical data 
needed for the purpose. While direct pairwise biotic interactions have failed to 
address the dynamics of community structures, the ecological networks have 
provided an alternative. The indeterminately immense number of potential 
indirect interaction chains in an ecological community (Dodds and Nelson, 
2006) makes it almost impossible to gather empirical data.

Advances in Artificial Intelligence (AI) and Machine Learning (ML) are 
transforming perceptions of ecology (Perry et al., 2022). Species distribution, 
inter-species interactions, automatic identification from images, camera traps or 
from call recordings, effects of various climatic parameters on populations of a 
certain species and modeling the meta-foodweb of an entire ecosystem are being 
simulated using various ML algorithms, involving both tabular as well as from 
image, video, audio data.

Modeling Interactions

Biotic interactions vary greatly and can be classified according to their types, 
strength and symmetry. It was suggested that the population of any organism has 
to ‘‘struggle for existence’’ and the competitors, antagonists, and pathogens act 
as limiting checks (Darwin, 1859) to the unrestrained population growth. The 
initial classification of non-human species interactions refuted the ‘struggle for 
survival and classified relations between species as parasitism, commensalism, 
and mutualism based on facilitative and antagonistic approaches to resource 
utilization (van Beneden, 1878). Later on, competition (Gause, 1934; Connell, 
1961) and amensalism (Haskell, 1949) are also being accepted as categories 
of biotic interactions, based on the net balance of trade (benefit-cost) matrix. 
The co-actions are thus classified on the basis of positive (+), negative (–), or 
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neutral (0) effect on the participants (Lidicker, 1979). The possible co-actions 
are thus antagonism (prey-predator/parasitism/herbivory) (+, –), mutualism  
(+, +), commensalism (+, 0), amensalism (–, 0), competition (–, –), and neutralism 
(0, 0), the last of the lot can be considered to be a lack of effect on either of the 
interacting species. True neutralism is virtually not possible to prove and hence 
is ignored for the purpose of this study.

Early studies in animal ecology were either descriptive, classifying animals 
according to their habitats (Pearse, 1926), or quantitatively analyzed the abiotic 
environmental factors that restricted their distribution and population (Elton, 1927). 
The limiting effects of competition, predation, and parasitism were mathematically 
incorporated into population growth models (Lotka, 1925; Volterra, 1926), which 
can be considered to be the first attempts at modeling an ecosystem based on 
the interactions between its constituent components. Most studies at modeling 
interactions are limited to bipartite networks between two trophic levels, also 
represented by a biadjacency matrix, where organisms represent two kinds of 
nodes, and the interactions are restricted only between different kinds of nodes 
(such as a plant-pollinator or host-parasite). However, given the complexity of 
multi-trophic relationships in a food web, modeling food chains, food webs, and 
further complex ecological metawebs consisting of collection of food webs in a 
given ecosystem need to be studied (Adhurya et al., 2024), and simulations to 
model them are ongoing.

ML-based Species Interaction Model (SIM) 
Simulations

Antagonistic interactions, a major focus in ecology, are classified as parasitism, 
carnivory, and herbivory. Simulations of these interactions are typically trait-
based, phylogenetic, or hybrid (combining traits and phylogeny). Additionally, 
landscape variables like habitat, niche, and altitude contribute to species co-
existence and can be modeled using satellite images and remote sensing  
(Figure 1).

The traditional trait-based approach uses a variety of traits—morphological 
(size, color), behavioral (feeding habits), ecological (habitat, niche), physiological 
(immune response), life history (litter size), and evolutionary (genetic, genomic). 
Advances in molecular biology have enabled the use of molecular traits (e.g., 
k-mer protein sequences) for predicting interactions, particularly in microscopic 
organisms where data on other traits is limited. Recent studies (Adhurya and 
Park, 2024) have also applied unsupervised ML to predict interactions solely 
from interaction data, independent of phylogeny or traits.

Depending on the dataset scale, simulations may target local, regional, 
or global interactions. To facilitate understanding, models are categorized by 
interaction types, with antagonistic interactions further divided into prey-predator, 
host-parasite, and herbivory for clarity.
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Figure 1: Workflow of ML-based interaction prediction.

Prey-Predator

Prey-predator relationship is one the most documented and most studied of the 
various interactions (Quiles and Barrientos, 2024). The availability and abundance 
of prey species is important for any predator to survive in an environment and 
hence the study of these interactions is a key for understanding the behavior of 
the predator species. Predator species, being at the top of the trophic level in the 
food chain, regulate the species in lower trophic levels of the food chain through 
trophic cascades (Beschta and Ripple, 2009). The intentional or accidental 
introduction of exotic predators, primarily through anthropogenic means (Olson 
and James, 1984), has often caused significant disruption in ecosystems. These 
exotic predators find the native prey species evolutionarily and adaptationally 
unprepared, frequently leading to the extinction of many native species (Anton 
et al., 2020) and creating havoc in the ecosystems. These effects are more 
pronounced in the terrestrial island ecosystems as the suppressed species are 
left with nowhere to escape, often getting extirpated in the process (Olson and 
James, 1984; Henderson and Powell, 2001; Platenberg, 2007; Doherty et al., 
2016; Woinarski et al., 2024). Thus, apart from the morphological and behavioral 
traits of the interacting animals, the study of prey-predator interactions is also 
dependent on geographic and environmental parameters in the location of  
their interactions. 

Trait-based

The predator-prey body size relationship is a key trait for estimating interactions 
in ecological metaweb models (Table 1) (Gravel et al., 2013). A regional 
database of the Mediterranean Sea’s pelagic macrofauna, excluding cartilaginous 
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Table 1: A snapshot of ML-based prey-predator interaction prediction models

Ref. Type of 
the Model

Data Used Geographic 
Scale of Data

ML Model Used Output Data

Gravel et al., 2013 Trait-based Morphological trait (body size of 
both the prey and predator)

Regional 
(Mediterranean 
Sea)

Linear quantile 
regression

Fish food web

Millar, 2019 Trait-based Morphological trait (length, 
height, weight, prey size, teeth 
length, etc.) and physiological 
trait (bite force, speed, eyesight, 
prey speed)

Paleontological 
data

SVM, LDA, 
Logistic regression, 
Decision Tree
(KNN & naïve 
Bayes showed less 
accuracy)

Behavior of 
the animal 
(Tyrannosaurus rex) 
as a feeder

Desjardins-Proulx et al., 
2017

Hybrid Morphological traits (body mass), 
Phylogenetic traits (taxonomic 
distance) and Binary Ethological 
and Ecological traits (detritus, 
above ground, detritivore, 
carnivore, immobile etc.)

Regional
(Germany) - 48 
forest soil food 
webs

KNN with 
Tanimoto distance 
(to recommend 
new preys) and 
random forest (to 
predict interaction 
or not)

Potential novel preys 
for a predator in a 
soil food web and 
logistic prediction of 
interaction

Llewelyn et al., 2023 Hybrid Morphological traits (body 
mass of prey and predator), 
behavioral and ecological traits 
(time of activity, resource groups 
consumed etc.), phylogenetic 
traits (eigenvector maps)

Global and 
Local (Simpson 
Desert in 
Australia)

Random forest Predict prey-predator 
interactions among 
birds and mammals 
in Simpson Desert of 
Australia

Case Study: Prediction of benthic biomass as prey in Bering Sea using environmental traits (Oppel and Huettmann, 2010)
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fishes, marine mammals, and turtles due to limited data, included 557 species. 
Findings showed that predator feeding range increases with body size, although 
large predators may appear specialized due to fewer prey options within their 
niche. Ontogenetic dietary shifts, common in fish (Bodner et al., 2021), were 
modeled using species links or size-based subspecies categories. While the 
unweighted model could be enhanced with Bayesian weighting for more accurate 
predictions, it only predicts predator-prey interactions due to its reliance on body  
size relationships.

This trait-based model also supports predicting palaeoecological traits, 
such as classifying Tyrannosaurus rex as a primary hunter based on traits like 
teeth length, bite force, and speed. Among various ML methods tested (logistic 
regression, decision tree, SVM, etc.), naive Bayes and k-nearest neighbors were 
excluded due to lower accuracy (66%) and misclassifications.

Hybrid

The trait-based model can be enhanced by integrating ecomorphological traits 
with phylogeny (Llewelyn et al., 2023). Llewelyn et al. used 3,329 prey-predator 
records from GloBI (Poelen et al., 2014) globally, incorporating 109 Oceania-
specific records to model interactions in Australia’s Simpson Desert. To mitigate 
geographic and taxonomic biases, prey-predator records unrelated to the focal 
predators and interactions of Simpson Desert predators outside this region 
were appended to the GloBI database. Morphological and behavioral traits 
(Desjardins-Proulx et al., 2017), along with phylogenetic data via eigenvector 
mapping (Guénard et al., 2013), served as variables in a random forest model to 
predict carnivory. Following Gravel et al. (2013), prey size-ranges were identified 
by loge-transforming body masses, creating a linear predator-prey relationship. 
Using ecomorphological, phylogenetic, and hybrid methods, quantile regression 
was applied to seven common Simpson Desert predators, with the hybrid model 
performing best. Accuracy was higher for introduced predators, likely due to 
undersampling biases, but random forests effectively predicted interactions even 
with limited records, showing robustness against random data removal. 

Landscape-based

A generalized least square (GLS) model of 12 landscape covariates such as 
elevation, gradient, habitat type (classified into 10 types), (Euclidean) distances 
from towns, roads, rivers and ungulate snares, tree cover have been assessed 
to estimate site-specific prey abundances. Treating livestock depredation count 
as a proxy for the risk, it is found that livestock depredation risk is more near 
the ungulate snares, indicating that poaching pressure may be squeezing the 
tigers towards livestock. Though this study did not employ machine learning 
instead of statistical modeling, a similar approach has later been executed using 
machine learning and remote sensing for estimating livestock depredation risk 
by Bengal Tigers (Panthera tigris tigris) in Panna Tiger Reserve of Madhya 
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Pradesh, central India (Malviya and Krishnamurthy, 2022). Geotagged livestock 
depredation data for a 6-year time period was collected locally from 156 sites, 
which has been treated as presence to generate an equal number of random 
pseudo-absence. Apart from livestock, potential wild prey species such as 
hare, deer, langur, peacocks were surveyed. Water bodies, vegetation cover, 
ruggedness were extracted through remote sensing satellite images. Along with 
these parameters, (Euclidean) distance from roads, vehicular disturbances, land 
use and land cover data were collected. Univariate logistic regression has been 
implemented, followed by univariate GAM to select the features and their 
scales. The finalized geospatial additive model included NDVI, prey encounter 
rate, human encounter rate, shrub abundance and elevation as the parameters. 
The results indicate that shrub abundance is most important among the variables, 
and the depredation risk increases with shrub abundance until a certain threshold 
point, beyond which more shrub decreases risk of livestock depredation. The 
study also suggests that livestock depredation risk is more when the prey 
encounter rate is low, indicating that the tigers look for the domesticated prey 
when the wild prey base is scarce.

While these landscape-based predictions can predict the probability and 
quantify depredation by apex predators using traditional statistical or machine 
learning-based modeling, it is not suitable to identify the possible interacting 
species, until and unless the method is combined with other methodologies such 
as morphological or/and phylogenetic traits.

Host-parasite interactions

Host-parasite interactions are crucial for disease surveillance, as many parasites 
(viruses, bacteria, fungi, worms, protozoa, ticks, and mites) cause diseases in 
economically important species, including humans, livestock, and pets, as well 
as in conservation-sensitive species. Like the human-induced introduction of 
predatory species affecting prey-predator interactions, anthropogenic migration 
has also led to the introduction of parasitic species (Bataille et al., 2018; 
Steverding, 2020). The chytrid fungus (Batrachochytrium dendrobatidis), 
infamous for causing amphibian chytridiomycosis, has devastated frog populations 
globally, except in Asia, where it originated (Scheele et al., 2020). While some 
parasitic interactions are well-studied, the range of susceptible hosts in wildlife 
(excluding livestock and pets) remains largely undocumented. Understanding 
host-parasite interactions is essential for studying macroecological patterns of 
contagious diseases (Browne et al., 2017) and predicting zoonotic spillover 
potentials (Tajudeen et al., 2022; Meadows et al., 2023; Escudero-Pérez et al., 
2023). Host-parasite associations may stem from inheritance from a common 
ancestor or host shifts (Brooks and McLennan, 1991; Page, 1993), suggesting 
that closely related species exhibit similar parasitic associations. Therefore, 
in addition to physiological and ecological compatibility, understanding the 
evolutionary relationship is vital for comprehending parasitic interactions.
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Trait-based

The life history, physiological, and ecological traits of hosts and parasites have 
been studied for decades to predict interactions (Steck and Wendeler, 1980). 
Additional traits derived from demographics and morphology, such as postnatal 
growth rate and age at first birth, have been included in trait profiles (Han et al., 
2015). For bats, factors like diet, activity patterns, migration, and torpor have 
also been considered (Han et al., 2016).

To identify natural reservoirs of filoviruses, primarily bats, trait variables 
for 1,116 bat species were compiled from PanTHERIA, assigning a binary 
status variable based on filovirus positivity. Boosted regression trees generated 
susceptibility links between bat species and filoviruses, revealing that filovirus-
carrier bats are larger at birth, wean at larger sizes, and produce more litters 
annually compared to other bats. The model achieved 87% accuracy in predicting 
filovirus positivity, even with 20% of data removed.

Boosted regression trees have also been used for predicting mammal-helminth 
interactions (Dallas and Becker, 2020), utilizing data from the LNHM database 
at global, national (USA), and regional (Texas) scales. Host species variables 
were extracted from PanTHERIA, with 50 models trained on 80% of the data. 
Both superset and subset models showed that performance depended on host 
and helminth covariates, with Pearson’s correlation indicating consistency across 
scales. The differences between subset and integrated models were negligible 
when sufficient data was available, suggesting that with more data, integration 
across taxa could enhance model accuracy.

Identifying morphological and functional traits of microbes and viruses is 
challenging. Therefore, molecular, genetic, or genomic data from bioinformatics 
can help predict microbial interaction networks. Electron microscopy images can 
predict cytopathic effects in pathogenic microbes (Yakimovich, 2021). While 
genetic data is often accessible, predictions can vary based on the selected gene, 
potentially introducing noise into models. Using complete genome sequencing 
data can improve predictions. A meta-ensemble learning algorithm (Wardeh 
et al., 2021) predicted novel coronaviruses’ emergence through mammalian 
hosts, highlighting the importance of selecting appropriate traits for modeling  
bipartite interactions.

A heterogeneous microbial network model (Pan et al., 2024) utilized a 
knowledge graph-based deep learning technique to predict candidate viruses 
for target hosts. This model aggregated data on human-virus, bacteriophage-
virus-bacteria, and human-bacteria interactions, with a blended deep neural 
network (DNN) designed and validated. The effectiveness of the model was 
demonstrated in case studies of pathogenic bacteria, but increasing complexity 
in the microbiological network may introduce noise that needs addressing. Such 
models can aid pharmaceutical researchers in developing targeted antibiotics.

In addition to these traits, receptor-ligand binding can predict the effects 
of pathogenic microorganisms in host cells (Table 2). Both traditional machine 
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Table 2: A snapshot of ML-based host-parasite interaction prediction models

Ref. Type of the 
Model

Data Used Geographic Scale of Data ML Model Used Output Data

Han et al., 2016 Trait-based Morphological, 
ecological, life 
history traits of 
hosts (bat)

Global – Bat-filovirus interaction 
data

Boosted regression tree Prediction of novel 
filovirus carrier bat 
species

Dallas and 
Becker, 2020

Trait-based Morphological, 
ethological, 
life history, and 
taxonomic traits of 
host and parasite

Global, national (USA) and 
local (Texas state of USA) – 
Mammal host-parasitic helminth 
(roundworm, flatworm, spiny-
headed worm) interaction

Boosted regression tree Comparison of 
taxon-specific model 
with the complete 
mammal-helminth 
interaction prediction 
model (the latter being 
outperformed)

Wardeh et al., 
2021

Trait-based Genomic traits 
(genome sequences 
of viruses and its 
strains)

Global – Infection of 
coronaviruses on Terrestrial 
mammal species

Ensemble learning using 
Stochastic gradient 
boosting

Prediction of 
coronaviruses 
infecting terrestrial 
mammals

Pan et al., 2024 Trait-based Molecular traits 
(K-mers protein 
sequences)

Microbe-host dataset separated 
into Human-virus interactions, 
Human-bacteria interactions 
and Phage (virus)-bacteria 
interactions

Skip-gram model 
(word2vec), InteractE 
(Convolution-based 
Knowledge graph 
embedding) and blended 
DNN

Prediction of candidate 
phages for target 
bacterial hosts

Dyer et al., 2011 Trait-based Molecular traits 
(K-mers protein

Global data of human-HIV 
interactions

SVM Protein-protein 
binding between HIV
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sequences, protein 
domains and human 
protein properties)

Local small-scale experiments 
and manually curated

and human proteins

Cui et al., 2012 Trait-based Molecular traits (3 
consecutive protein 
sequence – Relative 
frequency of amino 
acid triplets)

Global data for Hepatitis C 
(HCV) and papillomaviruses 
(HPV) infections in humans

SVM Protein-protein 
binding between HCV 
and human proteins, 
and between HPV and 
human proteins

Barman et al., 
2014

Trait-based Molecular traits 
(domain-domain 
association, 
composition of 
amino acids such as 

Global virus-protein interaction 
data from VirusMINT database 
for Hepatitis B, Hepatitis E, 
Hepatitis C, simian virus (SV40)

SVM, naïve Bayes, 
Random forest

Protein-protein 
binding

methionine, valine, 
serine found in 
viral proteins)

Mock et al., 
2021

Trait-based Genomic traits 
(genome sequences 
of viruses for 

Global – Nucleotide sequences 
of influenza A, rabies lyssavirus 
and rotavirus A virus and their 

CNN with LSTM Prediction of viral 
hosts

each virus-host interactions with hosts
combination)

Xu et al., 2017 Trait-based DNA and protein 
sequences

Global – protein dataset; DNA 
and protein sequences of 
influenza viruses and the host 

Skip-gram model 
(word2vec) for NLP;

Prediction of hosts of 
influenza virus

proteins they are interacting with SVM for classification

(Contd.)
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Ref. Type of the 
Model

Data Used Geographic Scale of Data ML Model Used Output Data

Farrell et al., 
2022

Phylogeny-
based

Phylogeny of hosts Global mammal-parasite 
network (Stepehens et al., 2016)

Bayesian network-based 
latent score model

Binary interactions 
between mammal host 
and parasite

Kitson and 
Suttle, 2019

Phylogeny-
based

Phylogeny of 
viruses

Global virus taxonomy Natural language 
processing

Predict hosts of a virus 
from its name

Barel et al., 
2023

Hybrid Morphological 
traits (body length, 
width, biovolume), 
ethological 
traits (lifestyle, 
nourishment etc.) 
and taxonomic 
variables (species, 
genus, family, 
order, phylum, 
kingdom)

Meta foodweb of microbes from 
40 sources, including 6 peatlands

A comparison of 
Random forest, kNN, 
BRT, GLM, BGLM, NN

Microbial food web in 
peatlands

Gonzalez-Isunza 
et al., 2023

Hybrid Molecular traits 
(k-mers protein 
sequences) and 
phylogenetic tree 
for viruses

Global Skip-gram model 
(word2vec) using a 
Neural network

Prediction of protein-
protein binding
(S protein of 
coronavirus-human 
host receptor binding)

Case Study: Prediction of protein-protein interactions using genetic and phylogenetic traits (Cuesta-Astroz and Oliveira, 2018)

(Contd.)
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learning (ML) and deep learning algorithms can model protein-protein interactions 
(Casadio et al., 2022). While most modeling has focused on intraspecies 
interactions, early attempts also included inter-species interactions, such as HIV 
with human proteins (Dyer et al., 2011). A model using SVM achieved 70% 
precision and 40% sensitivity. Other models have improved accuracy with HCV 
and HPV interactions (Cui et al., 2012) and with HBV and HEV using various 
supervised learning algorithms (Barman et al., 2014).

Additionally, a deep learning model named VIDHOP predicts virus hosts 
using genomic sequences (Mock et al., 2021). Two models—one with bidirectional 
LSTM (long short-term memory) and another combining LSTM with CNN 
(convolutional neural network) demonstrated similar accuracy, though the CNN-
LSTM model slightly outperformed LSTM except for Influenza A virus.

Protein and DNA sequences can be tokenized using natural language 
processing (NLP) algorithms to extract information (Ofer et al., 2021). An NLP-
based method predicted virus hosts using unique DNA and protein sequences (Xu 
et al., 2017). The skip-gram method applied the word2vec algorithm for protein 
sequences, followed by SVM classification, achieving good accuracy, particularly 
for avian influenza virus, the evolutionary ancestor of all influenza viruses.

Phylogeny-based

The necessity for comprehensive data in trait-based networks means they 
perform better for smaller networks. When sufficient trait data is lacking, 
performance declines on global-scale networks (Morales-Castilla et al., 2015), 
and evolutionary relationships shown by phylogenetic trees can serve as 
proxies. By combining affinity-based modeling with phylogenetic information, 
a link prediction model for global bipartite mammalian host-parasite networks 
is simulated using Bayesian networks (Elmasri et al., 2020; Farrell et al., 
2022). While evolutionary distances from phylogenetic trees act as proxies for 
morphological traits, interactions may also be influenced by traits independent 
of evolutionary relationships. To address this, the phylogeny-only model is being 
enhanced with node-specific affinity parameters, akin to covariate variable-based 
network models (Hoff et al., 2002; Hoff, 2005; Bickel and Chen, 2009). The 
evolutionary distances of mammalian hosts are represented by a phylogenetic 
tree (Fritz et al., 2009) and converted into a connected weighted network. A 
host-parasite interaction matrix is created based on the presence or absence of 
interactions, with higher conditional probabilities assigned to closely related 
or numerous distantly related hosts. The interaction probability of a parasite is 
assumed to be influenced by the sum of evolutionary distances to its documented 
hosts. The full model was compared to two submodels (affinity-only and 
phylogeny-only), as well as a Jaccard distance-based bilinear latent-distance 
model and a k-nearest neighbor (kNN) model. Murphy’s diagrams indicated 
that the latent score-based full model outperformed others, with the kNN model 
as the worst performer; notably, the phylogeny-only model performed similarly 
to the full model, validating phylogeny as a potential proxy for traits (Elmasri 
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et al., 2020). The results showed that the kNN and bilinear latent-distance 
models performed equivalently. The weak outputs of the Jaccard distance-
based neighborhood models (kNN and bilinear latent-distance) suggested that 
incorporating phylogeny could enhance their predictive performance for host-
parasite associations.

Using the English names of viruses, hosts can be predicted through string 
matching, and when conclusive predictions are not possible, an NLP-based model 
identifies a higher taxonomic group of hosts based on the virus type (Kitson 
and Suttle, 2019). The VHost-Classifier model uniquely extracts interaction 
information solely from the common name, without incorporating morphological, 
ecological, or evolutionary variables. 

Hybrid

A model combining traits with phylogenetic features (Barel et al., 2023) can 
be used to infer interactions. An extensive meta food web, illustrating feeding 
interactions among 164 microbial taxa groups (mainly at the species level) such as 
nematodes, bacteria, fungi, algae, cyanobacteria, rotifers, flagellates, and ciliates 
from peatlands, was utilized to train the model. This data was input into several 
machine learning models, including Random Forest, kNN, GLM (generalized 
linear model), boosted regression tree, neural network, and Bayesian generalized 
linear model. Tree-based models and neural networks outperformed others in 
accuracy, AUC, and TSS; however, the neural network’s accuracy was lower, 
making the Boosted Regression Tree (BRT) the best algorithm for predicting 
missing interaction links. Although this feeding behavior can be considered 
carnivory, the inclusion of microbes like bacteria and fungi categorizes them as 
parasitic for this study.

Combining traits and phylogeny can also predict potential viral hosts 
(Gonzalez-Isunza et al., 2023). A model was developed to identify non-human 
animal-hosted coronaviruses likely to infect humans based on a human-binding 
potential (h-BiP) score. The ML model employs a neural network to convert 
genomic sequences into vectors that encode the relationship between k-mers. 
These vectors compute the h-BiP score, serving as the classifier. A phylogenetic 
analysis reveals the evolutionary proximity of predicted potentially human-
infectious coronaviruses to known human pathogens, consistent with the genomic 
trait-based model. 

Herbivory

Herbivores are economically significant as both livestock and pests damaging 
crops (Deutsch et al., 2018; Drimaj et al., 2023), making the prediction and 
quantification of herbivorous interactions vital for crop protection. Predation risk 
negatively impacts the foraging behavior of herbivores across various landscapes, 
including grasslands and coral reefs (Burkepile and Parker, 2017). Plant and 
herbivore traits, along with their evolutionary history, influence herbivore plant 



Predicting Interactions Among Species in Ecological Networks... │ 95

choices (Pearse et al., 2013). While herbivores tend to use phylogenetically 
similar plants, this trend varies by scale and species. Traits such as interaction-
cost index, risk-index, dietary frequency, and predation pressure are commonly 
used to model herbivore interactions (Pocock et al., 2021). Seed mass and lipid 
content significantly influence the feeding preferences of granivorous birds (Díaz, 
1996; Gaba et al., 2014) and ground beetles (Gaba et al., 2019). Additionally, 
food chemical content, floral display traits, and flowering phenology attract 
herbivores (Fögelstrom et al., 2017; Wu et al., 2021). Muzzle width in megafauna 
affects dietary choices, except for elephants, which use their trunks for foraging 
(Lundgren et al., 2024). Leaf traits like water content and surface area influence 
the diets of various herbivores, especially generalist invertebrates like snails and 
grasshoppers (Pérez-Harguindeguy et al., 2003). While predictive models for 
herbivore interactions exist, the application of machine learning in this area is 
limited. However, pattern recognition has been employed to detect herbivore 
species (Meineke et al., 2020).

High-resolution, digitized herbarium images of distantly related plant species 
were obtained from SERNEC and annotated by damage category. Six types 
of leaf damage caused by insects were categorized: margin feeding, interior 
feeding, skeletonization, blotch mines, serpentine mines, and stippling, with 
negative examples of undamaged leaves included for training. Eighty percent of 
the image data was randomly selected for training, and image segmentation was 
performed to isolate the leaves. A Single Shot Multibox Detector using a VGG16 
base classification network (Liu et al., 2016) detected and classified margin and 
interior feeding simultaneously. An 18-layer residual net architecture (He et al., 
2016) was used for damage classification among eight types. While the model 
accurately classified ovoid holes, complex-shaped holes and non-insect damages 
(such as fungal damage) posed challenges, leading to overfitting. The classifier 
achieved 81.5% accuracy with 1,105 testing images, but inaccuracies arose from 
limited training data for some categories and significant confusion between margin 
and interior feeding. A damage mask was proposed to address this confusion, 
suggesting that tens of thousands of annotated images per category are necessary 
for improved classification accuracy due to the complexity of box detection 
compared to species detection. Although this method of pattern recognition cannot 
precisely predict herbivore species, it can estimate the higher taxonomic group 
to which the herbivore belongs.

Mutualism

In interaction ecology, mutualism is defined as an inter-species interaction 
which results in a net benefit for both the interacting species, more precisely, 
culminating in a reproductive benefit or by boosting survival opportunities in 
the ecosystem. While the facultative mutualists can thrive even without the 
presence of the mutualist, the obligate mutualists would essentially go extinct 
without its mutual partner. While the pollinators such as moths, butterflies, bees, 
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wasps, hoverflies, sunbirds and hummingbirds are obligate mutualists as they 
need plant nectar to feed, the lichenification of algae and fungi is considered as 
an example of facultative mutualism, as they either can prepare or gather their 
own food through autotrophic and saprotrophic nutrition, respectively. While 
most of the mutualists, such as most of the plants are pollinated by an array of 
insect species ranging from wasps, moths, butterflies, hoverflies and bees, some 
specialists such as the plants of Yucca genus are obligately pollinated by moths 
only belonging to the family Prodoxidae, who also happen to feed on these 
plants in their larval stage. 

Trait-based 

Plant-pollinator interactions are widely studied bipartite interactions in ecology 
and culture. Eight plant traits including—such as height, color, floral display 
size, and nectar volume—determine pollinator visits (Rafferty and Ives, 2013). 
Pollinator traits like body mass and feeding habits also influence interactions. 
Trait-based modeling includes complementarity traits (e.g., activity time) and 
barrier traits (e.g., corolla tube length) (Santamaría and Rodríguez-Gironés, 
2007). Using a global dataset, Pichler et al. (2020) simulated plant-bird pollinator 
networks based on trait-matching. Of the seven ML models, DNN, random forest 
(RF), and BRT outperformed others, with RF proving the best predictive model. 
Corolla-bill length matching was the most influential trait. The study was limited 
to plant-pollinator mutualism but could extend to other networks. Similar results 
were obtained for bee-plant interactions in regional datasets, identifying floral 
shape and corolla tube length as key traits (Ornai and Keaser, 2020).

Not all mutualisms depend on these traits; some rely on biochemical or 
abiotic factors. For example, Rhizobium bacteria associated with legumes via 
complex NOD proteins (Wang et al., 2012), and lichens depend on soil pH and 
substrate types (Škvorová et al., 2022). Additionally, plants hosting endophytic 
microbes can control herbivorous insects (Adeleke et al., 2022). Genomic data 
of rhizosphere bacteria help predict optimal plant-promoting bacteria, with SVM 
performing best among KNN, SVM, and LDA (latent dirichlet allocation) models 
(Indumathi et al., 2021).

Hybrid

Lichens are well-studied symbioses between heterotrophic fungi and autotrophic 
partners. Research on Cladonia fungi shows that photobionts can be specialists, 
generalists, or intermediates (Yahr et al., 2006). In a study, 1,120 Cladonia lichen 
samples from Europe were analyzed, identifying 181 OTUs of Cladonia and 18 
OTUs of Asterochloris, used to model mycobiont-photobiont interactions based 
on traits and evolutionary relationships (Škvorová et al., 2022). Soil pH and 
fertility-affecting radicals were measured, and fungal and algal RNA genes were 
aligned into two phylogenetic trees. The OTUs were classified using General 
Mixed Yule Coalescent (GMYC) (Talavera et al., 2013), Bayesian PTP (bPTP) 
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(Zhang, 2013), and automatic barcode gap discovery (ABGD) (Puillandre et 
al., 2012). Analysis of lichen morphotypes revealed key mycobiont traits such 
as thallus type, reproductive structures, podetia, apothecia color, and cortex 
chemicals. Findings suggested algal variation is driven mainly by climate rather 
than fungal traits, soil chemistry, or geography. While ML was not used, logistic 
classifiers could enhance prediction of photobiont-mycobiont interactions using 
morphological, chemical, and evolutionary data.

Commensalism

Commensalism, like mutualism, is a form of symbiosis between two species 
where the symbiont benefits, while the host remains unaffected. Often mistaken 
for mutualism, commensalism is less studied. A common example is African 
herbivores (e.g., deer, rhino, cattle) and oxpeckers, which feed on ticks from these 
animals. Similarly, in India, cattle egrets accompany domestic cattle. Though 
once considered mutualistic, studies (Weeks, 1999; Weeks, 2000; McElligott et 
al., 2004) indicate that herbivores gain no benefit, as tick loads do not increase 
without the birds, and the birds often feed on dead skin or wounds, even creating 
new wounds. This interaction is thus a case of commensalism, not mutualism. 

Landscape-based 

Geographic overlap is key in symbiotic associations, especially when one partner 
has a restricted range, enabling habitat-based predictions of presence or absence. 
The decline of the White Rhinoceros (Ceratotherium simum) and the use of 
chemicals to remove its ectoparasites (mainly hard ticks) have reduced tick 
populations, impacting tick-feeding birds (Bezuidenhout and Stutterheim, 1980; 
Mihalca et al., 2011). Cattle dips (acaricides) also threaten oxpecker populations, 
which rely on African ungulates like rhino, deer, and cattle (Dickman, 1992; 
Mooring and Mundy, 1996). Key factors for oxpecker populations include tick 
density, nesting sites, savannah landscapes, water sources, and conservation areas 
(Kalle et al., 2017). Machine learning models like GLM, GAM, and boosted 
regression trees were used to predict suitable habitats for reintroducing red-
billed oxpeckers in South Africa, with GAM and BRT showing high predictive 
power in historic ranges.

Amensalism

Amensalism is an inter-species interaction where one species is harmed or 
inhibited, while the other remains unaffected (Lang and Benbow, 2013; Alhadi 
and Naji, 2024). The harmed organism, or amensal, may be affected physically 
or indirectly by competition or by chemicals released by the unaffected species, 
termed the enemy (Alhadi and Naji, 2024). Although no ML models explicitly 
target natural amensal interactions, some ML models have been developed to 
analyze roadkill, which, though not an interspecies interaction, results from 
human locomotion and is considered amensalism in this study.
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Trait-based

Species-specific roadkill rates among vertebrates can be predicted from life-
history traits, both morphological and behavioral (González-Suárez et al., 2018; 
Grilo et al., 2020) (Table 3). Bird and mammal traits from a regional dataset 
were used, with missing values imputed via random forest. Separate random 
forest models were developed for mammals and birds using available roadkill 
data to capture spatial and temporal variations. However, due to limited data 
on species-specific road-crossing behavior and road traffic, each species was 
assumed equally likely to cross, adding noise to the predictions. Temporal 
factors, such as seasonal changes impacting roadkill likelihood, should ideally 
be integrated to improve model accuracy (Ascensão et al., 2022).

Endophytic microorganisms, known for bioactive metabolites, act as natural 
biocontrol agents against various pests and pathogens (Gouda et al., 2016). These 
endophytes, often used as biopesticides, exhibit amensalistic effects by harming 
pests while remaining unaffected. Studies have shown the impact of Beauveria 
bassiana on herbivorous insects (Portilla et al., 2017; Kovač et al., 2020) and on 
disease vectors like Aedes aegypti (Darbro et al., 2012) and Anopheles stephensi 
(Thomas and Read, 2007). Predictive ML models on amensal interactions are 
limited, though XGBoost proved effective in modeling the impact of Beauveria 
bassiana on the rice pest Sesamia calamistis by using fungal strain isolates and 
rice tissue traits as input variables (Megnidio-Tchoukouegno et al., 2022). An 
ML model studying Glumon™, a biopesticide, assessed its impact on coffee 
berry borer (Hypothenemus hampei), integrating ecological traits like shade tree 
richness and farm proximity to forest, which influences pest control via natural 
predators (Manson et al., 2022; Karp et al., 2013).

Landscape-based

Landscape-based species distribution modeling (SDM) using only presence-only 
data is also very well suited to model the roadkill risks and map the potential 
hotspots (Ha and Shilling, 2018). A state-level (California, USA) identified 
roadkill data with GPS mapping and timestamps was used for the purpose. A 
list of environmental parameters and two human population density variables 
were considered, which were quantified using geospatial data maps and census 
data of the study area. ML-based MaxEnt (Maximum entropy) model (Phillips 
and Dudik, 2008), which uses both continuous and categorical variables to 
understand the environmental and geographical changes, can be used to map 
the presence of a species and has been found to be one of the best of the SDMs 
currently in usage (Heumann et al., 2013). By creating separate niche models 
for four taxonomic groups (ungulates, birds, medium-sized mammals, small 
mammals), the likelihood scores for their vehicular collisions were predicted 
and mapped.
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Table 3: A snapshot of ML-based non-antagonistic interaction prediction models discussed

Ref. Type of the 
Model

Data Used Geographic 
Scale of Data

ML Model Used Output Data Type of 
Interaction 
Predicted

Rafferty and 
Ives, 2013

Trait-based Morphological and ecological 
traits of plants and pollinators 
along with phenological traits

Local (university 
arboretum in 
Wisconsin, 
USA) and 
Experimental (in 
a greenhouse) 
field data

Linear mixed model Prediction of 
plant-pollinator 
interactions 
and responses 
to change in 
phenology

Mutualism

Pichler et al., 
2019

Trait-based Morphological (length of 
proboscis, body size, bill 
curvature, wing length), 
ethological (feeding behavior, 
sociality) traits of pollinators
Morphological traits of plants 
(color, shape, inflorescence of 
flower, shape of corolla, type 
of plant)

Global (plant-
pollinator insect 
interactions)
Regional (plant-
hummingbird 
interactions in 
Costa Rica)

Random forest (RF) 
for imputation of 
missing data
A comparison of 
RF, CNN, DNN, 
KNN, BRT, GLM, 
SVM
(RF, BRT, DNN  
outperformed 
others)

Prediction of 
plant-pollinator 
interactions to 
infer the causally 
most important 
trait-matching

Mutualism

Ornai and 
Keasar, 2020

Trait-based Morphological traits of 
flowers (shape, symmetry, 
depth of flower, etc.) 

Local (Mt. 
Carmel National 
Park, Israel)

Random forest
Logistic regression

Prediction 
of plant-bee 
interactions

Mutualism

Škvorová et 
al., 2022

Hybrid Environmental traits (pH, 
chemical composition) of 
soil, evolutionary traits 
(OTUs)

Continental 
(throughout 
Europe)

GMYC, ABGD and 
bPTP (for species 
delineation from 
DNA sequences)

Prediction of 
photobiont-
mycobiont species 
interactions in 

Mutualism

(Contd.)
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Ref. Type of the 
Model

Data Used Geographic 
Scale of Data

ML Model Used Output Data Type of 
Interaction 
Predicted

lichen (Cladonia 
spp. and 
Asterochloris spp.)

Kalle et al., 
2017

Landscape- 
based

Ecological traits (density of 
mammals which host ticks, 
presence/absence of starling 
species), Environmental traits 
(temperature, precipitation, 
land cover etc.)

Regional (South 
Africa)

GLM, GAM, BRT Prediction of 
suitable habitats 
for reintroduction 
of oxpeckers

Commensalism

Megnidio-
Tchoukouegno 
et al., 2022

Trait-based Colonization traits (amount 
of pest colonization in target 
vegetative tissues of rice 
cultivars) and treatment 
traits (treatment types and 
responses to amounts strains 
of the fungus used in the 
treatments)

Experimental Linear regression, 
LaSSO, SVM, 
KNN, XGBoost, 
Ensemble learning

Prediction 
of effects of 
entomopathogenic 
fungal treatment 
on the pest 
colonization on 
rice tissues

Amensalism

Manson et al., 
2022

Trait-based Ecological traits (shade 
cover, diversity of shade
trees, distance from forest) 

Local (Coffee 
farms in two
towns of 
Indonesia) 
data collected 
through field 
survey

GLMM Prediction of 
decline in
Hypothenemus 
hampei effect of 
other parameters 
in effectiveness of 
a biopesticide

Amensalism

(Contd.)
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Kulatunga et 
al., 2015

IoT-based Railway accident traits 
(locomotive type, casualty, 
location) and locomotive traits 
(visibility, engine type etc.)

Real-time (video 
from night 
vision camera)

DDE filter Indication of 
presence of 
wildlife in the 
photographs

Amensalism

Ramesh et al., 
2017

Computer 
vision-
based

Image traits (hue, saturation, 
color)

Real-time (still 
images from live 
video captured 
by camera)

HSV image 
segmentation; 
SVM

Classification of 
presence/absence 
of elephants in the 
photographs

Competition

Senthamil 
Selvi et al., 
2020

Computer 
vision-
based

Sound traits (high-frequency 
ultrasound waves to measure 
distance of the moving object 
near the train)
Image traits (hue, saturation, 
color)

Real-time 
(image captured 
by webcam, 
triggered by 
the ultrasonic 
sensor) 

HSV image 
segmentation

Classification of 
presence/absence 
of elephants in the 
photographs

Amensalism

Kotula et al., 
2021

Hybrid Morphological traits (body 
size), ecological traits 
(biogeographic status, 
generalism, phenology) and 
phylogenetic traits of host 
and parasitoid

Local (field data 
from selected 
study sites in a 
locality of New 
Zealand)

Random forest, 
KNN

Prediction 
of effect of 
biopesticide 
on apparent 
competition in the 
host-parasitoid 
interaction 
network

Amensalism

Peters et al., 
2016

Trait-based Ecological traits (area 
of the forest, number of 
trees, distance from nearest 
neighboring tree etc.)

Data generated 
through 
simulation 
of different 
scenarios

Individual-based 
model, combined 
with self-organizing 
feature maps 
(SOM)

Types and effects 
of competition, 
both underground 
and above the 
ground, for 
resources in plants

Competition

(Contd.)
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Ref. Type of the 
Model

Data Used Geographic 
Scale of Data

ML Model Used Output Data Type of 
Interaction 
Predicted

Barroso-
Bergada et al., 
2023

Phylogeny-
based

Evolutionary traits (OTUs) Regional 
(microbial 
interaction 
data collected 
through eDNA 
from selected 
grape vineyards 
of France)

A/ILP Metaweb of 
microbial 
interactions 
and prediction 
of change in 
a microbe 
abundance in 
response to 
variation of 
abundance of 
another species

Amensalism, 
Competition 
(mainly)

Also Predation

Krupa et al., 
2020

Trait-based Morphological traits 
(diameter of sundew, mean 
size of plant, web area)

Local field data Linear mixed effect 
model

Effect on prey 
availability, 
change in web 
size and decline 
in abundance of 
spiders due to 
sundew plants

Competition

Ahearn et al., 
2001

Hybrid Morphological (age, body 
mass), ethological (hunting, 
searching mate, with cubs) 
and life history (pregnancy, 
fertility status) traits 

Local GIS Simulation of 
human interactions 
with individual 
tigers in and 
around study area

Competition

Case Study: Predictions of zones with high vulnerability of roadkills in an area of Colombia using behavioral and environmental parameters 
(Perez-Guerra et al., 2024)

(Contd.)
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Hybrid

Previous studies on roadkill largely ignored driver traits, focusing only on 
animals crossing roads. Many roadkills, however, result from reckless driving, 
with train collisions especially fatal for large animals like elephants and rhinos. 
In India, an estimated 20 elephants are killed yearly by trains. While computer 
vision-based intrusion detection systems alert loco pilots by processing images 
near hotspots (Kulatunga et al., 2015; Ramesh et al., 2017; Senthamil Selvi et al., 
2020) (Table 3), reaction time remains limited. Integrating satellite GPS collars 
for tracking animal locations and driver traits, such as drowsiness measured 
by eye aspect ratio (EAR), could provide a more robust system (Radzali et al., 
2023; Albadawi et al., 2023). IoT-based devices could detect drowsy pilots, 
sound alerts, and modify the train signaling system to help prevent wildlife-
vehicle collisions (Samadder et al., 2022). Combining animal and landscape 
traits with driver drowsiness can identify high-risk hotspots for alerting drivers.

In host-parasitoid dynamics, species and phylogenetic traits predict biocontrol 
impacts (Kotula et al., 2021). Key host and parasitoid traits, including body size, 
geographic origin, and phenology, along with phylogenetic data, helped model 
trophic generalism separately in forests and plantations. Using both RF and 
KNN algorithms, weighted interaction networks simulated apparent competition 
and interaction frequencies between hosts and parasitoids. Random forest 
outperformed KNN due to its ability to model complex, non-linear relationships, 
whereas KNN’s assumption that similar parasitoids interact with similar hosts 
reduced its accuracy. 

Competition

Competition occurs when individuals or species compete for a limited resource, 
impacting the fitness of one party. Unlike well-studied antagonistic or mutualistic 
relationships, competition, particularly intra-species, is less explored beyond 
mathematical models of resource optimization. Symmetric interactions, like 
competition and mutualism, tend to be less stabilizing than asymmetric ones, 
such as antagonism or unilateral interactions like amensalism and commensalism 
(Mougi, 2016). Competition in ecology is further divided into interference 
competition, where an individual’s actions hinder others’ resource access, and 
exploitation competition, where competitors directly limit each other’s resource 
availability (Power, 1992; Holomuzki et al., 2010).

Trait-based

The competition among trees for underground resources is crucial for 
understanding plant community dynamics, as the most limiting resource 
constrains individual plant growth (Grace, 1990). By combining an individual-
based plant interaction model with self-organizing feature maps (SOM), an 
unsupervised ANN algorithm (Kohonen, 1982), multidimensional correlations 
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between plant traits and underground resources can be visualized, allowing for 
predictions of competition outcomes in floral communities (Peters et al., 2016). 
The Pi Model outlines each plant’s zone of influence both above and below 
ground (May et al., 2009), with both radii increasing with biomass (Enquist, 
2002). Resource limitation, four levels of below-ground competition modes 
(allometric symmetry, size symmetry, complete symmetry, and asymmetry), 
mortality rate, and CEI (Clark-Evans Index) rate (Clark and Evans, 1954) serve 
as parameters for the Pi Model. A total of 228 simulations on 6,000-9,000 
randomly selected plants generated training datasets for the SOM to predict 
competition modes. The four parameters are assigned as vectors and comprise 
the input layer neurons for the SOM. As an unsupervised algorithm, any variable 
may be predicted after SOM training. The 4-dimensional SOM is depicted by 
four hexagons representing each variable, with correlations understood through 
variations in shades of gray within the hexagons. This method estimates hard-
to-quantify variables through easily measurable parameters by adjusting input 
and output variables.

While competition is strongest among closely related plant species or animals 
at the same trophic level (Darwin, 1859), competition between insectivorous plants 
and animals, such as spiders, is unique. Insectivorous plants, though capable of 
autotrophic nutrition through photosynthesis, capture insects and arthropods for 
nutrients like nitrogen (Darwin, 1875). The effects of sundew (Drosera brevifolia) 
cover on spider prey availability were modeled based on springtail (Collembola) 
predation, which is a significant prey component for both sundews and certain 
spider families, using General Linear Mixed Models (Krupa et al., 2020). The 
study employed ecological traits like sundew cover and web area to model 
competitive interactions between sundews and spiders.

Phylogeny-based 

Operational taxonomic units (OTUs) are utilized in microbial communities 
to define species-level distinctions based on DNA gene similarity (Escalas et 
al., 2019; Pauvert et al., 2019). While previous studies focused on bipartite 
graph interactions, predicting the entire microbiome network is crucial, as 
interactions like competition, predation, or amensalism imply biological control 
of microbial pathogens. The microbiome interaction networks in the leaves 
of cultivated European grapevine, Vitis vinifera, were reconstructed for nine 
vineyards in France from environmental DNA (eDNA) samples, classified 
using abductive/inductive logic (A/ILP) based on hypotheses regarding changes 
in OTU abundance (Barroso-Bergada et al., 2023). In addition to real data, 
ecological-like data simulated OTU abundance changes for verification. The 
study predicted several potential antagonists of Plasmopara viticola, many of 
which are recognized as biocontrol agents in the literature, thus validating the 
model. The reduction in one OTU’s population due to interactions with another 
is attributed to competition and amensalism, primarily driven by competition.
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Hybrid

Unlike most previously discussed ML-based hybrid models that integrate trait 
data with phylogeny, the following model of exploitation competition between 
Bengal tigers (Panthera tigris tigris) and humans (Homo sapiens sapiens) in 
south-central Nepal combines trait data with landscape data obtained through 
remote sensing in object-oriented geographic information systems (GIS) (Ahearn 
et al., 2001). Movement characteristics, including behavior, feeding, mating, 
fertility, and pregnancy, are assigned default values for direction and rate. The 
distance tigers travel depends on their state variable values. The simulation 
model creates objects for male and female tigers, defining home ranges and 
assigning values for parameters like age, body mass, and fertility status. A male 
tiger’s home range is based on estimates, with two adjacent males circumscribing 
a female’s range. While tigers typically stay near prey for 2–3 days and hunt 
weekly (Sunquist, 1981), their time near carcasses significantly decreases when 
the kill is livestock due to human interference, increasing their hunting attempts. 
The object-oriented TIGMOD model implements relational joins between tigers 
and prey, as well as between male and female tigers. The ‘location’ attributes 
of each individual in the dynamic model change with state changes in the 
simulation menu and updates to the ‘time’ attribute. Functional and periodic 
events are scheduled, triggered by time and life events, respectively. The model 
was simulated with four wild prey densities and six combinations of wild and 
domesticated prey, tested against field data. Parameters such as “time villagers 
remain angry and motivated to poison tigers”, “guarding domestic prey”, and 
“delaying the onset of poisoning domestic prey” estimate human reactions. The 
people’s tolerance toward tigers was found to be associated with demographics 
(Sharma and Neupane, 2023).

Discussion

While morphological, ecological, and ethological traits are easily measurable, 
many unmeasured traits can be addressed through evolutionary relationships. 
Phylogenetic trees can serve as proxies for these latent traits, often providing 
more information than trait sets (Li and Ives, 2017) and enhancing model 
performance when combined with morphological, ecological, ethological, and 
biogeographical traits (Llewelyn et al., 2023). Microbial and viral interactions are 
better predicted through phylogenetic trees or genetic traits, as their morphology 
has limited ecological impact. Although genomic data is more comprehensive 
than genetic data, the lack of genome sequences for many species hinders its 
application. Additionally, many genes have minimal impact on traits (Schnable, 
2019), which can introduce bias. Climatic and geographic variables are less 
significant for microorganisms but are crucial for modeling megafauna and flora 
interactions.
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Statistical models for biotic and abiotic responses often lack the dynamics 
needed to address real-world complexities. In contrast, ML-based modeling 
emphasizes dynamic prediction over causal inference, providing better predictive 
power, though sometimes at the cost of interpretability (Pichler and Hartig, 2023). 
While statistical models may excel in simulations, their effectiveness diminishes 
in real-world scenarios (John et al., 2022). ML models have significantly 
outperformed statistical models like GLM in plant-pollinator networks due to 
superior identification of causal trait relationships (Pichler et al., 2019).

However, the complexities of ecological interactions increase the risk of 
overfitting when training data patterns do not generalize to test data (Yang et 
al., 2020). Among popular ML algorithms for tabular data, tree-based models 
like random forests (Figure 2) are preferred for their ability to model non-linear 
relationships (Uddin and Lu, 2024). These models typically favor ensemble 
approaches like random forests or BRT for regression, while SVM is commonly 
used for classification tasks due to its efficiency in high dimensions with limited 
data. However, SVM’s popularity has waned in favor of BRT and neural networks 
since the mid-2010s (Pichler and Hartig, 2023).

Figure 2: Network visualization of most relevant words from bibliography of  
ML-based inter-species interaction predictive models.

The evolution of GPUs has enabled DL CNNs to be trained in hours, 
transforming DL applications (Krizhevsky et al., 2017). DL models leverage 
multiple processing layers to learn patterns from complex data like images and 
audio (LeCun et al., 2015), but their effectiveness is limited by the scarcity of 
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ecological data (Strydom et al., 2021), making traditional ML algorithms more 
suitable. While techniques like transfer learning and data augmentation (Christin 
et al., 2019) can address data limitations, they may introduce biases (Borowiec 
et al., 2022).

Current DL applications in ecology focus on multi-dimensional datasets, such 
as camera trap images and citizen science data (Hansen et al., 2018; Van Horn 
et al., 2018; Bogucki et al., 2019; Schofield et al., 2019; Clapham et al., 2020; 
Chen et al., 2020a). DL is also used for sound-based identifications of birds, 
bats, and mosquitoes (Mac Aodha et al., 2018; Fanioudakis et al., 2018; Chen 
et al., 2020b). However, DL’s performance in structured tabular data is limited 
(Pichler et al., 2020; Strydom et al., 2021), with sparse applications in predictive 
ecological modeling, primarily for pest outbreaks (Rammer and Seidl, 2019).

To improve ML model interpretability, explainable artificial intelligence (XAI) 
is being used (Arrieta et al., 2020) in species distribution models (Ryo et al., 2020) 
and microbial interaction networks (Barroso-Bergada et al., 2023). Generative AI 
(GenAI) can generate data to enhance biodiversity monitoring (Rillig et al., 2024) 
and modeling species interaction matrices (Hirn et al., 2022), using generative 
adversarial networks (GANs) and variational autoencoders (VAEs).

Natural language processing (NLP) enables machines to analyze human 
language and extract data from protein sequences in viruses (Yakimovich, 2021). 
The word2vec method captures contextual information about words (Mikolov 
et al., 2013; Arora et al., 2016), generating insights about viral proteins. Self-
supervised language models have reduced the need for labeled data, making them 
applicable to large datasets (Chen et al., 2020). However, DL models’ sensitivity 
to hyperparameters and tendency to overfit (Zhang et al., 2021) pose challenges 
in hyperdiverse ecological applications.

Ecological studies often suffer from sampling biases (Hughes et al., 2021; 
Carlen et al., 2024) due to socio-economic factors. While ML-based models 
can address some biases, they also introduce ecological biases. Host-parasite 
interactions are well-studied, as seen in the ‘host’ label in Figure 2, but non-
antagonistic interactions like amensalism and competition are underrepresented. 
Most amensalism models are anthropocentric, predicting roadkill incidents, while 
mutualistic models focus mainly on plant-pollinator interactions, neglecting others 
like endophytes. Despite a few studies on natural amensalism, ML techniques are 
underutilized. While ecological models often depict bipartite interaction graphs, 
the variation in interaction strengths and ecological networks across spatial and 
temporal dimensions (Strydom et al., 2021) requires further investigation.

Conclusion

Individual-based modeling can simulate community dynamics by incorporating 
traits, behaviors, interactions, and abiotic factors. Integrating ML algorithms has 
made ecological network simulation accessible to non-modelers, aiding ecologists 
and conservationists. ML identifies causal variables of ecological dynamics 
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and helps gather data that is challenging to collect through field observations. 
However, data scarcity due to sampling biases across spatial, temporal, and 
geographical scales, along with the importance of certain interactions, skews 
ML applications in predicting ecological interactions.

Generative AI can generate novel datasets through data-driven learning and 
probabilistic modeling, compensating for data deficiencies and predicting new 
inter-species interactions. Most SIMs focus on bipartite graphs, but combining 
various parameters—morphological, geographical, biochemical, and genetic 
traits—with phylogenetically computed evolutionary distances can help predict 
a complete interaction network, albeit with increased computational complexity. 
To reduce computation costs, evolutionary distances represented by phylogenetic 
trees can be utilized to predict inter-species ecological interaction networks, 
addressing the Eltonian shortfall by imputing missing ecological information.

References

Adeleke, B.S., M.S. Ayilara, S.A. Akinola, and O.O. Babalola. (2022). Biocontrol 
mechanisms of endophytic fungi. Egyptian Journal of Biological Pest Control, 32: 
46. https://doi.org/10.1186/s41938-022-00547-1. 

Adhurya, S., D.-Y. Lee, and Y.-S. Park. (2024). KF-metaweb: A trophic metaweb of 
freshwater ecosystems of South Korea. Global Ecology and Biogeography, 33(7): 
e13845. https://doi.org/10.1111/geb.13845. 

Adhurya, S., and Y.-S. Park (2024). A novel method for predicting ecological interactions 
with an unsupervised machine learning algorithm. Methods in Ecology and Evolution, 
15(7): 1247–1260. https://doi.org/10.1111/2041-210X.14358

Ahearn, S.C., J.L.D. Smith, A.R. Doshi, and J. Ding. (2001). TIGMOD: An individual-
based spatially explicit model for simulating tiger/human interaction in multiple 
use forests. Ecological Modelling, 140(1–2): 81–97. https://doi.org/10.1016/S0304-
3800(01)00258-7. 

Albadawi, Y., A. AlRedhaei, and M. Takruri. (2023). Real-time machine learning-based 
driver drowsiness detection using visual features. Journal of Imaging, 9(5): 91. 
https://doi.org/10.3390/jimaging9050091. 

Alhadi, A.R.S.A., and R.K. Naji. (2024). The contribution of amensalism and parasitism 
in the three-species ecological system’s dynamic. Communications in Mathematical 
Biology and Neuroscience, 2024: 33. https://doi.org/10.28919/cmbn/8456. 

Anton, A., N.R. Geraldi, A. Ricciardi, and J.T.A. Dick. (2020). Global determinants of 
prey naiveté to exotic predators. In: Proceedings of the Royal Society B, 287(1928): 
20192978. https://doi.org/10.1098/rspb.2019.2978. 

Arif, S., and M.A. MacNeil. (2022). Predictive models aren’t for causal inference. Ecology 
Letters, 25(8): 1741–1745. https://doi.org/10.1111/ele.14033.

Arora, S., Y. Li, Y. Liang, T. Ma, and A. Risteski. (2016). A latent variable model approach 
to PMI-based word embeddings. Transactions of the Association for Computational 
Linguistics, 4: 385–399. https://doi.org/10.1162/tacl_a_00106. 

Arrieta, A.B., N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia 
et al. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, 

https://doi.org/10.1186/s41938-022-00547-1
https://doi.org/10.1111/geb.13845
https://doi.org/10.1111/2041-210X.14358
https://doi.org/10.3390/jimaging9050091
https://doi.org/10.28919/cmbn/8456
https://doi.org/10.1098/rspb.2019.2978
https://doi.org/10.1111/ele.14033
https://doi.org/10.1162/tacl_a_00106
https://doi.org/10.1016/S0304-3800(01)00258-7
https://doi.org/10.1016/S0304-3800(01)00258-7


Predicting Interactions Among Species in Ecological Networks... │ 109

opportunities, and challenges towards responsible AI. Information Fusion, 58: 82–
115. https://doi.org/10.1016/j.inffus.2019.12.012. 

Ascensão, F., Y.G. Gomes Ribeiro, Z. Campos, D.R. Yogui, and A.L.J. Desbiez. (2022). 
Forecasting seasonal peaks in roadkill patterns for improving road management. 
Journal of Environmental Management, 321: 115903. https://doi.org/10.1016/j.
jenvman.2022.115903. 

Bagus, P., J.A. Peña-Ramos, and A. Sánchez-Bayón. (2021). COVID-19 and the political 
economy of mass hysteria. International Journal of Environmental Research and 
Public Health, 18(4): 1376. https://doi.org/10.3390/ijerph18041376. 

Barel, J.M., O.L. Petchey, A. Ghaffouli, and V.E.J. Jassey. (2023). Uncovering microbial 
food webs using machine learning. Soil Biology and Biochemistry, 186: 109174. 
https://doi.org/10.1016/j.soilbio.2023.109174. 

Barman, R.K., S. Saha, and S. Das. (2014). Prediction of interactions between viral and 
host proteins using supervised machine learning methods. PLoS One, 9(11): e112034. 
https://doi.org/10.1371/journal.pone.0112034. 

Barroso-Bergada, D., A. Tamaddoni-Nezhad, D. Varghese, C. Vacher, N. Galic, V. Laval, F. 
Suffert, and D.A. Bohan. (2023). Unraveling the web of dark interactions: Explainable 
inference of the diversity of microbial interactions. Advances in Ecological Research, 
68: 155–183. https://doi.org/10.1016/bs.aecr.2023.09.005. 

Bataille, A., I.I. Levin, and E.H.R. Sari. (2017). Colonization of parasites and vectors. In: P. 
Parker (Ed.), Disease Ecology: Social and Ecological Interactions in the Galapagos 
Islands, pp. 45–79. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-
65909-1_3. 

Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American 
Statistical Association, 39(227): 357–365. https://doi.org/10.2307/2280041. 

Beschta, R.L., and W.J. Ripple. (2009). Large predators and trophic cascades in terrestrial 
ecosystems of the western United States. Biological Conservation, 142(11): 2401–
2414. https://doi.org/10.1016/j.biocon.2009.06.015. 

Bezuidenhout, J.D., and C.J. Stutterheim. (1980). A critical evaluation of the role played by 
the red-billed oxpecker Buphagus erythrorhynchus in the biological control of ticks. 
Onderstepoort Journal of Veterinary Research, 47(2): 51–75. 

Bickel, P.J., and A. Chen. (2009). A nonparametric view of network models and Newman-
Girvan and other modularities. In: Proceedings of the National Academy of Sciences, 
106(50): 21068–21073. https://doi.org/10.1073/pnas.0907096106. 

Bodner, K., C. Brimacombe, M.-J. Fortin, and P.K. Molnár. (2021). Why body size matters: 
How larger fish ontogeny shapes ecological network topology. Oikos, 2022(3): 
e08569. https://doi.org/10.1111/oik.08569. 

Bogucki, R., M. Cygan,  C.B.  Khan, M. Klimek, J.K. Milczek, and M. Mucha. (2019). 
Applying deep learning to right whale photo identification. Conservation Biology, 
33(3): 676–684. https://doi.org/10.1111/cobi.13226. 

Borowiec, M.L., R.B. Dikow, P.B. Frandsen, A. McKeeken, G. Valentini, and A.E. White.
(2022). Deep learning as a tool for ecology and evolution. Methods in Ecology and 
Evolution, 13(8): 1640–1660. https://doi.org/10.1111/2041-210X.13901. 

Boser, B.E., I.M. Guyon, and V.N. Vapnik. (1992, July). A training algorithm for optimal 
margin classifiers. In: Proceedings of the 5th Annual Workshop on Computational 
Learning Theory (COLT 92), pp. 144–152. https://doi.org/10.1145/130385.130401. 

Breiman, L. (2001). Random forests. Machine Learning, 45(1): 5–32. https://doi.
org/10.1023/A:1010933404324. 

https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.jenvman.2022.115903
https://doi.org/10.1016/j.jenvman.2022.115903
https://doi.org/10.3390/ijerph18041376
https://doi.org/10.1016/j.soilbio.2023.109174
https://doi.org/10.1371/journal.pone.0112034
https://doi.org/10.1016/bs.aecr.2023.09.005
https://doi.org/10.1007/978-3-319-65909-1_3
https://doi.org/10.1007/978-3-319-65909-1_3
https://doi.org/10.2307/2280041
https://doi.org/10.1016/j.biocon.2009.06.015
https://doi.org/10.1073/pnas.0907096106
https://doi.org/10.1111/oik.08569
https://doi.org/10.1111/cobi.13226
https://doi.org/10.1111/2041-210X.13901
https://doi.org/10.1145/130385.130401
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324


110 │ Artificial Intelligence and Animal Ecology: A Review

Brooks, D.R., and D.A. McLennan. (1991). Phylogeny, Ecology and Behavior. Chicago 
University Press. Chicago, United States of America. 441 pp. 

Browne, A.J., C.A. Guerra, R.V. Alves, V.M. da Costa, A.L. Wilson,  D.M. Pigott, S.I. 
Hay et al. (2017). The contemporary distribution of Trypanosoma cruzi infection 
in humans, alternative hosts and vectors. Scientific Data, 4: 170050. https://doi.
org/10.1038/sdata.2017.50. 

Burkepile, D.E., and J.D. Parker. (2017). Recent advances in plant-herbivore interactions. 
F1000 Research, 6: 119. https://doi.org/10.12688/f1000research.10313.1. 

Carlen, E.J., C.O. Estien, T. Caspi, D. Perkins, B.R. Goldstein, S.E.S. Kreling, Y. Hentati 
et al. (2024). A framework for contextualizing social-ecological biases in contributory 
science data. People and Nature, 6(2): 377–390. https://doi.org/10.1002/pan3.10592.  

Casadio, R., P.L. Martelli, and C. Savojardo. (2022). Machine learning solutions for 
predicting protein-protein interactions. WIREs Computational Molecular Science, 
12(6): e1618. https://doi.org/10.1002/wcms.1618. 

Ceballos, G., and P.R. Ehrlich. (2023). Mutilation of the tree of life via mass extinction 
of animal genera. Proceedings of the National Academy of Sciences, 120(39): 
e2306987120. https://doi.org/10.1073/pnas.2306987120. 

Chen, P., P. Swarup, W.M. Matkowski, A.W.K Kong, S. Han, Z. Zhang, and H. Rong. 
(2020). A study on giant panda recognition based on images of a large proportion of 
captive pandas. Ecology and Evolution, 10(7): 3561–3573. https://doi.org/10.1002/
ece3.6152. 

Chen, T., S. Kornblith, K. Swersky, M. Norouzi, and G.E. Hinton. (2020, December). 
Big self-supervised models are strong semi-supervised learners. In: NIPS 
’20: Proceedings of the 34th International Conference on Neural Information 
Processing Systems, 33: 22243–22255. Vancouver, Canada. https://dl.acm.org/doi/
abs/10.5555/3495724.3497589. 

Chen, X., J. Zhao, Y.H. Chen, W. Zhou, and A.C. Hughes. (2020). Automatic standardized 
processing and identification of tropical bat calls using deep learning approaches. 
Biological Conservation, 241: 108269. https://doi.org/10.1016/j.biocon.2019.108269. 

Christin., S., E. Hervet, and N. Lecomte. (2019). Applications for deep learning in ecology. 
Methods in Ecology and Evolution, 10(10): 1632–1644. https://doi.org/10.1111/2041-
210X.13256. 

Clapham, M., E. Miller, M. Nguyen, and C.T. Darimont. (2020). Automated facial 
recognition for wildlife that lack unique markings: A deep learning approach for 
brown bears. Ecology and Evolution, 10(23): 12883–12892. https://doi.org/10.1002/
ece3.6840. 

Clark, B., and J.B. Foster. (2010). Marx’s ecology in the 21st century. World Review of 
Political Economy, 1: 142–156.

Clark, P.J., and F.C. Evans. (1954). Distance to nearest neighbor as a measure of 
spatial relationships in populations. Ecology, 35(4): 445–453. https://doi.
org/10.2307/1931034 

Connell, J.H. (1961). The influence of interspecific competition and other factors on the 
distribution of barnacle Chthalamus stellatus. Ecology, 42(4): 710–723. https://doi.
org/10.2307/1933500. 

Cuesta-Astroz, Y., and G. Oliveira. (2018). Computational and experimental approaches 
to predict host-parasite protein-protein interactions. In: L. von Stechow, and A.S. 
Delgado (Eds.), Computational Cell Biology: Methods and Protocols (pp. 153–173). 
Humana Press. New York, United States of America. https://doi.org/10.1007/978-1-
4939-8618-7_7. 

https://doi.org/10.1038/sdata.2017.50
https://doi.org/10.12688/f1000research.10313.1
https://doi.org/10.1002/pan3.10592
https://doi.org/10.1002/wcms.1618
https://doi.org/10.1073/pnas.2306987120
https://doi.org/10.1002/ece3.6152
https://dl.acm.org/doi/abs/10.5555/3495724.3497589
https://doi.org/10.1016/j.biocon.2019.108269
https://doi.org/10.1111/2041-210X.13256
https://doi.org/10.1111/2041-210X.13256
https://doi.org/10.1002/ece3.6840
https://doi.org/10.2307/1931034
https://doi.org/10.2307/1933500
https://doi.org/10.1007/978-1-4939-8618-7_7
https://doi.org/10.1007/978-1-4939-8618-7_7
https://doi.org/10.1038/sdata.2017.50
https://doi.org/10.1002/ece3.6152
https://dl.acm.org/doi/abs/10.5555/3495724.3497589
https://doi.org/10.1002/ece3.6840
https://doi.org/10.2307/1931034
https://doi.org/10.2307/1933500


Predicting Interactions Among Species in Ecological Networks... │ 111

Cui, G., C. Fang, and K. Han. (2012). Prediction of protein-protein interactions between 
viruses and humans by an SVM model. BMC Bioinformatics, 13(suppl. 7): S5. https://
doi.org/10.1186/1471-2105-13-S7-S5. 

Dallas, T.A., and D.J. Becker. (2020). Taxonomic resolution affects host-parasite 
model performance. Parasitology, 148(5): 584–590. https://doi.org/10.1017/
S0031182020002371. 

Darbro, J.M., P.H. Johnson, M.B. Thomas, S.A. Ritchie, B.H. Kay, and P.A. Ryan. 
(2012). Effects of Beauveria bassiana on survival, blood-feeding success, and 
fecundity of Aedes aegypti in laboratory and semi-field conditions. The American 
Journal of Tropical Medicine and Hygiene, 86(4): 656–664. https://doi.org/10.4269/
ajtmh.2012.11-0455. 

Darwin, C. (1859). On the Origin of Species. 1st edition. John Murray. London, United 
Kingdom, 502 pp.

Darwin, C. (1875). Insectivorous Plants. 1st Edition. John Murray. London, United 
Kingdom. 462 pp.

Desjardins-Proulx, P., I. Laigle, T. Poisot,  and D. Gravel. (2017). Ecological interactions 
and the Netflix problem. PeerJ, 5: e3644. https://doi.org/10.7717/peerj.3644. 

Deutsch, C.A., J.J. Tewksbury, M. Tigchelaar, D.S. Battisti, S.C. Merrill, R.B. Huey, and 
R.L. Naylor. (2018). Increase in crop losses to insect pests in a warming climate. 
Science, 361(6405): 916–919. https://doi.org/10.1126/science.aat3466. 

Díaz, M. (1996). Food choice by seed-eating birds in relation to seed chemistry. 
Comparative Biochemistry and Physiology Part A: Physiology, 113(3): 239–246. 
https://doi.org/10.1016/0300-9629(95)02093-4. 

Dickman, C.R. (1992). Commensal and mutualistic interactions among terrestrial 
vertebrates. Trends in Ecology and Evolution, 7(6): 194–197. https://doi.
org/10.1016/0169-5347(92)90072-J. 

Diniz-Filho, J.A.F., M.T.P. Coelho, and L.C. Terribile, (2023). Unpacking 
underdetermination: Theoretical challenges in understanding macroecological and 
biogeographic patterns. Journal of Biogeography, 50(11): 1890–1898. https://doi.
org/10.1111/jbi.14699. 

Diniz-Filho, J.A.F., R.D. Loyola, P. Raia, A.O. Mooers, and L.M. Bini. (2013). Darwinian 
shortfalls in biodiversity conservation. Trends in Ecology & Evolution, 28(12): 689–
695. https://doi.org/10.1016/j.tree.2013.09.003. 

Dodds, W.K., and J.A. Nelson. (2006). Redefining the community: A species-based 
approach. Oikos, 112(2): 464–472. https://doi.org/10.1111/j.0030-1299.2006.13558.x. 

Doherty, T.S., A.S. Glen, D.G. Nimmo, E.G.  Ritchie, and C.R. Dickman. (2016). Invasive 
predators and global biodiversity loss. In: Proceedings of the National Academy of 
Sciences, 113(40): 11261–11265. https://doi.org/10.1073/pnas.1602480113. 

Drimaj, J., V. Skoták, J. Kamler, R. Plhal, Z. Adamec, O. Mikulka, and P. Janata. (2023). 
Comparison of methods for estimating damage by wild ungulates on field crops. 
Agriculture, 13(6): 1184. https://doi.org/10.3390/agriculture13061184. 

Dyer, M.D., T.M. Murali, and B.W. Sobral. (2011). Supervised learning and prediction 
of physical interactions between human and HIV proteins. Infection, Genetics, and 
Evolution, 11(5): 917–923. https://doi.org/10.1016/j.meegid.2011.02.022. 

Elmasri, M., M.J. Farrell, T.J. Davies, and D.A. Stephens. (2020). A hierarchical Bayesian 
model for predicting ecological interactions using scaled evolutionary relationships. 
The Annals of Applied Statistics, 14(1): 221–240. https://doi.org/10.1214/19-
AOAS1296. 

https://doi.org/10.1186/1471-2105-13-S7-S5
https://doi.org/10.1186/1471-2105-13-S7-S5
https://doi.org/10.1017/S0031182020002371
https://doi.org/10.1017/S0031182020002371
https://doi.org/10.4269/ajtmh.2012.11-0455
https://doi.org/10.4269/ajtmh.2012.11-0455
https://doi.org/10.7717/peerj.3644
https://doi.org/10.1126/science.aat3466
https://doi.org/10.1111/jbi.14699
https://doi.org/10.1111/jbi.14699
https://doi.org/10.1016/j.tree.2013.09.003
https://doi.org/10.1111/j.0030-1299.2006.13558.x
https://doi.org/10.1073/pnas.1602480113
https://doi.org/10.3390/agriculture13061184
https://doi.org/10.1016/j.meegid.2011.02.022
https://doi.org/10.1214/19-AOAS1296
https://doi.org/10.1214/19-AOAS1296
https://doi.org/10.1016/0300-9629(95)02093-4
https://doi.org/10.1016/0169-5347(92)90072-J
https://doi.org/10.1016/0169-5347(92)90072-J


112 │ Artificial Intelligence and Animal Ecology: A Review

Elton, C.S. (1927). Animal Ecology. Sidgwick & Jackson. London, United Kingdom, 
xxi+207 pp.

Enquist, B.J. (2002). Universal scaling in tree and vascular plant allometry: Toward a general 
quantitative theory linking plant form and function from cells to ecosystems. Tree 
Physiology, 22(15–16): 1045–1064. https://doi.org/10.1093/treephys/22.15-16.1045. 

Escalas, A., L. Hale, J.W. Voordeckers, Y. Yang, M.K. Firestone, L. Alvarez-Cohen, and J. 
Zhou. (2016). Microbial functional diversity: From concepts to applications. Ecology 
and Evolution, 9(20): 12000–12016. https://doi.org/10.1002/ece3.5670. 

Escudero-Pérez, B., A. Lalande, C. Mathieu, and P. Lawrence. (2023). Host-pathogen 
interactions influencing zoonotic spillover potential and transmission in humans. 
Viruses, 15(3): 599. https://doi.org/10.3390/v15030599. 

Fanioudakis, E., M. Geismar, and I. Potamitis. (2018, September). Mosquito wingbeat 
analysis and classification using deep learning. In: 26th European Signal Processing 
Conference (EUSIPCO), pp. 2410–2414. Rome, Italy. https://doi.org/10.23919/
EUSIPCO.2018.8553542. 

Farrell, M.J., M. Elmasri, D.A. Stephens, and T.J. Davies. (2022). Predicting missing links 
in global host-parasite networks. Journal of Animal Ecology, 91(4): 715–726. https://
doi.org/10.1111/1365-2656.13666. 

Fix, E., and J.L. Hodges. (1989). Discriminatory analysis, non-parametric discrimination: 
Consistency properties. International Statistical Review, 57(3): 238–247. https://doi.
org/10.2307/1403797. 

Fögelstrom, E. M. Olofsson, D. Posledovich, C. Wiklund, J.P. Dahlgren, and J. Ehrlén. 
(2017). Plant-herbivore synchrony and selection on plant flowering phenology. 
Ecology, 98(3): 703–711. https://doi.org/10.1002/ecy.1676. 

Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine. The 
Annals of Statistics, 29(5): 1189–1232. https://doi.org/10.1214/aos/1013203451. 

Fritz, S.A., O.R.P. Bininda-Emonds, and A. Purvis. (2009). Geographical variation in 
predictors of mammalian extinction risk: Big is bad, but only in the tropics. Ecology 
Letters, 12(6): 538–549. https://doi.org/10.1111/j.1461-0248.2009.01307.x. 

Gaba, S., C. Collas, T. Pobolny, F. Bretagnolle, and V. Bretagnolle. (2014). Skylarks trade 
size and energy content in weed seeds to maximize total ingested lipid biomass. 
Behavioural Processes, 108: 142–150. https://doi.org/10.1016/j.beproc.2014.10.004. 

Gaba, S., P. Deroulers, F. Bretagnolle, and V. Bretagnolle. (2019). Lipid content drives 
weed seed consumption by ground beetles (Coleoptera, Carabidae) within the smallest 
seeds. Weed Research, 59(3): 170–179. https://doi.org/10.1111/wre.12354. 

Gause, G.F. (1934). The Struggle for Existence. Williams and Wilkins Co. Baltimore, 
United States of America. 160 pp.

Gonzalez-Isunza, G., M. Zaki Jawaid, P. Liu, D.L. Cox, M. Vazquez, and J. Arsuaga. 
(2023). Using machine learning to detect coronaviruses potentially infectious to 
humans. Scientific Reports, 13: 9319. https://doi.org/10.1038/s41598-023-35861-7. 

González-Suárez, M., F. Zanchetta Ferreira, and C. Grilo. (2018). Spatial and species-level 
predictions of road mortality risk using trait data. Global Ecology and Biogeography, 
27(9): 1093–1105. https://doi.org/10.1111/geb.12769. 

Gouda, S., G. Das, S.K. Sen, H.-S. Shin, and J.K. Patra. (2016). Endophytes: A treasure 
house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7: 
01538. https://doi.org/10.3389/fmicb.2016.01538. 

Grace, J. (1990). Perspectives on Plant Competition. Academic Press, Cambridge, United 
Kingdom. 498 pp.

Gravel, D., T. Poisot, C. Albuoy, L. Velez, and D. Mouillot. (2013). Inferring food web 

https://doi.org/10.1093/treephys/22.15-16.1045
https://doi.org/10.1002/ece3.5670
https://doi.org/10.3390/v15030599
https://doi.org/10.23919/EUSIPCO.2018.8553542
https://doi.org/10.1111/1365-2656.13666
https://doi.org/10.1111/1365-2656.13666
https://doi.org/10.2307/1403797
https://doi.org/10.1002/ecy.1676
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1111/j.1461-0248.2009.01307.x
https://doi.org/10.1016/j.beproc.2014.10.004
https://doi.org/10.1111/wre.12354
https://doi.org/10.1038/s41598-023-35861-7
https://doi.org/10.1111/geb.12769
https://doi.org/10.3389/fmicb.2016.01538
https://doi.org/10.23919/EUSIPCO.2018.8553542
https://doi.org/10.2307/1403797


Predicting Interactions Among Species in Ecological Networks... │ 113

structure from predator-prey body size relationships. Methods in Ecology and 
Evolution, 4(11): 1083–1090. https://doi.org/10.1111/2041-210x.12103. 

Grilo, C., E. Koroleva, R. Andrášik, M. Bíl, and M. González-Suárez. (2020). Roadkill risk 
and population vulnerability in European birds and mammals. Frontiers in Ecology 
and the Environment, 18(6): 323–328. https://doi.org/10.1002/fee.2216. 

Guénard, G., P. Legendre, and P. Peres-Neto. (2013). Phylogenetic eigenvector maps: A 
framework to model and predict species traits. Methods in Ecology and Evolution, 
4(12): 1120–1131. https://doi.org/10.1111/2041-210x.12111. 

Ha, H., and F. Shilling. (2018). Modeling potential wildlife-vehicle collisions (WVC) 
locations using environmental factors and human population density: A case-study 
from 3 state highways in central California. Ecological Informatics, 43: 212–221. 
https://doi.org/10.1016/j.ecoinf.2017.10.005. 

Hall, G. (1972). Ecology: Can We Survive under Capitalism? International Publishers. 
New York, United States of America. 94 pp.

Han, B.A., J.P. Schmidt, L.W. Alexander, S.E. Bowden, D.T.S. Hayman, and J.M. Drake. 
(2016). Undiscovered bat hosts of Filoviruses. PLoS Neglected Tropical Diseases, 
10(7): e0004815. https://doi.org/10.1371/journal.pntd.0004815.

Han, B.A., J.P. Schmidt, S.E. Bowden, and J.M. Drake. (2015). Rodent reservoirs of 
future zoonotic diseases. Ecology, 112(22): 7039–7044. https://doi.org/10.1073/
pnas.1501598112. 

Hansen, M.E., M.L. Smith, L.N. Smith, M.G. Salter, E.M. Baxter, M. Farish, and B. Grieve, 
(2018). Towards on-farm pig face recognition using convolutional neural networks. 
Computers in Industry, 98: 145–152. https://doi.org/10.1016/j.compind.2018.02.016. 

Haskell, E.F. (1946). A clarification of social science. Main Currents in Modern Thought, 
7: 45–51.

He, B., Y. Zhao, and W. Mao. (2022). Explainable artificial intelligence reveals 
environmental constraints in seagrass distribution. Ecological Indicators, 144: 
109523. https://doi.org/10.1016/j.ecolind.2022.109523. 

He, K., X. Zhang, S. Ren, and S. Jun. (2016, June). Deep residual learning for image 
recognition. In: 2016 Proceedings of the 29th IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), pp. 770–778. Las Vegas, United States of America. 
https://doi.org/10.1109/CVPR.2016.90. 

Henderson, R.W., and R. Powell. (2001). Responses by the West Indian herpetofauna to 
human-influenced resources. Caribbean Journal of Science, 37(1–2): 41–54. 

Heumann, B.W., S.J. Walsh, A.M. Verdery, P.M. McDaniel, and R.R. Rindfuss. (2012). Land 
suitability modeling using a geographic socio-environmental niche-based approach: 
A case study from northeastern Thailand. Annals of the American Association of 
Geographers, 103(4): 764–784. https://doi.org/10.1080/00045608.2012.702479. 

Hirn, J., J.E. García, A. Montesinos-Navarro, R. Sánchez-Martín, V. Sanz, and M. 
Verdú. (2022). A deep Generative Artificial Intelligence system to predict species 
coexistence patterns. Methods in Ecology and Evolution, 13(5): 1052–1061. https://
doi.org/10.1111/2041-210X.13827. 

Ho, T.K. (1998). The random subspace method for constructing decision forests. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 20(8): 832–844. https://
doi.org/10.1109/34.709601. 

Hoff, P.D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the American 
Statistical Association, 100(469): 286–295. https://doi.org/10.1198/0162145040000
01015. 

https://doi.org/10.1111/2041-210x.12103
https://doi.org/10.1002/fee.2216
https://doi.org/10.1111/2041-210x.12111
https://doi.org/10.1016/j.ecoinf.2017.10.005
https://doi.org/10.1371/journal.pntd.0004815
https://doi.org/10.1073/pnas.1501598112
https://doi.org/10.1073/pnas.1501598112
https://doi.org/10.1016/j.compind.2018.02.016
https://doi.org/10.1016/j.ecolind.2022.109523
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1080/00045608.2012.702479
https://doi.org/10.1111/2041-210X.13827
https://doi.org/10.1111/2041-210X.13827
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
https://doi.org/10.1198/016214504000001015
https://doi.org/10.1198/016214504000001015


114 │ Artificial Intelligence and Animal Ecology: A Review

Hoff, P.D., A.E. Raftery, and M.S. Handcock. (2002). Latent space approaches to social 
network analysis. Journal of the American Statistical Association, 97(460): 1090–
1098. https://doi.org/10.1198/016214502388618906. 

Holomuzki, J.R., J.W. Feminella, and M.E. Power. (2010). Biotic interactions in freshwater 
benthic habitats. Journal of the North American Benthological Society, 29(1): 220–
244. https://doi.org/10.1899/08-044.1. 

Hortal, J., F. de Bello, J.A.F. Diniz-Filho, T.M. Lewinsohn, J.M. Lobo, and R.J. Ladle. 
(2015). Seven shortfalls that beset large-scale knowledge of biodiversity. Annual 
Review of Ecology, Evolution, and Systematics, 46: 523–549. https://doi.org/10.1146/
annurev-ecolsys-112414-054400. 

Hughes, A.C., M.C. Orr, K. Ma, M.J. Costello, J. Waller, P. Provoost, Q. Yang et al. (2021). 
Sampling biases shape our view of the natural world. Ecography, 44(9): 1259–1269. 
https://doi.org/10.1111/ecog.05926. 

Indumathi, V., S. Santhana Megala, R. Padmapriya, M. Suganya, and B. Jayanthi. (2021). 
Prediction and analysis of plant growth promoting bacteria using machine learning 
for millet crops. Annals of the Romanian Society for Cell Biology, 25(6): 1826–1833. 
http://annalsofrscb.ro/index.php/journal/article/view/5722. 

John, M., F. Haselbeck, R. Das, C. Malisi, P. Ricca, C. Dreischer, S.J. Schultheiss, and D.G. 
Grimm. (2022). A comparison of classical and machine learning-based phenotype 
prediction methods on simulated data and three plant species. Frontiers in Plant 
Science, 13: 932512. https://doi.org/10.3389/fpls.2022.932512. 

Kalle, R., L. Combrink, T. Ramesh, and C.T. Downs. (2017). Re-establishing the pecking 
order: Niche models reliably predict suitable habitats for the reintroduction of red-
billed oxpeckers. Ecology and Evolution, 7(6): 1974–1983. https://doi.org/10.1002/
ece3.2787. 

Karp, D.S., C.D. Mendenhall, R.F. Sandí, N. Chaumont, P.R. Ehrlich, E.A. Hadly, and G.C. 
Daily. (2013). Forest bolsters bird abundance, pest control, and coffee yield. Ecology 
Letters, 16(11): 1339–1347. https://doi.org/10.1111/ele.12173. 

Kitson, E., and C.A. Suttle. (2019). VHost-Classifier: Virus-host classification using natural 
language processing. Bioinformatics, 35(19): 3867–3869. https://doi.org/10.1093/
bioinformatics/btz151. 

Kleene, S.C. (1956). Representation of events in nerve nets and finite automata, Automata 
Studies: Annals of Mathematics Studies, 34: 3–41.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. 
Biological Cybernetics, 43: 59–69. https://doi.org/10.1007/bf00337288. 

Kotula, H.J., G. Peralta, C.M. Frost, J.H. Todd, and J.M. Tylianakis. (2021). Predicting 
direct and indirect non-target impacts of biocontrol agents using machine-
learning approaches. PLoS One, 16(6): e0252448. https://doi.org/10.1371/journal.
pone.0252448. 

Kovač, M., N. Lacković, and M. Pernek. (2020). Effect of Beauveria bassiana fungal 
infection on survival and feeding behavior of pine-tree lappet moth (Dendrolimus 
pini L.). Forests, 11(9): 974. https://doi.org/10.3390/f11090974. 

Krizhevsky, A., I. Sutskever, and G.E. Hinton. (2017). ImageNet classification with deep 
convolutional neural networks. Communications of the ACM, 60(6): 84–90. https://
doi.org/10.1145/3065386. 

Krupa, J.J., K.R. Hopper, S.B. Gruber, J.M.  Schmidt, and J.D. Harwood. (2020). Plant-
animal interactions between carnivorous plants, sheet-web spiders, and ground-
running spiders as guild predators in a wet meadow community. Ecology and 
Evolution, 10(11): 4762–4772. https://doi.org/10.1002/ece3.6230. 

https://doi.org/10.1198/016214502388618906
https://doi.org/10.1899/08-044.1
https://doi.org/10.1146/annurev-ecolsys-112414-054400
https://doi.org/10.1111/ecog.05926
http://annalsofrscb.ro/index.php/journal/article/view/5722
https://doi.org/10.3389/fpls.2022.932512
https://doi.org/10.1002/ece3.2787
https://doi.org/10.1111/ele.12173
https://doi.org/10.1093/bioinformatics/btz151
https://doi.org/10.1007/bf00337288
https://doi.org/10.1371/journal.pone.0252448
https://doi.org/10.3390/f11090974
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1002/ece3.6230
https://doi.org/10.1146/annurev-ecolsys-112414-054400
https://doi.org/10.1002/ece3.2787
https://doi.org/10.1093/bioinformatics/btz151
https://doi.org/10.1371/journal.pone.0252448


Predicting Interactions Among Species in Ecological Networks... │ 115

Kulatunga, A.K., J. Gowrinathan, R. Ekanayake, D. Athauda, and C. Chandrakumar. 
(2015). Intelligent vision based driver assisted system for trains-elephants accidents. 
International Journal of Electrical and Electronic Science, 2(2): 6–16. 

LeCun, Y., Y. Bengio, and G. Hinton. (2015). Deep learning. Nature, 521(7553): 436–444. 
https://doi.org/10.1038/nature14539. 

Li, D., and A.R. Ives. (2017). The statistical need to include phylogeny in trait-based 
analyses of community composition. Methods in Ecology and Evolution, 8(10): 
1192–1199. https://doi.org/10.1111/2041-210X.12767. 

Lidicker Jr., W.Z. (1979). A clarification of interactions in ecological systems. BioScience, 
29(8): 475–477. https://doi.org/10.2307/1307540. 

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A.C. Berg. (2016, 
October). SSD: Single Shot MultiBox Detector. In: B. Leibe, J. Matas, N. Sebe, 
and M. Welling (Eds.), Computer Vision – ECCV 2016, pp. 21–37. Springer. Cham, 
Switzerland. https://doi.org/10.1007/978-3-319-46448-0_2. 

Llewelyn, J., G. Strona, C.R. Dickman, A.C. Greenville, G.M. Wardle, M.S.Y. Lee, S. 
Doherty et al. (2023). Predicting predator-prey interactions in terrestrial endotherms 
using random forest. Ecography, 2023(9): e06619. https://doi.org/10.1111/
ecog.06619. 

Lotka, A.J. (1925). Elements of Physical Biology. Williams and Wilkins Co. Baltimore, 
United States of America, xxx+460 pp.

Lundgren, E.J., J. Bergman, J. Trepel, E. Le Roux, S. Monsarrat, J.A. Kristensen,  R.Ø. 
Pedersen et al. (2024). Functional traits—not nativeness–shape the effects of large 
mammalian herbivores on plant communities. Science, 383(6682): 531–537. https://
doi.org/10.1126/science.adh2616. 

Mac Aodha, O., R. Gibb, K.E. Barlow, E. Browning, M. Firman, R. Freeman, B. Harder 
et al. (2018). Bat detective – Deep learning tools for bat acoustic signal detection. 
PLoS Computational Biology, 14(3): e1005995. https://doi.org/10.1371/journal.
pcbi.1005995. 

Malviya, M., and R. Krishnamurthy. (2022). Multiscale spatially explicit modeling of 
livestock depredation by reintroduced tiger (Panthera tigris) to predict conflict risk 
probability. Global Ecology and Conservation, 40: e02313. https://doi.org/10.1016/j.
gecco.2022.e02313. 

Manson, S., M. Campera, K. Hedger, N. Ahmad, E. Adinda, V. Nijman, B. Budiadi et 
al. (2022). The effectiveness of a biopesticide in the reduction of coffee berry 
borers in coffee plants. Crop Protection, 161: 106075. https://doi.org/10.1016/j.
cropro.2022.106075. 

May, F., V. Grimm, and F. Jeltsch. (2009). Reversed effects of grazing on plant diversity: 
The role of belowground competition and size symmetry. Oikos, 118(12): 1830–1843. 
https://doi.org/10.1111/j.1600-0706.2009.17724.x. 

McCulloch, W.S., and W. Pitts. (1943). A logical calculus of the ideas immanent in nervous 
activity. Bulletin of Mathematical Biophysics, 5: 115–133. https://doi.org/10.1007/
BF02478259. 

McElligott, A.G., I. Maggini, L. Hunziker, and B. König. (2004). Interactions between red-
billed oxpeckers and black rhinos in captivity. Zoo Biology, 23(4): 347–354. https://
doi.org/10.1002/zoo.20013. 

Meadows, A.J., N. Stephenson, N.K. Madhav, and B. Oppenheim. (2023). Historical 
trends demonstrate a pattern of increasingly frequent and severe spillover events of 
high-consequence zoonotic viruses. BMJ Global Health, 8(11): e012026. https://doi.
org/10.1136/bmjgh-2023-012026. 

https://doi.org/10.1038/nature14539
https://doi.org/10.1111/2041-210X.12767
https://doi.org/10.2307/1307540
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1111/ecog.06619
https://doi.org/10.1111/ecog.06619
https://doi.org/10.1126/science.adh2616
https://doi.org/10.1126/science.adh2616
https://doi.org/10.1371/journal.pcbi.1005995
https://doi.org/10.1371/journal.pcbi.1005995
https://doi.org/10.1016/j.gecco.2022.e02313
https://doi.org/10.1016/j.gecco.2022.e02313
https://doi.org/10.1016/j.cropro.2022.106075
https://doi.org/10.1016/j.cropro.2022.106075
https://doi.org/10.1111/j.1600-0706.2009.17724.x
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1002/zoo.20013
https://doi.org/10.1002/zoo.20013
https://doi.org/10.1136/bmjgh-2023-012026
https://doi.org/10.1136/bmjgh-2023-012026


116 │ Artificial Intelligence and Animal Ecology: A Review

Megnidio-Tchoukouegno, M.M., E.B. Gueguim Kana, and W.B.A. Bancole. (2022). 
Machine learning model to predict endophytic colonisation of rice cultivar plant 
tissues by Beauveria bassiana isolates and their potential as bio-control agents against 
rice stem borer using existing knowledge. F1000 Research, 11: 1249. https://doi.
org/10.12688/f1000research.126479.1. 

Meineke, E.K., C. Thomasi, S. Yuan, and K.M. Pryer. (2020). Applying machine learning 
to investigate long-term insect-plant interactions preserved on digital herbarium 
specimens. Applications in Plant Sciences, 8(6): e11369. https://doi.org/10.1002/
aps3.11369. 

Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. (1953). 
Equation of state calculations by fast computing machines. The Journal of Chemical 
Physics, 21: 1087–1092. https://doi.org/10.1063/1.1699114. 

Mihalca, A.D., C.M. Gherman, and V. Cozma. (2011). Coendangered hard ticks:  
Threatened or threatening? Parasites & Vectors, 4: 71. https://doi.org/10.1186/1756-
3305-4-71. 

Mikolov, T., K. Chen, G. Corrado, and J. Dean. (2013). Efficient estimation of word 
representations in vector space. arXiv Preprint. https://arxiv.org/abs/1301.3781. 

Millar, M.C. (2019). Predicting theropod hunting tactics using machine learning. Open 
Science Journal, 4(1): 1–11. https://doi.org/10.23954/osj.v4i1.1820. 

Mock, F., A. Viehweger, E. Barth, and M. Marz. (2021). VIDHOP, viral host prediction 
with deep learning. Bioinformatics, 37(3): 318–325. https://doi.org/10.1093/
bioinformatics/btaa705. 

Mooring, M.S., and P.J. Mundy. (1996). Interactions between impala and oxpeckers at 
Matobo National Park, Zimbabwe. African Journal of Ecology, 34(1): 54–65. https://
doi.org.10.1111/j.1365-2028.1996.tb00594.x. 

Morales-Castilla, I., M.G. Matias, D. Gravel, and M.B. Araújo. (2015). Inferring biotic 
interactions from proxies. Trends in Ecology & Evolution, 30(6): 347–356. https://doi.
org/10.1016/j.tree.2015.03.014. 

Mougi, A. (2016). The roles of amensalistic and commensalistic interactions in large 
ecological network stability. Scientific Reports, 6: 29929. https://doi.org/10.1038/
srep29929. 

Muleneh, M.G. (2021). Impact of climate change on biodiversity and food security: A 
global perspective: A review article. Agriculture and Food Security, 10: 36. https://
doi.org/10.1186/s40066-021-00318-5. 

Ofer, D., N. Brandes, and M. Linial. (2021). The language of proteins: NLP, machine 
learning & protein sequences. Computational and Structural Biotechnology Journal, 
19: 1750–1758. https://doi.org/10.1016/j.csbj.2021.03.022. 

Olson, S.L., and H.F. James. (1984). The role of Polynesians in the extinction of avifauna of 
the Hawaiian islands. In: P.S. Martin, and R.G. Klein (Eds.), Quaternary Extinctions: 
A Prehistoric Revolution, pp. 768–780. University of Arizona Press, Tucson, United 
States of America. 

Oppel, S., and F. Huettmann. (2010). Using a Random Forest model and public data to 
predict the distribution of prey for marine wildlife management. In: S.A. Cushman, 
and F. Huettmann (Eds.), Spatial Complexity, Informatics, and Wildlife Conservation, 
pp. 151–163. Springer, Tokyo, Japan. https://doi.org/10.1007/978-4-431-87771-4_8. 

Ornai, A., and T. Keasar. (2020). Floral complexity traits as predictors of plant-bee 
interactions in a Mediterranean pollination web. Plants, 9(11): 1432. https://doi.
org/10.3390/plants9111432. 

https://doi.org/10.12688/f1000research.126479.1
https://doi.org/10.1002/aps3.11369
https://doi.org/10.1063/1.1699114
https://doi.org/10.1186/1756-3305-4-71
https://doi.org/10.1186/1756-3305-4-71
https://arxiv.org/abs/1301.3781
https://doi.org/10.23954/osj.v4i1.1820
https://doi.org/10.1093/bioinformatics/btaa705
https://doi.org.10.1111/j.1365-2028.1996.tb00594.x
https://doi.org.10.1111/j.1365-2028.1996.tb00594.x
https://doi.org/10.1016/j.tree.2015.03.014
https://doi.org/10.1038/srep29929
https://doi.org/10.1186/s40066-021-00318-5
https://doi.org/10.1186/s40066-021-00318-5
https://doi.org/10.1016/j.csbj.2021.03.022
https://doi.org/10.1007/978-4-431-87771-4_8
https://doi.org/10.3390/plants9111432
https://doi.org/10.12688/f1000research.126479.1
https://doi.org/10.1002/aps3.11369
https://doi.org/10.1093/bioinformatics/btaa705
https://doi.org/10.1016/j.tree.2015.03.014
https://doi.org/10.1038/srep29929
https://doi.org/10.3390/plants9111432


Predicting Interactions Among Species in Ecological Networks... │ 117

Page, R.D.M. (1993). Parasites, phylogeny, and cospeciation. International Journal for 
Parasitology, 23(4): 499–506. https://doi.org/10.1016/0020-7519(93)90039-2. 

Pan, J., Z. Zhang, Y. Li, J. Yu, Z. You, C. Li, S. Wang et al. (2024). A microbial knowledge 
graph-based deep learning model for predicting candidate microbes for target hosts. 
Briefings in Bioinformatics, 25(3): bbae119. https://doi.org/10.1093/bib/bbae119. 

Pauvert, C., M. Buée, V. Laval, V. Edel-Hermann, L. Fauchery, A. Gautier, I. Lesur et al. 
(2019). Bioinformatics matters: The accuracy of plant and soil fungal community 
data is highly dependent on the metabarcoding pipeline. Fungal Ecology, 41: 23–33. 
https://doi.org/10.1016/j.funeco.2019.03.005. 

Pearse, A.S. (1926). Animal Ecology. McGraw-Hill Book Co. New York. United States of 
America, 417 pp.

Pearse, I.S., D.J. Harris, R. Karban, and A. Sih. (2013). Predicting novel herbivore-
plant interactions. Oikos, 122(11): 1554–1564. https://doi.org/10.1111/j.1600-
0706.2013.00527.x. 

Peralta, G., D.P. Vázquez, N.P. Chacoff, S.B. Lomáscolo, G.L.W. Perry. and J.M. Tylianakis. 
(2020). Trait matching and phenological overlap increase the spatio-temporal stability 
and functionality of plant-pollinator interactions. Ecology Letters, 23(7): 1107–1116. 
https://doi.org/10.1111/ele.13510. 

Perez-Guerra, J., J. Gonzalez-Velez, and J. Murillo-Escobar. (2024). Prediction of areas with 
high risk of roadkill wildlife applying maximum entropy approach and environmental 
features: East Antioquia, Colombia. Landscape and Ecological Engineering, 20(1): 
75–88. https://doi.org/10.1007/s11355-023-00581-7. 

Pérez-Harguindeguy, N., S. Díaz, F. Vendramini, J.H.C. Cornelissen, D.E. Gurvich, and 
M. Cabido. (2003). Leaf traits and herbivore selection in the field and in cafeteria 
experiments. Austral Ecology, 28(6): 642–650. https://doi.org/10.1046/j.1442-
9993.2003.01321.x. 

Perry, G.L.W., R. Seidl, A.M. Bellvé, and W. Rammer. (2022). An outlook for deep learning 
in ecosystem science. Ecosystems, 25(8): 1700–1718. https://doi.org/10.1007/s10021-
022-00789-y. 

Peters, R., Y. Lin, and U. Berger. (2016). Machine learning meets individual-based 
modeling: Self-organizing feature maps for the analysis of below-ground competition 
among plants. Ecological Modelling, 326: 142–151. https://doi.org/10.1016/j.
ecolmodel.2015.10.014. 

Phillips, S.J., and M. Dudík. (2008). Modeling of species distributions with Maxent: New 
extensions and a comprehensive evaluation. Ecography, 31(2): 161–175. https://doi.
org/10.1111/j.0906-7590.2008.5203.x. 

Pichler, M., and F. Hartig. (2023). Machine learning and deep learning: A review for 
ecologists. Methods in Ecology and Evolution, 14(4): 994–1016. https://doi.
org/10.1111/2041-210X.14061. 

Pichler, M., V. Boreux, A.-M. Klein, M. Schleuning, and F. Hartig. (2020). Machine 
learning algorithms to infer trait-matching and predict species interactions in 
ecological networks. Methods in Ecology and Evolution, 11(2): 281–293. https://doi.
org/10.1111/2041-210X.13329. 

Platenberg, R.J. (2007). Impacts of introduced species on an island ecosystem: non-native 
reptiles and amphibians in the US Virgin Islands. In: G.W. Witmer, W.C. Pitt, and 
K.A. Fagerstone (Eds.) Managing Vertebrate Invasive Species, pp. 168–174. USDA 
National Wildlife Research Center Symposia. Fort Collins, United States of America.

Pocock, M.J.O., R. Schmucki, and D.A. Bohan. (2021). Inferring species interactions from 
ecological survey data: A mechanistic approach to predict quantitative food webs 

https://doi.org/10.1093/bib/bbae119
https://doi.org/10.1016/j.funeco.2019.03.005
https://doi.org/10.1111/j.1600-0706.2013.00527.x
https://doi.org/10.1111/j.1600-0706.2013.00527.x
https://doi.org/10.1111/ele.13510
https://doi.org/10.1007/s11355-023-00581-7
https://doi.org/10.1046/j.1442-9993.2003.01321.x
https://doi.org/10.1046/j.1442-9993.2003.01321.x
https://doi.org/10.1007/s10021-022-00789-y
https://doi.org/10.1007/s10021-022-00789-y
https://doi.org/10.1016/j.ecolmodel.2015.10.014
https://doi.org/10.1016/j.ecolmodel.2015.10.014
https://doi.org/10.1111/j.0906-7590.2008.5203.x
https://doi.org/10.1111/j.0906-7590.2008.5203.x
https://doi.org/10.1111/2041-210X.14061
https://doi.org/10.1111/2041-210X.14061
https://doi.org/10.1111/2041-210X.13329
https://doi.org/10.1111/2041-210X.13329
https://doi.org/10.1016/0020-7519(93)90039-2


118 │ Artificial Intelligence and Animal Ecology: A Review

of seed feeding by carabid beetles. Ecology and Evolution, 11(18): 12858–12871. 
https://doi.org/10.1002/ece3.8032. 

Poelen, J.H., J.D. Simons, and C.J. Mungall. (2014). Global biotic interactions: An 
open infrastructure to share and analyze species-interaction datasets. Ecological 
Informatics, 24: 148–159. https://doi.org/10.1016/j.ecoinf.2014.08.005. 

Portilla, M., R. Luttrell, G. Snodgrass, Y.C. Zhu, and E. Riddick. (2017). Lethality of the 
entomogenous fungus Beauveria bassiana strain NI8 on Lygus lineolaris (Hemiptera: 
Miridae) and its possible impact on beneficial Arthropods. Journal of Entomological 
Science, 52(4): 352–369. https://doi.org/10.18474/JES17-15.1. 

Power, M.E. (1992). Top-down and bottom-up forces in food webs: Do plants have 
primacy? Ecology, 73(3): 733–746. https://doi.org.10.2307/1940153. 

Puillandre, N., A. Lambert, S. Brouillet, and G. Achaz. (2012). ABGD, Automatic barcode 
gap discovery for primary species delimitation. Molecular Ecology, 21(8): 1864–
1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x. 

Quiles, P., and R. Barrientos. (2024). Interspecific interactions disrupted by roads. 
Biological Reviews, 99(3), 1121–1139. https://doi.org/10.1111/brv.13061. 

Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1(1): 81–106. https://
doi.org/10.1007/BF00116251. 

Radzali, N.S.A., A. Abu Bakar, and A.I. Zamahsasri. (2023). Machine learning models 
for behavioral diversity of Asian Elephants prediction using satellite collar data. 
Journal of Information and Communication Technology, 22(3): 363–398. https://doi.
org/10.32890/jict2023.22.3.3. 

Rafferty, N.E., and A.R. Ives. (2013). Phylogenetic trait-based analyses of ecological 
networks. Ecology, 94(10): 2321–2333. https://doi.org/10.1890/12-1948.1. 

Ramesh, G., S. Mathi, S.R. Pulari, and V. Krishnamoorthy. (2017, September). An 
automated vision-based method to detect elephants for mitigation of human-
elephant conflicts. In: 2017 International Conference on Advances in Computing, 
Communications, and Informatics (ICACCI), pp. 2284–2288. Udupi, India. https://
doi.org/10.1109/ICACCI.2017.8126187. 

Rammer, W., and R. Seidl. (2019). Harnessing deep learning in ecology: An example 
predicting bark beetle outbreaks. Frontiers in Plant Sciences, 10: 1327. https://doi.
org/10.3389/fpls.2019.01327. 

Rasmussen, S.L., C. Pertoldi, and D.W. Macdonald. (2022). Machine-learning prediction 
of hosts of novel coronaviruses requires caution as it may affect wildlife conservation. 
Nature Communications, 13: 5101. https://doi.org/10.1038/s41467-022-32746-7. 

Rillig, M.C., I. Mansour, S. Hempel, M. Bi, B. König-Ries, and A. Kasirzadeh. (2024). 
How widespread use of generative AI for images and video can affect the environment 
and the science of ecology. Ecology Letters, 27(3): 14397. https://doi.org/10.1111/
ele.14397. 

Ryo, M., B. Angelov, S. Mammola, J.M. Kass, B.M. Benito, and F. Hartig. (2021). 
Explainable artificial intelligence enhances the ecological interpretability of black-
box species distribution models. Ecography, 44(2): 199–205. https://doi.org/10.1111/
ecog.05360. 

Samadder, J., J.C. Das, D. Das, R. Sadhukhan, and A. Parvin. (2022, November). Smart 
IoT based early stage drowsy driver detection management system. In: 2022 IEEE 
International Conference of Electron Devices Society Kolkata Chapter (EDKCON), 
pp. 353–356, Kolkata. https://doi.org/10.1109/EDKCON56221.2022.10032950. 

https://doi.org/10.1002/ece3.8032
https://doi.org/10.1016/j.ecoinf.2014.08.005
https://doi.org/10.18474/JES17-15.1
https://doi.org.10.2307/1940153
https://doi.org/10.1111/j.1365-294X.2011.05239.x
https://doi.org/10.1111/brv.13061
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
https://doi.org/10.32890/jict2023.22.3.3
https://doi.org/10.1890/12-1948.1
https://doi.org/10.1109/ICACCI.2017.8126187
https://doi.org/10.1109/ICACCI.2017.8126187
https://doi.org/10.3389/fpls.2019.01327
https://doi.org/10.1038/s41467-022-32746-7
https://doi.org/10.1111/ele.14397
https://doi.org/10.1111/ecog.05360
https://doi.org/10.1109/EDKCON56221.2022.10032950
https://doi.org/10.32890/jict2023.22.3.3
https://doi.org/10.3389/fpls.2019.01327
https://doi.org/10.1111/ele.14397
https://doi.org/10.1111/ecog.05360


Predicting Interactions Among Species in Ecological Networks... │ 119

Santamaría, L., and M.A. Rodríguez-Gironés. (2007). Linkage rules for plant-pollinator 
networks: Trait complementarity or exploitation barriers? PLoS Biology, 5(2): e31. 
https://doi.org/10.1371/journal.pbio.0050031. 

Scheele, B.C., F. Pasmans, L.F. Skerratt, L. Berger, A. Martel, W. Beukema, A.A. Acevedo 
et al. (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss 
of biodiversity. Science, 363(6434): 1459–1463. https://doi.org/10.1126/science.
aav0379. 

Schickhoff, U., M. Bobrowski, I.A. Offen, and S. Mal. (2024). The biodiversity crisis in 
the Anthropocene. In: B. Gönençgil and M.E. Meadows (Eds.), Geography and the 
Anthropocene, pp. 79–111. Istanbul University Press. Istanbul, Türkiye. https://doi.
org/10.26650/B/SS19.2024.001.05. 

Schnable, J.C. (2019). Genes and gene models, an important distinction. New Phytologist, 
228(1): 50–55. https://doi.org/10.1111/nph.16011 

Schofield, D., A. Nagrani, A. Zisserman, M. Hayashi, T. Matsuzawa, D. Biro, and S. 
Carvalho. (2019). Chimpanzee face recognition from videos in the wild using deep 
learning. Science Advances, 5(9): eaaw0736. https://doi.org/10.1126/sciadv.aaw0736. 

Senthamil Selvi, M., S. Jansi Rani, T. Karthiga, P.L. Kamala, and V.R. Kanishka. (2020). 
Elephant intrusion detection and repulsion system using Matlab. International Journal 
of Engineering and Advanced Technology, 9(5): 37–39. https://doi.org/10.35940/ijeat.
E9208.069520. 

Sharma, B., and D. Neupane, D. (2023). Enhancing human-tiger coexistence in forest 
corridors of Nepal through a socio-ecological approach to conservation. Trees, 
Forests, and People, 13: 100402. https://doi.org/10.1016/j.tfp.2023.100402. 

Škvorová, Z., I. Černajová, J. Steinová, O. Peksa, P. Moya, and P. Škaloud. (2022). 
Promiscuity in lichens follow clear rules: Partner switching in Cladonia is regulated 
by climatic factors and soil chemistry. Frontiers in Microbiology, 12: 781585. https://
doi.org/10.3389/fmicb.2021.781585. 

Soh, Y.H., L.R. Carrasco, D.G. Miquelle, J. Jiang, J. Yang, E.J. Stokes, J. Tang et al. 
(2014). Spatial correlates of livestock depredation by Amur tigers in Hunchun, China: 
Relevance of prey density and implications for protected area management. Biological 
Conservation, 169: 117–127. https://doi.org/10.1016/j.biocon.2013.10.011. 

Steck, F., and A. Wandeler. (1980). The epidemiology of fox rabies in Europe. Epidemiologic 
Reviews, 2(1): 71–96. https://doi.org/10.1093/oxfordjournals.epirev.a036227. 

Steinhaus, H. (1956). Sur la division des corps matériels en parties (in French): On the 
division of material bodies into parts. Bulletin L’Académie Polonaise des Sciences, 
4(12): 801–804.

Steverding, D. (2020). The spreading of parasites by human migratory activities. Virulence, 
11(1): 1177–1191. https://doi.org/10.1080/21505594.2020.1809963. 

Strydom, T., M.D. Catchen, F. Banville, D. Caron, G. Dansereau, P. Desjardins-Proulx, 
N.R. Forero-Muñoz et al. (2021). A roadmap towards predicting species interaction 
networks (across space and time). Philosophical Transactions of the Royal Society B, 
376: 20210063. https://doi.org/10.1098/rstb.2021.0063. 

Sunquist, M.E. (1981). The social organization of tigers, Panthera tigris, in Royal Chitwan 
National Park, Nepal. Smithsonian Contributions to Zoology, 336: 1–98. https://doi.
org/10.5479/si.00810282.336. 

Tajudeen, Y.A., I.O. Oladunjoye, O. Bajinka, and H.J. Oladipo. (2022). Zoonotic spillover 
in an era of rapid deforestation of tropical areas and unprecedented wildlife trafficking: 
Into the wild. Challenges, 13(2): 41. https://doi.org/10.3390/challe13020041. 

https://doi.org/10.1371/journal.pbio.0050031
https://doi.org/10.1126/science.aav0379
https://doi.org/10.1126/science.aav0379
https://doi.org/10.26650/B/SS19.2024.001.05
https://doi.org/10.26650/B/SS19.2024.001.05
https://doi.org/10.1111/nph.16011
https://doi.org/10.1126/sciadv.aaw0736
https://doi.org/10.35940/ijeat.E9208.069520
https://doi.org/10.35940/ijeat.E9208.069520
https://doi.org/10.1016/j.tfp.2023.100402
https://doi.org/10.3389/fmicb.2021.781585
https://doi.org/10.3389/fmicb.2021.781585
https://doi.org/10.1016/j.biocon.2013.10.011
https://doi.org/10.1093/oxfordjournals.epirev.a036227
https://doi.org/10.1080/21505594.2020.1809963
https://doi.org/10.1098/rstb.2021.0063
https://doi.org/10.5479/si.00810282.336
https://doi.org/10.5479/si.00810282.336
https://doi.org/10.3390/challe13020041


120 │ Artificial Intelligence and Animal Ecology: A Review

Talavera, G., V. Dincă, and R. Vila. (2013). Factors affecting species delimitations with the 
GMYC model: Insights from a butterfly survey. Methods in Ecology and Evolution, 
4(12): 1101–1110. https://doi.org/10.1111/2031-210X.12107.

Thomas, M.B., and A.F. Read. (2007). Can fungal biopesticides control malaria? Nature 
Reviews Microbiology, 5: 377–383. https://doi.org/10.1038/nrmicro1638. 

Uddin, S., and H. Lu. (2024). Confirming the statistically significant superiority of tree-
based machine learning algorithms over their counterparts for tabular data. PLoS One, 
19(4): e0301541. https://doi.org/10.1371/journal.pone.0301541. 

Utgoff, P.E. (1989). Incremental induction of decision trees. Machine Learning, 4(2): 161–
186. https://doi.org.10.1023/A:1022699900025. 

van Beneden, P.-J. (1878). Les commensaux et les parasites dans le règne animal (in 
French): Commensals and Parasites in the Animal Kingdom. Librairie Germer 
Baillière. Paris, France, 238 pp. 

Van Horn, G., O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam et al. (2018, 
June). The iNaturalist species classification and detection dataset. In: Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018, pp. 
8769–8778. Utah, United States of America. 

Vapnik, V.N. (1997, October). The support vector method. In: Artificial Neural Networks – 
ICANN ’97, pp. 261–271. https://doi.org/10.1007/BFb0020166. 

Volterra, V. (1926). Variazioni e fluttuazioni del numero d’individui in specie animali 
conviventi (in Italian): Variations and fluctuations in the number of individuals in 
animal species living together. Memoria della Reale Accademia Nazionale dei Lincei, 
2: 31–113.

Wang, D., S. Yang, F. Tang, and H. Zhu. (2012). Symbiosis specificity in the legume-
rhizobial mutualism. Cellular Microbiology, 14(3): 334–342. https://doi.org/10.1111/
j.1462-5822.2011.01736x. 

Wang, Y., Q. Yao, J.T. Kwok, and L.M. Ni. (2020). Generalizing from a few examples: 
A survey on few-shot learning. ACM Computing Surveys, 53(3): 63. https://doi.
org/10.1145/3386252. 

Wardeh, M., M. Baylis, and M.S.C. Blagrove. (2021). Predicting mammalian hosts in 
which novel coronaviruses can be generated. Nature Communications, 12: 780. 
https://doi.org/10.1038/s41467-021-21034-5. 

Weeks, P. (1999). Interactions between red-billed oxpeckers, Buphagus erythrorhynchus, 
and domestic cattle, Bos taurus, in Zimbabwe. Animal Behaviour, 58(6): 1253–1259. 
https://doi.org/10.1006/anbe.1999.1265. 

Weeks, P. (2000). Red-billed oxpeckers: Vampires or tickbirds? Behavioral Ecology, 11(2): 
154–160. https://doi.org/10.1093/beheco/11.2.154. 

Weiskopf, S.R., M.A. Rubenstein, L.G. Crozier, S. Gaichas, R. Griffis, J.E. Halofsky, K.J.W. 
Hyde et al. (2020). Climate change effects on biodiversity, ecosystems, ecosystem 
services, and natural resource management in the United States. Science of the Total 
Environment, 733: 137782–137799. https://doi.org/10.1016/j.scitotenv.2020.137782. 

Woinarski, J.C.Z., S.M. Legge, and S.T. Garnett. (2024). Extinct Australian birds: 
Numbers, characteristics, lessons and prospects. Emu – Austral Ornithology, 124(1): 
8–20. https://doi.org/10.1080/01584197.2023.2240345. 

Wu, Y., S.C.H. Barett,  X. Duan, J. Zhang, Y. Cha, C. Tu, and Q. Li. (2021). Herbivore-
mediated selection on floral display covaries nonlinearly with plant-antagonistic 
interaction intensity among primrose populations. Frontiers in Plant Science, 12: 
727957. https://doi.org/10.3389/fpls.2021.727957. 

https://doi.org/10.1111/2031-210X.12107
https://doi.org/10.1038/nrmicro1638
https://doi.org/10.1371/journal.pone.0301541
https://doi.org.10.1023/A:1022699900025
https://doi.org/10.1007/BFb0020166
https://doi.org/10.1111/j.1462-5822.2011.01736x
https://doi.org/10.1145/3386252
https://doi.org/10.1038/s41467-021-21034-5
https://doi.org/10.1006/anbe.1999.1265
https://doi.org/10.1093/beheco/11.2.154
https://doi.org/10.1016/j.scitotenv.2020.137782
https://doi.org/10.1080/01584197.2023.2240345
https://doi.org/10.3389/fpls.2021.727957
https://doi.org/10.1111/j.1462-5822.2011.01736x
https://doi.org/10.1145/3386252


Predicting Interactions Among Species in Ecological Networks... │ 121

Xu, B., Z. Tan, K. Li, T. Jiang, and Y. Peng. (2017). Predicting the host of influenza viruses 
based on the word vector. PeerJ, 5: e3579. https://doi.org/10.7717/peerj.3579. 

Yahr, R., R. Vilgalys, and P.T. DePriest. (2006). Geographic variation in algal partners 
of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen 
symbiosis. New Phytologist, 171(4): 847–860. https://doi.org/10.1111/j.1469-
8137.2006.01792.x. 

Yakimovich, A. (2021). Machine learning and artificial intelligence for the prediction of 
host-pathogen interactions: A viral case study. Infection and Drug Resistance, 14: 
3319–3326. https://doi.org/10.2147/IDR.S292743. 

Yang, Z., Y. Yu, C. You, J. Steinhardt, and Y. Ma. (2020, July). Rethinking bias-variance 
trade-off for generalization of neural networks. In: Proceedings of the 37th 
International Conference on Machine Learning, Virtual, Proceedings of Machine 
Learning Research, 119: 10767–10777.

Yu, L., D.K. Tanwar, E.D.S. Penha, Y.I. Wolf, E.V. Koonin, and M.K. Basu. (2019). 
Grammar of protein domain architectures. In: Proceedings of the National Academy 
of Sciences, 116(9): 3636–3645. https://doi.org/10.1073/pnas.1814684116. 

Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals. (2021). Understanding deep 
learning (still) requires rethinking generalization. Communications of the ACM, 
64(3): 107–115. https://doi.org/10.1145/3446776. 

Zhang, J., P. Kapli, P. Pavlidis, and A. Stamatakis. (2013). A general species delimitation 
method with applications to phylogenetic placements. Bioinformatics, 29(22): 2869–
2876. https://doi.org/10.1093/bioinformatics/btt499. 

https://doi.org/10.7717/peerj.3579
https://doi.org/10.1111/j.1469-8137.2006.01792.x
https://doi.org/10.1111/j.1469-8137.2006.01792.x
https://doi.org/10.2147/IDR.S292743
https://doi.org/10.1073/pnas.1814684116
https://doi.org/10.1145/3446776
https://doi.org/10.1093/bioinformatics/btt499


Chiraz Yemmen* and Sami Fattouch
Echo-chemistry Laboratory, Department of Biological and Chemical Engineering, 
National Institute of Applied Sciences and Technology, University of Carthage, Tunisia

The living world forms a vast network of interactions among organisms, essential 
for ecosystem functioning and biodiversity conservation. In an ecosystem, 
interactions—either between species (interspecific) or within the same species 
(intraspecific)—regulate population dynamics and abundance. These interactions 
vary by species, environment, and context, and are classified based on 
impact: harmful (e.g., predation, parasitism), neutral (e.g., commensalism), or 
mutually beneficial (e.g., mutualism). Ecological interactions drive ecological 
communication, where messages are transmitted to modify behaviors, using 
diverse signals like chemical, acoustic, visual, or mechanical cues. These 
communication forms support group dynamics, feeding, and defense, regulating 
ecosystems by balancing species’ populations and access to resources. Human 
activities, such as deforestation, pollution, and climate change, disrupt these 
mechanisms, leading to ecological imbalances. Understanding these interactions 
and communication patterns is crucial for biodiversity conservation. Artificial 
intelligence (AI) aids this by analyzing large datasets, enabling species 
identification, movement tracking, sound analysis, and behavioral detection, thus 
enhancing insights into ecological communication and species interactions for 
sustainable management.

Introduction

Ecological interactions can be defined as the interactions between individuals 
and the populations of species. When individuals of one population interact with 
another population or individuals of another species, this population is called 
an interacting population, and the places where the individuals live and interact 
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are called their habitat. In nature, all populations of species that live together 
and interact with biotic and abiotic components of the environment form an 
ecological community. All biotic and abiotic components of the environment 
form an ecosystem. Ecological interactions, including competition, predation, 
and mutualism, have relative effects on the populations of species, and these 
interactions shape the evolution of organisms. Ecologists and scientists study 
these interactions and their relative effects to understand biodiversity and the 
relative abundance of species. Through the study of ecological interactions, 
we are able to understand the structure and complexity of natural ecosystems. 
Understanding the relationships and interactions is very important for the better 
survival and growth of species and populations because it can be an important 
factor in deciding the relative abundance and distribution of species.

Animal communication is an essential aspect of ecosystem functioning, 
playing a vital role in the survival, reproduction, and social dynamics of animal 
species. Ecological interactions, which shape the relationships between living 
organisms and their environments, are largely mediated by various forms of 
communication, ranging from visual and audio signals to chemical pheromones. 
This communication allows animals to coordinate their behaviors, transmit 
information about resources and dangers, seek partners for reproduction, and 
maintain effective social structures. Therefore, understanding the importance of 
animal communication in ecological interactions is crucial to understanding the 
complexity and diversity of life on Earth.

Types of Ecological Interactions

Individuals living in the same community are not isolated from each other. Thus, 
they enter into a relationship and this can bring them certain advantages, but 
also certain disadvantages. Several types of relationships can be established 
between individuals of the same species (intraspecific relationship) or between 
individuals of different species (interspecific relationship) (Table 1).

Table 1: The different types of interactions between the two species A and B

Interactions Species A Species B
Predation	 + –
Commensalism + 0
Cooperation + +
Mutualism + +
Amensalism – 0
Competition – –
Parasitism + –
Symbiosis + +

Notes: 0: Species are not affected
             +: The interaction is beneficial (the life of the species is made possible or improved)
           –: The interaction is harmful (the life of the species is reduced or impossible).
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Symbiosis 

Symbiosis is a biological interaction characterized by a long-term relationship 
between two organisms of different species that live together, often in close 
physical proximity. This relationship can be beneficial for both parties 
(mutualism), neutral for one and beneficial for the other (commensalism), or 
beneficial for one and harmful for the other (parasitism).

Commensalism

Commensalism (from the Latin cum-, ‘with’ and Mensa, ‘table’, for example, 
“dining companion” or “eating at the same table”). It is a type of ecological 
relationship between a commensal species which benefits and a host species 
which neither benefits nor harms it. It is distinct in this respect from mutualism 
and parasitism. This form of interaction is characterized by a one-sided benefit. 
The advantages or benefits brought by commensality (the state of commensal) 
concern food but also shelter and temporary transport. We can distinguish two 
main types depending on the degree of contact between the two species: the 
contact can be permanent and they are then “obligate commensals”: this is 
the case of sessile animals called epibionts which live attached to other living 
beings, quite common in the marine environment. The contact is not permanent 
and we can speak of facultative commensalism, the most frequent case.

Several examples illustrate how commensal species can benefit from their 
interactions with other organisms without harming them. Among the commensals 
we can cite animals which settle and which are tolerated in the roosts of other 
species. Commensal insects in the burrows of mammals and birds, or in the nests 
of social insects are often very rich in species. Phoresis, that is to say the transport 
of the smallest organism by the largest and a form of commensalism. The transport 
of various species of mites by beetles such as Geotrupes is an example of phoresis. 
In the marine environment, commensalism exists between the polychaete Néreis 
fucata which lives in the shell inhabited by the pagan Eupagurus Prideauxi and 
which seizes the debris of its food between the mouthparts of the latter. An actinia 
Adamsia palliata is always associated with Eupagurus Prideauxi and it protects 
it thanks to its stinging filaments and by the secretion of a resistant membrane 
which extends the opening of the shell where it is housed.

Mutualism

By cleaning these parasites, cleaner fish provide an essential cleaning service to 
large marine predators, which benefit from healthier skin and more efficient gills. 
In return, cleaner fish get a constant food source and protection from predators, 
because larger fish are less likely to chase them while they are cleaning. In this 
example, both species benefit from the mutualistic relationship: cleaner fish get 
food and protection, while large marine predators benefit from body cleansing 
that promotes their overall health and well-being.
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Parasitism 

Parasitism is a form of symbiosis in which one organism, called a parasite, 
benefits from another living organism, called a host, to the detriment of the 
latter. This relationship is characterized by the fact that the parasite lives at 
the expense of the host, often by causing damage or taking resources from it. 
The parasite depends on the host to survive and reproduce. It can live inside 
or outside the host, depending on the species and environmental conditions. 
The parasite takes resources from the host for its own benefit. These resources 
may include food, water, nutrients, or other elements essential for the parasite’s 
survival and reproduction. The parasite can have harmful effects on its host. This 
can manifest as illness, a reduction in physical condition, a reduction in fertility, 
or even the death of the host in the most severe cases. Parasites often have 
specific adaptations that allow them to exploit their host efficiently. This may 
include specialized anatomical structures (hooks, suction cups…), complex life 
cycles, sophisticated means of transmission, or mechanisms to avoid detection or 
host immune response. Parasites can be classified into different categories based 
on their lifestyle and their relationship with the host. This includes ectoparasites 
(which live on the surface of the host) and endoparasites (which live inside the 
host), as well as temporary parasites and permanent parasites. Parasitism plays 
an important role in biodiversity by influencing interactions between species 
within ecosystems. Indeed, parasites can help regulate species populations by 
affecting the survival, reproduction and health of their hosts. By controlling 
host populations, parasites can impact the structure and dynamics of biological 
communities (Hatcher et al., 2006).

Predation 

Predation is an ecological interaction in which one organism, called a predator, 
hunts, kills, and feeds on another organism, called prey. This interaction 
is beneficial for the predator, but harmful for the prey (interaction +/-). The 
predation is widespread in ecosystems and plays a crucial role in regulating 
species populations and maintaining ecological balance.

Adaptations

Predators often have specific adaptations for hunting their prey, such as claws, 
fangs, highly developed vision or hearing, or specialized hunting techniques. 
For their part, prey often develop defense mechanisms such as camouflage, 
speed, or the production of toxins to avoid being captured. Mimicry is one of 
the means of defense which consists of being camouflaged to go unnoticed or 
making itself visible to resemble dangerous or inedible prey.
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Population Regulation

The Influence of Predators on Prey

Predation plays an important role in population regulation, as it can influence 
the size of prey populations through several mechanisms, which can be direct or 
indirect. Here are some of the main effects of predation on prey:

	•	 Reduction in the size of prey populations: The most obvious effect of 
predation is the direct reduction of the prey population. Predators hunt and 
consume prey, thereby reducing their numbers. This reduction in population 
sizes can lead to changes in prey population dynamics, affecting resource 
availability and competition between remaining individuals. Among the best-
known examples of the influence of predators on prey is the oldest example 
relating to the lynx and the snow hare, whose populations exhibit regular 
fluctuations in abundance (Stenseth, 1997).

	•	 Trait selection: Predation can exert selection pressure on prey populations, 
favoring individuals with certain traits or behaviors that enhance their ability to 
escape predation. For example, prey that are faster, more agile, or have effective 
defense mechanisms are more likely to survive and reproduce, passing these 
traits on to their offspring.

	•	 Indirect cascading effects: Predators can also have cascading effects on prey 
by altering the structure and composition of communities of organisms. For 
example, predation on one prey species can lead to an increase in the population 
of its predators, which can in turn put increased pressure on other prey species 
in the ecosystem.

	•	 Effects on demographics and population dynamics: Predation can influence 
the demographics of prey populations by affecting the survival, growth and 
reproduction rates of individuals. For example, intense predation can reduce 
prey reproductive rates, thereby delaying the recovery of populations after 
disturbance.

The Influence of Prey on Predators

The influence of prey on predators is an essential aspect of population dynamics 
and ecological interactions. Here are some ways prey can influence predators:

	•	 Availability of food resources: The availability and abundance of prey can 
directly influence the survival, growth and reproduction of predators. If prey 
populations are abundant, predators are more likely to find food and can 
therefore maintain or increase their own populations.

	•	 Satiation effect: When prey is abundant, predators can reach a state of satiation 
where they are no longer actively hunting. This can reduce predation pressure 
on prey populations and allow them to recover.

	•	 Triggering reproduction: In some predator species, the availability of 
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prey can trigger reproductive behaviors. For example, an increase in prey 
availability may stimulate predator reproduction by providing additional food 
resources for young.

	•	 Influence	 on	 predation	 behaviors: The availability and behavior of prey 
can also influence the hunting strategies and feeding habits of predators. 
For example, if prey becomes scarcer, predators may change their hunting 
techniques or look for food alternatives. This phenomenon is known as 
switching and has been observed in insects, fish and birds (Piltz et al., 2014).

Cooperation

Cooperation appears when two species form an association which is not essential 
since each can live in isolation. Both cooperation and mutualism provide benefits 
to both species (+/+). Collective nesting of several species of birds such as terns 
and herons is a form of cooperation that allows them to defend themselves 
more effectively against predators. Cooperative interactions are not limited to 
relationships between different species. Within the same species, individuals 
can also cooperate to achieve a common goal. There are numerous examples 
of cooperation between individuals of the same species. In general, these are 
single individuals from the same family group who help a couple raise their 
young. In vertebrates this is known in mammals, birds and fish. The California 
woodpecker, Melanerpes formicivorus, lives in groups of around 15 birds 
including several breeding individuals of each sex and non-breeders who are 
young brothers and sisters born in previous years. Acorns and other hard seeds 
are stored by woodpeckers in holes in the bark of granary trees and serve as a 
reserve for the winter. The group defends a common territory and collectively 
feeds the young people breeding individuals share a common nest (Koenig & 
Waltres, 2015).

Competition 

Competition is an ecological interaction where two or more organisms 
compete for the same limited resources, such as food, space, water, sunlight, or 
reproductive partners. This competition can occur at different levels, including 
between individuals of the same species (intraspecific competition) or between 
individuals of different species (interspecific competition) (Table 2).

Intraspecific Competition

Intraspecific competition in animals occurs when individuals of the same species 
compete for the same limited resources within their population. Here are some 
examples of intraspecific competition in animals:

	•	 Competition for food: Individuals of the same species may compete for 
available food resources. Members of the same family or social group may 
fight over food. For example, young chicks in a nest may fight to get food 
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from their parents. In populations of predators, such as lions, individuals may 
compete for captured prey. The strongest or most aggressive individuals may 
get a disproportionate share of the food.

	•	 Competition	for	space: Animals may fight for access to breeding, hunting, 
or resting territories. For example, males of a lizard species may compete for 
control of a breeding territory during mating season.

	•	 Competition for breeding partners: In many species, males may compete to 
attract breeding partners or to gain access to breeding females. For example, 
male deer may compete in ritual combat to determine breeding rights with 
females.

	•	 Competition for territorial resources: Animals may establish territories 
for feeding, breeding, or resting, and competition for these territories can be 
intense. For example, songbirds often defend territories to attract mates and 
raise offspring.

In all of these examples, intraspecific competition can have a significant 
impact on survival, growth, reproduction, and population dynamics within the 
species. It may also play an important role in maintaining genetic diversity and 
adaptations within the population.

Table 2: Key differences between intraspecific and interspecific competition

Feature Intraspecific Competition Interspecific Competition

Competitors Same species Different species

Common Resources 
Competed for

Food, space, breeding 
partners, territorial resources.

Food, water, space, nesting 
sites, breeding partners.

Impact on Individuals Can affect survival rates, 
growth, and reproductive 
success of individuals.

Can lead to decreased 
availability of resources for 
less competitive species, 
impacting their survival and 
reproduction.

Impact on Population 
Dynamics

Influences population 
density, growth rates, and age 
structure within the species.

Affects population sizes, 
distribution, and diversity of 
species within an ecosystem.

Role in Evolution Promotes natural selection, 
leading to better adaptations 
and genetic diversity within 
the species.

Can drive adaptive changes, 
niche differentiation, and 
speciation over time.

Long-term Ecological 
Impact

Helps maintain population 
control and genetic health of 
species.

Contributes to species 
diversity, ecological balance, 
and resource allocation in 
ecosystems.
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Interspecific Competition

Interspecific competition occurs when organisms from different species compete 
for the same limited resources in a given environment. This competition can 
be an important factor in the regulation of populations, species distribution 
and biological diversity in ecosystems. Here are some key points about  
interspecific competition:

	•	 Competition for resources: Limited resources that species can compete for 
include food, water, space, nesting sites, breeding partners, and other essentials 
for survival and reproduction. For example, different bird species may compete 
for the same nesting sites or food resources.

	•	 Effects on population dynamics: Interspecific competition can influence the 
population sizes of the species involved. If a species is more competitive for 
a given resource, it may have an advantage in accessing that resource, which 
may limit the population growth of other competing species.

	•	 Competitive coexistence: In some cases, species can coexist despite 
interspecific competition for resources. This phenomenon may be facilitated 
by resource partitioning (use of different parts of a resource), differences in the 
ecological niches occupied by each species, or moderate competitive behaviors 
that minimize conflict.

	•	 Adaptations to interspecific competition: Species can evolve adaptations 
that give them a competitive advantage in their environment. For example, 
physiological, behavioral, or morphological adaptations can help a species 
exploit a particular resource more efficiently, escape predation by competitors, 
or occupy specific ecological niches.

	•	 Effects on community structure: Interspecific competition can influence 
the structure of ecological communities by determining which organisms are 
present in an ecosystem and in what numbers. It can also affect the spatial 
distribution of species and the diversity of communities.

Ecological Communications

Ecological interactions are closely linked to ecological communication, 
influencing emitted signals, organismal responses, information transmission 
mechanisms, behavioral and evolutionary strategies, as well as population and 
community dynamics in ecosystems. Animals communicate in different ways 
depending on the type of interaction they are involved in. This communication 
can include a range of visual, vocal, chemical and tactile signals to convey 
information about social status, intentions, needs and available resources.

Different Types of Ecological Communication

Visual Communication

Visual signals are often used to convey information about an animal’s behavior, 
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presence, and intent. This can include body postures, movements, colored 
patterns, light signals and gestures (Osorio & Vorobyev, 2008). Examples: 
mating dances in birds, threatening postures in reptiles, courtship displays  
in mammals.

Auditory Communication

Sound signals are commonly used by many animals to communicate over 
long distances. This may include songs, cries, mating songs, territorial calls, 
alarm signals, and social vocalizations. Examples: bird song, lions roaring,  
frogs croaking.

Chemical Communication

Pheromones and other chemicals are used to convey information about identity, 
social status, reproduction, territoriality, resource availability, and potential 
dangers (Wyatt, 2014; Surov & Maltsev, 2016). Examples: sex pheromones, 
alarm pheromones, territorial markings, recognition signals between members 
of the same species.

Tactile Communication

Physical contact and tactile signals are used to convey information about social 
status, intentions, reproduction, and social interactions. Examples: caresses, 
blows, parade contacts.

Electric and Magnetic Communication

Some animals, such as electric fish and migratory birds, can use electrical 
or magnetic signals to navigate, communicate, and sense their surroundings. 
Examples: the electrical discharges of electric fish for communication and 
detection of prey (Hopkins, 2009), the magnetic sensitivity of migratory birds 
for navigation.

These different modes of communication are used by animals in a variety 
of ecological interactions, including predation, competition, cooperation, 
reproduction, habitat selection, and navigation. They allow animals to adapt to 
their environment, respond to ecological challenges, and maximize their success 
in survival and reproduction.

The Role of Animal Communication in  
Ecological Interaction

Predator-Prey Communication

Communication between predators and prey is a crucial aspect of ecological 
interactions and can take many forms. Predator-prey communication may seem 
at first an unlikely approach due to the fact that the two interacting parties share 
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few interests. In fact, nothing prohibits, on the contrary, each part uses the 
signals produced by the other in order to increase his chances of success. 

An example of this situation is provided by ‘stotting’, a series of classic 
leaps in Tomson’s gazelle Gazella thomsoni and other small species of antelopes 
(Caro, 1986). When a potential predator, a lion for example, approaches a herd 
of gazelles, all potential prey begins to jump on the spot and without moving 
away, even though flight would seem to be the most advantageous action. Several 
explanations have been put forward to explain this surprising behavior. The 
‘stotting’ function which seems currently the most probable is that it reflects the 
condition of individuals, given that only one individual in good health and in 
good physical condition can jump so high. This signage is advantageous for the 
individual who carries it out with vigor because in this way he signals to the 
predator a failure likely (or at least a high blow) if he decides to attack it, the 
‘stotting’ remaining energetic, less costly to carry out for the prey than a chase 
with the predator. Another benefit for the one who performs ‘stotting’ well is to 
focus the attention of the predator on other individuals, those who have more 
difficulty to achieve this behavior. Finally, ‘stotting’ also provides information 
to the predator that can, for example, decide to give up to attack if all the prey’s 
potential are in good condition.

Many species emit alarm calls when a predator approaches. The function 
of alarm calls is to signal the presence of the predator. In terms of sound, alarm 
calls are generally within narrow ranges of high frequencies and are remarkably 
similar in different species of small birds. For example, titmice Poecile atricapillus 
emits shrill cries to alert other members of the group to the presence of a raptor 
(Courter & Ritchison, 2010).

Some insect species use pheromones to signal the presence of predators. 
For example, processionary caterpillars release alarm pheromones to warn 
other members of their colony in case of danger (Fitzgerald, 2003). American 
tree frogs of the genus Dendrobates which contain very toxic alkaloids 
acting as nerve poison have very bright (red, yellow, green, blue) warning 
colors which signal to potential predators that they are not edible (Maan & 
Cummings, 2012).

Communication Strategies in Cooperative Interactions

Communication plays a key role in allowing group members to cooperate 
effectively, whether in hunting, foraging, breeding, or other cooperative activities. 
Several examples can be cited:

	•	 Bees in a hive: One of the most famous forms of communication among bees 
is the “hive dance”. When a bee discovers a food source, it returns to the hive 
and performs a specific dance to indicate the direction, distance and quality of 
the food source to other bees (Khan et al., 2021). The “round dance” is used to 
indicate that the food source is nearby, while the “figure eight dance” is used 
for more distant sources (Singla, 2020). Bees also use a variety of pheromones 



132 │ Artificial Intelligence and Animal Ecology: A Review

to communicate within the colony. For example, the queen emits pheromones 
which maintain the social cohesion of the colony and regulate the behavior of 
the workers (Gary, 2003). Worker bees also use pheromones to signal important 
information such as the presence of food, the location of egg-laying sites, or the 
need to defend the colony against intruders. Bees also communicate through 
vibrations and sounds. For example, when a bee discovers a food source and 
begins foraging, it can emit vibrations by shaking its body on the surface of 
flowers. These vibrations can inform other bees of the presence of food nearby. 
Bees can also communicate through touch. For example, when a worker bee 
needs more food for the larvae, it can solicit a nurse bee by touching it with  
its antennae.

	•	 Pack	hunting	among	wolves: Wolves often hunt in packs, and communication 
between pack members is essential for a successful hunt. Wolves communicate 
through vocalizations such as howls, barks and growls to coordinate their 
movements, surround their prey and work together to bring it down. 

	•	 Group	hunting	in	dolphins: Dolphins are known for their ability to hunt in 
groups in a coordinated manner. While hunting, dolphins communicate with 
each other using whistles and clicks to coordinate their movements, surround 
the fish and capture them effectively.

	•	 Cooperation between cleaner birds and large animals: Some birds, such as 
shrikes and magpies, clean parasites from large animals, such as herbivorous 
mammals. These birds often make specific calls to attract the attention of host 
animals and indicate that they are ready to perform cleaning.

Communication Strategies in Competitive Interactions

Animal communication during competition plays an important role in establishing 
dominance, access to resources, and conflict resolution. Here are some examples 
of animal species and how they communicate during competition:

	•	 Territorial bird songs: Many species of birds sing to establish their territory 
and mark out their domain (Marler & Slabbekoorn, 2004). Territorial songs 
serve to warn other males to stay away and to attract females for breeding. For 
example, the melodious songs of nightingales and the loud cries of crows are 
used to defend territories and signal the presence of their holders.

	•	 Ritual fighting in deer: Male deer use fighting rituals to establish dominance 
and gain access to resources such as females and breeding territories. Before 
physically fighting, deer may challenge each other by emitting growls, roars or 
intimidating postures.

	•	 Display of colors and plumages in birds and fish: In many species of birds 
and fish, males display bright colors and extravagant plumages during the 
breeding season to attract mates and establish dominance over rivals. For 
example, peacocks fan out their magnificent feathers to impress females and 
ward off rivals (Loyau et al., 2005).
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	•	 Courtship displays in birds of paradise: Male birds of paradise perform 
elaborate courtship displays to seduce females and establish dominance over 
other males (Scholes & Laman, 2012). These displays often include dances, 
complex vocalizations and displays of colorful plumage to attract the attention 
of females and oust competitors.

	•	 Vocal combat in primates: Primates, such as monkeys and great apes, use 
vocalizations to communicate during social interactions and competition. 
Screams, growls, and howls can be used to express dominance, demarcate 
territories, and resolve intraspecific conflicts (Slocombe & Zuberbühler, 
2005).

Communication Dynamics in Host–Parasite Interactions

Communication between a host and its parasite can take many forms, ranging 
from subtle chemical interactions to more obvious behavioral responses (Thomas 
et al., 2005). Here are some examples of communication interactions between 
host and parasite:

	•	 Behavioral manipulation: Some parasites have the ability to manipulate 
the behavior of their host to increase their own chances of survival and 
reproduction. For example, the parasite Toxoplasma gondii, which infects 
rodents, can alter the behavior of mice, making them bolder and less fearful 
of predators, increasing the chances that predators will eat the infected mice 
and allowing the parasite to complete its life cycle in their body (Webster  
et al., 2010).

	•	 Host immune response: When a parasite infects a host, the host usually 
mounts an immune response to fight the infection. Some parasites have 
evolved to evade their host’s immune response by developing strategies such 
as modifying their surface antigens or suppressing the host’s immune response 
(Maizels & Yazdanbakhsh, 2003). This allows the parasite to survive and 
multiply within the host’s body.

	•	 Chemical signals: Parasites can emit chemical signals that influence the 
behavior or physiology of their host. For example, pheromones produced by 
some parasites can change the behavior of the host, attracting it to areas where 
the parasite can breed or spread more effectively (Lafferty & Shaw, 2013).

	•	 Host Tolerance: In some cases, hosts may develop some tolerance or 
compatibility with their parasites. This may be due to coevolution between the 
host and parasite over time. For example, some species of fish and shellfish 
have developed tolerance to parasites by harboring cleaner species that feed  
on the parasites (Poulin & Grutter, 1996).

	•	 Competition between parasites: Within a host’s body, different parasites can 
interact with each other, sometimes competitively. For example, some parasites 
produce toxins or chemicals that can harm other parasites present in the same 
host, thereby promoting their own survival and reproduction (Benesh, 2009).
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Animal Communication in Response to 
Environmental Disturbance

Environmental disturbances due to human action can have a significant impact 
on animal communication, because they modify the natural conditions in which 
animals evolve and use their signals to interact with their environment and their 
conspecifics (Rosenthal & Stuart-Fox, 2012).

	•	 Noise pollution: Noise pollution resulting from human activities can have a 
significant impact on animal communication, masking sound signals used by 
animals for various functions such as foraging, reproduction, territory defense 
and predator avoidance (Khawar Balwan & Saba, 2021). Bird songs are 
essential for many species in finding mates, territorial defense, and coordinating 
social activities. However, noise pollution from road traffic, industrial areas 
or urban areas can mask these songs, reducing the birds’ ability to hear each 
other and communicate effectively. For example, studies have shown that 
passerine songs are less frequent and less complex in noisy urban areas than in  
quieter areas.

		    Marine mammals, such as whales and dolphins, use sounds to communicate, 
navigate, and sense their surroundings. Noise pollution caused by human 
activities, including maritime traffic, military sonars and oil exploitation, can 
disrupt their ability to hear essential signals, increasing the risk of collision 
with ships and leading to disorientation (Weilgart, 2007).

		    Frogs, toads, and other amphibians use acoustic calls for mate finding and 
reproduction (Leary, 2009). However, noise pollution from roads, residential 
areas and industrial activities can disrupt their vocalizations and reduce their 
effectiveness in attracting mates. This can lead to reduced reproduction and 
loss of populations in affected areas. Many insects use sounds for reproduction, 
mate finding, and territory defense. For example, male cicadas produce shrill 
songs to attract females. However, noise pollution from human activities 
can mask these songs, compromising the insects’ ability to find mates and 
reproduce successfully.

	•	 Light pollution: Excessive artificial lighting in urban and peri-urban areas can 
disrupt natural light and dark cycles, affecting the behaviors of many animal 
species (Dominoni, 2017). Nocturnal animals, such as bats and some insects, 
can be disoriented by artificial lights, affecting their ability to feed, reproduce, 
and navigate their environment.

	•	 Deforestation and habitat fragmentation: Deforestation and fragmentation 
of natural habitats caused by urban expansion, agriculture and logging reduce 
areas available for animals and fragment populations. This can disrupt social 
interactions and communication between individuals by limiting opportunities 
to meet, reproduce and forage. In fact, forests shelter a wide diversity of 
animal species that use sounds to communicate, whether to attract mates, mark 
territory, warn of danger or coordinate social activities (Penar et al., 2020). 
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Deforestation can modify the acoustic quality of the environment, thus altering 
the propagation of sound signals. For example, bird songs can be muffled 
or distorted by echoes in deforested environments, reducing their range and 
effectiveness in communicating with other individuals. Deforestation often 
leads to the fragmentation of natural habitats, dividing animal populations 
into small, isolated patches. This can reduce opportunities for individuals to 
meet and interact, limiting opportunities for communication and reproduction. 
Fragmented populations may also be more vulnerable to the effects of genetic 
isolation and randomness, which can lead to decreased genetic diversity and 
increased risk of local extinction.

	•	 Chemical	pollution: Agricultural pesticides, industrial chemicals and sewage 
spills can contaminate air, water and soil, affecting animal health and behavior. 
Toxic chemicals can alter the chemical signals animals use to communicate, 
disrupting their social interactions and their ability to detect mates, predators, 
and prey (Relić & Đukić-Stojčić, 2023). Pheromones are chemical substances 
used by many animals to communicate information such as the presence of a 
sexual partner, defense of territory or alarm in case of danger. Chemical pollution 
can alter the chemical composition of the air, reducing the ability of animals 
to detect and respond to pheromones. This can disrupt social interactions, 
including finding partners and coordinating group activities. Moreover, toxic 
chemicals in the environment, such as pesticides, heavy metals, and industrial 
chemicals, can have adverse effects on animal health (Vajargah et al., 2021). 
Exposure to these contaminants can impair the functioning of animals’ sensory 
systems, compromising their ability to emit and detect communication signals.

	•	 Climate change: Climate change can disrupt animal communication in several 
ways, altering habitats and changing weather and seasonal patterns (Bee et al., 
2007; Patricelli et al., 2009). A concrete example would be songbirds, which 
use their songs for various reasons such as reproduction, territorial defense and 
social communication.

	•	 Habitat shift: With climate change, bird habitats may shift (Sekercioglu et 
al., 2008). For example, areas that were previously too cold for some birds 
may become more welcoming due to warmer temperatures. This can disrupt 
migratory patterns and bird populations may move to new locations where 
acoustic signals may be different or less effective.

	•	 Alteration of seasons and reproductive cycles: Changes in seasons and 
reproductive cycles can disrupt the synchronization of birds’ reproductive 
signals (Both et al., 2004). For example, if spring comes earlier due to global 
warming, some birds might begin their territorial song before others are ready 
to listen or respond.	

	•	 Altered food cycles: Climate change can also disrupt birds’ food cycles, 
forcing them to seek new food sources (Both et al., 2006). This can lead to 
changes in social and territorial interactions between species, which can in turn 
affect communication signals.
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		    Climate change may also have an impact on animal chemical communication 
(Roggatz, et al., 2022). Chemical communication is essential for many species, 
including finding mates, establishing territories, finding food, and warning 
of danger. Here is an example of the impacts of climate change on chemical 
communication in certain insect species.

	•	 Disruption of pheromones: Pheromones are chemical compounds that many 
insects use to communicate, particularly to attract sexual partners (Bontonou 
& Wicker-Thomas, 2014). Climate change may affect the production and 
perception of pheromones. For example, variations in temperature or humidity 
can alter the chemical composition of pheromones or their volatility, making it 
more difficult for insects to detect and respond to chemical signals.

	•	 Seasonal lag: Climate change can alter seasons and biological cycles, which 
can lead to time lags between the release of pheromones and the period when 
they are detected by receiving individuals. For example, if plants flower earlier 
due to global warming, insects that rely on plant pheromones to find mates may 
become out of sync, compromising their reproductive success.

	•	 Alteration of predator–prey interactions: Climate change can alter the 
geographic distribution of species, leading to unexpected encounters between 
predators and prey. In some cases, this can disrupt the chemical signals used 
by prey to avoid predators (Bretagnolle & Terraube, 2019). For example, if 
prey does not recognize the predator in its new habitat due to climate change, 
it may not emit appropriate chemical warning signals, decreasing its ability to  
avoid predators.

	•	 Changes in habitats: Climate change can alter habitats and ecosystems, which 
in turn can affect the availability and quality of chemical signals. For example, 
deforestation or pollution can reduce the concentration of pheromones in the 
air or disrupt the mechanisms for transmitting chemical signals.

Artificial Intelligence: Enhancing Understanding of 
Animal Communication

By integrating artificial intelligence into the study of animal communication, 
researchers can gain new insights into animal behaviors, interactions, and social 
dynamics, contributing to a better understanding of biodiversity and conservation 
efforts (Tuia, 2022). 

Analysis of Acoustic Signals

Machine learning and signal processing techniques are used to analyze animal 
vocalizations. Algorithms can be trained to detect, classify and interpret 
different types of sounds made by animals, helping researchers to understand 
communication patterns (Sharma et al., 2023). A concrete example of using 
artificial intelligence to analyze acoustic signals with the aim of understanding 
animal communication is the study of the vocalizations of cetaceans, such as 
whales as shown in Figure 1. Whales emit a wide variety of vocalizations, 
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including complex songs, sonar clicks used for tracking and communication, 
and grunts and moans. Understanding these vocalizations is crucial to better 
understand their social behavior, their ecology and their environment (Malige et 
al., 2022). Here is how artificial intelligence is used in this approach:

	•	 Data collection: Underwater hydrophones are used to record the vocalizations 
of whales in their natural habitat. These recordings generate enormous amounts 
of audio data (Fregosi et al., 2020).

	•	 Signal processing: Audio recordings are processed to extract relevant features 
from whale vocalizations. This may include detecting the different types of 
sounds emitted, measuring their frequency, amplitude and duration (Van Wyk 
et al., 2022).

	•	 Machine learning: The processed data is then used to train machine learning 
algorithms, such as deep neural networks. These algorithms are trained to 
recognize and classify different whale vocalizations based on their acoustic 
characteristics.

	•	 Model analysis: Once trained, machine learning models can be used to 
analyze new audio recordings and automatically identify whale vocalizations. 
This allows researchers to quantify communication patterns, study geographic 
and seasonal variations, and understand whales’ behavioral responses to 
environmental changes (LeCun et al., 2015).

	•	 Interpretation of results: Data analyzed by artificial intelligence provides 
valuable information on whale communication and behavior (Allen  

Figure 1: AI Integration in whale communication research. This figure details the 
comprehensive workflow for analyzing whale vocalizations: From underwater hydrophone 
data collection and signal processing to machine learning classification and behavioral 

interpretation.
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et al., 2021). For example, researchers can identify the types of vocalizations 
associated with breeding, feeding, or other specific behaviors, as well as social 
interactions between individuals.

Animal Language Modeling

AI can be used to create models of animal language, identifying the syntactic 
and semantic structures of sound or chemical signals (Rutz et al., 2023). 
These patterns help decipher the meaning of vocalizations or pheromones and 
understand how they are used in different situations. A concrete example of 
modeling animal language with the help of artificial intelligence is the study of 
the birds’ songs (Potamitis et al., 2014), such as the nightingale. Nightingales 
are known for their complex and melodious songs, which play a crucial role in 
social communication and reproduction. Here’s how AI can be used to model 
their language:

	•	 Data collection: Audio recordings of nightingale songs are collected in their 
natural habitat. These recordings contain a wide variety of vocalizations, 
including note sequences, trills, and specific patterns (Mehyadin et al., 2021).

	•	 Signal analysis: Audio recordings are processed to extract relevant 
characteristics of nightingale songs, such as frequency, duration and intensity 
of notes. Signal processing techniques are used to identify recurring patterns 
and syntactic structures in speech sequences.

	•	 Machine learning: The processed data is then used to train machine learning 
models, such as recurrent neural networks (RNN) or hidden Markov models 
(HMM). These models are trained to recognize the patterns of nightingale 
songs, by analyzing sequences of notes and learning the relationships between 
different parts of the song.

	•	 Language modeling: Once trained, AI models can be used to generate new 
nightingale song sequences that realistically mimic the structures and patterns 
observed in real recordings (Weiss, 2014). These models also allow exploration 
of individual variation and geographic differences in nightingale songs, as well 
as listeners’ behavioral responses to different song types.

	•	 Interpretation of results: AI-generated language models provide valuable 
insights into the structure and function of nightingale songs. For example, 
researchers can identify the key elements that distinguish courtship songs from 
territorial songs, as well as the mechanisms underlying learning and cultural 
transmission of songs between individuals.

Behavior Detection

Machine learning algorithms can be trained to automatically detect and track 
animal behaviors from videos or audio recordings (Graving et al., 2019). 
This allows observation of social interactions, communication patterns, and 
behavioral responses to communication signals. The use of artificial intelligence 
in detecting animal behaviors has become a powerful method for analyzing and 
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Table 3: Different AI methodologies used across various ecological studies

AI Methodology Application Examples Benefits
Machine 
Learning

Analyzing 
acoustic 
signals

Cetacean 
vocalizations, whale 
communication 
(Sharma et al., 2023)

• Detects and classifies 
vocalizations

• Understands 
communication patterns 
and behaviors

Deep Neural 
Networks 
(DNNs)

Classification 
and pattern 
recognition

Whale vocalizations 
analysis 
(Van Wyk et al., 
2022)

• Recognizes complex 
vocalization patterns

• Quantifies 
communication and 
behavioral responses

Recurrent 
Neural Networks 
(RNNs)

Modeling 
animal 
language

Nightingale songs
(Potamitis et al., 
2014)

• Identifies syntactic 
structures

• Generates realistic song 
sequences and explores 
variations

Hidden Markov 
Models (HMMs)

Analyzing 
sequential data

Nightingale song 
sequences
(Mehyadin et al., 
2021)

• Models song patterns 
and structures

• Understands learning 
and cultural transmission 
mechanisms

Convolutional 
Neural Networks 
(CNNs)

Detecting 
and tracking 
behaviors

Primate social 
behaviors 
(Witham, 2018)

• Automatically detects 
specific behaviors

• Tracks social 
interactions and 
behavioral responses

Drones and 
Automated 
Cameras

Wildlife 
monitoring 
and behavior 
detection

Endangered species 
tracking 
(Kiszka, 2016)

• Monitors and tracks 
animal movements

• Provides real-time data 
for conservation efforts

Acoustic Sensors Recording 
and analyzing 
vocalizations

Bird and marine 
mammal calls 
(Allen et al., 2021)

• Records and identifies 
species vocalizations

• Analyzes communication 
and social interactions

High-resolution 
Cameras

Studying 
feeding and 
reproductive 
behaviors

Insect feeding 
behavior 
(Jun Tu et al., 2016)

• Captures detailed 
interactions

• Quantifies feeding and 
reproductive activities

Behavior 
Detection 
Algorithms

Tracking and 
observing 
social 
interactions

Fish reproductive 
behaviors 
(Abangan et al., 
2023)

• Detects courtship, egg-
laying, and parental care

• Provides insights into 
reproductive behaviors
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understanding interactions and behavioral patterns in various environments. 
Here are some examples of AI application in this area.

	•	 Detection of social behaviors in primates: Researchers have used 
convolutional neural networks (CNN) to analyze videos of wild animals, such 
as monkeys (Witham, 2017). These networks are trained to automatically 
detect specific behaviors, such as playing, eating, grooming, etc.

		    AI can also be used to automatically track social interactions between 
individuals, such as physical contact or exchange of visual signals.

	•	 Wildlife monitoring for conservation: In conservation programs, AI systems 
are used to monitor populations of endangered species. Drones equipped with 
cameras and powered by machine learning algorithms are capable of detecting 
and tracking the movements of animals in their natural habitat (Kiszka, 2016).

		  Acoustic sensors can also be used to record the vocalizations of animals such as 
birds or marine mammals, and AI algorithms can be employed to automatically 
identify species based on their vocalizations.

	•	 Study of feeding behavior in insects: Researchers use machine learning 
techniques to analyze the feeding behaviors of insects, such as bees or ants (Jun 
Tu et al., 2016). High-resolution cameras are used to capture insect movements 
as they interact with food, and AI algorithms are used to detect and quantify 
these behaviors.

	•	 Detection of reproductive behaviors in fish: AI systems are used to study the 
reproductive behaviors of fish in aquatic environments (Abangan et al., 2023). 
Underwater cameras are used to record interactions between fish during the 
spawning period, and AI algorithms are employed to detect courtship, egg-
laying and parental care behaviors.

Conclusion and Future Directions

AI offers transformative benefits to animal ecology by making research 
processes faster, more accurate, and accessible to a broader audience. With rapid 
data processing and automation, AI significantly reduces the time needed for 
tasks like species identification and population monitoring, allowing researchers 
to delve into data interpretation and strategic insights. Its precision-driven 
algorithms excel at detecting subtle patterns and analyzing data across multiple 
scales, providing a more comprehensive and nuanced view of ecosystem 
dynamics. Furthermore, AI-driven platforms enhance data sharing across 
scientific, policy-making, and public domains, empowering citizen scientists 
through mobile applications that enable biodiversity monitoring and increase 
conservation awareness. By enabling real-time threat alerts and optimizing 
resources for priority species and regions, AI supports adaptive conservation 
management, allowing swift responses to emerging environmental challenges. 
Future advancements in AI not only promise to deepen our understanding of 
ecosystems but also to empower targeted conservation strategies worldwide, 
strengthening biodiversity and ecosystem resilience for generations to come.
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This chapter examines the effects of altered animal ecology on developmental 
disorders, emphasizing genetic, neurobiological, and environmental influences. 
Genetic predispositions, such as behavioral traits and cognitive responses, play 
a critical role in determining susceptibility to these disorders. Neurobiological 
pathways, including hormonal regulation and social interactions, mediate 
the expression of developmental abnormalities in response to environmental 
changes. Population dynamics, shaped by birth rates, mortality, and migration, 
affect ecological balance, while human activities like habitat loss and climate 
change intensify vulnerabilities in animal populations. Behavioral abnormalities 
observed in animals under these conditions often resemble human developmental 
disorders. The chapter also highlights how AI tools, such as GPS tracking and 
bioacoustics monitoring, provide insights into animal behavior and adaptation 
to shifting environments. The translational relevance of these findings is 
explored, drawing parallels between animal models and human conditions, 
while recognizing the complexity of species-specific differences. This research 
advocates for interdisciplinary approaches to understanding ecological health, 
species well-being, and their links to human health, stressing the need for 
informed conservation strategies in a rapidly changing world.
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Introduction

In the intricate web of life, animal ecology forms a foundational aspect of 
how species interact with their environments and each other. This field studies 
not only individual species’ behaviors but also the broader interactions within 
ecosystems that maintain biodiversity and ecological balance. Yet, in recent 
decades, environmental changes—largely driven by human activities—have 
significantly altered this balance. Habitat destruction, urbanization, pollution, 
climate change, and the introduction of invasive species are just some of the 
forces reshaping animal ecology on a global scale. These shifts often result in 
profound changes in the behaviors and survival strategies of affected species, 
disrupting long-standing evolutionary adaptations.

One of the most critical, yet often overlooked, aspects of these ecological 
shifts is their potential impact on animal behavior, particularly how such behavioral 
changes may resemble patterns seen in human developmental disorders (Morton, 
2008). Developmental disorders, such as autism spectrum disorder (ASD), 
attention-deficit/hyperactivity disorder (ADHD), and generalized anxiety disorder 
(GAD), affect cognitive, social, and emotional development. These disorders 
are often the result of complex interactions between genetic predispositions 
and environmental factors. Interestingly, animals subjected to altered ecological 
conditions also exhibit behavioral abnormalities that mirror symptoms of such 
developmental disorders in humans. By exploring these parallels, we can gain 
valuable insights into the mechanisms underlying both animal adaptation and 
human neurodevelopment.

	•	 Ecology, Behavior, and Developmental Disorders: An Emerging Nexus: 
The interplay between altered animal ecology and developmental disorders 
highlights an emerging nexus of research that crosses the boundaries between 
ecology, genetics, neuroscience, and psychology (Ruthven, 1920). Human-
induced environmental changes not only affect population dynamics, habitat 
availability, and food resources for animals, but also impose new stressors 
that alter neurobiological pathways. These stressors—ranging from chemical 
pollutants to habitat fragmentation—can disrupt normal behavioral patterns, 
trigger stress responses, and interfere with reproductive strategies, which in 
turn can affect the development of offspring. These alterations in behavior and 
development provide a unique window into how environmental stimuli shape 
neurobiological outcomes.

		    Research has shown that animals facing environmental pressures may exhibit 
behaviors such as increased anxiety, impaired social interactions, or changes in 
learning and memory—traits often associated with developmental disorders in 
humans (Elton, 2001). For instance, exposure to chemical pollutants has been 
linked to cognitive and behavioral impairments in both animals and humans, 
highlighting the shared vulnerability of brain development to environmental 
toxins. Moreover, changes in social structures within animal populations, 
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caused by habitat fragmentation or resource depletion, can lead to altered 
social behaviors, providing clues about how similar stressors might affect 
human populations.

	•	 The	 Role	 of	 Artificial	 Intelligence	 in	 Understanding	 Ecological	 and	
Developmental	 Dynamics: In recent years, the integration of artificial 
intelligence (AI) technologies into ecological and behavioral research has 
provided unprecedented tools to study these complex relationships. AI-
driven tools such as GPS tracking systems, machine learning algorithms, and 
bioacoustics monitoring offer precise, real-time insights into animal behavior 
and ecological adaptation. These technologies enable researchers to analyze 
vast datasets and identify patterns that would be impossible to detect through 
traditional observational methods. For example, AI-powered computer vision 
systems can track subtle changes in animal movement, foraging behavior, 
or social interactions, helping researchers monitor how species adapt to 
environmental shifts over time.

		    Additionally, AI can help unravel the genetic and epigenetic factors that 
contribute to behavioral adaptations in animals facing ecological stressors. 
Machine learning algorithms can sift through genetic data to identify specific 
gene-environment interactions that influence behavioral outcomes, offering 
new insights into the neurobiological mechanisms that underlie both animal 
adaptation and human developmental disorders.

		    AI’s predictive modeling capabilities also allow scientists to forecast how 
future environmental changes, such as global warming or deforestation, might 
impact species’ behaviors and developmental trajectories. These models help 
guide conservation efforts by identifying which species or populations are 
most at risk and how interventions can be designed to mitigate negative 
outcomes.

	•	 Toward an Interdisciplinary Approach: Given the complexity of the 
relationship between altered animal ecology and developmental disorders, 
interdisciplinary collaboration is essential. Ecologists, neuroscientists, AI 
specialists, and healthcare professionals must work together to integrate 
ecological data with insights from genetics, neurobiology, and behavioral 
science. This collaboration can lead to a more holistic understanding of how 
environmental stressors affect both animals and humans, potentially informing 
conservation strategies and public health initiatives.

		    For instance, studying how stress affects the neurodevelopment of animals 
in fragmented habitats can provide clues about how similar stressors, such 
as urbanization and pollution, may influence human populations living in 
rapidly changing environments. These insights can inform policies that 
aim to protect vulnerable species and human communities alike, ensuring 
that both ecological and human health are prioritized in the face of global  
environmental change.
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Altered Animal Ecology: Unraveling Environmental 
Changes and their Impact on Developmental 
Disorders

Changes in Environmental Factors Affecting Animals

Altered animal ecology reflects shifts in the environmental conditions that shape 
the lives of diverse species. These changes, often driven by human activities, 
can have profound effects on ecosystems, influencing everything from habitat 
structure to resource availability. Understanding the nuanced alterations in 
environmental factors is crucial to decipher the intricate dance between animals 
and their surroundings (Ruthven, 1920).

Habitat modification from urbanization, deforestation, and agriculture 
fragments habitats and limits resources, challenging species. Climate change 
alters ecosystems, prompting migration and behavioral shifts. Pollution 
introduces harmful contaminants, while invasive species and overexploitation 
disrupt food webs and deplete key species, causing widespread ecological 
impacts. These environmental changes collectively trigger cascading effects on  
animal populations.

Impact on Exposure Levels for Developmental Disorders 

The repercussions of altered animal ecology extend beyond ecological dynamics, 
reaching into the realm of developmental disorders. Exposure levels to various 
environmental stressors driven by changes in animal ecology can have profound 
implications for the health and development of both animals and intriguingly 
humans (Figure 1) (Hanke & Jurewicz, 2004). 

Figure 1: Impact on exposure levels for developmental disorders. 
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Environmental changes introduce chemical stressors that impact animal 
behavior, physiology, and potentially lead to neuro-developmental disorders. 
Disrupted reproductive patterns due to altered temperatures and habitat 
degradation affect offspring development. Changes in food webs influence 
nutritional health, increasing susceptibility to developmental disorders. Habitat 
loss and resource competition stress neurological development, mirroring some 
disorders. Additionally, trans-generational effects through epigenetic inheritance 
can shape susceptibility to these disorders across generations.

Behavioral Consequences: Navigating the  
Influence of Altered Ecology on Animal Behavior 
and Developmental Disorders

Exploration of How Altered Ecology Influences  
Animal Behavior

Altered animal ecology sets the stage for a dynamic interplay between species 
and their changing environments, invariably influencing animal behavior. This 
exploration delves into the nuanced ways in which environmental modifications 
shape the behavioral landscape of diverse organisms (Mittelbach et al., 2014).

	•	 Foraging and Feeding Patterns: Changes in habitat structure and resource 
availability due to altered ecology directly impact foraging and feeding 
behaviors. Species may need to adapt their dietary preferences or search for 
alternative food sources, leading to shifts in feeding strategies. For instance, 
deforestation might compel arboreal species to explore new foraging grounds 
on the ground, altering their feeding patterns and potentially affecting their 
energy balance.

	•	 Migration and Movement Patterns: Environmental alterations, especially 
those related to climate change, often trigger adjustments in migration and 
movement patterns. Species may need to travel greater distances to find suitable 
breeding grounds or access essential resources. These changes in migratory 
routes or movement patterns can influence social structures, mating behaviors, 
and the overall distribution of species within ecosystems.

	•	 Social Interactions and Hierarchies: Altered animal ecology can disrupt 
established social structures and hierarchies within populations. Increased 
competition for limited resources or changes in habitat quality may lead to 
shifts in dominance hierarchies or social group dynamics. These alterations in 
social interactions can have cascading effects on reproductive success, stress 
levels, and overall well-being of individual animals.

	•	 Reproductive Strategies: Changes in environmental factors, such as 
temperature, precipitation, or food availability, can prompt adjustments in 
reproductive strategies. Species may alter their breeding seasons, modify 
courtship behaviors, or exhibit changes in mate selection to adapt to the shifting 
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ecological conditions. These adaptations are crucial for ensuring reproductive 
success in the face of environmental challenges.

	•	 Communication	 and	 Signaling: Animal communication, often reliant on 
specific environmental cues, may undergo transformations in response to 
altered ecology. Shifts in vegetation cover, ambient noise levels, or the presence 
of new species can impact the effectiveness of communication signals. Species 
may need to adjust their vocalizations, visual displays, or chemical signaling 
to maintain effective communication within and between populations.

	•	 Territoriality and Habitat Selection: Alterations in habitat structure and 
quality influence territorial behaviors and habitat selection. Species may expand 
or contract their territories based on resource availability, leading to changes 
in intra- and inter-species competition. Habitat alterations can also impact the 
suitability of certain areas for nesting, breeding, or shelter, influencing the 
distribution and behavior of animal populations.

Understanding how altered ecology influences these aspects of animal 
behavior requires a multidimensional approach. Observational studies, field 
experiments, and ecological modeling contribute to unraveling the intricate ways 
in which animals respond to changes in their environments.

Potential Links to the Development and Manifestation of 
Developmental Disorders

The exploration of altered animal ecology’s behavioral consequences unveils a 
realm of potential links to the development and manifestation of developmental 
disorders. This section delves into the intricate pathways through which 
environmental changes may contribute to the emergence of developmental 
disorders in animal populations (Skakkebaek et al., 2001).

	•	 Stress as a Precursor to Developmental Disorders: Altered ecology often 
introduces stressors such as habitat loss, pollution, or increased competition. 
Chronic stress has been linked to various developmental disorders in 
animals, including neuro-developmental issues. Stress responses can trigger 
physiological changes, impacting the development of the nervous system and 
potentially contributing to behavioral abnormalities.

	•	 Chemical Exposures and Neurological Impact: Changes in environmental 
factors, such as increased pollution or exposure to novel chemicals, may have 
direct neurotoxic effects on animals. Neurological development is particularly 
vulnerable during early life stages, and exposure to certain pollutants can 
interfere with normal brain development. This disruption may lead to altered 
behaviors reminiscent of symptoms observed in developmental disorders.

	•	 Altered Reproductive Patterns and Offspring Development: Shifts in 
reproductive strategies due to altered ecology can influence the developmental 
trajectories of offspring. Changes in breeding seasons, mating behaviors, or 
parental care may impact the early life experiences of offspring. Developmental 
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disorders can manifest when these alterations disrupt the typical environmental 
cues or care patterns required for optimal offspring development.

	•	 Transgenerational	 Effects	 and	 Epigenetic	 Mechanisms: Altered animal 
ecology can induce transgenerational effects through epigenetic mechanisms. 
Environmental stressors experienced by one generation may influence the gene 
expression patterns of subsequent generations. This transgenerational impact 
could contribute to the manifestation of developmental disorders by affecting 
the regulation of genes associated with neurological development.

	•	 Resource	 Limitations	 and	 Nutritional	 Influences: Habitat modifications 
often result in changes to resource availability, influencing the nutritional status 
of animal populations. Nutritional factors play a critical role in developmental 
processes, and deficiencies or imbalances in essential nutrients can contribute 
to developmental disorders. Altered ecology may disrupt the traditional food 
sources, leading to nutritional stress and potential developmental consequences.

	•	 Social Disruption and Behavioral Abnormalities: Changes in social 
structures and interactions due to altered ecology can contribute to the 
manifestation of behavioral abnormalities resembling developmental 
disorders. Disrupted social hierarchies, mate availability, or parental care can 
impact the social development of individuals. Socially complex species may 
be particularly sensitive to alterations in their social environment.

	•	 Adaptation and Maladaptive Behaviors: While species adapt to altered 
ecology, certain behavioral adaptations may become maladaptive in the 
context of developmental disorders. Behavioral traits that were once 
advantageous for survival may become exaggerated or misdirected, leading to 
abnormal behaviors. Understanding the fine line between adaptive responses 
and maladaptive manifestations is crucial for deciphering the links to  
developmental disorders.

Case Studies: Unveiling the Correlation between 
Altered Animal Ecology and Developmental 
Disorders by Employing AI Tools

Examples Illustrating the Role of AI in Correlation between 
Altered Animal Ecology and Developmental Disorders

The intricate interplay between altered animal ecology and the manifestation 
of developmental disorders finds vivid expression in a series of compelling 
case studies. These real-world examples underscore the profound impact of 
environmental changes on the behavioral and developmental landscapes of 
diverse species. Moreover, the integration of AI technologies has revolutionized 
our ability to study the impacts of altered animal ecology on developmental 
disorders, offering unprecedented insights into how environmental changes shape 
behavioral and developmental outcomes across species. Here are illustrative 
case studies that underscore this correlation:
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	 1.	 Monitoring Behavioral Responses to Habitat Fragmentation
		  In a study focused on tropical rainforest fragmentation, AI-enabled 

monitoring systems tracked the behavioral responses of primates to habitat 
loss. Using computer vision and machine learning algorithms, researchers 
analyzed data from camera traps to observe changes in movement patterns, 
social interactions, and stress responses among primate populations 
(Van As & Cooke, 2024; Wang et al., 2024). This approach revealed how 
fragmentation alters ecological dynamics, leading to increased stress-related 
behaviors and disrupted social structures within primate communities 
(Sapolsky, 2005; Trathan et al., 2015). Now-a-days, the advent of Computer 
Vision techniques, including object detection and motion tracking, facilitated 
continuous monitoring without disturbing natural behaviors (Panlab, 2022; 
Stoelting, 2022). AI algorithms identified behavioral anomalies indicative of 
developmental stressors, enabling timely intervention strategies to mitigate 
adverse effects on primate health and social cohesion (Schneider et al., 1999;  
Peterson et al., 2013).

	 2.	 Assessing the Impact of Climate Change on Marine Mammal Behavior
		  Recently, researchers have employed AI-driven analysis of satellite imagery 

and acoustic data to assess the impact of climate change on marine mammal 
behavior in the Arctic. Machine learning algorithms processed vast datasets to 
identify changes in migration patterns, feeding behaviors, and vocalizations 
of cetaceans in response to shifting environmental conditions. This study 
elucidated how warming temperatures and sea ice loss influence the spatial 
distribution and reproductive behaviors of marine mammals, highlighting 
their vulnerability to ecological disturbances. For such cases, Deep learning 
models like CNNs (convolutional neural networks) analyzed satellite images 
to reveal habitat changes, while NLP tools synthesized research literature, 
identifying trends and gaps in understanding climate change’s impact on 
marine mammals (Ditria et al., 2022; Levy et al., 2024).

	 3.	 Urbanization Effects on Avian Developmental Patterns
		  AI analysis of urbanization effects on birds revealed changes in nesting 

behaviors and reproductive success. By integrating data from IoT sensors and 
GPS with machine learning, researchers monitored how urban landscapes 
affect breeding and parental care. The study highlighted AI’s role in 
quantifying environmental stressors, correlating factors like noise pollution 
with avian behavior changes, and identifying adaptive strategies for urban 
bird conservation (Dauvergne, 2020; Collins, 2024).

Synthesis of Case Studies

These case studies demonstrate the vital role of AI in understanding the link 
between altered animal ecology and developmental disorders. AI technologies 
like computer vision, machine learning, and IoT sensors enable precise 
monitoring and analysis of how environmental changes affect species’ behavior 
and development. The insights gained from these studies reveal how ecological 
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disruptions impact diverse species, emphasizing the need for evidence-based 
conservation strategies. These examples highlight the urgency of addressing 
environmental factors that influence animal ecology and their broader 
implications for ecosystem health.

Nowadays, AI is playing a crucial role in studying the impact of altered 
animal ecology on developmental disorders across various species. For 
amphibians exposed to pesticides due to agricultural intensification, GIS tools 
help correlate contamination with developmental issues like limb deformities and 
neurological problems. In birds, urbanization and habitat fragmentation disrupt 
nesting and reduce chick survival, with remote sensing used for monitoring these 
changes. Marine mammals face developmental challenges from climate-induced 
habitat shifts, tracked using satellite imagery, which affects birth timing and  
nutritional status.

Especially, bees (Insecta) suffer from pollutant exposure that impairs foraging 
and learning behaviors; machine learning analyzes this behavioral data. Coral 
reefs are threatened by ocean acidification, with genetic algorithms modeling 
coral responses and revealing developmental challenges in larvae. Climate change 
affects snowshoe hares, leading to increased predation due to delayed molting, 
with agent-based models predicting these predator-prey dynamics.

Penguins face nutritional stress from shifts in fish populations due to 
changing ocean currents; data mining links these shifts to reduced chick survival. 
Deforestation in the Amazon disrupts primate habitats, affecting social structures 
and cognitive development, with network analysis studying these social dynamics. 
Salmon struggle with altered river ecosystems due to dam construction, with 
simulation models predicting impacts on migration and reproduction. Finally, 
climate-driven habitat shifts in alpine environments impact mountain goats’ 
nutrition and offspring survival, while habitat fragmentation in elephants leads to 
stress and cognitive challenges, both monitored using ecological niche modeling 
and machine learning.

Notably, the above discussed case studies might have emphasized the urgent 
need to address environmental challenges impacting altered animal ecology. 
AI technologies play a transformative role in understanding and mitigating 
developmental disorders exacerbated by these changes. Moving forward, 
interdisciplinary collaborations and innovative AI applications will be crucial 
in advancing knowledge of these complex interactions. This approach informs 
policies and strengthens conservation efforts to protect biodiversity and ensure 
ecosystem resilience in the face of ongoing environmental transformations.

Mechanisms at Play with AI Tools: Unraveling 
the Interactions between Animal Behavior and 
Developmental Disorders

Understanding the intricate mechanisms that underpin the interaction between 
animal behavior and developmental disorders requires a multifaceted exploration 
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encompassing genetic, epigenetic, and environmental factors. This section delves 
into the complexities of these mechanisms, shedding light on the interplay that 
shapes the developmental trajectories of diverse species.

The intricate relationship between animal behavior and developmental 
disorders is shaped by genetic, epigenetic, and environmental factors. Genetic 
influences govern neurobiological pathways (Parellada et al., 2014) that affect 
behaviors such as learning, memory, and social interactions. Mutations in genes 
related to synaptic transmission and neural connectivity can result in behavioral 
abnormalities resembling symptoms of ASD and attention-deficit/hyperactivity 
disorder (ADHD) (Nelson et al., 2005). For instance, alterations in synaptic 
plasticity genes may impair cognitive functions (Ricceri, 2007), leading to 
challenges in learning and memory. Additionally, genetic regulation of hormonal 
systems, including cortisol and serotonin, plays a critical role in stress responses 
and mood regulation (Zimring et al., 2012). Dysregulation in these hormonal 
pathways, often influenced by genetic factors, is linked to disorders such as GAD 
and depression. Moreover, genetic factors shape social behaviors and sensory 
processing, where variations can lead to deficits in social interactions (Ricceri, 
2007) and atypical responses to environmental stimuli, commonly observed in 
conditions like ASD and sensory processing disorder (SPD).

Beyond genetic predispositions, epigenetic modifications and environmental 
factors contribute significantly to the manifestation of developmental disorders. 
Epigenetic changes, such as DNA methylation, dynamically regulate gene 
expression in response to environmental influences, creating a bridge between 
inherited traits and external factors. Stressors during critical developmental periods 
can induce lasting epigenetic modifications, contributing to disorders like ASD 
and depression. Furthermore, environmental factors, particularly during prenatal 
and early postnatal stages, interact with genetic and epigenetic mechanisms 
to shape behavioral outcomes. For example, early-life exposure to stress can 
increase the risk of anxiety-related disorders (Zimring et al., 2012), especially 
when coupled with genetic vulnerabilities. This dynamic interplay between genes 
and the environment underscores the complexity of developmental disorders, 
highlighting the need for a multifaceted approach to understanding and addressing 
these conditions.

Integrating AI in the Study of Developmental Disorders

AI offers novel approaches to understanding and diagnosing developmental 
disorders by analyzing large datasets of behavioral and genetic information. 
Machine learning algorithms can identify patterns and correlations that might be 
missed by conventional methods, offering insights into specific disorders such 
as ASD, ADHD, and GAD. AI-driven models can predict the impact of genetic 
mutations on behavior and provide personalized therapeutic strategies.

1.  AI in Genetic Analysis
AI has revolutionized genetic analysis by enabling the rapid identification of gene 
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variants associated with developmental disorders. Machine learning algorithms 
can sift through vast genomic datasets to pinpoint mutations linked to conditions 
such as ASD (Parellada et al., 2014), ADHD, and GAD. These algorithms can 
also predict how specific genetic variations might influence neurodevelopment 
and behavior, providing valuable insights into the underlying mechanisms of 
these disorders. For example, deep learning models have been employed to 
analyze whole-exome sequencing data, leading to the discovery of rare genetic 
variants that contribute to ASD. These models can identify gene networks that 
are disrupted in individuals with ASD, offering a clearer picture of the disorder’s 
genetic architecture.

2.  AI in Behavioral Phenotyping
AI is also transforming the field of behavioral phenotyping, where it is used to 
analyze animal models of developmental disorders. Advanced computer vision 
techniques and AI-driven image analysis can automatically track and quantify 
animal behaviors, such as social interactions, locomotion, and response to 
stimuli. These AI tools provide precise, objective measurements that are critical 
for understanding how genetic and environmental factors influence behavior. 
For example, AI-powered tools can monitor mouse models of ASD to assess 
behavioral traits like social avoidance or repetitive behaviors. By comparing 
these behaviors across different genetic lines, researchers can identify the genetic 
underpinnings of specific ASD-related behaviors (Ricceri et al., 2007). 

3.  AI in Epigenetic Research
Epigenetic modifications play a crucial role in the development of behavioral 
disorders, and AI is aiding in the analysis of these complex regulatory processes. 
Machine learning techniques are being used to analyze epigenomic data, 
identifying patterns of DNA methylation and histone modification associated 
with developmental disorders. For example, AI models can analyze data from 
chromatin immunoprecipitation sequencing (ChIP-seq) to identify epigenetic 
changes that occur in response to environmental stressors during critical 
developmental periods. This approach has been used to uncover epigenetic 
markers linked to stress-induced anxiety disorders (Wray et al., 2018).

4.  AI in Predicting Gene–Environment Interactions
AI algorithms are particularly well-suited to model the complex interactions 
between genetic predispositions and environmental influences. By integrating 
genetic, epigenetic, and environmental data, AI can predict how specific 
environmental exposures might affect individuals with particular genetic 
backgrounds, potentially leading to the development of a disorder. For example, 
AI-driven models have been used to predict the likelihood of developing 
ADHD based on the interaction between specific genetic variants and early-life 
environmental stressors, such as prenatal exposure to toxins. These models help 
in understanding the multifactorial nature of developmental disorders (Wray  
et al., 2018).
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Impact of AI on Understanding Specific Disorders

1.  Autism Spectrum Disorder (ASD)
AI has played a pivotal role in advancing our understanding of ASD. 
Researchers have utilized AI to analyze behavioral data from animal models 
and human populations, identifying key genetic mutations and environmental 
factors that contribute to the disorder. AI tools have also been employed to 
develop personalized intervention strategies, optimizing treatments based on 
an individual’s unique genetic and behavioral profile. Notably, AI models have 
identified microRNAs that regulate gene expression in the brain and are linked 
to ASD. These findings have opened new avenues for targeted therapies that 
modulate microRNA activity (Parellada et al., 2014).

2.  Attention-Deficit/Hyperactivity Disorder (ADHD)
In ADHD research, AI has been instrumental in parsing the genetic complexity 
of the disorder. By analyzing large-scale genomic datasets, AI has identified 
novel gene variants associated with ADHD, offering new insights into its 
biological basis. Additionally, AI-driven behavioral analysis has improved the 
accuracy of ADHD diagnosis, particularly in differentiating ADHD from other 
neurodevelopmental disorders (Ricceri et al., 2007). It seems to be noteworthy 
that the AI-based analysis of fMRI data has now led to the discovery of unique 
brain activity patterns in individuals with ADHD, facilitating more accurate and 
early diagnosis.

3.  Generalized Anxiety Disorder (GAD)
AI has enhanced our understanding of the genetic and environmental factors 
contributing to GAD. Machine learning models have been used to identify 
genetic variants that increase susceptibility to anxiety, while AI-driven analysis 
of epigenetic data has revealed how early-life stressors can lead to persistent 
changes in gene expression associated with anxiety. Prominently, AI algorithms 
have identified biomarkers in blood samples that predict the onset of GAD, 
enabling early intervention and potentially reducing the severity of the disorder 
(Wray et al., 2018).

Therefore, the integration of AI into the study of developmental disorders 
represents a paradigm shift in how researchers approach these complex 
conditions. AI’s ability to analyze vast datasets, identify subtle patterns, and 
predict outcomes based on genetic, epigenetic, and environmental factors has 
the potential to transform our understanding and treatment of disorders like 
ASD, ADHD, and GAD. As AI technologies continue to advance, they will play 
an increasingly critical role in developing personalized medicine approaches, 
leading to more effective interventions and better outcomes for individuals with  
developmental disorders.



156 │ Artificial Intelligence and Animal Ecology: A Review

Implications for Human Health 

Extrapolating Findings to Human Populations

The exploration of altered animal ecology and its implications for developmental 
disorders is highly relevant beyond wildlife studies, offering critical insights into 
potential links between environmental changes and developmental disorders 
in humans (Schiffman, 1998). For example, exposure to endocrine-disrupting 
chemicals (EDCs), such as bisphenol A (BPA), has been shown to cause 
reproductive and neurodevelopmental disorders in both animals and humans. 
Studies on rodents have demonstrated that BPA exposure can lead to altered 
brain development and behavioral changes, which parallel findings in human 
epidemiological studies where prenatal BPA exposure is associated with cognitive 
and behavioral issues in children (Richter et al., 2007; Braun et al., 2009).

	•	 Shared Mechanisms: Many genetic, neurobiological, and behavioral 
mechanisms are conserved across species. For instance, stress response 
pathways involving the hypothalamic-pituitary-adrenal (HPA) axis are 
conserved in both animals and humans. In animal studies, environmental 
stressors like habitat destruction have been linked to altered HPA axis function, 
leading to anxiety-like behaviors and impaired social interactions (Sapolsky, 
2005). These findings provide a basis for understanding similar processes in 
humans, where chronic stress and environmental adversity are associated with 
developmental disorders such as anxiety and depression (McEwen, 2007).

	•	 Environmental Exposures: Humans, like animals, are exposed to various 
environmental stressors and pollutants that can impact developmental 
trajectories. For example, pesticide exposure has been extensively studied in 
both animals and humans. In amphibians, pesticides like atrazine have been 
linked to limb deformities and reproductive issues (Rohr and McCoy, 2010), 
while in humans, prenatal exposure to pesticides has been associated with 
neurodevelopmental disorders, including ASD and ADHD (Shelton et al., 
2014). Lessons learned from these animal studies can inform our understanding 
of how environmental exposures during critical periods of development may 
contribute to similar disorders in humans.

	•	 Translational Research: Translational research bridges the gap between 
animal studies and human health. Animal models provide a platform for 
testing hypotheses and interventions before translating findings to clinical 
settings. For example, studies on the effects of lead exposure in rodents have 
demonstrated cognitive impairments and behavioral changes similar to those 
observed in children exposed to lead, leading to interventions aimed at reducing 
lead exposure in at-risk populations (Bellinger, 2004). Understanding the 
translational relevance of altered animal ecology in developmental disorders 
enhances our ability to apply preventive measures and interventions in human 
populations, ultimately contributing to public health efforts (Grandjean & 
Landrigan, 2006).
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Potential Insights for Preventive Measures and Interventions 
in Developmental Disorders

	 1.	 Early Intervention Strategies: Insights gained from studying animal 
responses to altered ecology can significantly inform early intervention 
strategies for developmental disorders in humans. For instance, research on 
prenatal exposure to alcohol in rats has shown that such exposure can lead 
to fetal alcohol spectrum disorders (FASD), characterized by cognitive and 
behavioral issues. Early recognition of FASD in humans has led to targeted 
interventions, such as nutritional supplementation and behavioral therapies 
during critical developmental periods, which have shown improved outcomes 
in affected children (Kelly et al., 2000). Similarly, studies on maternal stress 
in primates have revealed that stress during pregnancy can lead to anxiety and 
attention deficits in offspring, paralleling findings in human populations and 
emphasizing the need for stress management interventions during pregnancy 
(Schneider et al., 1999).

	 2.	 Environmental Health Policies: Findings related to the impact of 
environmental factors on developmental disorders in animals underscore the 
importance of robust environmental health policies. For example, research 
on the effects of mercury pollution in fish has demonstrated neurotoxic 
effects that can disrupt development in both aquatic species and humans 
who consume contaminated fish. This has led to policies aimed at reducing 
mercury emissions and regulating fish consumption during pregnancy to 
prevent developmental disorders such as intellectual disabilities and motor 
skill deficits in children (Grandjean et al., 2005). Implementing such measures 
to reduce exposure to pollutants, protect natural habitats, and promote 
sustainable practices can have far-reaching implications for human health by 
minimizing environmental contributors to developmental disorders.

	 3.	 Educational Initiatives: Understanding the connections between altered 
ecology and developmental disorders can contribute to educational initiatives. 
For instance, educational campaigns regarding the risks of pesticide 
exposure—informed by animal studies showing neurodevelopmental 
effects—have led to increased awareness and preventive measures, such 
as the use of protective equipment and organic farming practices. Raising 
awareness about the potential impact of environmental factors on human 
development encourages individuals and communities to adopt practices that 
support healthy environments during pregnancy and early childhood, thereby 
reducing the incidence of disorders like ASD linked to environmental factors 
(Shelton et al., 2014).

	 4.	 Precision Medicine Approaches: Insights into genetic and epigenetic 
factors influencing developmental outcomes in animals pave the way for 
precision medicine approaches in human health. For instance, research on 
the interaction between genetic predisposition and lead exposure in animal 
models has revealed that certain genetic profiles make individuals more 
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susceptible to the neurotoxic effects of lead. In humans, this knowledge 
has been translated into precision medicine approaches where children with 
these genetic profiles are monitored more closely, and interventions such as 
chelation therapy are tailored to those at higher risk (Peterson et al., 2013). 
This personalized approach allows for interventions that are more effective in 
preventing or mitigating developmental disorders.

	 5.	 Interdisciplinary	 Collaboration: Collaboration between ecologists, 
environmental scientists, clinicians, and developmental psychologists is 
crucial in addressing developmental disorders. An example of successful 
interdisciplinary collaboration is the study of EDCs, such as BPA. Ecologists 
have documented the effects of BPA on wildlife, such as altered reproductive 
behaviors in fish, while developmental psychologists and clinicians have 
explored the parallels in human populations, linking BPA exposure to 
developmental disorders like ADHD. Integrating diverse expertise fosters a 
holistic understanding of the factors contributing to developmental disorders 
and enhances the development of comprehensive preventive measures and 
interventions (Bronstein, 2003).

AI in Conservation and Ecological Impact 

Addressing the Broader Ecological Consequences of 
Developmental Disorders in Animal Populations

Developmental disorders in animal populations not only impact individual health 
but also have broader ecological consequences that ripple through ecosystems. 
Addressing these ecological implications is essential for comprehending the 
interconnectedness of species within their environments (Snover et al., 2013). 
Significantly, these disorders might impact population dynamics by disrupting 
normal patterns of species abundance and distribution. This is addressed through 
population modeling with machine learning, which helps predict trajectories 
and the cascading effects on ecosystems. Furthermore, these disorders may 
compromise the ability of species to perform essential ecosystem services such 
as pollination, seed dispersal, and pest control. Data analysis and machine 
learning tools are used to monitor disruptions in these services. In social animals, 
developmental disorders can lead to disruptions in cooperation, communication, 
and hierarchical relationships within groups, affecting troop or pack dynamics. 
Social network analysis is employed to study these changes and their broader 
ecological implications. Additionally, predator-prey interactions may be altered, 
leading to shifts in food web structures and overall ecosystem functioning. 
Agent-based modeling is used to simulate these interactions and the resulting 
behavioral changes, providing insights into the ecological consequences of 
developmental disorders.

Conservation efforts must prioritize species with developmental challenges, 
guiding targeted actions through the use of GIS and spatial analysis to identify 
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and protect critical habitats and migration corridors. Addressing climate change 
resilience is also crucial, as it involves developing strategies to enhance the 
adaptability of species facing multiple environmental challenges. This can 
be achieved by integrating climate modeling with ecological data to forecast 
impacts and plan adaptive strategies. Habitat restoration efforts benefit from 
initiatives that address the root causes of altered ecology by creating supportive 
environments, monitored through remote sensing and machine learning to track 
progress and effectiveness. Integrated conservation planning is further enhanced 
by recognizing the interplay between individual health, population dynamics, and 
ecosystem functioning, utilizing integrative modeling approaches that combine 
ecological, health, and environmental data. Lastly, community engagement plays 
a vital role in fostering stewardship and support for conservation initiatives, with 
AI-driven platforms being employed to educate and involve local communities 
in conservation practices.

The Role of AI in Understanding the Nexus 

AI technologies are revolutionizing ecological and behavioral studies by 
automating data collection, recognizing patterns, and making predictions. 
Automated monitoring systems, using real-time data from cameras, sensors, 
and GPS devices, enable continuous observation of animal behaviors, allowing 
for quick detection of changes that may indicate stress or developmental issues 
(Caravaggi et al., 2017; Norouzzadeh et al., 2018). Behavioral tracking, powered 
by AI, provides detailed insights into movement patterns, feeding habits, and 
social interactions, helping identify environmental factors impacting animal 
health (Kellenberger et al., 2018). Advanced computer vision algorithms analyze 
images and videos from camera traps and drones, tracking individual animals and 
their interactions without disturbing their natural behaviors (Gerner et al., 2020).

IoT sensors measure environmental variables, correlating these with animal 
behavior, while wearable sensors like GPS collars and heart rate monitors track 
physiological responses to detect potential developmental disorders (Gurarie et 
al., 2016; Hagerty & Inman, 2017). Machine learning algorithms, both supervised 
and unsupervised, classify behaviors and detect anomalies, providing insights 
into animal health (Caravaggi et al., 2017; Norouzzadeh et al., 2018). Natural 
Language Processing (NLP) tools analyze research literature to extract trends and 
synthesize information, guiding further research (Gerner et al., 2020).

Predictive modeling and simulation models forecast future behaviors and 
ecological impacts, helping to plan preventive measures (Metcalf & Graham, 
2018). Big data platforms and GIS tools manage and visualize large datasets, 
highlighting trends that inform conservation efforts (Hagerty & Inman, 2017). 
Cloud computing and open data repositories support collaborative research and 
data sharing, enhancing the effectiveness of AI-driven conservation strategies 
(Norouzzadeh et al., 2018; Gerner et al., 2020). This integration of AI technologies 
enhances our understanding of animal behavior and informs more effective 
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conservation strategies. Figure 2(a) includes the applications and principles 
associated with each category of technologies used in AI-driven ecological and 
behavioral studies. From this it is clearly understood that technology category is 
applied in ecological and behavioral studies, along with the principles underlying 
their use to advance understanding, prediction, and conservation efforts in  
natural ecosystems.

Figure 2: (a) The AI-driven applications and principles associated with each category.  
(b) The tools for animal behavior analysis. 
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Commercial Tools for Animal Behavior Analysis
Finally, AI contributes to conservation and management applications by 
identifying critical habitats, assessing the impact of habitat restoration, designing 
wildlife corridors, and mitigating habitat fragmentation effects. By analyzing 
animal movement patterns and landscape features, AI recommends optimal 
wildlife corridor routes and assesses their effectiveness in reducing genetic 

Table 1: Commercial tools for animal behavior analysis

Application Area AI Tool Applications
Population 
Dynamics

IBM SPSS 
Modeller

Used for predictive analytics to model 
population dynamics and predict future 
trends in species abundance and distribution 
(IBM, 2022).

Ecosystem 
Services

Google Earth 
Engine

Analyzes satellite imagery and 
environmental data to monitor disruptions in 
ecosystem services like pollination and pest 
control (Google, 2021).

Troop or Pack 
Dynamics

Gephi Open-source network analysis software 
to visualize and analyze changes in social 
structures within animal groups (Bastian et 
al., 2009).

Predator–Prey 
Interactions

Net Logo Multi-agent programmable modeling 
environment to simulate predator–prey 
interactions and understand impacts on food 
web dynamics (Wilensky, 1999).

Conservation 
Prioritization

ArcGIS Geographic Information System tool to 
identify critical habitats and migration 
corridors for targeted conservation efforts 
(Esri, 2021).

Climate Change 
Resilience

Climate Prediction 
Center (CPC) 
Models

Integrates climate data with ecological 
information to forecast impacts of climate 
change and developmental disorders 
(NOAA, 2021).

Habitat 
Restoration

Drone Deploy Drone mapping software providing remote 
sensing capabilities to monitor progress of 
habitat restoration initiatives (DroneDeploy, 
2021).

Integrated 
Conservation 
Planning

InVEST (Integrated 
Valuation of 
Ecosystem Services 
and Tradeoffs)

Models integrating ecological, health, and 
environmental data for comprehensive 
conservation planning (Sharp et al., 2022).

Community 
Engagement

iNaturalist Citizen science project and online social 
network using AI to help community 
members identify and document biodiversity 
(iNaturalist, 2022).
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isolation and stress-related disorders. These advancements collectively bolster 
sustainable conservation practices, crucial for preserving biodiversity amid rapid 
environmental changes. Thus, AI tools can significantly enhance the study and 
mitigation of the broader ecological consequences of developmental disorders in 
animal populations (Table 1 & Figure 2(b)).

It is a clear overview of AI tools and their applications in studying and 
mitigating the broader ecological consequences of developmental disorders in 
animal populations.

Challenges and Future Directions of Using AI Tools

Challenges

AI-enabled investigations into animal behavior and developmental outcomes 
encounter substantial variability across ecosystems. Each ecosystem presents 
unique environmental conditions, species compositions, and adaptations, which 
complicate the standardization of methodologies. For example, behavior that 
is typical for a species in one habitat might signal stress or developmental 
problems in a different environment. Addressing the challenge of integrating 
AI into ecological research requires models adaptable to various contexts and 
sensitive to ecological nuances. 

Particularly, the AI tools leveraging machine learning must handle diverse 
datasets and account for ecological variability to yield meaningful insights. 
Techniques like transfer learning, where models trained on one dataset can 
be adapted to new environments, are crucial. Robust data pre-processing is 
essential to normalize data across ecosystems and species, ensuring consistency 
in analysis. Furthermore, understanding the lasting effects of ecological changes 
on developmental pathways necessitates sustained, resource-intensive long-
term monitoring. AI can significantly enhance such studies by automating data 
collection through sensors, drones, and satellite imagery, capturing both seasonal 
and long-term changes. However, challenges like equipment maintenance, data 
validation, and managing large data volumes over time remain. AI-driven solutions 
can streamline these processes by automating data cleaning, anomaly detection, 
and predictive analytics. For instance, analyzing decades of satellite imagery with 
AI can track habitat loss or degradation and provide insights into how ecological 
changes impact species over time.

The intricate interplay of genetic, epigenetic, and environmental variables 
presents challenges in disentangling causal pathways. AI tools must integrate 
multidimensional data sources to differentiate direct ecological impacts from 
indirect influences. Sophisticated analytical approaches, including machine 
learning algorithms and statistical modeling, are essential for understanding these 
complexities. For example, advanced modeling techniques such as Bayesian 
networks and ensemble methods can elucidate how environmental stressors 
interact with genetic predispositions, influencing developmental disorders. Ethical 
considerations also arise from AI-enabled research on developmental disorders in 



AI Tools in Navigating the Nexus... │ 163

animals. Balancing scientific inquiry with ethical responsibilities requires robust 
frameworks to minimize disturbance while maximizing insights. Ethical AI-driven 
approaches might include conducting studies in controlled settings and using 
AI simulations to predict the effects of habitat restoration without manipulating 
wild populations.

Translating findings from animal studies to human health involves considering 
species-specific differences and the limitations in direct applicability. AI 
methodologies can aid in identifying translatable insights but require careful 
interpretation and validation. Comparative studies between animal models and 
human subjects are crucial for understanding the relevance of findings. AI tools, 
such as natural language processing for literature reviews, can aggregate data 
from animal and human studies to identify common pathways and mechanisms. 
Collaborative efforts between ecologists, biologists, medical researchers, and AI 
experts are vital for bridging gaps between animal ecology and human health.

Future Directions

Future research should embrace integrated AI-driven study designs that leverage 
interdisciplinary approaches across ecology, genetics, and developmental biology. 
By combining data from multiple sources, researchers can gain comprehensive 
insights into how environmental changes impact genetic expression, behavior, 
and development. For instance, integrating genomic sequencing with ecological 
monitoring can reveal genetic variations influencing behavioral responses to 
environmental stressors. AI algorithms can identify genetic markers associated 
with resilience or susceptibility, guiding personalized conservation and  
healthcare strategies.

Multi-species comparative AI studies can uncover generalizable patterns and 
species-specific responses to ecological changes, enhancing our understanding 
of adaptive strategies across ecosystems. AI can process heterogeneous datasets 
to predict ecological responses and inform conservation planning. Enhanced 
fine-scale monitoring through AI-powered GPS tracking and remote sensing can 
provide detailed assessments of animal behavior and habitat dynamics. These 
advancements can refine our understanding of specific behaviors and movements 
influenced by environmental changes.

AI-enabled transgenerational studies can illuminate the long-term impacts 
of environmental changes on developmental trajectories across generations. By 
analyzing multi-generational datasets, AI can predict evolutionary trajectories and 
guide proactive conservation strategies. Ethical AI-driven intervention studies, 
conducted in controlled settings, can provide insights into mitigation strategies 
while minimizing ecological impacts. Community engagement and AI education 
are essential for fostering collaborative efforts to address ecological challenges. 
Integrating traditional ecological knowledge with AI applications and promoting 
scientific literacy can enhance research relevance and effectiveness. In conclusion, 
while AI technologies offer unprecedented capabilities for studying the nexus 
between altered animal ecology and developmental disorders, addressing inherent 
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challenges and pursuing future research directions are crucial. By overcoming data 
variability, enhancing long-term monitoring, integrating multidimensional factors, 
and addressing ethical considerations, researchers can advance conservation efforts 
and ecological understanding. Collaborative efforts are essential for leveraging 
AI-driven solutions to safeguard biodiversity and promote ecological sustainability 
in a rapidly changing world.

Conclusion

This treatise uncovers the complex interactions between altered animal ecology 
and developmental disorders, emphasizing the influence of genetic, epigenetic, 
and environmental factors on animal behavior. It extends our understanding 
of developmental disorders beyond humans, revealing how species adapt 
to ecological changes through shifts in behavior, such as foraging and social 
dynamics. Significantly, this study brings to light the interdisciplinary research 
in addressing these challenges with AI offering promising opportunities to 
enhance data collection and predictive modeling. By leveraging AI, researchers 
and conservationists can develop more effective strategies to preserve animal 
populations and improve their well-being, which in turn can provide insights 
beneficial to human health.

Interdisciplinary research should be prioritized, fostering collaboration among 
ecologists, behaviorists, and AI specialists to create comprehensive models that 
integrate diverse data sources. Enhanced data sharing through global databases 
could lead to more robust and generalizable findings across species and regions. 
Ethical considerations are also crucial, ensuring that AI applications in wildlife 
research adhere to ethical standards, particularly concerning data privacy and 
the well-being of the animals studied. Maintaining these standards is essential 
for upholding public trust and scientific integrity. While navigating the nexus of 
ecology and its behavioral impacts, this study offers valuable insights into the 
intricate connections between the environment and developmental outcomes, 
informing strategies to support the well-being of both animals and humans in 
the face of environmental changes.
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The developmental abnormalities provoked by genetic aberrations, alterations 
in behavior, habitat loss, and disease transmissions are the common issues 
experienced generally by different animal species. The latest artificial intelligence 
(AI) technologies have been advanced to the level of making developmental 
prognostications using the data analysis in the form of multi-modal datasets 
created from environmental and genetic data. Through these highly advanced 
applications, they can accomplish tracking of the phenotypic changes within 
generations during a long period. Extensive case studies offer the applications 
of AI in developmental monitoring by scanning for the smallest of phenotypic 
changes utilizing the algorithms of computer vision and neural networks for 
double check of the routes they are causing the disorders of development. In 
addition, the use of specialized algorithms allow zoologists to simulate various 
environmental interventions and provide decision-making systems for the future 
environments. This chapter provides multidimensional, i.e., environmental 
science, genetics, and AI approaches to visualize the multi-causal aspect of 
developmental defects. Additionally, the ethical issues of using AI in delicate 
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ecological contexts by evaluating the data privacy limitations and transparency 
of models are also examined. 

Introduction

The fusion of current technologies with conventional observational techniques 
is revolutionizing the fields of animal ecology and habitat conservation by 
providing a deeper understanding of the behaviors of wildlife (Marković et al., 
2018). Unmanned aerial vehicles (UAVs), artificial intelligence (AI), and thermal 
imaging are some of the technologies that are opening up new possibilities for 
habitat surveying and addressing. Some of the drawbacks are labor-intensive 
and error-prone ground-based monitoring methods (Brooks & Greenberg, 2023). 
Hence, these developments could lead to more effective conservation strategies 
by enabling precise population estimates of vulnerable and invasive species 
without the significant resource commitment that was previously necessary 
(Remelgado et al., 2018). There are certain extrinsic factors like environmental 
and ecological and some intrinsic factors like genetic variations and physiological 
disturbances that contribute to these challenges (Song et al., 2020; Masoudzadeh 
et al., 2020). Using AI technologies to integrate ecological and genomic data 
provides a novel way to study animal developmental challenges.

Developmental Challenges in Animal Ecology

Developmental challenges are the problems which animals face in order 
to develop and procreate more or less normally due to defective genes and 
inadequate surroundings (Fowler, 1996). Mentioned below are the few causes 
of developmental challenges which are faced by animals.

	•	 Habitat Loss and Fragmentation: Habitat destruction is the term that is 
used to describe when a habitat no longer provides the environment conducive 
to support the native species and we point at it as “destroyed habitat” or 
“habitat loss”. “Habitat fragmentation” is the term intending to disconnect or 
fragment, an organism’s preferred living environment, which eminently causes 
population dispersion and finally leads to ecosystem destruction. Geological 
processes, human activity, such as land conversion, and agriculture can alter 
the environment’s habitats to be lost or fragmented. This limits the resources 
and living areas available to animals which poses developmental challenges, 
leading to higher mortality rates and poor reproductive progress resulting in 
the extinction of numerous species (Driscoll et al., 2021).

	•	 Environmental Stressors: Animals are frequently most receptive to 
environmental changes such as variations in temperature, precipitation 
patterns, and extreme weather events during development (Gonzalez-Rivas  
et al., 2020).

	•	 Non-native Species: A species that is non-native or non-indigenous is one 
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that has been brought outside of its natural range by human activity, either 
purposefully or unintentionally, directly or indirectly (Martinez et al., 2020).

	•	 Pollution:	 The introduction of contaminants having a negative effect on 
the environment is called pollution. Anything, e.g., pesticides, or energy, 
e.g., radiation, can be considered a form of pollution. These pollutants can 
lower fitness and survival rates by causing physiological and reproductive 
abnormalities. For example, oxidative stress is the primary cause of the 
emergence of numerous diseases in animals (Samal et al., 2022). 

	•	 Genetic Diversity: The entire number of hereditary characteristics 
accountable for a species’ hereditary makeup is called genetic diversity; it 
differs significantly depending on the totality of species and the differences 
among them, and is connected to a species’ longevity. Species that have less 
genetic diversity are frequently more susceptible to disease and environmental 
changes (Kardos et al., 2021). Moreover, genetic variety in animals is essential 
to meet current manufacturing demands in various types of environments, for 
enabling continued genetic enhancement, and for accelerating adaptation to 
shifting reproduction objectives. Populations sometimes consider it strenuous 
to adjust to new situations because of lack of diversity (Hoban et al., 2020).

	•	 Disease and Parasitism: Numerous illnesses and ailments can affect an 
animal’s health because of their susceptibility to them. These two factors can 
have a major negative effect on an animal’s development, making weakened 
animals less likely to survive and reproduce. Human activity and environmental 
changes can exacerbate the spread of diseases. However, animal health is 
primarily influenced by good husbandry, appropriate nutrition, and cleanliness 
(Charlier et al., 2020). 

Traditional Methods Used in the Study of 
Developmental Challenges and their Drawbacks

Conventional approaches to investigate developmental problems in animals 
have included controlled laboratory experiments as well as observational studies 
conducted in natural environments. In addition to being time and resource-
intensive, requiring years to produce results, these observational and breeding 
studies also raise ethical questions because they involve the manipulation of 
alive animals, particularly when that manipulation could result in injury or 
distress. The traditional approaches used of this purpose are:

	•	 Direct Observation: This method entails observing animals in captivity or in 
their natural environment to record interactions, behaviors, and developmental 
milestones (March et al., 2020). Direct observation is useful for learning about 
natural behaviors, but it can also be time-consuming, limited by the observer’s 
impact on animal behavior.

	•	 Cross-fostering and Translocation Methods: Experiments involving the 
cross-fostering and translocation of young animals are conducted to investigate 
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the relative contributions of environment and genetics to development. 
These studies can be instructive, but they can also pose ethical and 
logistical challenges, and they might not perfectly mimic natural conditions  
(Li et al., 2021). 

	•	 Comparative	Anatomy	 and	 Physiology:	 Finding out the anatomical and 
physiological variations between species or within populations can provide 
insights into how organisms adapt and develop. Nevertheless, this method 
frequently necessitates invasive techniques, does not have real-time data, and 
without more experimental evidence, the causes of observed differences may 
only be hypothesized (Ventrella et al., 2021). 

	•	 Selective Breeding: Selective breeding allows researchers to observe a trait’s 
heritability and pinpoint the genetic components involved in development by 
breeding animals for particular traits over several generations. This approach 
is laborious, restricted to characteristics that are readily visible or quantifiable, 
and presents moral dilemmas for the well-being of the animals (Harbers  
et al., 2020). 

Introduction to AI and Its Role in Studying 
Developmental Challenges

The imitative behavior of human intellect in robots that have been instructed to 
think and act like a person is known as artificial intelligence. AI covers a wide 
range of technologies, such as neural networks, automation, natural language 
programming, machine learning (ML), and deep learning (DL) (Figure 1), which 
enable computers to learn from and adapt to new data without needing to be 
explicitly programmed (Kelly et al., 2023). AI is crucial to animal research 
because it can analyze complex ecological data that is difficult for humans to 
process manually. Now, researchers can analyze enormous amounts of data 

Figure 1: The subsets of Artificial Intelligence and different types of algorithms.
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with greater accuracy and efficiency, revolutionizing the study and treatment of 
developmental changes in animals (Muthukrishnan et al., 2020). 

Machine Learning

Machine learning (ML) is the research and development of statistical algorithms 
that can perform activities without specific guidance, learn from data, and 
generalize to new data in the context of artificial intelligence. ML approaches 
have been applied in a variety of sectors, including computer vision, speech 
recognition, email filtering, large language models (LLM), agriculture, and 
medicine, to produce algorithms that perform essential jobs. Supervised and 
unsupervised learning are the two categories into which machine learning 
techniques fall. The data for supervised learning techniques include monitoring 
that are made up of labels or response variables and attributes or prognostic 
measures (Bossert & Hagendorff, 2021). 

Pattern Recognition

Assigning a class to an observation based on patterns found in data is known 
as pattern recognition. Bioinformatics, signal processing, visual analysis, data 
visualization, finding information, data reduction, graphic design, and ML are 
among the fields in which PR is used. Modern pattern recognition algorithms 
have made machine learning an increasingly common tool due to the abundance 
of tremendous data and computing capacity (Li et al., 2023). Figure 2 depicts 
the steps involved in developing pattern recognition algorithms.

Figure 2: Steps involved in developing a pattern recognition algorithm.

Neural Networks and Deep Learning

Neural network is made up of many interconnected neurons, which communicate 
with one another by sending signals. Neurons can be mathematical models or 
biological cells. A biological neural network is a term used in neuroscience to 
describe the physical arrangement of nerve cells connected by synapses that is 
present in brains and complex nervous systems (Figure 3). 

Deep learning (DL) algorithms have proven effective in tracking animal 
movements, monitoring habitats, and analyzing physiological data, among other 
animal research applications. This facilitates the analysis of intricate, multi-
modal data sets, which has implications for comprehending changes in animal 
development (Jeantet et al., 2021).
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Figure 3: A neural network that displaying an output layer, several hidden layers,  
and one input layer as part of its architecture.

Application for Behavioral Analysis in Girella 
tricuspidata

With an emphasis on fish grazing behavior in natural marine environments, 
Ditria et al. (2021) highlighted the potential of DL techniques in automating 
the analysis of animal behavior directly from raw field imagery (Ditria et al., 
2021). The researchers trained DL models on over 3,000 annotations of luderick, 
Girella tricuspidata, showcasing behaviors, using video footage shot in seagrass 
meadows in Queensland, Australia. The method used DL algorithms to classify 
particular grazing behaviors, spatiotemporal filtering to improve accuracy, and 
dense optical flow to evaluate pixel movement in underwater footage (Figure 4). 
DL algorithms were being utilized for analyzing animal behavior from underwater 
videos and the model gave high accuracy in identifying individual grazing events 
when applied to previously unseen video data. The results showed the effective 
combination of spatiotemporal filtering with neural networks to detect grazing 
behavior with greater precision.

Role of AI in Studying Developmental Challenges

AI is being used to enhance animal monitoring and marketing in the agricultural 
setting. There are AI applications that can be beneficial to individual animals 
in addition to the surveillance applications on animals. So, here is an overview 
of how AI technologies are helping in animals’ study and overcoming  
developmental challenges.

	•	 Prediction and Diagnosis of Diseases: Applications of AI have the potential 
to completely change how diseases are predicted and diagnosed in animals, 
improving animal health through better disease management. Applying DL 

(a)(b)
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and AI techniques to automate the analysis process would be very helpful, 
considering the complexity and subjectivity involved in assessing medical 
images, in addition to the challenges that come with working with animals 
(Ahn et al., 2021). 

(a) 

(b) 

Figure 4: (a) The steps involved in developing a deep learning algorithm using images 
and video data from grass meadows in Australia. In the first step, data was collected. 
Then, it was pre-processed. After pre-processing, noise was added to enhance pixel 
intensity. The pre-processed data was split into 70% training, 15% testing and 15% 
validation sets. Then, the model was trained on ResNet50 Neural Network. After 
the training, the results were visualized. (b) Traditional methods of data collection for 

animal research
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	•	 Monitoring and Conservation of Habitats: AI is becoming a potent ally in 
conservation efforts, and this is happening at a time when ecological challenges 
are becoming more complex and there is a pressing need to preserve our natural 
environment and individual biocultural legacies. AI-powered examination of 
ecological data and satellite imagery facilitates tracking animal migration, 
monitoring habitat alterations, and evaluating the effects of human activity on 
wildlife (Ahn et al., 2021).

	•	 Behavioral Analysis: The goal of the developing field of computational animal 
behavior analysis, or CABA, is to use AI methods to assist animal behavior 
analysis. By analyzing data from sensors, videos, and other monitoring 
devices, CABA makes it easier to analyze animal behavior in detail. Many 
scientific disciplines that deal with animals agree that computational methods 
are necessary to help with the ‘objectivization’ and quantification of animal 
behavioral traits. These can spot behavioral patterns and abnormalities 
that might point to illness, stress, or environmental changes (Kumar and  
Jakhar, 2022). 

	•	 Genetic and Evolutionary Studies: AI systems are able to recognize genetic 
markers linked to certain diseases, characteristics, or behaviors, as well as 
analyze genetic data to comprehend the evolutionary relationships between 
species. AI and genetic research work together to successfully unlock the 
inner secrets of ‘beasts’ by utilizing the computational power of ‘bytes’  
(Aithal, 2023). 

Background for Studying Developmental and 
Ecological Challenges

Wildlife monitoring has changed due to the development of wearable sensors 
that can identify individual animals and record their temperature, heart rate, 
and motion. As demonstrated by Branko et al. (2018), drones’ usage, distant 
monitoring, and camera traps has improved the capacity to monitor animal 
movement patterns, population changes, disease transmission, and poaching 
incidents maintaining ethical standards. However, research indicates that these 
wearable technologies may change the behavior of the animals to which they 
are attached as demonstrated by the effects of transmitters on snakes and 
radio tags on birds. However, it presents a big problem for the field because 
it’s critical that monitoring technologies don’t obstruct natural behaviors 
or cause any discomfort to them (Pala, 2012). In addition to improving our 
capacity to observe and comprehend animal behavior, the convergence of AI 
and contemporary technology is also revolutionizing the fields of genetic and 
evolutionary research. For example, AI’s ability to process complex genetic data 
more efficiently than traditional statistical methods opens up new avenues for 
determining the cause of diseases (Jibrila et al., 2020). 
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Current AI Applications in Addressing 
Developmental Challenges

The use of digital technology libraries spans diagnosis, monitoring, predictive 
modeling, and personalized interventions. The current AI applications being 
used in studying developmental challenges are given below.

BLUP (Best Linear Unbiased Prediction)

Concerning breeding animals, the application of AI algorithms with techniques of 
Best Linear Unbiased Prediction (BLUP), improving accuracy and efficiency of 
breeding programs, accordingly provides multiple perspectives on improvement. 
AI is superior in processing large data sets (Gorjanc & Hickey, 2018). This 
ability to classify and separate good milk-generating cows from those which 
are unable to produce relies on the general classification.  AI views two 
considerations as the most vital ones: to ensure the complexity of the genetic 
data is properly managed and the chance for inbreeding is minimized, while 
optimizing genetic possibilities are optimized. The label BLUP or the best linear 
unbiased prediction is a short form for this.  This is a well-designed program 
that assists in understanding who are most expected to hand over meaningful 
characteristics to their offspring. The breeding value is a descriptive measure 
of what an animal is capable of or the extent to which it can pass on desirable 
traits to its offspring (Guo et al., 2023). Dairy cow milk yield assessment, 
BLUP analysis, environmental and genetic effects, as well as cows’ individual 
performances are the purposes of our study.

Data Collection

Five dairy cows (A, B, C, D, and E) and their milking figures from three 
lactations are shown in Table 1. The factors that we considered were the impact 
of environmental means of better farm management practices that is estimated 
to have been increased by 100 liters for each of the cows before the second 
lactation. It means the breed average of milk yields for three lactations are 7,000 
liters, 7,200 liters, while for the next lactation the yield will be 7,300 liters. We 
look at the genetic disparities between the subjects, Cows A and B that are half-

Table 1: Milk yield of five cows over three lactations

Cow Lactation I Lactation II Lactation III

A 7000 7200 7100
B 6800 7000 6900
C 7500 7700 7600
D 7100 7300 7200
E 7300 7500 7400
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sisters because they share the sire with each other, and Cows D and E that are 
another pair of full sisters but have no familial connections with the previous 
pair. Our milk yield is accompanied by a factor of heritability 0.30. For instance, 
doing so, BLUP enables breeding value evaluations in a sophisticated detail that 
accounts not only for environmental issues but also for genetic relationships 
so that one can view who has better genetic effects to milk contribution in the 
given populations.

First of all, we do the environmental adjustment values:

Lactation 2 adjusted yield = Original yield – 100 liters (for all cows)
Lactation 3 adjusted yield = Original yield – 100 liters (for all cows)

Then, we do the calculation for Adjusted Average Yield (given for Cow  
A only):
Adjusted Lactation 1: 7000 (no adjustment needed)
Adjusted Lactation 2: 7200 – 100 = 7100
Adjusted Lactation 3: 7100 – 100 = 7000
Average Adjusted Yield for Cow A: (7000 + 7100 + 7000)/3 = 7033 liters

The adjusted average yield for Cow A is determined to be 7033 liters. Now, 
let’s compute the deviations for Cow A:

Deviation for Cow A = 7033 – 7117 = –84 liters

Calculating the adjusted average yields for other cows as follows:
                              Cow B: 7000 liters
                              Cow C: 7533 liters
                              Cow D: 7233 liters
                              Cow E: 7433 liters

The following are their deviations from the breed average:
Cow B: 7000 – 7117 = –117 liters
 Cow C: 7533 – 7117 = +416 liters
 Cow D: 7233 – 7117 = +116 liters
 Cow E: 7433 – 7117 = +316 liters

The following formula can be used to get the breeding values (BV) based 
on deviations using the heritability of milk yield (h2 = 0.30):

	 Breeding Value = Deviation × Heritability	 (1)

For Cow A,
Breeding Value of A = –84 × 0.30 = –25.2 liters

Using the same formula, the following are the breeding values for other cows:
Breeding Value of B = –117 × 0.30 = –35.1 liters
Breeding Value of C = +416 × 0.30 = +124.8 liters
Breeding Value of D = +116 × 0.30 = +34.8 liters
Breeding Value of E = +316 × 0.30 = +94.8 liters
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In terms of genetic relationships, let’s take the shared genetics between 
cows D and E (full sisters) and A and B (half-sisters) into consideration to ease 
the adjustment. Assume that the breeding values of related cows would have the 
genetic similarity adjustment factor (0.05 for half-sisters and 0.10 for full sisters) 
deducted to account for their increased genetic risk of inbreeding:

Adjusted BV of Cow A = –25.2 – (0.05 × –25.2) = –23.94 liters
Adjusted BV of Cow B = –35.1 – (0.05 × –35.1) = –33.345 liters
Adjusted BV of Cow C remains +124.8 liters (no adjustment as no direct 
relatives included)
Adjusted BV of Cow D = +34.8 – (0.10 × +34.8) = +31.32 liters
Adjusted BV of Cow E = +94.8 – (0.10 × +94.8) = +85.32 liters

Interpretation

Following the incorporation of genetic relationships, breeding value calculations, 
and environmental effect adjustments, we have found that, with a genetic 
potential for milk yield much higher than the breed average, cow C exhibits 
the highest potential. Even after adjusting for her close genetic relationship to 
Cow D, Cow E still exhibits strong genetic potential. As half-sisters, cows A 
and B exhibit a reduced genetic potential for milk yield; based on these crude 
calculations, cow B is the least desirable. This example shows how easy it can 
be to determine breeding values using BLUP, particularly when taking genetic 
relationships, environmental factors, and multiple lactations into account. 

Computerized Mate Selection Programs

Computerized mate selection programs are software tools designed to assist in the 
selection of optimal mating pairs within animal breeding trials. These programs 
maintain genetic diversity and avoid inbreeding by utilizing information about 
genetic data, pedigree data, and occasionally phenotypic traits of animals to 
indicate a crossbreed that will likely provide optimal traits. The main objectives 
of these programs are to guarantee the long-term sustainability of breeding 
populations, improve particular traits of functional or economic importance, and 
improve the genetic quality and health of future generations.

These programs speed up the development of desirable traits like milk 
production in dairy cattle, growth rates in beef cattle, or egg production in poultry 
by making it easier to choose mating pairs that can pass on superior genetics to 
their progeny. For example, inbreeding can reduce fertility, cause immune systems 
to fail, and lead to higher disease in populations. 

Alphamate

AlphaMate is a software tool facilitating modern technologies involving the 
targeted genomic editing for better optimization, meanwhile ensuring the highest 
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protection and ideal breeding selection via genetic map. The data dealing with 
pedigreed or genome-wide markers can be taken care of by AlphaMate. It 
provides the plan from the breeding or conservation goals taking into account 
the difference between plants and animals. 

Computer Vision and Image Analysis

Computer Vision has the ability to analyze a range of data types through 
ML and DL algorithms. These algorithms can use sounds and pictures for 
analysis.  With these analytics, it is evident that the minor developmental 
challenges can be spotted which normally go unnoticed in case, if physically 
observed by humans. 

High performance algorithms have an ability to do data pre-processing and 
they quickly detect patterns, unusual behaviors which can be disease indicators 
or fetal developmental defects. Additionally, the imaging analysis technology of 
veterinary science include those further than stable disease detection and also 
preponed diagnosis provision based on the observation and complication of the 
physiological and behavioral data about an animal that were carried out (Lahoz-
Monfort & Magrath, 2021). 

Results of the Current Applications

The application of AI in studying and addressing developmental challenges in 
animals has led to several significant outcomes:

	•	 Advanced Disease Management: Advanced Neural Networks have made a 
substantial impact on the speed and accuracy of animal diseases detection. This 
has made it possible to take prompt action, prior to stopping the progression of 
developmental problems (Dekkers & Hospital et al., 2002). 

	•	 Effective Habitat Management: Just as important as safeguarding the animals 
themselves is maintaining their natural habitats. AI can guide conservationists 
in their efforts to restore and preserve natural habitats by analyzing ecosystem 
data and identifying areas that require restoration. By protecting or restoring 
their natural habitats, AI has helped to inform more efficient habitat 
management and restoration techniques, which have a positive effect on the 
growth of animal populations (Bendel, 2022). 

	•	 Improved Knowledge of Genetic Factors: Genetic markers linked to 
developmental difficulties have been found through AI-driven genomic 
analyses, opening the door for targeted breeding initiatives and genetic 
interventions to lessen these problems (Roh et al., 2019). 

	•	 Proactive Conservation Efforts: By using predictive modeling, 
conservationists can now foresee and reduce potential developmental obstacles 
in the future, ensuring the long-term survival of species that are at risk  
(Fletcher et al., 2003). 
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Collection of Data for AI Development

Data collection, a subject of ongoing study in various communities, is one of 
the main challenges in machine learning. These days, gathering data is becoming 
more and more important for two main reasons. New applications that may not 
have adequate labeled data are emerging as ML becomes increasingly popular 
(Bass et al., 2007). Secondly, in contrast to conventional ML, DL methods 
produce features on their own, saving labor on feature engineering. However, 
this may necessitate more labeled data. It’s noteworthy to note that the data 
management group, along with the groups of machine learning, natural language 
processing, and image recognition, has contributed to contemporary research in 
data collection since handling huge amounts of data is so crucial.

Traditional Data Collection Techniques
The process of gathering data affects the results of getting, sending, and keeping 
data while conducting any kind of study. According to Fletcher et al. (2003), 
there are two popular ways to gather data: using a pencil and paper record or a 
portable computer with keys. There are advantages and disadvantages to both 
approaches, so researchers need to decide which is best for their particular study 
(Gravlee et al., 2006). Traditional methods of data collection for animal research 
are depicted in Figure 2b.

Paper and Pencil Method

Data recording with paper and pencil is an easy, affordable, and adaptable 
method (Koster, 2006). Recording the names of the particular behaviors on a 
lined notebook paper page and then transferring it to a data sheet was the pen 
and paper technique of data collecting. 

Handheld Recorder

Instead of writing down a lot of various sorts of data, the researcher may input 
information more rapidly when utilizing a handheld recorder to collect data by 
tapping a few buttons on the device (Novak & Riener, 2015). It would be more 
effective if users could identify each of the 25 keys instead of having to label 
five rows and five columns of the program interface. One drawback of electronic 
portable recorders is that users may inadvertently hit the wrong key by mistake. 
Consequently, once the data have been input, it might be challenging to annotate, 
modify, or rectify them if the gathered data are not shown right away. Most 
electronic recorders arrange data such that it may be transmitted straight to a 
spreadsheet on a computer, reducing the possibility of human mistake during 
data transmission. 

Advanced Techniques

Numerous academic subjects have grown greatly as a result of technological 
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advancements like artificial intelligence. This also applies to animal studies, 
where various sensing devices have made data collecting possible. These data 
may be processed by sophisticated computer systems with artificial intelligence 
built in. This enables researchers to pinpoint important behaviors associated with 
sickness detection, assess the animals’ mental states, and even identify specific 
animal identities (Meng et al., 2020). 

Table 2: Comparison between traditional and AI-based methods

Traditional Methods AI-based Methods
Data Collection:
Field observations, manual tracking

Data Collection:
Sensors, Drones, satellite imagery

Data Analysis:
Statistical methods, Hypothesis testing
Accuracy:
Depends on manual precision
Efficiency:
Time consuming, labor-intensive
Scalability:
Limited by human resources and time

Data Analysis:
Machine learning, Deep learning
Accuracy:
Higher precision with large datasets
Efficiency:
Automated, faster processing
Scalability:
Scalable with computing power

Sensor Fusion

A sensor is a device that measures or detects a mechanical, chemical, biological, 
or combination of these properties. It then gathers and records the data so that a 
machine or human can interpret it. Sensor technologies can be categorized into 
types according to the needs of the animal farming market, such as sensors for 
feeding systems and precision milking robots; applications based on species. 
Hardware sensors include motion sensors, pedometers, infrared thermal imaging 
sensors, temperature sensors, RFID (radio frequency IDentification) tags, 
accelerometers, cameras, vision sensors, microphones, and facial recognition 
machines. Multimodal sensor fusion is the process of combining data from 
several sensors to overcome the limits of each sensor alone (Frazier et al., 
2023). Data collected from various sensors that are attached with animal bodies 
is recorded and analyzed by using AI algorithms (Figure 5). 

AI as Genome Informant

The term genome informant, in theory, may refer to any program, information, 
or data source that advances the knowledge of the genome. This could include 
tools, processes, databases, or scientific discoveries that shed light on the 
genetic composition, variations, and functional features of genomes in various 
organisms. For example, genome sequencing technologies and bioinformatic 
tools may be regarded as “genome informants” because of the enormous volumes 
of data they produce and evaluate, which contribute to our comprehension of  
genetic information.

(a)(b)
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AI acts as a guide by driving the enhancement of gene sequencing 
technologies and bioinformatic tools with high power to elucidate associated 
developmental problems offering increased accuracy, high precision and more 
in-depth genomics analysis. The databases that collect genetics and annotations 
of genes serve as resources by the scientists and medical practitioners dealing 

(a) 

(b) 

Figure 5: (a) Different types of wearable sensors are integrated with animal bodies in order 
to monitor their behavior and biochemical markers. The data from these sensors is recorded 
and AI algorithms are applied on the collected data for advanced analysis and study. 
The data helps the researchers for timely interventions in the developmental processes.  
(b) Figure shows the steps involved in GWAS. First of all, the target population is 
analyzed. Then, the sample is collected from this population. The samples are sequenced 
using advanced molecular biology techniques. The data from these techniques is collected 
and imputation is done by sequencing the missing genes. At last, the data is analyzed for 

predictions and interventions
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with the future of genomics and other related fields. In this genetic approach, 
the connection between genetic and ecosystem data is optimized to have a 
comprehensive understanding. Besides improving the analytical procedures by 
multimodal integration, AI algorithms have been used to disclose the genetic 
roots of developmental disorders. 

Use of AI in Decoding Genetic Components for 
Developmental Problems

An observational investigation of a genome-wide set of genetic variants in 
various individuals is called a genome-wide association study (GWA study, or 
GWAS) in genomics to determine whether any variant is connected to a trait. 
Thousands of loci linked to disease have been found through GWAS, but many 
of the loci still need to have their molecular mechanisms investigated. Following 
GWAS, it makes sense to analyze these genetic relationships to comprehend the 
etiology of the disease (GWAS functional studies) and apply this understanding 
to animal care (GWAS translational studies). Despite the development of 
numerous functional genomics-based datasets and methodologies to aid in these 
investigations, substantial obstacles still exist because of the high dimensionality, 
multiplicity, and heterogeneity of the data.

While single-nucleotide polymorphisms (SNPs) and characteristics such as 
significant human diseases are the usual focus of GWA studies, the technique may 
be for various genetic variants and other organisms. AI is being used in decoding 
the genetic components for developmental problems by the methods given.

Sequence Assembly and Correction

The accuracy and efficiency of sequence assembly and correction which are 
essential for comprehending the genetic components that contribute to animal 
developmental problems are greatly increased by the use of AI technologies. 
Utilizing the massive amounts of information produced by transcriptomic and 
genomic projects (RNA sequencing and genome sequencing, for example), 
functional genomics makes use of these resources. 

Instead of concentrating on the static components of hereditary data, like 
DNA sequence or structures, functional genomics focuses on the dynamic 
aspects, such as gene transcription, translation, regulation of gene expression, 
and protein–protein interconnections. 

Practical genetic makeup has benefited from the implementation of two 
significant deep architectures, yielding highly significant scientific results. 
An entirely autonomous stand-alone programme called DeepBind is used 
to predict the sequence specificities of DNA and RNA binding proteins. 
DeepSEA (DL-based sequence analyzer) predicts the chromatin effects of 
sequence modifications with single-nucleotide resolution by learning regulatory 
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sequences from large amounts of chromatin-profiling data. Accurate genomic 
sequences are crucial in the context of developmental challenges because they 
enable the identification of genetic variants and mutations that may cause 
diseases or abnormalities in animal development (Gouda et al., 2022). Both 
deep architecture-based approaches have successfully surmounted numerous 
obstacles, including processing millions of sequences, integrating data from 
various sources, tolerating noise and absence of data, and achieving end-to-
end, fully automatic learning having no requirement for manual tuning. These 
strategies work more efficiently than other cutting-edge techniques, inspiring 
numerous scientists to pursue equally fascinating avenues.

Gene Prediction and Annotation

Finding the genomic DNA regions that encode genes is known as gene finding 
or gene prediction in computational biology. This covers both RNA and protein-
coding genes, and it might also include predicting other functional components 
like regulatory regions. Once a species’ genome has been sequenced, one of the 
first and most crucial steps in understanding it is finding its genes. CNNs can 
handle genomic sequences as sequences of patterns, recognizing and deciphering 
the different genetic elements like exons, introns, and regulatory regions, despite 
the fact that genomic sequences are not visual in nature (Liu et al., 2021). 

DL algorithms have transformed the fields of gene annotation and prediction 
in genomics. DeepGene, a gene annotation tool that makes use of convolutional 
neural networks (CNNs), a class of DL models, particularly trained at identifying 
patterns in visual data, is one prominent illustration of this AI-driven approach 
in genomics. Procedure involved in conducting GWASs is shown in Figure 5.

Introduction of Multi-modality for Advanced 
Examination

Diagnostic and therapeutic radiography were the only imaging modalities 
available in veterinary medicine for obtaining an image during the diagnosis 
process. Unfortunately, radiographs only show an organ’s shadow and don’t 
provide much detail about the anatomical structures inside. While endoscopy is 
a particular method that offers full-color views of body tissues, when it became 
available, ultrasonography gave veterinarians a better imaging option. 

Multi-modality can also help us understand how different species’ 
developmental processes interact in the larger framework of developmental studies 
(Figure 6) (Oren, 2021). 

Integration of Genomic Data and Ecological Data 

The integrative field of ecological genetics aims to establish a connection 
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between population hereditary characteristics, such as population contrast, 
demographic background, and adaptive hereditary changes, and changes in 
environmental or phenotypic variables. Different types of analyses, including 
comparative analyses, association studies, and landscape genetics, are based on 
the same principle, which is to quantify the interaction between an ecological 
and genetic dataset. 

Ecological genetics is evolving from primarily population-level summaries 
to ecosystem-wide and individual-based analyses as instrumentation and genomic 
data become more readily available in large numbers of individuals. AI algorithms 
can identify environmental factors that trigger or exacerbate genetic vulnerabilities 
leading to developmental problems by analyzing ecological data, including habitat 
characteristics, exposure to pollutants, and diet, in conjunction with genetic data. 

A natural extension of long-standing work in ecological genetics is the 
integration of genomic data with sophisticated animal instrumentation, and (Shafer 
et al., 2016) offers a framework for connecting the disparate data streams from 
these platforms (Zheng et al., 2022).

AI in Habitat Evaluation and Management
AI can improve the efficiency and hence the outcome of habitat evaluation and 
management which can help to overcome the development challenges faced by 
the animals. This way it matches the process carried out by the human brain, 
becoming more exact and comprehensive than all the other techniques.

Figure 6: This figure shows the importance of multi-modality through the fusion of AI, 
ecological genetics, and GWAS in detecting the target gene or cell for each type of disorder, 

which can be genetic or environmentally induced.
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Predictive Modeling for Habitat Quality

In ecology, the creation of predictive habitat distribution models has surged with 
the advent of new, potent statistical methods and GIS tools. AI-based predictive 
modeling is a new approach in environmental science, especially for habitat 
quality and conservation research. Since these models statistically relate the 
geographic distribution of species or communities to their current environment, 
they are static and probabilistic in nature. Numerous models have been created 
to address a wide range of topics, including habitat or species management, 
biogeography, conservation biology, and research on climate change. Scientists 
can process and analyze enormous volumes of environmental data to forecast 
future changes in habitat conditions by utilizing AI algorithms. 

The objectives of the study should be the main factor in selecting an evaluation 
measure. This could result in assigning varying weights to distinct categories of 
prediction errors, such as omission, commission, or confusion. Determining the 
range of applications for which the model predictions are appropriate will be 
made possible by testing the model in a larger variety of scenarios (both in space 
and time). Consequently, rather than relying solely on statistics, the model’s 
qualification is largely determined by the study’s objectives, which establish the 
model’s usability and the qualification criteria (Li et al., 2018).

Analyzing Animal Behavior and Needs

Understanding the complex behaviors and spatial requirements of different 
animal species has become easier due to the incorporation of machine learning 
models into wildlife conservation techniques. Through the analysis of data 
gathered from GPS collars and other tracking devices, scientists are now able 
to learn more about the critical behaviors, habitat preferences, and movement 
patterns of wild animals.

There is an increasing prevalence of wearable devices that utilize the Inertial 
Measurement Unit (IMU) sensor technology. For instance, it can help with the 
evaluation of production performance and the automated behavior classification 
of grazing sheep (Stern et al., 2015). 

Intelligent Animal Monitoring System (IAMS) 

Tsinghua-Qingdao was the main developer of the Vector Intelligent Monitoring 
System (VIMS), also known as Intelligent Animal Monitoring System (IAMS). 

The recording with various variables are sent distantly and in an instant 
through the transport layer to the platform layer following collection and 
preprocessing of the animal image data by the intelligent terminal method  
(Arshad et al., 2022). 
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AI-Driven Intervention Strategies

AI can be utilized to develop interventions that are tailor-made for certain needs, 
modeling through foresight to infer such behaviors and outcomes, and improving 
delivery of the interventions to increase their efficacy and effectiveness.

AI-based Intervention Strategies

AI-based intervention strategies are especially effective where traditional 
methods might not be sufficient. These tactics frequently include the following 
elements:

	•	 Data Analysis and Pattern Recognition: AI algorithms leverage current 
data to create prediction models that assess habitat suitability and species 
distribution. Planning conservation interventions and identifying high 
conservation priority areas are made easier with the help of this information 
(Travers et al., 2019). 

	•	 Predictive Modeling: By evaluating ecological data and suggesting suitable 
restoration methods, AI aids in the restoration of ecosystems. The efficiency 
and efficacy of conservation efforts can be increased by using AI algorithms 
to optimize interventions like invasive species management and reforestation 
(Wood et al., 2018). 

Cases of Application of the AI Approaches in the 
Planning and Performing Interventions

	•	 Conservation of Habitats: AI has been utilized to map and track habitats, 
pinpointing those most vulnerable to human activity or climatic shifts. The 
establishment of protected areas and the rehabilitation of degraded habitats can 
both benefit from this information. AI analysis of satellite photos, for instance, 
can spot patterns in deforestation and direct actions to stop the loss of habitat 
for some animal species (Pedro et al., 2019). 

	•	 Protection of Wildlife: To stop poaching, AI-driven interventions are being 
employed. In order to forecast the likely location of the next poaching incident, 
predictive AI models examine historical data on poaching incidents and patrol 
routes. In this way, wildlife rangers can maximize the routes they patrol and 
stop poaching incidents before they happen (Bao & Xie, 2022). 

	•	 Disease Control in Animal Populations: AI models forecast disease outbreaks 
in livestock and wildlife, allowing for preventative action. AI has been used, 
for example, to track and forecast the spread of avian influenza, directing 
immunization efforts and other countermeasures against large-scale outbreaks.

	•	 Genetic Conservation: To maintain the long-term survival of species, AI-
driven genetic analysis assists in identifying genetic bottlenecks and other risks 
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in endangered populations. This information is then used to guide breeding 
programs and other genetic interventions (Neethirajan, 2024). 

Challenges and Limitations of AI in Ecology

There are certain challenges and limitations associated with AI technologies that 
can impact animals. AI systems used in chicken manufacturing facilities are 
made to recognize information about the birds and their surroundings, change 
the birds’ surroundings, and ultimately improve their quality of life. Human-
targeting lethal autonomous weapons have sparked intense discussion both 
inside and outside of the AI ethics community. Drones, however, also target 
animals, particularly those that some people consider to be ‘invasive’ or ‘pests’ 
(Chatelain and Konar, 2015). For instance, an organization in New Zealand 
named Aeronavics is creating a completely autonomous drone that can locate 
possums, an Australian native mammal that is protected, but is seen as a feral 
species that is detrimental to New Zealand’s forests, and then release poisons to 
eliminate them. Although there aren’t many animals affected by AI technology 
intended to eliminate undesired wild creatures right now, these technologies have 
the potential to expand over the world. To make sure that its progress adheres 
to moral guidelines, it must be closely examined. For example, if shooting is 
determined to be essential for killing, the animal’s head should be shot, not its 
body, as this might cause the animal to die slowly (Frankham, 2010). 

Conclusion and Future Prospects

AI has transformative possibilities for studying and treating developmental 
issues in animals in the future. With the use of artificial intelligence technology, 
livestock farmers can now greatly improve the welfare of their animals. It is 
essential for their product quality as well as from an ethical and legal perspective. 
It’s now easier than ever to monitor the living conditions of the animals and 
identify any anomalies that could endanger them, possibly with the help of smart 
technology and state-of-the-art software. Livestock farmers have the ability to 
mitigate the adverse environmental impacts of their industry and discontinue 
dubious, unethical, and non-sustainable practices. 

Data entry into farm records, farm activity monitoring, economic performance 
analysis, animal health improvement, and soil fertility enhancement are all made 
easier by AI. Through the integration of knowledge from these fields, scientists 
are able to construct comprehensive AI models that consider the complex aspects 
of animal development.AI is generally a boon for increasing production and 
efficiency while reducing the likelihood of human error. 

There are a few disadvantages as well, like the cost of development and the 
possibility that automation will eventually replace them. It’s crucial to keep in 
mind, though, that the AI industry has the potential to create jobs, some of which 
are still unimagined. Consequently, problems include unemployment, the high 
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cost of technology such as drones which can be costly to develop, assemble, and 
maintain, as well as the substantial volume of data required to train AI.
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Forest health can be defined as the integration of ecological indicators of forest 
condition and function, which are executed at various geographical scales. 
Humans rely on healthy forests for energy, construction materials, food, as well 
as functions like carbon storage, biodiversity, climate regulation, and, more 
importantly, oxygen generation. Although natural forests are acclimated to 
some degree of disturbances, all forests are currently facing new pressures from 
climate change. Artificial Intelligence (AI) technologies can play a crucial role 
in managing a protected area as they facilitate tasks such as image classification, 
object detection, species identification, counting individuals, species segregation 
etc. Big data management of forest ecology relies heavily on camera traps for 
studying animal behaviour and estimating density. Camera traps powered by AI 
can automatically capture and analyze images of wildlife, aiding researchers 
in tracking and identifying species in their natural habitats. Satellite imagery, 
combined with AI, is employed to detect deforestation, illegal logging, and 
habitat changes, facilitating timely conservation interventions. Predictive 
modelling, specifically species distribution models, assists conservationists in 
efficiently allocating resources and planning habitat restoration by predicting 
the distribution of various species across space and time. The technology 
also enables behavioural analysis, detecting mating, predation, and social 
interactions. Population estimation benefits from AI by analyzing the number 
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of individuals in camera trap images, contributing to population models. Habitat 
assessment is also improved by image processing for habitat quality and changes 
over time. This is crucial for maintaining the ecosystem’s health and balance, 
particularly in the presence of key predators like tigers, leopards, wild dogs, 
and clouded leopards. Further, AI-equipped drones and sensor networks are 
deployed to detect and track poachers in protected areas, enabling authorities 
to respond swiftly to potential threats. In addition, AI is utilized for predicting 
the distribution of amphibians through the analysis of audio data from remote 
microphones, enabling researchers to monitor species that are challenging to 
observe visually. This chapter aims to discuss the different AI technologies 
contributing significantly to the effective management of protected areas, 
particularly to ensure the health and sustainability of forests. 

Introduction

Forest ecosystems sustain their complexity while providing for human needs. 
Traits like diverse species composition, including both native and non-native 
plants and animals are the constituent elements of a forest ecosystem. A balanced 
structure with trees of different ages and sizes provides a habitat for a wide range 
of wildlife (Smith et al., 2009). A dynamic forest ecosystem has its resilience 
to natural disturbances, and efficient nutrient cycling and contributes to water 
regulation and purification, crucial for both ecosystems and human communities. 
Furthermore, healthy forests serve as a contributor towards different resources 
including significant carbon sinks, storing and sequestering carbon dioxide, 
thus mitigating climate change impacts. Lastly, they demonstrate resistance to 
invasive species, maintaining the balance of ecosystem dynamics and supporting 
sustainability (U.S. Forest Service, 2012).

“Ecological integrity” provides a useful framework for ecologically based 
monitoring and can provide valuable information for assessing ecosystem 
conditions and management effectiveness (Tierney et al., 2009). Monitoring 
and managing forest health is imperative for sustaining ecological integrity, 
preserving biodiversity, and ensuring the continued provision of ecosystem 
services essential for human well-being. By understanding and maintaining forest 
health, sustainable resource management practices can be promoted that support 
not only the health of forests themselves but also the interconnected ecosystems 
and communities that depend on them. In recent years, forest pathology has 
gained significant importance in the changing world making it necessary to 
provide an update of recent literature (Pautasso et al., 2015). It provides crucial 
ecosystem services necessary for human well-being, including clean air and  
water, carbon sequestration, climate regulation, soil erosion control, and 
recreational opportunities. 

Ensuring forest health is vital for sustaining these services. Moreover, forests 
play a significant role in mitigating climate change by sequestering carbon dioxide 
from the atmosphere and storing it in biomass and soils. Healthy forests are more 
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effective at carbon sequestration, helping to offset greenhouse gas emissions and 
mitigate climate change impacts. Furthermore, forests contribute to economic 
prosperity through industries like timber production, ecotourism, and non-timber 
forest products. Healthy forests support sustainable economic activities and 
livelihoods while also providing valuable ecosystem services.

Lastly, forests hold cultural and spiritual significance for many indigenous 
and local communities worldwide, providing habitats for traditional practices, 
ceremonies, and spiritual connections to nature. Furthermore, forests positively 
impact human health by reducing stress, improving mental well-being, and offering 
opportunities for recreation and physical activity. Overall, maintaining forest health 
is essential for sustaining ecosystems, supporting biodiversity, mitigating climate 
change, and promoting human well-being and socio-economic development.

Planted forests are increasingly threatened by insects and microbial pathogens, 
which are introduced accidentally and/or have adapted to new host trees (Wingfield 
et al., 2015). Among both forest practitioners and the general public, “forest 
health” has become an issue of contention. Whereas the debate over which 
treatments will best achieve healthy forests has been framed largely by the popular 
media and politicians as a struggle between industry and environmentalists, the 
views of the general public remain unexplored (Abrams et al., 2005). Found a 
higher number of multipurpose and preferred species than in the ‘conservation’ 
forest, which responded to the needs of the community in the long term to have 
more wood products (both firewood and timbers) (Kijtewachakul et al., 2004). 
Forest health is under threat from various factors such as deforestation, climate 
change, invasive species, pests, diseases, pollution, overexploitation, and fire 
suppression. Over the past 50 years, human agents of deforestation have changed 
in ways that have potentially important implications for conservation efforts 
(Rudel et al., 2009). 

Climate change exacerbates these issues by increasing the frequency and 
intensity of wildfires, droughts, storms, and pest outbreaks, disrupting ecosystem 
dynamics and reducing resilience. Invasive species, including plants, animals, 
insects, and pathogens, can outcompete natives, alter habitats, and exacerbate 
vulnerability to pests and diseases. Pests and diseases like bark beetles and fungal 
pathogens also pose significant threats by causing tree mortality and ecosystem 
changes. Addressing these threats necessitates integrated approaches involving 
sustainable land management, conservation, policy interventions, community 
engagement, and scientific research to enhance the resilience and sustainability 
of forest ecosystems.

Maintaining Forest Health: Shift from Traditional 
Method to Big Data Methods 

The shift from traditional methods to big data techniques is transforming 
forest health management (Raihan, 2023; Budnik et al., 2023; Sun & Scanlon, 



196 │ Artificial Intelligence and Animal Ecology: A Review

2019; Kourtz, 1990). Big data leverages remote sensing (Peterson et al., 1999), 
artificial intelligence (AI) (Zulfiqar et al., 2021), and predictive modelling 
(Chavan et al., 2018) to monitor forests comprehensively and predict threats 
like disease outbreaks (Trumbore et al., 2015) and habitat loss (Liff et al., 1994). 
This transition offers more efficient and data-driven solutions for preserving 
biodiversity and safeguarding the long-term health of forests. 

Limitations of Traditional Method

Traditional non-AI methods of forest health management mostly rely on manual 
inspection and monitoring (Liff et al., 1994). With recent advancements in 
technologies, monitoring methods evolved towards remote sensing technologies 
(Barka et al., 2018; Lausch et al., 2017), such as aerial photography (Backsen 
& Howell, 2013), satellite imagery (Wang et al. 2010), and Light Detection and 
Ranging (LiDAR) (Wulder et al., 2008). These services can provide valuable 
data for assessing forest health over large areas; however, there are various 
limitations associated with traditional methods. Traditional methods rely heavily 
on foresters and field workers for manual inspections. This approach can be 
effective in identifying visible signs of stress, such as pest infestations or disease 
outbreaks. Again, a human intervention always gives a better understanding 
of a situation in practice. However, it is often labour-intensive (Zhang et al., 
2019), time-consuming (Wang et al., 2019), and limited in scale (Rahimi et 
al., 2021). Covering large forested areas thoroughly is challenging, leading 
to gaps in monitoring and delayed response to emerging threats. The labour-
intensive work can be minimized using smart monitoring systems like remote 
monitoring (Torres et al., 2021; Kamaruidzaman and Rahmat, 2020; Lechner et 
al., 2020). However non-AI remote monitoring systems also require technical 
expertise to interpret remote sensing data to distinguish between various types 
of vegetation, detect subtle changes in forest conditions, and correlate them with 
potential stressors (Bravo-Oviedo et al., 2020). This is also required for systemic 
silviculture (Puettmann et al., 2015; Goodchild, 1991). This means long hours 
of work, which affects human work efficiency. This issue can be resolved 
using AI-driven monitoring, where the area of interest can be identified by an 
AI algorithm. Then an expert can manually monitor the selected portion only, 
increasing the work efficiency of manpower in forest departments. A commonly 
used traditional method of keeping records for mapping forest resources is the 
Geographic Information Systems (GIS) (Wieczorek & Delmerico, 2009; Store 
and Jokimäki, 2003). This is useful in assessing habitat suitability (Chambers, 
2006), and planning animal conservation (González et al., 2011). GIS can provide 
valuable insights into forest composition, structure, and distribution, they rely on 
accurate input data and assumptions about ecological processes. Inaccuracies in 
inventory data, incomplete coverage, and outdated information can undermine 
the effectiveness of management decisions based on GIS analysis (Sisodiya et 
al., 2020). Human error can be reduced in the GIS system with an AI-driven 
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automatic update system. While non-AI approaches have proven useful in forest 
management for ages, they frequently need tremendous human effort, skill, and 
resources to be effective. Furthermore, they may struggle to manage complex, 
dynamic, and linked ecological issues like climate change, invasive species, 
and habitat loss. Integrating AI and machine learning (ML) technology into 
existing forest management techniques may supplement traditional approaches 
by offering real-time monitoring, predictive analytics, and data-driven decision 
support, ultimately improving forest ecosystem resilience and sustainability.

Advantages of AI-powered Solution over Traditional Methods

AI offers several advantages over traditional methods in maintaining forest 
health. Where non-AI deeply relies on human expertise, AI-driven techniques 
depend on data and data only. AI-powered systems can analyze vast amounts 
of data from various sources such as satellite imagery (Reckling et al., 2021), 
drone images (Serrano et al., 2022), LiDAR (Sakr et al., 2011), weather patterns 
(Nikhilesh et al., 2023), and sensor networks (Fuentes & Tongson, 2021; Yu 
et al., 2021) to detect early signs of diseases and pest infestations in forests. 
This technology is useful for taking early action to prevent widespread damage 
(Liu et al., 2021). Apart from early detection, predictive action can also be 
achieved using AI-driven systems. AI algorithms can analyze historical data on 
forest health, including factors like climate conditions, species composition, and 
past disease outbreaks, to make accurate predictions about future threats. This 
predictive capability allows forest managers/workers to implement proactive 
measures to mitigate risks and preserve ecosystem balance.

AI can enhance remote sensing technologies to monitor forests in real time 
with high precision (Minakshi et al., 2020). Drones equipped with AI algorithms 
can identify changes in vegetation health (Haq et al., 2024), detect illegal logging 
activities (Hernández et al., 2021), and assess the impact of natural disasters 
(Mühling, 2023) more efficiently than traditional ground surveys. This can 
reduce significant human effort and enhance efficiency in forest monitoring. 
The precision forestry techniques by analyzing data at a small level minimize 
resource wastage and ecological disruption while maximizing the economic 
yield of forestry operations. AI-based decision support systems can assist forest 
officials in making informed decisions by synthesizing complex datasets and 
recommending the most effective management strategies (Tien, 2017). These 
systems consider multiple variables simultaneously, leading to more holistic and 
adaptive management practices. 

Along with these benefits, AI systems can adapt and learn from ongoing 
monitoring and feedback, continuously improving their predictive accuracy and 
decision-making capabilities (Elavarasan & Vincent, 2020). This adaptability is 
particularly valuable in dynamic environments where forest conditions change 
rapidly due to factors like climate change and human activities. Reinforcement 
Learning (RL)-based systems also discover new ways to maintain forest health 
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(Wu et al., 2021). The use of AI is to assist humans only to improve human 
efficiency and not replace humans. AI offers a suite of tools and techniques 
that empower forest managers to monitor, analyze, and respond to forest health 
challenges more effectively than traditional methods. By using AI, the resilience 
and sustainability of forest ecosystems can be enhanced for future generations. The 
role of AI in practice with forest monitoring is described in the subsequent section.

Role of AI in Maintaining Forest Health

The role of AI in maintaining forest health is increasingly significant due to its 
ability to process large amounts of data, identify patterns, and make predictions. 
The role of AI in different applications in forest monitoring is detailed in the 
following points: 

	(a)	 Early Detection of Diseases and Pests: AI-powered systems play a vital role 
in analyzing satellite imagery and drone footage to detect signs of diseases, 
pests, or other stressors in forests (Gonzalez et al., 2016; Paters et al., 2020; 
Ye et al., 2022; Knebel et al., 2022; Pal et al., 2023). By recognizing subtle 
changes in vegetation patterns or colour, AI algorithms can identify potential 
outbreaks much earlier than traditional methods, allowing forest departments 
to take protective measures to reduce the disease or infestation. ML/DL 
can analyze historical data on forest health, including factors like weather 
patterns, soil composition, and previous disease outbreaks, to develop a 
prediction of disease (Nova, 2023). These models can forecast future changes 
in forest health, allowing managers to pre-emptively allocate resources and 
plan interventions to prevent or mitigate potential threats. Thus, AI can assist 
forest officials in making informed decisions. Further, AI-based decision 
support systems can consider multiple variables and scenarios to recommend 
the most effective strategies for maintaining forest health while balancing 
ecological, economic, and social objectives.

	(b)	 Monitoring Environmental Conditions: AI algorithms can process data 
from various sensors deployed in forests to monitor environmental conditions 
such as temperature, humidity, soil moisture, and air quality (Rahardja, 2022; 
Folliot et al., 2022). By continuously analyzing this data, AI can help identify 
factors contributing to forest stress, such as drought or pollution, enabling 
forest managers to implement targeted interventions to maintain ecosystem 
health (Chisom et al., 2024). AI technologies can analyze data from wildlife 
cameras (Nitoslawski et al., 2021) and acoustic sensors (Kucera & Barrett, 
2011) to monitor biodiversity in forests. By identifying species presence, 
population trends, and habitat preferences, AI can help assess the overall 
health of ecosystems and identify areas in need of conservation efforts. 
AI-powered systems equipped with remote sensors and cameras can detect 
wildfires in their early stages by analyzing smoke patterns, heat signatures, 
and other relevant data. Additionally, AI algorithms can assist in predicting 
the spread of wildfires based on factors like wind speed, terrain, and fuel 
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moisture content, enabling more effective deployment of firefighting 
resources and evacuation efforts.

	(c)	 Forest	 Inventory	and	Management: AI-powered systems can streamline 
forest inventory processes by analyzing remote sensing data to estimate tree 
species, density, height, and biomass. Software like AID-FOREST (Artificial 
Intelligence for Digital Forest) (Welbourne et al., 2016) can process point 
clouds obtained via mobile terrestrial laser scanning (MTLS) and then, 
deliver a collection of many valuable as well as precise dendrometric and 
forest stand parameters (Bhatt et al., 2022). This information is crucial for 
sustainable forest management practices, such as planning timber harvesting 
operations, monitoring carbon sequestration, and assessing habitat suitability 
for wildlife.

	(d)	 Adaptive Management: AI-driven monitoring systems can continuously 
learn from new data and feedback, allowing for adaptive management 
strategies that evolve in response to changing environmental conditions 
and emerging threats (Stančić et al., 2022). By incorporating real-time 
information into decision-making processes, AI helps optimize resource 
allocation and maximize the resilience of forest ecosystems. By leveraging AI, 
forest managers may improve their capacity to protect biodiversity, alleviate 
hazards, and promote the long-term sustainability of forest ecosystems (Liu et 
al., 2024). In the next section, key techniques and tools used for maintaining 
forest health are discussed. 

Key Techniques and Tools

The key AI tools employed in forests include AI-powered camera traps, AI-
equipped drones, forest audio data analysis, and satellite imagery. Figure 
1 represents the basic workflow of AI tools, which are discussed in the  
subsequent sections.

AI-powered Camera Traps

A camera trap is a camera that is automatically activated by motion in its 
area, such as the presence of an animal or a person. It is frequently equipped 
with a motion sensor like a passive infrared (PIR) sensor or an active infrared 
(AIR) sensor employing an infrared light beam (Alzuhair & Alghaihab, 2023; 
Maharajan et al., 2024). Camera traps have transformed the way ecologists 
investigate animal species distributions, activity patterns, and interspecific 
interactions (Bilski et al., 2017). Although video traps are an inexpensive way 
to monitor species, the time required for data processing might restrict survey 
efficiency. Thus, the potential of AI, notably DLg, to handle camera-trap data 
has received a lot of interest. To automatically recognize items and categorize 
species, DL applications use training techniques such as Convolutional Neural 
Networks (CNNs) (Sharma et al., 2023). The workflow of AI-powered camera 
traps is discussed in the following section. 
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The first stage involves deploying a camera trap. An appropriate location 
was selected based on ecological qualities, wildlife migration patterns, and 
conservation goals. Placement of the camera traps needs to ensure that they are 
securely placed and positioned to record a wide range of views. Camera traps 
are equipped with motion sensors that trigger image or video capture when 
movement is detected within the camera’s range. A definite parameter is set such 
as capture frequency, duration, and resolution to optimize data collection while 
conserving power and storage capacity. Captured images or videos are stored 
locally on the camera trap device or transmitted wirelessly to a central database 
or cloud storage. Gather metadata such as timestamps, Global Positioning System 
(GPS) coordinates, and environmental conditions (e.g., temperature, humidity) 
to contextualize the captured data. The acquired data then needs preprocessing 
to remove noise, false positives, and irrelevant images or videos to improve 
the accuracy of subsequent analysis. To enhance image quality, adjust lighting, 
and correct distortions to facilitate accurate species identification. This step 
usually follows an AI model for adaptivity. The improved image is then used 
to recognize and classify species present. For this, at first AI algorithms need to 
be trained on vast datasets of animal images. Supervised ML methods such as 
multilayer perceptron (MLP) (Murariu et al., 2017) are widely used to identify 
and categorize animals present in the captured images or videos. To distinguish 
between individual animals based on unique features such as markings, scars, or 
physical characteristics more efficiently DL methods like CNN (Himeur et al., 
2022) can be employed. The animal behaviour patterns and interactions within 

Figure 1: Key AI techniques and tools for maintaining forest health: AI-powered camera 
traps, AI-equipped drones, audio data, and satellite imagery.
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the captured footage are analysed to gather social dynamics, foraging strategies, 
and habitat preferences. Usually analyzed data are integrated into centralized 
databases or management systems for easy access, retrieval, and sharing among 
scholars and conservationists. Visualizations in heat maps, species distribution 
maps, and trend graphs are created automatically to present findings and aid 
decision-making. AI-driven the system to send alerts or notifications when specific 
species of interest are detected, enabling rapid response to conservation threats 
or emergencies. The AI-driven system also generates comprehensive reports 
summarizing key findings, trends, and conservation implications for stakeholders, 
funding agencies, and policymakers. AI algorithms get refined with time-based 
feedback and new data to enhance species recognition accuracy, reduce false 
positives, and improve overall system performance.

AI Equipped Drones

AI-equipped drones combine the capabilities of unmanned aerial vehicles (UAVs) 
with AI algorithms to perform a variety of tasks ranging from surveillance and 
monitoring to delivery and disaster response (Villa et al., 2009; Mohapatra & 
Trinh, 2022). The first step of a drone system, mission planning takes precedence. 
The objectives of the mission, be it surveillance, mapping, or delivery, are 
meticulously determined. The area to be covered and any specific points 
of interest are carefully considered, and a flight path is planned, considering 
factors such as terrain, obstacles, and regulations. Ensuring the drone’s proper 
working condition, including checking battery levels, propeller integrity, and 
sensors, is imperative. Verification of all required equipment, such as cameras 
or sensors, functioning correctly is conducted. Weather conditions and other 
environmental factors that may impact the flight are assessed. The drone is 
then launched, either manually or through automated take-off procedures, with 
confirmation of its airborne and stable status before proceeding with the mission. 
The predefined flight path is executed while adjusting for real-time obstacles or 
changes in conditions, utilizing GPS and other navigation systems to maintain 
position accuracy. Images, videos, or other sensor data are captured as specified 
by the mission objectives, using onboard cameras, LiDAR, thermal sensors, or 
other specialized equipment to gather relevant information. The collected data is 
processed onboard the drone using AI algorithms in real-time, performing tasks 
such as object detection, tracking, or environmental analysis to extract actionable 
insights. Decisions are made based on the analyzed data, such as adjusting the 
flight path or prioritizing specific areas of interest, with relevant information and 
updates transmitted to ground control stations or remote operators. Data exchange 
with other drones or systems participating in the mission occurs, if applicable. 
Evaluation of the collected data and analysis results is undertaken to verify 
accuracy and completeness, identifying any anomalies or areas requiring further 
investigation. Insights are extracted, and reports are generated to inform decision-
making or planning for future missions. Navigation of the drone to a designated 
landing area is carried out, followed by a controlled landing, either manually 
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or through automated landing procedures, ensuring the safety of the drone and 
surrounding personnel or infrastructure. Post-flight maintenance checks and 
inspections are conducted to ensure the drone is ready for subsequent missions, 
with collected data securely transferred and stored for further analysis or archival 
purposes. Debriefing personnel involved in the mission and documenting any 
lessons learned or recommendations for improvement concludes the process. 
Through adherence to this workflow, AI-equipped drones can effectively execute 
a wide range of tasks with efficiency, accuracy, and adaptability, rendering them 
invaluable tools across various industries and applications.

Audio Data

Audio data are very useful for biodiversity assessment for small life which are 
hard to detect with camera traps (Mohan et al., 2021; Hino et al., 2018; Rakova 
& Winter, 2020). Deploying audio recording devices such as microphones or 
acoustic sensors in the forest area of interest, strategically placing them to 
cover a wide area and capture a variety of sounds. Metadata collection entails 
gathering information such as location, date, time, and environmental conditions 
(e.g., weather, temperature) during recording to contextualize the audio data. 
Non-biological noises like wind, rain, or anthropogenic sounds (e.g., vehicles) 
are filtered out from the raw audio recordings to focus on biological sounds. 
Subsequently, the audio recordings are segmented into smaller segments (e.g., one-
minute clips) for easier processing, and relevant features are extracted, including 
spectral features (e.g., frequency, amplitude), temporal features (e.g., duration, 
timing), and statistical features (e.g., mean, variance) to characterize different 
sounds. Segments of audio data are manually labelled with the corresponding 
species or events (e.g., bird calls, frog calls, animal vocalizations, insect sounds). 
Data augmentation techniques such as pitch shifting, time stretching, or adding 
background noise are applied to enhance the training dataset’s diversity and 
robustness. An appropriate AI model architecture for audio analysis tasks, such 
as CNNs, recurrent neural networks (RNNs), or transformer-based models, is 
selected (Delaney & Larson, 2023). The selected AI model is trained using the 
annotated audio data and extracted features to recognize patterns and classify 
different sounds based on provided labels. The performance of the trained model 
is assessed using validation datasets not seen during training, with metrics such 
as accuracy, precision, recall, and F1-score commonly used for evaluation. The 
trained AI model is deployed to analyze new audio recordings in real-time or 
batch processing mode, integrated into a forest monitoring system or platform 
for automated sound analysis and species detection. Model outputs are analyzed 
to interpret results, such as species presence/absence, abundance estimation, or 
biodiversity assessment, and visualized using maps, graphs, or other visualization 
tools to facilitate interpretation and decision-making by stakeholders. Continuous 
updates and improvements to the AI model are made by incorporating feedback, 
collecting additional data, and refining the training process to enhance accuracy 
and generalization ability over time.
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Satellite Imagery 

Using AI-equipped satellite imagery for forest monitoring plays a crucial role 
(De Bem et al., 2020; Sabu et al., 2021; Bhatt & Lyngdoh, 2023). The first step 
is to acquire satellite imagery. Various satellites orbit the Earth, capturing images 
of the planet’s surface at different spatial and temporal resolutions. Depending 
on the specific monitoring objectives, researchers or organizations may choose 
satellite imagery with appropriate characteristics such as spatial resolution 
(detail level) and revisit frequency (how often the satellite passes over the same 
area). Satellite imagery often requires pre-processing to correct distortions, 
atmospheric effects, and other artefacts. This step ensures that the imagery is 
ready for analysis and that the data accurately represents the Earth’s surface. 
AI algorithms are then utilized to extract relevant features from the satellite 
imagery. For forest monitoring, these features may include vegetation cover, 
forest type, canopy density, and land use/land cover classification. AI techniques 
such as CNNs are commonly employed for feature extraction tasks due to their 
effectiveness in analyzing visual data like satellite imagery. Change detection 
algorithms are subsequently applied to detect changes in the forest cover over 
time. This involves comparing multiple satellite images taken at different time 
points and identifying areas where significant changes have occurred, such as 
deforestation, reforestation, or forest degradation. AI algorithms can also be 
utilized for anomaly detection, which involves identifying unusual or unexpected 
changes in the forest cover that may indicate illegal logging, wildfires, or 
other disturbances. This aids authorities in prioritizing areas for intervention 
and conservation efforts. The extracted features and detected changes are 
integrated with other relevant data sources, such as ground-based observations, 
historical records, and environmental variables (e.g., climate data, and terrain 
characteristics). This integrated dataset is then analyzed to gain insights into 
forest dynamics, trends, and threats. The results of the analysis are visualized in 
maps, graphs, and other formats to facilitate interpretation and communication. 
Reports summarizing the findings are generated for stakeholders, policymakers, 
and conservation organizations to inform decision-making and management 
actions. The workflow is often iterative, with continuous refinement of AI 
algorithms, data processing techniques, and analysis methods based on feedback 
and new data. This iterative approach ensures that forest monitoring efforts 
remain up-to-date and effective in addressing emerging challenges.

Real-world Applications

Resources Allocation and Planning Habitat Restoration

AI plays a crucial role in resource allocation and planning for habitat restoration 
efforts by leveraging various technologies and techniques to optimize decision-
making processes (Lee et al., 2020; de Araújo et al., 2021). AI algorithms 
can analyze vast amounts of environmental data, including habitat conditions, 
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species distributions, climate patterns, soil quality, and more. ML models can 
then predict the potential outcomes of different restoration strategies based on 
historical data and environmental parameters. This predictive analysis helps 
in identifying the most effective and efficient allocation of resources. AI-
driven optimization algorithms can determine the best allocation of resources 
such as manpower, equipment, and funding to maximize the impact of habitat 
restoration projects (Kikon & Deka, 2022). These algorithms consider various 
constraints and objectives, such as budget limitations, ecological priorities, and 
regulatory requirements, to generate optimal resource allocation plans (Linkie 
et al., 2003). AI-powered remote sensing technologies, such as satellite imagery 
analysis and drone-based monitoring, enable real-time tracking of habitat 
restoration progress. These technologies can identify changes in vegetation 
cover, habitat fragmentation, and invasive species encroachment, allowing for 
timely adjustments to resource allocation plans based on observed outcomes.

AI techniques, including agent-based modelling and simulation, enable the 
creation of virtual environments to simulate the effects of different restoration 
interventions on ecosystems and biodiversity (Chen et al., 2021). These 
simulations help planners assess the long-term ecological impacts of resource 
allocation decisions and identify optimal strategies for achieving restoration goals. 
AI-driven adaptive management frameworks continuously learn from ongoing 
restoration efforts by incorporating feedback from monitoring data and adjusting 
resource allocation strategies accordingly. Machine learning algorithms can 
identify patterns in ecosystem dynamics and recommend adaptive management 
actions to optimize the effectiveness of habitat restoration initiatives over time 
(Isabelle & Westerlund, 2022). AI algorithms can assess potential risks associated 
with habitat restoration projects, such as habitat degradation, species displacement, 
and unforeseen ecological impacts. By identifying and quantifying these risks, 
planners can proactively implement mitigation measures and allocate resources 
more effectively to minimize negative outcomes.

Detect Deforestation

AI applications in detecting deforestation have become increasingly prevalent 
and effective due to the advancement of technology and the availability of high-
resolution satellite imagery (Nguyen et al., 2017; Valletta et al., 2017; Kumar 
& Jakhar, 2022). AI algorithms can analyze satellite images to detect changes 
in land cover over time. By comparing current images with historical ones, 
AI can identify areas where deforestation has occurred. ML algorithms can be 
trained on labelled data to recognize patterns associated with deforested areas, 
such as changes in colour, texture, and shape. Traditional methods of detecting 
deforestation often involve manual inspection of satellite images, which can 
be time-consuming and prone to human error (Hamedianfar et al., 2022). AI 
algorithms automate this process by rapidly scanning large amounts of imagery 
to pinpoint areas of interest. This automation enables quicker response times and 
more efficient monitoring of deforestation hotspots.
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AI can classify different types of land cover, including forests, agricultural 
land, urban areas, and water bodies, using high-resolution remote sensing data 
(Wei & Cheng, 2022). By accurately distinguishing between forested and non-
forested areas, AI algorithms can identify areas undergoing deforestation and track 
changes in forest cover over time. AI algorithms can analyze satellite images 
to detect signs of illegal logging activities, such as logging roads, clear-cutting 
patterns, and logging machinery (Hassija et al., 2024). By flagging suspicious 
activities, AI can help law enforcement agencies target their monitoring and 
enforcement efforts more effectively. Deforestation not only leads to the loss of 
tree cover but also has significant impacts on biodiversity. AI can help monitor 
changes in biodiversity by analyzing satellite imagery and identifying habitat 
loss, fragmentation, and changes in species distributions. This information can 
inform conservation efforts and prioritize areas for protection.

AI can be used to develop early warning systems for deforestation by 
analyzing real-time satellite data and environmental variables such as temperature, 
precipitation, and soil moisture (Kochupillai et al., 2022). By detecting conditions 
conducive to deforestation, such as increased logging activity during dry seasons, 
AI can alert authorities to potential threats and facilitate proactive intervention. 
AI algorithms can be integrated with other sources of data, such as ground-
based sensors, drones, and field observations, to provide a more comprehensive 
understanding of deforestation dynamics. By combining different data streams, AI 
can improve the accuracy and reliability of deforestation monitoring and enable 
more informed decision-making.

Illegal Logging Detection and Anti-poaching Efforts

Illegal logging and poaching are significant environmental issues that threaten 
biodiversity and contribute to habitat destruction and species extinction (Mporas 
et al., 2020). AI applications have been increasingly utilized in efforts to combat 
these activities due to their ability to process vast amounts of data quickly and 
accurately (Shoaib et al., 2023). AI algorithms can analyze satellite imagery 
to detect changes in forest cover, such as deforestation or logging activities. 
These algorithms can identify patterns associated with illegal logging, such as 
the presence of logging roads, clear-cut areas, or changes in canopy density. By 
regularly monitoring large forested areas, authorities can identify and respond 
to illegal logging activities more effectively. ML algorithms can be trained to 
recognize patterns associated with illegal logging activities, such as the sound 
of chainsaws, vehicle movements in remote areas, or the presence of logging 
equipment. By analyzing audio recordings from sensors deployed in forests or 
acoustic monitoring devices, AI systems can identify suspicious activities and 
alert authorities in real-time.

AI-powered camera traps equipped with image recognition capabilities 
can automatically detect and identify wildlife and human intruders in protected 
areas (Peters et al., 2020). These camera traps can distinguish between legal 
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activities, such as research or ecotourism, and illegal activities, such as poaching 
or trespassing. When unauthorized activities are detected, the system can send 
alerts to park rangers or law enforcement agencies, enabling a rapid response. AI 
algorithms can analyze historical data on illegal logging and poaching incidents, 
as well as environmental variables such as weather patterns and terrain features, 
to predict future hotspots of illegal activity. By identifying areas at high risk of 
illegal logging or poaching, authorities can prioritize their enforcement efforts and 
allocate resources more effectively. AI systems can integrate data from various 
sources, including satellite imagery, sensor networks, law enforcement records, 
and citizen reports, into a unified platform for better decision-making. Advanced 
data visualization techniques can help authorities identify trends, track illegal 
activity patterns over time, and allocate resources strategically.

Drones equipped with AI-powered image recognition software can patrol 
large areas of forests or wildlife reserves, providing real-time aerial surveillance 
to detect illegal activities such as logging, poaching, or encroachment (Maharajan 
et al., 2024). Drones can cover rugged terrain more efficiently than ground patrols 
and can gather high-resolution imagery for detailed analysis. AI-powered platforms 
can facilitate collaboration and information sharing among government agencies, 
law enforcement authorities, conservation organizations, and local communities 
involved in anti-poaching and anti-illegal logging efforts. These platforms can 
streamline communication, coordinate joint operations, and share intelligence to 
enhance the effectiveness of conservation initiatives.

Wildlife Monitoring

AI applications in wildlife monitoring, including species identification, 
population estimation, and behavioral analysis, have significantly transformed 
conservation efforts (González et al., 2011; Mühling, 2023; Sabu et al., 2021). 
AI algorithms can analyze images or videos captured by camera traps or drones 
to identify species automatically. CNNs are commonly used for this purpose 
(Bhatt & Lyngdoh, 2023). These models can learn distinctive features of various 
species, enabling accurate identification even in challenging conditions like low 
light or dense foliage. Beyond visual identification, AI can also identify species 
based on their vocalizations. ML algorithms, particularly those employing 
spectrogram analysis and deep learning techniques, can recognize specific animal 
calls amidst ambient noise. This is particularly useful for identifying elusive 
or nocturnal species. AI algorithms can detect and count individual animals in 
images or videos, aiding in population estimation. This involves techniques like 
object detection, where bounding boxes are drawn around each animal detected. 
By analyzing patterns of movement and behaviors, algorithms can distinguish 
between individual animals and avoid double counting. Traditional methods of 
population estimation often require invasive techniques like trapping or tagging. 
AI-powered monitoring offers non-invasive alternatives, reducing stress on 
wildlife populations while still providing accurate population estimates.
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AI can analyze movement patterns and behaviors of animals captured in 
video footage to understand their behavior better (de Araújo et al., 2021). By 
tracking individual animals over time, algorithms can identify feeding, mating, or 
migration patterns. This information is crucial for understanding species ecology 
and informing conservation strategies. AI algorithms can detect unusual behaviors 
or events, such as poaching activities or habitat disturbances, by comparing current 
observations with established behavioral patterns. This enables rapid response 
to threats and proactive conservation interventions. AI facilitates the integration 
of diverse data sources, including satellite imagery (Minakshi et al., 2020), 
GPS tracking data (Lee et al., 2020), and environmental variables (Kucera & 
Barrett, 2011). By combining multiple data streams, conservationists gain a more 
comprehensive understanding of ecosystems and species dynamics. AI automates 
the analysis of large datasets, accelerating the process of extracting meaningful 
insights. This allows conservationists to focus their efforts on interpretation and 
decision-making rather than manual data processing. AI can predict species 
distributions, population trends, and habitat suitability under different scenarios. 
These predictive models inform conservation planning, helping prioritize areas 
for protection or restoration efforts. AI enables real-time monitoring of wildlife 
populations and habitats, providing timely information for adaptive management 
strategies. Conservationists can respond swiftly to emerging threats or changes 
in ecological conditions, maximizing conservation effectiveness.

AI applications in wildlife monitoring offer unprecedented opportunities for 
conservationists to monitor, understand, and protect biodiversity more effectively. 
By using advanced technologies, conservation efforts can be more targeted, 
efficient, and sustainable, ultimately contributing to the long-term preservation 
of species and ecosystems.

A Case Study in Manas National Park

Manas National Park is a national park, tiger reserve, and elephant reserve 
in Assam, India, situated in the Himalayan foothills. In the context of Manas 
National Park, the camera trap is a fully AI-based system that helps to concisely 
figure out the population dynamics. The workflow of the AI-based system is 
presented in Figure 2. This process is carried out every year without any delay, 
and because of AI implementation, yearlong processes are summarized in just a 
month. The process of implementing an AI-based system starts with a carnivore 
sign survey. During the survey, all the surveyors used an Android-based app 
named MSTrIPES Ecological, which is capable of automatically recording the 
travelled path and GPS points with an accuracy of up to one meter. During 
the survey period whenever that surveyor finds any indirect evidence (footprint, 
scat, pellet, dung, rake mark, scrap mark, digging, etc.) take a photograph and all 
the ground information (GPS location, date, time, elevation, etc.) were displayed 
or stamped on that photograph as presented in Figure 3a. All the MSTrIPES field 
data were collected at range level and shared with the office of the field director. 
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The photographs taken during the survey were brought into a computer which 
was later imported month-wise to the MSTrIPES software. In the MSTrIPES 
software, ran the analysis for carnivore occupancy in the ecological part where 
the AI algorithm automatically figures out the high-density and low-density 
areas within 1×1 km2 grid size. In ecological mode, all the necessary data were 
imported and started the analysis. The densities will be revealed with the help 
of AI as presented in Figure 3b.

After figuring out the density a team deployed camera traps based on the 
highest occupancy trails. Based on density the deployment of camera traps in 
a 1.41×1.41 km2 grid was accomplished. In each grid, one pair of camera traps 
were installed. It is prescribed by the National Tiger Conservation Authority 
(Ministry of Environment and Climate). The installed camera trap was presented 
zone-wise in Figure 3c. Camera traps were capable of capturing images like 
Figures 3d, e round the clock as they were equipped with infrared and motion 
sensors. Also, camera traps can stamp the current date and time which helps in the 
mass processing of images for tiger population estimation. After the deployment 
of camera traps, the dataset was retrieved in 10–12 days depending on animal 
encounter rate. All the secure digital (SD) cards of camera traps were collected 
and stored in a hard disk drive (HDD) in a particular sequence.

Figure 2: Workflow of the AI-powered system implemented in Manas National Park.
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Figure 3: (a) A photograph taken on an Android based app named MSTrIPES Ecological. 
(b) AI algorithm automatically figures out the high-density and low-density areas within 
1×1 km2 grid size. (c) Deployment of camera traps in a 1.41×1.41 km2 grid. (d) and (e) 
Image captured by a camera trap. (f) and (g) Instances of a tiger passing a camera trap. 
(h) Photograph with new date and time rectifying the error. (i) Each species will have 
a designated folder as predefined by the software itself before running the geo-tagging 

process. (j) The dark area indicates the used area by the tigers in Manas National Park.

Four AI-based software were used in the process of determining the 
population dynamics. ExifPro is an AI-based software that can help to figure out 
the date and time error of a particular image. Example: If we want to estimate 
the number of tigers, we need to have both flanks with the same date and time 
stamp. Only then we will be able to find the complementary image of a particular 
tiger individual. Figures 3f, g present instances of a tiger passing a camera trap. 
If there was an error then we must fix it before going to the next step of our 
analysis part. Another software named batch can stamp the new date and time and 
can cross the error so that a complimentary image can be found easily. In Figure 
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3h, the yellow marked date and time is the rectified image and the white colored 
image is the error date and time. CaTRATt is another software where camera-
trapped images can be geo-tagged. A trap sheet needed to be prepared where 
camera-wise GPS locations and dates were available. Based on that trap sheet 
CaTRAT software ran the process of geo-tagging. After geo-tagging, camera trap 
data were imported into ExifPro software. Geo-tagged images at the species level 
were segregated in a predefined folder as shown in Figure 3i. After completing 
the segregation process, GPS locations from each image were exported in a .txt 
file to produce some population dynamics-related maps using a GIS. The dark 
area in Figure 3j indicates the used area by the tigers in Manas National Park.

This is how a large dataset can be quickly analyzed with the help of AI-
based software, which has a negligible error rate. By producing such maps, 
daily monitoring of animal movements can be enhanced in the region. Also, 
a continuous study or regular AI-based survey can further help to accurately 
determine the forest health and population structure.

Advantages, Limitations, and Future Direction

Advantages of AI-driven methods over Traditional Methods

A pictorial representation of a comparative analysis of traditional methods 
versus AI-driven methods in forest health management, with results from 
studies is presented in Figure 4. The AI-driven methods have higher accuracy 
than the traditional methods in terms of disease detection, habitat detection, etc. 
(Wang et al., 2017; Wiesner-Hanks et al., 2019; Shoaib et al., 2023). This is 
primarily because of the elimination of human error and fatigue in methods 
followed in conventional forest health management. The efficiency in forest 

Figure 4: A pictorial representation of a comparative analysis of traditional methods 
versus AI-driven methods in forest health management.
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health management increased a lot due to the introduction of AI. The labor 
cost has dropped significantly with the increase in AI adoption (Barreto et al., 
1998). However, the initial infrastructure cost is higher in terms of AI-driven 
methods. To instal AI-powered solutions, skilful labor is very much essential. 
But over time human effort and cost reduced. This is also true because the area 
covered in forest health inspection and detection rate is higher in case of AI-
driven solutions (Sarkar & Chapman, 2021; Raihan, 2023). These facts show the 
clear benefits of AI-driven solutions in forest health management over traditional 
methods. However, advancement in AI to date holds certain technical and social 
disadvantages associated with it.

Technical Limitations

The efficiency of AI in maintaining forest health can indeed be a powerful tool, 
but it also comes with certain limitations. AI systems rely heavily on data for 
training and decision-making. In the case of forest health monitoring, data might 
be sparse or of varying quality, especially in remote areas (Mporas et al., 2020; 
Kikon & Deka, 2022). Limited or low-quality data can hinder the effectiveness 
of AI algorithms, leading to inaccurate predictions or recommendations. Forest 
ecosystems are incredibly complex, with a multitude of interacting factors 
influencing their health. AI models may struggle to capture the full complexity 
of these systems, leading to oversimplified representations or missing critical 
interactions. For example, an AI model might detect a decline in tree cover 
but fail to understand the underlying causes such as soil nutrient depletion or 
invasive species encroachment.

Many AI algorithms, especially deep learning models, are often seen as 
“black boxes” because they provide results without clear explanations of how 
they reached their conclusions (Linkie et al., 2003). In the context of forest 
management, this lack of interpretability can make it challenging for forest 
managers to trust AI recommendations, especially when the decisions could 
have significant ecological or economic consequences. Forest ecosystems are 
dynamic and can be subject to rapid changes due to factors like climate change, 
natural disasters, or human activities. AI models trained on historical data may 
struggle to adapt to these changing conditions or anticipate emerging threats. 
Continuous retraining and updating of AI models are necessary to keep pace with 
evolving environmental conditions. Implementing AI solutions for forest health 
monitoring requires significant resources, including computational power, data 
collection infrastructure, and expertise in AI and forestry management. Many 
forest management agencies or organizations in developing regions may lack 
these resources, limiting the widespread adoption of AI technologies.

Social and Regulatory Concerns

The use of AI in forest management raises ethical and social concerns, such 
as data privacy, equity in access to technology, and the potential displacement 
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of human workers (Chen et al., 2021). Additionally, there may be cultural or 
indigenous knowledge about forests that AI systems cannot incorporate, leading 
to conflicts or marginalization of local communities. There may be legal and 
regulatory barriers to the deployment of AI systems in forest management, 
particularly concerning issues like data ownership, liability for decision-making, 
and compliance with environmental regulations. Ensuring that AI applications 
comply with existing laws and standards adds another layer of complexity to 
their implementation (Sood, 2022). While AI holds great promise for maintaining 
forest health, its effectiveness is subject to various limitations related to data, 
complexity of ecosystems, interpretability, adaptability, resource constraints, 
ethical considerations, and legal challenges. Addressing these limitations requires 
interdisciplinary collaboration, ongoing research, and careful consideration of 
societal values and environmental goals.

Future Direction

With the evolution of Artificial Narrow Intelligence to Artificial General 
Intelligence, the AI methods are getting better in terms of accuracy, efficiency, 
and analysis (Pei et al., 2019). Along with that, with time the data (image, video, 
sound, etc.) gathered are huge in number as well as of better quality. Advancements 
in the communication technologies like 5G also enable to transfer and share big 
data among different researchers or authorities (Aggarwal et al., 2021). This is 
a perfect condition for AI to fully show its potential in the coming days. AI will 
be able to process data from sensors measuring parameters like soil moisture, 
temperature, and tree growth rates to monitor forest health in real-time (Torresan 
et al., 2021). This kind of solution is available in the pilot stage. However, in 
the coming time, this kind of solution can be implemented in a large area like 
the whole Amazon forest. Furthermore, interconnecting data on a global scale 
can improve early detection and prevention of disease, improve biodiversity 
conservation and monitoring of forest conditions (Morris et al., 2022; Singh 
et al., 2022). The solution offered by AI in forest health management can also 
extend to climate change adaptation (Filho et al., 2022; Chen et al., 2023). AI 
can model the impacts of climate change on forests and help develop strategies 
for adaptation and mitigation. Then, optimize forest management practices to 
maximize carbon sequestration and contribute to climate change mitigation 
efforts (Nunes et al., 2020; Al-Sakkari et al., 2024). This solution will impact 
very positively in the coming ages.

Conclusions

Currently, camera trap projects may face limitations due to the time required 
for footage classification, resulting in unidentified and unused images, thus 
compromising the significance and potential of datasets. Both citizen science 
and AI offer potential solutions to this constraint, but each has its limitations, 
suggesting that neither alone is a complete solution. We advocate for the 
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integration of AI and citizen science, which has shown promising long-term 
potential, as demonstrated by recent projects. In this integrated approach, citizen 
scientists submit classifications of camera trap footage, creating a labelled dataset 
for training neural networks to classify future footage. A consensus is reached 
by combining AI and citizen science classifications, with the neural network 
providing an additional ‘vote’ to reduce the number of human classifications 
needed. Alternatively, AI could pre-screen footage, presenting only uncertain 
classifications to citizen scientists for confirmation, or filter footage for species 
of interest, allowing human observers to extract additional information such as 
behavior. Camera traps, monitored by citizen scientists, capture footage classified 
using AI. These approaches are not mutually exclusive, and projects may 
transition between them over time. Despite advancements in AI, citizen science 
remains essential for its engagement benefits and its role beyond classification, 
including camera placement and servicing. Combining AI with human efforts 
allows for more comprehensive analysis, particularly in behavioral studies. 
Integrating citizen science and AI technology maximizes data collection and 
processing efficiency while engaging and educating people about the natural 
world. While not suitable for all projects, AI and citizen science should be 
seriously considered and integrated wherever feasible, as they offer numerous 
potential benefits.
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Microbiology is a complex and dynamic field that addresses fundamental 
questions about the interactions of microorganisms with their environments 
and other organisms. The ubiquitous distribution of microorganisms and 
their intricate interactions with animals, plants, and ecosystems make them 
an important area of current research. Microorganisms play essential roles 
in the biotechnological and agricultural processes, such as nutrient recycling 
and biodegradation, while also contributing to the spread and transmission of 
diseases. To explore this dual nature, proper identification and characterization 
remain crucial for understanding their ecological significance and mitigating 
their negative impacts. Traditional microbial identification methods, including 
culture-based techniques and microscopy, have provided invaluable insights but 
are often limited by challenges related to time, cost, sensitivity, and specificity. 
The introduction of artificial intelligence (AI) has started a paradigm shift 
in microbial research. AI’s ability to analyze complex datasets, recognize 
patterns, and make predictions has opened new possibilities for identifying 

mailto:abrarhussain0307@gmail.com


222 │ Artificial Intelligence and Animal Ecology: A Review

and understanding microorganisms with precision. AI and its subfields, such as 
machine learning (ML) and deep learning, have proven successful in analyzing 
high-throughput microbial genomic data and enhancing the detection and 
classification of microbial communities. AI also facilitates predicting microbial 
behavior and their interactions with other organisms and environments. AI further 
supports the study of the relationships between microorganisms and their hosts, 
including the effects of microbial communities on animal behavior, health, and 
disease transmission. The synergistic approach of AI and microbiology explores 
the pioneering discoveries, transforming our understanding of the microbial 
world and its critical contributions to life on Earth.

Introduction

Microorganisms, which are extremely important creatures, help humans and 
other animals in multifactorial and vast disciplines. These microorganisms, 
being ubiquitous in nature, can have both positive and negative impacts on the 
ecological distribution and activities of animals. The unique characteristics of 
these organisms are crucial for various biotechnological and industrial processes, 
making their identification and quantification a significant area of interest for 
researchers and industrialists (Xu et al., 2023; Abrar and Abid, 2024). On the 
other hand, their prevalence in environments, such as indoor household settings, 
can lead to various diseases, posing risks to human health (Hussain et al., 2024).

The rapid identification of microorganisms, particularly in diagnosis, aids in 
this appeal, as it is the matter of someone’s life. Hence, the field is open every 
time to develop the existing methods or elucidate new approaches. Although 
the various available methods have their own value, the current advancements 
in science and technology compel people to switch to the new methods. The 
present world has the hold of AI, and everyday new applications, domains, and 
usage are identified, which include their potential role in microorganisms’ world 
(Rhoads, 2020).

Artificial Intelligence (AI)

The term AI first appeared in a scientific paper in the 1950s when a tortoise 
robot was described. Currently, more than 16,000 papers are dedicated to 
various aspects of AI, with the number continuing to grow. This large number 
of publications highlights the potential applications of AI in a wide range of 
areas, including life sciences (Liu et al., 2019). AI is an umbrella term that 
describes the intelligent criteria of a system that usually require a human mind, 
i.e., decision-making and critical thinking (Holzinger et al., 2023). In addition 
to its other potential applications in life sciences, AI has also established a 
strong presence in environmental microbiology and the study of microorganisms 
(Sarrafzadeh et al., 2022). The fact that microorganisms are found everywhere 
and are associated with different aspects shouting to find an easy, cheap, and 
potential method of their identification. 
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Machine Learning (ML)

Machine learning (ML), a subfield of AI, has the potential to develop microbial 
domains with minimal or no human involvement (Goodswen et al., 2021; Xu 
et al., 2023). It involves training computers to perform tasks using patterns and 
data without explicit instructions (Holzinger et al., 2023). It has been extensively 
used in computational problems like drug target predictions, microorganisms’ 
diagnosis, antimicrobial drug classification, showcasing disease outbreaks, 
vaccine candidate development, and exploring microbial interactions. It is 
used in almost all aspects of microbial research, including bacteriology, 
virology, environmental microbiology, mycology, parasitology, etc. (Goodswen  
et al., 2021). 

The widely used ML approaches include artificial neural networks, genetic 
algorithms, and vector machines (Undru et al., 2022). Particularly in microbial 
diagnosis, the ML can enhance the speed and accuracy of analyzing complex 
and large data patterns (Peiffer-Smadja et al., 2020; Ali et al., 2023). Its potential 
in molecular biology is dedicated to the analysis and predictions of viral and 
bacterial genomes to explore the binding targets for drugs and to show mutations, 
thus helping the clinician to prescribe effective treatments (Májek et al., 2021). 
Besides the technical applications of ML, studies were also conducted to use it 
in real sample analysis. For instance, researchers used ML to identify genotypic-
to-phenotypic predictions in M. tuberculosis (Peiffer-Smadja et al., 2020). 

Deep Learning (DL)

Deep learning (DL) is a subfield of ML that consists of multiple layers and 
uses artificial neural network (ANN) algorithms. It has powerful features 
such as regression capabilities and automatic feature extraction. DL is divided 
into different types like Recurrent Neural Network and Convolutional Neural 
Networks, etc. (Liu et al., 2019; Wang et al., 2022; Xu et al., 2023). DL is 
mostly used and dedicated to the analysis of larger data (Holzinger et al., 2023). 

ANNs is a prestigious aspect of AI development and has various applications 
in different fields. An artificial neuronal network is like the artificial version of a 
natural neuron, comprised of an input, processing area, and output layer (Undru 
et al., 2022; Wang et al., 2022). Due to limited computer capacity, the ANN went 
through a hibernate period, but again arose and got more attention in the current 
period and is extensively used in microbial image analysis (Zhang et al., 2023). 

Hence, the aforementioned subject matter was kept in mind, we documented 
the recent, updated, and emerging role of AI in microbial identification to correctly 
measure their potential, particularly their role in pathogenesis and biotechnological 
applications. For the better understanding of the subject, we first documented the 
traditional methods, their pros and cons, and the limitations associated, and then 
we described the emerging role of AI, ML, and DL in microbial identification, 
ecological distribution, its advancement, accuracy, usefulness, and applications. 
The traditional methods and the current genomic methods have their pros and 
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cons but have certain challenges that appeal to another potential method. Thus, 
AI, ML, and DL have the capacity to solve these challenges. The problems present 
in conventional methods, their challenges and how AI can help to mitigate these 
problems are illustrated in Figure 1. 

Figure 1: Illustration showing the potential of AI in microorganisms. The initials indicated 
the different traditional methods used in microbe identification. The challenges examine 
the existing drawbacks in microbial identification. The solutions provide the role of AI to 

overcome these limitations.

Ecological Distribution of Microorganisms 

Microorganisms appeared approximately 3.5 billion years ago and became one 
of the earliest living things on earth. Microorganisms, which include bacteria, 
algae, viruses, fungi, etc., are found ubiquitously, having approximately 159,000 
species (Madsen, 2005; Hussain et al., 2024). Their ecological distribution in the 
environment depends on multiple factors, which makes them more prevalent in 
one place but lower elsewhere. The potential ecological niches of these microbes 
include dumps and warm places. Hussain et al. (2024) recently reviewed their 
distribution in the indoor household environment and concluded their prevalence 
in all indoor places, including sleeping beds and kitchens (Hussain et al., 2024). 
Microorganisms have both positive and negative faces, like biotechnological, 
pharmaceutical, food, and industrial applications, while pathogenic nature, 
destructive potential, disease transmissions, etc. are their pros and cons, 
respectively (Hussain, A., 2024). These microorganisms are studied in detail, 
like their structures, functions, relationships, communications, and associations 
with the host, particularly humans (Qu et al., 2019). Microorganisms within 
a community are affected by nearby cells, whether they belong to the same 
species (intraspecies) or different (interspecies) interactions. Their ecological 
interactions are categorized based on their overall effect on each interacting 
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species as positive, negative, or having no impact. In natural environments, 
various eco-interactions occur among microorganisms, involving both beneficial 
and detrimental effects (Martinez-Rabert et al., 2022).

The microbiome, or microbiota, is the collection of all types of microorganisms 
in a given environment; e.g., the gut microbiota consists of all types of microbes 
in the gut. The ecological distribution of microorganisms enables them to have 
associations with each other and with the environment. Hence, understanding 
potential sources of microbial finding, identification, and knowing their 
beneficial effects is an important area of the modern world. Through cultivation, 
researchers can further explore the interactions between microorganisms and their 
environment, revealing the vast scope and diversity of microbial distribution. 
Microbial communities, comprising diverse microorganisms inhabiting different 
environments or hosts, engage in intricate interactions with their surroundings and 
hosts, giving rise to various ecosystem types (Xie et al., 2019). The prominent 
microorganisms present in different environments are summarized in Figure 2.

Figure 2: The ecological distribution of microorganisms in different environments.

Potential Ways to Identify the Ecological  
Distribution of Microorganisms 

Due to their minute size, microorganisms necessitate the use of microscopes 
as a vital tool for investigation. However, microscopy solely facilitates 
observation, necessitating supplementation with culture techniques to delve into 
the physiological, biological, pathogenic, metabolic, and other characteristics 
(Waldron, 2018). The collective dynamics observed within microbial 
ecosystems across various biomes arise from numerous interactions among 
community members. These interactions encompass metabolite exchange, 
signaling mechanisms (quorum sensing), inhibition of growth, and even lethal 
interactions. Grasping interspecies relationships within microbial communities is 
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crucial for comprehending the functionality of natural ecosystems and crafting 
synthetic consortia. Various organisms present within a microbial community 
can profoundly influence each other’s growth patterns, thereby greatly impacting 
community dynamics, with significant ramifications for both human and 
environmental well-being (DiMucci et al., 2018; Goodswen et al., 2021). 

The earliest identification methods comprised culture enrichment, in which 
an individual culture with certain distinct properties like fixation, specific 
growth conditions, etc,. is identified. This method is sample-based and gives 
good results, but due to the growth of different microbes’ in culturing media, a 
more precise method is needed (Madsen, 2005). Identification with physiological 
characteristics has its own pros and cons. For instance, every microbe’s response 
differs differentially to different substances, i.e., light, oxygen, chemicals, etc., 
and hence is used to make them separate from each other (Madsen, 2005). In 
the advanced technological period, identification was shifted to non-culturing 
methods, and genomic analysis showed its fruits. PCR analysis, microscopy, and 
genome sequencing are adopted for rapid and accurate microbial identification. 
However, both of these techniques have their own limitations, and thus there is 
a need for a highly accurate, fast, cost- and time-effective, and reliable method 
of microbial detection.

Challenges in Traditional Microbial Diagnosis in 
Different Settings 

Microbial diagnosis, a cornerstone of modern medicine and microbiology, 
grapples with challenges spanning the entire diagnostic pathway. One such hurdle 
arises at the outset with sample collection and transportation, which represent 
critical initial stages (Rodrigues & Groves, 2018). The process commences with 
sample collection, ensuring their timely analysis in the laboratories presents a 
significant obstacle. Mishandling, inappropriate storage, and transportation delays 
can jeopardize the viability and integrity of microorganisms within the sample, 
thereby compromising diagnostic accuracy (Rodrigues & Groves, 2018; Shrestha 
& Pokharel, 2020). Consequently, the isolation and culture of microorganisms 
stand out as the primary traditional diagnostic approach. However, this method is 
time-consuming, often resulting in delays in obtaining culture results. Improper 
microbial cultivation increases the risk of false negative outcomes. Moreover, 
the rampant use of antibiotics in clinical settings can further impede the isolation 
and growth of specific organisms (Zeeshan, 2019). 

 Accurately identifying and classifying microbial species presents a significant 
hurdle. Traditional techniques like biochemical testing and microscopy often 
fall short of consistently providing accurate identifications due to ambiguous 
morphological features or unusual behaviors displayed by certain species (Zhang 
et al., 2022). Additionally, determination of bacteria isolates susceptibility to 
antibiotics for selection of treatment options presents its own set of challenges. 
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Disk diffusion method, a traditional susceptibility testing method, is time-
consuming and sometimes fails in the prediction of infecting strain reaction 
to antibiotics, resulting in potential therapeutic consequence and suboptimal 
treatment decisions. Moreover, traditional diagnostic methods mostly need a 
team of highly skilled persons, specialized instruments, and substantial resources 
to diagnose the medical situations. Thus, due to limited resources, there is an 
elevated risk of human error due to reliance on skilled professionals. Therefore, 
there is a pressing need to develop new and user-friendly diagnostic procedures.

The Potential Role of AI and ML 

The incorporation of AI into microbial identification and investigation has 
transmuted the field, offering faster and more reliable results than conventional 
methods (Davenport and Kalakota, 2019). AI algorithms excel at genomic data 
analysis and assist scientists and clinicians in the identification of pathogens, 
the prediction of antibiotic resistance, and even the discovery of novel microbial 
species. Additionally, ML models enhance the speed and precision of microbial 
diagnosis by swiftly analyzing intricate data patterns (Ali et al., 2023).

 The integration of AI with microbe diagnosis has evolved into a multifaceted 
and crucial tool that helps in the recognition of different patterns and prediction 
modeling, along with the enhancement of efficiency in microbe analysis. AI-based 
algorithms have transformed the field by analyzing large datasets containing 
microbial information and identification of patterns and abnormalities that may 
be difficult to detect accurately and quickly by human analysts (Peiffer-Smadja 
et al., 2020). This ability of recognition of various patterns proves particularly 
helpful in the quick exposure of infectious diseases, where quick identification of 
different species of viruses and their patterns of transmission can provide essential 
containment strategies (Ali et al., 2023). Moreover, AI plays an important role 
in predictive modeling, by utilizing historical data to forecast the behavior of 
microbes and thus helps in future decision-making. This predictive ability of 
AI proves valuable in anticipating disease outbreaks, understanding trends in 
antibiotic resistance, and optimization of treatment protocols. Thus AI-based 
algorithms accelerate tasks such as sample processing, analysis of different images, 
and interpretation of data. This not only reduces the time needed for diagnosis 
but also enables healthcare professionals to focus on the most complex aspects 
of patient care (Davenport and Kalakota, 2019). 

 An exemplary instance lies in ML models, such as DNA sequencers, 
which analyze the genomic sequences of bacteria and viruses to forecast their 
likelihood of mutations and resistance to particular drugs, aiding clinicians in 
pinpointing the most suitable treatment options (Májek et al., 2021). AI-driven 
automation expedites processes like sample processing, analysis of images, and 
data interpretation. This not only reduces the diagnostic turnaround time but also 
enables healthcare professionals to focus on the most intricate facets of patient 
care (Davenport and Kalakota, 2019). 
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ML is a multidisciplinary field that draws from various disciplines such as 
statistics, probability theory, approximation theory, algorithm complexity theory, 
and convex analysis (Zitnik et al., 2019). ML methods can be categorized into 
two main types including supervised and unsupervised learning. For supervised 
learning, a model is set by utilizing a labeled dataset, consisting of features and 
corresponding outcomes. Some of the commonly utilized supervised learning 
algorithms include statistical classification and regression analysis. While, on 
the other hand, unsupervised learning, also called clustering, utilizes methods 
like k-means to identify patterns in data without labeled outcomes. It iteratively 
establishes centroid and minimizes error to acquire classification. With the 
advancement of ML, numerous fields have embraced this technique for research 
purposes. Examples include identification of disease-related microRNAs, drug 
repositioning (Qu et al., 2019), and identification of disease-related long non-
coding RNAs (Chen and Huang, 2017).

Applications of AI and ML for the Ecological 
Perspective of Microorganisms

Early Pathogen Detection

Due to the diverse characteristics of microorganisms, it is crucial to ensure 
their accurate identification. Fiannaca et al. (2018) introduced a method for 
identification of 16S short-read sequences using a combination of k-mer and 
deep learning techniques. Their results demonstrate the efficacy of the method 
in accurately classifying both 16S shotgun (SG) and amplicon (AMP) data 
(Fiannaca et al., 2018). The accurate identification of specific microbial sequences 
within mixed metagenomics samples is crucial. While gene-based similarity 
methods are commonly employed for classifying prokaryotic and host organisms 
from mixed samples, these methods have notable limitations. Consequently, 
numerous studies have been undertaken to explore improved methods for 
identifying specific microorganisms. Amgarten et al. (2018) developed a tool 
called MARVEL, designed for predicting double-stranded DNA bacteriophage 
sequences in metagenomics (Amgarten et al., 2018).

Ren et al. (2017) introduced VirFinder, an ML method based on k-mer 
analysis for identifying virus overlap groups without relying on gene-based 
similarity searches (Ren et al., 2017). These methods cater to specific needs in 
microbial classification. Additionally, MARVEL, VirSort, and VirFinder excel 
at identifying specific types of microorganisms. According to Amgarten et al. 
(2018), these three methods exhibit comparable specificity performance, but 
MARVEL demonstrates superior recall (sensitivity) performance. AI-powered 
algorithms have indeed emerged as invaluable tools for swiftly and accurately 
detecting microbial pathogens within clinical samples. Trained to identify specific 
patterns or genetic markers associated with various pathogens, these algorithms 
facilitate rapid and precise pathogen detection. This capability enables immediate 
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therapeutic interventions, thereby substantially mitigating the risk of infection 
progression (Shelke et al., 2023).

Prediction of Environmental Microorganisms by AI

Microorganisms have emerged as valuable indicators for ecological assessment 
across various environments. Advancements in sequencing technologies 
enable the expansion and application of omics-based ML for more ambitious 
environmental monitoring and mitigation efforts. These indicators can unveil 
significant insights for land management, especially when conventional field 
measurements prove inadequate. Significantly, the ML analysis of microbial 
16S rRNA abundances can directly forecast soil productivity on arable land 
and assess risks for agriculture. In cases where conventional analyses struggle 
to establish clear relationships, machine learning methods may still identify 
community subpopulations that serve as predictors for relevant environmental 
parameters and processes. Moreover, machine learning applied to meta-
barcoded environmental DNA (eDNA) demonstrates superior performance in 
environmental quality monitoring compared to traditional bioindicator values, 
particularly in marine aquaculture monitoring. Thus, ML serves as a valuable 
tool for enhancing the monitoring of environmental programs (McElhinney  
et al., 2022). 

Microorganisms that have potential similarities with each other make it 
difficult to identify accurately via conventional methods; thus, ML plays a crucial 
role in this regard as well (Rani et al., 2022). Currently, images of four types of 
microorganisms, i.e., bacteria, algae, protozoa, and fungi, are identified. Highly 
used in bacteria (38.4%), followed by algae image recognition (28.3%). Different 
neuronal networks and algorithms with minimal human intervention are employed 
in microbial image recognition, thus making this technique a potential source of 
microbial identification (Rani et al., 2022). It was documented that DL can be 
used to train models for substrate secretion mechanisms in bacteria, mostly Gram-
negative bacteria. Following this approach with sequence-based non-RTX-motif 
features in combination with a triple-layer stacking model, the RTX proteins were 
predicted accurately. It also enables the identification of the proteins secreted by 
the bacterial membrane into their exterior environment (Sarrafzadeh et al., 2022). 
Different ML algorithms in supervised form, i.e., Random Forest (RF), Naïve 
Bayes (NB), Decision Trees (DT), etc., are used to show the enhancement in 
accuracy of bacterial classification (Oudah & Henschel, 2018).

The Role of AI in Microorganisms’ Identification

The potential role of AI in microbial identification is studied exclusively, 
particularly in the diagnosis and pathogenic detection of clinical settings. 
Identification and characterization of microbes using AI tools provide an 
efficient, easy, and time-saving approach with accurate and precise results. These 
AI algorithms and ML techniques effectively overcome the challenges present 
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in traditional identification methods. Hence, in the following section, we will 
briefly describe the conventional methods of microbial identification, followed 
by their shortcomings, and how AI tools can overcome these in more detail. 
As described, the identification of microorganisms is crucial in any possible 
application, and these have been used since ancient times in different processes. 
Therefore, recognized, accurate, and potential methods of identification were 
available. These conventional techniques and methods mostly rely on the 
physical, chemical, and biochemical properties of microorganisms. These 
traditional techniques include staining, culturing, and biochemical assays for 
phenotypic identification, followed by more potent immunological, biochemical, 
and molecular analytical techniques (Oudah and Henschel, 2018; Buszewski  
et al., 2017). 

 It is also important that these methods can be used alone or in combinations, 
or that the newly developed methods reinforce the traditional methods in 
multiple ways. The traditional methods consist of sequential analysis, i.e., 
sample collections, examination, preservations, morphological identifications, and 
characterizations. Figure 3 summarizes the traditional methods in a sequential way, 
from sample collection to strain identification. Each step in this sequential analysis 
has its own characteristics, advantages and disadvantages, and applications. The 
next step showed further advancement from the previous and, hence, increased the 
specificity and identification of the species (Ferone et al., 2020). The importance 
of identifying bacteria lies in every field of research, e.g., in diagnostics, the 
physician prescribes medication and treatment after the proper identification of 

Figure 3: The different spectrum of traditional methods of microbial identification. 
The types of identification methods, their importance, and associated limitations are 

described. 
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bacteria; in animal science, the caregiver is interested in knowing about pathogens 
that cause diseases in the animals; in plants, identification is important to properly 
address their potential; and in food science, their exact nature can show the quality 
status of the products. Likewise, in microbial ecology, identification leads to their 
activities, while in marine ecology, the detection of pathogens is critical for the 
healthy and pure status of water.

Currently, AI is extensively used in different domains of life, including drug 
development and discovery, safety of drugs, genomic analysis, metabolomics, 
pharmacology, and others, thus enabling researchers to understand AI and use it 
effectively. Moreover, the microbial biotechnological applications and probiotics 
potential have recently been raised and become a billion-dollar industry, 
which totally relies on the proper identification and, thus, characterization of 
the microorganisms. The potential role of AI in life and in biotechnological 
applications has been recently reviewed (Holzinger et al., 2023). The AI 
applications in the fields of microbiology and microbial identification can be 
viewed by their following potentials and usages: The AI used four types of 
algorithms in microbiology, like growth with colony counting, discrimination of 
no growth, phenotypic recognition, and chromogenic detection (Wang et al., 2023).

AI in Bacterial Differentiation, Detection, and Image 
Recognition 

The traditional ways of identification require human intervention to identify and 
differentiate bacteria (for instance, the Gram-staining), but the ML algorithm 
does this by analyzing a huge set of images of Gram-staining and thus helps 
in rapid identification (Peiffer-Smadja et al., 2020). The potential role of AI in 
the identification of food bacteria is elucidated and documented. Three hours 
after inoculation, bacteria can be detected at the micro-colony stage using the 
combinatorial approach of AI and optical imaging. To be more precise, the 
researchers identified E. coli in food samples using the You Only Look Once 
version 4 (YOLOv4) real-time object recognition and classification system. 
With this method, bacterial identification may be done without the requirement 
for resource-intensive molecular approaches and time-consuming culture-based 
colony isolation. In the food industry, it might be used as a quick and simple 
method of bacterial detection (Ma et al., 2023).

 ANNs have been utilized in the analysis of microorganism images. In 
research, it was found that ANNs fared better at recognizing dinoflagellates 
than human specialists. Moreover, food production, illness prevention, medicine 
discovery, environmental pollution management, etc. all depend on the current AI 
and associated automated techniques (Goodswen et al., 2021). The detection of 
antimicrobial resistance is generally considered a time-consuming and laborious 
process that can be made more effective by using ML, which predicts AMR in 
different bacterial strains (Májek et al., 2021; Wang et al., 2023). AI algorithms 
can identify illnesses, including novel and drug-resistant types, with speed and 
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Table 1: The different types of traditional methods used for the  
identification of microorganisms

Methods Description References

Culture-based 
Techniques

• Microbial samples are cultured on nutrient agar 
plates or in broth media under specific conditions 
(e.g., temperature, pH) to encourage their growth.

• The resulting colonies are then examined for 
morphological characteristics such as size, shape, 
color, and texture.

Sutherland and 
Rafii, 2006; 

Microscopy 
and Gram-
staining

• Microbial cells are visualized under a microscope 
to observe their morphological features, such as cell 
shape, size, arrangement, etc.

• Common staining techniques are gram staining, 
acid-fast staining, and fluorescent staining.

(Lane, 2015) 

Biochemical 
Assays

• Various biochemical tests are performed to assess 
the metabolic activities of microorganisms.

• These tests may include the utilization of specific 
substrates, the production of enzymes, or other 
biochemical reactions.

• Commercial kits like API strips provide a 
standardized method for biochemical testing and 
identification.

Pradhan and 
Tamang, 2019; 
Sutherland and 
Rafii, 2006

Phenotypic 
Identification

• This identification is based on observable traits 
such as growth patterns on different media, colony 
morphology, motility, pigment production, and 
biochemical characteristics (e.g., fermentation of 
sugars, production of specific enzymes).

 Pradhan and 
Tamang, 2019

Serological 
Tests

• Detection of specific antigens or antibodies 
associated with microbial species using serological 
techniques such as enzyme-linked immunosorbent 
assay (ELISA), Western blotting, or agglutination 
tests.

• Serological tests are often used for the diagnosis 
of infectious diseases and the identification of 
pathogens.

Sutherland 
and Rafii, 
2006; Eldin et 
al., 2019 

Molecular 
Techniques

• Molecular methods like PCR, DNA sequencing, 
and Restriction Fragment Length Polymorphism 
(RFLP) analyze the genetic material (DNA or RNA) 
of microorganisms for species identification.

• These techniques offer high specificity and can 
detect microbes even at low concentrations.

Pradhan and 
Tamang, 2019; 
Ferone et al., 
2020

accuracy. They make better diagnostic methods and possible early antibiotic 
resistance detection. Pathogen identification, speed, accuracy, and antibiotic 
resistance prediction are the main focuses of AI in microorganisms (Zhang  
et al., 2023).
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 To understand the advanced identification methods of microorganisms, it is 
important to briefly highlight the conventional methods. In Table 1, an overview 
of traditional methods of microbial identification is summarized. To correctly 
identify microorganisms, a mixture of these conventional approaches is frequently 
employed, each with its own potential. To quantitatively analyze microorganisms 
and determine their biological activities, biologists and other researchers working 
with microorganisms need to know how to count them. However, because they are 
time-consuming, subjective, and require complicated processes, traditional manual 
methods for counting microorganisms such as hemocytometry, turbidimetry, and 
plate counting are challenging to use in large-scale applications (Zhang et al., 
2022). There are several drawbacks to the conventional method of identification. 
First of all, they take a lot of time, as cultures usually need to be incubated for 
several hours or days at a time. The application of these technologies is limited 
to bacteria that can be cultured in present laboratory settings due to the lack of 
adequate conditions and mediums. The low resolution of microscopy methods 
might make it difficult to differentiate between tiny or morphologically identical 
bacteria, calling for the expertise of trained specialists for precise sample 
preparation and analysis. Furthermore, for closely related species, differentiation 
based only on morphological traits may not be adequate. Serological tests may 
produce false-positive findings because of cross-reactivity with comparable 
antigens, whereas biochemical assays may have specificity problems that might 
result in misidentification (Pradhan and Tamang, 2019; Eldin et al., 2019;  
Ma et al., 2023).

Currently Developed Methods for Microorganism 
Identification

The aforementioned methods describe the microbial world in terms of their 
physical appearance, biochemical processes, and other methods in specific 
domains. Although the existing shortcomings of these methods make them 
of less use and cannot provide the minute details of microorganisms, the 
advanced technologies are devoted to proper microorganism identification and 
thus enhance their biotechnological applications and human use (Buszewski et 
al., 2017). Likewise, the routinely used biochemical tests for identification are 
equipped with automated and semi-automated devices, which greatly reduce the 
time of analysis and enhance the identification qualities. For instance, Vitek 2 
Compact, BD Phoenix, Analytical Profile Index (API), etc. are using advanced 
functions (Buszewski et al., 2017). 

The spectrometric methods also give a flavor to the microbial identification, 
as well-documented. Fourier transform infrared (FTIR) spectroscopy has been 
used for microbial identification for a long time due to its high quality, accuracy, 
short analysis time, cheapness, easy sample preparation, and covering of whole 
bacterial cells, etc. (Hussain, 2023). The identification is mostly based on its 
common properties, like the fact that the same species has a unique characteristic 



234 │ Artificial Intelligence and Animal Ecology: A Review

peak. The probiotic identification was recently performed by Hussain et al. (2023) 
using FTIR analysis, which indicated a probiotic-specific peak located at 2845 
and 1929 cm-1 (Hussain et al., 2023). 

MALDI-TOF MS is the most recent tool used for the fast identification 
of microorganisms. The identification is obtained due to the comparison of the 
spectral profile of the analyzed microorganism with the available automated 
database. Currently, this method is extensively used in clinical laboratories for 
the rapid identification of microbes. Identification based on MALDI TOF MS 
greatly reduced the cost of operation and storage (Buszewski et al., 2017; Han 
et al., 2021; Wang et al., 2023). 

Still, there are many limitations to these modern methods of identification, 
and we are again shouting for a more reliable identification process. For instance, 
the sophisticated machine needs to be operated by experts; there must be a proper 
place of placement; and it must have additional analytical shortcomings. Thus, 
it’s the right time to understand, explore, and take advantage of modern AI tools 
and develop identification in detail. The spectrum of AI, i.e., its advantages, 
applications, shortcomings, and future perspectives, is summarized in Figure 4.

Figure 4: Illustration representing the multiple spectrums of AI in microbial 
identification, the applications, advantages, disadvantages, and future recommendations.

Effects of Microbial Ecology on Animal’s Behavior 
and Health 

The preceding 20 years have seen amazing technology breakthroughs that 
have raised living standards and improved security for all individuals. Using 
AI, in various sectors, including medicine, is one of these developments. AI is 
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important for diagnosing and identifying pathogens (Mishra et al., 2023). Most 
of the conducted studies are based on observations. Recently, Barwant et al. 
(2024) documented the use of different nano-biosensors for animal health. The 
effects of AI in different ecosystems are summarized in Table 2.

Table 2: Overview of AI methodologies in different spectrums of  
environmental microbiology 

AI Methodology Spectrums References
Metagenomics 
sequencing analysis

Used to study all genes in 
environmental microbial samples

Zhang et al., 2021

Satellite-based
remote sensing and 
imaging

Understanding the biology, 
ecology, and growth dynamics of 
microorganisms

Grimes et al., 2014

Machine learning model Helpful for predicting 
microorganisms

Qu et al., 2019

Interaction with Ecosystem 

Eukaryotes likely evolved from prokaryotes and have maintained a close 
relationship with them ever since. It’s therefore unsurprising that animal and plant 
surfaces host a wide variety and abundance of microorganisms. Additionally, 
some microorganisms can grow within animal or plant cells as endosymbionts. 
Thus the number of microbial cells and their collective genetic material often 
far surpasses that of their hosts. Microorganisms can associate with hosts in 
various ways. Some associations are temporary and have little impact on the 
adaptation or evolution of the holobiont. While others are well-established, long-
term interactions—such as the rumen system—where host and microorganism 
become entirely dependent on each other. Between these extremes, there exists a 
range of interactions of varying strengths, including pathogenesis. It’s important 
to note that studying these host-microorganism interactions is complex because 
mostly these associated microorganisms have not been cultured, and many 
interactions involve multiple microorganisms interacting with the host, as seen 
in the human gut microbiota and the co-aggregating bacteria in the human mouth 
(Zilber-Rosenberg & Rosenberg, 2008). The bacterial communities of animals 
are influenced by various factors such as the environment, genetics, physiology, 
and social interactions of their hosts. In turn, these bacterial communities can 
convey information about the animals they inhabit by altering the hosts’ odor or 
physical appearance (Archie & Theis, 2011).

Effects on Animal’s Ecology 

Animals are essential to our ecosystem, coexisting with us and creating a 
complex web of life. The integration of AI into animal welfare presents an 
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exciting frontier, leveraging advanced technologies such as DL, ML, and neural 
networks to significantly improve the monitoring, management, and overall 
well-being of animals. AI-driven solutions can facilitate better understanding of 
animal behavior, health, and environmental interactions, enabling proactive and 
preventive measures that enhance the quality of life for various animal species 
(Zhang et al., 2024). Bacteria are a crucial part of animal bodies, residing on their 
skin, fur, feathers, scales, and exoskeletons, as well as present in their different 
systems. In humans, bacterial cells outnumber somatic cells by ten to one, and 
the collective human-associated microbial communities have about a hundred 
times more genes than the human genome (Yang et al., 2009). This is likely 
true for most animals as well. While bacteria in vertebrate systems are often 
seen as disease-causing agents, many actually have beneficial relationships with 
their hosts. For example, bacterial communities in animals assist in extracting 
energy and nutrients from food, producing vitamins, combating pathogens, and 
modulating immune system function (Ruiz-Rodríguez et al., 2009; Archie and 
Theis, 2011).

Role of Microorganisms in Animal Gut Health and 
Disease Transmission

Symbiotic bacteria can influence host health and convey information about 
their hosts, understanding the microbial communities of animals—such as the 
species present, their origins, and their functions—can provide insights into 
long-standing mysteries in animal behavior (Archie & Theis, 2011). Zoonotic 
diseases, or zoonosis, represent those infections that occur because of the natural 
transmission of pathogens between humans and animals. These diseases can 
spread through direct or indirect contact between humans and animals, or via 
food-borne, vector-borne, and water-borne routes involving bacteria, viruses, 
parasites, and fungi. Over 70% of infectious diseases are from animal sources, 
making zoonosis a significant public health issue with an estimated annual 
mortality of 2.7 million. Besides their impact on human health, zoonosis also 
affects livestock production and security, leading to economic losses. Recently, 
AI models have been utilized to study zoonotic pathogens and the factors 
influencing their spread (Pillai et al., 2022).

Logistic Regression and RF models are commonly employed to analyze 
and draw insights about different zoonotic diseases and their transmission 
(Ntampaka et al., 2020; Kiambi et al., 2020). Likewise, ANNs have also shown 
effectiveness in modeling zoonotic diseases and their causes in various studies 
(Boleratz & Oscar, 2022; ZareBidaki et al., 2022). These AI-driven approaches 
hold promise for enhancing our ability to predict, prevent, and control zoonotic 
disease outbreaks, ultimately improving both human and animal health. Disease 
prediction models are classified into two main categories: traditional ML models, 
which require only modest computing power, and DL models.
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Using partial least squares regression and hybrid support vector machine 
(SVM) model, trap counts of the female mosquitoes, Culex Tarsalis, that is 
responsible for transmitting West Nile Virus (WNV) is accurately predicted by 
analyzing meteorological data, dead birds, WNV cases, and human fatalities. The 
study demonstrated that the SVM model, which operates on decision boundaries, 
performs better when the classes are clearly separable, achieving a mean absolute 
error of 3.01, thus outperforming other ML models.

American trypanosomiasis, also known as Chagas disease, is a neglected 
tropical illness caused by Trypanosoma cruzi, a flagellated protozoan. It is 
transmitted by blood-feeding triatomines from the family Reduviidae, subfamily 
Triatominae. In order to identify differences in the intestinal metabolome of the 
triatomine Rhodnius prolixus and to predict exposure to T. cruzi, RF classifiers, 
logistic regression, and gradient boosting algorithms were employed by Eberhard 
et al. (2021). Their findings indicate that the ensemble methods were more 
effective than logistic regression in detecting the complex interactions between 
triatomine vectors and the parasites.

Ebola virus disease (EVD) is an uncommon and lethal illness that affects 
both humans and animals. Price et al. (2020) investigated how host responses to 
Ebola virus infection in mice differ between tolerant and fatal outcomes, using 
clinical, virologic, and transcriptomic data. Their analysis revealed that the RF 
model was highly effective in accurately predicting the outcomes of the disease.

Crimean-Congo hemorrhagic fever (CCHF) is a highly virulent disease in 
humans caused by a negative-sense single-stranded RNA virus from the genus 
Nairovirus. Structured Gaussian approach is used to identify high-risk geographic 
areas for CCHF, incorporating data on climate, land use, and populations of 
both animals and humans to capture spatiotemporal transmission patterns. Their 
analysis indicated that CCHF is mainly influenced by geographical factors and 
climate impacts on ticks. The Gaussian process, which relies on a Gaussian 
probability distribution, proved effective for reliable classification in uncertain 
conditions related to climate and spatiotemporal variables (Pillai et al., 2022).

Limitations of Using AI and ML in Microbial 
Identification and Distribution 

Although AI, ML, and DL have a substantial effect in all domains of life, i.e., 
from identification to confirmation and from validation to analysis, there are 
still some shortcomings present that raise questions about their supremeness 
and fastness. The potential shortcomings found in these technologies include 
the following:

	•	 The robustness of their performance required validation via multiple datasets, 
particularly in clinical settings, which makes it difficult.

	•	 The construction and development of AI models and their interpretations is not 
an easy task, and any looseness can lead to negative or incorrect results.
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	•	 The AI algorithm is not static, and improvements occur rapidly; hence, 
regulatory authorities, etc., must be updated and understand their mechanisms 
and effects.

	•	 Data interpretation is considered a major challenge in ML as most of the users 
have less understanding of these advanced technologies.

	•	 Microbial morphological similarities make it a hurdle for ML to recognize 
their images.

Future Perspectives and Potentials 

With rising trends like the combination of omics data, personalized microbial 
analysis, and the creation of ethical and regulatory structures, the field of 
microbial science has a bright future ahead (Rani et al., 2022). It is anticipated 
that cooperative study and data exchange will deepen our comprehension of the 
microbial realm and provide answers to some of the most pressing problems 
of our day (Goodswen et al., 2021). These days, AI is the table-talk topic for 
everyone due to its widespread accomplishments. When biotechnology and 
AI progress together, hitherto unattainable new possibilities open up. This can 
support significant Sustainable Development Goals (SDGs) and assist with some 
global issues. Today, AI is pervasive throughout the biological sciences. A wide 
range of topics are covered, including, biomedical, reasoning, natural language, 
ML, big data analytics, etc., with applications in biotechnology and related fields 
(Holzinger et al., 2023). The development of large language models (LLMs) like 
ChatGPT is considered an advancement in the field because it can summarize 
and generate different contents, suggesting the robustness and potential of AI 
technologies (Liu et al., 2023). AI combined with optical imaging provides 
automated bacterial detection and reduces the human workload in different 
settings (Ma et al., 2023). Development and automation in the CRISPR-Case 
system for microorganism identification and functional characterization is also 
an important application (Hussain and Ali, 2023).

Conclusion

Artificial intelligence (AI) has emerged as a transformative tool for microbial 
detection and the efficiency of diagnostic processes across various settings. Its 
influence is particularly significant in resource-limited settings, where traditional 
methods have limitations of time, cost, and accuracy. AI and its allied technologies 
like machine learning (ML) and deep learning (DL) enable fast, precise, and cost-
effective methods for microbial detection, identification, and surveillance. In a 
hospital setting, the AI-based protocol provides accurate and efficient pathogen 
detection, helping in the prevention, early diagnosis, and control of microbial 
infections. Outside the clinical sites, AI also plays a critical role in environmental 
microbiology while facilitating the identification of various microbial groups, like 
bacteria, algae, protozoa, and fungi, of different ecological niches. Owing to the 
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practical applications of AI, these tools greatly help in managing and analyzing 
large-scale biological datasets with speed, accuracy, and high sensitivity. The 
integration of AI, ML, and DL algorithms has enabled researchers to identify 
microbial prevalence, detect pathogens, and explore microbial dynamics in a 
complex and dynamic environment. Besides ecological microbial applications, 
these cutting-edge technologies have broader applications, covering forensic 
microbiology, clinical diagnostics, bioinformatics, and imaging. In conclusion, 
the proper implementation of these advanced technologies helps researchers to 
explore the world of microorganisms across various disciplines and delve deep 
into their applications while deciphering their potential pathogenic nature.
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M. Martínez-Bueno. (2009). Symbiotic bacteria living in the hoopoe’s uropygial 
gland prevent feather degradation. Journal of Experimental Biology, 212: 3621–3626.

Sarrafzadeh, M.H., S.S. Mansouri, J. Zahiri, S.I. Mussatto, and H. Asgharnejad. (2022). 
Editorial: Artificial Intelligence in Environmental Microbiology. Frontiers in 
Microbiology, 13: 944242.

Shelke, Y.P., A.K. Badge, and N.J. Bankar. (2023). Applications of artificial intelligence in 
microbial diagnosis. Cureus, 15: 1–8.

Shrestha, L.B., and K. Pokharel. (2020). Standard operating procedure for specimen 
collection, packaging, and transport for diagnosis of SARS-CoV-2. Journal of the 
Nepal Medical Association, 58: 627–629.

Sutherland, J.B., and F. Rafii. (2006). Genetic methods for identification of bacteria. In: 
Identification of Microorganisms by Mass Spectrometry, pp. 1–21. Wiley.

Undru, T.R., U. Uday, J.T. Lakshmi, A. Kaliappan, S. Mallamgunta, S.S. Nikhat, V. 
Sakthivadivel, and A. Gaur. (2022). Integrating artificial intelligence for clinical and 
laboratory diagnosis: A review. Maedica, 17: 420–426.

Waldron, L. (2018). Data and statistical methods to analyze the human. Clinical Science 
and Epidemiology, 2: 1–4.

Wang, D., M. Zhang, A.S. Mujumdar, and D. Yu. (2022). Advanced detection techniques 
using artificial intelligence in processing of berries. Food Engineering Reviews, 14: 
176–199.

Wang, H., C. Chung, W. Lin, S. Kalpana, and J. Horng. (2023). Artificial intelligence in 
MALDI-TOF MS: Microbial identification, strain typing, and antimicrobial resistance 
detection. DOI: 10.20944/preeprints202312.1149. ResearchGate.

Xie, K., L. Guo, Y. Bai, W. Liu, J. Yan, and M. Bucher. (2019). Microbiomics and plant 
health: An interdisciplinary and international workshop on the plant microbiome. 
Molecular Plant, 12: 1–3.

Xu, G., X. Teng, X.H. Gao, L. Zhang, H. Yan, and R.Q. Qi. (2023). Advances in machine 
learning-based bacteria analysis for forensic identification: Identity, ethnicity, and site 
of occurrence. Frontiers in Microbiology, 14: 1–6. 

Yang, X., L. Xie, Y. Li, and C. Wei. (2009). More than 9,000,000 unique genes in the 
human gut bacterial community: Estimating gene numbers inside a human body. PloS 
One, 4: e6074. 

Yang, H., H. Tang, X.X. Chen, C.J., Zhang, P.P. Zhu, H. Ding, W. Chen, and H. Lin. (2016). 
Identification of secretory proteins in mycobacterium tuberculosis using pseudo 
amino acid composition. BioMed Research International, 1: 5413903.

Zare Bidaki, M., E. Allahyari, T. Zeinali, and M. Asgharzadeh. (2022). Occurrence and risk 
factors of brucellosis among domestic animals: An artificial neural network approach. 
Tropical Animal Health and Production, 54: 1–13. 

Zeeshan A. Khan, M.F. Siddiqui and S. Park. (2019). Current and Emerging Methods of 
Antibiotic Susceptibility Testing. Diagnostics, 49: 1–17.

Zhang, J., C. Li, M.M. Rahaman, Y. Yao, P. Ma, J. Zhang, X. Zhao et al. (2022). A 
comprehensive review of image analysis methods for microorganism counting: From 

https://dx.doi.org/10.20944/preeprints202312.1149


Exploring the Role of Artificial Intelligence in Microbial Identification...  │ 243

classical image processing to deep learning approaches. Artificial Intelligence Review, 
55: 2875–2944. 

Zhang, J., C. Li, Y. Yin, J. Zhang, and M. Grzegorzek. (2023). Applications of artificial 
neural networks in microorganism image analysis: A comprehensive review from 
conventional multilayer perceptron to popular convolutional neural network and 
potential visual transformer. Artificial Intelligence Review, 2: 1013–1070.

Zhang, L., W. Guo, C. Lv, M. Guo, M. Yang, Q. Fu, and X. Liu. (2024). Advancements in 
artificial intelligence technology for improving animal welfare: Current applications 
and research progress. Animal Research and One Health, 2: 93–109.

Zhang, L., F.X. Chen, Z. Zeng, M. Xu, F. Sun, L. Yang, X. Bi et al. (2021). Advances 
in metagenomics and its application in environmental microorganisms. Frontiers in 
Microbiology, 12: 766364.

Zilber-Rosenberg, I., and E. Rosenberg. (2008). Role of microorganisms in the evolution 
of animals and plants: The hologenome theory of evolution.  FEMS Microbiology 
Reviews, 32: 723–735. 

Zitnik, M., F. Nguyen, B. Wang, J. Leskovec, A. Goldenberg, and M.M. Hoffman. (2019). 
Machine learning for integrating data in biology and medicine: Principles, practice, 
and opportunities. Information Fusion, 50: 71–91. 



11│Future Directions and Emerging 
Technologies in AI for Animal 
Ecology

*Corresponding author: nfadzly @usm.my

Nik Fadzly* and Zi-Han Yeo
School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia

Artificial Intelligence (AI) is transforming the landscape of animal ecology, 
offering innovative tools to enhance ecological research and conservation efforts. 
This chapter explores the integration of emerging AI technologies, including 
machine learning, computer vision, and real-time monitoring systems, to improve 
our understanding of animal behavior, habitat use, and ecosystem dynamics. 
The discussion emphasizes the convergence of traditional ecological methods 
with AI-driven predictive modeling, facilitating more accurate predictions and 
informed decision-making for conservation strategies. A central theme is the 
potential of AI to decode animal communication, with advances in bioacoustic 
analysis and neural interfaces enabling deeper insights into interspecies 
interaction. Examples such as the Cetacean Translation Initiative showcase 
the possibilities of using AI to understand complex communication systems. 
Moreover, the application of AI-enhanced environmental DNA (eDNA) analysis 
provides non-invasive methods to detect elusive species, monitor biodiversity, 
and track invasive organisms in challenging environments. Further technological 
innovations, such as blockchain-integrated AI, present solutions for addressing 
illegal wildlife trade by ensuring traceability and data integrity across supply 
chains. Multifunctional sensors, coupled with AI algorithms, enable real-time 
data collection and adaptive responses to environmental changes. Autonomous 
drones and IoT (internet of things) devices also play a crucial role in enhancing 
wildlife monitoring while minimizing human interference. However, the chapter 
also highlights challenges, including power consumption, data security, and the 
ethical implications of AI in animal ecology. With the rapid development of AI, 
balancing accessibility, accuracy, and ethical considerations becomes imperative. 
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Ultimately, this chapter envisions a future where AI not only aids conservation 
efforts but also fosters meaningful interactions between humans and animals, 
promoting a deeper understanding and stewardship of our natural world.

Introduction

In the last few years, the term Artificial Intelligence (AI) has become so ubiquitous 
that it is now a fundamental part of various fields, including animal ecology 
(Dhyani et al., 2023). Researchers are increasingly leveraging AI to analyze 
complex ecological data, enabling more accurate predictions of animal behavior 
and habitat use. As AI technologies continue to evolve, new methodologies 
such as machine learning and computer vision are being integrated into wildlife 
monitoring systems, allowing for real-time data collection and analysis. 

Although we can define AI as something new for the study of animal 
ecology, the fundamentals or the mathematics behind AI is something that 
most theoretical ecologists have been using for the past few decades. Predictive 
modeling on population growth, animal movement, and habitat selection has long 
relied on statistical techniques that share similarities with modern AI approaches 
(Saarenmaa et al., 1988). This convergence of traditional ecological methods and 
cutting-edge technology is paving the way for more nuanced insights into species 
interactions and ecosystem dynamics. As researchers continue to refine these 
models, the potential for AI to enhance conservation efforts becomes increasingly 
evident, enabling targeted interventions and more effective resource management.

In this chapter, we will discuss future directions, potential use cases, and 
emerging technologies that hold promise for integrating AI into ecological 
research, including machine learning algorithms, remote sensing data, and real-
time monitoring systems.

Future Communication with Animals

With the advancement of Machine Learning and Deep Learning models, 
we are looking into a future where basic communication with animals may 
become common, allowing us to decode their behaviors and vocalizations 
in ways previously thought unattainable (Ma, 2015; Jahns, 2013). The Earth 
Species Project is one of the many initiatives aiming to bridge the gap between 
human understanding and animal communication, utilizing AI to analyze vast 
amounts of data collected from various species (Project Earth Species, n.d.). 
McCowan et al. (2023) have demonstrated that a rudimentary conversation 
was established between an adult female humpback whale named Twain. 
Twain showed a remarkable ability to respond to specific sounds made by 
researchers, indicating a level of comprehension and interaction that opens 
up new avenues for studying interspecies communication. Additionally, the 
Cetacean Translation Initiative emphasizes the potential of machine learning in 
understanding complex communication systems in sperm whales, advocating 
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for a multidisciplinary approach to data collection and analysis (Andreas et al., 
2021). This ground-breaking work not only enhances our knowledge of marine 
life but also raises ethical questions about the implications of such interactions 
and the responsibilities humans have towards these intelligent beings.

AI-powered machine learning algorithms have shown significant promise 
in deciphering animal vocalizations, facilitating more effective communication 
between species. In primates, machine-learning techniques have been applied to 
analyze vocal communication, leveraging large datasets from passive acoustic 
monitoring (Cauzinille et al., 2024). Furthermore, mobile applications utilizing 
AI for real-time animal sound recognition demonstrate practical applications of 
these technologies in biodiversity monitoring (Lin & Fernando, 2023). Overall, 
while the advancements in AI and machine learning present exciting opportunities 
for interspecies communication, challenges such as data availability and model 
validation remain critical for future research and application in this field  
(Rutz et al., 2023).

What does this mean for the future of animal ecology and conservation efforts? 
As researchers continue to refine these technologies, we may see a paradigm shift 
in how we understand animal behavior, leading to more informed conservation 
strategies and enhanced protection of endangered species. Observation strategies 
can incorporate new recognition phrases that would enable scientists to study 
the hierarchical social structures within animal populations, revealing intricate 
relationships and interactions that were previously difficult to discern. More 
importantly, this brings us to another deeper fundamental perspective. Who is 
watching who? As observers, scientists often adopt a no-interrupt rule, in which the 
observer will not under any circumstances interfere with the daily activities of the 
subjects being studied (Bateson & Martin, 2021). This approach, while essential 
for maintaining natural behaviors, raises questions about the impact of human 
presence on these interactions and whether the mere act of observation alters the 
dynamics within these communities. As we might understand these animals in 
the future, perhaps the animals will be aware of the observers and have their own 
ways of interpreting our presence, leading to a complex interplay of awareness 
and behavior that challenges our understanding of their social structures.

More importantly, future communications with complex animals such as 
elephants, whales, and dolphins may reveal insights into their emotional lives 
and cognitive abilities, potentially reshaping our perceptions of intelligence in 
the animal kingdom. A good example comes from the Apple TV series drama, 
“Extrapolations” in which one of the episodes showcased how future scientists 
managed to communicate with the last whale by using AI to decode the intricate 
songs of the whale, unveiling a rich tapestry of emotions and stories that had 
long been hidden beneath the ocean’s surface. While the premise of the story 
centers on a bleak outlook on climate change, it does offer a glimpse of the 
possible future. To simplify the concept, future AI would enable us to interview 
the animals. Rather than tracking and tagging the animals, in the future, we can 
simply ask them, “How was your day?”
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AI-enhanced Environmental DNA (eDNA) Analysis

Environmental DNA (eDNA) technology has emerged as a revolutionary tool 
for monitoring biodiversity by detecting traces of genetic material left behind 
by organisms in their surroundings (Mathieu et al., 2020; Suren et al., 2024). 
With advancements in AI, the analysis of eDNA data has become more efficient, 
offering unprecedented opportunities for conservationists to monitor ecosystems 
without direct observation. AI-enhanced eDNA analysis allows researchers to 
detect species presence, monitor biodiversity, and assess the health of ecosystems 
with greater speed and accuracy.

One of the most promising applications of AI-enhanced eDNA analysis 
is in the detection of elusive or endangered species (Mauvisseau et al., 2020). 
Traditional monitoring methods, such as camera traps or manual tracking, are 
often limited by terrain or visibility. In contrast, eDNA sampling can detect 
organisms through genetic traces in water, soil, or air, even when they are not 
directly observable. AI algorithms can rapidly process these samples, identifying 
species from large genomic databases, which helps conservationists prioritize 
their efforts in protecting endangered populations.

AI-enhanced eDNA analysis also offers significant advantages in monitoring 
biodiversity in remote or difficult-to-access areas. Autonomous devices equipped 
with AI algorithms could process samples on-site, transmitting data in real-time to 
researchers. This approach allows for continuous monitoring of ecosystems and 
the early detection of changes in biodiversity. For example, AI-powered eDNA 
sensors deployed in marine environments could detect shifts in fish populations, 
providing timely information to fisheries managers and policymakers (Mauvisseau 
et al., 2020).

Another critical application of AI-enhanced eDNA analysis is in monitoring 
invasive species. Early detection of invasive species is essential for preventing 
their establishment and spread. AI algorithms can analyze eDNA data to identify 
invasive species and predict their movement patterns, enabling conservationists 
to take pre-emptive action. This capability is particularly valuable in ecosystems 
where invasive species threaten native biodiversity and ecological balance.

The use of AI in eDNA analysis also contributes to understanding the impacts 
of climate change on biodiversity. By comparing eDNA samples collected over 
time, AI algorithms can detect shifts in species distributions and assess how 
ecosystems are responding to changing environmental conditions. These insights 
are essential for developing adaptive management strategies that ensure the long-
term sustainability of biodiversity in the face of climate change.

Blockchain-integrated AI for Wildlife Trade 
Monitoring

The illegal wildlife trade represents one of the most significant threats to global 
biodiversity, driving species toward extinction and destabilizing ecosystems. 
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While regulatory frameworks exist to curb this illicit trade, enforcement is 
often limited by the opacity and fragmentation of supply chains. Blockchain 
technology, integrated with AI algorithms, offers a novel solution to these 
challenges by improving transparency, traceability, and data integrity across 
wildlife trade networks (Dryga et al., 2019; Busse et al., 2019). This integration 
holds immense potential for conservationists, enabling more effective monitoring 
of wildlife products and reducing opportunities for exploitation.

Blockchain technology provides a decentralized ledger that records 
transactions transparently and securely. Every transaction in a blockchain system is 
timestamped, immutable, and visible to all authorized participants, minimizing the 
risk of fraud. In the context of wildlife trade, blockchain can track the provenance 
of products from origin to sale. This ensures that wildlife-derived goods are 
sourced legally and sustainably. AI complements blockchain by automating the 
detection of suspicious patterns within trade data, enabling authorities to identify 
and respond to illegal activities more swiftly.

One significant application of blockchain-integrated AI is in the monitoring 
of supply chains involving endangered species. AI algorithms can analyze 
blockchain-logged transactions to detect anomalies, such as sudden surges in the 
trade of specific species or products. This capability is particularly valuable in 
wildlife markets, where illegal goods are often laundered into legal supply chains. 
For example, blockchain systems could record each step in the ivory trade. We 
can track products from poaching hotspots to end markets. Using AI, we can 
identify patterns that indicate illegal sourcing. This data-driven approach enhances 
enforcement by providing real-time evidence that authorities can act upon. Here, 
we need to address that this concept is different from the Bitcoin concept preferred 
by criminals. Whilst the transactions are recorded in the blockchain ledgers, the 
identities of the parties involved can be anonymized, allowing for transparency 
in legal trades while protecting sensitive information. Or, in certain cases, allows 
criminals to use this system. Perhaps identifying these criminals might take an 
effort; tracing the illegal sales activities of wildlife trade can at least be tracked 
and analyzed through advanced algorithms that monitor unusual patterns and flag 
suspicious transactions for further investigation.

Another important area where blockchain-integrated AI can make an impact is 
in improving compliance with international wildlife trade agreements, such as the 
Convention on International Trade in Endangered Species (CITES). Blockchain 
can serve as a digital ledger for permits, ensuring that only authorized transactions 
occur, while AI systems verify the legitimacy of permits by cross-referencing data 
with government databases. This dual-layered system reduces the likelihood of 
permit forgery, streamlining compliance checks and enhancing enforcement efforts.

Additionally, blockchain-integrated AI can foster transparency and 
accountability within conservation programs. Communities and organizations 
involved in wildlife conservation often rely on donor funding to support their 
efforts (Stuit et al., 2022). Blockchain technology can track the allocation of these 
funds, ensuring that they are used effectively and as intended. AI analytics can 
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provide further insights by assessing the impact of conservation interventions, 
optimizing resource allocation, and identifying areas requiring additional support.

Multifunctional LLM Sensors

Sensor technology has evolved over the past decade by becoming cheaper, 
smaller, and smarter. We have sensors to record the environment, movement, 
trajectory, and even the physiology of the animals themselves. Previously, 
any field equipment would need an operator to either manually record the 
measurements or to actually retrieve the data. Now, with the integration of AI, 
these sensors can autonomously gather and analyze information, providing real-
time insights into animal behavior and environmental changes. 

Multi-function sensors play a crucial role in the conservation of endangered 
species by enabling precise tracking of their populations and habitats. These 
sensors, which include IoT (internet of things) devices, GPS trackers, and remote 
sensing technologies, facilitate real-time monitoring and data collection, enhancing 
conservation efforts. Key contributions include:

Enhanced Monitoring Capabilities
	•	 Sensor Fusion: Combining various sensors (e.g., infrasound, cameras, 

seismic) allows for comprehensive coverage and detection of poaching 
activities (Siewert et al., 2024). 

	•	 Enhanced Algorithmic-based Sensing: Modern motion magnification 
algorithms like the Eulerian Video Magnification algorithm created by Wu 
et al. (2012) from MIT are able to reveal subtle changes in videography and 
are able to allow heart rate or breathing rate monitoring from a distance. The 
incorporation of such algorithms with AI technologies like computer vision 
and their deployment in wildlife monitoring sensors would allow such features 
to be implemented for wildlife, allowing never-before-monitored wildlife data 
to be collected and potential new insights to be inferred.

	•	 IoT Integration: Real-time data from motion sensors and cameras aids in 
understanding animal behavior and habitat use (Roy et al., 2023). It can also 
allow for real-time monitoring of wildfires and provide immediate alerts for 
quick and effective damage control, potentially saving precious endangered 
ecosystems and resources.

	•	 Automated Wildlife Monitoring Camera: Real-time image capture can now 
detect different types of animals captured by the camera. The camera, equipped 
with a 4G cellular system, then transmits the data to a server equipped with a 
data processing capability, enabling researchers to not only monitor wildlife 
but also analyze patterns in real time. This integration of AI with sensor 
technology allows for the deployment of biologgers that can intelligently 
manage their data collection based on specific behavioral triggers, optimizing 
battery life and storage capacity while providing critical insights into animal 
behavior (Korpela et al., 2019). Moreover, as these technologies advance, 
they may facilitate a more holistic understanding of ecosystem interactions by 
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correlating environmental changes with animal responses, thereby contributing 
to predictive conservation models that address both immediate threats and 
long-term sustainability goals. Such advancements could ultimately lead to 
innovative strategies for habitat restoration and species reintroduction efforts, 
reinforcing the necessity for ongoing research and collaboration across 
disciplines in the field of animal ecology (Kissling et al., 2024). This enables 
researchers to analyze population dynamics and track movements, leading to 
more informed conservation strategies.

	•	 Integrated TinyML using Cheap and Small Microcontrollers: These 
cameras can facilitate on-device processing, allowing for immediate analysis of 
data at the source, reducing latency and bandwidth usage while enhancing the 
efficiency of wildlife monitoring efforts (Panda et al., 2022). This technology 
not only streamlines data collection but also empowers conservationists to 
respond swiftly to emerging threats, ensuring that interventions are timely  
and effective.

The next step is to integrate these technologies into a cohesive framework that 
enables real-time monitoring and adaptive responses to environmental changes. 
We expect the development of a multifunctional sensor system that is integrated 
with a Large Language Model (LMM), which would enable real-time data 
interpretation and predictive analytics, enhancing our ability to respond swiftly to 
ecological shifts. Users can simply give commands using voice commands, and the 
sensor will react and adapt accordingly. A basic example of this technology is the 
SeeedStudio Watcher (Seeedstudio Watcher, n.d.). This ESP32 is equipped with a 
camera and a development kit that integrates ChatGPT within its ecosystem. The 
device has extra connectivity pins that would allow users to add multiple sensors 
and customize the functionality to suit specific environmental monitoring needs, 
such as air quality, temperature, and humidity levels. The commands to initiate 
the changes and trigger specific actions can be tailored through a user-friendly 
interface, making it accessible even for those with minimal technical expertise. 
Furthermore, with the integration of ChatGPT, users can use voice commands to 
change the device’s directives. This is similar to the Universal Scanner (Tricoder) 
that was depicted in the Star Trek series.

While the development of these LLM sensors is still in its infancy, the 
potential applications for animal ecology science are vast, ranging from tracking 
wildlife movements to monitoring habitat conditions in real time. This would 
bring us to the next possible future direction in AI and animal ecology: The 
deployment phase. This phase will involve field testing these technologies in 
various ecosystems, allowing researchers to gather data and refine the systems 
based on real-world feedback.

Automated AI Drone for Data Collection

Autonomous drones are revolutionizing animal ecology by enhancing wildlife 
monitoring and conservation efforts. These unmanned vehicles (UVs) facilitate 
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data collection in remote areas, minimize human disturbance, and integrate 
advanced technologies like machine learning for real-time analysis. Key aspects 
of their application include:

Enhanced Data Collection
	•	 UAVs can cover vast and rugged terrains, collecting data that is often inaccessible 

by traditional methods (Mazumdar, 2022). As we embrace the deployment 
of autonomous drones in wildlife monitoring, it is essential to consider how 
these technologies can be integrated with AI-driven data analytics to enhance 
our understanding of animal behavior and ecosystem health. For instance, 
combining drone-collected imagery with machine learning algorithms enables 
more sophisticated analyses of population dynamics and habitat changes over 
time, allowing researchers to identify critical areas for conservation efforts 
(Raghuwanshi et al., 2023). This integration between aerial surveillance and 
ground-level data collection not only improves our ability to monitor species 
at risk but also fosters a deeper appreciation for the complexities of ecological 
networks, emphasizing the importance of protecting biodiversity in an ever-
changing landscape. They enable in situ imageomics, allowing researchers 
to infer biological traits from images, thus providing valuable insights into 
animal behavior (Kline et al., 2024).

Moreover, the integration of AI with autonomous drones opens up exciting 
avenues for collaborative research initiatives that transcend geographical 
boundaries. For instance, combined efforts across different regions can utilize 
UAVs equipped with machine learning algorithms to collect and analyze data 
on migratory patterns of species such as birds or marine mammals, thereby 
enhancing our understanding of their ecological needs and conservation strategies. 
Such collaborative frameworks could also incorporate animal-borne data loggers 
or biologgers, which allow researchers to gather real-time physiological and 
behavioral data from individual animals in their natural habitats (Korpela et al., 
2019). By employing these technologies together, scientists can create a more 
holistic view of ecosystem dynamics, improving predictive models and ultimately 
leading to more effective conservation interventions tailored to specific species and 
environments. This synergy not only amplifies the scope of ecological research 
but also fosters an adaptive management approach that is responsive to changing 
environmental conditions and anthropogenic pressures.

Reduced Disturbance to Wildlife
	•	 Innovative navigation methods, such as motion camouflage, allow drones to 

observe animals with minimal visual disturbance (Li et al., 2022).
	•	 This capability is crucial for studying sensitive species without altering their 

natural behavior (Raffik et al., 2024).

There are two main types of drones that are currently used in animal ecology. 
The aerial drones and the submersible drones each serve unique purposes in 
monitoring and studying different species in their respective habitats. Current 
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technology and law regulations require that drone operations be controlled and 
monitored by humans. The new advancements in artificial intelligence are paving 
the way for more autonomous systems, potentially allowing drones to operate 
with greater independence while still adhering to safety protocols. Currently, 
autonomous flight drones are still bound by their pre-programmed routes, 
but future developments may enable them to adapt in real-time to changing 
environmental conditions and animal behaviors. Similarly, underwater drones are 
mostly remote-controlled due to various restrictions such as power distribution, 
signal telemetry, and navigation challenges. However, innovations in battery 
technology and communication systems could soon allow for more autonomous 
underwater exploration, enhancing our understanding of marine ecosystems.

To illustrate the possible future scenario, there was a famous scene from the 
movie Minority Report where police officers in the future deployed ‘spider’ bots 
with the ability to navigate complex environments and identify potential threats. 
This concept, while fictional, highlights the potential for advanced robotics to 
revolutionize surveillance and security measures in our own world. Robotic fish 
are being designed to assess the swimming formation and behavior of real fish, 
providing insights into their social structures and responses to environmental 
changes (Butail et al., 2015).

However, as of now, the movements are still limited to pre-programmed 
movements and basic reactive behaviors. Researchers are now exploring ways 
to incorporate machine learning algorithms that would allow these robotic fish 
to adapt their movements in real time, mimicking the fluid dynamics of their 
biological counterparts.

In terms of the possible future, we expect to see the development of these 
drones, both aerial, nautical, and land, that are equipped with General Artificial 
Intelligence that would enable them to learn from the environment and interact 
more autonomously with their surroundings, potentially revolutionizing fields such 
as environmental monitoring and search-and-rescue operations. We actually do 
have these smart rovers, but they are currently not on this earth, and with a total 
development cost of 1.08 billion USD (including launch and deployment), they 
are hardly cost-effective for our ecological survey needs. Perhaps the technology 
could be adapted for a cheaper solution, allowing for smaller, more efficient units 
that could be deployed in various ecosystems on Earth, thus making ecological 
monitoring more accessible and widespread.

Big Data in the Field of Ecology

With the increasing amount of sensors being used for ecological monitoring, 
massive amounts of new data are being collected as we speak. Citing our 
previously mentioned examples, sensors are being installed in forests and in the 
air in the form of UAVs. Furthermore, locations like oceans, wetlands, volcanic 
regions, and concrete jungles could also benefit from sensor installations. All 
this provides an abundance of real-time information, from species behavior to 
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climate changes, all contributing to an enormous treasure trove of ecological Big 
Data. Applying advanced data analysis in the form of machine learning and AI 
models could shine a light on previously undiscovered insights into the complex 
relationships that govern ecosystems, enabling informed decision-making and 
novel approaches for ecological efforts like conservation, resource management, 
and species preservation. 

Resource Optimizations for Sustainable  
Ecosystem Management

The most immediate impact we can derive from data-driven insights would 
be the optimization of natural resource use. With real-time data being easily 
acquired and a slew of historical data within our grasp, new protocols and 
policies regarding natural resources can be crafted in such a way that long-
term ecosystem viability is sustained alongside responsible and sustainable  
resource use. 

By tracking critical natural resources in real-time while applying insights 
for optimized natural resource harvest, we can prevent exerting ecosystem 
stress that leads to ecological disruption. For instance, sensors monitoring soil 
moisture, tree growth rates, and biodiversity can feed into AI models that help 
predict optimal logging intervals or identify areas at risk of deforestation. This 
data-driven approach ensures that timber harvesting is done in a methodological 
way that preserves forest health and biodiversity, reducing the chances of habitat 
loss and species extinction. Moreover, in marine ecosystems, big data from sensor 
networks that monitor fish populations, ocean temperatures, and nutrient levels 
can help implement sustainable harvesting practices for fisheries. By integrating 
this collected big data into AI models, governing bodies can predict population 
declines or overfishing risks, adjusting quotas and fishing policies accordingly. 
This ensures that fish stocks are harvested at sustainable levels, preserving marine 
biodiversity while supporting the livelihoods of fishing communities. Besides, 
an adaptive resource management system could also be implemented, where 
environmental management strategies can be updated continuously based on 
real-time environmental changes and feedback. For example, in water resource 
management, real-time data on rainfall, river flow, and groundwater levels, 
combined with temperature metrics, can be fed into an AI model that predicts 
optimal water allocation for agriculture, energy production, and urban use, 
ensuring that usages do not exceed natural replenishment rates.

By applying these data-driven insights, AI and big data enable a balance 
between human exploitation of natural resources and the long-term health of 
ecosystems, promoting sustainability and reducing negative ecological impacts. 
The ability to optimize resource use with precision not only supports conservation 
efforts but also supports the growth of developing economies that rely heavily 
on natural resource use. 
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Taxonomical and Evolutionary Insights

By applying big data concepts to our growing database of wildlife genomics, 
we can also unveil previously unknown taxonomical and evolutionary links and 
connections that would otherwise remain invisible to the naked eye. Taxonomy 
is the scientific study of naming and categorizing groups of organisms based 
on shared characteristics. Traditionally, taxonomy is an old field of science that 
relied more on morphological similarities than genetic similarities. However, 
over the past few decades, there has been a rise in the use of molecular 
methods in the field of taxonomy, accompanying the advancement of molecular 
biology. By using molecular methods like DNA sequencing, genetic data can 
be cataloged for all sorts of organisms, and these vast amounts of genetic data 
benefit greatly from the use of powerful AI predictive models (López-Rubio 
et al., 2021). AI-driven algorithms can be used to analyze and group species 
more efficiently, allowing the taxonomic tree to be reshaped in an unprecedented 
manner. This will deepen our understanding of global biodiversity and will bring 
to light previously unknown species that may be at risk of extinction, boosting 
conservation efforts.

Similarly, with big data and data science introduced to this field, genetic 
variation in the gene pool can easily be tracked over time, uncovering truths 
about evolution and even witnessing microevolution occurring in real-time. It can 
also reveal how species adapt to environmental pressures like climate change, 
habitat loss, and diseases genetically. For example, in a paper by Sunday et al. 
(2011), an attempt was made to quantify evolutionary adaptations in response to 
ocean acidification using a full-factorial breeding design that evaluates genetic 
variation by assessing different breeding combinations. By leveraging IoT sensors 
and big genomic data, a clearer link could be established between the two while 
using fewer resources. 

Disease Ecology Insights

Especially after the COVID-19 pandemic, disease ecology is seeing more 
importance with the impact it can bring. Big disease data have become readily 
available, and data science methods are being increasingly used in the field 
(Doherty et al., 2021). Zoonotic diseases, like COVID-19 or the avian flu, can 
be predicted and tracked by feeding environmental and animal migration data 
derived from sensors, as well as genetic data, into AI prediction models. By 
using big data analytics, disease ecologists can effectively identify patterns 
of disease transmission, model potential outbreaks, and develop mitigation 
strategies to prevent the spread of pathogens to new populations or even to 
humans. This kind of disease-predictive capability is invaluable in today’s world, 
where habitat encroachment and climate change are increasing the likelihood of 
wildlife diseases spilling over into human populations.
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Challenges for the Future Direction

In this particular section, we will explore the technical and logistical hurdles that 
must be overcome to achieve this goal, including miniaturization of components, 
energy efficiency, and the integration of advanced AI for real-time data analysis.

Software

We can divide the source of these challenges based on the two basic fundamentals 
of AI. The software and hardware. In the first portion, we address the rapid 
advancement of these AI tools that are readily available and how they can be 
tailored to process vast amounts of ecological data efficiently. This includes 
developing algorithms that can learn from diverse datasets (Korzeniowski & 
Goczyła, 2019), improving their predictive capabilities, and ensuring they can 
operate in real-time under varying environmental conditions. AI development 
has become more streamlined and geared towards the common people compared 
to 10 years ago when it was more geared towards scientists and researchers. The 
democratization of AI technology has led to a surge in citizen science initiatives, 
where everyday individuals can contribute to ecological monitoring and data 
collection, further enhancing the breadth of information available for analysis. 
This shift not only empowers communities but also fosters a deeper connection 
between people and their local environments, encouraging stewardship and 
awareness of ecological issues.

Nowadays, platforms with graphical user interfaces (GUIs) have made AI 
accessible to a broader audience, eliminating the need for extensive coding 
knowledge. This has empowered individuals from various backgrounds, including 
young students and older adults, to engage with AI, fostering a more inclusive and 
innovative community. These tools often include drag-and-drop functionalities, 
pre-built algorithms, and visualizations, making AI learning and application more 
intuitive and engaging for everyone. This collaborative approach has the potential 
to drive innovative solutions to pressing environmental challenges as diverse 
perspectives and local knowledge come together to inform decision-making and 
policy development.

Whilst AI might empower citizen science participation, it does bring into 
another set of ethical considerations that must be addressed to ensure responsible 
use and equitable access (Ceccaroni et al., 2019). The open sharing of ecological 
data, while beneficial for scientific progress, presents a risk of misuse. For 
instance, poachers could exploit publicly available datasets to reverse-engineer 
AI models initially designed for wildlife protection. This could enable them 
to track the movements of wildlife or even locate park rangers, undermining 
conservation efforts. To mitigate this risk, it’s crucial to implement data-sharing 
protocols that balance accessibility with security and develop AI systems with 
robust safeguards against exploitation.
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Furthermore, without proper validation of the dataset gathered, there is a 
high chance of the AI developing a biased model that may misinterpret species’ 
behavior or habitat needs, leading to ineffective conservation strategies. For 
example, an AI trained on incomplete or skewed data might prioritize certain 
species over others, neglecting those that are equally endangered but less visible 
in the dataset. This could result in a misallocation of resources, ultimately harming 
biodiversity and the ecosystems that depend on it. A person might report a 
sighting of a whale in the harbor; this would then be promoted on social media, 
which would invariably create a viral trend of reporting sightings, potentially 
overwhelming researchers with unverified information and diverting attention from 
critical conservation efforts that require immediate action. This influx of data, 
while seemingly beneficial, can lead to confusion and misinformation, making it 
challenging for scientists to discern genuine threats to marine life from mere social 
media buzz. Another disparaging situation might be the over-reporting of certain 
species, which could skew public perception and funding towards those animals 
while neglecting others that are equally or more endangered. This imbalance in 
attention can ultimately hinder comprehensive conservation strategies, as resources 
become misallocated and critical habitats remain unprotected.

Nowadays, there exists a number of MLOps, such as Roboflow and 
EdgeImpulse (Motta et al., 2024). These two platforms curate hundreds and 
thousands of datasets, enabling researchers to train machine learning models 
that can analyze and interpret data more effectively. Whilst essentially a free 
platform, these MLOps work by utilizing a tiered subscription model that offers 
advanced features and support for users seeking to enhance their projects. This 
is a good feature for developers, although it does put a huge restraint on the 
common free-tiered users. Free-tiered user models are obligated to be shared 
on the platform, which can limit the potential for proprietary research and 
innovation. As a result, many developers are exploring alternative solutions that 
offer more flexibility while still providing robust tools for model training and 
deployment. This shift has led to a growing interest in open-source frameworks 
that prioritize user autonomy and data privacy, allowing developers to maintain 
control over their intellectual property while still benefiting from community-
driven advancements. On the other hand, this raises the problem of data security 
and ethical use of sensitive information, as the open-source nature can sometimes 
lead to vulnerabilities if not managed properly. Some of the data shared on the 
public platform of Roboflow Universe contains images of actual people, places, 
and even properties that might be protected by privacy laws. This necessitates 
a careful approach to data governance, ensuring that contributors are aware of 
the implications of sharing such content and that robust measures are in place to 
anonymize or secure sensitive information before it is made publicly accessible.

Another future trend that might emerge is the creation of specialized GPTs 
for animal ecology projects. Currently, OpenAI encourages the creation of 
custom-made GPTs that can be trained via uploading datasets specific to various 
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fields, allowing researchers and conservationists to develop tailored models that 
can more effectively analyze animal behavior, habitat usage, and ecological 
impacts. This could lead to more precise conservation strategies and an improved 
understanding of species interactions within their ecosystems, ultimately fostering 
better decision-making in wildlife management and preservation efforts. As these 
specialized models evolve, they may also incorporate real-time data from field 
studies, enhancing their predictive capabilities and enabling proactive measures to 
protect endangered species. Ultimately, we might be seeing the end of the role of 
human project managers and the rise of AI-driven systems that can autonomously 
manage projects, analyze data, and implement strategies with minimal  
human intervention.

Currently, the advancement in the software portion of AI seems to be heading 
in the right direction, with the current advancement and also the availability of a 
virtual Graphical Processing Unit (GPU) that would enable training the AI model 
in the cloud, therefore reducing the cost and time associated with local hardware 
limitations. The most applied system is Google Colab, which graciously allows 
users to leverage powerful GPUs for their machine-learning projects without 
the need for expensive infrastructure. This democratization of access is paving 
the way for more innovative solutions and accelerating the pace of research and 
development across various fields.

Hardware

The second part of future AI in animal ecology deals with the hardware portion. 
As discussed earlier, the future trend shows promising advancements in LLM that 
enable sensors to collect vast amounts of data in real time, allowing researchers 
to monitor animal behavior and environmental changes more effectively. One of 
the first hurdles is the price of these sensors. First-generation technology tends 
to oversell and often falls short of expectations. Also, they tend to be expensive 
due to the relatively new market and perhaps less demand. This is intricately 
tied with the development of the rare earth materials and components that are 
essential for manufacturing these advanced devices. As the market matures and 
production scales up, we can anticipate a decrease in costs, making these tools 
more accessible to researchers worldwide.

Portability for Deployment

When creating these multifunctional LLM sensors, the design and portability 
of the device must be taken into account. This includes ensuring that they 
are lightweight and user-friendly, allowing for easy deployment in various 
environments. Referring back to the fictional tricorders, they must fit into your 
hand. Unsurprisingly, our current smartphones are full of sensors that can be 
turned into useful ecological data loggers. However, they are not as hardy nor 
dispensable as the dedicated devices we envision.
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Power Source

This would bring us to another challenge: the power source. The power source 
needs to be both efficient and sustainable, ideally utilizing renewable energy 
options to ensure longevity in the field. For any smart sensors, there must be 
at least a microcontroller that can handle basic processing powers. While we 
usually think of Intel or AMD for larger-size CPUs, the most popular choice for 
processing prowess for small devices is often ARM architecture, which offers a 
balance of performance and energy efficiency suitable for compact applications. 
Other options include the Raspberry Pi ecosystem, ESP32, ESP8266, RISVC, 
and various microcontroller units (MCUs) that can be tailored to specific tasks, 
allowing for flexibility in design and functionality. These platforms not only 
support a wide range of programming languages but also come with extensive 
community support, making it easier for developers to innovate and troubleshoot 
as they create interconnected systems. These cheap microcontrollers are quite 
powerful enough to run as Edge devices, capable of running local TinyML. 
This brings us back to our original hurdle: the battery. To ensure longevity and 
efficiency, selecting the right battery technology is crucial, as it directly impacts 
the performance and operational lifespan of these devices in the field.

If the sensors are to be portable, the batteries must be light and small while 
still providing sufficient energy to support continuous operation. Lithium polymer 
batteries, for instance, offer a good balance between weight and capacity, making 
them a popular choice for such applications. However, running an AI model, even 
on small Edge devices, consumes a lot of computing power. This translates to 
more energy needed. A tethered device can mitigate this issue by drawing power 
from a stable source, allowing for more robust processing capabilities without 
the constraints of battery life. If deployed in the field, solar panels can provide 
a sustainable energy solution, enabling longer operational periods and reducing 
reliance on traditional power sources. Additionally, integrating energy-efficient 
algorithms can further optimize power consumption, ensuring that the device 
operates effectively while minimizing energy use. For example, the ESP32 and 
ESP8266 both have deep sleep functions that essentially allow the device to enter 
a low-power state when not in use, significantly extending battery life and making 
them ideal for IoT applications where energy conservation is crucial.

Heat Dissipation

Moreover, utilizing energy harvesting techniques, such as kinetic or thermal 
energy conversion, can complement these strategies, providing additional 
power sources that enhance the device’s autonomy and functionality in various 
environments. While on the subject of the power challenges for AI systems, 
this is inevitably linked to another challenge. Heat dissipation. All electronic 
systems release heat; the more complex or rigorous the system, the more heat 
is generated, which can lead to performance degradation or even failure if not 
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managed properly. To address the challenge of heat dissipation in advanced AI 
systems deployed for ecological monitoring, innovative cooling solutions are 
emerging that leverage passive and active thermal management techniques. For 
instance, integrating phase change materials (PCMs) within device enclosures 
can absorb excess heat generated during operation, thereby maintaining optimal 
temperatures without relying heavily on additional power sources. This approach 
not only enhances system reliability but also contributes to energy efficiency, an 
essential aspect given the constraints often faced by remote devices operating 
in challenging environments (Molina-Molina et al., 2021). Moreover, the use of 
advanced materials such as graphene and aerogels is being explored to further 
improve thermal conductivity and insulation, allowing for even more effective 
heat management strategies.

Data Retrieval

The third other possible challenge is the data retrieval portion from the sensors. 
As envisioned for the future, we would ideally have robots and drones that could 
initiate the sampling process autonomously, collecting and transmitting data in 
real time to a central hub for analysis. This would not only streamline operations 
but also enhance the accuracy of the data collected, enabling quicker decision-
making and response times in critical situations. However, as most projects 
involving tracking animals occur in parts of the world where the environment 
can be unpredictable, ensuring reliable connectivity and power sources for 
these autonomous systems presents another significant hurdle that must be 
addressed. To further enhance the effectiveness of autonomous ecological 
monitoring systems, integrating advanced communication technologies such 
as 5G and satellite networks could play a pivotal role in ensuring real-time 
data transmission from remote locations. These technologies would not only 
facilitate seamless connectivity for drones and robots but also support larger-
scale deployments across diverse ecosystems, addressing the challenge of 
reliable data retrieval amidst unpredictable environmental conditions. Moreover, 
leveraging AI-driven predictive analytics can optimize the timing and location of 
data collection efforts by analyzing historical patterns and current environmental 
factors, thus increasing the likelihood of capturing critical data on species 
behavior and habitat changes (Hegde & Bargavi, 2024). This holistic approach 
to incorporating cutting-edge communication infrastructure with intelligent 
data processing capabilities promises to revolutionize conservation strategies, 
ultimately enabling more responsive and adaptive management practices that are 
essential for preserving biodiversity in an era of rapid ecological change.

Lora Technology

One of the cheapest and easiest setups for data retrieval and information sharing 
is through the LoRa network. LoRa (Long Range) technology is a low-power, 
wide-area networking protocol designed for long-range communication with 
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minimal energy consumption. One notable application of this technology is 
Meshtastic, an open-source project that enables users to create a mesh network 
for text messaging and data transfer using LoRa-enabled devices. This capability 
allows for reliable communication in remote areas where traditional cellular 
networks may be unavailable or unreliable.

In the context of animal ecology, LoRa technology can be a game-changer for 
wildlife monitoring and conservation efforts. By deploying LoRa-enabled sensors 
and tracking devices, researchers can create a network that collects and transmits 
data on animal movements, habitat use, and environmental conditions in real-time 
(Bandari et al., 2022). This real-time data collection can facilitate more informed 
decision-making and adaptive management strategies, especially in challenging 
terrains where accessibility is limited. Additionally, the low power requirements 
of LoRa devices mean they can operate for extended periods without the need 
for frequent battery replacements, making them ideal for long-term ecological 
studies. Overall, the integration of LoRa technology in animal ecology holds great 
promise for enhancing data collection, improving conservation strategies, and 
fostering a deeper understanding of wildlife behavior. Moreover, as the reliance 
on technologies like LoRa for wildlife monitoring grows, it becomes essential 
to consider the role of data integration platforms that can combine diverse 
datasets collected from various sources. Such platforms could facilitate a more 
comprehensive understanding of ecological dynamics by merging real-time sensor 
data with historical records and citizen science contributions, thus enhancing the 
granularity and accuracy of analyses. For instance, integrating data from camera 
traps, acoustic sensors, and satellite imagery could create a multifaceted view 
of species interactions and habitat changes, enabling researchers to identify 
emerging trends or threats in biodiversity conservation effectively. Furthermore, 
this approach aligns with the principles of FAIR (Findable, Accessible, 
Interoperable, Reusable) data management, which encourages collaborative 
efforts among ecologists and technologists to ensure that valuable insights are 
not only generated but also shared responsibly across communities engaged in 
conservation work (Mergen et al., 2023). Ultimately, fostering such integrative 
frameworks will be vital in addressing complex challenges in animal ecology 
while ensuring that data-driven decisions support both scientific advancement 
and ethical stewardship of natural resources. By leveraging these technologies, 
conservationists can develop targeted strategies that not only protect endangered 
species but also promote ecosystem resilience in the face of climate change and 
habitat degradation. This technology allows for long-range communication with 
minimal power consumption, making it ideal for remote areas where traditional 
networks may be unreliable or non-existent.

Brain-Computer Interface (BCI)

Earlier in this chapter, we discussed the future communication with animals. 
Using AI, we hope to decipher the animal’s language. There is, however, a 
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new possible future AI trend that combines both the software and the hardware 
portion of AI and animal communications. Brain-computer interfaces (BCIs), 
initially developed for medical applications in humans, are now being explored 
for their potential use in animal studies. By directly monitoring neural activity, 
these interfaces could enable a deeper understanding of animal mental states, 
emotions, and behavioral patterns, facilitating improved conservation and 
management strategies (Mercier-Ganady et al., 2013). This innovative approach 
could lead to breakthroughs in how we interact with wildlife, allowing 
researchers to gather real-time data on stress responses or social dynamics 
within animal groups.

One of the primary applications of BCIs in animal ecology lies in wildlife 
rehabilitation. Animals under rehabilitation often exhibit stress or discomfort 
that may not be immediately apparent through external behaviors (Bamdad et 
al., 2015). Neural interfaces, integrated with non-invasive sensors, could monitor 
neural responses in real-time, alerting caretakers to signs of distress. Such insights 
would enable more responsive and effective care, reducing recovery time and 
improving animal welfare. This form of monitoring could also play a critical role 
in conservation breeding programs by tracking animals’ physiological responses 
during reproduction efforts, thereby increasing the success rate of these programs.

Another critical application of neural interfaces is in the management of 
animal translocation programs. Relocating animals to new habitats, especially 
in human-wildlife conflict areas, requires careful planning and monitoring. 
BCIs could provide valuable insights into how animals adapt to unfamiliar 
environments, revealing their emotional and behavioral states. For instance, 
elephants, known for their complex social structures, might experience heightened 
anxiety when separated from their group. Monitoring their neural activity could 
help conservationists tailor relocation strategies, minimizing stress and ensuring 
smoother transitions.

BCIs also hold the potential to transform the way researchers study animal 
cognition. Neural data can provide unprecedented insights into how animals 
perceive their environment, make decisions, or communicate within their 
species. Understanding these cognitive processes will allow scientists to build 
more accurate models of animal behavior, leading to enhanced conservation 
strategies. Additionally, insights into emotional states, such as fear or contentment, 
can improve our understanding of social dynamics in species like primates  
or cetaceans.

However, the application of BCIs in animal ecology is not without challenges. 
Ethical considerations regarding the use of neural technology in animals must be 
addressed to ensure that the well-being of animals remains a priority. Developing 
non-invasive or minimally invasive interfaces will be critical to achieving this 
balance. Furthermore, the integration of interdisciplinary knowledge, combining 
neuroscience, ecology, and conservation biology, will be essential to unlocking 
the full potential of BCIs in animal studies.
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Dangers of AI in the Future

Suleyman (2023) wrote an interesting excerpt in his book about the pitfalls 
and dangers of AI, emphasizing the need for careful consideration of ethical 
implications and the potential for unintended consequences in its application. 
In his book, the author describes a tech-sharing event that the stakeholders and 
leaders of AI attended. This was an event several years before the COVID-19 
outbreak. During one of the breakout sessions, there was a presentation that 
stood out. This excerpt is rephrased from his book: “The presenter illustrated 
how the cost of DNA synthesizers, which can generate custom DNA sequences, 
has been declining rapidly. These devices, priced in the range of several tens of 
thousands of dollars, are compact enough to fit on a workbench at home, enabling 
individuals to produce DNA. This capability is now accessible to anyone with 
a graduate-level understanding of biology or a strong interest in self-directed 
online learning. The presenter offered a grim warning: it may soon be possible 
to engineer synthetic pathogens that are more contagious and deadly than any 
naturally occurring ones. Such pathogens could potentially bypass current 
defences, spread without noticeable symptoms, or even be designed to resist 
existing treatments. Additionally, individuals could enhance home experiments 
by ordering DNA sequences online and assembling them on their own, making 
the scenario of catastrophic biothreats alarmingly feasible through mail-order 
resources.”

And there was the chilling remark that a single person today can kill 
millions of people. All they need is motivation. The implications of this reality 
are staggering, raising urgent questions about bioethics, regulation, and the 
responsibility of scientists in an age where knowledge can be weaponized.

Conclusion

Although the previous paragraph is quite ominous, it does not suggest a negative 
concluding outcome for AI in the future. AI is a tool. As it is historically depicted, 
any tool can be used either to create or to destroy. From the perspective of 
science, especially in animal ecology, there is more good that can be gained 
from AI than bad. Future trends remain a prediction; future readers reading this 
chapter in the next 10 or 50 years might be smiling and amused at what might 
be viewed as naivety by our generation. What remains important is the role of 
humans in utilizing, creating, and carefully managing AI for a brighter future 
and co-existence with the animals.
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