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The Art of Systems Architecting

The Art of Systems Architecting, Fourth Edition, provides structured heuristics
to improve the least structured, most art-like elements of systems design. It offers
unique techniques to bridge the difference between scientific engineering and quali-
tative design along with comprehensive methods for combining architectural design
with digital engineering. This book illustrates how to go from model-based systems
architecture to model-based systems engineering and includes case studies of good
and bad architectural decision-making in major systems.

Changes to this edition include materials on architecture processes, architecture
description frameworks, and integration with model-based systems engineering
(MBSE) and digital engineering. The publication of the ANSI/IEEE 1471 and ISO/
IEC 42010 standards on architecture description has provided common vocabulary
and organizing methods for documenting architectures. This edition provides a prac-
tical application of these standards in architecting and integrating their concepts with
a simple process framework. The rise of MBSE and digital engineering tools is in the
process of revolutionizing the development of complex systems. The emphasis has
been on detailed design descriptions and powerful analysis methods (for example,
digital twins). Architects can make effective use of these methods and tools as well,
and this new edition provides an integrated set of heuristics and modeling methods
to do so. There are many other improvements and additions included to bring this
textbook up to date.

This book can be used as a reference book for engineers and managers involved
in creating new systems, people responsible for developing mandated architecture
descriptions, software architects, system architects, and systems engineers, or as a
textbook in graduate engineering courses.

Exercises are interspersed throughout the text, with some designed for self-testing
and understanding and others intended to provide opportunities for long-term study
and further exploration of the subject.
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Preface

THE CONTINUING DEVELOPMENT OF SYSTEMS ARCHITECTING

Architecting, the planning and building of structures, is as old as human societies—
and as modern as the exploration of the solar system.

So began this book’s original 1991 predecessor (Rechtin 1991). The earlier work
was based on the premise that architectural methods, similar to those in the centu-
ries-long tradition in civil works, were being used, albeit unknowingly, to create and
build complex aerospace, electronic, software, command, control, and manufactur-
ing systems. If so, then other powerful ideas from that traditions—such as qualita-
tive reasoning and the relationships between client, architect, and builder—could
be found and exploited in today’s engineering fields. Over the ensuing 30 plus years
and three previous editions of this book, the original premise has found wide sup-
port. The use of architectural concepts has become common in systems engineering
discussions. Heuristics and patterns, concepts drawn from architectural practice, are
widely recognized as tools worth developing. Continuing experience has confirmed
a fundamental insight: the decisions made very nearly in a system’s conceptual life-
time have inordinate impact on value, cost, and risk (NRC 2008).

The years since the 1991 book have also brought recognition of other important
factors in architectural thinking. These have been incorporated in the editions of this
book, a process that continues to this fourth edition. Among the most important are:

* Focusing on early phase decisions. This can be expressed in the concept that
architecture is a set of decisions, the set of decisions largely determining
value, cost, and risk of a system.

e The importance of the interplay between technical decisions on the sys-
tem’s structure and the structure of the program that builds the system. The
choice to build incrementally, or in the proto-flight pattern, or any other of
the basic templates carries important technical consequences.

e Architecture is the technical embodiment of strategy. We can’t know if
the architecture is well chosen unless we know if the strategy is well cho-
sen. This is equally true in business-driven systems as in politically driven
systems.

e The language we use to express architecture (normally a modeling lan-
guage) has a deep influence on what kinds of architectures we can express.
This becomes especially important in software-dominated systems, and
more and more systems are software dominated.

ARCHITECTING IN THE SYSTEMS WORLD

A strong motivation for expanding the architecting process into new fields has been
the retrospective observation that the success or failure of today’s widely publicized
(and unpublicized) systems often seems preordained—that is, traceable to their
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beginnings. Some system development projects start doomed, and no downstream
engineering efforts are likely to rescue them. Other projects seem fated for success
almost in spite of poor downstream decisions. The initial concept is so “right” that its
success is inevitable, even if not necessarily with the first group that tries to execute
it. This is not a new realization. It was just as apparent to the ancient Egyptians,
Greeks, and Romans who originated classical architecting in response to it. The dif-
ference between their times and now is in the extraordinary complexity and techno-
logical capability of what could then and now be built.

Today’s architecting must handle systems of types unknown until the early 21st
century, for example, systems that are very high quality, real time, closed loop,
reconfigurable, interactive, software intensive, and, for all practical purposes, auton-
omous. New domains like proliferated satellite networks, sensor webs, autonomous
vehicles (and swarms of vehicles), personalized health services, and joint service
command and control are calling for new architectures—and for architects special-
izing in those domains. Their needs and lessons learned are in turn leading to new
architecting concepts and tools and to the acknowledgment of a new formalism—and
evolving profession—called systems architecting, a combination of the principles
and concepts of both systems and architecting. However, for all the new complexity,
many of the roots of success and failure are nearly constant over time. By examining
a series of case studies, interwoven with a discussion of the particular domains to
which they belong, we can see how relatively timeless principles (for example, tech-
nical and operational coupled revolution, and strategic consistency) largely govern
success and failure.

The reasons behind the general acknowledgment of architecting in the new sys-
tems world are traceable to that remarkable period immediately after the end of the
Cold War in the early-1990s. Abruptly, by historical standards, a 50-year period of
continuity ended. During the same period, there was a dramatic upsurge in the use
of smart, real-time systems, both civilian and military, that required much more than
straightforward refinements of established system forms. Long-range management
strategies and design rules, based on years of continuity, came under challenge.

That challenge was not short lived; instead, it has resorted itself repeatedly in the
years between editions of this book. It is now apparent that the new era of global
transportation, global communications, global competition, and global security tur-
moil is not only different in type and direction; it is unique technologically and politi-
cally. It is a time of restructuring and invention, of architecting new products and
processes, and of new ways of thinking about how systems are created and built.

Long-standing assumptions and methods are under challenge. For example, for
many engineers, architectures were a given; automobiles, airplanes, and even space-
craft had the same architectural forms for decades. Where was there room for archi-
tectural revolution? Global competition and a surge of innovation soon provided an
answer. Architecturally different systems were capturing markets. Consumer prod-
uct lines and defense systems are well-reported examples. Other questions remained:
How can software architectures be created that evolve as fast as their supporting
technologies? How deeply should a systems architect go into the details of all the sys-
tem’s subsystems? What are the relationships between the architectures of systems
and the human organizations that design, build, support, and use them?
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DISTINGUISHING BETWEEN ARCHITECTING,
ENGINEERING, AND PROJECT MANAGEMENT

Because it is the most asked by engineers introduced to architecting, the first issue to
address is the distinction between architecting and engineering in general—that is,
regardless of engineering discipline. Although civil engineers and civil architects,
even after centuries of debate, have not answered that question in the abstract,
they have answered it in practice. Generally speaking, engineering deals primarily
with measurables using analytic tools derived from mathematics and the hard sci-
ences. Engineering is largely a deductive process. Architecting deals largely with
unmeasurables using nonquantitative tools and guidelines based on practical les-
sons learned; that is, architecting is an inductive process. Architecting embraces
the world of the user/sponsor/client, with all the ambiguity and imprecision that
may entail. Architecting seeks to communicate across the gap from the user/spon-
sor/client to the engineer/developer, and architecting is complete (at least its initial
phase) when a system is well enough defined to engage developers. An engineer, at
least in common development environments, can work with user/client surrogates,
like requirements and derived models. An architect must always be engaged with
the user/client and deeply understand the mission for which a system is to be a
“solution.”

At a more detailed level, engineering is concerned more with quantifiable costs,
architecting more with qualitative worth. Engineering aims for technical optimi-
zation, architecting for client satisfaction. Engineering is more of a science, and
architecting is more of an art. Although the border between them is often fuzzy, the
distinction at the end is clear.

In brief, the practical distinction between engineering and architecting is in the
problems faced and the tools used to tackle them. This same distinction appears to
apply whether the engineering branch involved is civil, mechanical, chemical, elec-
trical, electronic, aerospace, software, or systems. Both architecting and engineering
can be found in every one of the established disciplines and in the multidisciplinary
whole-system contexts. Multidisciplinary systems are engineered as much as any
product in a disciplinary environment. Architecting and engineering are roles, distin-
guished by their characteristics. They represent two edges of a continuum of systems
practice. Individual engineers often fill roles across the continuum at various points
in their careers or on different systems. The characteristics of the roles, and that these
roles are on a continuum, are shown in Table P.1.

As the table indicates, architecting is characterized by dealing with ill-structured
situations, situations where neither goals nor means are known with much certainty.
In systems engineering terms, the requirements for the system have not been stated
more than vaguely, and the architect cannot appeal to the client for a resolution, as
the client has engaged the architect precisely to assist and advise in such a resolution.
The architect engages in a joint exploration of requirements and design, in contrast
to the classic engineering approach of seeking an optimal design solution to a clearly
defined set of objectives.

Because the situation is ill structured, the goal cannot be optimization. The
architect seeks satisfactory and feasible problem-solution pairs. Good architecture
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TABLE P.1
Characteristics of the Roles in the Architecting and Engineering
Continuum
Architecting and
Characteristic Architecting Engineering Engineering
Situation/goals l-structured Constrained Understood
Satisfaction Compliance Optimization
Methods Heuristics —_— Equations
Synthesis e Analysis
Art and science Art and science Science and art
Interfaces Focus on “mis-fits” Critical Completeness
System integrity “Single mind” Clear objectives Disciplined methodology
maintained through and process
Management issues ~ Working for client Working with client Working for builder
Conceptualization ~ Whole waterfall Meeting project
and certification requirements
Confidentiality Conflict of interest ~ Profit versus cost

and good engineering are both the products of art and science, and a mixture of
analysis and heuristics. However, the weight will fall on heuristics and “art” during
architecting.

An “ill-structured” problem is a problem where the statement of the problem
depends on the statement of the solution. In other words, knowing what you can do
changes your mind about what you want to do. A solution that appears correct based
on an initial understanding of the problem may be revealed as wholly inadequate
with more experience. Architecting embraces ill-structured problems. A basic tenet
of architecting is to assume that one will face ill-structured problems and to config-
ure one’s processes to allow for it.

One way to clearly see the distinction between architecting and engineering is in
the approach to interfaces and system integrity. When a complex system is built (say
one involving 10,000 person-years of effort), only absolute consistency and com-
pleteness of interface descriptions and disciplined methodology and process will suf-
fice. Even on relatively simple systems, minor mistakes in details can have inordinate
consequences. When a system is physically assembled, it matters little whether an
interface is high tech or low tech; if it is not exactly correct, the system does not
work. In contrast, during architecting, it is necessary only to identify the interfaces
that cannot work—the mis-fits. Mis-fits must be eliminated during architecting, and
then, interfaces should be resolved in order of criticality and risk as development
proceeds into engineering.

Table P.1 has proven useful and popular in explaining architecting in educational
settings. It effectively highlights different roles taken by different people. More
than once a classroom session that included a detailed discussion of the table and
some case-study work has concluded with a student commenting “Now I know what
architecting is, why it is important, and that I don’t want to do it.” Those students
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recognized that doing the left column work in Table P.1 was essential and had to
be done if engineering is to be done well, but they don’t want to do it. We find that
a good outcome. The required ratio of architects to engineers is very low in most
organizations. Most organizations will need a lot more good engineers than they will
need good architects.

One important point is that the table represents management in the classical para-
digm of how architecting is done, not necessarily how it actually is done. Classically,
architecting is performed by a third party working for the client. In practice, the
situation is more complex as the architecting might be done by the builder before a
client is found, might be mixed into a competitive procurement, or might be done by
the client. These variations are taken up in chapters to come.

As for project management, architecting clearly exists within the larger project
cycle. If we examine the development of systems very holistically, looking from the
earliest to the latest phases, we see architecting existing within that large picture.
But, at a practical level, what is usually taught as project management has a narrower
focus, as does what is usually taught as systems engineering. The narrower focus
assumes that definite requirements (in the unambiguous, orthogonal, measurable,
and testable senses) exist and can be documented, that budgets and schedules exist
and must be managed, and that specific end points are defined through contracts or
other agreements. For a given organization (a contract developer, a government proj-
ect office), that narrower focus may be all that matters and may encompass billions of
dollars. Often, by the time that narrower focus has been arrived at, the architecting is
over. Often, by the time that narrower focus has been arrived at, the project is already
doomed to failure or well on its way to success.

Table P.1 implies an important distinction in architecting as currently practiced.
The table, and this book, emphasizes architecting as decision-making. Architecting
has been accomplished when the fundamental structural decisions about a system
and how it will be developed have been made, regardless of what sort of architec-
ture description document has been produced. In contrast, many ‘“architecture”
projects currently being conducted are description-centric. Their basis is produc-
ing an architecture framework-compliant description document about a system or
system-of-systems that typically already exists. These are sometimes called “as-is”
or “baseline” architecture documents. This book has relatively little to say about
such projects, although we cover standards and methods associated with architec-
ture in some detail in Chapters 10 and 11. The authors’ emphasis, and the emphasis
of this book, is on the structural decisions that underlie the “as-is” system and
identifying and making the structural decisions for the next system. The methods
of this book have been usefully applied to making an assessment of the as-is deci-
sions and reevaluating those decisions, but our focus remains on building some-
thing new.

ARCHITECTING AS ART AND SCIENCE

Systems architecting is the subject of this book, and the art of it in particular,
because, being the most interdisciplinary, its tools can be most easily applied in
the other branches. Good architecting is not just an art, and virtually, all architects
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of high-technology systems, in the authors’ experience, have strong science back-
grounds. But the science needed for systems architecting already is the subject of
many publications, but few address the art systematically and in depth. The overrid-
ing objective of this book is to bring the reader a toolbox of techniques for handling
ill-structured, architectural problems that are different from the engineering meth-
ods already taught well and widely published.

It is important in understanding the subject of this book to clarify certain expres-
sions. The word “architecture” in the context of civil works can mean a structure, a
process, or a profession; in this text, it refers only to the structure, although we will
often consider “structures” that are quite abstract. The word “architecting” refers
only to the process. Architecting is an invented word to describe how architectures
are created, much as engineering describes how “engines’ and other artifacts are cre-
ated. In another, subtler, distinction from conventional usage, an “architect” is meant
here to be an individual engaged in the process of architecting, regardless of domain,
job title, or employer. By definition and practice, from time to time, an architect may
perform engineering and an engineer may perform architecting—whatever it takes
to get the job done.

Clearly, both processes involve elements of the other. Architecting requires
top-level quantitative analysis to determine feasibility and quantitative measures to
certify readiness for use. Engineering can and occasionally does require the creation
of architecturally different alternatives to resolve otherwise intractable design prob-
lems. Good engineers are armed with an array of heuristics to guide tasks ranging
from structuring a mathematical analysis to debugging a piece of electronic hard-
ware. For complex systems, both engineering and architecting are essential. In prac-
tice, it is usually necessary to draw a sharp line between them only when that sharp
line is imposed by business or legal requirements.

CRITERIA FOR MATURE AND EFFECTIVE SYSTEMS ARCHITECTING

An increasingly important need of project managers and clients is for criteria to
judge the maturity and effectiveness of systems architecting in their projects—cri-
teria analogous to those developed for software development by Carnegie Mellon’s
Software Engineering Institute. Based upon experience to date, criteria for systems
architecting appear to be, in rough order of attainment:

e A recognition by clients and others of the need to architect complex systems.

e An accepted discipline to perform that function, in particular, the existence
of architectural methods, standards, and organizations.

* A recognized separation of value judgments and technical decisions
between client, architect, and builder.

* A recognition that architecture is an art as well as a science, in particular,
the development and use of nonanalytic as well as analytic techniques.

e The effective utilization of an educated professional cadre—that is, of mas-
ter’s level, if not doctorate level, individuals and teams engaged in the pro-
cess of systems-level architecting.
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By those criteria, systems architecting is in its adolescence, a time of challenge,
opportunity, and controversy. History and the needs of global competition would
seem to indicate adulthood is close at hand.

THE ARCHITECTURE OF THIS BOOK

The original purpose of this book was to restate and extend into the future the retro-
spective architecting paradigm of Rechtin (1991). While it was originally intended,
and used, as a companion to the first book rather than a replacement, it is intended
to stand on its own. Over the editions, and as the earlier book has gone in and out of
print, we have paid further attention to making this a standalone book. There are top-
ics in Rechtin (1991) that are not covered in this book, however, and the reader may
wish to refer to the earlier book for a detailed treatment. Those topics particularly
include the definition and characterization of ultraquality, architecting in the face of
purposeful opposition, and the role of economics in systems architecting.

An essential part of both retrospective and extended paradigms is the recognition
that systems architecting is part art and part science. Part I of this book further defines
what we mean by “the art” and extends the central role of heuristics with different
perspectives for identifying and using them. We open Part I in this edition with a
case study of the DARPA Grand Challenge in the early 2000s that jumpstarted the
field of autonomous vehicles. We invite the reader to put themselves in the shoes of a
team tasked to develop a vehicle to perform a task that nobody knew how to do and to
consider the early choices every such team had to make. The choices must encompass
both technical and programmatic issues and are fundamentally architectural. Part 1T
introduces five important domains that contribute to the understanding of that art.
We buttress the retrospective lessons of the original book by providing some detailed
stories on some of the case studies that motivated the original work and use those case
studies to introduce each chapter in Part II. Part III helps bridge the space between
the science and the art of architecting. It develops the core architecting process of
modeling and representation and does so from the perspective of model-based sys-
tems engineering (MBSE) and digital engineering (DE). Part III is the most changed
from previous editions and the most influenced by recent developments in standard-
ized modeling notations and the widespread availability of powerful tools. Part IV
concentrates on architecting as a profession: its relationship to business strategy and
activities; the political process and its part in system design; and the professionaliza-
tion of the field through education, research, and development of a body of knowledge.

The architecture of Part II deserves an explanation. Without one, the reader may
inadvertently skip some of the domains—builder-architected systems, manufacturing
systems, social systems, software systems, and collaborative systems—because they
are outside the reader’s immediate field of interest. These chapters, instead, recog-
nize the diverse origins of heuristics and diverse means of illustrating and exploiting
them. Heuristics often first surface in a specialized domain where they address an
especially prominent problem. Then, by abstraction or analogy, they are carried over
to others and become generic. Such is certainly the case in the selected domains. In
these chapters, the usual format of stating a heuristic and then illustrating it in several
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domains is reversed. Instead, it is stated, but in generic terms, in the domain where
it is most apparent. Readers are encouraged to scan all the chapters of Part II. The
chapters may even suggest domains, other than the reader’s, where the reader’s expe-
rience can be valuable in these times of vocational change. References are provided
for further exploration. Moreover, the case studies that open each chapter are chosen
to illustrate a wide variety of lessons in the practice of architecting. These lessons are
not restricted to the domain of the case study alone. For professionals already in one
of the domains, the description of each is from an architectural perspective, looking
for those essentials that yield generic heuristics and providing in return other generic
ones that might help better understand those essentials. In any case, the chapters most
emphatically are not intended to advise specialists about their specialties.

Architecting is inherently a multidimensional subject, difficult to describe in the
linear, word-follows-word, format of a book. Consequently, it is occasionally neces-
sary to repeat the same concept in several places, internally and between books. A
good example is the concept of systems. Architecting can also be organized around
several different themes or threads. Alternative organizations would be around the
elements of the system development process or the formation of strategy. This book
is organized by fundamentals, tools, tasks, domains, models, and vocation. Readers
are encouraged to choose their own personal theme as they go along. It will help tie
systems architecting to their own needs.

Exercises are interspersed in the text, designed for self-test of understanding and cri-
tiquing the material just presented. If the reader disagrees, then the disagreement should be
countered with examples and lessons learned—the basic way that mathematically unprov-
able statements are accepted or denied. Most of the exercises are thought problems, with
no correct answers. Read them, and if the response is intuitively obvious, charge straight
ahead. Otherwise, pause and reflect a bit. A useful insight may have been missed. Other
exercises are intended to provide opportunities for long-term study and further exploration
of the subject. That is, they are roughly the equivalent of a master’s thesis.

Notes and references are organized by chapter. Heuristics by tradition are boldfaced
when they appear alone, with an appended list of them completing the text. Figure slides
are also available on the Routledge website (www.routledge.com/9781032774381).

CHANGES SINCE THE THIRD EDITION

The changes to this, the fourth edition, grow out of several inter-related experiences
and threads. These changes are broken down into three areas: Material to clarify
teaching points, integration of MBSE and digital engineering, and the emergence of
key standards and practices.

First, we have made extensive use of the third edition in teaching the subject to pro-
fessional and academic audiences. From the student feedback in those courses, we have
a number of areas to change and clarify. The addition of the DARPA Grand Challenge
case study in Part I came about as we found it worked exceptionally well to clarify the
scope and intent of architecting versus engineering and project management. It also
helped highlight, even to those engineers with the most narrow analytical focus, the
role of judgment-based design and that in so many real cases there just aren’t a perfect
set of requirements waiting to be discovered if only one asks the right sponsor.
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We also make more extensive use of the APM-ASAM process for organizing
the work of architecting. While it would be a rare real-world project that could fol-
low APM-ASAM step-by-step with little adaptation, it is still very useful for getting
started, or having something concrete to begin to organize the mess of differing
considerations one has to deal with in reality.

Second, Part III has been rewritten to build on now widely accepted MBSE tools
and approaches. In the earlier editions, we appealed to the use of “integrated model-
ing” as a tool for architecture description. We no longer have to refer to a spectrum of
tools and methods, hoping the reader will be able to pick from the pieces they need
in their environment. MBSE notations have large settled down (though there are still
competitors), and there are high-capability commercial modeling tools. We describe
these notations and tools and map them directly to APM-ASAM elements.

Third, one of the reasons the integrated modeling and notation conflicts have
settled down is the emergence of standards. At the time of the third edition, we could
cite the ANSI/IEEE 1471 standard (Maier et al. 2004) and its early ISO derivative
as the emerging preferred approach to architecture description. The ISO/IEC/IEEE
42010 standard on architecture description has now been through multiple revisions
and is widely accepted (if not necessary as widely implemented in full). There are
now companion standards in the 42000 series that cover other architectural aspects.
Ideas that were new when this book was first published in the 1990s are now standard
practices.

Standardizing architecture descriptions is like standardizing blueprint standards.
It is very useful to the practitioner but doesn’t result in better buildings. Architecture
standardization is more like the development of building code. One lesson there is it
works best when technology and architecture are stable, as it is in civil construction.
There should be no surprise that there isn’t much in the way of similar standardiza-
tion in other areas as the rate of innovation has only increased since the third edition
was published.

Changes to standards and the general increase in maturity of concepts are recog-
nized in changes in Parts III and I'V. Here, we have rewritten or replaced material that
was speculative 15 years ago to being standard today. Much of the material on politics
and business is timeless, however, as it reflects the slowly changing on-the-ground
realities of how decisions are made on funding large systems.

It is still true that architecture can be seen as the physical (or technical) embodi-
ment of strategy. Conversely, architecture without strategy is, essentially by defi-
nition, incoherent. Many of the common problems encountered in attempting to
improve architecting practices are linked directly to problems in organizational strat-
egy. Moreover, this linkage provides fertile ground for looking at intellectual links
with other engineering-related subjects, such as decision theory.

READERSHIP AND USAGE OF THIS BOOK

This book is written for present and future systems architects; for experienced engi-
neers interested in expanding their expertise beyond a single field; and for thought-
ful individuals concerned with creating, building, or using complex systems. It
is intended either for simple reading, for reference in professional practice, or in
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classroom settings. From experience with its predecessor, the book can be used as a
reference work for graduate studies, for senior capstone courses in engineering and
architecture, for executive training programs, and for the further education of con-
sultants and systems acquisition and integration specialists, and as background for
legislative staffs.

This book continues to be a basic text for courses in systems architecture and
engineering at several universities and in several extended professional courses. Best
practice in using this book in such courses appears to be to combine it with selected
case studies and an extended case exercise. Because architecting is about having
skills, not about having rote knowledge, it can only be demonstrated in the doing.
The author’s courses have been built around course-long case exercises, normally
chosen in the student’s individual field. In public courses, such as at universities,
the case studies presented here are appropriate for use. The source materials are
reasonably available, and students can expand on what is presented here and create
their own interpretations. In professional education settings, it is preferable to replace
the case studies in class with case studies drawn directly from the student’s home
organizations.

Everything in this book represents the opinions of the authors and does not repre-
sent the official position of any organization they have been associated with or their
customers. All errors are the responsibility of the authors.
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Part |

Introduction

A BRIEF REVIEW OF CLASSICAL ARCHITECTING METHODS
Architecting: The Art and Science of Designing and Building Systems!

Building on the paradigm of civil architecting, we ask what have been traditional
approaches to how to create architecture? What methods are identified with architec-
tural practice that are distinct from (or overlap with) engineering practice? The four
most important methods are referred to as normative, rational, participative, and heu-
ristic (Lang 1987, Rowe 1991)? (Table PIL.1). As might be expected, like architecting
itself, they contain both science and art. The science is largely contained in the first
two, normative and rational, and the art in the last two, participative and heuristic.

The normative technique is solution based; it prescribes architecture as it “should
be”—that is, as given in handbooks, civil codes, and pronouncements by acknowl-
edged masters. The normative method proceeds through a set of hard rules to follow.
Success is defined by following the rules. Building codes are examples of the norma-
tive method. You assess success on building codes by whether or not your design and
construction are compliant.

While normative success might be defined by following the rules, the rules had to
come from somewhere and need to be strongly linked to desired outcomes (say that
the building survives harsh conditions). As science and engineering developed, we
had an increasing ability to move from desired outcome to design by rigorous analy-
sis. This leads us to the rational method, scientific and mathematical principles to be
followed in arriving at a solution to a stated problem. Both the normative and rational
methods are deductive, allow for easy certification of a system, are well understood,
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TABLE PI.1

Four Architecting Methodologies

Normative (solution based) Examples: Building codes and communications standards
Rational (method based) Examples: Systems analysis and engineering

Participative (stakeholder based) Examples: Concurrent engineering and brainstorming
Heuristic (lessons learned) Examples: All the really important mistakes are made on the

first day, partition for maximum cohesion and minimal
coupling

and are widely taught in academia and industry. Moreover, the best normative rules
are discovered through engineering science (think of modern building codes)—truly
a formidable set of positives.

Although science-based methods are absolutely necessary parts of architecting,
they are not the focus of this book. They are already well treated in numerous archi-
tectural and engineering texts. Most people who are serious practitioners of systems
architecting, or who aspire to be serious practitioners, come from an engineering and
science background. They already realize the necessity of applying scientific and
quantitative thinking to the design of complex systems and already have a substantial
analytical toolkit. Equally necessary, and the focus of this part of the book, is the art,
or practice, needed to complement the science.

In contrast with science-based methodologies, the art or practice of architecting—
like the practices of medicine, law, and business—is largely nonanalytic, inductive,
difficult to certify, less understood, and, at least until recently, seldom taught formally
in either academia or industry. It is a process of insights, vision, intuitions, judgment
calls, and even “taste” (Spinrad 1988). It is key to creating truly new types of systems
for new and often unprecedented applications. Here are some of the reasons.

For unprecedented systems, past data are of limited use. When building some-
thing truly, new rules from the past are unlikely to be of much use. Even for prec-
edented systems, analysis can be overwhelmed by too many unknowns, too many
stakeholders, too many possibilities, and too little time for data gathering and analy-
sis to be practical. To cap it off, many of the most important factors are not measur-
able. Perceptions of worth, safety, affordability, political acceptance, environmental
impact, public health, and even national security provide a limited basis for numeri-
cal analyses—even if they were not highly variable and uncertain. Of course, any
of those characteristics can be modeled quantitatively. But the models are not the
perceptions. Value is judged by people, not models, even if the people use models to
be informed. Yet, if the system is to be successful, these perceptions must be accom-
modated from the first, top-level, conceptual model down through its derivatives.

The art of architecting, therefore, complements its science where science is weak-
est: in dealing with immeasurables, in reducing past experience and wisdom to
practice, in conceptualization, in inspirationally putting disparate things together,
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in providing “sanity checks,” and in warning of likely but unprovable trouble ahead.
Terms like reasonable assumptions, guidelines, indicators, elegant design, and beau-
tiful performance are not out of place in this art, nor are lemon, disaster, snafu, or
loser. These terms are hardly quantifiable but are as real in impact as any science.

The participative methodology recognizes the complexities created by multiple
stakeholders. Its objective is consensus. As a notable example, designers and manu-
facturers need to agree on a multiplicity of details if an end product is to be manu-
factured easily, quickly, and profitably. In simple but common cases, only the client,
architect, and contractor have to be in agreement. But as systems become more com-
plex, many more participants have to agree as well.

The heuristics methodology is based on “common sense”—that is, on what is
sensible in a given context. Contextual sense comes from collective experience stated
in a simple and concise manner as possible. Put another way, the “common sense”
we want is inducted, preferably from wide and diverse experience. These statements
are called heuristics, the subject of Chapter 2, and are of special importance to archi-
tecting because they provide guides through the rocks and shoals of intractable,
“wicked” system problems. Simplify! is the first and probably the most important of
them. They exist in the hundreds if not thousands in architecting and engineering, yet
they are some of the most practical and pragmatic tools in the architect’s kit of tools.

DIFFERENT METHODS FOR DIFFERENT PHASES OF ARCHITECTING

The nature of classical architecting changes as the project moves from phase to
phase. In the earliest stages of a project, it is a structuring of an unstructured mix
of dreams, hopes, needs, and technical possibilities when what is most needed has
been called an inspired synthesizing of feasible technologies. It is a time for the art
of architecting. Later, architecting becomes an integration of, and mediation among,
competing subsystems and interests—a time for rational and normative methodol-
ogy. Eventually, there comes certification to all that the system is suitable for use,
when it may take all the art and science to that point to declare the system as built
is complete and ready for use. If all that was done very successfully, there will be
many cycles of evolution after, and eventually, the process must repeat (perhaps by
those who were already successful, quite possibly by others seeking to unseat them)
as something new replaces what has become old.

Not surprisingly, architecting is often individualistic, and the end results reflect it.
As Frederick P. Brooks put it in 1983 (Brooks Jr 1995) and Robert Spinrad stated in
1987 (Spinrad 1987), the greatest architectures are the product of a single mind—or
of a very small, carefully structured team—to which should be added in all fairness: a
responsible and patient client, a dedicated builder, and talented designers and engineers.

NOTES

1 Webster’s 1, New Riverside University Dictionary. Boston, MA: Riverside 1984. As
adapted for systems by substitution of “building systems” for “erecting buildings.”

2 They are adapted for systems architecting in Rechtin, E. (1991). Systems Architecting:
Creating and Building Complex Systems (pp. 14-22). Englewood Cliffs, NJ: Prentice Hall.
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Case Study 1
The DARPA Grand Challenge

To Build Something New

ARCHITECTING BY EXAMPLE

Architecting and architecture span a wide range of scenarios, concerns, and methods.
Architecting can apply to fresh-start projects, legacy replacements, and incremental
revisions. It spans from stakeholder analysis of vaguely stated needs and constraints
to (potentially) detailed physical engineering concerns. Before we build a more for-
mal framework for what systems architecting is and how to do it, we need to get a feel
for what it entails and how it differs from other engineering, program management,
or analytical perspectives. Some readers may already have a good grasp of this and
have personal examples readily at hand. But others will not and some kind of unify-
ing example has proven very useful with many audiences. To provide this introduc-
tory example, consider the case of the Defense Advanced Research Projects Agency
(DARPA) Grand Challenge.

By way of background, the US DARPA was established in 1958 to accelerate the
infusion of advanced research results into militarily valuable systems. The signature
DARPA approach is to identify an area where basic research has revealed the poten-
tial for important new capability, then sponsor the development of an application
demonstration in a prototype system, with an opportunity for transition to the mili-
tary services. The exact form of this has varied from technology area to technology
area and over time, but it has repeatedly resulted in exceptional new US military
capabilities. Famously, DARPA has played a major role in the early development of
stealth technology, weather satellites, GPS, drones, and the Internet (via the prede-
cessor ARPAnet).

In 2003, DARPA announced the DARPA Grand Challenge for autonomous
vehicles. The motivation was to accelerate the progress in developing militarily rel-
evant autonomous ground vehicles. Ultimately, this might include autonomous fight-
ing vehicles. The more immediate goal was to enable autonomous supply vehicles,
whether large trucks operate behind the lines or smaller vehicles operate close to the
front. A second goal was to enable autonomous operation of scout and mine-clearing
vehicles. This was heavily motivated by experience in Iraq and Afghanistan, where
vehicle operators were broadly exposed to improvised explosive device threat and
insurgent attacks throughout the battle space.

This program had a very unusual structure. Instead of typical contracted research
and demonstration activity, it would be an all-comers race with a million-dollar
winner-take-all prize. Competitors would bring their vehicles to a designated site
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in the desert between California and Nevada on a set date in 2004. A few hours
before start time, they would be given a set of GPS waypoints defining an approxi-
mately 120-mile course of desert roads or off-road terrain. They would start one
at a time and attempt to traverse the full course using solely on-board sensors and
control mechanisms with no human supervision or intervention (save a kill signal in
case of on-course problems). There are a number of scholarly accounts of the event
(Behringer et al. 2004, Ozguner et al. 2004, Seetharaman et al. 2006, Thrun et al.
2006) among others. There is a well-produced documentary video (NOVA 2006)
that the reader may want to review in conjunction with reading this case study.

When DARPA made the announcement, there was a background of many years
of autonomous vehicle research, but nothing like the proposed race had ever been
accomplished. The general opinion was that the set task was infeasible with current
technology, and no competitors would succeed. When the race was held in March
2004, the skeptics were seemly proven right. Most vehicles crashed or otherwise
failed within sight of the start line. The best performer only made 7.5 miles of the
course before stranding itself on a rock. DARPA’s response was to double the prize
money and schedule another race a bit more than a year away.

Interestingly, the second race attracted a far larger group of competitors in spite
(or because of?) the failures of the first. So many teams developed vehicles that
DARPA had to hold a qualifying event first to select a workable number of vehicles to
race. Performance was dramatically improved, with most vehicles in the second race
exceeding the best-performing vehicle of the first race, and four vehicles completing
the full course with three under the 10-hour time limit. The success of the second
Grand Challenge race set off a wave of commercial activity in the autonomous vehi-
cle area. There was considerable optimism that true autonomous vehicles would soon
occupy public roads. However, the actual result has been more mixed. The DARPA
Grand Challenge was indisputedly successful at jumpstarting serious development
and large investments in the field outside the U.S. Department of Defense (DoD).
The actual path of working applications has been more circuitous. In some areas,
like autonomous ocean vehicles and air vehicles, there are many working military
applications. In civilian land transport, there are still few deployed applications, at
least at the time of this writing (2024), though there is a vigorous, and sometimes
controversial, prototyping process.

Our objective is not to assess the success of the DARPA program, but it is to
consider what it means to do architecting, to create architecture, to build something
new, using the Grand Challenge as an example. We invite the readers to imagine
themselves as members of a team shortly after the Challenge announcement in 2003
considering entering the race and trying to structure the first design activities.

DAy 1 of THE NEw PRroJECT

To make the situation a little more concrete, we will assume that the team mem-
bers are all part of the School of Engineering at a major university. The Dean
of Engineering is excited about the challenge and wants to explore the univer-
sity participating. The Dean has allocated some discretionary money to get things
started, but it is obvious that far more money will be necessary to build and field
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a competitive vehicle (or may be vehicles?). Several professors have research pro-
grams in areas relevant to the challenge (vehicle design, sensing, control theory,
and robotics), and the School has significant laboratory facilities where vehicles
for things like the “Formula SAE” (SAE 2024) have been built. The school has
significant corporate partners in research and education programs, some clearly
relevant to the challenge.

While there are many resources that are clearly relevant, all people are aware of
one over-riding consideration, nobody, anywhere, knows how to design an autono-
mous vehicle that will assuredly perform the Grand Challenge task. Nobody, any-
where, has built a fully autonomous vehicle that has gone the distances and speeds
required to meet the Challenge’s minimum requirements (120 miles in under 10 hours
fully autonomously). Not only is originality required, but if someone put forth a solu-
tion that would succeed, there is no way to know that without getting out to the field
and trying it, either before the race or simply in the race. If instead you imagine
yourself in the place of a team taking on the second running of the race, the observa-
tion that “nobody knows how to do this” remains, now reinforced by the failure of
the vehicles in the first race.

A conventional systems engineering approach seems attractive, for a moment.
The usual first question asked would be “what are the requirements?” It is not hard to
define the operational requirements, there are hardly any.

e Bring your vehicle to the race location

e Receive the course waypoints when available and load them into your
vehicle

e Drive the course as defined by the waypoints, sensing the environment and
adapting to the course as needed to avoid being stuck

* Respond to a kill signal and stop

On the physical side, the only requirements of significance were maximum size and
weight constraints.

Going from these operational requirements to functions is superficially easy. You
can outline functions for sensing GPS position, sensing the environment, moving in
the environment, adjusting course, and so forth. The trouble is that going below that
level runs into big problems immediately. Driving straight line waypoint-to-waypoint
will presumably not be feasible (lots of mountainous terrain and big rocks out there).
What kind of obstacles do we have to detect and characterize? How sophisticated
do our route adaptation algorithms have to be to find a feasible course? We do not
know in advance, we have to define some kind of environment space. If we make the
problem too hard, we will probably go too slow compared to a vehicle that makes dif-
ferent assumptions. If we assume too easy, we will never make it around the course.
Choosing a driving speed is a subtle trade between going too slow (and losing) and
going too fast (and upping the crash probability). To really know that trade, we would
need a lot of data on autonomous vehicle operation, but there is not any data (unless
we collect some, making our effort larger).

If that process does not bog down, some in the group will point out the complex-
ity of the goals. Is the goal to win the race and get the money? It will take more
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than a million dollars (probably) to build a competitive vehicle. For sure, sponsor-
ship money will be required. In a university environment, if we get lots of sponsor-
ship and build a lot of interesting technology and educate our students, do we “win”
regardless of whether or not we win the race? Do we even need to finish, if we suc-
ceed in sponsorship, technology innovation, and education? DARPA’s goals and our
goals are not necessarily the same. As a team, we may have significant differences
in our own goals.

ARCHITECTURE DECISIONS: A SELECTIVE OUTLINE

One way to start sorting out this confusion, and something we will emphasize
throughout this book, is to look at the design process as a sequence of decisions.
Some are identifiable, front-and-center, from the beginning. Some are contingent,
and the situation changes the decisions change. Some are stakeholder view depen-
dent. One heuristic is that architecture decisions are the decisions that drive value,
cost, and risk. One observation about early-phase architecting and engineering is that
a small set of decisions drive most of the value, cost, and risk. Identifying, under-
standing, and controlling those decisions is a key to success, at least to the extent that
success is measured by value, cost, and risk.

We would not try to do a complete analysis of architecture decisions for this case,
but we will walk through a few, leading to identifying three component architecting
problems in the next section.

e Should we participate? If we do participate, what are our objectives?

If we do participate, we will expend our team’s time and other resources
on DARPA’s challenge and not on other things. To assess if this has good
return on investment for us, we need to understand our objectives. In the
example of the university team, a university has a distinct mission, different
from DARPA’s, different from a corporation that might participate. It might
be that the vehicle concept that best maximizes our objectives will not be
the concept that maximizes somebody else’s objective.

* Given that we participate, should we put design constraints on ourselves
(in service of our objectives)? If so, what design constraints should we
consider?

For example, a team can focus on sensors and control, while con-
straining the vehicle to be an off-the-shelf off-road vehicle, or a team
can customize the vehicle. If you have large resources and are focused on
winning the race jointly optimizing the sensors, the processing, and the
physical vehicle makes sense. But resources are always limited and win-
ning might be just only one objective among many. Trying to do every-
thing well might cost you the opportunity to do a more valuable subset
very well.

* Top-level technical decisions about our vehicle and our program.

Here we get into choosing a vehicle, choosing sensors, and choosing sen-
sor fusion approaches. Here is also where we have to design our program for
building the vehicle and consider how the vehicle design and the program
design interfere with each other.
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THREE ARCHITECTING PROBLEMS

To structure this case further, let us consider three early-phase decision problems
about the architecture of the hypothetical vehicle/program. As an exercise, the reader
should consider each of these problems in turn and try to develop arguments for
and against each possible course of action. Also consider if there are other courses
of action the team could take. Finally, consider if you were faced with this problem
in 2003 (not 2023). How would you resolve it? When you think how to resolve it,
remember that in the real situation in 2003, the race day was fixed and immovable.
So, any decision to gather more data and decide later burns up some clock time, time
that could have been used to do something else later in the cycle.
The three problems are as follows:

1. The vehicle selection problem
2. The sensor selection problem
3. The build-test-adjust schedule problem

THE VEHICLE SELECTION PROBLEM

To participate in the race, you have to build a vehicle. Selection of the vehicle is
obviously a key decision. Suppose in early discussions, there are two approaches
identified for the vehicle.

Group 1: Off-The-Shelf Vehicle

The first group advocates for starting with an off-the-shelf vehicle, an off-road capable
sport-utility vehicle or truck, minimally modified to support autonomous driving. This
would be obtained from a dealer or directly from a manufacturer and then minimally
modified. The only mechanical modifications to the vehicle would be those essential
for autonomous operation: electro-mechanical actuation of steering, shifting, braking,
and acceleration. They argue that the challenge is not in the vehicle, since a very wide
variety of vehicles can easily be driven 120 miles in less than 10hours on poor roads
or even off-road. Existing vehicles have already solved the mechanical problems.
Selecting an off-the-shelf vehicle would allow the team to focus solely on the sensor
and control problems, perceived by this group to be the heart of the challenge. Using
an off-the-shelf vehicle would take advantage of production-level reliability and allow
the team to put all resources on sensor, electronic, and software specialties.

Group 2: Custom, Tailored Vehicle

The second group advocates for opening the design space to include building a vehi-
cle that exploits not having to support a human driver to allow form factors and
structures that could operate more robustly in the race environment. By opening
the design space to more robust designs able to tolerate conditions, perhaps created
by poor-quality autonomous driving, that would stop an off-the-shelf vehicle. More
robust mechanical design could tolerate poorer sensor performance and driving con-
trol. Taking this course of action would change the team makeup, and skills and
resources required, but would allow incorporation of additional areas of expertise
and possible design innovations.



10 The Art of Systems Architecting

Assessment Task

The team has to pick a vehicle approach. If they go with Group 1’s approach, they will
need to pick an off-the-shelf vehicle and then design around its limitations. If sen-
sors and controllers cannot be designed that operate within the vehicles performance
envelope, they will fail. They will not need an extensive mechanical engineering or
construction effort as that will be effectively outsourced to the vehicle manufacturer.
If they go with Group 2’s approach, they will need to build a more comprehensive
development team, but they will gain a larger design tradespace. That could be a sig-
nificant advantage or perhaps a disadvantage if the larger design tradespace greatly
complicates the process in the limited time available.

How should the team decide between these two courses of action, especially
considering the finite time available and that time spent deeply analyzing the issue
is time no longer available to engineer the system? What considerations or objec-
tives should be controlling on the decision? Are there widely accepted heuristics,
guidelines, or principles that could help make this decision? What practical, very
rapid (week or two), low-cost actions could they take to gather better information to
improve the decision quality rather than just deciding immediately? With particular
regard to Group 2’s idea, if you could win the race with a mechanically innovative
vehicle that tolerated very poor autonomous control, would that be a “win” for the
broad objectives the stakeholders were trying to achieve?

THE SENSOR SELECTION PROBLEM

DARPA will provide a set of GPS waypoints for the course, but it is understood
that the vehicle will need some set of sensors, and the associated processing, to suc-
cessfully complete the course. The requirement is to drive the course, not house a
particular set of sensors. Nobody has accomplished the challenge before, so the rela-
tionship between what sensors are used and how successfully it can drive the course
is unknown. There are many possible sensors that could be used, either individually
or in combination:

* Video cameras, either singly or in stereo pair or in multi-stereo sets (three or
more arranged to provide additional stereo). Cameras could be set up with
wide or narrow fields of view, with close-in focus or for distant vision, or
steerable and zoomable.

e Laser range finders or imaging laser radars (LIDAR) add direct measure-
ment of distance to imaging capabilities.

*  Microwave radars to measure distance to objects.

e Inertial sensors.

e In addition, sensors could be hard mounted to the vehicle (simple, robust,
but then the sensor is exposed to more severe vibration and the sensor moves
with the vehicle requiring some form of compensation in processing). Or,
the sensors could be mounted on a stabilized gimbal providing vibration and
shock isolation and a stable platform at the cost of much greater mechanical
complexity and potential reliability issues.
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Putting many sensors on the vehicle will provide a diversity of data, potentially
a major advantage. But with many sensors, the complexity of sensor integration
will rise, probably non-linearly in the number of sensors. Imperfectly correlated
multi-sensor data can be worse than any of the sensor feeds alone. Many of the com-
plexities in using the sensor data likely will not be understood until the team has built
something and tested it in a representative environment.

How should the team choose what sensors to include in their design? What strate-
gic considerations can be used to attack this decision problem, and how is the deci-
sion problem impacted by the team’s own understanding of their objectives?

THE BuiLD-TesT-ADJUST SCHEDULE PROBLEM

The third problem to consider is not specifically technical; it is choosing the architec-
ture of the program. At the very top level, if the team is going to enter the race, they
need to design, build, test, and deliver an autonomous vehicle. They have nearly full
control over the details of how they do that, at least within whatever resources they
can obtain. They could spend most of the time in specifying, designing, and fabricat-
ing the vehicle and only test to verify that it does what it was intended to do. They
could deliberately choose a very simple design that could be fabricated quickly, take
it to the test environment very early, and concentrate on refining the implementation.
Whatever they choose, they have to deliver a working vehicle on the race day roughly
a year away or the whole effort will be largely in vain. There are many programmatic
decisions to be made, but consider two very strategic ones:

* When in the one-year time available should they target having a working
vehicle that can be tested in an operationally representative environment? If
they choose an early point, say 6 months in, then they will have potentially
many cycles of refinement, but the overall design will have to be simple
enough, and design choices more constrained, to be available that quickly.
Many design options are likely to be foreclosed simply because they cannot
be ready in half of the total time. If they choose a late point for full-scale
testing, then the design can be more capable, but there will be little time to
refine.

* During test, and during the race, the system will have to decide how fast to
go. The faster it goes, the more competitive it will be (boosting the possibility
of winning), but also raising the risk of crashing. If the vehicle crashes in test,
it might be so damaged as to be unrecoverable (at least in time for the race).
But if they do not drive faster in test, they will not have information to support
driving fast in the race. How do they resolve this conundrum of pushing risk
in test to perform better in the race versus being more conservative in test to
maximize the likelihood of making the race, but being less competitive?

The lack of hard requirements from DARPA throws these choices almost entirely on
the race teams. There is no appeal to authority; the choices have to be based on the
team’s own objectives for participating in the race.
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ARCHITECTURE LESSONS FROM 2004 AND 2005

The reader is encouraged to work out their own answers to the challenge questions
above. The teams who built vehicles for the races in 2004 and 2005 all had to come
up with their own solutions, for better or worse. Since there were two races, the first
in 2004 and the second in 2005, we can observe differences in how teams approached
the challenge as probably reflecting some lessons learned.

First, at the macro-level, teams clearly made choices aligned with their own goals
and objectives, based in part on their pre-existing organizations. Conway’s Law
(Conway 1968, Bailey et al. 2013) says that organizations build technical architec-
tures that mirror their own organizational structure, and vice versa, their organiza-
tions come to resemble the things they build. More generally, they make choices that
reflect their structure. Stanford’s winning vehicle was built by a computer science
team. They choose an almost off-the-shelf vehicle, hard mounted the sensors, and put
all of their efforts into information processing, accepting all of the constraints and
limitations their simple mechanical design imposed. In contrast, the second-place
team from Carnegie-Mellon had a broad pre-existing base of expertise and facilities
in mechanical engineering and diverse robot construction. They put far more effort
into vehicle modifications and sensor gimbal systems. Both worked (the winning
margin was quite narrow) and both reflected the pre-dispositions and objectives of
each team.

Taking up the questions posed above, teams in the second race mostly focused on
minimally modified off-the-shelf vehicles versus the more diverse array of more cus-
tomized vehicles in the first (unsuccessful) race. Teams seemed to realize that it was
not a mechanical challenge getting around the course, and failing to finish because of
a mechanical breakdown was a waste. By choosing off-the-shelf vehicles, each team
could focus on the hard parts of the challenge, doing the observation and analysis
necessary to get around the course.

Teams in both races made diverse choices in sensors. Generally, a combination of
cameras and LIDAR were used, and both seemed to be needed by the most success-
ful teams. It was clear in the second race that successful teams put a much greater
emphasis on getting to the field early and often and building performance up from
simple to complex incrementally. Carnegie-Mellon, who had been the top performer
in the first race, nevertheless re-did integration on the 2003 vehicle nearly from
scratch for the second race, while simultaneously developing a second, more sophis-
ticated vehicle. They were driving the first vehicle on cameras alone very early in the
run-up to the second race and then incrementally adding additional sensors.

The emphasis on incrementalism brings in another observation on architectures,
the need to consider the true, full lifecycle not just the operational period. If a vehicle
is going to be run through perhaps 6 months of testing prior to the race, and then
raced, the vehicle has to work reliably for far longer than the race period. The vehicle
has to be fully supportable during the months of testing. It has to be possible to gather
data during testing in enough depth not just to verify that a requirement was met to
know exactly what the vehicle and sensors experienced, so any issue can be diag-
nosed and improved. This may call for features and data recording capabilities far in
excess of what is needed in the operational period (the actual race).
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Consider something not-so-obvious, human driveability. Most of the vehicles in
the second, more successful, race were not only nearly off-the-shelf vehicles, but
they retained human driveability. People could sit in the vehicle as it drove itself
and take over and drive manually if desired. In the race, this capability is useless, as
the vehicle cannot be touched during the race itself. But human driveability is very
useful during test. A human-driveable vehicle can be driven to the test area (instead
of requiring support vehicles and staff as would a pure robot). Humans can observe
what it does in real time. The humans can drive the vehicle out of non-pre-planned
places, or into non-pre-planned places, if appropriate. A human can drive the vehicle
with the sensors in record mode, at various designated speeds, and the resulting data
set is examined later. Human driveability opens up a range of operating capabilities
during development that would not otherwise be available. If we consider the devel-
opment period as an inherent part of the lifecycle, we may architect for it in response.
If we focus solely on the operational period (the race) and neglect to consider the
development period as part of the lifecycle, we will miss this.

As an aside, we should also remember that if we intend for humans to be in the
vehicle during development during test, then the humans are exposed to the risks
of the vehicle. That may drive additional design and operational considerations that
might be at odds with the advantages discussed above. Each architectural choice
generates a series of consequences, perhaps crossing from technical to programmatic
to ethical considerations. Architecting is complex, we cannot escape that. Building
something new is complex, architecting is a response.

Keep the DARPA Grand Challenge case in mind as we define and elaborate sys-
tems architecting in the chapters to come. The clarifying nature of the case is how the
system development teams were forced, by the nature of the situation, to confront the
full set of architecting challenges. In most cases, there are more constraints, which
are responsible for some architectural decisions that may be obscured. We have to
deal with that case-by-case basis, but this case study provides clarity on how archi-
tecting is fundamentally decision-centric, and the broad nature of those decisions.
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Extending the
Architecting Paradigm

WHAT IS ARCHITECTING?

Whenever we start to build a system, especially when that system is supposed to be
something essentially new, somebody faces a poorly structured problem. Somebody
is faced with simultaneously having to work through “what do we want?”” and “what
can we have?” realizing that they aren’t independent questions. They face decisions
in multiple dimensions. How do I choose a trade space? Too wide and I may never
make progress. Too narrow and I may be writing off the most valuable solutions.
They face structuring the program to build the system, whether all at once or incre-
mentally. It is not enough to just go off and ask somebody what the requirements are,
the requirements themselves will be part of the trade space.

The opening DARPA Grand Challenge case study shows this. Every team who
considered building a vehicle faced an obvious problem: Build a vehicle that (would
hopefully) win the designated race, with all the uncertainty and ambiguity of just
what that race would eventually require and what the competition would consist of.
But beyond the obvious problem lay the real problem. Each group had to understand
for itself what they wanted to achieve, and how gathering and spending the required
scarce resources (people’s time, money, and facilities) would lead to their goals.
It is very unlikely that any team who participated in either of the two races was
solely motivated by the possibility of the win and the prize money. Everybody
involved saw participation as a path to their own goals, and different groups did not
have identical goals.

We call this situation at the beginning of a system development an architecting
situation. We use the term with inspiration from the classical model of how an archi-
tect works, and how the practice of architecture of building has been distinguished
from the practice of civil engineering.

* The architect works for clients who want a building and whose needs and
goals span as wide a range of concerns as suits them. They may want spe-
cific physical properties, practical functional characteristics, aesthetics,
spiritual inspiration, or embodiment of a business brand.

* Both the problem and the solution are in the trade space. Quite likely, there
is a higher level, like the DARPA program office in the case study, who have
constrained the problem and solution space, but there are many degrees of
freedom for the team.

* The architect’s job is not to design the building to the construction drawing
level (at least it usually is not). The architect’s job is to come up with multiple
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alternatives and eventually produce a partial design, a partial design that
will be further refined by others to the level of detailed construction plans.
This partial design should encompass the decisions that determine most of
the cost, value, and risk.

e The architect’s products are both decisions and descriptions. The decisions
are those that determine most of the value, cost, and risk. The descrip-
tions are the physical products, whether drawings, models, or other digital
objects, that document and define the decisions.

e The architect acts as the agent of the clients, primarily involved in the
beginning phases (when essential decisions about what to build and how to
build it are made) and again toward the end of the process when the clients
have to make the determination of “is the system suitable for use?”

The historical and traditional practice and profession of architecture embraces these
factors. Because it embraces these factors, we look to their practices for inspiration
and hints, even if the development of autonomous vehicles or spacecraft contains
many different elements than civil construction. The recorded history of classi-
cal architecting, the process of creating architectures, began in Egypt more than
4,000years ago with the pyramids, the complexity of which had been overwhelming
designers and builders alike. As systems became increasingly more ambitious, the
number of interrelationships among the elements increased far faster than the num-
ber of elements. These relationships were not solely technical. Pyramids were no lon-
ger simple burial sites; they had to be demonstrations of political and religious power,
secure repositories of god-like rulers and their wealth, and impressive engineering
accomplishments. Each demand, in itself, would require major resources. When
taken together, they generated new levels of technical, financial, political, and social
complications. Complex interrelationships among the combined elements were well
beyond what the engineers’ and builders’ tools could handle.

From that lack of tools for civil works came classical or civil architecture. Millennia
later, technological advances in shipbuilding created the new and complementary
fields of marine engineering and naval architecture. As the industrial revolution
took hold in the 19th century and was then compounded by the science-engineering
breakthroughs of the 20th century, the situation repeated again and again. Whether
in military systems, transportation, communications, computing, aircraft, or other
fields, the same development quandary repeated. New technical capabilities changed
our understanding of what problem we wanted to solve, our changed understand-
ing led to new operational or business concepts, which in turn demanded different
technical capabilities. The value in what we built was primarily not in the individual
component (even when enabled for the newest technology of the day) but in how
those components combined to produce a whole whose capabilities enabled some-
thing new. Each iteration increased complexity in component count, interrelation-
ships, and scope of consideration. Engineering tools were typically lagging at the
forefront of system development.

One factor that stands out is the utility of the classical architecting paradigm.
If we are to use the classical paradigm, we must understand it as it does not apply
without adaptation.
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THE CLASSICAL PARADIGM AND ITS EXTENSIONS

The classical paradigm applies most strongly when six factors are present (Rechtin
1994). The architectural paradigm applies more broadly, as we will see through
extensions, as the six factors vary, but these are the foundation.

1. A Systems Approach: We are moving between problem space and solution
space. Both sides are in play. We expect our understanding of the problem
to flex as part of the process, and that stakeholders may rethink their needs
(and operations) in light of solutions. The value is, on the whole, in the capa-
bilities generated.

2. Purpose Orientation: The effort is driven by client needs. An important
extension is architecting in the technology-driven scenario, but the founda-
tional case assumes the process is driven by client needs.

3. We Work with Models: Our system is complex enough that architecting
has to be conducted on models or abstractions. The architect does not work
with the physical system itself.

4. Ultraquality: The system is unique or produced in numbers much lower
than the inverse of the failure rate.

5. Certification: Again, the numbers are low, so we have to accept systems
as fit for use on an individual basis. We are operating outside performance
ranges where statistics are an expansive guide.

6. Complexity Pushing us into the Need for Insight: Complexity is high
enough that analytical results can only be accepted or rejected on a judg-
ment basis. Insight beyond straight analysis is required. Some quality fac-
tors demanded are not subject to quantitative analysis.

COMPLEXITY IN PROBLEM AND SOLUTION

Complexity is commonly cited as the root difficulty in system development today.
When architects and builders are asked to explain cost overruns and schedule delays,
by far the most common, and quite valid, explanation is that the system is much more
complex than originally thought. Exactly what this means may not be explained.
It may mean we didn’t realize the difficulty of what we set out to do. The difficulties
may have been magnified by how interconnected parts of the system turned out to be,
how interconnected parts of the problem were, or both to each other. It may mean we
misunderstood the magnitude of what we had to do in terms of the number of parts,
stakeholders, or concerns.

There is a large literature on complexity in general, on complex systems specifi-
cally, on complex or “wicked” problems. That literature recognizes complexity as
a mixture of size (number of elements), interconnectedness, interdependency, and
irreducibility (difficulty in understanding the whole from the parts). The emergent
properties of a system, a fundamental identifier of a system, are more and more
removed from the element properties as the system is more complex. The more ele-
ments and interconnections, the more complex the architecture and the more difficult
the system-level problems.
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TABLE 1.1
Dimensions of Development Complexity
Dimension Simple Complex
Sponsors One, with money | Several, with One, without Many,
money money speculative
Users Same as sponsors | Aligned with Distinct from Unknown,
sponsor sponsor conflicting
Situation-Objectives Tame Discoverable l-structured Wicked
Quality Required Directly Indirect measures | Semi-measurable | One-shot and
measurable unstable
Control Centralized with | Centralized Distributed Virtual
sponsor elsewhere
Feasibility Easy Barely No
Development scope Few elements, Intermediate Many
few interface elements,
many
interfaces
Technology Maturity | Very high Medium Low Very low

For our purposes, we need a working understanding of what complexity means
in the context of developing a system. This can be developing a new system from
scratch, as in our DARPA Grand Challenge case example, or evolving an existing
system in response to changing needs. We have found a convenient framework with
eight dimensions that helps characterize development complexity and also illustrates
key distinctions between architecting and engineering practices. The framework is
shown in Table 1.1.

The first three rows are primarily problem-space factors, and they are built on
what we are trying to achieve. The last three factors are primarily solution space, and
they depend on the nature of the thing we want to build. The middle two bridge the
problem and solution spaces.

Sponsors: Who wants the system will pay for it and is sponsoring the architect-
ing-design effort. A single sponsor with full funding is the simplest; many sponsors
(perhaps not known) without funding are the most difficult.

Users: Who will use any system ultimately developed? If they are also the spon-
sors, this is simplest. If they are unknown or conflicting with the sponsors, this is
most difficult.

Situation-Objectives: A “Tame” situation is where the sponsors know and can
authoritatively state the objectives/requirements, and they won’t change. In a dis-
coverable situation, they can be known with enough inquiry but are not available
up-front. Ill-structured means they are likely to change when solutions are available.
The best definition of “wicked” is that the rate of change of the objectives is faster
than any possible development timeline, and different stakeholders with authority
want incompatible things.
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Quality Required: In a simple development, all desired quality factors can be
directly measured, ideally from the design as well as from the actual system. Greater
complexity is marked by the inability to directly measure the desired quality factors
except in operation (when it may be too late), and by cases where the operation is one
time and so we cannot know if the system works as intended until all opportunities
to do anything about it have passed.

Control: This refers to how the system is controlled, and by whom, in operation.
In the simple case, control is centralized, usually with the sponsors. In the most
complex cases, the system is uncontrolled, and it exists in the environment under the
virtual control of users and others without any central direction.

Feasibility: Sponsors and users have some base expectations of what the system
should do. Feasibility measures the trade space we have for meeting basic expecta-
tions. If there are many concepts meeting basic expectations, the situation is simpler
than if there are none.

Development Scope: This is the typical notion of complexity as size. Things
with more parts, more interfaces, and more inherently dependent interfaces are more
complex and thus more difficult.

Technology Maturity: This assesses the availability of component parts needed
to meet basic expectations. The simple case is when an acceptable system can be built
from currently in-production parts all known to work in the relevant environment. The
most difficult is where some components are unavailable, even at laboratory maturity.

Complexity is a core driver of the methods needed to architect and design.
Qualitatively different problem-solving techniques are required at high levels of
complexity than at low ones. Purely analytical techniques, powerful for the lower
complexity levels, can be overwhelmed at the higher ones. At higher levels, architect-
ing methods, experience-based heuristics, abstraction, and integrated modeling must
be called into play. More broadly than just techniques, considering multiple dimen-
sions of complexity challenges us to simplify in any of the dimensions, not just scope.
Consolidate and simplify the objectives. Focus on the things driving one or more
dimensions of complexity and eliminate them. Put to one side minor issues likely to
be resolved by the resolution of major ones. Draw in the boundaries of control. Model
(abstract) the system at as high a level as possible and then progressively reduce the
level of abstraction. A problem that is maximally complex in one dimension can be
addressed by methods tuned to that dimension. Something maximally complex in
every dimension is a lost cause.

THe HicH RATE OF ADVANCES IN THE COMPUTER AND INFORMATION SCIENCES

An additional factor is the unprecedented rate of technological advances in the com-
putational and information sciences. Software has been driving a true paradigm
shift in system design for at least two decades, but the process of change continues.
Software had been treated as the glue that tied hardware elements together but has
become the center of system design and operation. We see it in consumer electron-
ics, vehicles, spacecraft, and military systems. The precipitous drop in hardware
costs has generated a major design shift—from “keep the computer busy” to “keep
the user busy.” Designers happily expend hardware resources to save redesigning
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either hardware or software. In automobiles, software increasingly determines the
performance, quality, cost, and feel of cars and trucks. We see it in aircraft, where
controls are coming to drive aerodynamic and structural design, and military system
designers discuss a shift to designing the airframe around the sensors instead of
designing the sensors around the airframe. Software has been the principal enabler
of the movement to unoccupied (drone) aircraft systems.

One measure of this phenomenon is the proportion of development effort devoted to
hardware and software for various classes of products. Anecdotal reports from a vari-
ety of firms in telecommunications and consumer electronics commonly show a rever-
sal of the proportion from 70% hardware and 30% software common a few decades
ago to 30% hardware and 70% software. This shift has created major challenges and
destroyed some previously successful companies. When the cost of software develop-
ment dominates total development, systems should be organized to simplify software
development. But good software architectures and good hardware architectures are
often quite different. Good architectures for complex software usually emphasize lay-
ered structures that cross many physically distinct hardware entities. Good software
architectures also emphasize information hiding and close parallels between imple-
mentation constructs and domain concepts at the upper layers. These are in contrast
to the emphasis on hierarchical decomposition, physical locality of communication,
and interface transparency in good hardware architectures. Organizations find trouble
when their workload moves from hardware to software-dominated, but their manage-
ment and development skills no longer “fit” the systems they should support.

Whatever the source of the challenge, the approach based on the architecting
paradigm has six parts, summarized earlier. We elaborate on these six elements here.

A SYSTEMS APPROACH

To take a systems approach means to focus on the system as a whole, specifically
linking value judgments (what is desired, the problem domain) and design decisions
(what is feasible to build, the solution domain). A systems approach means that the
design process includes the “problem” as well as the solution. The architect seeks a
joint problem—solution pair and understands that the problem statement is not fixed
when the architectural process starts. At the most fundamental level, systems are
collections of different things that together produce results unachievable by the
elements alone. For example, only when all elements are connected and working
together do automobiles produce transportation, human organs produce life, and
spacecraft produce information. These system-produced results, or “system func-
tions,” derive almost solely from the interrelationships among the elements, a fact
that largely determines the technical role and principal responsibilities of the systems
architect. But here, it is not just that the problem domain is included in the process;
it is that we shape the problem domain and what we address in the problem space as
part of the system-level trades.

Systems are interesting because they achieve results, and achieving those results
requires different things to interact. From much experience with it over the last
decade, it is difficult to underestimate the importance of this specific definition of
systems to what follows, literally on a word-by-word basis. Taking a systems approach



20 The Art of Systems Architecting

means paying close attention to results, the reasons we build a system. Classically,
architecture must be grounded in the client’s/user’s/customer’s purpose. But a full
understanding of that purpose is rarely captured in any initial problem statement
or any recitation of “requirements.” Architecture is not just about the structure of
components. One of the essential distinguishing features of architectural design ver-
sus other sorts of engineering design is the degree to which architectural design
embraces results from the perspective of the client/user/customer. The architect does
not assume some particular problem formulation, as “requirements” are fixed. The
architect engages in joint exploration, ideally directly with the client/user/customer,
of what system attributes will yield results worth paying for.

It is the responsibility of the architect to know and concentrate on the critical few
details and interfaces that really matter and not to become overloaded with the rest.
Recall the distinctions made in Table P.1 of the Preface. It is a responsibility that is
important not only for the architect personally but for effective relationships with the
client and builder. To the extent that the architect must be concerned with component
design and construction, it is those specific details that critically affect the system as
a whole.

For example, a loaded question often posed by builders, project managers, and
architecting students is, “How deeply should the architect delve into each discipline
and each subsystem?” A graphic answer to that question is shown in Figure 1.1,
exactly as sketched by Bob Spinrad in a 1987 lecture at the University of Southern
California. The vertical axis is a relative measure of how deep into a discipline or
subsystem an architect must delve to understand its consequences to the system as a

Disciplines and Subsystems
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Required Depth of Understanding

FIGURE 1.1  The architect’s depth of understanding of subsystem and disciplinary details.
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whole. The horizontal axis lists the disciplines, such as electronics or stress mechan-
ics, and the subsystems, such as computers or propulsion systems. Depending upon
the specific system under consideration, a great deal, or a very little depth, of under-
standing may be necessary.

But that leads to another question, “How can the architect possibly know before
there is a detailed system design, much less before system test, what details of what
subsystem are critical?” A quick answer is: only through experience; through encour-
aging open dialog with subsystem specialists; and by being a quick, selective, tactful,
and effective student of the system and its needs. Consequently, and perhaps more than
any other specialization, architecting is a continuing, day-to-day learning process. No
two systems are exactly alike. Some will be unprecedented, never built before.

Exercise: Put yourself in the position of an architect asked to help a client build
a system of a new type whose general nature you understand (a house, a
spacecraft, a nuclear power plant, or a system in your own field) but which
must considerably outperform an earlier version by a competitor. What do
you expect to be the critical elements and details and in what disciplines
or subsystems? What elements do you think you can safely leave to others?
What do you need to learn the most about? Reminder: You will still be
expected to be responsible for all aspects of the system design.

Critical details aside, the architect’s greatest concerns and leverage are still, and
should be, with the systems’ connections and interfaces: First, because they distin-
guish a system from its components; second, because their addition produces unique
system-level functions, a primary interest of the systems architect; and third, because
subsystem specialists are likely to concentrate most on the core and least on the
periphery of their subsystems, viewing the latter as (generally welcomed) external
constraints on their internal design. Their concern for the system as a whole is under-
standably less than that of the systems architect; if not managed well, the system
functions can be in jeopardy.

A PURPOSE ORIENTATION

Classically, systems architecting is a process driven by a client’s purpose or pur-
poses. A purpose-driven system starts with a sponsor willing to pay and users pre-
pared to use. A president wants to meet an international challenge by safely sending
astronauts to the moon and back. Military services need nearly undetectable strike
aircraft. Airlines need an aircraft that can operate profitably on identified routes not
yet served.

Clearly, if a system is to succeed, it must satisfy a useful purpose at an afford-
able cost for an acceptable period of time. Note the explicit value judgments in these
criteria: A useful purpose, an affordable cost, and an acceptable period of time.
Everyone is the client’s prerogative and responsibility, emphasizing the criticality
of client participation in all phases of system acquisition. But of the three criteria,
satisfying a useful purpose is predominant. Without it being satisfied, all others are
irrelevant. Architecting therefore begins with, and is responsible for maintaining, the
integrity of the system’s utility or purpose.
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For example, Apollo’s manned mission to the moon and back had a clear purpose,
an agreed cost, and a no-later-than date. It delivered on all three. Those require-
ments, kept up front in every design decision, determined the mission profile of using
an orbiter around the moon and not an earth-orbiting space station, and on develop-
ing electronics for a lunar orbit rendezvous instead of developing an outsize propul-
sion system for a direct approach to the lunar surface.

As another example, NASA Headquarters, on request, gave the NASA/JPL Deep
Space Network’s huge ground antennas a clear set of priorities: First performance,
then cost, then schedule, even though the primary missions they supported were
locked into the absolute timing of planetary arrivals. As a result, the first planetary
communication systems were designed with an alternate mode of operation in case
the antennas were not yet ready. As it turned out, and as a direct result of the NASA
risk-taking decision, the antennas were carefully designed, not rushed, and satisfied
all criteria not only for the first launch but for all launches for the next 40 years or so.

The Douglas Aircraft DC-3, though originally thought by the airline (later TWA)
to require three engines, was rethought by the client and the designers in terms of its
underlying purpose—to make a profit by providing affordable long-distance air travel
over the Rocky and Sierra Nevada mountains for paying commercial passengers. The
result was the two-engine DC-3, the plane that introduced global air travel to the world.

When a system fails to achieve a useful purpose, it is doomed. When it achieves
some purpose but at an unfavorable cost, its survival is in doubt, but it may survive.
The purpose for which the space shuttle was conceived and sold, low-cost transport
to low earth orbit was never achieved. However, its status as the sole U.S. source of
manned space launch allowed its survival. The space shuttle was a tremendous tech-
nical achievement. The success of architecting is not measured by technical success
but by success in mission. In a similar fashion, it has proven impossible to meet the
original purpose of the space station at an acceptable cost, but its role in the U.S.
manned space program and international space diplomacy has assured minimum
survival. In contrast, the unacceptable cost/benefit ratios of the supersonic transport,
the space-based ballistic missile defense system, and the superconducting supercol-
lider terminated all these projects before their completion.

A purpose-driven system may be successful but evolve away from its original pur-
pose. The F-16 fighter aircraft was designed for visual air-to-air combat but has been
mostly used for ground support. The ARPANET communication network originated
as a government-furnished computer-to-computer linkage in support of university
research but became the foundation for the global Internet. Both are judged as suc-
cessful. Why? Because, as circumstances changed, providers and users redefined
the meaning of useful, affordable, and acceptable. A useful heuristic comes to mind:
Design the structure with “good bones.” It comes from the architecting of buildings,
bridges, and ships, where it refers to structures that are resilient to a wide range of
stresses and changes in purpose. It could just as well come from physiology and
the remarkably adaptable spinal column and appendages of all vertebrates—fishes,
amphibians, reptiles, birds, and mammals.

Exercise: Identify a system whose purpose is clear and unmistakable. Identify,
contact, and if possible, visit its architect. Compare notes and document
what you learned.
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Beyond the classical architecting paradigm, not all systems are purpose-driven.
Systems may be sponsored on a technology vision, lacking committed users (Chapter 3).
Purpose may evolve, or even emerge, collaboratively without central sponsorship
(Chapter 7). These break the classical paradigm, but the essential echo of that para-
digm remains. The original motivation for these systems may be technology capa-
bilities and a vision of what that can do, but success only comes when a sufficient
purpose is found and exploited.

A MODELING METHODOLOGY

Modeling is the creation of abstractions or representations of the system to predict
and analyze performance, costs, schedules, and risks and to provide guidelines for
systems research, development, design, manufacture, and management. Modeling
is the centerpiece of systems architecting—a mechanism of communication to cli-
ents and builders, of design management with engineers and designers, of main-
taining system integrity with project management, and of learning for the architect,
personally.

Examples: The balsa wood and paper scale models of a residence, the full-scale
mockup of a lunar lander, the rapid prototype of a software application, the
computer model of a communication network, or the mental model of a user.

Modeling is of such importance to architecting that it is the sole subject of Part III.
Modeling is the fabric of architecting because architecting is at a considerable dis-
tance of abstraction from actual construction. The architect does not manipulate
the actual elements of construction. The architect builds models that are passed
into more detailed design processes (the left to right progression in Table P.1 of the
Preface). Those processes lead, eventually, to construction drawings or the equivalent
and actual system fabrication or coding.

Viewing architecting and design as a continuum of modeling refinement leads
naturally to the “stopping question.” Where does architecting stop and engineering
or design begin? Or, when should we stop any design activity and move onto the
next stage? From a modeling perspective, there is no stopping. Rather modeling is
seen to progress and evolve, continually solving problems from the beginning of a
system’s acquisition to its final retirement. There are of course conceptual models,
but there are also engineering models and subsystem models; models for simulation,
prototypes, and system test; demonstration models, operational models, and mental
models by the user of how the system behaves. From another perspective, careful
examination of the “stopping question” leads us to a better understanding of the pur-
pose of any particular architecting or design phase. Logically, they stop when their
purpose is fulfilled.

Models are in fact created by many participants, not just by architects. These
models must somehow be made consistent with overall system imperatives. It is par-
ticularly important that they be consistent with the architect’s system model, a model
that evolves, becoming more and more concrete and specific as the system is built. It
provides a standard against which consistency can be maintained and is a powerful
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tool in maintaining the larger objective of system integrity. And finally, when the
system is operational and a deficiency or failure appears, a model—or full-scale
simulator if one exists—is brought into play to help determine the causes and cures
of the problem. The more complete the model, the more accurately possible failure
mechanisms can be duplicated until the only cause is identified.

ULTRAQUALITY IMPLEMENTATION

Ultraquality is defined as a level of quality so demanding that it is impractical to
directly measure its achievement. It is a limiting case of quality driven to an extreme,
a state beyond acceptable quality limits (AQLs) and statistical quality control. It
requires a zero-defect approach not only to manufacturing but also to design, engi-
neering, assembly, test, operation, maintenance, adaptation, and retirement—in
effect, the complete life cycle. The concept is discussed in the literature (Juran 1988,
Phadke 1995) and Chapter 8 of Rechtin (1991).

Some examples include a new-technology spacecraft with a design lifetime of at
least 10 years, a nuclear power plant that will not fail catastrophically within the fore-
seeable future, an aircraft flight control computer system whose meantime between
failures is required to be longer than the collective operating time of all of its copies
(Lala and Harper 1994), and a communication network of millions of nodes, each
requiring almost 100% availability. In each case, the desired level of quality cannot,
even in principle, be directly measured; only the absence of the quality desired can
be directly measured. Ultraquality is a recognition that the more components there
are in a system, the more reliable each component must be to a point where, at the
element level, defects become impractical to measure within the time and resources
available. Or, in a variation on the same theme, the operational environment can-
not be created during test at a level or for a duration that allows measurement at the
system level. Yet, the reliability goal of the system as a whole must still be met. In
effect, it reflects the reasonable demand that a system—regardless of size or com-
plexity—should not fail to perform more than about 1% or less of the time. An inter-
continental ballistic missile (ICBM) should not. A space shuttle, at least 100 times
more complex, should not. An automobile should not. A passenger airliner, at least
100 times more complex, should not; as a matter of fact, we expect the airliner to fail
far, far less than the family car.

Exercise: Trace the histories of commercial aircraft and passenger buses over
the last 50years in terms of the number of trips that a passenger would
expect to make without an accident. What does that mean to vehicle reliabil-
ity as trips lengthen and become more frequent, as vehicles get larger, faster,
and more complex? How were today’s results achieved? What trends do you
expect in the future? Did more software help or hinder vehicle safety?

The subject would be moot if it were not for the implications of this “limit state” of
zero defects to design. Zero defects as a philosophy originated as long ago as World
War II, largely driven by patriotism. As a motivator, the zero defects principle was a
prime reason for the success of the Apollo mission to the moon.
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Successfully achieving ultraquality has its own architectural implications (Lala
and Harper 1994). If a manufacturing line operated with zero defects, there would
be no need, indeed it would be worthless, to build elaborate instrumentation and
information-processing support systems. This would reduce costs and time by a very
significant amount, perhaps 30%. If an automobile had virtually no design or pro-
duction defects, then sales outlets would have much less need for large service shops
with their high capital and labor costs. That would further reduce enterprise costs
(though it also drastically disrupts the economics of the dealer system). Extremely
high quality levels are structurally or “architecturally” disruptive.

As another example, microprocessor design and development has maintained the
same per-chip defect rate even as the number and complexity of operations increased
by factors of thousands. The corresponding failure rate per individual operation is
now so low as to be almost unmeasurable. Indeed, for personal computer applications,
a microprocessor hardware failure more than once a year is already unacceptable.

Demonstrating this limit state in high quality is not a simple extension of existing
quality measures, though the latter may be necessary in order to get within range of
it. In the latter, there is a heuristic: [Measurable] acceptance tests must be both com-
plete and passable. How then can inherently unmeasurable ultraquality be demanded
or certified? The answer is a mixture of analytical and heuristic approaches, forming
a set of surrogate procedures, such as zero defects programs. Measurements play an
important role but are always indirect because of the immeasurability of the core
quality factors of interest.

If ultraquality is not directly measurable, how can it be achieved? Given its impor-
tance, and role in key systems, there is a considerable body of literature. Some are
devoted to analytical methods, analysis methods that work around the problems in
direct measurements. Others are observational resulting eventually in heuristics. These
heuristics (discussed originally in Chapter 8 of Rechtin (1991)) range from approaches
to system design to guidance for the organization trying to achieve ultraquality.

When discussing ultraquality, it may seem odd to be discussing heuristics. After
all, is not something as technologically demanding as quality beyond measure, the
performance of things like heavy space boosters, not the domain of rigorous, math-
ematical engineering? In part, of course, it is. But experience has shown that rigorous
engineering is not enough to achieve ultraquality systems. Ultraquality is achieved
by a mixture of analytical and heuristic methods. The analytical side is represented
by detailed failure analysis and even the employment of proof techniques in system
design. In some cases, these very rigorous techniques have been essential in allowing
certain types of ultraquality systems to be architected.

Flight computers are a good example of the mixture of analytical and heuristic
considerations in ultraquality systems. Flight control computers for statically unsta-
ble aircraft are typically required to have a mean time between failures (where a fail-
ure is one that produces incorrect flight control commands) on the order of 10 billion
hours. This is clearly an ultraquality requirement because the entire production run
of a given type of flight computer will not collectively run for 10 billion hours during
its operational lifetime. The requirement certainly cannot be proved by measurement
and analysis. Nevertheless, aircraft administration authorities require that such a reli-
ability requirement be certified.
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Achieving the required reliability would seem to necessitate a redundant computer
design as individual parts cannot reach that reliability level. The problem with redun-
dant designs is that introducing redundancy also introduces new parts and functions,
specifically the mechanisms that manage the redundancy, and must lock out the sig-
nals from redundant sections that have failed. For example, in a triple redundant sys-
tem, the redundant components must be voted to take the majority position (locking
out a presumptive single failure). The redundancy management components are sub-
ject to failure, and it is possible that a redundant system is actually more likely to fail
than one without redundancy. Further, “fault tolerance” depends upon the fault to be
tolerated. Tolerating mechanical failure is of limited value if the fault is human error.

Creating redundant computers has been greatly helped by better analysis tech-
niques. There are proof techniques that allow pruning of the unworkable failure trees
by assuming “Byzantine” failure' models. These techniques allow strong statements
to be made about the redundancy properties of designs. The heuristic part is trying to
verify the absence of “common-mode-failures,” or failures in which several redundant
and supposedly independent components fail at the same time for the same reason.

The Ariane 5 space launch vehicle was destroyed on its initial flight in a classic
common mode failure. The software on the primary flight control computer caused
the computer to crash shortly after launch. The dual redundant system then switched
to the backup flight control computer, which had failed as well moments before for
exactly the same reason that the primary computer failed. Ironically, the software
failure was due to code leftover from the Ariane 4 that was not actually necessary
for the phase of flight in which it was operating. Arguably, in the case of the Ariane
5, more rigorous proof-based techniques of the mixed software and systems design
might have found and eliminated the primary failure. But, the failure is a classic
example of a “common mode failure,” where redundant systems are simultaneously
carried away by the same reason. Greater rigor in tracing how an implemented sys-
tem meets the assumptions it was built to can never eliminate the failures that are
inherent in the original assumptions.

Thus, the analytical side is not enough for ultraquality. The best analysis of failure
probabilities and redundancy can only verify that the system as built agrees with the
model analyzed and that the model possesses desired properties. It cannot verify that
the model corresponds to reality. Well-designed ultraquality systems fail, but they
typically fail for reasons not anticipatable in the reliability model.

CERTIFICATION

Certification is a formal statement to the client or user that the system, as built, meets
the criteria both for client acceptance and for builder receipt of payment; that is, it is
ready for use (to fulfill its purposes). Certification is the grade on the “final exams”
of system test and evaluation. To be accepted, it must be well supported, objective,
and fair to client and builder alike.

Exercise: Pick a system for which the purposes are reasonably clear. What
tests would you, as a client, demand be passed for you to accept and pay
for the system? What tests would you, as a builder, contract to pass in order
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to be paid? Whose word would each of you accept that the tests had or had
not been passed? When should such questions be posed? (Hopefully, quite
early, before the basic concept has been decided upon!)

Clearly, if certification is to be unchallenged, then there must be no perception of
conflict of interest by whoever does the certification. The certifier must also have
deep understanding of the purposes of the client and user, not just formal acquisition
requirements. The builder of the system is obviously conflicted. A third party new to
the process will lack the immersion in the problem domain required. This leads us
to the architect, assuming the architect was in a third-party relationship between the
client and the builder.

The no-conflict imperative has led to three widely accepted, professionally under-
stood, constraints on the role of the architect (Cantry 1963):

1. A Disciplined Avoidance of Value Judgments: That is, intruding in ques-
tions of worth to the client; questions of what is satisfactory, what is accept-
able, affordable, maintainable, reliable, and so on. Those judgments are the
imperatives, rights, and responsibilities of the client. As a matter of prin-
ciple, the client should judge on desirability and the architect should decide
(only) on feasibility. To a client’s question of “What would you do in my
position?” the experienced architect responds only with further questions
until the client can answer the original one. To do otherwise makes the
architect an advocate and, in some sense, the “owner” of the end system,
preempting the rights and responsibilities of the client. It may make the
architect famous, but the client will feel used. Residences, satellites, and
personal computers have all suffered from such preemption (Frank Lloyd
Wright houses, early attempts at low earth-orbiting satellite constellations,
and the Lisa computer, respectively).

2. A Clear Avoidance of Perceived Conflict of Interest: Through participa-
tion in research and development, including ownership or participation in
organizations that can be, or are, building the system. The most evident
conflict here is the architect recommending a system element that the archi-
tect will supply and profit from. This constraint is particularly important in
builder-architected systems (Chapter 3).3

3. An Arms-Length Relationship with Project Management: That is, with
the management of human and financial resources other than of the archi-
tect’s own staff. The primary reason for this arrangement is the overload
and distraction of the architect created by the time-consuming responsibili-
ties of project management. A second conflict, similar to that of participat-
ing in research and development, is created whenever architects give project
work to themselves. If clients, for reasons of their own, nonetheless ask the
architect to provide project management, it should be considered as a sepa-
rate contract for a different task requiring different resources.

The first imperative, the avoidance of value judgments, is often fraught. The archi-
tect’s role is as an expert. Including the concept of operation within the scope of
architecture, for all of the reasons already given, puts the architect within the client’s
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problem domain. The client is almost certain to want the architect’s view of what
should be done in the problem space as well as the solution space. This puts the
architect in the mode of making value judgments, or at least recommending them.
When dealing with unprecedented and very innovative systems somebody will have
to engage in extensive program advocacy, it is very unlikely that the client comes
into the process with all the necessary resources already in place. Program advocacy
means advocating for value judgments.

There is no easy way to resolve this quandary. Architects and clients have to
realize the social trades involved. Avoiding value judgments by the architect carries
important advantages downstream in certification but complexities in the front end.
Only the architect and client can judge which drawbacks can be lived with best.

INSIGHT AND HEURISTICS
A picture is worth a thousand words.

Chinese Proverb, 1000B.C.

One insight is worth a thousand analyses.

Charles Sooter, April 1993

Insight, or the ability to structure a complex situation in a way that greatly increases
understanding of it, is strongly guided by lessons learned from one’s own or others’
experiences and observations. Given enough lessons, their meaning can be codified
into succinct expressions called “heuristics,” a Greek term for guide. Heuristics are
an essential complement to analytics, particularly in situations where analysis alone
cannot provide either insights or guidelines. In many ways, they resemble what are
called principles in other arts; for example, the importance of balance and proportion
in a painting, a musical composition, or the ensemble of a string quartet. Whether
as heuristics or principles, they encapsulate the insights that have to be attained and
practiced before a masterwork can be achieved.

Both architecting and the fine arts clearly require insight and inspiration as well
as extraordinary skill to reach the highest levels of achievement. Seen from this per-
spective, the best systems architects are indeed artists in what they do. Some are even
artists in their own right. Renaissance architects like Michaelangelo and Leonardo
da Vinci were also consummate artists. They not only designed cathedrals, they exe-
cuted the magnificent paintings in them. The finest engineers and architects, past and
present, are often musicians; Simon Ramo and Ivan Getting, famous in the missile
and space field, and, respectively, violinist and pianist, are modern-day examples.

The wisdom that distinguishes the great architect from the rest is the insight and
the inspiration that combined with well-chosen methods and guidelines and fortu-
nate circumstances, creates masterworks. Unfortunately, wisdom does not come eas-
ily. As one conundrum puts it:

e Success comes from wisdom.
*  Wisdom comes from experience.
¢ Experience comes from mistakes.
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Therefore, because success comes only after many mistakes, something few clients
would willingly support, one might think it is either unlikely or must follow a series
of disasters.

This reasoning might well apply to an individual. But applied to the profession
as a whole, it clearly does not. The required mistakes and experience and wisdom
gained from them can be those of one’s predecessors, not necessarily one’s own.
Organizations that care about successful architecting consider designing their pro-
gram portfolios to generate experience. When staged experience is understood as
important, staged experience can be designed into an organization.

And from that understanding comes the role of education. It is the place of edu-
cation to research, document, organize, codify, and teach those lessons so that the
mistakes need not be repeated as a prerequisite for future success. Chapter 2 is a start
in that direction for the art of systems architecting.

THE ARCHITECTURE PARADIGM SUMMARIZED

This book uses the terms architect, architecture, and architecting with full con-
sciousness of the “baggage” that comes with their use. Civil architecture is a
well-established profession with its own professional societies, training programs,
licensure, and legal status. Systems architecting borrows from its basic attributes:

1. The architect is principally an agent of the client, not the builder. Whatever
organization the architect is employed by, the architect must act in the
best interests of the client for whom the system is being developed. When
the architect is employed by the builder’s or the client’s organization this
requires some means of managing for independence.

2. The architect works jointly with the client and builder on problem and solu-
tion definition. System requirements are an output of architecting, not really
an input. Of course, the client will provide the architect some requirements,
but the architect is expected to jointly help the client determine the ultimate
requirements to be used in acquiring the system. An architect who needs
complete and consistent requirements to begin work, though perhaps a bril-
liant builder, is not an architect, or at least not one worth paying.

3. The architect’s product, or “deliverable,” is an architecture representation, a
set of abstracted designs of the system. The designs are not (usually) ready
to use to build something. They have to be refined, just as the civil archi-
tect’s floor plans, elevations, and other drawings must be refined into con-
struction drawings.

4. The architect’s product is not just physical representation. As an example,
the civil architect’s client certainly expects a “ballpark™ cost estimate as
part of any architecture feasibility question. So, too, in systems architect-
ing, where an adequate system architecture description must cover whatever
aspects of physical structure, behavior, cost, performance, human organiza-
tion, or other elements are needed to clarify the clients’ priorities.

5. An initial architecture is a vision. An architecture description is a set of
specific models. The architecture of a building is more than the blueprints,
floor plans, elevations, and cost estimates; it includes elements of ulterior
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motives, belief, and unstated assumptions. This distinction is especially
important in creating standards. Standards for architecture, like community
architectural standards, are different from blueprint standards promoted by
agencies or trade associations.

Architecting takes place within the context of an acquisition process. The traditional way
of viewing hardware acquisitions is known as the waterfall model. The waterfall model
captures many important elements of architecting practice, but it is also important in
understanding other acquisition models, particularly the spiral for software, incremental
development for evolutionary designing, and collaborative assembly for networks.

THE WATERFALL MODEL OF SYSTEMS ACQUISITION

As with products and their architectures, no process exists by itself. All processes are
part of still larger ones. And all processes have subprocesses. As with the product of
architecture, so also is the process of architecting a part of a still larger activity, the
acquisition of useful things.

Hardware acquisition is a sequential process that includes design, engineering,
manufacturing, testing, and operation. This larger process can be depicted as an
expanded waterfall, Figure 1.2, adapted after Rechtin (1991) but updated to today’s
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FIGURE 1.2 The expanded waterfall.
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FIGURE 1.3 The architect and the expanded waterfall (Adapted from Rechtin 1991).

standardized terminology from ISO (2023). The architect’s functional relationship
with this larger process is sketched in Figure 1.3. Managerially, the architect could
be a member of the client’s or the builder’s organization, or of an independent archi-
tecting partnership in which perceptions of conflict of interest are to be avoided at all
costs. In any case and wherever the architect is physically or managerially located,
the relationships with the client and the acquisition process are essentially as shown.
The strongest (thickest line) decision ties are with architecture definition and its near
predecessors of requirements and needs analysis, and with diagnosis and evolution in
operation. Less prominent are the monitoring ties with engineering and manufactur-
ing. There are also important, if indirect, ties with social and political factors, the
“illities” and the “real world” as indicated in Figure 1.2.

This waterfall model of systems acquisition has served hardware systems acquisi-
tion well for centuries. However, as new technologies create new, larger-scale, more
complex systems of all types, others have been needed and developed. The most
recent ones are due to the needs of software-intensive systems, as will be seen in
Chapters 4 and 6 and in Part III. Although these models change the roles and meth-
ods of the architecting process, the basic functional relationships shown in Figure 1.3
remain much the same.

In any case, the relationships in Figure 1.3 are more complex than simple lines
might suggest. As well as indicating channels for two-way communication and
upward reporting, they infer the tensions to be expected between the connected ele-
ments, tensions caused by different imperatives, needs, and perceptions.

Some of competing technical factors are shown in Figure 1.4 adapted from
Rechtin (1991). This figure was drawn such that directly opposing factors are located
across from each other. For example, new technology (and all of its opportunities and
risks) against mature technology. The trade-off is usually built on targeting new tech-
nology only where the impact on delivery value is very large and there are sufficient
backup paths to reduce risk. Most of these trade-offs can be expressed in analytic
terms, which certainly helps, but some cannot, as will become apparent in the social
systems world of Chapter 5.
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FIGURE 1.4 Tensions in systems architecting.

Exercise: Give examples from a specific system of what information, deci-
sions, recommendations, tasks, and tensions might be expected across the
lines of Figure 1.4.

SPIRALS, INCREMENTS, AND COLLABORATIVE ASSEMBLY

The waterfall model of system development has been rightly criticized, though its
core ideas remain in all alternatives. The critiques revolve primarily around the
waterfall’s static picture and non-accommodation for learning. In the waterfall, the
presumption is that the development team can fully develop objectives and require-
ments in the earliest phase and that if the system is delivered compliant to those
requirements the sponsors/users will find it satisfactory. The early freeze on require-
ments is seen as a virtue largely on the basis of the heuristic that states that the cost
of removing a defect rises exponentially with the time (roughly the number of project
phases elapsed) since the defect was introduced. If a defect is introduced as a faulty
requirement and is not discovered until hardware is built and tested, then the cost of
removal is likely to be high indeed. Hence there should be a premium on getting the
requirements right and doing it early.

The counters to this perspective have been driven from the software-intensive
systems perspective. Software developers have long understood that most software-
intensive projects are not well suited to a sequential process but rather to a highly
iterative one. The value of iteration comes in two forms. First, in many systems users
will change how they operate once they have a working system in hand. In the third
decade of the 21st century, the disruption of industries (or even society) by unan-
ticipated usage of new systems is so common as to be familiar. Second, while fix-
ing a software defect certainly gets more expensive the farther into the process it
is discovered the impact is usually not nearly as bad as it is in hardware (though
exceptions certainly exist). If model of automobile shifts with a hardware design
defect that compromises reliability the recall and fix effort is large and expensive.
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If the defect is a software defect then it may be fixed in the next over-the-air software
update and may not even be apparent to the owner. But it is important to note, if the
defect had major safety impact the situation could be very different. In addition, the
heuristic on the cost of defect removal does not account for the cost of defect dis-
covery. Discovering a defect introduced at any point in the process is not cost-free.
Requirements defects might be very expensive to remove, but if the only realistic
means of discovering them is to prototype the system then they are likewise expen-
sive to discover.

Iterative development approaches exploit the relatively low cost to update a system
to address the problems of finding defects that manifest when users change how they
use the system. Instead of building the whole system in one go (the way a building
or an aircraft carrier is typically built) build versions of increasing size and com-
plexity. Each version is built on a mini-waterfall of specification, design, and test.
These iterative processes have borrowed various terms, though we start from one of
the earliest, the spiral. There is a strong incentive to iteratively modify software in
response to user experience. As the market, or operational environment, reveals new
desires, those desires are fed back into the product. One of the first formalizations of
iterative development is due to Boehm and his famous spiral model. The spiral model
envisions iterative development as a repeating sequence of steps. Instead of travers-
ing a sequence of analysis, modeling, development, integration, and test just once,
software may return over and over to each. The results of each are used as inputs to
the next. This is depicted in Figure 1.5.

The original spiral model is intended to deliver one, hopefully stable, version of
the product, the final version of which is delivered at the end of the last spiral cycle.

Intermediate
Release Points e
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e\ N/

Build

Integrate

FIGURE 1.5 The “classic” spiral development model employs multiple cycles through the
waterfall model’s steps to reach a final release point.
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The purpose of the cycles is risk control. The nominal approach is to set a target num-
ber of cycles at the beginning of development, and partition the whole time available
over the target number of cycles. The objective of each cycle is to resolve the most
risky thing remaining. So, for example, if user acceptance was adjudged as the most
risky at the beginning of the project, the first spiral would concentrate on those parts
of the system that produce the greatest elements of user experience. Even the first
cycle tests would focus on increasing user acceptance. Similarly, if the most risky
element was adjudged to be some internal technical performance issue, the product
of the initial cycle would focus on technical feasibility.

Note that the risk spiral approach is often equally valuable for hardware-centric
as for software-centric systems if the risks are identifiable and discrete and there
is a relatively low cost in cycling. Suppose a system concept depended on a spe-
cific technical component (say, a laser or specialized computational element) reach-
ing some target performance level, while the rest of the system was believed to be
technically low risk but a large development effort (measured in human labor and
material). A spiral approach would do a targeted prototype of the critical component
while deferring the remaining efforts to a later cycle after the central component had
reached the target performance level. This would be a cost-efficient approach (defer-
ring low-risk work until after high risk was accomplished). Of course, it would not
be schedule efficient since the spiral approach would likely take substantially longer
than a once-through waterfall, assuming the risky portion worked the first time. The
choice of development model is itself a design choice, at the level of program archi-
tecture and is itself subject to trades.

Many software products, or the continuing software portion of many product
lines, are delivered over and over again. A user may buy the hardware once and
expect to be offered a steady series of software upgrades that improve system func-
tionality and performance. This alters a spiral development process (which has a
definite end) to an incremental process, which has no definite end. The model is now
more like a spiral spiraling out into circles, which represent the stable products to
be delivered. After one circle is reached, an increment is delivered, and the process
continues. Actually, the notion of incremental delivery appears in the original spiral
model where the idea is that the product of spirals before the last can be an interim
product release if, for example, the final product is delayed. As you shrink the cycles
and emphasize the ability to revisit and adjust the feature set to be implemented you
arrive at what we currently call agile development.

Finally, there are a number of systems in use today that are essentially continu-
ously assembled, and where the assembly process is not directly controlled. The
canonical example is the Internet, where the pieces evolve with only loose coupling
to the other pieces. Control over development and deployment is fundamentally col-
laborative. Organizations, from major corporations to individual users, choose which
product versions to use and when. No governing body exists (at least, not yet) that
can control the evolution of the elements. The closest thing at present to a governing
body, the Internet Society and its engineering arm, the Internet Engineering Task
Force (IETF), can affect other behavior only through persuasion. If member orga-
nizations do not choose to support IETF standards, the IETF has no authority of
compel compliance, or to block noncomplying implementations.
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We call systems like this “collaborative systems.” The development process is
collaborative assembly. Whether or not such an uncontrolled process can continue
for systems like the Internet as they become central to daily life is unknown, but the
logic and heuristics of such systems now are the subject of Chapter 7. In Chapter 12,
we address again different models of programs as examples of “program architec-
ture” or patterns for designing a development program. Many strategic goals a client
has to require addressing in the structure of the program rather than in the structure
of the system.

The INCOSE Handbook of Systems Engineering (INCOSE 2023) uses slightly
different terminology and is somewhat different in characterizing development pro-
gram templates than we do here. We take up the details in depth in later chapters.
The handbook templates are sequential, incremental, and evolutionary. The sequen-
tial form is essentially the waterfall and involves fixed objectives at the start and a
single delivery. The incremental form presumes the full requirements are known at
the beginning, but the development proceeds in learning cycles. There may or may
not be a real system release in each cycle. This is essentially the classic spiral dis-
cussed above where the development spirals out to a pre-determined end point. What
we call the protoflight and breadboard-brassboard-flight-production models later are
essentially the incremental model. The evolutionary model allows the requirements
to change and shift with each cycle. We learn in each cycle, and one thing we learn
is more about what the requirements should be. In this model, there is a presumption
of iterative release with the cycles. This is the spiral with no fixed endpoint and the
functional incremental model.

SCOPES OF ARCHITECTING

What is the scope of systems architecting? By scope, we mean what things are inside
the architect’s realm of concern and responsibility and which are not. In the classic
architecting paradigm (what we have discussed so far in this chapter), the client has
a problem and wants to build a system in response. The system is the response to the
client’s needs, as constrained by the client’s resources and any other outside con-
straints. The concern of architecting is finding a satisfactory and feasible system in
response to the client’s problem. A primary difference with other conceptualizations
of similar situations is that architecting does not assume that the client’s problem is
well structured, or that the client fully understands it. It is quite likely a full under-
standing of the problem will have to emerge from the client-architect interaction.
As we look beyond the classic scope of the problem and system, we see several
other issues of scope. First, a system is built within a “program,” here defined as
the collection of arrangements of funding, contracts, builders, and other elements
necessary to actually build and deploy a system, whether a single-family house or
the largest defense system. The program has a structure; we can say the program has
an architecture. The architecture of the program will consist of strategic decisions,
like is the system delivered once or many times? Is the system incrementally devel-
oped from breadboard to brassboard, or is it incrementally developed through fully
deployable but reduced functionality deliveries? How is the work parceled out to dif-
ferent participants? We introduced this idea above with spiral and functional incre-
mental development models and noted that the development model is itself a trade.
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Who is responsible for the programmatic architectural decisions? In some cases, it
may be important to integrate programmatic structure into the technical structure of
the system. For example, if the system is to be partitioned over particular subsystem
manufacturers, the system must possess a structure in subsystem compatible with
what the suppliers can produce, and those subsystems must be specifiable in ways
that allow for eventual integration. Whether or not the programmatic architectural
decisions are in the scope of the system architect’s responsibilities, there is a scope of
programmatic architecture that somebody must carry out.

Moving upward and outward one more layer, the client presumably has an organi-
zation, even if the organization is only him- or herself. That organization may have
multiple programs and be concerned with multiple systems. Those other systems
may themselves form some larger structure like a system-of-systems, family-of-
systems, or portfolio-of-systems (Maier 1998, 2019). The client’s organization also
has a structure, which many would call an architecture. The principal concerns at
the organizational scope are the organization’s strategic identity, or how does the
organization give itself a mission? The organization exists to do something, what is
that something? Is it to make money in particular markets, to advance a particular
technology, or to carry out part of a military mission?

From the perspective of the system architect, it is unlikely that the strategic iden-
tity of the client’s organization is in play in anything like the sense that the basic
problem description is. However, the strategic identity of the client is important to
the system architect. If that strategic identity is unclear, or poorly articulated, or
simply unrealistic, then it will be very difficult for the client to make effective value
judgments.

These scopes are illustrated in Figure 1.6. Figure 1.6 also illustrates one more
issue of scope. Back at the scope of immediate concern to the system architect, both
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Strategic Identity
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Program
Who builds? How? . Problem and
Strategy? Form? System
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Immediately
Responsible
Organization

\\ )

FIGURE 1.6 The relationship between contexts for architecting. Our core concern is with
the relationship between problem and system. But the structure of the development program
and the identity and portfolio of the responsible organization are additional concerns.
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the solution and problem may apply well outside the immediate program and the cli-
ent’s organization. Other clients may have the same or similar problems. A system
developed for one client may apply elsewhere. Part of architecting is the one-to-one
system-to-client orientation and individual customization, but this does not mean
that others may not also be served by similar systems. Depending on the architect,
it is quite likely that the issues of scope in problems and systems applying outside
the immediate client’s realm will be important. We return to these issues in detail in
Chapter 12.

CONCLUSION

A system is a collection of different things that together produce results unachievable
by themselves alone. The value added by systems is in the interrelationships of their
elements.

Architecting is creating and building structures—that is, “structuring.” Systems
architecting is creating and building systems. It strives for fit, balance, and compro-
mise among the tensions of client needs and resources, technology, and multiple
stakeholder interests.

Architecting is both an art and a science—both synthesis and analysis, induction
and deduction, and conceptualization and certification—using guidelines from its art
and methods from its science. As a process, it is distinguished from systems engi-
neering in its greater use of heuristic reasoning, lesser use of analytics, closer ties to
the client, and particular concern with certification of readiness for use.

The foundations of systems architecting are a systems approach, a purpose ori-
entation, a modeling methodology, ultraquality, certification, and insight. To avoid
perceptions of conflict of interest, architects must avoid substituting their value judg-
ments for those of the sponsors/users, avoid perceived conflicts of interest, and keep
an arms-length relationship with project management. This is likely to be challenged
in many circumstances as clients may be unprepared to make value judgments and
desire advice.

A great architect must be as skilled as an engineer and as creative as an artist or
the work will be incomplete. Gaining the necessary skills and insights depends heav-
ily on lessons learned by others, a task of education to research and teach.

The role of systems architecting in the systems acquisition process depends upon
the phase of that process. It is strongest during conceptualization and certification,
but never absent. Omitting it at any point, as with any part of the acquisition process,
leads to predictable errors of omission at that point to those connected with it.

NOTES

1 InaByzantine failure, the failed component does the worst possible thing to the system.
Itis as if the component were possessed by a malign intelligence. The power of the tech-
nique is that it lends itself to certification, at least within the confines of well-defined
models.

2 That said, when we break away from the classical architecting paradigm, we will see
how responsibilities may change, and the freedom and risks inherent in doing so.
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3 Precisely, this constraint led the Congress to mandate the formation in 1960 of a non-
profit engineering company, The Aerospace Corporation, out of the for-profit TRW
Corporation, a builder in the aerospace business.
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2 Heuristics as Tools

INTRODUCTION: A METAPHOR

Mathematicians are still smiling over a gentle self-introduction by one of their famed
members. “There are three kinds of mathematicians,” he said, “those that know how
to count and those that don’t.” The audience waited in vain for the third kind until,
with laughter and appreciation, they caught on. Either the member could not count to
three—ridiculous—or he was someone who believed that there was more to math-
ematics than numbers, important as they were. The number theorists appreciated his
acknowledgment of them. The “those that don’t” quickly recognized him as one of
their own, the likes of a Godel who, using thought processes alone, showed that no
set of theorems can ever be complete.

Modifying the self-introduction only slightly to the context of this chapter: There
are three kinds of people in our business, those who know how to count and those
who do not—including the authors.

Those who know how to count (most engineers) approach their design problems
using analysis and optimization, powerful and precise tools derived from the scien-
tific method and calculus. Those who do not (most architects) approach their qualita-
tive problems using guidelines, abstractions, and pragmatics generated by lessons
learned from experience—that is, heuristics. As might be expected, the tools each
use are different because the kinds of problems they solve are different. We routinely
and accurately describe an individual as “thinking like an engineer”—or architect,
or scientist, or artist. Indeed, by their tools and works you will know them.

Of course, we exaggerate to make a point. The reality is that architects often
compute (must compute), and engineers use many heuristics. Both architecting and
engineering are complex amalgams of art and science. To be one who uses heu-
ristics does not mean avoiding being systematic and quantitative or being highly
detail-oriented (when needed). To be analytically oriented does not mean applying
the same standards of quantitative analysis anywhere and everywhere regardless
of circumstances. But the complexity of integrating the art and science can wait.
For now, we want to understand those things that are squarely part of the “art” of
systems architecting.

This chapter, metaphorically, is about architects’ heuristic tools. As with the tools
of carpenters, painters, and sculptors, there are literally hundreds of them—but only
a few are needed at any one time and for a specific job at hand. To continue the
metaphor, although a few tool users make their own, the best source is usually a tool
supply store—whether it be for hardware, artists’ supplies, software—or heuristics.
Appendix A, Heuristics for Systems-Level Architecting, is a heuristics store, orga-
nized by task, just like any good hardware store. Customers first browse, and then
select a kit of tools based on the job, personal skill, and knowledge of the origin and
intended use of each tool.
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Heuristic has a Greek origin, heuriskein, a word meaning “to find a way” or “to
guide” in the sense of piloting a boat through treacherous shoals. Architecting is
a form of piloting. Its rocks and shoals are the risks and changes of technology,
construction, and operational environment that characterize complex systems. Its
safe harbors are client acceptance and safe, dependable, long life. Heuristics are
guides along the way—channel markings, direction signs, alerts, warnings, and
anchorages—tools in the larger sense. But they must be used with judgment. No two
harbors are alike. The guides may not guarantee safe passage, but to ignore them
may be fatal. The stakes in architecting are just as high—reputations, resources, vital
services, and, yes, lives. Consonant with their origin, the heuristics in this book are
intended to be trusted, time-tested guidelines for serious problem-solving.

Heuristics as so defined are narrower in scope, subject to more critical test and
selection, and intended for more serious use than other guidelines, for example, con-
ventional wisdom, aphorisms, maxims, rules of thumb, and the like. For example, a
pair of mutually contradictory statements like (1) look before you leap and (2) he who
hesitates is lost are hardly useful guides when encountering a cliff while running for
your life. In this book, neither of these pairs would be a valid heuristic because they
offer contradictory advice for the same problem.

The purpose of this chapter is therefore to help the reader—whether architect,
engineer, or manager—find or develop heuristics that can be trusted, organize them
according to need, and use them in practice. The first step is to understand that heu-
ristics are abstractions of experience.

HEURISTICS AS ABSTRACTIONS OF EXPERIENCE

One of the most remarkable characteristics of the human race is its ability not only
to learn but to pass on to future generations sophisticated abstractions of lessons
learned from experience. Each generation knows more, learns more, plans more,
tries more, and succeeds more than the previous one because it does not need to
repeat the time-consuming process of re-living the prior experiences. Think of how
extraordinarily efficient are such quantifiable abstractions as F=ma, E=mc?, and
x=F\(y, z, 1); of algorithms, charts, and graphs; and of the basic principles of eco-
nomics. This kind of efficiency is essential if large, lengthy, complex systems and
long-lived product lines are to succeed. Few architects ever work on more than two or
three complex systems in a lifetime. They have neither the time nor the opportunity
to gain the experience needed to create first-rate architectures from scratch. By much
the same process, qualitative heuristics, condensed and codified practical experience,
came into being to complement the equations and algorithms of science and engi-
neering in the solving of complex problems. Passed from architect to architect, from
system to system, they worked. They helped satisfy a real need.

In contrast to the symbols of physics and mathematics, the format of heuristics
is words expressed in the natural languages. Unavoidably, they reflect the cultures
of engineering, business, exploration, and human relations in which they arose. The
birth of a heuristic begins with anecdotes and stories, hundreds of them, in many
fields which become parables, fables, and myths, easily remembered for the lessons
they teach. Their impact, even at this early stage, can be remarkable not only on
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politics, religion, and business but also on the design of technical systems and ser-
vices. The lessons that have endured are those that have been found to apply beyond
the original context, extended thereby analogy, comparison, conjecture, and testing.!
At their strongest they are seen as self-evident truths requiring no proof. See sources
such as Pearl (1984), Klir (1985), Asato (1988), Rowe (1988), Kittay (1990).

There is an interesting human test for a good heuristic. An experienced listener,
on first hearing one, will know within seconds that it fits that individual’s model of
the world. Without having said a word to the speaker, the listener almost invariably
affirms its validity by an unconscious nod of the head, and then proceeds to recount
a personal experience that strengthens it. Such is the power of the human mind.

SELECTING A PersoNAL KiT oF Heuristic TooLs

The art in architecting lies not in the wisdom of the heuristics, but in the wisdom of
knowing which heuristics apply, a priori, to the current project.

Williams (1992)

All professions and their practitioners have their own kits of tools, physical and heu-
ristic, selected from their own and others’ experiences to match their needs and tal-
ents. But, in the case of architecting of systems prior to the late 1980s, selections
were limited and, at best, difficult to acquire. Many heuristics existed, but they were
mainly in the heads of practitioners. There were notable efforts in other fields. Civil
architecting has a history of codified heuristics, as in Christopher Alexander’s work.
Alexander’s concept of a pattern language was exploited in software at roughly the
same time. But no efforts had been made to articulate, organize, and document a
useful set for general systems architecting. The heuristics in this book were codified
largely through the University of Southern California graduate course in Systems
Architecting. The students and guest instructors in the course, and later program,
were predominantly experienced engineers who contributed their own lessons
learned throughout the West Coast aerospace, electronics, and software industries.
Both as class exercises, and through the authors” writings, they have been expressed
in heuristic form and organized for use by architects, educators, researchers, and
students.

An initial collection of about 100 heuristics documented in an appendix of Rechtin
(1991) was soon surpassed by contributions from over 200 students, reaching nearly
1,000 heuristics within 6 years. Many, of course, were variations on single, central
ideas—just as there are many variations of hammers, saws, and screwdrivers—
repeated in different contexts. The four most widely applicable of these heuristics
were as follows, in decreasing order of popularity:

1. Do not assume that the original statement of the problem is necessarily the
best or even the right one.

Example: The original statement of the problem for the F-16 fighter air-
craft asked for a high-supersonic capability, which is difficult and expen-
sive to produce. Discussions with the architect, Harry Hillaker, brought out
that the reason for this statement was to provide a quick exit from combat,
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something far better provided by a high thrust-to-weight, low supersonic
design. In short, the original high-speed statement was replaced by a high
acceleration one, with the added advantage of exceptional maneuverability.

2. In partitioning, choose the elements so that they are as independent as
possible; that is, choose elements with low external complexity and high
internal complexity.

Example: One of the difficult problems in the design of microchips is
the efficient use of their surface area. Much of that area is consumed by
connections between components—that is, by communications rather than
by processing. Carver Mead of Caltech demonstrated that a design based
on minimum communications between process-intensive nodes results in
much more efficient use of space, with the interesting further result that the
chip “looks elegant”—a sure sign of a fine architecture and another confir-
mation of the heuristic:

3. The eye is a fine architect. Believe it.Simplify. Simplify. Simplify.

Example: One of the best techniques for increasing reliability while
decreasing cost and time is to reduce the piece part count of a device.
Automotive engineers, particularly recently, have produced remarkable
results by substituting single castings for multiple assemblies and by reduc-
ing the number of fasteners and their associated assembly difficulties by
better placement.

Example: Recall the dimensions of complexity in Chapter 1. Sometimes
the most dramatic simplifications come from re-framing the problem, itself
a heuristic of great power.

4. Build in and maintain options as long as possible in the design and imple-
mentation of complex systems. You will need them.

Example: In the aircraft business, they are called “scars.” In the soft-
ware business, they are called “hooks.” Both are planned breaks or entry
points into a system that can extend the functions the system can provide.
In aircraft, they are used for lengthening the fuselage to carry more passen-
gers or freight. In software, they are used for inserting further routines or to
allow integration of data with other programs.

Though these four heuristics do not make for a complete tool kit, they do provide
good examples for building one. All are aimed at reducing complexity, a prime
objective of systems architecting. All have been trusted in one form or another in
more than one domain. All have stood the test of time for decades if not centuries.

The first step in creating a larger kit of heuristics is to determine the criteria for
selection. The following were established to eliminate unsubstantiated assertions,
personal opinions, corporate dogma, anecdotal speculation, mutually contradictory
statements, and the like. As it turned out, they also helped generalize domain-specific
heuristics into more broadly applicable statements. The strongest heuristics passed
all the screens easily. The criteria were as follows:

e The heuristic must make sense in its original domain or context. To be
accepted, a strong correlation, if not a direct cause and effect, must be
apparent between the heuristic and the successes or failures of specific
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systems, products, or processes. Academically speaking, both the rationale
for the heuristic and the report that provided it were subject to peer and
expert review. As might be expected, a valid heuristic seldom came from a
poor report.

e The general sense, if not the specific words, of the heuristic should apply
beyond the original context. That is, the heuristic should be useful in solv-
ing or explaining more than the original problem from which it arose.
An example is the preceding do not assume heuristic. Another is Before
the flight it is opinion; after the flight it is obvious. In the latter, the word
“flight” can sensibly be replaced by test, experiment, fight, election, proof,
or trial. In any case, the heuristic should not be wrong or contradictory in
other domains where it could lead to serious misunderstanding and error.
This heuristic applies in general to ultraquality systems. When they fail, and
they usually fail after all the tests are done and they are in actual use, the
cause of the failure is typically a deterministic consequence of some incor-
rect assumptions; and we wonder how we missed such an obvious failure of
our assumptions.

e The heuristic should be easily rationalized in a few minutes or on less than
a page. As one of the heuristics states, If you can’t explain it in five minutes,
either you don’t understand it or it doesn’t work (Darcy McGinn 1992 from
David Jones). With that in mind, the more obvious the heuristic is on its
face, and the fewer the limitations on its use, the better. Example: A model
is not reality.

e The opposite statement of the heuristic should be foolish, clearly not “com-
mon sense.” For example: The opposite of Murphy’s Law—If it can fail, it
will—would be “If it can fail, it won’t,” which is patent nonsense.

e The heuristic’s lesson, though not necessarily its most recent formulation,
should have stood the test of time and earned a broad consensus. Originally
this criterion was that the heuristic itselfhad stood the test of time, a criterion
that would have rejected recently formulated heuristics based on retrospec-
tive understanding of older or lengthy projects. Example: The beginning is
the most important part of the work (Plato 4th Century B.C.), reformulated
more recently as All the serious mistakes are made in the first day.”

It is probably true that heuristics can be even more useful if they can be used in a
set, like wrenches and screwdrivers, hammers and anvils, or files and vises. The tax-
onomy grouping in a subsequent section achieves that possibility in part.

It is also probably true that a proposed action or decision is stronger if it is con-
sistent with several heuristics rather than only one. A set of heuristics applicable to
acceptance procedures substantiates that proposition.

And it would certainly seem desirable that a heuristic, taken in a sufficiently
restricted context, could be specialized into a design rule, a quantifiable, rational
evaluation, or a decision algorithm. If so, heuristics of this type would be use-
ful bridges between architecting, engineering, and design. There are many cases
where we have such progressive extensions, from a fairly abstract heuristic that is
broadly applicable to a set of more narrowly applicable, but directly quantifiable,
design rules.
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USING HEURISTICS

Virtually everybody, after brief introspection, sees that heuristics play an important
role in their design and development activities. Hard rules and rigorous analysis are
both inherently limited. However, even if we accept that everyone uses heuristics, it
is not obvious that those heuristics can be communicated and used by others. This
book takes the approach that heuristics can be effectively communicated to others.
One lesson from Rechtin (1991) and previous editions of this book is that heuristics
do transfer from one person to another, but not always in simple ways, and not always
in the way expected by the authors. It is useful to document heuristics and teach from
them, but learning styles differ.

People typically use heuristics in three ways. First, they can be used as evocative
guides. They work as guides if they evoke new thoughts in the reader. Some read-
ers have reported that they use the catalog of heuristics in the appendices at random
when faced with a difficult design problem. They scan the appendix list and when
one of the heuristics seems suggestive, they follow up by considering how that heu-
ristic could describe their present situation, what solutions it might suggest, or what
new questions it suggests.

The second usage is as codifications of experience. In this usage, the heuristic is
like an outline heading, a guide to the detailed discussion that follows. In this case,
the stories behind the heuristics can be more important than the basic statement.
Taking the “all the really important mistakes are made the first day,” this is short-
hand for the lessons on how problem statements are often poorly formulated (and can
be revised) or that strongly asserted requirements are sometimes proxies for deeper
objectives that may, or may not, be identical with the asserted requirement. In this
form, the heuristic is a pedagogical tool, a way of teaching lessons not well captured
in other engineering teaching methods.

The third usage is the most structured. It is when heuristics are integrated into
development and design description processes. This means that the heuristics are
attached to the steps of an overall design process. The design process specifies a
series of steps and models to be constructed. The heuristics are attached to the steps
as guidelines for accomplishing those steps.

A good example of heuristic-process integration is in software. Many software
development methods are built on producing a sequence of models, from relatively
abstract to code in a programming language. Object-oriented methods, for exam-
ple, usually begin with a set of textual requirements, build a model of abstracted
classes and objects, and then refine the class/object model into code in the target
programming environment. There are often intermediate steps in which the problem-
domain-derived objects are augmented with objects and characteristics from the
target environment. A problem in all such methods is knowing how to construct
the models at each step. When should a problem domain concept be captured as
an object? What object granularity of object representation is best when choosing
implementation space elements? The transformation from a set of textual require-
ments to classes and objects is not unique, but it involves extensive judgment by the
practitioner. Heuristic-augmented methods assist the practitioner by giving explicit,
prescriptive heuristics for each step.
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A PROCESS FRAMEWORK FOR ARCHITECTING HEURISTICS

In Part III of this book, we will present a basic process framework for system archi-
tecting, the Architecture Project Model-Applied Systems Architecting Method
(APM-ASAM). The process framework will define activities repeatedly required in
effective architecting and define how those activities are arranged relative to each
other. We place those activities in a larger architecture project framework. This pro-
cess framework is illustrated in Figure 2.1. As noted above, one method for using
heuristics is to attach them to steps in a design process. By doing so, the heuris-
tics become local guides to each aspect of the process. A complete process with
step-by-step designated models and transformation heuristics is not appropriate for
general systems architecting. There is simply too much variation from domain to
domain, too many unique domain aspects, and too many important domain-specific
tools. Even so, it is useful to recognize the basic structure of the process framework
and how the heuristics relate to that framework.

It is important to distinguish between the activity cycle for an entire development
program and the activity cycle for an architecture project. The goal of a develop-
ment program is to build and deliver a system. The goal of an architecture project is
something else. In the simplest case, the goal of the architecture project is to initiate
a development program. Even in the simple case, we recognize that development
programs go in fits and starts. There might be several discrete architecture projects,

APM ASAM
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Orientation
Purpose
Analysis
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Supporting Abstraction
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FIGURE 2.1 Activities in the APM-ASAM architecting process model.
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simultaneously or sequentially developing architectural concepts for every actual
development program since many, perhaps most, architecture projects may not result
in a full development program. Some architecture projects do not have a specific
system development as their goal, as in the architecture projects that concern col-
laborative systems (which we take up in Chapter 7).

The beginning of an architecting project is “orientation” or determining where
you are and where you want to go. This refers both to the architecture project as
well as the underlying, assumed but not yet existing, system development project.
Orientation is less technical and more business or political. Its intent is to ensure
that the architecture effort can proceed for at least one iterative cycle in an orga-
nized fashion. Heuristics associated with orientation relate to topics like identifying
the driving characteristics of a project, finding leading stakeholders, and clarifying
relationships between the architect, sponsors, and downstream users. Orientation is
about scoping and planning, and so the heuristics of Appendix A and in Chapter 9
under the associated topics apply most strongly. Orientation leads to core architect-
ing, which is defined by purpose analysis, problem structuring, solution structuring,
harmonization, and selection-abstraction.

Purpose analysis is a broad-based study of why the system of interest should have
value. It works from an understanding of the client strategy and expands to all stake-
holders with significant power over the eventual construction, deployment, and oper-
ation of the system. Purpose analysis is an elicitation activity, and so all heuristics
that relate to elicitation apply most strongly here.

Problem structuring is where we organize elements of the problem space with a
primary focus on a “value model.” The value model is an explicit model of the most
important stakeholder’s preferences, and it is intended to capture them without regard
to mutual consistency. That is, we want to be able to assess alternatives in the value
system of each major stakeholder, realizing that the resulting preference orderings
will not be the same. Any reconciliation necessary among them will be conducted
later. Its concern is on the problem side of the problem—system tension. It is a syn-
thesis activity in the sense that we are synthesizing problem descriptions, preferably
several, with somewhat different scopes. In terms of Appendix A and Chapter 9, the
associated heuristics are drawn mostly from modeling and prioritizing.

In solution structuring, we synthesize models of solutions, again multiple solu-
tions that should differ in scope and scale. The heuristics that apply are drawn from
those that cover modeling, aggregating, and partitioning.

Harmonization is a dominantly analytical activity in which we integrate problem
and solutiondescriptions and assess value. Harmonizationis a preparation for selection-
abstraction. Selection is easy to understand; it is picking answers. An important dis-
tinction between the approach of systems architecting and most decision analysis
texts is that we do not assume when we enter selection that there is a unitary, exclusive
decision to make. At some point in the process, if the overall goal is to build a sys-
tem, we must clearly make a decision about a preferred configuration. But we might
travel down this process road many times before reaching such a unitary decision.
Along the way, we may wish to hold onto multiple solution configurations, classes
of solution configurations, and multiple problem descriptions. The best output of an
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architecture project may be a preferred class of solutions with downstream design
processes to choose the best configuration from the preferred class. We make no
decision before its time. As it was put in Rechtin (1991), Hold onto the agony of deci-
sion as long as possible. The notion of abstraction captures those cases where archi-
tecting has been completed even though no single configuration has been selected.

As an example of abstraction over selection, consider the case of a family of sys-
tems, say the collection of printers made by a single company. There are shared
properties or components across the whole family (e.g., interfaces, software render-
ing engines, supply chains). These shared elements are the concern of the family-of-
systems architect and are abstractions of the entire family. It is inaccurate to talk
about selecting the whole family (though we might select the market-niche structure
of the whole family), but it is accurate to consider selection of properties of the whole
family abstract into a family-of-systems architecture. We refer to that form of selec-
tion as “abstraction.”

Architectural projects ultimately produce architecture descriptions, a document.
The term “document” should be interpreted broadly, as it may be a collection of
linked models on an information system rather than a paper document. We illustrate
this as a following step to Core Architecting in Figure 2.1. Architecture descrip-
tions are developed at least partially in parallel with the architectural decision-
making. But it is helpful to illustrate the separation of the two activities to emphasize
that architecting is about decision-making, and architectures are about decisions.
Architecture descriptions can only document those decisions. The quality (or lack
thereof) of those decisions must stand on its own. An excellently drawn description
will not make up for poor architecture decisions.

Finally, in practice, architects discover in the process where they need additional
knowledge. Straightforward progress through an architecture study may be inter-
rupted by the discovery that we do not know critical numbers related to the cost or
performance of a key system element, or we do not understand the technicalities of
a particular stakeholder problem, or we lack clear input on preferences from a stake-
holder. In most cases, it is more effective to put such issues aside by making suitable
assumptions, returning to the issues after completing an end-to-end pass-through
architectural analysis, resolving those detailed issues in studies, and returning to
another iterative cycle through the architecting process.

HEURISTICS ON HEURISTICS

A phenomenon observed as heuristics discovered by the USC graduate students is
that the discoverers themselves began thinking heuristically. They found themselves
creating heuristics directly from observation and discussion, and then trying them out
on professional architects and engineers, some of whose experiences had suggested
them (Most interviewees were surprised and pleased at the results). The resultant
provisional heuristics were then submitted for review as parts of class assignments.

Kenneth L. Cureton, carrying the process one step further, generated a set of
heuristics on how to generate and apply heuristics (Cureton 1991) from which the
following were chosen.
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GENERATING UseruL HEuRISTICS

e Humor [and careful choice of words] in a heuristic provides an emotional
bite that enhances the mnemonic effect [Karklins].

» Use words that transmit the “thrill of insight” into the mind of the beholder.

e For maximum effect, try embedding both descriptive and prescriptive mes-
sages in a heuristic.

e Many heuristics can be applied to heuristics (e.g., Simplify! Scope!).

* Do not make a heuristic so elegant that it only has meaning to its creator and
thus loses general usefulness.

» Rather than adding a conditional statement to a heuristic, consider creating
a separate but associated heuristic that focuses on the insight of dealing with
that conditional situation.

APPLYING HEURISTICS

e If it works, then it is useful.

* Knowing when and how to use a heuristic is as important as knowing what
and why.

* Heuristics work best when applied early to reduce the solution space.

e Strive for balance—too much of a good thing or complete elimination of a
bad thing may make things worse, not better!

* Practice, practice, practice!

* Heuristics are not reality, either!

A TAXONOMY OF HEURISTICS

The second step after finding or creating individual heuristics is to organize them
for easy access so that the appropriate ones are at hand for the immediate task. The
collection mentioned earlier in this chapter was accordingly refined and organized by
architecting task.? In some ways, the resultant list—presented in Appendix A—was
self-organizing. Heuristics tended to cluster around what became recognized as basic
architecting tasks. For example, although certifying is shown last and is one of the
last formal phases in a waterfall, it actually occurs at many milestones as “sanity
checks” are made along the way and subsystems are assembled. The tasks, elabo-
rated in Chapters 8 and 9, are as follows:

e Scoping and planning

* Modeling

e Prioritizing

* Aggregating

e Partitioning

e Integrating

e Certifying

e Assessing

¢ Evolving and rearchitecting
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The list is further refined by distinguishing between two forms of heuristics. One
form is descriptive; that is, it describes a situation but does not indicate directly what
to do about it. Another is prescriptive; that is, it prescribes what might be done about
the situation. An effort has been made in the appendix to group prescriptions under
appropriate descriptions with some, but not complete, success. Even so, there are
more than enough generally applicable heuristics for the reader to get started.

And then there are sets of heuristics that are domain-specific to aircraft, space-
craft, software, manufacturing, social systems, and so on. Some of these can be
deduced or specialized from more general ones given here. Or, they can be induced
or generalized from multiple examples in specialized subdomains. Still more fields
are explored in Part I1I, adding further heuristics to the general list.

You are encouraged to discover still more, general and specialized, in much the
same way the more general ones here were—by spotting them in technical journals,
books, project reports, management treatises, and conversations.

Appendix A taxonomy is not the only possible organizing scheme, any more than
all tool stores are organized in the same way. In Appendix A, one heuristic fol-
lows another, one-dimensionally, as in any list. But some are connected to others
in different categories or could just as easily be placed there. Some are “close” to
others, and some are further away. Ray Madachy, then a graduate student, using
hypertext linking, converted the list into a two-dimensional, interconnected “map”
in which the main nodes were architecting themes: Conception and design; the sys-
tems approach; quality and safety; integration, test, and certification; and disciplines
(Madachy 1991a,b). To these were linked each of the 100 heuristics in the first sys-
tems architecting text (Rechtin 1991), which in turn were linked to each other. The
ratio of heuristic-to-heuristic links to total links was about 0.2; that is, about 20% of
the heuristics overlapped into other nodes.

The Madachy taxonomy, however, shared a limitation common to all hypertext
methods—the lack of upward scalability into hundreds of objects—and consequently
was not used for Appendix A. Nonetheless, it could be useful for organizing a modest-
sized personal tool kit or for treating problems already posed in object-oriented form,
for example, computer-aided design of spacecraft (Asato 1989).

Various other taxonomies are, of course, possible and may be more useful for par-
ticular toolkits. The literature has other collections of heuristics and approaches to
validating and choosing them. Standard works, like the INCOSE Systems Engineering
Body of Knowledge (SEBoK) (INCOSE 2024) and INCOSE Systems Engineering
Handbook (INCOSE 2023), address the issue of heuristics and provide their own sets.
There has been a heuristics project active within INCOSE for some time.

NEW DIRECTIONS

Heuristics are a popular topic in systems and software engineering, though they often
go by another name or are formulated somewhat differently from here. A notable
example is the concept known as a “pattern language.” The idea of patterns and pat-
tern languages comes from Christopher Alexander (Alexander 1964, 2018) and has
been adapted to other disciplines by other writers. Most of the applications are to
software engineering (Alexander 1999).
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A pattern is a specific form of prescriptive heuristic. Several forms have been
used in the literature, but all are similar. The basic form is a pattern name, a state-
ment of a problem, and a recommended form of solution (to that problem). So, for
example, a pattern in civil architecture (from Alexander) has the title “Masters and
Apprentices,” the problem statement describes the need for junior workers to learn
while working from senior master workers, and the recommended solution consists
of suitable arrangements of workspaces.

When a number of patterns in the same domain are collected together, they can
form a pattern language. The idea of a pattern language is that it can be used as a tool
for synthesizing complete solutions. The architect and client use the collected problem
statements to choose a set that is well-matched to the client’s concerns. The resulting
collection of recommended solutions is a collection of fragments of a complete solu-
tion. It is the job of the architect to harmoniously combine the fragments into a whole.

In general, domain-specific, prescriptive heuristics are the easiest for apprentices
to understand and use. So, patterns on coding in programming are relatively easy to
teach and learn to use. This is borne out by the observed utility of software coding
pattern books in university programming courses. Similarly, an easy entry to the use
of heuristics is when they are attached as step-by-step guides in a structured develop-
ment process. At the opposite end, descriptive heuristics on general systems archi-
tecting are the hardest to explain and use. They typically require the most experience
and knowledge to apply successfully. The catalog of heuristics in Appendix A has
heuristics across the spectrum.

CONCLUSION

Heuristics, as abstractions of experience, are trusted, nonanalytic guidelines for treat-
ing complex, inherently unbounded, ill-structured problems. They are used as aids
to decision-making, value judgments, and assessments. They are found throughout
systems architecting, from earliest conceptualization through diagnosis and opera-
tion. They provide bridges between client and builder, concept and implementation,
synthesis and analysis, and system and subsystem. They provide the successive tran-
sitions from qualitative, provisional needs to descriptive and prescriptive guidelines,
and thence to rational approaches and methods. Heuristics are of high relevance in
engineering as well as architecting, and many other fields, but of course we survey
only the architecting applications here.

This chapter has introduced the concept of heuristics as tools—how to find, cre-
ate, organize, and use them for treating the qualitative problems of systems architect-
ing. Appendix A provides a ready source of them organized by architecting task—in
effect, a tool store of systems architecting heuristic tools.

NOTES

1 This process is one of inductive reasoning, “a process of truth estimation in the face of
incomplete knowledge which blends information known from experience with plausible
conjecture” (Klir 1985). More simply, it is an extension or generalization from specific
examples. It contrasts with deductive reasoning, which derives solutions for specific
cases from general principles.
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2 Spinrad, Robert, Lecture at the University of Southern California, 1988.

3 The original 100 of Rechtin (1991) were organized by the phases of a waterfall. The list
in Appendix A of this book recognizes that many heuristics apply to several phases,
that the spiral model of system development would in any case call for a different cat-
egorization, and that many of the tasks described here occur over and over again during
systems development.
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Part 1]

Introduction

New Domains, New Insights

Part II explores, from an architectural point of view, five domains beyond those of
aerospace and electronics, the sources of most examples and writings to date. The
chapters can be read for several purposes. For readers familiar with a domain, there
are broadly applicable heuristics for more effective architecting of its products. For
those unfamiliar with the domain, there are insights to be gained by understanding
problems that differ in the degree but not in kind from their own. To coin a metaphor,
if the domains can be seen as planets, then this part of the book corresponds to com-
parative planetology, the exploration of other worlds to benefit their own. The chap-
ters can be read for still another purpose, as a template for exploring other, equally
instructive, domains. An exercise for that purpose can be found at the end of Chapter 7,
“Collaborative Systems.”

Each of the chapters is preceded by a brief case study. Each of the case studies is
chosen to be relevant to the chapter to which it is attached. Many students and readers
have asked about case studies of real systems to assist in understanding the applica-
tion of the materials. Unfortunately, really good engineering and architecting case
studies are notoriously hard to obtain. The stories and details are rarely published.
Books published on major systems are more likely to focus on the people involved
than on the technical decision-making. Many of the most interesting stories are bur-
ied behind walls of proprietary information. By the time the full story can be pub-
lished, it is often old. We, the authors, think the older stories carry timeless lessons,
so we have included several here. Each includes some references back to the original
literature, where it is readily available, so the interested reader can follow up with
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further investigation of his or her own. In a few cases, we abstracted several cases
into one where the original stories have not yet been published, and the combination
makes the lessons clearer.

From an educational point of view, this part is a recognition that one of the best
ways of learning is by example, even if the example is in a different field or domain.
One of the best ways of understanding another discipline is to be given examples of
problems it solves. And one of the best ways of learning architecting is to recognize
that there are architects in every domain and at every level from which others can
learn and with whom all can work. At the most fundamental level, all speak the same
language and carry out the same process of systems architecting. Only the examples
are different.

Chapter 3 explores systems for which form is predetermined by a builder’s per-
ceptions of need. Such systems differ from those that are driven by client purposes by
finding their end purpose only if they succeed in the marketplace. The uncertainty of
the end purpose has risks and consequences that it is the responsibility of architects
to help reduce or exploit. Central to doing so are the protection of critical system
parameters and the formation of innovative architecting teams. These systems can be
either evolutionary or revolutionary. Not surprisingly, there are important differences
in the architectural approach. The case study is an old one, but an excellent one, on
the development of the DC-3 airplane.

Chapter 4 highlights the fact that manufacturing has its own waterfall, quasi-
independent of the more widely discussed product waterfall, and that these two
waterfalls must intersect properly at the time of production. A spiral-to-circle model
is suggested to help understand the integration of hardware and software. Ultraquality
and feedback are shown to be the keys to both lean manufacturing and flexible manu-
facturing, with the latter needing a new information flow architecture in addition.
The case study is on the development of mass production, particularly its develop-
ment at Ford and later Toyota.

Chapter 5 on sociotechnical systems introduces a number of new insights to those
of the more technical domains. Economic questions and value judgments play a
much stronger role here, even to the point of outright veto of otherwise worthwhile
systems. A new tension comes to center stage, one central to social systems but too
often downplayed in others until too late—the tension between facts and perceptions.
It is so powerful in defining success that it can virtually mandate system design and
performance, solely because of how that architecture is perceived. The case study is
on architecting intelligent transportation systems.

Chapter 6 serves to introduce the domain of software as it increasingly becomes
the center of almost all modern system designs. Consequently, whether stand-alone
or as part of a larger system, software systems must accommodate to continually
changing technologies and product usage. In very few other domains is annual, much
less monthly, wholesale replacement of a deployed system economically feasible
or even considered. In point of fact, it is considered normal in software systems,
precisely because of software’s unique ability to continuously and rapidly evolve in
response to changes in technology and user demands. Software has another special
property; it can be as hard or as soft as needed. It can be hard-wired if certifica-
tion must be precise and unchanging. Or it can be as soft as a virtual environment
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molded at the will of a user. For these and other reasons, software practice is heavily
dependent on heuristic guidelines and organized, layered modeling. It is a domain in
which architecting development is very active, particularly in progressive modeling
and rapid prototyping. The case study is on the transition from hierarchical to layered
systems, a major point of contention in software systems. It is abstracted from several
real cases familiar to the authors.

Chapter 7 introduces an old but newly significant class of systems, collaborative
systems. Collaborative systems exist only because the participants actively and con-
tinuously work to keep it in existence. A collaborative system is a dynamic assem-
blage of independently owned and operated components, each one of which exists
and fulfills its owner’s purposes whether or not it is part of the assemblage. These
systems have been around for centuries in programs of public works. But today,
we find wholly new forms in communications (the Internet and World Wide Web),
transportation (intelligent transportation systems), militaries (multinational recon-
naissance-strike and defensive systems), and software (open-source software). The
architecting paradigm begins to shift in collaborative systems because the architect
no longer has a single client who can make and execute decisions. The architect must
now deal with more complex relationships and must find architectures in less famil-
iar structures, such as architecture through communication or command protocol
specification. The case study is on the Global Positioning System (GPS), which did
not start as a collaborative system, but which is rapidly evolving into one.

The nature of modern software and information-centric systems, and their
central role in new complex systems, makes a natural lead into Part III, “Models
and Modeling.”
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Case Study 2
The DC-3

While the DC-3 airplane was designed and built in the 1930s, it is not unknown for
someone today to have flown on one. There were many flying into the 2000s. There
will probably be some flying 100 years after their introduction, maybe even operating
profitably in some remote area. The DC-3 is commonly cited as the most successful
airplane ever built. What accounts for the extraordinary success of the DC-3 air-
plane? The history of the DC-3’s development extensively illustrates many of the key
lessons of systems architecting, especially the following:

1. The role of the very small architecting team in bringing vision and coher-
ence to the system concept.

2. The cooperative nature of the effective architect—client relationship, even
when the architect belongs to the builder organization.

3. The role of coupled technological and operational change in creating rev-
olutionarily successful systems. New technology enabled a revolutionary
change in commercial air operations with the DC-3, but only because that
technology was used in a new concept of operations.

4. Therole of evolutionary development in enabling revolutionary development.

The focus of this case study is on the decisions that defined the architecture of the
DC-3, and how they compared to the decisions made by competitors at that time
rather than a detailed recounting of all aspects of the history. The decisions, by
Douglas and competitors, were in the context of the respective organizations and
system sponsors and reflected different concerns. For the history itself, we draw on
the Boeing 247 focused work (Van der Linden and Seely 2011) and a core DC-3
reference (Gradidge and Olson 2006). While the book “The Boeing 247: The First
Modern Airliner” focuses on the Boeing 247, important parts of the airplane’s story
must be told in comparison to the Douglas series (DC-1, DC-2, and DC-3), which
were under development at roughly the same time. Decisions that led to the DC-3 are
meaningful when one sees how they compare to those made on the Boeing 247, and
why the two teams reached different conclusions and different designs at the same
time with access to essentially the same technology. More DC-3 information is at
dc3history.org. One of the most valuable sources for the architectural history of the
DC-3, and an exceptional source of architecting heuristics, is the paper “The Well
Tempered Aircraft” by Arthur Raymond (1951).
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THE HISTORY

In a room of the Smithsonian Air and Space Museum devoted to “America by Air”
between World Wars I and II, three key airplanes can be seen together. They are
the Ford Trimotor, the Boeing 247, and the DC-3. Of these, only the DC-3 can be
seen outside of an air museum or historical air show. In 1930, the Ford Trimotor
was state-of-the-art in passenger and cargo aircraft. It carried eight passengers and
enabled passenger and cargo service across the USA. But, by modern standards, the
airplane was barely usable. The large piston engine on the nose coupled noise and
vibration (and sometimes exhaust) directly into the passenger and cargo areas. The
framed fuselage put large spars directly through the passenger and cargo area, with
obvious inconvenience for both types of service. Reliability and safety were far from
modern standards. The knowledge of aerodynamics and structures, coupled with the
available engine power-to-weight ratio, allowed no better. Regardless, it was such an
improvement over its predecessor, and delivered such value, that 199 were built (see
Figure CS2.1).

In the early 1930s, aeronautical technology was changing quickly. Engines were
improving very rapidly in power and power-to-weight ratio, new structural concepts
were being tested, and understanding of aerodynamics was improving very rap-
idly (from prototype airplanes, theoretical study, and the first generation of capable
wind tunnels). These innovations enabled very significant improvements in capacity,
range, speed, safety, and passenger comfort when used synergistically in new air-
craft designs. Improved structural design methods, coupled with new materials and
manufacturing methods, dropped the weight of an airplane of given volume. Better
aerodynamics improved lift-to-drag ratio, a fundamental parameter in performance
determination. Better engine power-to-weight ratio meant higher performance at a
given weight, or an opportunity to cut weight while leaving other factors constant.
The elements of a virtuous cycle of weight reduction and size and performance
improvement were in place.
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FIGURE CS2.1 Timeline of the DC-3 and related aircraft.
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Two young companies riding the early boom in aeronautics, Boeing and Douglas
Aircraft, were developing new airplane concepts exploiting these new technologies.
One of the themes of this book is on how architecture should and does reflect spon-
sor needs and priorities. In a builder-architected system, those priorities include the
concerns and interests of the builders and not just the client, operator, or user. The
two companies faced very different business situations and clients.

In 1930, Boeing, along with what became United Airlines, Pratt & Whitney
engines, and several other companies, were part of a vertically integrated company
known as United Aircraft and Transport Corporation (UATC). At the time the most
profitable airline business was carrying air mail under US Government contracts, in
which UATC was dominant. As a result, when Boeing investigated how to exploit
the emerging aeronautical technologies, they knew that government air mail con-
tracts were the primary profit source. What we now think of as the regular business
of airlines—carrying passengers and general freight—was financially ancillary to
the airmail. Boeing’s design studies for how to best exploit the new technology in
engines, aerodynamics, and structures focused on an aircraft that was optimized
for the routing structure imposed by the US Postal Service. Boeing also had to
consider other concerns based on being part of UATC, in particular a preference
to use Pratt & Whitney engines. The result was the Boeing 247. The airline arm of
UATC quickly ordered 60, a large leap in production capacity for the Boeing of the
time. Tellingly, UATC rejected an order for 247s from Trans World Airlines (TWA),
arival airline.

There is no doubt that the Boeing 247 was a revolutionary airplane, both techno-
logically and in terms of user experience. It was far more comfortable than the Ford
Trimotor, and much faster. But it was not revolutionary from a business—operational
perspective. The 247 was intended to do business the way it was being done, just
much better. The 247 had significant limitations in going beyond the air mail busi-
ness. First, it was too small. The 10-passenger capacity was insufficient on econo-
mies of scale beyond the air mail business. Second, while the metal structure used
the then-new stressed skin monocoque technique, it still had a structural span run-
ning crosswise through the passenger compartment, impeding passenger, and cargo
loading and unloading. Both of these issues were the subject of extensive debate
inside Boeing during development. They came about because of overall assumptions
about how the technology would work and understanding of the demands from air
mail contracts (which were known) and from passengers (that were more guesswork).
Specifically, the arguments that won out were as follows:!

e There was little in the way of economies of scale going larger. Two air-
planes of half the capacity would cost around half (or less) of a larger air-
craft. Moreover, the main customer (the Post Office) preferred faster and
more numerous planes.

e Passengers preferred a faster airplane and would give up on-board comfort
to get one.

e Optimizing speed put the wing at mid-fuselage height and ran structural
members through the cabin. However, this was acceptable since, as noted
earlier, speed was considered primary and comfort secondary.
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These arguments, seemly well-thought-out at the time, did not age well as others
tried alternative approaches. And there was a strong push for alternatives. As noted
above, TWA attempted to acquire Boeing 247s but was unable to. Instead, TWA
approached Douglas aircraft, who was likewise considering how to incorporate the
new technologies into new aircraft designs. Unlike Boeing, Douglas and their airline
partners were thinking well beyond the immediate profit source of airmail. TWA
specified a three-engine aircraft, in the belief that three engines were required to
provide single-engine-out survivability over the Sierra Nevada or Rocky Mountains
while also providing the capacity, speed, and range for profitable operation. This was
a quandary for Douglas. While their sponsor had just expressed clear requirements,
Douglas was well aware that three-engine aircraft (with one engine in the nose) had
many serious drawbacks. Initially, Douglas decided to prototype an aircraft that was
quite similar to the Boeing 247.

The DC-1 was produced contemporaneously with the Boeing 247 and was roughly
the same size. Douglas and their customers realized the advantages of the new over-
all design, given the new technologies but believed the airplane was too small. The
DC-1 was essentially a proof-of-concept airplane. Douglas and the airlines intended
it to be a production representative airplane, but it served mainly to prove the con-
cept and demonstrate the way forward. It also demonstrated the underlying require-
ment that led TWA to specify three engines, that the airplane be able to survive
a single-engine-out condition anywhere in flight, was achievable in a two-engine
airplane. The DC-1 had some design decisions significantly different from the 247,
both technically and within the larger programmatic context. Douglas was not part
of a vertically integrated company. While a vertically integrated enterprise may have
scale advantages, those are likely to be outweighed by non-competitiveness in some
components in a time of very rapidly changing technology. For example, Douglas
was not tied to an in-house engine supplier. On the technical design front, Douglas
was able to use the Jack Northrop wing design that was substantially lighter with bet-
ter capacity than Boeing’s, and did not put structural members in the cabin space, by
placing the wing box under the fuselage. Douglas, and partners, correctly estimated
that the speed advantages of the 247 design were marginal and would quickly disap-
pear as technology advanced and that passengers would prefer comfort over marginal
speed improvements. Both assumptions that the speed advantage was marginal and
temporary and that passengers would prefer comfort turned out to be correct.

The DC-2 followed immediately on the DC-1 demonstration, was larger, and was
commercially successful. It had a production run of 156 aircraft (see Figure CS2.1
for the times and figures), a considerable number for the time. The production run
of the DC-2 was already larger than the Boeing 247, and nearly the size of the Ford
Trimotor’s, the previously most successful airplane. American Airlines, after some
experience with the DC-2, approached Douglas about a further upsizing, with intent
to use the airplane in cross-country sleeper service. Douglas and their team began
design work immediately on the DC-3. It was much larger, with a passenger capacity
double that of the DC-2. As it turned out, while the sleeper service was implemented
(a mimic of established railroad sleeper car service), it quickly became apparent that
the larger size and associated range and performance was highly successful in regu-
lar, daytime service.
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This capacity and range change meant that regular passenger service could now
be profitable independent of airmail transportation. Around the same time, the air-
mail business model was disrupted by the Airmail Act of 1934, which forced UATC
to break up and ended the UATC dominance in airmail contracts. With airline opera-
tions freed from the structures of airmail routing and scheduling, the airlines were
free to use the DC-3 to develop new markets. This was the operational revolution that
was enabled by, then drove, the technological revolution.

The DC-3 production run was much larger than any previous airplane, reflecting
its revolutionary success in the commercial airline business. Even though Douglas
was confident of the excellence of the DC-3, the magnitude of the success was a
surprise. The company chose an initial production to produce tooling with a design
life of 50 units (which Raymond regarded as “rather daring”). That tooling lasted
through hundreds of aircraft. With 455 of the initial commercial model produced, it
was the foundation of the modern, then rapidly growing airline business.

Of course, the story does not end here. Boeing saw the success of the DC-3 and
moved to counter with an even larger and higher performance aircraft. The breakup
of UATC and the Great Depression greatly constrained Boeing’s ability to respond.
However, Boeing was well placed to continue to move up in aircraft size and perfor-
mance by other work in their aircraft portfolio. At that time, Boeing was building the
XB-15 bomber under a contract with the US Army Air Corps. They also undertook
on their own to build a prototype advanced four-engine bomber known as the Model
299 (the predecessor of the B-17 Flying Fortress of World War II fame). Elements of
the Model 299 were directly incorporated into a prototype of the Boeing 307. The
307 had a capacity of 33 passengers, a pressurized cabin, and much greater speed
and range.

Here, history and chance intervenes in the story. With the success of the DC-3
airlines went to Douglas and committed to the DC-4, but that project was unsuccess-
ful with the resulting aircraft being seen as unacceptable. Douglas had to entirely
redesign the airplane with initial deliveries delayed into 1941. The model 299 and the
307 prototype were involved in a series of accidents. The original Model 299 crashed
in 1935 during the bomber evaluations(Network 1963). The Air Corps regardless
ordered limited numbers of a redesigned aircraft for additional development. The
307 was built from elements from the B-17 experimental program. The prototype
307 crashed in March 1939 during stability testing when it lost stability and broke
up in flight (Network 1994). Among those killed in the crashes were Boeing’s Chief
Aerodynamicist and Chief Engineer.

The delays to both the DC-4 and Boeing 307 programs were significant. The 307
did not enter service until 1940 and the redesigned DC-4 until 1941. By then, US
industry was rapidly converting to war production. After the attack on Pearl Harbor
in 1941, essentially all airplane production was converted to war production, but in
large measure, the conversion had already begun. The US Army Air Corps needed
transports, bombers, fighters, and all types of aircraft. Boeing, with its advantages
in large bombers, moved its production primarily to bombers. The DC-3 was an
obvious choice as a transport. It was a proven, mature design with proven utility and
reliability. Enormous contracts for producing military variants of the DC-3 came
rapidly, and more than 10,000 were produced in various military configurations.
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This huge production base became the foundation for the aircraft to fly productively
for decades after production ended.

After World War II, the competition in commercial airplanes resumed, advanc-
ing from a new point in both technology and operations. The DC-3 existed in such
large numbers that there was hardly room for a direct competitor. The technology
for building and operating much larger aircraft had been extensively developed. The
transports produced after World War II were larger still, mostly four-engine aircraft.
And soon after, the transition to jet engines would revolutionize the architecture of
commercial aircraft, and the airline industry, once again.

ARCHITECTURE INTERPRETATION

As interesting as the capsule history of the DC-3 may be, this history is not the pri-
mary focus here in this book. The reader may find many extensive histories of the
DC-3 and its competitors. But we are interested here in understanding and interpret-
ing its architecture—not just on its own—but in relationship to its competitors and
within the context of its builders, sponsors, and users.

THREE STORY VARIATIONS

Three different but related interpretations can be considered in the DC-3 story. The
first way of seeing the story is as one of architectural revolution fueled by technology.
In this way, we see the DC-3 as a technology-enabled architectural jump over the
Ford Trimotor. The moral of this story is that technological advance combined with
architectural vision creates a revolutionary system. This story is, of course, true; but
it is also incomplete. The DC-3 was a revolutionary advance over the Ford Trimotor,
and it was a combination of technological advance and architectural vision. But it
did not happen in one step, it did not happen in only one place, and it did not happen
all at once. If the DC-3 was a technology-driven jump, then so was the Boeing 247.
To understand the success of the DC-3 over the 247, we need to look beyond the first
story of a technology-driven jump.

In the second story, we see the Boeing 247 and the DC-3 as a story in the haz-
ards of optimality. The moral of the second story is that being optimal with respect
to the problem as currently or originally understood is not always the best choice.
The DC-3 achieved enormous success because it did not optimally serve existing
markets; instead, it leapfrogged and enabled new markets. The revolution was not
just in technology of airplanes, it was in the coupling of technological change with
operational change. The DC-3 became a huge success when its owners changed their
business model in response to its capabilities. In this story, we can see the Boeing
247 as a cautionary tale to not look too narrowly, especially in times of rapid change.

The third story expands the second by seeing what Boeing did after the appear-
ance of the DC-3. When the DC-3 opened new markets, Boeing did not stand still.
They had already invested in the 247, and it was being used on airmail routes,
but they did not continue to build it in the face of the greater success of the DC-3.
Instead, they followed where the DC-3 had revealed the market to be (larger, faster,
higher-capacity aircraft) by building the 307. The 307 might have been a highly
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successful aircraft, except that World War II intervened and upset the competition
with the forced conversion to war production.

The third story must color our perception of success and failure, and Boeing ver-
sus Douglas’ decision-making. Boeing started the revolution with the 247. Boeing
was eclipsed by the DC-3, but that must be viewed in the larger context of builder’s
strategic positions and capabilities. Boeing started with a stronger business position
and a direct relationship with the leading customer, United Air Lines. Boeing also
held a “real option”” on moving to even larger aircraft in a way that Douglas did not.
Thus, Boeing could logically make a more conservative decision for the competitive
and technological positioning of the 247 than made sense for Douglas. This leads
naturally to the next question.

Was THE BOEING 247 SUCCESSFULLY ARCHITECTED?

It seems obvious that the DC-3 was very successfully architected. It is generally
regarded as the most successful aircraft of all time, and beautifully combined techni-
cal and operational innovation. According to Raymond (1951), the combination was
deliberate, if not entirely foreseen. The natural follow-on question is to ask how suc-
cessfully was the Boeing 247 architected? Obviously, it was a much less successful
aircraft. But it was the aircraft its sponsors requested. It did effectively exploit the
new technology, and it did what was asked. The general question is, if a sponsor gets
the system he or she asks for, and as a result loses in a competitive environment, did
the architects perform either job effectively?

There is no universal answer to this question. The answer depends very much on
how the development environment structures the relationship between the architect
and sponsor. In the classical architecting paradigm, the architect must be careful
not to substitute his or her own value judgments for those of the client. So, if the
system reflects the client’s value judgments, and the system is ultimately unsuccess-
ful because those value judgments do not reflect reality, the architecting job has still
been done well. But it is also traditionally well within the architect’s responsibility to
warn the client of the certain or likely consequences of proposed courses of action. If
it is evident to the architect that the design process is leading to something that can be
easily opposed by competitors, this must be made plain to the client. The client may
choose to proceed anyway, but the consequences should be clear.

In some cases, the architect may have an ethical or even legal responsibility
beyond that of the responsibility to the client. Public buildings must be built in accor-
dance with public safety. A system architect working for a government has some
responsibility beyond just the immediate acquisition program to the national interest.
In our DC-3 story, the architect was part of the builder organization and so had a
great stake in ultimate success or failure. A builder-architect cannot shrug off poor
client decision-making as the builder-architect is also the client and rises or falls
on the result. The architect in the builder-architected situation must respond to the
concerns and priorities of the builder organization. The builder-architect has a level
of ownership of the problem a third-party architect does not. The builder-architect
also has possible level of conflict of interest, when the concerns of the builder and the
client are inconsistent, that the third-party architect does not.
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WHAT IS THE “ARCHITECTURE” OF THE DC-3?

Asking “What is the architecture of the DC-3” illustrates the contrast between archi-
tecture as physical design and architecture as concept development points of view.
Both the Boeing 247 and DC-3 shared the same essential structural, technical fea-
tures. Side by side they look very similar. Both were two-engine, hollow fuselage,
and modern configuration transport aircraft. Both used very similar technology. In
the sense of overall physical design, they are quite similar.

However, in performance attributes and in operational placement, they are quite
different. The DC-3 is considerably larger and, more importantly, is enough larger for
the performance margin to have great operational significance. The DC-3 performs
missions that the Boeing 247 cannot and enables business models that the Boeing 247
cannot. In a larger context, the design of the DC-3 embodies a different business strat-
egy than the Boeing 247. If we think of architecture as the technical embodiment of
strategy, we see the distinct differences between the architectures of the two systems.

ART RAYMOND’S PRINCIPLES

One of the attractions of the DC-3 story is the excellent Art Raymond paper previ-
ously referenced. Raymond’s paper provides a set of eight timeless principles for
architecting that hold as well today as they did when first articulated:

1. Proper Environment: This includes the physical facilities in which design-
ers work, but Raymond’s focus was on the confidence and enthusiasm of the
sponsors and adequate financing. In Raymond’s words:

The thing above all else that makes a project go is the enthusiasm of its backers;
not false enthusiasm put on for effect — sooner or later this is seen through — but
rather the enthusiasm that comes from the conviction that the project is sound,
worth-while, and due to succeed. (Raymond 1951)

2. Good Initial Choice: In Raymond’s terms, a good initial choice is one that
neatly combines value and feasibility. He particularly emphasizes the role of
elegant compromise between conflicting factors and clearly identifying the
need or mission for the aircraft. The biggest failures come not from systems
that are technological failures, but from those that fail to meet any need well
enough to generate demand.

3. Excellence of Detail Design: Although this book is focused on architecture
as the initial concept, detailed design is likewise important. An excellent
initial concept can be ruined by poor detailed design (although a poor initial
concept is very unlikely to be saved by excellence in detailed design).

4. Thorough Development: Raymond’s perspective on thorough develop-
ment emphasizes design refinement after the first test flight. In Raymond’s
era, the refinement of flying qualities of airplanes was quite important and
occurred mostly after the first flight. Calculations and wind tunnel tests
were sufficient for basic performance, but refining handling qualities to a
point of excellence required extensive flight testing.
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5. Follow-Through: Follow-through refers to the system life cycle after deliv-
ery to the operator. In the case of a commercial aircraft, some of the impor-
tant elements include operator and maintainer training, maintenance and
service facilities, development of spare parts, design updates in response
to service data, and technical manuals. The value of the system to its cus-
tomers/operators is directly related to the quality of follow-through. From
the perspective of systems architecting, the follow-through elements may
be inside the boundaries of the initial concept development. The quality
of the initial concept may be determined by its amenability to effective
follow-through.

6. Thorough Exploitation: All successful aircraft are extensively modified
during their operational lifetimes. The DC-3 was produced in an enormous
number of variations, and even today there are firms that adapt modern
avionics to the remaining DC-3 airframes. Successful systems are designed
to accommodate a range of modifications. This is familiar in modern com-
mercial aircraft where many interior configurations are available, usually
several different choices of engine, freighter and passenger versions, and
extended range or capacity versions.

7. Correct Succession: No matter how successful a system is, there comes a
time when it is more effective to break away and re-architect. Conversely,
breaking away when the time is not ripe incurs high cost to little effect.
The essential judgment here is projection of technical and operational
trends. There is an opportunity for succession when either (or better yet
both) will move substantially over the time required to develop the succes-
Sor system.

8. Adaptiveness: The DC-1, DC-2, and DC-3 sequence is the best illustration
of adaptiveness. Adaptiveness really means responsiveness to the future
environment as it unfolds, rather than as it was projected. Projections are
the foundation of planning, and real strategy is the ability to adapt to
the environment as it unfolds. In this story, we see several examples of
adaptiveness in architecture. Douglas did not settle for the DC-1, even
though it met the contractual specifications provided by TWA. Instead,
they adapted to the operational environment as it developed, first with the
improved DC-2 and then with the much-upsized DC-3. Likewise, Boeing
illustrated effective adaptiveness in the sense of retaining (and then exer-
cising) real options for larger aircraft. When their first attempt at a revolu-
tionary aircraft was insufficient, they used large aircraft technology from
their military aircraft to upsize their flagship commercial aircraft to the
Boeing 307.

NOTES

1 See van der Linden, pages 32—-40.

2 A “real option” is an investment allowing an organization an increased ability, or lower
cost, to pursue future lines of action. A summary reference is Courtney, H. (2001).
20720 Foresight: Crafting Strategy in an Uncertain World, Harvard Business Press.
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Builder-Architected
Systems

No system can survive that doesn’t serve a useful purpose.

Harry Hillaker!

INTRODUCTION: WHO ARCHITECTS VERSUS
WHAT DRIVES THE ARCHITECTURE

The classical architecting paradigm of the third-party architect and separation of
sponsor and builder is not the only way to create and build large complex systems,
nor is it the only regime in which architects and architecting are important. Systems
architected by the builder, there the architectural decisions are made in the builder
organization, are common. While we will focus on that alternative, in this chapter,
just looking at who does the architecting is a partial picture of the relevant con-
cerns. We also need to consider the basis or the driver for undertaking the architec-
ture effort. Two alternatives are “purpose-driven” and “technology-driven.” We first
encountered this in this book by identifying “purpose-driven” as the classical basis
for architecting. In contrast, we can have “technology-driven” and perhaps other
motivations.

In a purpose-driven system, the sponsor (provider of resources) and the users are
both present and engaged when we architect. We can work with users to understand
what they want, and we can work with the sponsor on what resources are available,
and on what the sponsor is concerned with. Of course, it may well be that the spon-
sors and users are not aligned, and they may or may not be talking to each other and
be willing to align, but the point is that both are available and engaged.

In a technology-driven system, the sponsor is present, but the users are not. The
driver is the belief that some technology will enable something, and that something
will be highly valued by a user community, but the user community is not engaged.
One dimension of overall complexity will be how engageable those users are.
A better case is they can be engaged. A more difficult case is they can be engaged but
are expected to change their minds after any exposure to the system of interest (the
classic ill-structured problem situation). Worse yet, there is no engagement possible
since the existence of the users is hypothetical.

In the builder-architected case the architects are part of the builder organization,
normally a company. Their client, the sponsor, is the company. The users are the cus-
tomers of the system. The baseline case is where the customers are outside company,
but we can have the case of internal customers when the system of interest is used
inside. Manufacturing systems are usually of this type (since the company usually
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builds their own factory) and internal information technology systems may be.
A builder-architected system may be incremental (based on pre-existing systems)
or something entirely new. Incremental development is more common.

INCREMENTAL DEVELOPMENT FOR AN EXISTING CUSTOMER

Most builder-initiated architectures are variations of existing ones; for example, con-
sider jet aircraft, personal computers, smart automobiles, and follow-on versions of
existing software applications. The original architectures, having proved by use to
be sound, variations, and extensions should be of low risk. Extensive reuse of exist-
ing modules should be expected because design assumptions, system functions, and
interfaces are largely unchanged. When systems of a type have been around for a
number of years, especially from competitive suppliers, it is common for the archi-
tectures to settle to a relatively stable form.

Building on the DC-3 case study, consider the evolution of commercial aircraft.
The general structure of the DC-3, a round main fuselage with a flat floor and open
from front to back, is a consequence of monocoque construction and the demands
of passenger and cargo operation. It has been stable from the DC-3 to airplanes
developed in the 2000s. Likewise, the low wing, though it went from straight to
swept as jet engines arrived, has been stable on large commercial aircraft for the
same period. Propeller-driven aircraft generally have their engines embedded in
the wing, and jet engines hang below the wing. Military transport jets are similar
except that they are usually high-wing designs, which is superior for the opera-
tional profiles typical of military transports. These patterns have now been stable
for decades. Every decade or so, there is interest in possible disruption to the pat-
tern, with blended wing-body being the latest idea, but so far, none has had enough
advantages to outweigh the established pattern. This is not to say that it will never
happen, but architectures can remain stable for very long periods and displacing a
very stable architecture is quite difficult.

The architect’s responsibilities in the evolutionary case remain much the same as
under the classical paradigm, but with an important addition: the identification of
proprietary architectural features deemed critical to maintaining competitive advan-
tage in the marketplace. Lacking this identification, the question “who owns what?”’
can become so contentious for both builder and customer that product introduction
can be delayed for years. As was noted in the DC-3 case, where the in-house versus
open supplier boundary lay was a key difference in the Boeing and Douglas aircraft
surrounding the DC-3.

Far more important than these relatively low risks is the paradigm shift from
function-to-form (purpose-driven) to one of form-to-function (form driven). Unlike
the classical paradigm, in form-first architecting, one’s customers judge the value
of the product after rather than before the product has been developed and pro-
duced. In the classical paradigm, the customer is responsible for the value judg-
ments, and so should expect to be satisfied with the resultant system. In a form-first,
builder-architected system, the architect hopes the customer will find it satisfactory,
but there are no guarantees. The judgment of success begins only after the system
is built and delivered.
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The resultant risk has spawned several risk-reduction strategies. The simplest is
an early prototype demonstration to present to customers, with its associated risks
of premature rejection. The more rapidly prototypes can be developed and delivered,
the more rapidly feedback can be gained from customers. Another strategy is the
open-source method for designing software, a process in which customers become
developers, or at least active participants with developers. Anyone interested can par-
ticipate, comment, submit ideas, develop software, and use the system, all at no cost
to the participant. The project being tied together by the Internet (and some unique
social conventions), everyone—and particularly the builder and potential clients—
knows and can judge its utility. The risk of rejection is sharply reduced at the possible
cost of control of design. The open-source community is a principal example of col-
laborative system assembly. We discuss that topic specifically in Chapter 7.

NEw MARKETS FOR ExisTING PrRODUCTS

The next level of architecting intensity is reached when the builder’s motivation is
to reach uncertain or “latent” markets in which the unknown customer must acquire
the product before judging its value. Almost certainly, the product will have to be
at least partially rearchitected in terms of cost, performance, availability, quantities
produced, and so forth. To succeed in the new venture, architecting must be particu-
larly alert, making suggestions or proposing options without seriously violating the
constraints of an existing product line. Hewlett-Packard, in the 1980s (when they
were primarily an engineering test equipment company), developed this architecting
technique in a novel way. Within a given product line, say that of a “smart” analytic
instrument, a small set of feasible “reference”? architectures are created, each of
which is intended to appeal to a different kind of customer. In current terminology,
we refer to “product-line-architectures” or the architecture of a “family-of-systems.”
The core idea is that the architecture of the product-line/family-of-systems remains
stable but accommodates local changes to produce new products within the prod-
uct-line. Latent markets discovered in the process can then be quickly exploited by
expansion of the product line.

Several other chapters investigate additional variations on the family-of-systems
idea. In Chapter 7, we discuss collaborative systems, a different arrangement of mul-
tiple systems into a greater whole. Chapter 6 and case study 5 deal with different
conceptions of a family-of-systems, and the over-arching architecture, in this case
in software and information systems. See Maier (2019) for a more comprehensive
discussion of different variations including portfolios-of-systems as well as families
and collaborative systems.

The original product line architecture can be maintained with few modifications
or risks while multiple completed systems are offered to the market. Ideally, the
architectural features of the product line are largely invariant, but the architectural
features of individual products change rapidly. The product line sets out constraints
and resources, and the individual products use them to produce valued features.

The architecture of a product-line or family-of-systems must be related to the archi-
tecture of its individual members. The architecture of the product line is dominantly,
though not exclusively, the intersection of the architectures of the circumscribed
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products. The architecture of the product line is dominated by the common features.
The two usual major reasons for doing product-line architectures are economies of
scale and lowering the time and cost of developing new products within the prod-
uct-line. Both objectives depend on being able to find things in common. Things
in common can be produced in greater numbers (economies of scale). If there are
many things in common, then the set of unique things that have to be developed to
bring a new product to market is reduced and so the process should be faster and
cheaper. Sometimes, though, we see work on product-line architectures trying to dic-
tate things beyond the intersection of the individual architectures. In one sense only
can the architecture of the product line be thought of as the union of the architectures
of the products. This one exception to the “architecture-is-in-the-intersection” heu-
ristic is the sense in which the product line defines the collection of niches into which
each product will fit. The product line makes global decisions about where individual
products can be developed, and where they cannot. In a product line of cars, or print-
ers, or anything else we must decide where the clusters of related products will exist,
and where they will not exist. The clusters should be placed where there is a nexus of
related demand from users (a user or market driver) and where the builder has some
proprietary advantage to offer.

New Probucts, New MARKETS

Of greatest risk are those form-first, technology-driven systems that create major
qualitative changes in system-level behavior, changes in kind rather than degree.
Systems of this type almost invariably require across-the-board new starts in design,
development, and use. They most often arise when radically new technologies
become available, such as jet engines, new materials, microprocessors, lasers, soft-
ware architectures, and intelligent machines, and those technologies enable major
changes to user operations. Although new technologies are infamous for creating
unpleasant technological and even sociological surprises, by far, the greatest single
risk in these systems is one of timing. Even if the form is feasible, introducing a new
product either too early or too late can be punishing. As discussed in the DC-3 case
study, Douglas Aircraft may not have beaten the Boeing 247 to market, but they
were the first with the right set of features. In the next generation, Douglas Aircraft
Company was too late into jet aircraft, losing out for years to The Boeing Company.
Innumerable small companies have been too early, unable to sustain themselves
while waiting for the technologies to evolve into engineered products. High-tech
defense systems have suffered serious cost overruns and delays, most often due to a
premature commitment to a critical new technology.

TECHNOLOGICAL SUBSTITUTIONS WITHIN EXISTING SYSTEMS

The second greatest risk is in not recognizing that before they are completed, tech-
nology-driven architectures will require much more than just replacing, one at a
time, components of an older technology for those of a newer one. Painful expe-
rience shows that without widespread changes in the system and its management,
technology-driven initiatives seldom meet expectations and too often cost more for
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less value. For example, direct replacements of factory workers with machines, of
vacuum tubes with transistors, of large inventories with just-in-time deliveries, and
of experienced analysts with computerized management information systems, all
were disappointments when attempted by themselves in a system that was other-
wise unchanged. Factory automation without architectural change has been a widely
recognized failure. Failure rates of 50%—75% have been noted (Majchrzak 1988).
Looking forward to the next case study, Lean Production is seen as a precondi-
tion to better use of automation, rather than an alternative (Womack et al. 2007).
Technological substitution has been successful only when incorporated in concert
with other matched and planned changes. It is not much of an exaggeration to say
that the latter successes were well-architected, but the former failures were not. The
DC-3 case study was an illustration. New technology in aircraft, without passing a
threshold enabling operational change, was ineffective. And there had to be part-
ners, airlines in the case of the DC-3, who were prepared to make those operational
changes to exploit the new capability.

In automobiles, the most recent and continuing change is the insertion of ultra-
quality electronics and software between the driver and the mechanical subsystems
of the car. This remarkably rapid evolution removes the driver almost completely
from contact with, or direct physical control of, those subsystems. It considerably
changes such overall system characteristics as fuel consumption, aerodynamic styl-
ing, driving performance, safety, and servicing and repair—as well as the design
of such possibly unexpected elements as engines, transmissions, tires, dashboards,
seats, passenger restraints, and freeway exits. From the 1990s to the 2000s, automo-
tive control has moved decisively to computer interfaces, a trend evidently welcomed
and used by the general public or it would not have been done. A telling indicator
of the public’s perception of automotive performance and safety was the virtually
undisputed increase in national speed limits. Car crash death rates (per population,
per motor vehicle, and per vehicle mile) have all dropped since the 1970s while speed
limits have risen (Council 2022). Increasingly, the presence of Advanced Driver
Assistance Systems (e.g., automatic braking) has been part of the improvement.
Perhaps the most remarkable fact about this rapid evolution is that most customers
were barely aware of it. This result came from a commitment to quality so high that
a much more complex system could be offered that, contrary to the usual experience,
worked far better than its simpler predecessor.

In aircraft, an equivalent, equally rapid, technology-driven evolution is “fly by
wire,” a change that, among other things, is forcing a social revolution in the role of
the pilot and in methods of air traffic control. More is involved than the form-fit-func-
tion replacement of mechanical devices with a combination of electrical, hydraulic,
and pneumatic units. Aerodynamically stable aircraft, which maintain steady flight
with nearly all controls inoperative, are steadily being replaced with ones that are
less stable, more maneuverable, and computer controlled in all but emergency condi-
tions. The gain is a more efficient, potentially safer flight. But the transition has been
as difficult as that between visual and instrument-controlled flight.

In inventory control, a remarkable innovation has been the very profitable com-
bination in one system of point-of-sale terminals, of a shift of inventory to central
warehouses and of just-in-time deliveries to the buyer. Note the word combination.
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None of the components has been particularly successful by itself. The risk here is
greater susceptibility to interruption of supply or transportation during crises.

In communications, satellites, packet switching, high-speed fiber-optic lines,
e-mail, the World Wide Web, social media, and electronic commerce have combined
for easier access to a global community, but with increasing concerns about privacy
and security and the ease with which the technologies enables scale-up of various
illegal activities and complex second and third order social impacts. The innova-
tions now driving the communications revolution were not, individually, sufficient to
create this revolution. It has been the interaction of the innovations, and the changes
in business processes and personal habits connected to them, that have made the
revolution.

In all of these examples, far more is affected than product internals. Affected
also are such externals as manufacturing management, equity financing, government
regulations, and the minimization of environmental impact, to name but a few. These
externals alone could explain the growing interest by innovative builders in the tools
and techniques of systems architecting. How else could well-balanced, well-inte-
grated, financially successful, and socially acceptable total systems be created?

CONSEQUENCES OF UNCERTAINTY OF END PURPOSE

Uncertainty of end purpose, no matter what the reason, can have serious conse-
quences. The most serious is the likelihood of serious error in decisions affecting
system design, development, and production. Builder-architected systems are often
solutions looking for a problem and hence are particularly vulnerable to the infamous
“error of the third kind”: working on the wrong problem.

Uncertainty in system purposes also weakens them as criteria for design man-
agement. Unless a well-understood basis for configuration control exists and can be
enforced, system architectures can be forced off course by accommodations to crises
of the moment. Some of the most expensive cases of record have been in attempts
to computerize management information systems. Lacking clear statements of busi-
ness purposes and market priorities, irreversible ad hoc decisions were made which
so affected their performance, cost, and schedule that the systems were scrapped.
Arguably, the best prevention against “system drift” is to decide on provisional or
baseline purposes and stick to them. But what if those baseline purposes prove to be
wrong in the marketplace?

ARCHITECTURE AND COMPETITION

In the classical architecting paradigm, there is little or no role for competition. The
client knows what he or she wants, or learns through interaction with the architect.
When a system is delivered that is consonant with the client’s values, the client
should be satisfied. If there were competitive offerings, then the client could have
chosen one and avoided the expense of engaging with an architect. In many other
cases, builder-architected systems prominent among them, success is judged more on
competitive performance than on adherence to client values. Success in competition
is certainly a significant surrogate for adherence to client values, but only partially.
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To reconcile how architecting and architecture relate to competition, we must set
the context of the organization’s overall competitive strategy. Architecting cannot be
talked about in the abstract; it has to be grounded in the strategies of the organiza-
tion conducting it. In builder-architected systems, this means the competitive posture
of the builder. Broadly speaking, we can identify three major competitive strategies
with architectural consequences: disrupt and dominate, agile response, and attrition.

DisrurT AND DOMINATE

This strategy is based on creating systems that disrupt existing operational patterns
or markets and building barriers to prevent others from taking advantage of those
disruptions. In the DC-3 case study, the DC-3 was a disruptive system in that it
caused systematic change to how airlines did business. However, Douglas was unable
to raise a strong barrier to prevent Boeing from entering the market space (although
Douglas had a valuable lead of several years). The Apple iPod and iTunes music store
combination is an example, or at least it was during the early 2000s, where patents,
copyrights, secrecy of proprietary technologies, and exclusive contractual arrange-
ments successfully formed barriers to competitive entry.

The architectural challenges in supporting this strategy are twofold. First, the
quality of the architecting must be exceptional, as the architect must create beyond
the boundaries of current systems. Great imagination is required, while simultane-
ously maintaining sufficient options (see the next section) to adapt to the inevitable
failures of imagination. Second, the approach must allow protection from competi-
tors who will employ an agile response strategy.

AGILE RESPONSE

This strategy emphasizes the organization’s capability to react more quickly and
effectively than the competition. It is important to emphasize both speed and effec-
tiveness because an ineffective response quickly delivered is still ineffective. A key
distinction between the disrupt and dominate strategy and agile response is that agile
response seeks to exploit the underlying flux in markets or military situations without
disrupting their overall structure. An agile responder in a commercial environment
produces new products within established markets faster and more effectively than
the competition but does not try to create entirely new markets. The agile response
strategy is especially effective in immature markets where changes in consumer pref-
erence and technology create many new opportunities. Put another way, it is less
valuable to be first if whoever is first mostly helps customers discover what they actu-
ally want, and somebody else can then cover the revealed preference.

From an architectural perspective, the challenges for agile response are again
twofold. First, to carry this strategy out effectively, the organization must be able to
very rapidly conceive, develop, and deliver new systems. This means that architect-
ing must be fast and must support a compressed development cycle. Second, at one
higher level of abstraction, the architecture of the organization and its product lines
must support agility. The organization and product lines must be structured to facili-
tate agility. Typically, the product-line architecture evolves much more slowly than
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the products and the product-line architecture sets out critical invariants, allowing
rapid development and deployment. So use of project-line architectures for improv-
ing agility is effective primarily to the extent that the space for variation inside the
product-line architecture is sufficient to cover the unknown demands.

ATTRITION

The classic example on the military side of the attrition strategy is to win by having
more firepower, manpower, logistic power, and willingness to suffer than your oppo-
nent. A business equivalent strategy is to prevail through access to large amounts of
low-cost capital, low-wage labor, and large distribution channels. When coupled with
a strong organizational capability for learning and improvement, this is a powerful
strategy, especially in mature markets where consumer preference changes slowly.
Architecting the attrition strategy is relatively slow and deliberate. The key archi-
tecture is the one embodied in the organization. Successful conduct of the attrition
strategy is dependent on access to the requisite resources, cheaply and at a large
scale. The strategy is likely to fail either when encountering a still larger and more fit
competitor, or when the underlying environment (markets, operations, and technol-
ogy) has an inherent rate of change high enough so that an agile response strategy
becomes more effective, or when the change is sufficient to be open to disruption.

RebucING THE Risks OF UNCERTAINTY OF END PURPOSE

A powerful architecting guide to protect against the risk of uncertain purposes is to
build in and maintain options. With options available, early decisions can be mod-
ified or changed later. A product-line architecture is a strategy for options, those
options encapsulated in what the product-line enables. Other possibilities include the
following: Build in options to stop at known points to guarantee at least partial sat-
isfaction of user purposes without serious losses in time and money, for example, in
databases for accounting and personnel administration. Create architectural options
that permit later additions, a favorite strategy for automobiles and trucks. Provisions
for doing so are often known as “hooks” in software to add applications and periph-
erals, “scars” in aircraft to add range and seats, “shunts” in electrical systems to
isolate troubled sections, contingency plans in tours to accommodate cancelations,
and forgiving exits from highways to minimize accidents.
In software, a general strategy is:

Use open architectures. You will need them once the market starts to respond.

As will be seen later, a further refinement of this domain-specific heuristic will be
needed, but this simpler version makes the point for now.

Perhaps the biggest uncertainties are those barely visible because they are embed-
ded in unexamined assumptions. The end of the Cold War was mostly a surprise,
and its consequences ripple through to today. A massive infrastructure of National
Security assumptions, built in huge institutions, reflected the belief that the Cold War
would persist into the indefinite future. At the tactical level, many programs are built
on poorly understood assumptions that sometimes are suddenly disrupted.
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Risk MANAGEMENT BY INTERMEDIATE GOALS

Another strategy to reduce risk in the development of system-critical technolo-
gies is by scheduling a series of intermediate goals to be reached by precursor or
partial configurations. At a more formal level, intermediate goals translate to pro-
gram templates built on incrementalism (functional incremental spiral, risk-driven
spiral, etc.). See Chapter 12 for additional details. Most programs have interme-
diate goals of some form as progress checkpoints. An incremental or risk-spiral
program formalizes that into the structure of the program itself. As examples of
building to intermediate goals, build simulators or prototypes to tie together and
synchronize otherwise disparate research efforts. Build partial systems, demon-
strators, or models to help assess the sensitivity of customer acceptance to the
builder’s or architect’s value judgments, a widely used market research technique.
As noted in the discussion of incremental and spiral programs, they also have
traps. A paired trap is building the demonstrator that effectively resolves a high
risk but doesn’t look enough like the planned end-product to convince sponsors
that progress has been made versus the flashy and convincing demonstration that
dangerously elides the fact that it avoided dealing with the most serious techni-
cal risks. As will be seen in Chapter 7, if these goals result in stable intermediate
forms, they can be powerful tools for integrating hardware and software.

Clearly, precursor systems have to be architected with the final product. If not,
their failure in front of a prospective customer can play havoc with future acceptance
and ruin any market research program. As one heuristic derived from military pro-
grams warns:

The probability of an untimely failure increases with the weight of brass in the vicinity.

If precursors and demonstrators are to work well “in public,” they better be well
designed and well built.

Even if a demonstration of a precursor succeeds, it can generate excessive con-
fidence, particularly if an untested requirement is critical. In one case, a U.S. Air
Force (USAF) satellite control system successfully and very publicly demonstrated
the ability to manage one satellite at a time; the critical task, however, was to control
multiple, different satellites, a test it subsequently failed. Massive changes in the
system as a whole were required. In another similar case, a small launch vehicle,
arguably successful as a high-altitude demonstrator of single-stage-to-orbit, could
not be scaled up to full size or full capability for embarrassingly basic mechanical
and materials reasons.

These kinds of experiences led to the admonition: Do the hard parts first.
Programmatically, this is almost always hard. Technically, it may not be hard
at all, as when the “hard part” is a discrete piece of technology. It becomes both
technical and programmatically difficult when the hard part is a unique function
of the system as a whole. Such has been the case for a near-impenetrable missile
defense system, a stealthy aircraft, a general aviation air traffic control system, a
computer operating system, and a national tax reporting system. The only cred-
ible precursor, to demonstrate the hard parts, had to be almost as complete as the
final product.
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In risk management terms, if the hard parts are, perhaps necessarily, left to last,
then the risk level remains high and uncertain to the very end. Leaving the high-
est risk to the end is the anti-thesis of the risk-driven spiral program template. The
justification for the system therefore must be very high and the support for it very
strong or its completion will be unlikely. For private businesses, this means high-risk
venture capital. For governments, it means support by the political process, a factor
in system acquisition for which few architects, engineers, and technical managers
are prepared. Chapter 13 is a primer on the subject. When the authors have discussed
this point with industry-experienced students, they frequently come up with what
might be an anti-heuristic. Students state that, in their experience, pushing risk to
late often happens because “doing the easy parts first” is how many programs show
progress and build confidence. There is also an embrace of the sunk cost fallacy that
once enough money has been invested, willingness to cancel goes down, even if the
estimate of the cost-to-go hasn’t changed that much because risks are still present.

THE “WHAT NEXT?” QUANDARY

One of the most serious long-term risks faced by a builder of a successful, technol-
ogy-driven system is the lack of, or failure to win a competition for, a successor or
follow-on to the original success.

The first situation is exemplified by a start-up company’s lack of a successor to its
first product. Lacking the resources in its early, profitless, years to support more than
one research and development effort, it could only watch helplessly as competitors
caught up and passed it by. Ironically, the more successful the initial product, the
more competition it will attract from established and well-funded producers anxious
to profit from a sure thing. Soon the company’s first product will be a “commaodity,”
something that many companies can produce at a rapidly decreasing cost and risk.
Unable to repeat the first success, soon enough, the start-up enterprise fails or is
bought up at fire-sale prices when the innovator can no longer meet payroll. This is
common and sad but hard to avoid.

The second situation is the all-too-frequent inability of a well-established com-
pany that had been successfully supplying a market-valued system to win contracts
for its follow-on. In this instance, the very strength of the successful system, a fine
architecture matched with an efficient organization to build it, can be its weakness
in a time of changing technologies and shifting market needs. The assumptions and
constraints of the present architecture can become so ingrained in the thinking of
participants that options simply do not surface.

In both situations, the problem is largely architectural, as is its alleviation.

For the innovative company, it is a matter of control of critical architectural fea-
tures. For the successful first producer, it is a matter of knowing, well ahead of time,
when purposes have changed enough that major rearchitecting may be required.
Each situation will be considered in turn.

CONTROLLING THE CRITICAL FEATURES OF THE ARCHITECTURE

The critical part of the answer to the start-up company’s “what next”” quandary is con-
trol of the architecture of its product through proprietary ownership of its basic features
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(Alberthal et al. 1993, Morris and Ferguson 1993). This is the second half of a disrupt
and dominate strategy. Examples of such features are computer operating systems,
interface characteristics, communication protocols, microchip configurations, proprie-
tary materials, patents, exclusive agreements with critical suppliers or distributors, and
unique and expensive manufacturing capabilities. Good products, although certainly
necessary, are not sufficient. They must also arrive on the market as a steadily improv-
ing product line, one that establishes, de facto, an architectural standard.

Surprisingly, one way to achieve that objective is to use the competition instead of
fighting it. Because success invites competition, it may well be better for a start-up
to make its competition dependent, through licensing, upon a company-proprietary
architecture rather than to have it incentivized to seek architectural alternatives.
Finding architectural alternatives takes time. But licensing encourages the competi-
tion to find new applications, add peripherals, and develop markets, further strength-
ening the architectural base, adding to the source company’s profits and its own
development base (Morris and Ferguson 1993). Heuristically: Successful architec-
tures are proprietary, but open. “Open” here refers to being extensible by other than
the originator, amenable to extension by other than the originator, though the propri-
etary nature implies an ability to control as well. Application frameworks on most
major operating systems today allow those other than the operating system devel-
oper/owner to build applications on their own but do not cede control of the platform
as a whole.

The computer industry has been a battleground of open source, open but propri-
etary, and closed architectures for decades. The greatest successes, if you measure
by the market capitalization of the companies, have mostly been to very selective
openness strategies. IBM made the PC hardware architecture very open, assuming
they could dominate production, and were overwhelmed by the clone makers. They
tried for years to reassert some level of proprietary control but could not succeed.
Microsoft made sure that their operating systems would run on all of the clone hard-
ware, and welcomed applications running on their software, but kept the operating
system itself proprietary. Apple went the entirely proprietary route and fell behind,
tried opening hardware in the 1990s (only to regret it), and later found extraordi-
nary success with the largely closed architecture of the iPhone. At the same time,
the open-source Internet infrastructure was sweeping away all proprietary network
protocols, of which there used to be many, most now dead or restricted to small
niches. Internet companies with huge market capitalizations (and obviously, there
are many of them) did it based on application layer platforms running on the open
infrastructure.

Decades earlier a different kind of architectural control was exemplified by the
Bell telephone system with its technology generated by the Bell Laboratories, its
equipment produced largely by Western Electric, and its architectural standards
maintained by usage and regulation. Deregulation broke it up and the switch to cel-
lular telephony finished the process. Others include Xerox in copiers, Kodak in cam-
eras, and Hewlett-Packard in instruments. All these product-line companies began
small, controlled the basic features, and prospered. But, as each of these also dem-
onstrated, success is not forever. The ultimate failure of each of these was rooted in
some combination of legacy or political change and a major technology shift leading
to an operational shift that the incumbent could not, or would not, follow.
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Thus, for the innovator, the essentials for continued success are not only a good
product but also the generation, recognition, and control of its basic architectural fea-
tures. Without these essentials, there may never be a successor product. With them,
many product architectures, as architecturally controlled product lines, have lasted
for years following the initial success. This adds even more meaning to the heuristic:
There’s nothing like being the first success (Rechtin 1991).

ABANDONMENT OF AN OBSOLETE ARCHITECTURE

A different risk-reduction strategy is needed for the company that has established and
successfully controlled a product-line architecture and its market but is losing out to
a successor architecture that is proving to be better in performance, cost, or schedule.
There are many ways that this can happen. Perhaps the purposes that original archi-
tecture has satisfied can better be done in other ways. Typewriters were replaced by
personal computers. Perhaps the conceptual assumptions of the original architecture
no longer hold. Perhaps competitors found a way of bypassing the original architec-
tural controls with a different architecture. Personal computers destroyed the market
for Wang word processors and, eventually, for proprietary workstations. As a final
example, cost risk considerations precluded building larger and larger spacecraft for
the exploration of the solar system. Perhaps that example, too, will be superseded if
the cost of large launch vehicles drops enough to change the risk posture in building
very large spacecraft.

To avoid being superseded architecturally requires a strategy, worked out well
ahead of time, to set to one side or cannibalize that first architecture, including the
organization matched with it, and to take pre-emptive action to create a new one. One
key move is the well-timed establishment of an innovative architecting team, unhin-
dered by past success and capable of creating a successful replacement. Another key
move is to make use of what they come up with, even when it interferes with past suc-
cess. Just such a strategy was attempted by Xerox in a remake of the corporation as it
saw its copier architecture start to fade and the rise of digital technologies. It declared
redefinition as “the document company” and made extraordinarily innovative work
(in new architectures) through the establishment of Xerox PARC (Palo Alto Research
Center). While PARC was extraordinarily successful, the benefits were largely reaped
by others rather than Xerox. While PARC was hardly a failure for Xerox, far greater
profits were realized by others who exploited the inventions and architectures that
came out of PARC. See Hiltzik (1999) for the now well-known story.

One can see PARC as a success, in that tremendous innovation was generated
without destroying the old, successful architecture (Spinrad 1992). One can see it as
a failure in that much of the value was realized by others when the legacy organiza-
tion was capable of only changing so far. Xerox understood the necessity of making
the architectural transition, and invested in it, for many years before being organiza-
tionally capable of actually making the transition. An important element of this was
the problem of shifting operational concept, or failure to do so. For example, Xerox
pioneered delivering an end-to-end system for desktop publishing. In the markets,
Xerox was effectively serving at the time (most large organizations), they already
had related capabilities, albeit far more manual. Manual or not, the capability was not
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essentially new, and so we had to make a different case to make headway. In contrast,
in the small-business and individual market, there was very little such capability. As
Apple Macintosh and other personal computer-based capabilities arrived a few years
later they were entering that market where there was little legacy to compete against.
The result, for them, was a dramatic success as they enabled capabilities in markets
where there had been very little.

CREATING INNOVATIVE TEAMS

Clearly, the personalities of members of any team, particularly an innovative archi-
tecting team, must be compatible. A series of USC Research Reports by Jonathan
Losk, Tom Pieronek, Kenneth Cureton, and Norman P. Geis, summarized in Geis
(1993), based on the Myers-Briggs Type Indicator (MBTI) (Isabel Briggs Myers et al.
1998), strongly suggest that the preferred personality type for architecting team mem-
bership is NT. That is, members should tend toward systematic and strategic analysis
in solving problems. As Cureton summarizes, “Systems architects are made and not
born, but some people are more equal than others in terms of natural ability for the
systems architecting process, and MBTI seems to be an effective measure of such
natural ability. No single personality type appears to be the ‘perfect’ systems archi-
tect, but the INTP personality type often possesses many of the necessary skills.”

Their work also shows the need for later including an ENTP (extroversion, intu-
ition, thinking, and perceiving), a “field marshal” or deputy project manager, not
only to add some practicality to the philosophical bent of the INTPs (introversion,
intuition, thinking, perceiving) but to help the architecting team work smoothly with
the teams responsible for building the system.

Creating innovative teams is not easy, even if the members work well together.
The start-up company, having little choice, depends on good fortune in its recruiting
of charter members. The established company, to put it bluntly, has to be willing to
change how it is organized and staffed from the top down based almost solely on
the conclusions of a presumably innovative team of “outsiders,” albeit individuals
chartered to be such. The charter is a critical element, not so much in defining new
directions as in defining freedoms, rights of access, constraints, responsibilities, and
prerogatives for the team. For example, can the team go outside the company for
ideas, membership, and such options as corporate acquisition? To whom does the
team respond and report—and to whom does it not? Obviously, the architecting team
better be well designed and managed. Remember, if the team does not succeed in
presenting a new and accepted architecture, the company may well fail.

One of the more arguable statements about architecting is the one by Frederick P.
Brooks Jr. and Robert Spinrad that the best architectures are the product of a single
mind. For modest-sized projects, that statement is reasonable enough. As projects get
larger and larger, it remains true but changes form. The complexity and workload of
creating large, multidisciplinary, technology-driven architectures would overwhelm
any individual. The observation of a single mind is most easily accommodated by a
simple but subtle change from “a single mind” to “a team of a single mind.” Some
would say “of a single vision” composed of ideas, purposes, concepts, presumptions,
and priorities. It is also critical to understand the difference between composing
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multidisciplinary teams and how teams form decisions. The key to a coherent archi-
tecture is coherent decision making. Majority votes by large committees are practi-
cally the worst-case scenario for gaining coherence of decision making over a long
series of related complex decisions.

One architect put the issue succinctly. When asked about the role of multidis-
ciplinary teams, he said: “Multi-disciplinary teams covering all stakeholders and
major subsystem areas are critical to effective space architecting, and I love using
them. As long as I get to make all of the decisions.” His point was simple—good
architecting requires diversity of view but unity of decision.

Another way to think about what “single mind” can practically mean is through
what teams really value from individuals. It is common on complex projects with
large teams for there to be a dependence on a very small cadre who “understand the
whole system.” Talk to one of them and you realize they don’t really understand the
whole system, in the sense of all of the details all the way down. What they have is a
form of “T-shaped” understanding. What sets them apart is understanding the whole,
usually in terms of whole-system input-output threads or whole-system performance
factors, coupled with in-depth understanding of how the end-to-end threads and per-
formance factors come about. Usually that doesn’t mean what happens to each bit
on the chain, but it usually does mean understanding all the steps, at least logically.
It is a true whole system perspective rather than subsystem or disciplinary perspec-
tive. Note that a systems engineer on a large program can be just as stovepiped in
understanding as a mechanical or software engineer if all that the systems engineer
understands is requirements, or reliability or some other system-level stovepipe.

In the simplest case, the single vision would be that of the chief architect and
the team would work to it. For practical as well as team cohesiveness reasons, the
single vision needs to be a shared one. In no system is that more important than
in the entrepreneurially motivated one. There will always be tension between the
more thoughtful architect and the more action-oriented entrepreneur. Fortunately,
achieving balance and compromise of their natural inclinations works in the
system’s favor.

An important corollary of the shared vision is that the architecting team, and not
just the chief architect, must be seen as creative, communicative, respected, and of a
single mind about the system-to-be. Only then can the team be credible in fulfilling
its responsibilities to the entrepreneur, the builder, the system, and its many stake-
holders. Internal power struggles, basic disagreements on system purpose and values,
and advocacies of special interests can only be damaging to that credibility.

As Ben Bauermeister, Harry Hillaker, Archie Mills, Bob Spinrad, and other
friends have stressed in conversations with the authors, innovative teams need to be
cultural in form, diverse in nature, and almost obsessive in dedication.

By cultural is meant a team characterized by informal creativity, easy interper-
sonal relationships, trust and respect, all characteristics necessary for team efficiency,
exchange of ideas, and personal identification with a shared vision. To identify with a
vision, they must deeply believe in it and in their chief. The members must acknowl-
edge and follow the lead of their chief or the team disintegrates.

Diversity in specialization is to be expected; it is one of the reasons for forming a
team. Equally important, a balanced diversity of style and programmatic experience
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is necessary to assure open-mindedness, to spark creative thinking in others, and to
enliven personal interrelationships. It is necessary, too, to avoid the “groupthink” of
nearly identical members with the same background, interests, personal style, and
devotion to past architectures and programs. Indeed, team diversity is one of the bet-
ter protections against the second-product risks mentioned earlier.

Consequently, an increasingly accepted guideline is that to be truly innovative
and competitive in today’s world: The team that created and built a presently suc-
cessful product is often the best one for its evolution—but seldom for creating its
replacement.

A major challenge for the architect, whether as an individual or as the leader of a
small architectural team, is to maintain dedication and momentum not only within
the team but also within the managerial structure essential for its support. The vision
will need to be continually restated as new participants and stakeholders arrive on
the scene—engineers, managers active and displaced, producers, users, and new cli-
ents. Even more difficult, it will have to be transformed as the system proceeds from
a dream to a concrete entity, to a profit maker, and finally to a quality production.
Cultural collegiality will have to give way to the primacy of the bottom line and,
finally, to the necessarily bureaucratic discipline of production. Yet the integrity of
the vision must never be lost, or the system will die.

The role of organizations in architectures, and the architecture of organizations, is
taken up at much greater length by one of the present authors (Rechtin 2017).

ARCHITECTING “REVOLUTIONARY” SYSTEMS

A distinction to be made at this point is between architecting in precedented, or evo-
lutionary, environments, and architecting unprecedented systems. Whether we call
such systems “revolutionary,” “disruptive,” or “unprecedented” seems more a mat-
ter of fashion. What is important is that the system stands apart from all that came
before it, and that is great change of businesses or militaries operate. One of the most
notable features of Rechtin (1991) was an examination of the architectural history of
clearly successful and unprecedented systems. A central observation is that all such
systems have a clearly identifiable architect or small architect team. They were not
conceived by the consensus of a committee. Their basic choices reflect a unified and
coherent vision of one individual or a very small group. Further reflection, and study
by students, has only reinforced this basic conclusion, while also filling in some of
the more subtle details. The case study that opened this chapter is a fine example.

Unprecedented systems have been both purpose-driven and technology-driven.
In the purpose-driven case, the architect has sometimes been part of the develop-
er’s organization and sometimes not. In the technology-driven case, the architect is
almost always in the developer’s organization. This should be expected as technol-
ogy-driven systems typically come from intimate knowledge of emerging technol-
ogy, and someone’s vision of where it can be applied to advantage. This person is
typically not a current user but is rather a technology developer. It is this case that is
the concern of this section.

The architect has a lead technical role. But this role cannot be properly expressed
in the absence of good project management. Thus, the pattern of a strong duo, project
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manager and system architect, is also characteristic of successful systems. In systems
of significant complexity, it is very difficult to combine the two roles. A project man-
ager is typically besieged by short-term problems. The median due date of things on
the project manager’s desk is probably yesterday. In this environment of immediate
problems, it is unlikely that a person will be able to devote serious time to longer-term
thinking and broad communication that are essential to good architecture.

The most important lesson in revolutionary systems, at least those not inextricably
tied to a single mission, is that success is commonly not found where the original
concept thought it would be. The Macintosh computer was a success because of
desktop publishing, not what the market assumed in its original rollout (which was
as a personal information appliance). Indeed, desktop publishing did not exist as a
significant market when the Macintosh was introduced. As noted in the discussion
on Xerox PARC, desktop publishing had been demonstrated several years before the
introduction of the Macintosh computer, and a product-line was available that pro-
vided it. But, that product-line was very expensive and targeted at large organizations
where the need was not apparent and had not sold well. This pattern of new systems
becoming successful because of new applications has been common enough in the
computer industry to have acquired a nickname, “the killer app(lication).” Taken nar-
rowly, a “killer app” is an application so valuable that it drives the sales of a particu-
lar computer platform. Taken more broadly, a “killer app” is any new system usage
so valuable that, by itself, it drives the dissemination of the system.

One approach to unprecedented systems is to seek the killer application that
can drive the success of a system. A recent noncomputer example that illustrates
the need, and the difficulty, is the search for a killer application for reusable space
launch vehicles. Proponents believe that there is a stable economic equilibrium with
launch costs an order of magnitude lower, and flight rates around an order of magni-
tude higher, than current. But, if flight rates increase and space payload costs remain
the same, then total spending on space systems will have to be far higher (roughly
an order of magnitude, counting only the payload costs). For there to be a justifica-
tion for high flight rate launch, there has to be an application that will realistically
exploit it. That is, some applications must attract sufficient new money to drive up
payload mass.

Various proposals have been floated, including large constellations of communi-
cation satellites, space power generation, and space tourism. If the cost of payloads
was reduced at the same time, their flight rate might increase without total spend-
ing going up so much. But the only clear way of doing that is to move to much
larger-scale serial production of space hardware to take advantage of learning curve
cost reductions. This clearly indicates a radical change to the architecture not only of
launch, but to satellite design, satellite operations, and probably to space manufactur-
ing companies as well. And all these changes need to take place synchronously for
the happy consequence of lowered cost to result.

Now is not the first time the arguments on flight rate and economies of scale for
space systems have been floated. They were an important part of the Space Shuttle
discussion, and the numbers did not work out (Rechtin 1983). In the late 1990s, there
was a burst of excitement about this approach, driven by multiple proposals for large
constellations of communication satellites, first the Iridium system and then the
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proposals for Teledesic, Celestri, and others. But Iridium went bankrupt (being pulled
from bankruptcy by a deal with the U.S. Department of Defense as an anchor cus-
tomer), and the others were canceled. At the time of the writing (early 2020s), there
is a new burst of excitement driven by the success of SpaceX in reusable boosters and
the very large Starlink constellation going into operation. Relative to the point above,
proliferated low earth orbit constellations for communications are driving serial pro-
duction and lower payload costs per kilogram. The question is, is there a case beyond
communications satellites? It still seems that something else with more mass, and
associated revenue opportunities, than proliferated communication satellites will be
necessary to drive high flight rate on large boosters. Other proliferated constellations
are under development, in both commercial and government operational areas, but
something much larger in mass and revenue still seems to be necessary.

Such synchronized changes have occurred in other industries. The semiconductor
industry has experienced decades of 40% annual growth because such synchronized
changes have become ingrained in the structure of the computer industry. As the
production and design technology improve, the total production base (in transistor
quantity and revenue) goes up. Lowered unit costs result in increased consumption of
electronics even larger than the simple scale-up of each production generation. The
resulting revenue increases are sufficient to keep the process going, and coordinated
behavior in the production equipment supplier, design system supplier, and consumer
electronic producers smooths the process sufficiently for it to run stably for decades.

In summary, the successful architect exploits what the market demonstrates as the
killer application, assuming he or she can predetermine it. The successful innovator
exploits the first-to-market position to take advantage of the market’s demonstration
of what it really wants faster than the second-to-market player does. The successful
follower beats the first-to-market by being able to exploit the market’s demonstration
more quickly. Each is making a consistent choice of both strategy and architecture
(in a technical sense). We explore this issue in depth in Chapter 12.

SYSTEMS ARCHITECTING AND BASIC RESEARCH

One other relationship should be established that between architects and those
engaged in basic research and technology development. Each group can further
the interests of the other. The architect can learn without conflict of interest. The
researcher is more likely to become aware of potential sponsors and users.

New technologies enable new architectures, though not singly or by themselves.
Consider solid-state electronics, fiber optics, software languages, and molecular
resonance imaging for starters. Innovative architectures can provide the rationale
for underwriting research, often at a very basic level. Yet, though both innovative
architecting and basic research explore the unknown and unprecedented, there
seems to be little early contact between their respective architects and researchers.
The architectures of intelligent machines, the chaotic aerodynamics of active sur-
faces, the sociology of intelligent transportation systems, and the resolution of conflict
in multimedia networks are examples of presumably common interests. Universities
might well provide a natural meeting place for seminars, consulting, and the creation
and exchange of tools and techniques.
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New architectures, driven by perceived purposes, sponsor more basic research
and technology development than is generally acknowledged. Indeed, support for
targeted basic research undoubtedly exceeds that motivated by scientific inquiry.
Examples abound in communications systems that sponsor coding theory, weapons
systems that sponsor materials science and electromagnetics, aircraft that sponsor
fluid mechanics, and space systems that sponsor the fields of knowledge acquisition
and understanding.

It is therefore very much in the mutual interest of professionals in research and
development (R&D) and systems architecting to know each other well. Architects
gain new options. Researchers gain well-motivated support. Enough said.

HEURISTICS FOR ARCHITECTING TECHNOLOGY-DRIVEN
SYSTEMS

GENERAL

* An insight is worth a thousand market surveys.

e Success is defined by the customer, not by the architect.

e In architecting a new program, all the serious mistakes are made in the first
day.

e The most dangerous assumptions are the unstated ones.

* The choice between products may well depend upon which set of drawbacks
the users can handle best.

e As time to delivery decreases, the threat to user utility increases.

e If you think your design is perfect, it is only because you have not shown it
to someone else.

e If you do not understand the existing system, you cannot be sure you are
building a better one.

e Do the hard parts first.

e Watch out for domain-specific systems. They may become traps instead of
useful system niches, especially in an era of rapidly developing technology.

e The team that created and built a presently successful product is often the
best one for its evolution—but seldom for creating its replacement. (It may
be locked into unstated assumptions that no longer hold.)

SPECIALIZED

From Morris and Ferguson (1993):

e Good products are not enough. (Their features need to be owned.)

e Implementations matter. (They help establish architectural control.)

e Successful architectures are proprietary, but open. (Maintain control over
the key standards, protocols, etc., that characterize them but make them
available to others who can expand the market to everyone’s gain.)
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FROM CHAPTERS 2 AND 3

» Use open architectures. You will need them once the market starts to respond.

CONCLUSION

Technology-driven, builder-architected systems, with their greater uncertainty of
customer acceptance, encounter greater architectural risks than those that are pur-
pose-driven. Risks can be reduced by the careful inclusion of options, the structuring
of their innovative teams, and the application of heuristics found useful elsewhere.
At the same time, they have lessons to teach in the control of critical system features
and the response to competition enabled by new technologies.

EXERCISES

1. The architect can have one of three relationships with the builder and client.
The architect can be a third party, can be the builder, or can be the client.
What are the advantages and disadvantages of each relationship? For what
types of system is one of the three relationships necessary?

2. In a system familiar to you, discuss how the architecture can allow for
options to respond to changes in client demands. Discuss the pros and cons
of product versus product-line architecture as strategies in responding to the
need for options. Find examples among systems familiar to you.

3. Architects must be employed by builders in commercially marketed sys-
tems because many customers are unwilling to sponsor long-term develop-
ment; they purchase systems after evaluating the finished product according
to their then-perceived needs. But placing the architect in the builder’s orga-
nization will tend to dilute the independence needed by the architect. What
organizational approaches can help to maintain independence while also
meeting the needs of the builder organization?

4. The most difficult type of technology-driven system is one that does not
address any existing market. Examine the history of both successful and
failed systems of this type. What lessons can be extracted from them?

NOTES

1 Chief architect, General Dynamics YF-16, which became the F-16 Fighter. As stated
in a University of Southern California (USC) Systems Architecting lecture, November
1989.

2 Not to be confused with “reference architectures” in the Standards sense, taken up in
Chapter 11.
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Case Study 3

Mass and Lean Production

INTRODUCTION

Today, mass production is pervasive. Everything from cars to electronics is made
in quantities of hundreds of thousands to millions. From the perspective of the 19th
and early 20th centuries, products of extraordinary complexity are made in huge
numbers. The story of mass production is significantly an architectural story. It
is also a story of the interaction of architectures, in this case, the interaction and
synergy between the architectures of system-products and systems that built those
products. The revolution that took place in production was dependent on changes
in how the produced systems were designed, and design changes had synergistic
effects on production. The characteristics and structures of the surrounding human
systems were also critical to the story, notions that we will take up in later chapters.
In the later 20th century, the classical notion of mass production has been chal-
lenged by the methods of lean production. Lean is clearly an evolution of mass, in
that both are methods of production at a similar scale of similar products. But lean
production is a deep evolution, one that challenges essential principles and requires
an architectural remaking.

This case study is a high-level survey that emphasizes the sweep of changes over
time instead of details and the nature of architectural decision making in mass pro-
duction. We start by reviewing the history of mass production, from an architecture
perspective, focusing on the auto industry. We survey from the era of auto production
as a cottage industry, through the development of mass production by the Ford Motor
Corporation, to the era of competition from other U.S. manufacturers, and end with
the development of the Toyota Production System (TPS). We strongly follow the his-
tory laid out in Sorensen and Williamson (2006), Womack et al. (2007), Ohno (2019),
and Liker (2020), but with an interpretation in terms of the systems architecture
concepts of this book.

AN ARCHITECTURAL HISTORY OF MASS PRODUCTION

The auto industry is hardly the only example of mass production, but it is usually
considered as prototypical. The innovations in production at Ford, and later Toyota,
substantially define the basic structures of modern mass production. The Ford sys-
tem of production became the model for industry after industry, and the concepts
filtered into society at large. The Toyota Production System is the prototype for
Lean Production, now likewise a fundamental paradigm for organization in multiple
industries, increasingly including service industries.
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FIGURE CS3.1 Key events in the architecture of automobile mass production.

In the sections following, we cover major blocks of time and consider how deci-
sions about basic organizing structure of production were synergistic (or antagonis-
tic) with how systems were designed. For convenience, refer to Figure CS3.1 for the
sequencing and relationship of events.

CotT1AGE INDUSTRY (1890s TO 19005)

As auto production began in the 1890s, it was a classic cottage industry. Small groups
of workers assembled each vehicle in a shop. The process involved bringing in a
stream of parts (or machining them locally) and assembling them as a small team in
one place. Parts were not really interchangeable, each part typically required hand
work to be fitted with others into assemblies. When the vehicle was complete, it was
driven or otherwise moved away.

Automobiles built this way were very expensive. High prices and the small mar-
ket went hand-in-hand and were strongly coupled with low production. Because
the vehicles were expensive, they were a luxury item with a very narrow customer
base. Because the market was small, economies of scale were limited and so prices
were high.

Henry Ford understood the problem very well and was personally convinced that
the way forward was in lower prices and larger production. He developed a conviction
that high-quality automobiles could be, and should be, produced at cost low enough
for average people to afford. The “car for the masses” would revolutionize society.
He clashed repeatedly with his business partners over this, as they were convinced
higher profits could be realized by concentrating on more expensive, high-margin
vehicles. Over the short run, his partners were almost certainly right. Over the long
run, the situation in automobiles was analogous in some ways to the situation in
commercial aircraft just before the introduction of the DC-3 discussed in the case
study before Chapter 3. The introduction of a new system would create a qualitative
change in the structure of the market (and drive structural, architectural change in
both production and systems).
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BIRTH OF MaAss ProbucTioN (1908-1913)

Ford’s dream of a car for the masses was realized with the famous Model T. The Model
T was introduced in 1908 and was eventually produced in numbers vastly greater than
any car previously. For the first few years, it was produced at the Ford Piquette Avenue
plant, Detroit, Michigan. In terms of this book, in the early days, Henry Ford was
both sponsor and architect, although his role was clearly more sponsor as time went
on (Sorensen and Williamson 2006). The architecture established at this point would
become a decades-long invariant, although (Womack et al. 2007) point out how there
was a substantial change from the first iteration to the later highly vertically integrated
form. Ironically, the earliest forms bear significant relationships to the more flexible
forms found in lean production. The architecting was done by a very small group, with
leading credit probably best given to Charles Sorensen, at least according to Sorensen
(Sorensen and Williamson 2006), with others having key roles. Sorensen had primary
responsibility for the production system, with several others individually having leader-
ship in other basic elements of the Ford production system architecture. According to
Sorensen, the first experiments in the production line took place at the Piquette Avenue
plant in mid-1908 on the Model N, an immediate predecessor to the Model T.

The Model N had been introduced as an incomplete prototype at the 1906
Detroit auto show. It was not disclosed that the show car was incomplete, and so the
announced price of $500 was a sensation and generated terrific demand. The Model
N demonstrated the latent demand for a solid, low-cost car. The Model T, with its
superior engineering for production, was able to exploit that demand.

As Sorensen recounts, he and a small team spent Sundays during the summer of
1908 experimenting on the production floor of the Piquette Avenue plant. They laid
out the parts required for a car from one end of the long narrow building floor to the
other. They mounted a frame on skids and then dragged the skid down the floor, stop-
ping along the way to add the parts that had been preplaced.

As an amusing aside, and as a wonderful indication of how obvious things go unno-
ticed when great innovations are made, Sorensen points out why the assembly line model
was not actually used in production until 5years later, in 1913. The main problem was
that at the Piquette Avenue plant, the assembly floor was the third floor of the building,
the top floor. In retrospect, this is laughable. Why put the place where you need to move
all the production parts to and from three floors up off the ground? But in the early
1900s, this did not seem so obvious. When you make only a few cars, why put that messy
operation on the ground floor, which has the nicer space for the staff (including sales)?

Once the Model T was introduced, and demand immediately exploded beyond the
capacity of the Piquette Avenue plant, Ford built an all-new plant at Highland Park,
Michigan, where the assembly line was brought to fruition in 1913. As we shall see in
a later section of this case study, there is more to the structure of the Ford system than
the assembly line, and those other structural elements play at least as important a role.

CompeTITION FROM NEW QUARTERS (1920s T0o 19305)

The Model T and its production system were based on a simple, virtuous cycle.
Lowering costs allowed prices to be lowered, which increased sales and produc-
tion, which enabled greater economies of scale, which lowered costs. Ford believed
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in the primacy of this virtuous loop, and other considerations were subordinated to
maximizing production to gain economies of scale. Ford’s pursuit of the Model T
was driven by an innate belief in the value of a car for the masses. The vision was
eventually overturned by an alternative vision spawned by market forces.

By the mid-1920s, Chevrolet was rapidly catching up to Ford in production num-
bers. They were catching up primarily by making better-looking, more-exciting cars,
and marketing looks and excitement. Although the Model T was a very solid car, a
new era had begun, based on market penetration of automobiles being large enough
so that people began to see them as partially fashion-driven goods. When market
penetration for automobiles became high, the purely utilitarian aspect of automo-
bile ownership began to be replaced by automobiles as status symbols. When status
played an important role, it quickly became the case that status was no longer con-
veyed simply by having a car, but by the car one had.

Model T production was shut down in 1927. Over the next decade, competition
between Ford and its competitors (most famously General Motors, also Plymouth
and Chrysler) moved to the model-year change system. Different models were pro-
duced for different market segments, and those models were regularly changed in
external style and engineering features. The changes were synchronized with mar-
keting campaigns to drive demand. Economies of scale in mass production were still
of great importance, but the scale was not unlimited. The Model T had tested the
outer envelope of focusing purely on cost reduction through scale and was displaced
by a more complex mixture of engineering, production, and marketing.

THe ToyoTtAa ProbucTION SYSTEM (1940s 1O 19805)

The development of the Toyota Production System (TPS) (Ohno 2019) can be said to
have revolutionized manufacturing as did Ford’s mass production system. Although
the revolution was slower and less dramatic, it was in some ways more surprising
as it occurred in an industry already apparently mature. By the 1950s, the automo-
bile business appeared mature. Cars were much improved, but their architecture had
changed little in decades, and the architecture of production likewise changed little.
The revolution of the TPS has no dramatic moments like the assembly experiments
at Piquette Avenue. The TPS revolution was a revolution by evolution, a case where
incrementally change, accreted steadily enough and long enough, it takes on a quali-
tatively different flavor. Those incremental changes were driven, however, by more
basic insights.

The TPS did not outwardly change the architecture of either cars or production.
Both cars and factories built in accordance with TPS appear much the same as did
cars and factories before. But the improvements in quality and cost brought Toyota
from a nonentity in the business to a neck-and-neck contender for the largest auto
manufacturer. This displacement of multiple, dominant, profitable firms is very
unusual.

The architecture of the TPS is The Toyota Way (see below). Thus, the TPS is
a sociotechnical system, and its architecture is likewise more social than techni-
cal. The most important elements are the shared principles and the means of their
application.
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METAPHOR OR VISION CHANGES

At each of the stages, the story is captured by a metaphor or basic vision. It is hard to
know exactly how important the conceptual vision is, but the testimony of the people
directly involved indicates that the coherent vision, the thing they could aim at, was
an inspiration and guide, and they gave it great weight. Sorensen reports repeatedly
that Henry Ford was devoted to his vision of cars for the masses, and his reluctance
to recognize that it had run out of force caused great difficulty when it finally became
obvious to everybody except Henry Ford that the time of the Model T was past. Ohno
likewise speaks repeatedly of how various metaphors drove his thinking in how to
re-organize production.

CRAFTSMEN

Early automobiles were craftsmanly products, like bespoke suits. They were made
by individual craftsmen and possessing one was a mark of status. Originally, there
was no other choice, parts not being sufficiently interchangeable forced craft work
at every stage of production. Being made by individual craftsmen, they carried the
marks of those craftsmen (sometimes good, sometimes bad). Like nearly all crafts-
manly products, these cars were very expensive.

The craftsmanly approach to cars is still not quite dead. A few cars, naturally
very expensive and basically toys for adults, are built by individual teams of crafts-
man. The individual attention is a selling point, even if it objectively probably
yields poorer quality than the best cars made in lean factories. As (Womack et al.
2007) point out, the pull of the craftsman ideal persisted for many decades and
remained a barrier to full implementation of mass production, and later lean
production, in some companies and market areas all the way to the end of the
20th century.

A CAR FOR THE MassEes, Oor IF WE Buip I, IT WiLL SeL

Henry Ford’s most famous quote is probably “The customer can have any color
he wants, as long as it is black.” Black was apparently chosen mostly because the
high-quality black paint of the time was the fastest drying and thus allowed the pro-
duction line to operate more efficiently. The paradigm for Ford operations from the
introduction of the Model T to the mid-1920s was that the only real problem was
making more Model Ts, cheaper. If they could be made, they could be sold or so the
belief ran. This was the virtuous cycle of economies of scale and cost reductions. For
roughly 15 years, this was an effective strategy and reflected the (temporary) correct-
ness of Henry Ford’s basic vision.

CARs As FASHION

By the mid-1920s, cars were no longer a rarity in the United States. There were
enough reliable cars around that a used car market had begun. As Chevrolet and oth-
ers introduced frequent style and model changes, they brought a fashion sensibility to
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automobiles. Henry Ford’s simple vision of cheap transportation for the masses gave
way to affordable status and transportation for the masses, and eventually a whole
hierarchy of desire and status much like other mature product areas.

THE SUPERMARKET METAPHOR AND “PuLl” PRODUCTION

In Taiichi Ohno’s book on the Toyota Production System, he makes a striking obser-
vation about his inspiration for the TPS. He says that when he toured the United
States in 1956 to see the Ford and General Motors factories, he was more impressed
by supermarkets. He adopted a supermarket metaphor for the organization of produc-
tion. The idea was that the consumer (who in a production system is also a supplier
to a later phase) can reach into the supermarket and get exactly what he or she needs,
and the act of the consumer taking it “pulls” a replacement onto the shelf. The meta-
phor captures the idea of “pull” being the controlling factor in inventory and allow-
ing inventory to match needs, becoming a natural way to control production flow. In
contrast to Henry Ford’s paradigm of pushing automobiles out, knowing they would
be sold, the TPS model is to produce and deliver just what is sold and refill just what
is taken. Ohno writes that the supermarket metaphor had been in use since the late
1940s, but his trip to the United States solidified his commitment to the metaphor.

THe ToyotaA Way

Beyond the supermarket metaphor, Toyota promulgates a larger philosophy known as
“The Toyota Way.” The Toyota Way (Liker 2020) could be thought of as a metaphor
or vision in the large, composed as it is of 14 principles that themselves are reasonably
complex. The Toyota Way defines an overall approach to doing a production-oriented
business in general and is not restricted to automobiles. It does not have a distinct
end point (as Ford’s vision did); rather, one of the principles is to embrace a sense of
urgency for continuous improvement, regardless of current business conditions. The
Toyota Way is, by design, a more embracing philosophy than a single vision. The 14
principles identified by Liker are essentially heuristics, as discussed in this book or
are easily translated into such heuristics.

ELEMENTS OF THE ARCHITECTURE OF THE
FORD PRODUCTION SYSTEM

The architecture of Ford mass production was not just the assembly line, or the River
Rouge factory (Dearborn, Michigan), or the Model T. The architecture of the enter-
prise as a whole, the architecture that brought mass production its power, had four
major components: Parts interchangeability, the production line, distributed produc-
tion with synergistic system design, and management processes.

PARTS INTERCHANGEABILITY

Womack points out that the true pre-condition for Ford’s creation of mass production
was the ability to build parts that were completely interchangeable (did not require
manual rework as part of the assembly process). This required both technical and
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managerial advancements. Examples on the technical side include the development of
machine tools capable of forming parts after hardening treatment rather than harden-
ing (and thus distorting) parts already made. The management side involved things like
standardization of measurement, specification, and inspection. With full parts inter-
changeability the assembly process could be simplified and standardized and broken
down into steps small enough to allow for rolling assembly and the assembly line.

THE AsSemMBLY LINE

By far the most famous element of the mass production enterprise is the assem-
bly line. As noted above, the experiments in fixing assembly stations and moving
the vehicle down the factory floor began with the Model N in the Piquette Avenue
plant. The physical constraints of the plant prevented full implementation until the
Highland Park plant was built to produce the Model T.

The assembly line also led to a variety of other possibilities for efficiencies. Once
the basic notion of configuring the flow to optimize material handling was present, the
full power of engineering and statistics could be brought to bear to further improve the
process. Moreover, assembly production should be (and eventually would be) synergis-
tic with design. Automobiles eventually were designed to be easy to assemble within
the Ford enterprise, and the enterprise adjusted itself to what it was possible to design.

ENTERPRISE DISTRIBUTION

The assembly line was just one of the major innovations that enabled mass produc-
tion. As production volumes grew larger and larger the problem of factory scaling
began to appear. There are upper limits to the practical size of a factory. Eventually,
the major constraint is transportation. A factory in the Detroit area (or anywhere else)
simply cannot bring arbitrarily large quantities of raw materials and parts and cannot
move out arbitrarily large quantities of finished products. Eventually, transportation
capacity runs out.

So, when it is necessary to build more factories in geographically distributed loca-
tions, how do we divide up the production tasks? The solution eventually arrived at
in automobiles is to divide production along vehicle subsystem lines. So, engines are
made in one location, chassis in another, bodies in still another, and all are brought
together in assembly plants. The assembly plants can be located relatively close to
major markets, and the others can be distributed based on what areas are favorable
to the particular manufacturing task. The distribution of factories, especially final
assembly, also came to match political constraints. Some work needed to be done in
end-markets abroad, and systems of different tariffs on different levels of assembly
drove aspects of enterprise distribution.

This division on vehicle subsystem lines is, or can be, synergistic with vehicle
design. Design should be synergistic both with the detailed problem of assembly and
the larger problem of how the production enterprise is distributed. For example, tight
tolerance processes should be inside subsystems, and the interfaces between them
should be less demanding. The subsystems should be designed in ways that facilitate
testing and quality control at the point of production. Over time, the production pro-
cesses, vehicle designs, and supplier networks coevolved.
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MANAGEMENT PROCESSES

The assembly line, distribution of plants, and vehicle subsystems are all obviously
physical structures. But history also identifies certain management processes and the
synergistic changes they drove as fundamental structural elements (that is, architec-
tural elements) in the development of mass production.

QUuALITY ASSURANCE FOR DISTRIBUTED PRODUCTION

Consider how quality assurance and quality control change when production becomes
distributed. If all production steps are under the same roof, when a problem appears,
an engineer can simply walk from one part of the factory to another to understand
the source of the problem. When the engine, frame, and transmission factories were
in different parts of the United States, and the year was 1920, moving among the
factories to straighten out problems was a serious burden.

Part of the success of mass production was the development of new quality assur-
ance and control techniques to manage these problems. Similarly, new supplier
management techniques were introduced. Many of the techniques like just-in-time
production and negotiated learning curves that are considered very modern tech-
niques were known to Ford and his architects, if not necessarily implemented in the
same way or with the same priorities as would come to pass in lean production. In
Ford’s time, the sophistication level was much lower, and the technology did not allow
optimization in the ways that it is possible today, but the concepts were already known.

Moving to the TPS era, as quality control improved, it eventually became pos-
sible to make architectural-level changes to the assembly process. For example, when
very high-quality levels are attained, testing and inspection processes can be greatly
reduced and simplified. When quality levels are very high stocks and work-in-
progress can be reduced with little impact on production continuity. If the defect rate
is low enough, it is no longer economic to conduct multistep inspection and testing
processes. With an extremely low defect rate, testing and inspection can be pushed
to the final, full system level.

As the concepts of lean production became widely known, and the advantages
became obvious, the role of quality in enabling (and disabling) architectural shift
likewise became apparent. The obvious temptation in implementing the lean con-
cepts in TPS was to do so at the assembly plant. But doing so is critically dependent
on the quality of parts. If the defect rate on parts is too high, and you stop the pro-
duction line for root cause analysis every time a defect is discovered, the system will
never run. If part quality is low then more stocks are required to avoid disruptions.
The quality of the parts delivered to assembly is a pre-condition to leaning assembly.
If the enterprise is attempting to implement lean concepts at assembly but cannot
change the upstream supply chain, the effort is doomed. The change is architectural,
something General Motors discovered when they attempted to extend the lessons
learned from their joint assembly plant with Toyota to other assembly plants one at a
time (Langfitt 2015).

The Toyota Production System can be seen to be driven by quality. First, it places
the quality of the delivered product as the highest priority. It strives for quality
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through the continuous and incremental results of core heuristics, implemented as
processes. Of particular relevance is the principle of root cause analysis of defects
(Ohno 2019), the source for the “Five Whys” heuristic we cite and use in this book,
albeit generalized to a broader set of circumstances, as is the goal with architec-
tural heuristics. Continual use of root cause analysis leads to organizational learning,
which itself has synergistic effects throughout.

DevoTioN To COMPONENT-LEVEL SIMPLIFICATION

Ford and his architects were devoted to component-level simplification. They con-
tinually looked for ways to simplify the production of individual components and to
simplify major subsystems. A major method was to cast larger and more complicated
iron assemblies. This eventually resulted in the single-piece casting of the V8 engine
block used in the most successful Ford immediately prior to World War I1. That basic
engine block casting design and technique was used for decades afterward.

The movement to larger and more complex castings is a fine example of the
Simplify heuristic at work. A dictate to “simplify” sounds good, but how does one
actually apply it? The application must be in the architect’s current context. In the
case of Ford and Sorenson, castings that were very complex to develop were ulti-
mately “simple” because of the simplification they brought to the assembly process.
Making the castings was only complex up to the point it was fully understood. Once
it was understood, it could be carried out very consistently and allowed for great
simplifications in downstream assembly.

Simplification is likewise part of the lean process, though seen and implemented
in different ways. An aspect cited in Womack et al. (2007) makes for an interest-
ing contrast to the practices in traditional mass production by Ford. Toyota involves
their suppliers more deeply in the design process, and in a tiered relationship. The
top-tier suppliers are invited to co-design subassemblies as a new car design evolves,
frequently making for larger, more integrated subassemblies to be supplied. This
increases the complexity of the “parts” delivered to the assembly plant (as they are now
larger assemblies themselves) but means fewer such parts delivered to final assembly
and off-loads much of the engineering design load to suppliers. This stands in contrast
to Ford’s emphasis on vertical integration of subassemblies and even low-level parts
making into the huge factory complexes of the height of the mass production era.

SociaL CONTRACT

On the labor relations front, Henry Ford is both famous and infamous. He is famous
for introducing much higher wages, specifically targeting his wages to allow all of his
workers to be able to realistically afford one of the cars they were building. This was
consistent with Ford’s overall vision of cars for the masses. After all, what masses
could he be building cars for if not the masses that he himself employed? Henry Ford
is also infamous for some of his other labor practices, such as his intrusions into the
private lives of his workers. The architects of the TPS were well aware of both sides
of Ford’s labor relations and believed that the architecture of the production system
must be reconciled with a stable social contract with the workers.
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All systems of productivity improvement must reconcile the improvements that
are in the interests of owners with the interests of the workers. If each improvement
simply leads to higher worker production quotas and job losses, it is hardly likely
that workers will be enthusiastic participants in the improvement process. In the
rapid growth days of Ford, when wages were doubled over those otherwise prevail-
ing, Ford workers had obvious reasons for believing their own interests were aligned
with Ford’s.

Toyota faced their own labor problems, but under worse circumstances in the
early years. This led to their well-known lifetime employment policy something that
became part of the social architecture of lean production. As a consequence of the
policy, they were little constrained by other work rule limitations. Workers could
be cross-trained and moved between jobs without the kind of work rule constraints
typical under U.S. labor contracts. Toyota workers relied on the lifetime employ-
ment scheme and seniority-based pay rates and were willing to work otherwise in
an interchangeable team member structure. Toyota did not have a problem sustain-
ing the lifetime employment policy because of the very rapid growth rates from the
1960s onward, first in the Japanese market and then in export markets. Tying signifi-
cant portions of compensation to annual profits also helped smooth out the financial
demands of downturns without layoffs.

OTHER PERSPECTIVES

Manufacturing is an enormous, global endeavor. The literature is huge and we refer
here only to some basic summaries. This case study’s goal was to consider some of
the most famous and familiar production models from the perspective of architec-
ture, that is essential, defining forms and the purposes that drove them. They are also
rich sources of heuristics that apply beyond their initial domain. A popular alter-
native perspective on manufacturing system architecture, extending to the overall
enterprise, is the Theory of Constraints (TOC) (Rahman 1998, Goldratt 2012, 2017,
Mabin and Balderstone 2020). TOC likewise finds its own metaphors, heuristics, and
organizing principles.

CONCLUSION

Ford and Toyota are the two classic examples of mass production, with the first
having created the architecture and the second having transformed it. Both have
recognizable architectural histories and easily identified architects. Both created
changes that have rippled into fields well beyond their own. Ford was able to pio-
neer mass production of systems as complex as the automobile. The architecture
of the Ford production system was sociotechnical, but with a heavy emphasis on
the technical. We can see directly the technical innovations that made it work and
that defined its essential structures (the assembly line, distributed production, new
management techniques).

The TPS architectural success was smaller in that it did not create a new industry,
but was larger in that TPS succeeded against a backdrop of established and strong
competitors. Likewise, TPS has reached its architectural influence well beyond the
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production of cars, a process that is still ongoing. The development of the TPS is also
an example of where incremental change, sufficiently accumulated, can eventually
become revolutionary. The architecture of the TPS is much more socio than techni-
cal. In its embodiment in the Toyota Way, it is described essentially as philosophy,
albeit an operative philosophy, one directly usable in practical decision making.
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4 Manufacturing Systems

INTRODUCTION: THE MANUFACTURING DOMAIN

Although manufacturing is often treated as if it were one step in the develop-
ment of a product, it is also a major system in itself. As a complex system on its
own, it has its own architecture; see Hays et al. (1988), particularly Chapter 7.
It has a system function that its elements cannot perform by themselves—making
other things with machines. And it has an acquisition waterfall for its construc-
tion quite comparable to those of its products. The architecture of the manufac-
turing system and the architecture of the system of interest must relate to each
other. More broadly, both exist within the structure of the development program,
which should be chosen consciously and deliberately to yield the desired proper-
ties for the client.

From an architectural point of view, manufacturing was quiet for a long time. Such
changes, as were required, were largely a matter of continual, measurable, incremen-
tal improvement—a step at a time on a stable architectural base. Though companies
came and went, it took decades to see a major change in its members. The percent-
age of sales devoted to research and advanced development for manufacturing, per
se, was small. The need was to make the classical manufacturing architecture more
effective—that is, to evolve and engineer it.

Beginning in the 1970s and accelerating through the 1990s and beyond, the
world that manufacturing had supported for almost a century changed—and at
a global scale. Driven by political change in China and other countries and by
new technologies in global communications, transportation, sources, markets,
and finance, global manufacturing became practical and then, shortly thereafter,
dominant. It quickly became clear that qualitative changes were required in manu-
facturing architectures if global competition were to be met. In the order of con-
ception, the architectural innovations were ultraquality, dynamic manufacturing
(Hays et al. 1988), lean production (Womack et al. 2007, Ohno 2019), and “flexible
manufacturing” (producing markedly different products on demand on the same
manufacturing line). The results to date, demonstrated first by the Japanese and
then spread globally, have greatly increased profits and market share and sharply
decreased inventory, work-in-progress, and time to market. Each of these innova-
tions will be presented in turn.

Even so, rapid change is still underway. As seen on the manufacturing floor,
manufacturing research as such has yet to have a widespread effect. Real-time
software is still a work-in-progress. Trend instrumentation, self-diagnosis, and
self-correction, particularly for ultraquality systems, are far from commonplace.
So far, the most sensitive tool for ultraquality is the failure of the product being
manufactured.
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MANUFACTURING IN CONTEXT

Before discussing architectural innovations in manufacturing, we need to place
manufacturing in context. At some point, a system needs to be built, or it is of little
interest. The building of the system is “manufacturing.” But there are several distinct
scenarios.

FuLL DEVELOPMENT FOLLOWED BY SERIAL PRODUCTION

This applies to and is common in situations where we build tens to millions of copies
of a system after producing one or more complete prototypes. The prototypes, which
may themselves be the end of a series of intermediate prototypes, are essentially
identical to the system to be manufactured. The testing conducted on the prototypes
is commonly referred to as “qualification” testing and is to show that the system to
be built is fully suitable (in function, environmental suitability, and all other respects)
for end use. It shows that the system to be manufactured meets the purposes of the
client in operational use. Because the prototypes are not themselves to be delivered
to customer use, they can be tested very strongly, indeed destructively, if desired and
warranted.

There are several strategies by which we work up a series of prototypes to result
in the representative manufactured system. The most common is usually referred to
as breadboard-to-brassboard. In this strategy, each prototype contains the full func-
tionality intended for the final system but is not packaged in an operationally rep-
resentative way. The first development cycle, the breadboard, may exist just as open
units in a lab, interconnected and discrete subsystems tested individually. A subse-
quent phase may be packaged into a surrogate platform that is not yet light or strong
enough for final use. The development sequence culminates in the manufacturing of
representative prototypes.

INCREMENTAL DEVELOPMENT AND RELEASE

A contrasting strategy is to develop a series of prototypes where each is fully opera-
tionally suitable but contains less than the desired level of functionality. This is com-
mon in software-intensive systems. In software systems, the cost of manufacturing
and delivery is quite low, nearly zero when software is electronically delivered. Thus,
the cost impediment of frequent re-release does not exist as it does in systems where
most of the value is in hardware.

An incremental development and release strategy facilitates an evolutionary
approach to client desires. Instead of needing to get everything right at the begin-
ning, the developer can experiment with suppositions as to what the client really
wants. The client’s learning process using the system can be fed back into subsequent
releases. A major issue in a frequent release strategy is that test and certification
costs are re-incurred each time a release cycle is completed. If the release cycles
are frequent (best for learning feedback), the cost of test and certification could rise
quickly. The process can be cost-efficient only when the costs of test and certifica-
tion can be driven down, usually by automation. In some sense, the process of testing
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and certification for release takes the place of serial production in the example of the
serial production strategy above. Test and certification are the recurring cost of each
release cycle, beyond the cost of developing each release.

Incremental development and release can be used outside of software-only sys-
tems. Where the incremental strategy is used outside of software systems, it is worth
considering how cost and benefits interact. Consider space launch vehicles (rock-
ets). When put into operation for paying customers, they are the classic example of
ultraquality. Any measurable failure rate is unacceptable, or at least has been seen
as unacceptable when the typical space mission is served by the building of a single
spacecraft, or at most, a small number. A user wants confidence that the failure rate
is very low because they have no replacement for a spacecraft that fails to achieve
orbit. The best evidence of a low failure rate is a record of launches without failures.
A logical way to play this out is the demand for very high assurance and to avoid
iterations since any design or manufacturing iteration introduces uncertainty and
might upset a high-reliability record. This of course also leads to high upfront costs
and the process of generating assurance without flying is necessarily very expensive
and has no real limits. You can always find something else on where there is some
uncertainty to justify more analysis or more component testing.

In contrast, the launch vehicle provider SpaceX deliberately embraces frequent
flights with an acceptance of less-than-perfect performance. This mimics the incre-
mental release cycle with deliberate improvements between flights. The obvious
weaknesses are two. First, each flight consumes a full launch vehicle, the expense of
which has to be accepted. As they have achieved booster reuse, that element is no lon-
ger consumed and only incurs refurbishment costs. Second, any estimation by a user
of the likely reliability level will have to take into account failed as well as success-
ful flights. In the case of SpaceX, users have been willing to accept that in exchange
for the much lower per-flight cost. That trade is more obviously advantageous when
the user moves from singleton spacecraft for a mission to larger numbers of smaller
satellites to achieve a mission. The trade is not obviously advantageous for missions
where only a single large spacecraft is the logical choice.

There is a very important difference between classic incremental development
and what we see in launch vehicles. In classic incremental development, the incre-
ments are in user-visible functionality. Much of what is happening from release to
release is learning about the user preferences from actual use. The learning is about
what is wanted, not (predominantly) about the quality of the system. In contrast, in
the launch vehicle case, user preferences are fairly certain, and the level of func-
tionality provided is straightforward (get to the desired orbit with acceptable orbital
insertion accuracy). The uncertainties being resolved are with respect to design and
manufacturing. In this way, the incremental process more closely resembles the risk
spiral introduced by Boehm (1984).

At the time of this writing, the question of where stable equilibrium exists in flight
rate, launch vehicle size, observed and estimated reliability, and operational costs are
open with respect to SpaceX’s longer-term direction, even if it appears to be settled
for their workhorse launch vehicles. The Falcon 9 and Falcon Heavy series appear
to have established a stable equilibrium point, as witnessed by their market share
and the willingness of a wide range of mission sponsors to entrust their spacecraft to
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launch by the Falcon series. Whether or not the same scheme will scale to the much
larger Starship launch vehicle and continue to the projected flight rate is open.

“PROTOFLIGHT” DEVELOPMENT AND MANUFACTURING

In this strategy, which is common in one-of-a-kind items like spacecraft, the devel-
opmental unit is also the delivered manufactured unit. That is, rather than delivering
a completed prototype to be manufactured, we deliver the completed prototype to be
used (launched, in the case of a satellite). The primary advantage of the protoflight
approach is cost. Obviously, when only a singular item needs to be delivered, the cost
of manufacturing it is minimized by making only one.

The protoflight test quandary is a mirror image of the test quandary in the serial
production case. In serial production, we can freely test the prototypes as thoroughly
as we like, including destructively. But we must be concerned about whether or not
the prototype units fully represent the manufactured units. Usually, if the produc-
tion run is large enough, we will take units off the serial production line and test
them as thoroughly as the prototypes were tested. In the protoflight case, we know
that the prototype and the delivered system are identical (because they are the same
unit), but we risk damaging the system during the test. Tests can change the state of
the system, perhaps invisibly, and test processes are always vulnerable to accidents.
We cannot test in certain ways because we cannot afford test-induced damage to
the flight system. We must also continuously trade the risk of not revealing a defect
because of lack of testing with the risk of creating defects through testing. The satel-
lite business in particular is full of stories of protoflight systems that were damaged
through accidents in testing (e.g., over-limit vibration testing and a weather satellite
tipped off of its test stand).

In each of these cases, there is a relationship between the system architecture,
the architecture of the program that builds the system, the test strategy, and the
architecture of any systems used for testing. When we choose an overall program
architecture, we induce constraints on how we can test the resulting system. The
architecture of the system of interest will determine the sorts of test approaches that
can be supported. That likewise affects what sorts of systems we can build for con-
ducting tests. Each of these issues cannot be considered and resolved in isolation. In
mature situations, there may be widely accepted solutions and established architec-
ture breakdowns. In immature situations, there may be great leverage in innovative
breakdowns.

Example: DARPA Grand Challenge—Recall the DARPA grand challenge
for autonomous ground vehicles we introduced in the opening case study
before Chapter 1. The competing teams all used the protoflight approach;
they built, tested, and raced a single vehicle. Because the single vehicle had
to be used for testing as well as racing, there were fundamental architectural
choices that arbitrated between these needs. As examples, if more time was
devoted to building a mechanically more complex vehicle, the amount of
time available to use the vehicle in software testing would be reduced. Was
superior mechanical performance worth less software testing time? Any
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test instrumentation needed to be built into the vehicle so it could be used
in field experiments. But that same test instrumentation would need to be
carried in the race or removed at the last minute (generating its own risks).
Where should the trade-off in enhanced testing versus less system burden
lie? A vehicle optimized for autonomous operation would not be drivable
by a human, but a vehicle that can be alternately human or computer driven
leads to much simpler field test operations. Is the loss of performance with
retaining human drivability worth the lessened burden in field test opera-
tions? As a matter of historical record, different teams participating in the
Grand Challenge events took distinctly different approaches along this
spectrum, but the most successful teams took relatively similar approaches
(simple, production-vehicle-based mechanical system available very early
in the development cycle; extensive test instrumentation; and human driv-
ability retained).

ARCHITECTURAL INNOVATIONS IN MANUFACTURING

ULTRAQUAL