
 



Remote Sensing of Land Cover 
and Land Use Changes in South 
and Southeast Asia, Volume 2

South and Southeast Asian countries are experiencing rapid land cover and land use 
changes (LCLUC) driven by urbanization, agricultural expansion, deforestation, and 
infrastructure development. These transformations have significant impacts on bio-
diversity, water resources, food security, and climate regulation. There is an urgent 
need to quantify LCLUC impacts to design effective management strategies that help 
understand, mitigate, and adapt to these changes. Remote sensing data plays a crucial 
role in providing diverse information essential for assessing land use patterns, quanti-
fying changes, and evaluating both environmental and societal impacts.

Volume 2 explores the complex and dynamic interactions between land use and 
the environment in the region. It brings together expertise from U.S. contributors of 
the NASA-​funded Southeast Asia Research Initiative (SARI) and collaborators from 
South and Southeast Asian countries.

Key Features:

• 	 Presents case studies on LCLUC impacts related to food security, heat stress, 
urbanization, agricultural intensification, water scarcity, forest transitions, and 
ecosystem health.

• 	 Demonstrates the use of novel machine learning and deep learning algorithms 
for quantifying LCLUC impacts.

• 	 Explores how satellite remote sensing can reveal hidden patterns, track envir-
onmental degradation, and support resource management.

• 	 Highlights the integration of very high-​resolution data with mid-​resolution 
satellite data for effective LCLUC impact mapping and monitoring.

• 	 Adopts a multidisciplinary approach, emphasizing the integration of biophys-
ical and socio-​economic data to address LCLUC impacts.

This book highlights the transformative power of remote sensing and geospatial tech-
nologies while calling researchers, policymakers, and practitioners to action. It offers 
valuable insights for scientists, geographers, ecologists, remote sensing specialists, 
and anyone interested in the intersection of land use, development, and environmental 
sustainability.
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Preface
South and Southeast Asia are regions undergoing rapid land cover and land use changes 
(LCLUC) driven by urbanization, agricultural expansion, deforestation, infrastruc-
ture development, and other factors. These changes have profound implications for 
biodiversity, water resources, food security, and climate regulation, underscoring the 
need for effective monitoring and management strategies. Remote sensing data is 
crucial in mapping and monitoring LCLUC and its impacts. Satellite time-​series data 
provide high-​resolution information essential for assessing land use patterns, quanti-
fying the extent of changes, and evaluating their environmental and societal effects. 
Additionally, remote sensing derived maps can be used to study the drivers behind 
LCLUC, such as population growth, economic activities, and policy changes, enab-
ling the development of evidence-​based solutions. By integrating remote sensing with 
field data and advanced analytical techniques, researchers can better understand the 
complex interactions between human and natural systems, ultimately supporting sus-
tainable land management and regional development.

The two-​volume book series—​Remote Sensing of Land Cover and Land Use 
Changes in South and Southeast Asia, Volume 1: Mapping and Monitoring and 
Remote Sensing of Land Cover and Land Use Changes in South and Southeast Asia, 
Volume 2: Impacts on the Environment—​is a collection of papers from experts who 
participated in various South/​Southeast Asia Research Initiative (SARI, sari.umd.
edu) workshops and meetings held in Asia since 2015. SARI is a research activity 
funded by NASA’s Land Cover/​Land Use Change (LCLUC) Program (lcluc.umd.
edu). SARI aims to develop an innovative regional research, education, and capacity-​
building program that leverages state-​of-​the-​art remote sensing, natural sciences, 
and social sciences to advance LCLUC science in South/​Southeast Asia. To address 
LCLUC challenges, SARI employs a systems approach, examining both biophysical 
and socioeconomic aspects of land systems, including interactions between land use 
and climate and the interrelationships among policy, governance, and land use. Over 
recent decades, LCLUC in South/​Southeast Asia has attracted significant international 
attention due to its extensive biophysical and environmental impacts, including 
transboundary pollution, which has adversely affected air quality and human health. 
Through SARI meetings, critical drivers and effects of LCLUC have been identified 
at local, regional, and global scales, highlighting urgent issues requiring immediate 
attention.

This two-​volume book series was conceptualized to meet the research and applica-
tion needs of the LCLUC community. All three editors of these volumes are renowned 
experts who have published extensively on LCLUC studies using satellite remote 
sensing data.

We are pleased to present Volume 2 of this comprehensive work, which brings 
together a diverse array of studies that highlight the transformative role of satellite 
remote sensing in LCLUC and its impacts on the environment.

This book delves into the dynamic interactions between land cover, land use, and 
human–​environment systems across South and Southeast Asia, providing insights 
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into critical issues such as food security, agriculture, urbanization, and environmental 
sustainability. It offers vital insights into the ecological, socio-​economic, and health 
challenges that define the region today. By integrating remote sensing technologies, 
satellite data, and socio-​economic surveys, each chapter uncovers patterns and trends 
that shape the landscapes and livelihoods in South/​Southeast Asian countries, illus-
trating environmental changes’ complex and interdependent nature.

In Chapter 1, Mittra et al. investigate the factors influencing food insecurity in India’s 
underdeveloped regions, highlighting the role of socio-​economic indicators alongside 
satellite-​derived land use data. Their analysis shows how asset ownership and off-​farm 
returns are key drivers of food insecurity, while land cover and land use changes play 
a lesser role. This sets the stage for the broader environmental impacts discussed in 
subsequent chapters, where land use changes influence food security and wider socio-​
economic and environmental outcomes. Di et al. shift the focus to the Ganges Basin in 
Chapter 2, where urban expansion and agricultural intensification have driven signifi
cant land cover changes over the past two decades. Through the lens of remote sensing, 
they explore the consequences of these changes, including the loss of farmland and the 
growth of urban areas, linking urbanization’s impact on food production to the broader 
environmental themes in Chapter 1. The study also contributes a new fishpond mapping 
methodology, showcasing the versatility of remote sensing in tracking complex agricul-
tural landscapes, thus furthering our understanding of how land use and land manage-
ment practices can optimize food production and environmental health.

In Chapter 3, Bhattarai et al. continue the environmental narrative by examining 
evapotranspiration (ET) to potential evapotranspiration (PET) ratios across India’s 
agricultural lands. This work extends the discussion on land and water management 
by focusing on water stress in different regions and the growing need for fine-​scale 
monitoring. It directly connects to the findings in Chapter 2, where urban and agricul
tural land use changes increase water demand, highlighting the growing challenges of 
balancing land use and water resources amidst climate change.

Chapters 4 and 5 focus on the forests of India. DeFries et al., in Chapter 4, explore 
the socio-​economic drivers of forest transitions in Central India’s dry tropical forests, 
further connecting the dots between land use changes and environmental degradation. 
Their study links improving living standards to decreased forest degradation. This 
important finding echoes Chapter 1’s insights into how socio-​economic factors, such 
as asset ownership and livelihoods, impact environmental outcomes. This emphasizes 
the interconnectedness of socio-​economic development, land use changes, and eco-
logical conservation. In Chapter 5, Fleischman et al. discuss how remote sensing can 
deepen understanding of human–​environment interactions in South Asia. They high-
light the limitations of current technology and its focus on forest cover, which often 
overlooks other values in nature. The authors argue for better research and policy-​
making, emphasizing transparency, understanding technological limitations, and 
integrating remote sensing with other research techniques to improve human well-​
being and nature conservation.

Chapters 6 through 9 take the reader into urbanization and its environmental 
consequences. In Chapter 6, Dasgupta and Kumar’s study of thermal and ecological 
comfort in urban areas links directly to the earlier discussions on land use changes. 
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Their findings on the relationship between land surface temperatures and urban devel-
opment underscore how urban sprawl exacerbates environmental stress, particularly 
in heat-​sensitive areas. This directly connects to Chapter 7, where McAvoy et al. 
uses nighttime satellite data to track urban sprawl’s impact on forests, revealing how 
development encroaches into once-​natural landscapes, contributing to environmental 
degradation and increased human–​environment conflict. Chapter 8, by Aithal et al., 
deepens the urban narrative by focusing on Bengaluru’s increasing heat stress, further 
elaborating on the consequences of land use changes for human health. The authors 
emphasize the need for urban planning strategies that mitigate the effects of heat 
stress, particularly in areas with high urban density. Chapter 9, by Joseph et al., is 
unique and focuses on the Indian Flying Fox bat and its roosting habitats. The study 
demonstrates how land use changes, particularly highway development and habitat 
degradation, directly impact wildlife and public health, emphasizing the interconnec-
tion between human development, environmental health, and zoonotic disease risks. 
This study highlights the need for conservation strategies to mitigate environmental 
damage and public health threats, tying the earlier discussions on land cover changes 
to a broader understanding of human–​wildlife–​environment interactions.

Chapter 10 by Kotrike et al. explores the impact of aerosols on cloud lifetime and 
solar radiation reflectance in Southern India, where industrialization and urbanization 
have increased aerosol formation. The study analyzes the effects of aerosol optical 
depth (AOD) on cloud fraction (CF) and precipitation during the southwest monsoon 
from 2005 to 2019, finding a positive relationship between AOD and CF. Atmospheric 
stability significantly affects cloud formation in some thunderstorm states but not in 
more intense storms. Land cover changes, including increased cropland and urban 
areas, are linked to decreased precipitation, partly due to reduced evapotranspiration 
from urbanization.

Chapters 11 through 16 focus on Southeast Asia, where LCLUC changes continue 
to pose significant challenges to the environment and human health. In Chapter 11, 
Hoffman-​Hall explores the relationship between land use change and malaria trans-
mission in Myanmar, showing how deforestation and human activity influence dis-
ease spread.

Chapter 12, by Potapohn et al., introduces Thailand’s Actionable Intelligence 
Policy (AIP) platform, which integrates remote sensing data with ground-​level infor-
mation to inform public decision-​making. This chapter demonstrates how remote 
sensing can be used to track environmental changes and facilitate more effective 
policy interventions, offering a concrete example of how technology can be applied 
to solve real-​world environmental problems.

Chapters 13 and 14 by Brown et al. and Kaewplang et al. use remote sensing 
to inform agricultural land use planning and crop yield forecasting in Vietnam and 
Thailand. Their work emphasizes how satellite data can be used to predict and manage 
agricultural changes, directly contributing to more sustainable agricultural practices 
and more efficient resource use. Thus, it connects back to the overarching theme of 
balancing land use, food production, and environmental sustainability.

Chapters 15 and 16 focus on biomass burning. Sentian et al. (Chapter 15) 
established a biomass-​burning emission inventory for the ASEAN region from 2013 
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to 2021 using remote sensing data to track emissions from burning activities, pro-
viding valuable data for mitigating biomass burning’s environmental impact. In 
Chapter 16, Shi et al. develop a high-​resolution emission inventory for open biomass 
burning (OBB) in South and Southeast Asia from 2020 to 2022, revealing signifi-
cant carbon emissions, primarily from forests and woodlands, along with seasonal 
variations in burning patterns. Their findings contribute to more accurate air quality 
models and regional emissions reduction strategies.

Together, these chapters provide a comprehensive view of the impacts of LCLUC, 
including the dynamic interactions between land use changes, environmental health, 
socio-​economic factors, and technological advancements. The studies demonstrate 
how remote sensing can be used to understand these impacts and complex interactions, 
offering insights that inform policy and practical interventions for sustainable devel-
opment. The book presents a framework for addressing the region’s pressing envir-
onmental challenges through these interconnected chapters, emphasizing the need 
for integrated approaches that balance development, conservation, and public health.

This volume will be valuable to anyone interested in remote sensing-​based 
approaches for quantifying LCLUC’s environmental impacts. It will be especially 
useful for environmental scientists, geographers, ecologists, atmospheric scientists, 
and environmental professionals seeking to deepen their understanding of these 
impacts.

As editors, we sincerely thank the contributing authors for their exceptional 
research and dedication. We are also deeply grateful to the reviewers for their invalu-
able feedback, which has significantly enhanced the quality of this volume. Finally, 
we sincerely appreciate the guidance and support of Irma Britton and Chelsea Reeves 
at CRC Press throughout the publication process.

We hope this book becomes a key resource for advancing research and fostering 
collaboration in remote sensing and land use studies. It is an honor to present this 
work, and we wish all readers an informative and thought-​provoking experience.

Krishna Vadrevu, Huntsville, Alabama, USA
Christopher Justice, College Park, Maryland, USA

Garik Gutman, Washington DC, USA
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1.1 � BACKGROUND

The State of Food Security and Nutrition in the World report (FAO et al., 2020) 
estimates that the proportion of India’s population experiencing moderate to severe 
food insecurity increased from 27.8% in 2014–​2016 to 31.6% in 2017–​2018, according 
to the Prevalence of Moderate and Severe Food Insecurity (PMSFI) measure. Despite 
a decade-​long reduction in the number of undernourished people—​from 21.7% in 
2004–​2006 to 14% in 2017–​2019—​India still harbors the highest number of under-
nourished individuals globally, at 189.2 million persons (2017–​2019). Although India 
is a net exporter of food, local food availability varies significantly across regions 
due to institutional factors, demographics, land use, and environmental degradation. 
Population growth and urbanization have exerted increasing pressure on land use 
patterns, with the area under non-​agricultural use rising from 9.36 million hectares 
in 1950 to 26.51 million hectares in 2011 (MOSPI, 2025). The Indian Council of 
Agricultural Research (ICAR) reports that approximately 36.6% of India’s total 
area is degraded due to factors such as water and wind erosion, chemical degrad-
ation (e.g., salinization, acidification), physical degradation (e.g., waterlogging), and 
other causes like mining (Trivedi et al., 2010). Climate change is expected to exacer
bate these trends by increasing stresses on food production. For instance, extreme 
weather events in 2015 affected 18.33 million hectares, compared to 0.35 million 
hectares in 2013 and 5.5 million hectares in 2014, resulting in crop losses worth USD 
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3 billion (Bhushan et al., 2015). Addressing these challenges requires geographically 
differentiated strategies, but the current efforts are significantly hindered by a lack of 
spatially explicit information on food security and agriculture. Such information is 
vital for early trend detection and disentangling the complex relationships between 
food security and land use.

1.2 � INTRODUCTION

The United Nations Committee on World Food Security (1996) defines food 
security as a state in which all people, at all times, have physical, social, and eco-
nomic access to sufficient, safe, and nutritious food that aligns with their dietary 
needs and preferences for an active and healthy life. This widely accepted definition 
encompasses the dimensions of food availability, access, utilization, and stability 
of these factors. Food availability, the most directly quantified aspect, pertains to 
the sufficiency of food supply. National-​level food balance data sheets have been 
utilized to calculate food availability since long before food security emerged in 
the early 1970s (Jones et al., 2014). Amartya Sen (1981) introduced the concept 
of “entitlement” to highlight access, emphasizing that food insecurity can exist 
even with an adequate food supply. Food access includes physical and economic 
access and ensures equitable distribution at all levels. Utilization involves allocating 
and absorbing nutritious food, recognizing that availability and access are often 
evaluated merely in terms of calorie count or production. The final dimension, sta-
bility, concerns the other dimensions’ sociopolitical and environmental steadiness, 
ensuring short-​ and long-​term resilience.

At national and regional levels, food availability frequently serves as the primary 
focus of food security assessments. National-​level food security metrics typically 
depend on food balance sheets, which, as stated, primarily measure food availability 
and, to a lesser extent, food access. Access is generally evaluated through consump-
tion and expenditure metrics, whereas utilization is often assessed using anthropom-
etry or dietary intake by food groups. Production, calorie consumption, and intake 
quantities are directly measurable, even at the household level. In India, grain security 
has traditionally been equated with food security. Although food grain production 
surged by 400% from 1950–​1951 to 2015–​2016, the net availability of food grains 
per person per year only modestly increased from 144.1 kg in 1950–​1951 to 169.8 kg 
in 2015 (GOI, 2016). In comparison, China’s average daily per capita caloric supply 
from agricultural production rose significantly from 1859 kcal/​person in 1970 to 3108 
kcal/​person in 2013. In contrast, in India, the increase during the same period was 
from 2111 kcal/​person to 2459 kcal/​person. Food consumption expenditure in India 
declined by 20% from 1972–​1973 to 2011–​2012, with a more pronounced decline in 
rural areas (Deshmukh & Vyavahare, 2018). Food utilization metrics have performed 
poorly, with 39% of children under five classified as undernourished or stunted in 
2014 (Sahu et al., 2015). Additionally, maternal mortality rates have remained per
sistently high (Saxena, 2018).

At regional scales, spatial variations in food security indicators may reflect 
differences in basic food supply (Abbade & Dewes, 2015), adequacy of physical 
infrastructure (Memon & El Bilali, 2019), and availability of institutional support 
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(Vervisch et al., 2013). Although food security issues in India have been extensively 
studied (Hertel, 2015; Jain et al., 2013; Mondal et al., 2021; Singh et al., 2002), com
prehensive and regional assessments of factors influencing food security are often 
hindered by the lack of data on key socioeconomic and infrastructure indicators at 
sufficiently detailed scales, especially those measured consistently across regions. 
Indicators of poverty, food security, and general “backwardness” are typically 
formulated using weighted combinations of factors such as the proportion of the 
population in “backward” castes, infant mortality rates, female workforce participa-
tion ratios, and income (Ghosh, 2011; Rathor & Premi, 1986). While these measures 
are valuable indicators of human development, their combination through simple 
weighting schemes does not reveal the underlying causal factors leading to the spa-
tial clustering of distressed areas within regions. Regarding food utilization, spatial 
variations in physical accessibility, such as proximity to transport hubs or markets, 
can significantly influence household-​level land use decisions. There is a critical need 
for a methodology that integrates food security measures within a geospatial context 
and combines them into holistic synthetic indicators that explain each causal factor 
comprehensively. Depending on the local landscape context, factors influencing food 
security may differ among forested, agrarian, or peri-​urban regions and may drive 
decisions that result in land use changes through sale, conversion, or abandonment.

1.3 � METHODS

1.3.1 � Study Areas

This study focuses on four distinct sites across India, each with distinct climates and 
socioeconomic features yet facing shared challenges related to subsistence agriculture 
and food security The districts selected for this study—​Panna, Satna, Tehri Garhwal, 
and Udaipur—​span different climatic zones and are among the 250 most under-​
performing districts in India according to the Ministry of Panchayati Raj (Figure 1.1). 
These regions are predominantly rural, marked by hilly terrain, dense forests (except 
Udaipur), and subsistence farming as the primary livelihood. Agriculture in these 
districts relies heavily on rain-​fed methods with minimal mechanization and faces 
challenges such as low soil nutrient levels and inefficient water use.

Data collection for this study was conducted through household surveys across  
the four districts between August 2018 and April 2019. The study aimed to capture a 
comprehensive range of variables related to food insecurity, including demographic 
profiles, agricultural production, food availability, livelihoods, and nutrition.  
A modified version of the Rapid Household Multiple Indicator Survey (RHoMIS)  
tool was utilized for data collection, facilitated by the Open Data Kit (ODK) software  
on Android platforms. Surveys were conducted in Hindi, employing locally chosen  
enumerators to ensure cultural and linguistic alignment. To ensure data quality,  
rigorous data processing steps were undertaken. Raw data underwent thorough checks  
for errors, such as unrealistic values and inconsistencies, with local units standardized  
to international metrics where necessary. Economic data, initially in Indian Rupees,  
were converted to US Dollars using a mean exchange rate for the study period. To  
adhere to established ethical standards, we obtained approval from UW-​Madison’s  
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Education and Social Behavioral Science Institutional Review Boards (IRB). All data  
were securely stored on a restricted-​access Google cloud server, ensuring compliance  
with data privacy and protection regulations.

The survey aimed to achieve a representative sample by targeting 5% of villages 
within each district, following the Census of India, 2011. Within selected villages, a 
further 0.5% of households were surveyed. This sampling strategy aimed to capture 
diverse socioeconomic and geographic contexts prevalent among smallholder farmers 
in the study districts. Village and household selection followed a wholly randomized 
method based on the Census of India. Villages with fewer than 50 households were 
excluded to ensure an adequate sample size for statistical reliability. This randomized 
approach minimized bias and ensured that findings could be generalized to each 
district’s broader population of smallholder farmers. The survey was conducted exclu-
sively in Hindi across all four districts, reflecting the primary language spoken by the 
local communities. Enumerators were selected locally to leverage their knowledge 
of the area, including dialects and local customs. This local expertise enhanced com-
munication and facilitated accurate data collection, especially concerning nuanced 
aspects like units of measurement and cultural sensitivities. Before full-​scale imple-
mentation, a pilot phase was conducted in two villages per district. This trial allowed 

FIGURE 1.1  Study areas in the districts of Panna and Satna (Madhya Pradesh), Tehri 
Garhwal (Uttarakhand), and Udaipur (Rajasthan).
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researchers to refine survey instruments, including question phrasing and response 
options. Adjustments were made based on feedback received during the pilot phase to 
ensure clarity and relevance of questions across different cultural and socioeconomic 
contexts.

1.4 � METHODS AND DATA

1.4.1 � Socioeconomic Indicators

All key indicators were standardized for comparative analysis. The Adult Male 
Equivalent (AME) concept (Weisell & Dop, 2012) was applied to standardize house
hold sizes, enabling caloric consumption comparisons across households. Livestock 
ownership was quantified using Tropical Livestock Units (TLUs, the equivalent of a 
250 kg live-​weight animal), facilitating standardized comparisons across sites despite 
variations in animal sizes and types (Jahnke et al., 1988). The Socio-​economic Status 
(SES) Index following Hong et al. (2006) was derived using factor analysis, incorpor
ating variables such as ownership of agricultural and non-​agricultural goods to assess 
household wealth. The Household Dietary Diversity Score (HDDS) was computed 
based on the frequency of consumption of 10 food groups (Hammond et al., 2017) 
during good and bad seasons, adjusted to local dietary patterns and seasonal variations. 
Potential Food Availability (PFA, in kcal/​person/​day) was estimated to gauge food 
availability, considering both on-​farm production and income from agricultural and 
off-​farm activities. Market orientation, another critical indicator, measures the pro-
portion of farm products sold versus consumed within households, indicating the 
degree of market engagement (USDA, 2019). Additional variables included land 
ownership, economic distress from unpaid debts, stability of food supply, income 
diversity from on-​farm and off-​farm sources, and the physical accessibility of villages 
to nearby markets. All household-​level data were aggregated to the village level for 
analysis, incorporating a spatial indicator—​distance to the nearest town—​to assess 
market accessibility. This comprehensive approach allowed for a nuanced explor-
ation of food security dynamics across diverse agricultural settings, highlighting the 
interplay of environmental, socioeconomic, and geographical factors. The findings 
from this study contribute valuable insights into localized food security challenges 
and underscore the importance of tailored interventions to enhance resilience among 
smallholder farming communities in India.

Food insecurity was directly measured using the self-​assessed Household Food  
Insecurity Access Scale (HFIAS) (Coates et al., 2007), which is based on nine  
questions that gauge the severity of food insecurity depending on the frequency  
of occurrence. Respondents were asked to identify the “worst” month in the past  
12 months and to assess the frequency of the nine conditions during that month.  
The responses were then aggregated into a score ranging from 0 to 27, with higher  
scores indicating greater food insecurity (Figure 1.2). While the indicators effectively 
measured the latent variables of interest, additional environmental indicators  
were computed from secondary geospatial sources to supplement the data missing  
from household surveys. These additional indicators included land cover and land use  
change (LCLUC), surface soil moisture, and connectivity (roads) cost at the village  
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level. The outcome variable encompassed the Household Food Insecurity Access  
Scale (HFIAS) and the number of months a household experienced food shortages  
within a year.

1.4.2 � Land Cover Change

Land cover and land use change (LCLUC) data for 2001, 2011, and 2018 were 
derived from a dataset that utilized all available Landsat TM, Landsat ETM+​, and 
Landsat OLI Surface Reflectance data at 30-​meter resolution for these years. The ana-
lysis employed the Continuous Change Detection and Classification (CCDC) algo-
rithm (Zhu & Woodcock, 2014), a pixel-​based method executed after masking out 
all clouds, cloud shadows, and snow pixels, using all image bands. The CCDC algo-
rithm first detects changes—​seasonal, gradual, or abrupt—​using harmonic regression 
for each pixel and assigns a change class based on the type of change. A change is 
designated when the difference between the predicted and actual pixel value exceeds 
the root mean squared error (RMSE) multiple consecutive times. The land cover 
classification is then performed using a Random Forest classifier, utilizing variables 
estimated from the time-​series model that inform the trend, intra-​annual (seasonal) 
and inter-​annual differences, and the RMSE from all spectral bands.

FIGURE 1.2  Household Food Insecurity Access Scale (HFIAS) measures the level of food 
insecurity experienced by a household. The score ranges from 0 to 27 with higher scores 
indicating more food insecurity. Each circle represents a village.
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The accuracy assessment demonstrated an overall accuracy exceeding 90%  
for all districts. The training data for this assessment consisted of approximately  
9000 ground truth locations collected at randomly generated 30-​meter boxes over-
laid on Google Earth Imagery at all four sites. The classification scheme for land  
cover and land use change (LCLUC) was based on a decadal dataset for India  
that comprised 19 classes (Roy et al., 2016). However, a few classes, such as  
wetlands and salt pans, were absent in the study sites. To reduce complexity, the  
remaining courses were aggregated into eight broader categories: forest, crop and  
fallow land, built-​up land, shrubland, barren and wasteland, water bodies, grass-
land, and permanent snow and ice. Since snow and ice were only present in high-​ 
elevation, uninhabited areas of Tehri Garhwal, they were excluded from further  
analysis. Barren and wasteland were combined due to their similar non-​productive  
and uncultivable nature. Built-up land was excluded because spatial expansion  
was limited to the district headquarters, which were not included in the sampling  
sites. Village roads were also inaccurately classified at this pixel resolution, so  
they were omitted. The aggregation of classes was necessary to satisfy sample size  
vis-a-vis parameter requirements of the SEM. The land cover class change was  
estimated as the proportion change in each class. For any given year, class-wise  
proportional land cover change was estimated as the per-class land cover change  
per village aggregated up to the district over the 18-year timespan of the analysis.  
(Figure 1.3).

FIGURE 1.3  Area (in sq.km.) covered by land cover land use classes for Districts Panna and 
Satna for 2001, 2011, 2018.
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1.4.3 �O ther Eco-​Geographic Factors

The model included other indicators, such as connectivity cost and proximity to 
towns, to characterize the effects of physical access. LCLUC maps for the districts 
across all periods were reclassified into broad classes to satisfy the structural equation 
modeling (SEM) requirements. Forest types were reclassified into a single forest cat-
egory, while croplands and fallow lands were combined into cropland due to the sea-
sonal nature of fallow lands in these areas. Sparsely vegetated and unsuitable for 
cultivation, Wastelands were reclassified as barren land. The built-​up land, shrubland, 
grassland, water bodies, and snow and ice classes remained unchanged (Figure 1.4).

Surface soil moisture was used as a proxy for fine-​resolution and current irrigation 
data (Abolafia-​Rosenzweig et al., 2019; Ambrosone et al., 2020; Das et al., 2019; 
Zappa et al., 2021; Zaussinger et al., 2019). Smallholder farmers in India rely heavily 
on traditional irrigation methods, except during the monsoon season. Surface soil 
moisture, indicating water availability in the upper 10 cm of soil, is a key indicator 
of water stress conditions. Data were extracted from the NASA-​USDA Enhanced 
SMAP Global soil moisture dataset through Google Earth Engine, available from 
April 1, 2015, to the present (https://​earth.gsfc.nasa.gov/​hydro/​data/​nasa-​usda-​glo​
bal-​soil-​moist​ure-​data). The data, at a 10 km × 10 km spatial resolution and in 3-​day 
composites, were averaged over 12 months from June 2018 to May 2019 to coincide 
with the two main cropping seasons during the survey period (Figure 1.5).

Physical connectivity is crucial for development, as road connectivity in rural areas 
enhances access to markets, employment, education, and health services, thereby 
improving agricultural production and livelihoods. The connectivity cost variable 
was calculated using the least-​cost path analysis, commonly used in transporta-
tion geography, to determine the most cost-​effective route between points (Gowen 
& de Smet, 2020). The potential markets included all villages with more than 50 
households within a 30 km buffer of the study village. This distance was chosen as it 
approximates a round-​trip within a day. Friction was aggregated from slope and road 
type, with slope data derived from the CGIAR-​CSI SRTM dataset Version 4 (Jarvis 
et al., 2008) and road network data classified into primary, secondary, and tertiary 
types (ISGCM/​Survey of India, 2016). The connectivity cost for each village was 
calculated based on both friction layers using the Least Cost Path Plugin for QGIS 
(Gong, 2018/​2020) and aggregated using the mean, with lower cost values indicating 
better connectivity. Spatial autocorrelation of all model variables was checked using 
Moran’s I, and any positive spatial correlation with p<0.05 was considered signifi-
cant. To address this dependency, k-​nearest neighbor weights were calculated, and 
the row-​standardized weight matrix was applied to create spatially lagged variables 
representing each variable’s weighted average of neighboring values (Figure 1.6).

1.5 � THE CAUSAL MODELING STRATEGY

This study aims to evaluate the interrelationships between the drivers of land cover  
change and the indicators of food security dimensions through a structural equation  
model (SEM). SEMs, a set of statistical methods, estimate networks of causal  
relationships (Lamb et al., 2014). These structural relationships are constructed as  
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FIGURE 1.4  Land cover land use maps for Panna, Satna, Tehri Garhwal and Udaipur for 
2001, 2011, and 2018.
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recursive linkages between unmeasured latent concepts, each measured through  
observable indicators like field or statistically estimated data. Typically, an SEM is  
visualized as a path diagram illustrating direct and indirect links between endogenous  
variables (dependent and influenced by other variables), exogenous variables (inde-
pendent and not influenced by other variables), and the observed and latent variables.  
The SEM approach estimates size effects (beta coefficients of the arrows and their  
p-​values) within an iterative least-​squares framework. By estimating all size effects  
concurrently, the latent variables can be estimated and mapped across the study region  
using associated beta coefficients.

This study aims to understand the complexity of a system using a causality con-
cept among latent constructs (latent variables, LVs) while describing each LV by  
measured observations, formally termed manifest variables (MVs), i.e., data in land-​ 
derived geospatial variables. The partial least squares (PLS) approach to SEMs,  
also known as path modeling (PLS-​PM), combines path analysis (Alwin & Hauser,  
1975; Holland, 1988; Sanchez, 2013) and confirmatory factor analysis (Brown &  
Moore, 2012). The PLS-​PM technique iteratively solves for blocks of the measure
ment model in the first step (the relation of LVs to MVs). Then, the structural model  
(the interrelationships between LVs) is estimated in the second step. These steps  
iterate until the aggregated residual error is minimized (Dijkstra, 2010). The PLS-​PM  
approach relaxes strict distributional and sample size requirements of data and, unlike  

FIGURE 1.5  Surface soil moisture (SSM) derived from the NASA-​USDA enhanced SMAP 
global soil moisture data. Data is for the 12-​month average for June 2018 to May 2019. Each 
circle represents a village.
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covariance-​based SEMs (CBSEMs) (Dijkstra, 2010; Reinartz et al., 2009), allows  
situations where the manifest variables cause changes in latent variables, as opposed  
to strictly being reflective indicators in CBSEMs. Confidence intervals for parameter  
estimates are obtained empirically through bootstrapping techniques.

The latent constructs hypothesized in this SEM model revolve around three pri-
mary domains: (1) On-​farm resources: This construct encompasses variables related 
to agricultural production and resources derived directly from farming activities. It 
includes factors such as crop yields and livestock production and how these con-
tribute to household food security. (2) Off-​farm resources: This construct captures 
the contribution of income and resources from non-​farm activities to food security. 
Variables such as income diversity, market orientation (selling surplus produce), 
and off-​farm employment opportunities fall under this category. (3) Socioeconomic 
well-​being: This construct reflects the broader socioeconomic context of households, 
incorporating factors like wealth accumulation, asset ownership (physical and non-​
physical), health status, and overall economic stability. Variables such as the SES 
Index, health indicators, and unpaid debts are integral to this construct.

The EFA phase of the SEM involved exploring the underlying structure of the data 
to identify the latent variables (LVs) that best represent these constructs. EFA is an 
empirical technique based on factor analysis that identifies patterns and relationships 

FIGURE 1.6  Connectivity cost estimated for each village to find how connected or remote 
they are from their neighboring villages. Smaller circles indicate a low cost of connectivity, 
meaning they are more connected. Larger circles denote a higher cost of connectivity, meaning 
they have poor physical connectivity. Each circle represents a village.
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among observed variables without specifying a priori hypotheses about the structure 
of latent variables. All collected variables related to food security, socioeconomic 
status, agricultural production, and livelihoods were initially subjected to EFA. This 
allowed us to uncover underlying factors (latent constructs) that best explain the 
covariance among observed variables. The EFA allowed us to group survey variables 
into the four larger constructs forming the “on-​farm resources,” “off-​farm resources,” 
“socioeconomic status,” and “health and nutrition” LVs. We formalize the structure 
of the PLS Path model as proxies defining semi-​subsistence agricultural activity, 
livelihoods, and exogenous assets, with change in land cover and land use comprising 
an additional latent variable. The initial model was fitted with the full data for all 
districts. Subsequently, the median factor scores of food insecurity, the outcome vari-
able, were used to divide the villages into “less food secure” and “more food secure” 
groups and then compared using the same structural model. Finally, each district 
(considered a group) was compared with a second group comprising all other districts.

1.6 � RESULTS

1.6.1 � Socioeconomics

Household food insecurity (HFIAS, Figure 1.2) exhibits the lowest values in Satna, 
followed by Panna. Tehri Garhwal displays the highest range and the maximum score 
found among the four districts. The most severe food insecurity occurs in remote 
high-​altitude areas, aligning with other positively correlated food security indicators, 
such as low market orientation. Udaipur demonstrates the most homogeneous spatial 
distribution of food-​insecure villages. Surface soil moisture (Figure 1.5) is lowest in 
Udaipur, a semi-​arid district located in the west, and highest in Tehri Garhwal, which 
experiences year-​long precipitation and has a dense network of rivers and streams. 
Despite this, Tehri Garhwal has the least connected villages due to its high altitude, 
poor network of motorable roads, and sparsely situated villages. This results in the 
village suffering from the highest connectivity costs—​more than twice the max-
imum cost in all other districts (Figure 1.6). In contrast, villages in Panna, Satna, and 
Udaipur are better connected, with shorter distances to travel as terrain slope is not a 
significant issue. However, exceptions include villages around hilly or forested areas 
in Panna and Satna’s northern and southern parts and the western part of Udaipur, 
where roads are less dense and of poor quality.

1.6.2 � Land Use Land Cover Change

Land cover and land use changes in this study are comparable to those in a similar  
study by Meiyappan et al. (2017) for India, which used the same definitions for change  
classes but differed in the years of change detection (1985–​1995 and 1995–​2005). In  
Panna and Satna, croplands remained stable, while Udaipur experienced a conversion 
of cropland to shrubland. The LCLUC maps for all districts (Figure 1.3) from  
2001, 2011, and 2018 indicate that Panna and Satna are predominantly characterized  
by crop/​fallow land. In contrast, Tehri Garhwal is primarily forested, particularly in  
the high-​altitude regions in the northeastern part of the district. Udaipur is mainly  
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covered by shrubland and barren/​wasteland, with forest patches in some clusters and  
crop/​fallow land interspersed among the dominant classes, except in the northeast  
and southeast. Completing the Tehri dam in Tehri Garhwal and the Bansagar dam  
in Satna district accounts for the distinct increase in water area (dam reservoirs) in  
both districts. The overall land cover changes in each district (Table 1.1) reveal some  
loss of forests and crop/​fallow land, with gains in shrubland and barren/​wasteland in  
Panna, Satna, and Tehri Garhwal. Udaipur saw an increase in all land cover classes  
except barren/​wasteland. Built-​up areas remained nearly constant across all districts.  
The transition probability matrix (Table 1.2) indicates that forests and crop/​fallow  
land were most likely converted to shrubland in Panna, Satna, and Tehri Garhwal.  
In Udaipur, barren/​wasteland had the highest probability of conversion to shrubland.

1.7 � THE PATH MODEL

Results from the factor analysis of the household survey formed the foundation for 
establishing the model structure to identify causal linkages between food security 
indicators. Five latent variables (LVs) were identified: assets, land cover land use 
change (LCLUC), availability (of food and on-​farm resources), Lack of off-​farm 
returns, and food insecurity. The PLS-​PM model achieved an overall goodness-​of-​
fit of 0.50. Moran’s I test indicated no significant spatial autocorrelation in the LVs 
and their residuals, p>0.05 for all LVs. Measures of unidimensionality (Table 1.3A) 
showed that most LVs approached the accepted value of Cronbach’s alpha (>=​0.7), 
except for assets, and exceeded the accepted value (>=​0.7) for Dillon-​Goldstein’s rho. 
The estimated coefficients and their bootstrapped mean, standard deviation, and 95% 
confidence interval, are presented in Table 1.4. Significant effects were observed for 
all paths except for LCLUC to availability, LCLUC to low off-​farm returns, LCLUC 
to food insecurity, and availability to food insecurity.

The path model, including LVs and coefficients, is illustrated in Figure 1.7. Food  
insecurity increases with a lack of assets and low returns from off-​farm sources but  

TABLE 1.1
Percent Land Cover Class within Each District for 2001 and 2018

Panna 
2001

Panna 
2018

Satna 
2001

Satna 
2018

Tehri 
2001

Tehri 
2018

Udaipur 
2001

Udaipur 
2018

Forest 7.2 6.5 6.2 6.4 44.7 45.1 11.8 17.9
Crop & Fallow 

Land
47.6 45.2 61.1 57.9 15.3 14.9 24.9 27.9

Built-​up Land 0.3 0.3 1.1 0.8 0.5 0.4 0.8 0.9
Shrubland 42.4 44.9 29.2 30.6 23.5 22.6 20.4 29.4
Barren &   

Wasteland
1.9 2.4 1.4 1.7 2.9 2.9 41.7 22.7

Water Bodies 0.6 0.7 0.9 2.6 0.2 0.9 0.4 1.2
Grassland 0 0.1 0 0.1 10.6 11 0 0
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TABLE 1.2
Transition Probability Matrix Derived from Land Cover Changes from 2001 
(Rows) to 2018 (Columns), an 18-​year Period

2018

PANNA Forest

Crop & 
Fallow 
Land

Built-​
up 
Land

Shrub-  
land

Barren 
&  Waste 
Land

Water 
Bodies

Grass-  
land

2001 Forest 0.985 0.001 0.000 0.012 0.000 0.001 0.000
Crop & Fallow Land 0.008 0.846 0.002 0.067 0.058 0.018 0.000
Built-​up Land 0.010 0.051 0.761 0.117 0.051 0.010 0.000
Shrubland 0.234 0.027 0.001 0.722 0.012 0.003 0.000
Barren & Waste Land 0.026 0.156 0.006 0.302 0.504 0.006 0.000
Water Bodies 0.003 0.018 0.001 0.004 0.001 0.973 0.000
Grassland 0.000 0.000 0.000 0.000 0.000 0.000 1.000

SATNA Forest

Crop & 
Fallow 
Land

Built-​
up 
Land

Shrub-  
land

Barren 
& Waste 
Land

Water 
Bodies

Grass-  
land

Forest 0.000 0.009 0.000 0.144 0.000 0.002 0.000
Crop & Fallow Land 0.000 0.918 0.000 0.048 0.011 0.022 0.001
Built-​up Land 0.001 0.102 0.723 0.162 0.005 0.007 0.001
Shrubland 0.036 0.052 0.000 0.890 0.009 0.012 0.000
Barren & Waste Land 0.000 0.152 0.001 0.315 0.501 0.029 0.002
Water Bodies 0.003 0.062 0.000 0.021 0.003 0.909 0.001
Grassland 0.003 0.214 0.000 0.31 0.035 0.044 0.395

TEHRI Forest

Crop & 
Fallow 
Land

Built-​
up 
Land

Shrub-  
land

Barren 
& Waste 
Land

Water 
Bodies

Grass-  
land

Forest 0.98 0.001 0.000 0.011 0.000 0.002 0.006
Crop & Fallow Land 0.004 0.956 0.002 0.012 0.001 0.01 0.016
Built-​up Land 0.001 0.027 0.715 0.054 0.004 0.161 0.038
Shrubland 0.032 0.005 0.001 0.915 0.004 0.005 0.039
Barren & Waste Land 0.000 0.002 0.000 0.013 0.959 0.006 0.015
Water Bodies 0.002 0.006 0.006 0.023 0.014 0.932 0.016
Grassland 0.036 0.008 0.001 0.029 0.004 0.023 0.899
Snow & Ice 0.000 0.000 0.000 0.001 0.004 0.001 0.000

UDAIPUR Forest

Crop & 
Fallow 
Land

Built-​
up 
Land

Shrub-  
land

Barren 
& Waste 
Land

Water 
Bodies

Grass-   
land

Forest 0.985 0.001 0.000 0.012 0.000 0.001 0.000
Crop & Fallow Land 0.008 0.846 0.002 0.067 0.058 0.018 0.000
Built-​up Land 0.01 0.051 0.761 0.117 0.051 0.01 0.000
Shrubland 0.234 0.027 0.001 0.722 0.012 0.003 0.000
Barren & Waste Land 0.026 0.156 0.006 0.302 0.504 0.006 0.000
Water Bodies 0.003 0.018 0.001 0.004 0.001 0.973 0.000
Grassland 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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decreases slightly with increased food availability. Changes in land cover and land  
use negatively impact farming while positively correlating with food insecurity. The  
model considered land cover and land use change as detrimental to food security,  
associating it with the loss of forests, cropland, and water bodies and the gain of  
scrubland and barren/​wasteland. The outer model with weights and loadings of  
each manifest variable to their LV is detailed in Table 1.5. Wealth (or its absence)  
explained the maximum variability of assets, and increases in barren land explained  
the maximum variability of LCLUC. The manifest variables of the other LVs had  
comparatively evenly distributed loadings. Indicators related to expenditure, income,  
and non-​farm activities had greater explanatory power than farming ones. Satna had  
the lowest incidence of food-​insecure villages, while Udaipur had the highest.

Villages were divided into two groups based on the median factor scores for the  
food insecurity LV: more FS (below median=​more food secure) and less FS (above  
median=​less food safe). The goodness-​of-​fit was 0.38 for both groups (Table 1.6),  
and measures of unidimensionality (Table 1.3B, 1.3C) showed acceptable values for  
Dillon-​Goldstein’s rho, except for the assets LV. Path coefficients derived from boot-
strapping showed opposite directions between most LVs but were significant only for  
the effect of availability on both food insecurity and no off-​farm returns. Among the  

TABLE 1.3
Measures of Unidimensionality of the PLS-​PM Analysis. All Indicators are 
Reflective (Mode-​A) Meaning Manifest Variables are Caused by Their Latent 
Variable. MVs Indicate the Number of Manifest Variables Measuring Each 
Latent Variable

A. FULL MODEL Mode MVs C.alpha DG.rho eig.1st eig.2nd

Assets A 6 0.390 0.612 3.18 1.647
LCLUC A 5 0.626 0.769 2.10 1.405
Availability A 6 0.661 0.782 3.04 1.411
Low Off-​Farm Returns A 3 0.675 0.822 1.82 0.672
Food Insecurity A 2 0.883 0.945 1.79 0.209

B. LESS FS Mode MVs C.alpha DG.rho eig.1st eig.2nd

Assets A 6 0.138 0.559 3.20 1.198
LCLUC A 5 0.593 0.753 2.04 1.427
Availability A 6 0.306 0.516 1.71 1.287
Low Off-​Farm Returns A 3 0.746 0.858 2.02 0.735
Food Insecurity A 2 0.621 0.841 1.45 0.549

C. MORE FS Mode MVs C.alpha DG.rho eig.1st eig.2nd

Assets A 6 0.000 0.0448 3.82 1.047
LCLUC A 5 0.412 0.6594 1.69 1.242
Availability A 6 0.564 0.8567 4.29 0.822
Low Off-​Farm Returns A 3 0.375 0.6739 1.47 1.129
Food Insecurity A 2 0.472 0.7913 1.31 0.691
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group models, the comparison of Panna with other districts had the best goodness-​of-​ 
fit for both groups (Table 1.6). Path coefficients had the same directionality for most  
LVs in the Panna and Satna groups (Table 1.7). The effect of LCLUC on other LVs  
was insignificant for any district, while availability had a significant but small effect.

1.8 � DISCUSSION

The primary goal of this study was to examine the causal relationships between  
socioeconomic factors and land cover/​land use changes (LCLUC) on food security  
at the village level in India. The districts selected for this study are predominantly  

FIGURE 1.7  Path diagram of the PLS-​PM outer model showing coefficients and their 
direction. Inverse relations are shown in red lines.

TABLE 1.4
Path Coefficients for the PLS-​PM Model with Bootstrapped Mean Obtained 
after 500 Iterations

From To Original Mean SD
2.5 
Percentile

97.5 
Percentile

*Assets LCLUC 0.67 0.67 0.05 0.56 0.75
*Assets Availability –​0.79 –​0.79 0.03 –​0.85 –​0.74
*Assets Low Off-​Farm Returns 0.74 0.74 0.05 0.63 0.81
*Assets Food Insecurity 0.76 0.75 0.02 0.72 0.80
LCLUC Availability –​0.05 –​0.07 0.07 –​0.24 0.04
LCLUC Low Off-​Farm Returns 0.04 0.06 0.07 –​0.06 0.23
LCLUC Food Insecurity 0.03 0.04 0.05 –​0.07 0.13
*Availability Low Off-​Farm Returns –​0.55 –​0.55 0.07 –​0.68 –​0.40
Availability Food Insecurity –​0.22 –​0.23 0.16 –​0.53 0.05
*Low Off-​Farm 

Returns
Food Insecurity 0.24 0.25 0.07 0.11 0.39

*  Indicates paths with significant effects.
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TABLE 1.5
Manifest Variables Reflected by Respective LVs for the PLS-​PM. Loadings are 
Correlations Between LVs and its Indicators (>0.7 Acceptable), Communality 
Explains the Amount of Variability Explained by a LV. Communality is Squared 
Loading and Higher is Better

Weight Loading Communality Redundancy

Assets
Land holding 0.09 0.27 0.07 0
Livestock ownership (TLU) 0.41 0.82 0.67 0
Low wealth (SES Index) 0.61 0.92 0.84 0
Low education (Literacy) 0.17 0.41 0.17 0
Aridity (SSM) -​0.01 0.08 0.01 0
Low connectivity (Connectivity cost) 0.12 0.09 0.01 0

LCLUC
2001.2018_​forest 0.44 0.67 0.45 0.20
2001.2018_​crop 0.14 0.42 0.18 0.08
2001.2018_​scrub 0.29 0.66 0.44 0.19
2001.2018_​barren 0.48 0.95 0.90 0.40
2001.2018_​water -​0.02 0.08 0.01 0.00

Availability
Low crop diversity (#crops grown) -​0.01 0.26 0.07 0.04
Pot. food availability (PFA) 0.24 0.57 0.33 0.21
Dietary diversity (HDDS) 0.40 0.36 0.13 0.08
Food sourced from own farm 0.17 0.54 0.29 0.18
Low food expenditure (of total income) 0.40 0.81 0.66 0.41
Seeds bought from market 0.39 0.78 0.61 0.38

Low Off-​Farm Returns
Low market orientation 0.49 0.81 0.65 0.43
Proximity to town (in kms) 0.30 0.73 0.54 0.36
Low proportion of HH income from 

on-​farm
0.49 0.78 0.61 0.41

Food Insecurity
# Month food shortage 0.54 0.95 0.90 0.55
HFIAS 0.51 0.94 0.89 0.54

TABLE 1.6
Goodness-​of-​Fit of Models Comparing Two Groups. Group Model 1 was 
Grouped Based on the Median of Food Insecurity Coefficients Computed in 
the Full Model

Group Model 1 less FS 0.38 more FS 0.38
Group Model 2 Panna 0.58 Others 0.53
Group Model 3 Satna 0.30 Others 0.51
Group Model 4 Tehri 0.48 Others 0.64
Group Model 5 Udaipur 0.38 Others 0.57
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agricultural, with a high proportion of smallholder farmers. Despite differences in  
environmental and socioeconomic conditions, these districts perform similarly on  
human development indices like the Sustainable Development Goal 2 (SDG2) related  
to hunger, which has remained low and unchanged over time (NITI Aayog, 2021).  
While these indices typically drive policy decisions at regional and national scales,  
our study highlights significant local variability in the effects of food security drivers  
on smallholder farmers.

The Household Food Insecurity Access Scale (HFIAS) is an experience-​based 
survey that captures food availability, accessibility, and adequacy at the household 
level (Piaskoski et al., 2020). It is a globally accepted indicator that allows for cross-​
time and space comparisons and can identify the most vulnerable sub-​populations 
and the different dimensions of food security. This is crucial for capturing local vari-
ability, as food security experiences may differ significantly even when broad drivers 
exist. Food security issues can arise in rural households even when food is available 
on farms due to factors like high costs, lack of market access, and non-​nutritious food 
availability. In our study, Satna was the most food-​secure district on average, while 
Udaipur was the least. Tehri Garhwal had households with the highest food insecurity 
scores, particularly in remote, high-​altitude areas, comparable to similar high scores 
in the Lumle region of Nepal (Pandey & Bardsley, 2019). As a comparison, Udaipur’s 
district-level mean HFIAS of 4.2 is similar to scores in urban Ouagadougou, Burkina 
Faso (Becquey et al., 2010; Jacob et al., 2018).

On-​farm resources, including land ownership and food from farms, had min-
imal effects on food security compared to asset ownership and off-​farm returns. 
This finding aligns with other studies that highlight the vulnerability of subsistence 

TABLE 1.7
Path Coefficient Results from the District Group Models After Bootstrapping. 
For Each Pair of LVs, +​ Indicates the Same Directionality for Both Groups 
and –​ Indicates Reverse Directions. Assets Should be Read as Lack of Assets.   
* Indicates Significant Relations

Relationship
Udaipur-​
Others Tehri-​Others

Panna-​
Others

Satna-​
Others

Assets -​> LCLUC +​ +​ –​ -​*
Assets -​> Availability –​ +​ +​ +​*
Assets -​> Low Off-​Farm Returns –​* +​* +​ +​
Assets -​> Food Insecurity –​ –​ –​ –​
LCLUC -​> Availability –​ –​ –​ –​
LCLUC -​> Low Off-​Farm Returns +​ –​ –​ –​
LCLUC -​> Food Insecurity +​ –​ -​* –​
Availability -​> Low Off-​Farm Returns +​ -​* –​ +​
Availability -​> Food Insecurity –​* -​* +​ +​
Low Off-​Farm Returns -​> Food 

Insecurity
+​* –​ –​* –​*

 

 

 

 

  

 



19Food Insecurity Across Under-Developed Regions of India

farmers to food insecurity (Allee et al., 2021; Arnalte-​Mur et al., 2020; Marchetti 
& Secondi, 2017; Mondal et al., 2021). The variability introduced by external 
factors like climate change and labor shortages can further amplify food avail-
ability issues (Davis et al., 2021). Thus, food availability has a small but significant 
effect on food security, particularly for households near the threshold of food inse-
curity. Off-​farm resources, including market-​oriented agricultural production and 
diverse sources of off-​farm income, have a more substantial and significant effect 
on food security. These resources provide necessary purchasing power for other 
household needs like education and healthcare and ensure food availability, as 
smallholder farmers typically do not produce enough food year-​round (Hammond 
et al., 2017). However, high dietary diversity without adequate off-​farm returns 
does not guarantee food security, challenging the notion that crop diversity leads to 
better food security (Singh et al., 2020; Zsögön et al., 2022). Seasonal fluctuations 
in crop production and dietary diversity often prevent year-​round food security 
(Mondal et al., 2021).

Asset ownership had the most potent effect on food security and other factors. 
The SES Index (wealth) had a strong positive correlation with nutrition and 
food security (Hong et al., 2006; Lopez-​Ridaura et al., 2018; Mutisya et al., 
2015). Unlike off-​farm returns, assets provide a buffer during economic distress, 
supporting food security across all districts. Landholding, while necessary for 
agricultural production, had a lower impact on food security in this study, which 
measured the size of owned land rather than access and tenure rights (Goli et al., 
2021; Holden, 2020; Mutea et al., 2019). High crop diversity, although a sustain
able practice, indicated low food security and small landholdings in the study 
districts. Overexploitation due to intensive farming can reduce on-​farm income, 
suggesting the need for land aggregation and incentives for conserving agro-​
biodiversity (James et al., 2001).

LCLUC had a modest effect on food security in our model, reflecting the limited 
change captured from Landsat imagery in the study areas. Changes from cropland 
to scrub and wasteland were associated with food security loss, while stable crop-
land was linked to gains (Agidew & Singh, 2017; Galeana-​Pizaña et al., 2021). 
Socioeconomic factors also drive LCLUC, affecting food security through envir-
onmental impacts like soil degradation and biodiversity loss (Mora et al., 2020; 
Smith et al., 2016; Tubiello et al., 2015). Our study’s findings highlight the complex 
pathways of food insecurity and the need for localized analyses. Wealth consistently 
correlates with food security, and households with off-​farm income are more food 
secure. On-​farm resources had less obvious linkages to food security, emphasizing 
the importance of market orientation and physical market access. Literacy, typically 
associated with better food security, had a weaker effect in our study, likely due to 
geographical constraints in regions like Tehri Garhwal. Future studies should include 
additional indicators like land tenure and social caste to improve model predictions. 
Understanding the effects of policies and external factors like food prices and agricul-
tural labor availability is also crucial. Despite its limitations, our model demonstrated 
the feasibility of simultaneously assessing household food insecurity drivers using 
multiple socioeconomic and environmental indicators.
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1.9 � CONCLUSION

Food security is a complex issue influenced by many interacting indicators across various 
scales, posing challenges in identifying comprehensive causal linkages. Regional and 
local studies often focus on specific facets of food security to inform targeted policy 
interventions, potentially overlooking local variability to maximize broader impacts. This 
study addresses these complexities by modeling key food security indicators for small-
holder farmers, incorporating spatial factors within a structural equation model to unravel 
causal relationships. Using a partial least squares path modeling (PLS-​PM) approach, 
this study estimated the magnitude and direction of factors influencing food security. The 
findings underscored wealth and livelihood diversity as pivotal factors distinguishing 
food-​secure households from food-​insecure ones. While on-​farm resources play a sig-
nificant role for subsistence farmers regarding food and other essential resources, their 
contribution alone is insufficient to improve food security levels substantially.

The study highlights the importance of off-​farm income and asset ownership in 
bolstering food security among smallholder farmers, aligning with broader trends observed 
in similar contexts globally. It emphasizes the need for policies and interventions that 
enhance market access, diversify income sources, and build asset ownership among rural 
households to foster sustainable food security outcomes. Furthermore, including spatial 
indicators in the modeling framework enriches our understanding of how geographical 
factors influence food security dynamics locally. This nuanced approach acknowledges 
the diverse contexts within which food security operates, ensuring that interventions are 
tailored to local realities rather than adopting one-​size-​fits-​all approaches.

In conclusion, while on-​farm resources remain crucial for subsistence farming 
communities, addressing food security comprehensively requires leveraging broader 
socioeconomic factors, such as wealth accumulation and livelihood diversification. 
Future research and policy efforts should continue to refine these insights, considering 
local variations and incorporating spatial dynamics to mitigate food insecurity among 
smallholder farmers effectively.
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2.1 � INTRODUCTION

South Asia’s agriculture sector is challenged by the need to feed a population 
expected to increase by 43.8% by 2050 (Goswami 2013) despite limited arable 
land. This challenge is compounded by rapid urbanization and economic develop-
ment, which compete with agriculture for land and threaten forests and wetlands. 
The Ganges Basin, South Asia’s breadbasket, is densely populated and experiencing 
rapid urban expansion (Tsarouchi et al. 2014), putting further pressure on land use. 
Understanding the drivers and impacts of these changes is crucial for informing sus-
tainable development policies, mainly as South Asia plays a key role in global efforts 
like the United Nations Sustainable Development Goals.

This research aimed to assess land cover and land use changes (LCLUC) in the 
Ganges Basin, South Asia’s “breadbasket,” and understand the drivers and impacts 
of these changes. The study focused on (1) identifying and assessing LCLUC from 
2000–​2015, (2) quantifying socioeconomic drivers of LCLUC, (3) developing future 
LCLUC scenarios until 2030, (4) evaluating impacts of LCLUC on key indicators 
like food security and income, and (5) disseminating results to inform sustainable 
development strategies. LCLUC was defined in this project to include changes in 
agricultural land use, cropping systems, and agricultural intensity. The project used 
remote sensing and GIS techniques with an integrated modeling framework to address 
questions about dominant LCLUCs, major socioeconomic drivers, factors driving 
crop choices in Bangladesh, and potentials for improving the economic-​environmental 
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performance of crop production. The project contributed to NASA’s LCLUC program 
by developing remote-​sensing techniques to identify changes and employing eco-
nomic theories and methods to identify major drivers and impacts of LCLUC.

2.2 � METHODOLOGY

2.2.1 � Study Area

The study area is the agricultural region of the Ganges Basin, covering ~600,000 
km2 across seven states in northern India and most of Bangladesh. This area, home 
to nearly a tenth of the world’s population, is South Asia’s “breadbasket.” Dominant 
cropping systems are rice and rice-wheat, with rice being prevalent in Bangladesh 
and the Indian states of Tamil Nadu and Kerala. The region has seen rapid popula-
tion growth and urbanization, leading to the loss of fertile agricultural land and the 
conversion of grasslands to agriculture. Numerous river and wetland ecosystems in 
the basin are threatened by human activities, particularly agriculture. Due to India’s 
support price policy, government policies have influenced agricultural production 
and cropping patterns, with wheat and oilseed production expanding rapidly since 
2000 (Aradhey 2016). Rice production remained relatively stable from 2001 to 2011, 
except in eastern India, where government programs promoted rice cultivation (Singh 
2016). These land use changes significantly impact land use patterns, farm income, 
and the environment.

2.2.2 �O verall Framework of the Research Approach

The research approach integrated remote sensing, GIS, an econometric land use 
model, and an ecological model to achieve its objectives. The methods for achieving 
each of the five study objectives are discussed in detail, i.e., land cover/​land use 
change mapping, land use model, ecological impacts, seasonal-​spatial optimization 
model, and result dissemination portal. The integrated modeling framework, which 
was key to addressing objectives II-​IV, includes an econometric land use model for 
examining determinants of cultivated area, a spatially explicit nutrient delivery ratio 
(NDR) model (Hamel and Guswa 2015) for assessing the impact of cropping inten
sity and fertilizer application rate on nutrient runoff, and a seasonal-​spatial optimiza-
tion model for improving environmental performance while maintaining agricultural 
revenue and food security (Figure 2.1). The optimization problem aimed to minimize 
total nitrogen runoff across three crop growing seasons by changing the nitrogen 
application rate and reallocating cultivation between rice and non-​rice crops. A geo-
spatial portal was also part of the framework for disseminating the research data and 
results to stakeholders and the broader LCLUC community.

2.2.2.1 � Remote Sensing-​Based Assessment of Land Cover/​Land Use Change
The research used time-​series land use/​cover maps to detect three levels of LCLUC  
over the 15 years from 2000 to 2015. The LCLU maps were produced for 2000,  
2005, 2010, and 2015 at a 30-​meter spatial resolution. The project adopted the classi-
fication schema of the USDA Cropland Data Layer, which includes crop types and  
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cropping intensity. The classification algorithm primarily used an ensemble decision  
tree classifier, with training samples established using very high-​resolution multi-
spectral images.

The project addressed several challenges:

	• Cloud coverage: Multiple sensors were used to collect clear images during the 
monsoon season.

	• Mixture of pixels: Due to the fragmentation of crop fields in South Asia, 
classes of mixed pixels were added to ensure accurate crop classification.

	• Validation: Ground truth data was limited, so very high-​resolution images from 
Google Earth and other available land cover products were used for validation.

	• Impact of aerosol and particulates: The research acknowledged the high levels 
of aerosol and particulate pollution in many South Asian cities, which could 
distort Earth Observation and increase the difficulty of adequately classi-
fying urban areas. The study adopted the Improved Urban Extent Extraction 
Procedure (IUEEP), a specific urban delineation algorithm to address this. 
This procedure was based on the Normalized Difference Spectral Vector 
(NDSV), which grouped different normalized difference indices such as the 

FIGURE 2.1  Workflow of the proposed research.
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Normalized Difference Vegetation Index (NDVI), Normalized Difference 
Water Index (NDWI), and Normalized Difference Built-​up Index (NDBI). 
This approach helped to achieve a reasonably accurate delineation of urban 
areas in South Asian countries.

2.2.2.2 � Land Use Model
Consider a farm that has L  acres of cropland. Let r denote three cropping 
seasons: spring, summer, and winter, indexed by 1, 2, and 3, respectively. Let j denote 
three types of cropland use: rice, non-​rice crops, and idle, indexed by 1, 2, and 0, 

respectively. Let π p L
rj rj

,( )  be the restricted profit function for crop j  in season r, 

where p p p
r r r

= ( )1 2
0, ,  is exogenous net prices for rice, non-​rice crops, and idle use 

the farmer faces, and L
rj

 is the amount of land the farmer chooses for land use j  

in season r. The farmer’s objective is to choose the land allocation that maximizes 
total profit
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The solution to this problem gives the optimal land allocation L L p L
rj rj r
* ,= ( ) . 

Assume that the function L p L
rj

,( )  is homogeneous of degree one in L . Then
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Equation (2.3) can be written in share form as
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The model assumes that the farmer’s profit depends on the net prices of the crops and 
the amount of land allocated to each crop in each season. The optimal land alloca-
tion is determined by a set of share equations, which express the proportion of land 
allocated to each crop in each season as a function of the net prices.
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The model treats idle land as a residual choice, capturing the evolution of cropping 
intensity in response to changes in seasonal crop net prices and precipitation. It also 
accounts for inter-​seasonal correlation in crop allocation, which is not typically 
considered in previous models.

The model assumes a logistic form for the share equations, ensuring the predicted 
shares lie within a zero-​one interval. However, due to inter-​seasonal correlation, 
standard logistic regression cannot be used to estimate the share equations. Instead, 
the model converts the nonlinear share equations into a system of linear equations. 
Specifically, assume that the share equations take the logistic form:

	 s
s x

s x
rj

rj r rj rj r rj

k rk r rk rk r rk

* =
+ +( )

+ +( )=∑
exp

exp

0
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where exp ⋅( )  is the exponential function. The term s
rj
0  represents a lagged crop share 

in the previous period (i.e., in 2013)—​an inertia variable that captures the incentive-​
based variables such as net price, market accessibility, and land use conversion costs, 
as well as the location-​specific characteristics such as land suitability, soil proper-
ties, topography, and weather conditions. Including an inertia variable is an empirical 
strategy to absorb unobserved factors affecting land use choice and is vital to model 
agricultural land use in Bangladesh. Characterized by highly diversified agroclimatic 
conditions and soil taxonomy, Bangladesh has 30 agroecological zones. It is prac-
tically challenging to observe all variables related to this agroecological diversity. 
Moreover, the cost associated with land use conversion is difficult to measure, 
because such cost depends on individual farmers’ ability to adopt new practices and 

their attitudes towards risk. Those factors are generally unobservable. Since s
rj
0  has 

captured the net price for choice j for the previous period, p
rj

 is replaced with x
rj

, 

representing the change in net price from the previous period to the current period (i.e., 
from 2013 to 2017). Analogously, the term z

r
 represents a vector of changes in other 

time-​varying variables that may potentially drive land use change and z
r
 =​ (change 

in road density, change in seasonal precipitation). Road density measures market 
accessibility, which is essential for transporting perishable crops such as vegetables to 
a market. Precipitation change has different implications in different seasons. Higher 
rainfall may increase the risk of floods and crop failure in the monsoon season but 

reduce irrigation costs in the dry season. The terms α
r
, β

rj
, and γ rj  are coefficient 

parameters on s
rj
0 , x

rj
, and z

r
.

Let the idle use be a residual category (j =​ 0) and define η γ γrj rj r≡ −
0
. Equation 

(2.5) implies that

       ln , , , ,* *s s s s x r j
rj r rj r r rj rj r rj

/ for and
0

0
0

0 1 2 3 1( ) = −( ) + + = =α β z η 22. 	 (2.6)
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By taking the logarithm of the odds of crop j against idle, the logistic form is 
transformed to a set of six linear equations. The seemingly unrelated regression 
(SUR) method is applied to estimate the systems of equations (2.6) using the cross-​
sectional district-​level data. The SUR method is a generalization of ordinary least 
squares (OLS) for multi-​equation systems and allows the correlation among the errors 
in different equations to improve the regression estimates (Jackson 2002). Political 
scientists have applied such an estimation strategy to model election returns in multi-
party elections.

The model relies on district-​level agricultural statistics for two years, 2013 and 
2017, supplemented with other ancillary data. The outputs from the land use model 
include a system of six equations that establish the relationship between rice and non-​
rice crop shares and the aforementioned factors for each season.

2.2.2.3 � Ecological Impacts of Crop Cultivation and Nitrogen Application
The InVEST’s Nutrient Delivery Ratio (NDR) model is a spatially explicit model 
used to assess the ecological impacts of crop cultivation and nitrogen application 
(Hamel and Guswa 2015). It calculates a nutrient budget based on nitrogen sources, 
land cover and land use, and the processes of denitrification or sediment trapping by 
a given land use type.

The model identifies surface and subsurface flow paths from a digital elevation 
model and uses the land use types’ nutrient load and retention parameters to represent 
the transport process. The loads are routed along topographically defined flow paths, 
with a proportion of the load being removed on each cell between the nutrient load 
and the stream. The nutrient export at the watershed/​subwatershed outlet is computed 
as the sum of the pixel-​level contributions.

The model assesses the total nutrient load, nutrients retained by vegetation and 
topographic features, and nutrients delivered to the water outlet for each growing 
season. It first estimates the pixel-​level nutrient delivery ratios, which are then 
aggregated to the district level.

The model considers two sources of nutrient loads: fertilizer application of crop-
land and natural resources such as rainfall. However, since the focus is on the former, 
nutrients from natural resources are excluded while modeling the delivery ratio. The 
NDRs are replicated twice, once with nutrient loads from both sources and once with 
the fertilizer application in the cropland set to 0, so all the nutrient load is from nat-
ural resources. This allows for a more accurate assessment of the ecological impacts 
of crop cultivation and nitrogen application.

2.2.2.4 � Seasonal-​Spatial Optimization Model
The optimization problem presents an objective of minimizing total annual nitrogen 
runoff aggregated across districts and seasons, subject to a set of economic and phys-
ical constraints concerning total annual output value and cropland availability.

Assume that the central government is concerned about national agricultural 
runoff pollution and attempts to minimize the total nitrogen runoff while maintaining 
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the value of total crop production and guaranteeing food security in the country. The 
government’s problem can be written as

	

min
,N L i r j
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where L
irj

 represents the total harvested area of crop j  in season r , district i , 

and N
irj

 represents the associated per acre nitrogen input; L
irj

 and N
irj

 are decision 

variables that the government jointly controls. The parameter θ
ir

 is a district-​specific, 
season-​wise ratio of the nitrogen runoff to the nitrogen input. A linear relationship is 
assumed between the runoff and the input, and this relationship varies by season and 

space. Therefore, the term θ
ir irj irj

N L  in the objective function (2.7a) represents the 

nitrogen runoff from growing crop j  in season r , district i .
The economic constraint in (2.7b) states that the farmers as a whole would not 

be worse off from the reallocation of crop production and nitrogen application to 

minimize agricultural runoff pollution. The parameter p
irj

 represents the price of 

the crop j  grown in season r , district i . The parameter vb  is the value of total agri-

cultural production in the baseline. It is assumed that crop yield y
irj

 is a function of 

nitrogen input, denoted as y N
irj irj( ) , where technology and other inputs are impli-

citly captured in the function.
The food security constraint in (2.7c) states that the country’s total rice production 

would be maintained at least at the baseline level, denoted as Y b
1

. As Bangladesh’s 
dominant food crop, rice provides about two-​thirds of the total calorie supply and 
about one-​half of the total protein intake of an average person in the country (BRRI). 
This constraint indicates that national food security is not compromised as a result of 
the environmental initiative.
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The constraints in (2.7d) and (2.7e) are physical constraints, where L
ir

 is the area 
of cropland potential in season r , district i ; L

i
 is the area of cropland available in 

district i ; CI
i
 is the annual cropping intensity in the district i  under the baseline. 

Constraint (2.7d) states that in each season, the total cropping area cannot exceed the 
land area potentially suitable for crop production. Constraint (2.7e) states that the 
annual harvested area in each district cannot exceed the baseline annual harvested 
area at the current cropping intensity.

2.2.2.5 � Designing and Developing a Result Dissemination Portal
A standard-​compliant geospatial portal was meticulously designed and refined to dis-
seminate research data and results to stakeholders and the broader LCLUC commu-
nity. The portal is a comprehensive platform that delivers a wealth of information, 
including the following:

	• Historical LCLUC Results: The portal provides land cover/​land use (LCLU) 
results for 2000, 2005, 2010, and 2015, offering a historical perspective on 
land use changes.

	• Drivers of LCLUC: It identifies and presents the key drivers of LCLUC, 
helping users understand the factors influencing these changes.

	• Projected LCLUC: The portal also includes projections for LCLUC up to 
2030, providing insights into future trends.

	• Socio-​Economic Impact of LCLUC: This section assesses and presents the 
socio-​economic impact of LCLUC, highlighting the implications of these 
changes for society and the economy.

	• InVEST Model Outputs: The portal features model outputs from the Integrated 
Valuation of Ecosystem Services and Tradeoffs (InVEST), including land 
degradation, nutrient retention, water quality, sediment retention, carbon 
sequestration, and other ecological impacts.

2.3 � RESEARCH AND DEVELOPMENT OUTCOMES

2.3.1 � LULC Mapping and Change Monitoring

2.3.1.1 � Earth Observation Data Collection and Processing
The project investigated agricultural land use and land cover changes every 5 years 
from 2000 to 2015. Landsat images were collected for these years, with different 
Landsat versions used for different years. Supplementary Earth Observation data, 
including Terra ASTER, MODIS daily surface reflectance data, daily VIIRS NPP, and 
MODIS NDVI/​EVI/​LAI 16-​day composite data, were collected.

In addition to satellite images, data from Globe Land 30 (GLC30) and the Global 
Food Security-​Support Analysis Data 30 meter (GFSAD30) were collected. GLC30 
provides worldwide land cover data in a 30-​meter resolution for 2000 and 2010, while 
GFSAD30 provides cropland extent data across the globe for the nominal year 2015 
(2010 for North America) at a 30-​meter resolution.

Landsat and MODIS data/​products were primarily used in land cover mapping. The 
high spatial resolution of Landsat images was used to identify the spatial distribution 
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of farmland. In contrast, the high temporal resolution of MODIS was used to interpret 
phenology information to identify crop types and cropping intensity.

The Landsat images underwent atmospheric correction on six reflectance bands 
and were geo-​referenced into the UTM-​WGS84 map projection. Image-​to-​image 
radiometric normalization was conducted between adjacent images, particularly 
before image mosaicking for the Landsat data. This was implemented by performing 
a histogram matching between adjacent scenes for the same year.

2.3.1.2 � LULC Mapping
This project mapped land use and land cover (LULC) for the study area using Landsat 
5 and 8 surface reflectance products. The Normalized Difference Vegetation Index 
(NDVI) and Normalized Difference Built-​up Index (NDBI) were computed for better 
classification. The Google Earth Engine (GEE) was used to efficiently handle and 
process large geospatial datasets.

The LULC maps were generated using 66 Landsat scenes covering the study 
area for 2000, 2005, 2010, and 2015. Reference data included the GlobeLand30 
(GLC30) product, MODIS Land Cover Type product (MCD12Q1), ESA CCI Land 
Cover product, and the Global Land Cover Facility (GLCF): Landsat Tree Cover 
Continuous Fields.

The GLC30, a global LULC map at 30-​meter resolution for 2000 and 2010, 
was the primary reference (Table 2.1). The MODIS product provides land cover 
dynamics at 500-​meter spatial resolution. The ESA CCI product is a 300-​meter 
resolution land cover covering 1992 to 2015. The GLCF estimates ground covered 
by woody vegetation more significant than 5 meters in height for 2000, 2005, and 
2010. The Hansen Global Forest Change v1.3 (2000–​2015) layer was added to 
cover the year 2015.

2.3.1.2.1 � Data Pre-​Processing
This project used multi-​temporal image sequences to improve land use and land cover 
(LULC) classification. Instead of a single image, all images that met the criteria were 
used to extract phenology information. The criteria included a cloud cover of less 
than 10% and the use of filters on the GEE Landsat 5 Surface Reflectance T1 image 
collection in a year.

All bands from the selected images were used for classification. Additionally, 
three normalized indexes –​ NDVI, NDBI, and MNDWI –​ were computed and added 
to each image as single bands. The MNDWI is calculated as

	 MNDWI
GREEN MIR

GREEN MIR
=

−
+

	 (2.8)

To acquire training samples for 2005, pixel values of the GLC30 product were 
remapped from double digits to single digits. The unchanged regions between 2000 
and 2010 were identified and used to generate around 4000 sample points. Points 
close to the perimeter of the unchanged regions were deleted. This was done by using 
a raster calculator as
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	 output glc glc= × +10 2000 2010 	 (2.9)

Where glc2000 and glc2010 represent the LCLU types in 2000 and 2010, respectively.
Buffers were generated around existing sample points and converted to a polygon 

class feature collection to increase the number of sample points. This collection was 
used as the training dataset.

2.3.1.2.2 � Classification Method
The classification method for land use and land cover (LULC) involved training  
a Random Forest (RF) classifier on Google Earth Engine (GEE) using a stacked  
image and training samples. The RF classifier consisted of multiple Decision Tree  

TABLE 2.1
Globeland30 Classification Schema

LULC Type Value Remap Description

Cultivated Land 10 1 Lands used for agriculture, horticulture and gardens, 
including paddy fields, irrigated and dry farmland, 
vegetation and fruit gardens, etc.

Forest 20 2 Lands covered with trees, with vegetation cover over 
30%, including deciduous and coniferous forests, 
and sparse woodland with cover 10–​30%, etc.

Grassland 30 3 Lands covered by natural grass with cover over 10%, etc.
Shrubland 40 4 Lands covered with shrubs with cover over 30%, 

including deciduous and evergreen shrubs, and 
desert steppe with cover over 10%, etc.

Wetland 50 5 Lands covered with wetland plants and water bodies, 
including inland marsh, lake marsh, river floodplain 
wetland, forest/​shrub wetland, peat bogs, mangrove 
and salt marsh, etc.

Water Bodies 60 6 Water bodies in the land area, including river, lake, 
reservoir, fishpond, etc.

Tundra 70 7 Lands covered by lichen, moss, hardy perennial herb and 
shrubs in the polar regions, including shrub tundra, 
herbaceous tundra, wet tundra and barren tundra, etc.

Artificial 
Surfaces

80 8 Lands modified by human activities, including all 
kinds of habitation, industrial and mining area, 
transportation facilities, and interior urban green 
zones and water bodies, etc.

Bareland 90 9 Lands with vegetation cover lower than 10%, 
including desert, sandy fields, Gobi, bare rocks, 
saline and alkaline lands, etc.

Permanent 
Snow and Ice

100 10 Lands covered by permanent snow, glacier and icecap.

Ocean 255 6 Oceans.

 

 

 

 



36 Remote Sensing of Land Cover and Land Use Changes, Volume 2

(DT) classifiers, each trained on different bootstrap data samples. Randomness was  
introduced in feature selection for each split to reduce tree similarity. Combining the  
classification results from each DT, the RF classifier achieved better overall perform-
ance and robustness against overfitting than a single DT classifier. The parameters for  
the RF classifier are provided in Table 2.2.

2.3.1.2.3 � Post-​Classification Process
The post-​classification process for land use and land cover (LULC) involved two 
major steps:

1.	 Incremental artificial surface area update: The performance of the classifier 
was evaluated using the F1 score, calculated as

	
F

Precision Recall

Precision Recall
1

2
=

×
+

*

	
(2.10)

  

		 The year with the highest F1 score for the artificial surface class was identi-
fied and used to update the classification results for other years. The rules for 
updating were as follows:

	• If the previous year is an artificial surface and has the highest score, the 
following years will be the same surface.

	• If the following year is not an artificial surface and has the highest score, 
the previous year will be classified as cropland instead of an artificial 
surface.

2.	 Forest cover update based on the GLCF: The Global Land Cover Facility 
(GLCF) Landsat Tree Cover Continuous Fields product was used as a refer-
ence to update the forest class in the classification. This product provided a 
tree cover percentage of 30-​meter resolution for 2000, 2005, and 2010. For 
2015, the Hansen Global Forest Change (2000–​2015) product was used. The 
forest definition provided by the United Nations was adopted, which states 
that forests are land covers that are at least 0.5 ha and with more than 10% 
of the area covered by trees that are at least 5 meter high. Therefore, a 10% 
threshold on the continuous field product was used to derive forest area for 
2000, 2005, and 2010. The forest class was updated based on the GLCF and 

TABLE 2.2
Random Forest Classifier Parameters

Parameters Value Description

Number of Trees 15 Number of trees to create per class
Variables Per Split 0 Split using square root of the number of variables
Min Leaf Population 2 The minimum size of a terminal node
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GLC30 products. For 2000 and 2010, a pixel was updated to forest cover if 
classified as forest in both GLCF and GLC30 products. For 2005, only the 
GLCF product was used, while for 2015, the update was based on the forest 
class in 2000 and the Hansen Global Forest Change (2000–​2015) product.

2.3.1.3 � Time-​Series LCLU Maps
The study uses Landsat image classification to present a time series analysis of land 
use/​land cover (LULC) in a specific area from 2000 to 2015. Four LULC maps were 
generated at 5-​year intervals. The maps identified eight land cover types: cropland, 
forest, grassland, shrubland, wetland, water, artificial surface, and bare land.

The study area was predominantly covered by croplands, accounting for over 80% 
of the total land area. Forests, the second most common land cover type, were scattered 
throughout the area, with a significant portion along the eastern edge bordering the 
Himalayas. A notable feature was a large wetland area on the Bay of Bengal coast, 
possessing the world’s largest mangrove forest.

While the overall percentage share of land cover types remained relatively con-
sistent from 2000 to 2015, changes in LULC may have occurred at different locations 
within the study area. The least represented land cover type was bare land, with its 
share decreasing from 0.06% in 2000 to 0.02% in 2015 (Table 2.3).

2.3.1.4 � Validation and Accuracy Assessment
The validation and accuracy assessment of the LULC maps were conducted using  
150,000 samples from the unchanged area between 2000 and 2010. The accuracy and  
kappa scores were calculated using specific formulas. The overall accuracies of the  
LULC map classified from the remote sensing images for the years 2000, 2005, 2010,  
and 2015 were 0.957, 0.953, 0.953, and 0.946, respectively, indicating high and con-
sistent accuracy of the selected land cover mapping techniques. The corresponding  
kappa values were 0.807, 0.796, 0.796, and 0.768 for the same years, showing a  
high agreement between the LULC types and the ground truth. This demonstrated  

TABLE 2.3
Distribution of LULC Types in the Ganges Basin Area

2000 2005 2010 2015

Sq. Km Percent Sq. Km Percent Sq. Km Percent Sq. Km Percent

Cropland 903182 84.01 905061 84.18 893896 83.14 901291 83.83
Forest 83663 7.78 86686 8.06 88654 8.25 85675 7.97
Grassland 20119 1.87 16990 1.58 21496 2.00 18466 1.72
Shrub land 2761 0.26 426 0.04 2856 0.27 943 0.09
Wetland 7439 0.69 7272 0.68 7523 0.70 7068 0.66
Water 12626 1.17 11876 1.10 11672 1.09 10556 0.98
Artificial 

Surface
44690 4.16 45908 4.27 48732 4.53 50945 4.74

Bare land 665 0.06 873 0.08 289 0.03 218 0.02
Total 1075145 100 1075092 100 1075118 100 1075162 100
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the capability of the techniques used for accurate mapping of land cover types using  
earth observation.

2.3.2 � Agricultural Land Use Change between 2000 and 2015

Between 2000 and 2015, the study area, predominantly farmland, underwent signifi-
cant land use and land cover (LULC) changes. Impervious surfaces increased from 
4.16% to 4.74%, mainly due to farmland and forest conversion. Notably, cropland 
was transformed into built-​up areas, especially around cities.

In the eastern part of the study area, major changes included the conversion of 
forest to cropland and waterbody to cropland, the latter due to erosion and siltation in 
Ganges channels. In the southwestern parts, cropland was predominantly converted 
to grassland.

Around 97% of the 2000 croplands remained unchanged by 2015, but urban 
expansion led to a net loss of 5668 km² of cropland to impervious surfaces. Some 
croplands reverted to forest, particularly along river areas.

Major land cover changes occurred in grassland, shrubland, waterbodies, and 
forests. About 20% of grassland was converted to cropland and 18% to forest. 
Shrublands saw a 62% conversion to forest and a 390 km² conversion to croplands. 
A significant gain of 5502 km² of cropland occurred from waterbodies, indicating 
their filling for crop cultivation (Table 2.4). These changes reflected the impacts 
of urban expansion, population growth, migration, and international food market 
dynamics on agricultural land use.

2.3.2.1 � Case Study Area
The Delhi metropolitan area, a densely populated region in India, underwent signifi-
cant LCLUC between 2000 and 2015 (Tang and Di 2019). This period saw rapid  
urbanization, largely due to migration from other parts of India. The total population  
surged from 10 million in 1990 to 25 million in 2014. However, the rural population 
proportion declined from 10.07% in 1991 to 2.50% in 2012. Consequently, the  

TABLE 2.4
The LULC Change from 2000 to 2015 for the Study Area in Percentage

2015
2000 Cropland Forest Grassland Shrubland Wetland

Water 
Body

Artificial 
Surface

Bare 
Land

Cropland 97.31 0.81 0.51 0.01 0.03 0.37 0.95 0.01
Forest 10.30 86.87 1.89 0.46 0.01 0.09 0.38 0.00
Grassland 20.76 18.80 59.50 0.60 0.00 0.07 0.23 0.03
Shrubland 14.11 62.76 8.59 13.16 0.00 0.08 1.23 0.05
Wetland 4.26 0.37 0.09 0.00 90.68 3.46 1.14 0.00
Water body 43.58 0.92 0.11 0.02 0.63 53.33 1.11 0.30
Artificial 

Surface
6.57 0.02 0.00 0.00 0.00 0.05 93.36 0.00

Bare land 70.04 1.08 1.25 0.19 0.00 16.78 0.19 10.47
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region experienced substantial land use changes, particularly the loss of farmland.  
This case study provides valuable insights into the impacts of urbanization on agricul-
tural LCLUC.

2.3.2.2 � Model for Historical Construction and Future Prediction
The Markov-​Cellular Automata (CA) model is a systematic framework used for his-
torical construction and future prediction of land use and land cover (LULC). It is 
driven by four factors: transition probability (f

p
), neighboring effect (f

n
), suitability 

driver (f
s
), and constrain factor (f

c
). The transition probability is derived from a his-

torical Markov model, while the neighboring effect is based on the current cell status. 
The constraint factor is determined by elements such as water, elevation, and slope, 
and the suitability driver includes factors like population and road density.

A crucial step in the Markov-​CA model is calibration, which assigns appropriate 
parameters for each input variable. In this process, two LULC maps from 1998 and 
2009 were used as empirical data. The model was run at yearly intervals until the cali-
bration years, using the Monte Carlo random selection method to choose the initial 
data and model code. The parameters with the highest match were selected for the 
next year’s simulation (Shan et al. 2008).

Other factors impacting LULC, such as elevation, distance to roads, road density, 
and population growth, were defined and included in the transition rules as suitability 
drivers. Constrain factors like lakes, rivers, and reservoirs were also considered.

The model’s accuracy was validated by comparing the predicted LULC map with 
the empirical map of the same year, using the Root Mean Square Error (RMSE) as the 
evaluation metric. The RMSE formula is given by:

	 RMSE = −( )
=
∑1

1

2

N
P P

i

N

ei pi
	 (2.11)

where P
ei

 is the percentage of each class from the classified map, P
pi
. is the per-

centage of each class from the empirical map, and N is the total number of LULC 
classes.

2.3.2.3 � Past and Future Trajectories of Farmland Loss
The Markov-​CA model was used to reconstruct historical annual maps and predict 
future land use and land cover (LULC) changes in Delhi from 1995 to 2030. The 
model showed that urban areas, driven by factors like population growth and eco-
nomic development, would continue to expand, primarily at the expense of farmland.

From 1995 to 2005, the urban area increased by 401 km², less than the 455 km² 
increase from 2005 to 2015, reflecting the rapid urbanization in New Delhi after 
the 2000s. The model predicted that this trend would continue, with the urban area 
increasing from 504.13 km² to 2679.54 km², while farmland would decrease from 
8778.19 km² to 7242.94 km².
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The model’s accuracy was validated by comparing the simulated map with the 
empirical map for the same year. Farmland and urban areas showed high user and 
producer accuracy.

The results indicate that rapid urbanization is the major reason for farmland loss. 
Although both urban and farmland areas are changing, their rates of change differ. 
Farmland shows a relatively stable decrease from 1995 to 2030, while the urban 
area’s increase rate was larger from the 2000s to 2020, consistent with the intensive 
urbanization in Delhi from the 2000s. The model predicts that this rapid urbanization 
will continue until 2020 and slow down from 2020 to 2030.

2.3.3 � Farming System Change Analysis

The project analyzed farming system changes in Bangladesh, particularly the shift 
from agricultural land use to aquaculture. The study focused on Singra Upazila, a 
region experiencing intense land use change from crops to aquaculture. A novel 
workflow was introduced for detecting fishponds using Sentinel-​2 optical images.

The fishery industry in Bangladesh has experienced rapid expansion over the 
past few decades, becoming a major source of food and economic growth. The fish 
farming market has grown 25-​fold in all aspects of the aquaculture industry over the 
last three decades. Despite rice being the primary food source, the booming aqua-
culture industry is diversifying the dietary structure and improving health conditions 
in Bangladesh. However, this growth puts pressure on the already limited cropland. 
A significant portion of cropland has been transformed into other land use types, such 
as fishponds, brickyards, and residential areas. With the advent of Earth Observation 
(EO) data, particularly the newly published Sentinel-​2 MSI 10m resolution images, 
mapping and monitoring individual fishponds have become feasible.

Fishponds in Bangladesh are usually filled with water all year round, small, and 
have relatively simple shapes like rectangles. Multi-​temporal and multi-​spectral 
remote sensing images were used to detect these features in this study. Sentinel-​2 
MSI L1C data, popular for land use and land cover (LULC) mapping due to its finer 
spatial and temporal resolution, was used in this research for fishpond mapping.

Three remotely-​sensed Water Indexes (WI), namely the Normalized Difference 
Water Index (NDWI) (McFeeters 1996), Modified Normalized Difference Water 
Index (MNDWI) (Xu 2006), and Automated Water Extraction Index (AWEI) (Feyisa 
et al. 2014), were utilized. These indexes enhance water features on multispectral 
images by leveraging the low reflectance of water in the near-​infrared (NIR) and 
shortwave-​infrared (SWIR) spectra. The AWEI, which uses five bands to compute, is 
particularly noted for its ability to reduce false positives from shadow pixels.

The challenge of discerning fishponds from other water features was addressed by 
using a specific feature of fishponds and integrating automatic spectral filtering and 
spatial filtering using object-​based features (OBFs). OBFs, also known as geometrical 
features or shape metrics, have been used in previous research as ancillary features in 
object-​based image analysis. They have been shown to significantly improve classifi-
cation accuracy, especially when objects are spectrally similar. The proposed method 
was implemented on Google Earth Engine (GEE).
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2.3.3.1 � Study Area and Dataset
The study area was Singra Upazila, a sub-​district of Natore district in Northern 
Bangladesh, with a population density of 607 persons per km². The area, which is 
primarily agricultural with a focus on rice farming, is undergoing a shift from crop 
fields to fishponds due to the higher profitability of fish culturing. The data used 
in this study is the Sentinel-​2 MSI Level-​1C product, a Top-​of-​Atmosphere (TOA) 
reflectance dataset.

2.3.3.2 � Methodology
The methodology consists of two main parts: spectral filtering and spatial filtering.  
Spectral filtering uses multi-​temporal images to identify water features that are  
flooded throughout the year. Spatial filtering calculates object-​based features for  
vectorized water objects identified by spectral filtering and sets thresholds to distin-
guish fishponds from other water features. The entire workflow is depicted in  
Figure 2.2. The details of the methodology can be found at Yu et al., 2020.

FIGURE 2.2  Flow diagram of the pond change detection method.
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2.3.3.3 � Result
The fishpond classification results indicated that the Logistic Regression (LR) model 
outperformed the Decision Tree (DT) model on the test dataset, despite DT’s superior 
performance during training. Specifically, LR correctly classified 663 out of the 841 
fishponds, yielding a precision score of 0.788. In contrast, DT identified 789 fishponds 
and correctly classified 610, resulting in a precision score of 0.773. Compared to 
DT, LR’s precision score was 1.5% higher, its recall rate was over 4% higher, and 
its overall F1 score was 3.6% higher. Therefore, the LR model is recommended for 
fishpond classification.

2.3.4 �M apping and Change Analysis of Crop Intensity

Progress was made in detecting crop intensity changes in the study area, with research 
conducted using harmonic regressions on time series imagery. The forthcoming 
discussions cover data collection, encountered challenges, employed methodologies, 
and preliminary results of crop intensity mapping and change analysis.

2.3.4.1 � Data
The data for crop intensity mapping was sourced from the Global Food Security 
Analysis-​Support Data at 30m (GFSAD30) project and the Global croplands data 
portal, yielding 124 ground truth points collected in 2010 in Bangladesh. These 
points, which include longitude, latitude, crop type, and crop intensity information, 
were supplemented with statistical data from the Bangladesh Bureau of Statistics’ 
Statistical Yearbook and the Yearbook of Agricultural Statistics. The Moderate 
Resolution Imaging Spectroradiometer (MODIS) data product was used to analyze 
the time series of NDVI values in crop fields due to its high temporal resolution, with 
the 8-​day product chosen over the daily product for ease of data processing. Quality 
assessment bands were used to mask cloud-​contaminated pixels.

2.3.4.2 � Methodology
2.3.4.2.1 � Data Preprocessing
Data preprocessing for crop intensity mapping involved using MODIS Terra/​Aqua 
Surface Reflectance 8-​Day L3 Global 250 m products, applying a cloud mask to all 
images, and calculating NDVI using bands 1 and 2 of the MODIS products; due to 
high cloud cover in monsoon seasons, Terra and Aqua products were combined to 
address missing values, with the combination method mathematically illustrated in 
equation (2.12).
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2.3.4.2.2 � Harmonic Regression
The Harmonic ANalysis of Time Series (HANTS) method, also known as harmonic 
regression, was used to detect crop intensity. This method uses Fourier series as base 
functions, adding up sine and cosine pairs of different frequencies to represent overall 
trends and local variations. The harmonic regression is more stable than polynomial 
regressions and is particularly suitable for phenology-​related analysis due to its 
intrinsic periodicity. The harmonic series is mathematically represented as

	
V t a a it b it

i

n

i i( ) = + ( ) + ( )( )
=
∑0

1

2 2cos sinπ π
	

	
t =

DoY

days# 	
(2.13)

where t  is the relative position of the image date in the corresponding year between 
0 and 1, and V(t) is the predicted NDVI value for any time of a year. The number 
of periodic terms n is set to 3, given the highest crop frequency in Bangladesh. The 
regression is conducted pixel-​wise, with each pixel being an array of 46 NDVI values 
representing the NDVI dynamics at the corresponding pixel location. The Ordinary 
Least Square (OLS) model was used to estimate parameters, which can be acquired 
using the normal equation:

	 θ = ( ) ( )−
X X X yT T1

	 (2.14)

where θ  is the parameter vector, X  is the training sample matrix, and y  is the true 
value vector.

2.3.4.2.3 � Crop Frequency Identification
After fitting the harmonic series to the NDVI time series, the crop intensity is 
determined by counting the number of intersections between a threshold line and the 
fitted curve. The threshold was set to 0.5 because the NDVI values of healthy crops are 
usually higher than 0.5. For complete crop cycles, there should be two intersections, 
one at the curve going up and one going down. However, for incomplete crop cycles, 
either due to missing values or cropped by the range of a year, there might be an odd 
number of intersections. Therefore, the crop frequency is determined by rounding up 
the number of intersections divided by 2; i.e., for even numbers, crop frequency is the 
number of intersections divided by 2; for odd numbers, crop frequency is the number 
of intersections plus 1, then divided by 2.

2.3.4.3 � Results
The remote sensing derived crop frequency mapping results indicate that the dom-
inant crop frequency in Bangladesh is two seasons, followed by one season, with three 
seasons being relatively rare. The one-​season cropping pattern is typically associated 
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with seasonal flooding, while the two-​season cropping system, comprising one Kharif 
and one Rabi season, is the most common. Comparisons with the crop intensity map 
from Banglapedia reveal a rough match, particularly with single-​cropped regions. 
However, the area of triple-​cropped regions is smaller than the reference map, pos-
sibly due to missing values in the monsoon seasons. A zonal analysis was conducted 
on the crop frequency map to aggregate crop intensity for each district. The result is 
shown in Table 2.5.

TABLE 2.5
District and Region-​Wise Crop Intensity Summary from our Result and 
Statistics from Bangladesh Bureau of Statistics (BBS)

Region Name District Name
Crop Intensity
by our Method

Crop Intensity 
from BBS

Bandarban Bandarban 1.157534 1.38
Barisal Barisal 1.72627 1.76

Bhola 1.543641
Jhalokathi 1.680704
Pirojpur 1.617375

Bogra Bogra 1.980268 2.35
Joypurhat 1.301246

Chittagong Chittagong 1.599386 1.99
Cox’s Bazar 1.702732

Khagrachhari Khagrachhari 1.456341 2.12
Rangamati Rangamati 1.276831 1.44
Comilla Brahmanbaria 1.560693 1.82

Chandpur 1.719748
Comilla 1.490053

Dhaka Dhaka 1.874435 1.72
Gazipur 1.712432
Manikganj 1.345053
Munshiganj 1.831956
Narayanganj 1.436767
Narsingdi 1.765473

Dinajpur Dinajpur 1.661731 2.11
Panchogarh 1.598903
Thakurgaon 1.997417

Faridpur Faridpur 1.618574 1.92
Gopalganj 1.458369
Madaripur 1.725696
Rajbari 1.693322
Shariatpur 1.624316

Jamalpur Jamalpur 1.772047 2.29
Sherpur 1.847076

Jessore Jessore 1.653473 2.28
Jhenaidah 1.937731
Magura 1.845971
Narail 1.637942
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2.3.5 � Scoping Visit and Socioeconomic Data

2.3.5.1 � Scoping Visit to Bangladesh and India
A socio-​economic survey was conducted during a scoping visit to the study area 
in November 2017. The team met with key stakeholders, held research seminars, 
and visited several villages and cities for field visits. Two studies were presented 
during the seminars. A questionnaire was designed for small group discussions with 
farmers, focusing on general questions regarding land use and resources, as well 
as agricultural production. The questions covered topics such as main livelihood 

Region Name District Name
Crop Intensity
by our Method

Crop Intensity 
from BBS

Khulna Bagerhat 1.49646 1.34
Khulna 1.267695
Satkhira 1.572612

Kushtia Chuadanga 1.855318 2.56
Kushtia 1.60264
Meherpur 1.842816

Mymensingh Kishoreganj 1.579946 2.15
Mymensingh 1.642374
Netrokona 1.600508

Noakhali Feni 1.823093 2.11
Lakshmipur 1.681078
Noakhali 1.538954

Pabna Pabna 1.573781 2.03
Sirajganj 1.912778

Patuakhali Barguna 1.399497 1.49
Patuakhali 1.346188

Rajshahi Chapai Nawabganj 1.529636 1.80
Naogaon 1.64282
Natore 1.461503
Rajshahi 1.602412

Rangpur Gaibandha 1.613909 2.02
Kurigram 1.706694
Lalmonirhat 1.697256
Nilphamari 1.723727
Rangpur 1.854516

Sylhet Habiganj 1.920637 1.54
Maulvibazar 1.667063
Sunamganj 1.290713
Sylhet 1.308794

Tangail Tangail 1.848917 1.92
Summary 1.655 1.91

 

 

 

TABLE 2.5  (Continued)
District and Region-​Wise Crop Intensity Summary from our Result and 
Statistics from Bangladesh Bureau of Statistics (BBS)
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activities, challenges faced, types of land cover/​use, government or NGO programs, 
types of land tenure for cultivated land, major crops, irrigation practices, and changes 
in agricultural production activities over the last 5–​10 years. The survey aimed to 
gather comprehensive information to understand the socio-​economic dynamics of the 
study area.

2.3.5.2 � Socioeconomic Data
Existing socioeconomic data was collected for this study from India and Bangladesh, 
respectively. The detailed data type and source are listed in Table 2.6.

2.3.6 �T he Driver and Impact Analysis of Land Use

2.3.6.1 � InVEST-​NDR model

2.3.6.1.1 � Model Description
The InVEST (Sharp et al. 2016) nutrient delivery model (InVEST-​NDR) maps 
nutrient sources from watersheds and their transport to streams, estimates the nutrient 
retention capacity of land parcels under various land use scenarios, and informs con-
servation efforts by identifying areas of soil and vegetation that most effectively 
purify water supply for people and aquatic life.

2.3.6.1.2 � Model Calibration and Validation
The calibration of the InVEST model involves ensuring all input data strictly adheres 
to the model’s standard format, processing and preparing various datasets such as 
the Digital Elevation Model (DEM) and rainfall data of the Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS), calibrating nutrient loading and 
maximum retention efficiency for each land cover class based on local conditions and 
using constant landscape-​wide values for additional subsurface parameters.

2.3.6.2 � Modeling Seasonal Changes in Nutrient Export with InVEST-​NDR
The InVEST NDR model was used for the modeling of seasonal changes in nutrient 
export.

2.3.6.2.1 � Data
The InVEST model requires three types of calibrated input data: land cover and land 
use datasets, geospatial attributes including watershed and sub-​watershed, and tabular 
datasets, which include nutrient loading for each land use class, retention efficiency, 
and additional subsurface parameters.

2.3.6.2.2 � Model Results
The InVEST model results reveal strong seasonal and spatial variations in nitrogen 
Nutrient Delivery Ratios (NDRs). Nitrogen application intensity is highest in winter, 
followed by summer and spring. The model shows marked seasonal differences in 
nutrient pollution in streams, with the highest pollution in winter. High nitrogen 
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TABLE 2.6
Socioeconomic Data Available

India

Data Type Scale Year Description Source

Agricultural 
statistics

District 2000 National statistics bureau and 
agricultural year book

Agricultural 
statistics

State 2000/​01–​
2011/​12

Production
Area
Yield

Ministry of Agriculture 
and Farmers Welfare, 
Government of India

Agricultural 
statistics

State 2000/​01–​
2013/​14

1986/​87–​
2007/​08

Fertilizer Consumption Indiastat Industrial Databook 
2002-​03, CIER (Center for 
Industrial and Economic 
Research)

www.indiastat.com/​agriculture/​
2/​consumptionoffertilisers/​
206871/​stats.aspx

Agricultural 
statistics

District 1980–​2007 Production by crop
Area by crop
Farmgate price by crop
Total fertilizer consumption (N,P, Potash)

ICRISAT
Note: unbalanced data, 

contains a bunch of missing 
obs

India Human 
Development 
Survey (IHDS)

Most of the 
survey 
coverage 
is over 
dimensions 
of human 
development.

This is a large 
nationally-​
representative 
panel dataset, 
with data 
on some 
40,000 urban 
and rural 
households

2004-​5 and 
2011-​12

Main data files can be downloaded from www.icpsr.umich.edu/​
icpsr​web/​ICPSR/​stud​ies/​36151?q=​india+​human+​deve​lopm​
ent+​sur​vey&searc​hSou​rce=​icpsr-​land​ing. For identification 
variables linking IHDS-​I and IHDS-​II you must register on 
this site and create an account. After this you will be sent an 
email confirming your subscription to which you will need to 
respond. Creation of an account will allow you to download

(continued)
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http://www.indiastat.com/agriculture/2/consumptionoffertilisers/206871/stats.aspx
http://www.indiastat.com/agriculture/2/consumptionoffertilisers/206871/stats.aspx
http://www.indiastat.com/agriculture/2/consumptionoffertilisers/206871/stats.aspx
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36151?q=india+human+development+survey&searchSource=icpsr-landing
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36151?q=india+human+development+survey&searchSource=icpsr-landing
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36151?q=india+human+development+survey&searchSource=icpsr-landing
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India

Data Type Scale Year Description Source

the link files and any relevant documentation. Creating an 
account will also subscribe you to our IHDS emailer that 
will provide information on data release, conferences and 
recent publications/​findings. Each email will contain a list to 
unsubscribe if you do not find these emails useful. We appreciate 
your support in completing basic demographic information for 
data users since such information is required by our funders and 
will be needed if we are conduct future rounds of IHDS survey.

ARIS/​REDS Panel dataset Rounds in 
1969, 
1970, 
1971, 
1982, 
1999, and 
2006.

The 1969–​1971 data are publicly available with no strings 
attached, while the 1982 data is publicly available but village 
identifiers masked, so it cannot be merged with the 1969–​1971 
data. The 1999 and 2006 data are fully secure to prevent 
deductive disclosure. All datasets can be accessed (with cross-​
walks to allow for merging), though you would need to first 
get clearance from IFPRI’s IRB and you would only be able to 
use the data on projects that have IRB approval.

readme by A. Foster: http://​
adfd​ell.pstc.brown.edu/​
arisre​ds_​d​ata/​rea​dme.txt

http://​adfdell.pstc.brown.edu/​
arisreds_​data/​

ICRISAT Village 
Level Surveys 
(VLS)/​Village 
Dynamics in 
South Asia 
(VDSA)

Household 
(micro) and 
meso

Generation 
1: 1975–​
1984, 
1989. 
Generation 
2: 2001 
onwards

These data were incredibly popular among development and 
agricultural economists, especially in the 1980s and 1990s. 
The first phase of data collection (the original VLS) ran from 
1975 or so to the mid-​1980s. It is relatively small in scope 
(only about 250 households in six districts in Andhra Pradesh 
and Maharashtra), but I think has data from every year, and 
has a wide range of questions on farm management, etc. Some 
of the early studies on how smallholders respond to shocks 
were conducted using these data. The second phase of data

 
  

collection (the VDSA) resumed in 2001, and expanded its 
scope, including more areas and more households. But it 
is still nowhere near nationally representative (to be fair, 
ICRISAT’s mandate is just the semi-​arid tropics, which does 
not include all of India), and the cross-​sectional sample size is 
pretty small. Their funding from BMGF just ended, so it looks 
like this program is soon to be disbanded.

The meso-​level dataset for India and Bangladesh contains data 
pertaining to the performance, structure and dynamics of 
agricultural economy at country level and its disaggregation at 
state/​region, district, and sub-​district level.

National Sample 
Survey (NSS 
or NSSO)

This is a long, large, repeated nationally-​representative cross-​
section dating back to the 1950s. The surveys do not cover 
the same material every year, though in most years they cover 
consumption expenditures. These data are not freely available, 
and can be rather expensive if you are hoping to combine 
several cross-​sections. And you cannot buy all data for a given 
year; they sell the data module-​by-​module.

http://​mospi.nic.in/​Mospi_​
New/​site/​inner.aspx?status=​
3&menu_​id=​54

Bangladesh

Data Type Scale Year Description Source

Agricultural 
statistics

District (Zilla) 2000, 2010 National statistics bureau and 
agricultural year book

Bangladesh 
Integrated 
Household 
Survey (BIHS)

Household 2011-​2012

ICRISAT Village 
Level Surveys 
(VLS)/​Village 
Dynamics in 
South Asia 
(VDSA)

Household 
(micro) and 
meso

2009-​2012 The meso-​level dataset for India and Bangladesh contains data 
pertaining to the performance, structure and dynamics of 
agricultural economy at country level and its disaggregation at 
state/​region, district, and sub-​district level.

 

TABLE 2.6  (Continued)
Socioeconomic Data Available

http://adfdell.pstc.brown.edu/arisreds_data/readme.txt
http://adfdell.pstc.brown.edu/arisreds_data/readme.txt
http://adfdell.pstc.brown.edu/arisreds_data/readme.txt
http://adfdell.pstc.brown.edu/arisreds_data/
http://adfdell.pstc.brown.edu/arisreds_data/
http://mospi.nic.in/Mospi_New/site/inner.aspx?status=3&menu_id=54
http://mospi.nic.in/Mospi_New/site/inner.aspx?status=3&menu_id=54
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India

Data Type Scale Year Description Source

the link files and any relevant documentation. Creating an 
account will also subscribe you to our IHDS emailer that 
will provide information on data release, conferences and 
recent publications/​findings. Each email will contain a list to 
unsubscribe if you do not find these emails useful. We appreciate 
your support in completing basic demographic information for 
data users since such information is required by our funders and 
will be needed if we are conduct future rounds of IHDS survey.

ARIS/​REDS Panel dataset Rounds in 
1969, 
1970, 
1971, 
1982, 
1999, and 
2006.

The 1969–​1971 data are publicly available with no strings 
attached, while the 1982 data is publicly available but village 
identifiers masked, so it cannot be merged with the 1969–​1971 
data. The 1999 and 2006 data are fully secure to prevent 
deductive disclosure. All datasets can be accessed (with cross-​
walks to allow for merging), though you would need to first 
get clearance from IFPRI’s IRB and you would only be able to 
use the data on projects that have IRB approval.

readme by A. Foster: http://​
adfd​ell.pstc.brown.edu/​
arisre​ds_​d​ata/​rea​dme.txt

http://​adfdell.pstc.brown.edu/​
arisreds_​data/​

ICRISAT Village 
Level Surveys 
(VLS)/​Village 
Dynamics in 
South Asia 
(VDSA)

Household 
(micro) and 
meso

Generation 
1: 1975–​
1984, 
1989. 
Generation 
2: 2001 
onwards

These data were incredibly popular among development and 
agricultural economists, especially in the 1980s and 1990s. 
The first phase of data collection (the original VLS) ran from 
1975 or so to the mid-​1980s. It is relatively small in scope 
(only about 250 households in six districts in Andhra Pradesh 
and Maharashtra), but I think has data from every year, and 
has a wide range of questions on farm management, etc. Some 
of the early studies on how smallholders respond to shocks 
were conducted using these data. The second phase of data

 
  

collection (the VDSA) resumed in 2001, and expanded its 
scope, including more areas and more households. But it 
is still nowhere near nationally representative (to be fair, 
ICRISAT’s mandate is just the semi-​arid tropics, which does 
not include all of India), and the cross-​sectional sample size is 
pretty small. Their funding from BMGF just ended, so it looks 
like this program is soon to be disbanded.

The meso-​level dataset for India and Bangladesh contains data 
pertaining to the performance, structure and dynamics of 
agricultural economy at country level and its disaggregation at 
state/​region, district, and sub-​district level.

National Sample 
Survey (NSS 
or NSSO)

This is a long, large, repeated nationally-​representative cross-​
section dating back to the 1950s. The surveys do not cover 
the same material every year, though in most years they cover 
consumption expenditures. These data are not freely available, 
and can be rather expensive if you are hoping to combine 
several cross-​sections. And you cannot buy all data for a given 
year; they sell the data module-​by-​module.

http://​mospi.nic.in/​Mospi_​
New/​site/​inner.aspx?status=​
3&menu_​id=​54

Bangladesh

Data Type Scale Year Description Source

Agricultural 
statistics

District (Zilla) 2000, 2010 National statistics bureau and 
agricultural year book

Bangladesh 
Integrated 
Household 
Survey (BIHS)

Household 2011-​2012

ICRISAT Village 
Level Surveys 
(VLS)/​Village 
Dynamics in 
South Asia 
(VDSA)

Household 
(micro) and 
meso

2009-​2012 The meso-​level dataset for India and Bangladesh contains data 
pertaining to the performance, structure and dynamics of 
agricultural economy at country level and its disaggregation at 
state/​region, district, and sub-​district level.
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applications in some districts do not translate into high nitrogen leaching, indicating 
a potential “win-​win” situation of high soil fertility benefits with low environmental 
impact. The NDRs, defined by nutrient exports divided by nutrient loads, are sen-
sitive to the denominator and influenced by the spatial distribution of land use and 
land use intensity. The model results highlight the potential for optimizing economic-​
environmental performance.

2.3.7 �E stimating Land Use and Crop Area Allocation Model

2.3.7.1 � Two-​Level Land Use Model for India
The two-​level land use model for India uses pixel-​level land use classification data 
and district-​level agricultural statistics data to estimate land use choices. The model 
structure consists of an upper level that estimates choices among large aggregation 
categories like cropland, forestland, and urban areas, and a lower level that estimates 
crop choices within cropland. The model uses a variety of biophysical and socio-
economic variables that influence land use choices. The model is estimated in a 
“bottom-​up” sequential fashion, starting from the lower-​level model. The model’s 
predictive power is assessed and found to perform well in predicting most land uses, 
with generally accurate in-​sample predictions at both levels.

2.3.7.2 � Seasonal Land Use/​Crop Area Allocation Model for Bangladesh
A seasonal land use/​crop area allocation model was developed to systematically ana-
lyze crop choices and cropping frequency in Bangladesh. The model, which uses 
district-​level agricultural statistics and data from the BIHS, allows for the analysis of 
both intra-​ and inter-​season substitution of different crops. Key explanatory variables 
include crop prices, production costs, rainfall, population density, and road density. 
The model transforms the dependent variables into the logarithm of the odds of crop 
choice and estimates a system of regression equations. The model found that the 
probabilities of growing both rice and non-​rice crops generally increase with their 
corresponding net price growth, and the odds of choosing summer crops over idle 
use are positively correlated with road density. The model also revealed that the prob-
ability of choosing winter non-​rice crops over idle increases with precipitation, but 
there is no such evidence for winter rice, likely due to the high cost of irrigation and 
competition for irrigation water use.

2.3.7.3 � Migration, Farm Size, Land Ownership, and Shocks in Bangladesh
The seasonal land use/​crop area allocation model for Bangladesh reveals that natural 
shocks drive rural migration, but the number of shocks does not significantly correlate 
with migration. The effect of landholding on rural migration is nonlinear and non-​
monotonic, increasing with landholding for most households. International migra-
tion is insensitive to natural shocks. When the sample is divided into landless and 
landholding households, migration in the landless group is uncorrelated with natural 
shocks, while the effect of natural shocks on migration in the landholding group is 
statistically significant. A yield reduction of Kharif crops drives rural migration, with 
the landless group being more sensitive to the reduction than the landholding group. 
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However, there is no significant correlation between migration and the yield of Rabi 
crops in both groups.

2.3.8 �I ntegrated Tradeoff Analysis: Balancing Food Security and 
Environmental Sustainability by Optimizing Crop Allocation

The integrated tradeoff analysis explores how societal outcomes can be improved 
through optimal crop choices and cultivated areas, focusing on improvements in 
nitrogen-​use efficiency in crop production. The study highlights the importance of a 
national agricultural land use strategy that balances food security and environmental 
sustainability. It reveals that there is substantial potential to improve the economic-​
environmental performance of crop production by considering crop-​specific, sea-
sonal, and spatial variations in crop nitrogen use efficiency and nitrogen transport. 
The analysis helps reveal the economic-​environmental tradeoffs and opportunities 
in agricultural land use planning and can inform policies that target environmentally 
sustainable food security.

2.3.8.1 � Results and Discussion
The integrated tradeoff analysis results reveal that land use for rice and non-​rice 
crops increases with their respective net prices and decreases with cross-​net prices. 
An increase in the net price of rice or non-​rice crops significantly affects the share 
of rice and non-​rice crop areas in a district. Land use for summer crops increases 
with road density, as an expanded road network enhances farmers’ access to markets, 
encouraging them to cultivate summer crops. Increased winter precipitation reduces 
the share of rice area and increases the share of non-​rice crop area, as non-​rice crops 
primarily rely on rainfed farming and are more sensitive to rainfall fluctuations than 
rice yield.

The optimization analysis results reveal three key findings (Table 2.7). First, there 
is a significant opportunity for efficiency gain in the economic-​environmental per-
formance of crop production through optimizing seasonal allocation of crop culti-
vation and nitrogen fertilizer use, leading to a substantial decline in total nitrogen 
runoff. Second, the inefficiencies in the baseline economic-​environmental perform-
ance stem from both crop choice and nitrogen use, with a larger portion arising from 
the inefficient use of nitrogen fertilizer. Third, when crop net prices are endogenized 
within the optimization, the efficiency gain is not as large as when crop areas are 
optimized, indicating limitations in using price as a policy instrument to incen-
tivize crop reallocations due to the complex relationship between crop prices and 
cropping areas.

The results also show that there is potential to improve the economic-​environmental  
performance of crop production through optimizing seasonal allocation of crop culti-
vation and nitrogen fertilizer use. In most districts, the baseline nitrogen use for spring  
rice and summer and winter non-​rice crops is below the optimum level, while the  
baseline nitrogen use for winter rice is excessive. The seasonal optimization results in  
decreased cultivated areas of summer rice and spring non-​rice crops in most districts.  
When crop production is allowed to be reallocated across districts, summer rice in  
most districts and spring rice in some western districts contribute little to improving  
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the economic-​environmental performance, leading to a decline in the cultivated areas  
of these crops. Different from the seasonal-​spatial optimization, the baseline nitrogen  
input of winter non-​rice crops is above the integrated optimization level in western  
and middle-​western districts, indicating that it is easier to reallocate the cultivated  
area of winter crops through price instruments.

TABLE 2.7
Optimization Results under Various Constraints

Baseline Seasonal opt.

Seasonal-​
spatial 
opt.

Integrated 
opt.

Decision variable N Area
N and 
area

N and 
area N and Δp

(1) (2) (3) (4) (5) (6)

Total output value (billion Tk) 1410.8 1523.9 1414.1 1416.7 1410.8 1438.0
Total rice production 

(million metric ton)
35.9 35.9 35.9 35.9 35.9 36.2

Total N runoff (1,000 metric 
ton)

106.8 57.2 67.5 21.3 18.2 33.5

Spring rice N runoff 11.5 5.2 1.6 2.2 2.3 2.1
Summer rice N runoff 34.0 22.9 19.2 2.7 1.6 11.0
Winter rice N runoff 37.0 12.7 37.5 10.6 10.4 10.5
Spring non-​rice N runoff 10.2 5.2 5.6 2.4 2.4 2.7
Summer non-​rice N runoff 3.4 2.2 0.2 1.8 0.2 1.9
Winter non-​rice N runoff 10.7 9.0 3.3 1.6 1.3 5.3

Total N inputs (1,000 metric 
ton)

560.2 334.8 397.4 124.6 111.5 174.2

Spring rice N inputs 55.8 30.9 9.3 13.7 13.0 10.6
Summer rice N inputs 174.1 126.2 113.4 16.3 11.5 56.2
Winter rice N inputs 184.3 76.6 210.5 61.7 62.8 53.6
Spring non-​rice N inputs 64.7 34.4 38.7 16.8 17.7 15.9
Summer non-​rice N inputs 20.8 12.7 1.6 9.2 1.1 10.7
Winter non-​rice N inputs 60.6 54.0 23.8 6.9 5.4 27.2

Total cultivated area 
(million acre)

43.6 43.6 38.8 31.1 27.9 43.5

Spring rice cultivated area 2.7 2.7 1.1 3.4 3.2 2.7
Summer rice cultivated 

area
14.0 14.0 10.7 4.1 2.9 14.0

Winter rice cultivated area 12.0 12.0 14.7 15.4 15.7 13.4
Spring non-​rice cultivated 

area
4.0 4.0 4.0 4.2 4.4 4.0

Summer non-​rice 
cultivated area

2.7 2.7 4.3 2.3 0.3 2.7

Winter non-​rice cultivated 
area

8.2 8.2 4.2 1.7 1.4 6.8
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2.3.9 �W eb Portal Development for Information Dissemination

The web portal developed for this project allows stakeholders and the public to 
visualize and download land use/​land cover products derived from satellite images 
and model-​derived geospatial information data (see http://​cloud.csiss.gmu.edu/​gan​
ges-​lulc)

The web portal was designed with a front end developed under the React frame-
work, using Bootstrap, Material UI, and OpenLayers for UI design and geospatial 
data visualization, and a back end that uses MapServer for rendering and serving 
raster and vector data through the Web Map Service, with data downloading function-
ality provided by an Apache HTTP server.

2.3.9.1 � User Interface and Functionalities
The portal allows users to visualize, interact with, and download data and products 
through its user interface (Figure 2.3). The application comprises three main 
components: the header, the sidebar, and the main map container. The header includes 
the application name, ‘about,’ ‘publications,’ ‘documentation’ buttons, and logos of 
participating organizations. The sidebar, organized in a tabbed structure, allows users 
to switch between the ‘LULC’ and ‘Model’ tabs and adjust layer items within each 
level. Each layer can be individually turned on/​off, its transparency adjusted, and 
downloaded in GeoTIFF format for raster layers and Shapefile format for vector 
layers. The map container provides web-​based visualization of geospatial datasets, 
with various widgets for navigation and display.

2.4 � CONCLUSION

This research investigated changes in LCLU, crop intensity, and cropping systems  
in the Ganges Basin from 2000 to 2015, driven by urban expansion and agricultural  
intensification. Using remote sensing-​based Earth observation data and advanced  

FIGURE 2.3  The Ganges River Basin Land Use and Land Cover Portal.
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machine learning algorithms, the study mapped land cover changes from 2000 to  
2015 and revealed significant changes in various land cover types. The research also  
developed an automatic fishpond mapping workflow and detected crop intensity in  
Bangladesh. An integrated modeling approach was developed to optimize the seasonal 
and spatial allocation of crop cultivation and nitrogen fertilizer use, demonstrating 
substantial improvements in the economic-​environmental performance of  
crop production. However, the study also highlighted the limitations of using price as  
a policy instrument due to the complex relationship between crop prices and cropping  
areas. The NDR model showed strong seasonal and spatial variations. The study found  
no significant correlation between rural migration and the number of natural shocks  
but a significant effect of landholding on migration. A web portal was developed to  
disseminate the data and products from this project, providing stakeholders and the  
public with visualization and downloading of the LCLU products derived from satel-
lite images and model-​derived geospatial information data.
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3.1 � INTRODUCTION

Agriculture plays a significant role in the economic, social, and cultural development 
of India by serving as a significant contributor to the country’s gross domestic product, 
providing livelihoods for a substantial portion of the population, and ensuring food 
security. However, agriculture is also the primary cause of groundwater depletion in 
India, as over 60% of irrigated agriculture depends on groundwater and a growing 
number of aquifers are being exploited at unsustainable rates. According to the World 
Bank, approximately 60% of all aquifers in India could be in a critical state within 
the next 10 years, posing severe challenges to the sustainability of agriculture, long-​
term food and water security, livelihoods, and economic growth (WorldBank, 2012). 
Sustainable groundwater management in India requires continuous monitoring of 
irrigation water use and availability to ensure responsible and efficient utilization of 
this critical resource.

The spatiotemporal patterns of irrigation water use across India have not been 
explored much, mainly due to the unavailability of field-​scale irrigation water use 
data. Although groundwater level measurement data are available across thousands of 
locations in India, they do not capture the spatiotemporal heterogeneity of irrigation 
water use. Thousands of measurement sites are defunct and not regularly monitored 
over time (Hora et al., 2019). Remote sensing-​based approaches have primarily 
focused on mapping irrigated areas or water use across small scales. Recent advances 
in remote sensing-​based evapotranspiration (ET) mapping techniques have not been 
fully utilized to monitor crop water use across India.

ET is a key variable for quantifying agricultural water use and understanding the 
impacts of climate and ecosystem changes on crops. Reference ET (ET0) measures 
water demand for a specified crop under given atmospheric conditions. The ratio 
of ET to PET can reflect crop water demand, as well as the ability of farmers to 
irrigate crops and the extent to which crops are irrigated. For example, if crops are 
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fully irrigated, ET/ET
0
 and ET/ PET will be higher (1 if crop and atmospheric water 

demand is fully met or even higher than 1 for plants with higher water needs). In 
this chapter, we explore the use of remotely sensed ET/ET

0
 to understand the spatio-

temporal patterns of irrigation water use across India. The primary objective of this 
chapter is to identify trends in ET/ET

0
 across India and explore whether this trend 

is associated with warming temperatures and ongoing groundwater depletion. To 
answer this question, we used a recently developed ET product (Bhattarai et al., 2019) 
that was validated across India using field-​ and water-​balance-​based methods in con-
junction with other global datasets.

3.2 � STUDY AREA

We studied India because of its substantial impact on global food security, representing 
approximately 18% of the world’s population, recently surpassing China to become the 
most populated nation in the world (WorldBank, 2023). Most of its rural population 
comprises smallholder farmers heavily reliant on agriculture for their livelihoods (Fan 
et al., 2008; Foster and Rosenzweig, 2004). India contributes around 10% of global 
agricultural production (Alston and Pardey, 2014) and faces significant challenges 
from climate change (Im et al., 2017) compounded by rapid population growth and 
excessive groundwater use (Rodell et al., 2009; Asoka et al., 2017). The diverse cli
matic patterns in India make it a compelling region for investigating crop water use, as 
these climate variations can impact both the demand and availability of water for crops. 
For example, the precipitation pattern can be characterized by heavy monsoon rainfall 
along the western coast, northeastern states, and the Gangetic Plains, while the north-
western regions, Thar Desert, and parts of the Deccan Plateau experience lower rain-
fall, resulting in arid to semi-​arid conditions (Figure 3.1). Similarly, the temperature 
varies spatially, with very high summer temperatures in the Central, Northwest, and 
Northern plains, tropical climates in the Southern Peninsula, moderate temperatures 
on the eastern coast, and cold temperatures in the Himalayas (Mondal et al., 2015).

Understanding the climate patterns, available water resources, and crop water use 
patterns is crucial for managing water resources and agriculture in India. However, 
long-​term data on irrigation and crop water use in India that could provide spatio-
temporal distribution of crop water use and identify regions needing water-​saving 
interventions are nonexistent. Available global products are either coarse resolution 
or highly unreliable in mapping crop water use across the county (Bhattarai et al., 
2019). This study leverages our novel ET product that more accurately captures irri
gation use at finer resolutions to understand the spatial patterns of crop water use 
across India.

3.3 � MATERIALS AND METHODS

3.3.1 �D ata

The primary dataset used to study the spatiotemporal pattern of ET/​PET across India 
includes monthly ET (1 km × 1 km) derived from an ensemble surface energy balance 
model that estimates ET as the mean of ET estimates from seven thermally driven 
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surface energy balance (SEB) models (Bhattarai et al., 2019). These surface energy 
balance models derive ET as the residual of the SEB by solving the SEB equation using 
land surface temperature (LST), vegetation indices, and meteorological data. The 
monthly ET products were developed for India using LST from MOD11A1 products 
(Wan et al., 2015), vegetation indices from MOD09GA/​MOD09A1 (Vermote, 2015), 
and meteorological inputs from the National Aeronautics and Space Administration 
(NASA) Modern-​Era Retrospective Analysis for Research and Applications, Version 
2 (Merra-​2) dataset (Gelaro et al., 2017). Additionally, as a robustness check, we also 
used the global ET and PET product (0.25° × 0.25°) named Global Land Evaporation 

FIGURE 3.1  Mean (2001–​2015) monsoon season precipitation across India showing higher 
precipitation in the east and coastal regions and lower precipitation in the northwest. The 
polygons in gray indicate the Indian States.
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Amsterdam Model (GLEAM) that uses a modified Priestley and Taylor (PT) (Priestley 
and Taylor, 1972) method (Martens et al., 2017; Miralles et al., 2016). GLEAM ET 
products are derived from assimilating climate data, soil moisture, precipitation, and 
snow water equivalent (Martens et al., 2017; Miralles et al., 2016). The Moderate 
Resolution Imaging Spectroradiometer (MODIS) Land Cover product (Friedl et al., 
2010) was used to constrain the crop water use trend analysis to ensure that these 
were examined only across agricultural lands in India. Satellite-​based precipitation 
data (0.25° × 0.25°) were obtained from the Tropical Rainfall Measuring Mission 
(TRMM; Huffman et al., 2016), and the monthly mean seasonal temperature (0.5° × 
0.5°) was obtained from the Climatic Research Unit (CRU; Harris et al., 2014). The 
groundwater depletion zone map was obtained from the Center Groundwater Board 
(CGWB) of India (CGWB, 2011).

3.3.2 � Approach

3.3.2.1 � Derivation of Seasonal ET/​PET and Climate Information
We estimated PET using the standardized American Society of Civil Engineering 
(ASCE)-​PM equation (Walter et al., 2005), a modified form of the Penman-​
Monteith (PM) equation (Monteith, 1981). The meteorological inputs in this 
model, such as incoming solar radiation, mean daily air temperature (Ta, °C), 
wind speed (u, m s−1), and actual vapor pressure (e

a
, kPa), were obtained from 

the NASA Merra-​2 reanalysis product, which was also used in the ensemble ET 
model (Bhattarai et al., 2019).
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where R
n
 and G are net radiation and soil heat flux (MJ m−2 day−1), respectively. 

e
a
 (kPa) is saturated, Δ is the slope of the saturation vapor pressure-​temperature 

curve, and γ (kPa °C−1) is the psychrometric constant. C
n
 and C

d
 are coefficients for 

short grass (Walter et al., 2005). ET
0
 was calculated daily and then aggregated to 

the monthly and seasonal scale to derive monsoon (June–​September) and winter 
(December–​March) season PET for the 2001–​2015 growing seasons. The monthly 
ET maps from the Ensemble ET model were summed to derive monsoon and winter 
season ET for the same period. The ET/ET

0
 maps were derived for all monsoon and 

winter seasons from 2001–​2015. Note that because the same meteorological inputs 
were used in calculating ET and ET

0
, the boundary conditions for minimum and 

maximum ET (i.e., PET) are the same. Hence, the ET/ET
0
 represents ratio of water 

supply to demand  (i.e., ET in response to water inputs) under the same climatic 
conditions. We also derived seasonal ET/ET

0
 maps from GLEAM to compare trends 

in ET/PET ET/ET
0 
 across India under different spatial scales (1km vs 0.25º) and 

products. Like ET/ET
0
, monthly precipitation and air temperature were aggregated 

to seasonal scales.
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3.3.2.3 � Pixel-​Scale Trend Analysis
We masked out non-​agricultural pixels in India using MODIS Land Cover products 
(Friedl et al., 2010). We selected pixels classified as croplands in at least 10 annual 
land cover maps during the 2001–​2015 period. We applied the modified Mann–​
Kendall (MK) test (Kendall, 1976; Mann, 1945; Yue and Wang, 2002) to examine 
trends in ET/​PET across all agricultural lands in India. The Mann–​Kendall test is a 
non-​parametric statistical test used to assess trends in time series data. The MS test 
statistic was utilized to identify positive trends (Z > 0) and negative trends (Z < 0) in 
ET/​PET for each agricultural pixel, and the significance of these trends was tested 
at a 0.05 significance level (i.e., considered significant if p-​value < 0.05). We also 
evaluated this trend for GLEAM-​based ET/​PET, seasonal precipitation, and seasonal 
mean temperature.

3.4 � RESULTS AND DISCUSSION

3.4.1 � Spatial Distribution of ET/​PET Across India

The seasonal ET/​PET across India showed a consistent pattern, with higher values in 
the north and lower values in the central and western parts of the country (Figure 3.2). 
As expected, mean seasonal ET/​PET values were typically higher across the Indo-​
Gangetic Plains (IGP), the highly irrigated and major rice (monsoon or kharif season) 
and wheat (winter or rabi season) producing zones of India. The spatial patterns of 
ET/ET

0
 (or ET/PET) were mainly were consistent across the two datasets (1 km 

Ensemble ET and 0.25º GLEAM products), except for the monsoon ET/​PET in cen-
tral India, where GLEAM products showed higher values of ET/​PET. Both datasets 
captured the higher winter season ET/​PET values in the north, which is consistent 
with several other global ET products that show higher rates of ET (Bhattarai et al., 
2019) and irrigation extent and intensity in this region (Ambika et al., 2016; Meier 
et al., 2018; Teluguntla et al., 2015).

Winter season ET/​PET values in the north consistently exhibited higher levels than 
those during the monsoon season, suggesting increased irrigation rates during the 
winter. This pattern aligns with the typical agricultural practices in northern India. In 
contrast, central and western India displayed the opposite trend, with higher monsoon 
season ET/​PET values. This finding implies drier conditions and reduced irrigation 
during the winter season in these areas. The distinct patterns in ET/​PET values across 
seasons indicate varying agricultural water management practices in different regions 
of India. Overall, the seasonal ET/ET

0
 maps successfully captured and highlighted 

these regional irrigation and crop water use patterns, providing insights into the spa-
tial patterns and seasonal dynamics of water use in Indian agriculture.

3.4.2 �T rends in ET/​PET Across India

While the northwest consistently exhibited higher seasonal ET/​PET values compared  
to other parts of the country, there was no discernible increasing trend from 2001 to  
2015 (Figure 3.3). This absence of a trend could be attributed to the already high ET/​ 
PET value levels in these regions (ET/​PET > 0.8). However, noteworthy variations  
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were observed in certain lower areas of Punjab and Haryana, which are crucial for  
winter wheat production; these regions displayed increasing trends in ET/ET

0
 during  

the growing season. Particularly significant was the observation of a notable declining  
trend in monsoon season ET/ET

0
 within the eastern Indo-​Gangetic Plain (IGP) region,  

specifically Bihar. This trend suggests a remarkable shift in water dynamics during  
the monsoon season in this region.

FIGURE 3.2  2001–​2015 mean seasonal ET/ET
0
 from the ensemble ET products during 

monsoon (a) and winter (b) seasons. (c) and (d) show the mean seasonal ET/​PET from the 
GLEAM ET products during the monsoon and winter seasons, respectively. The polygons 
show four states within the IGP (Punjab, Haryana, Uttar Pradesh, and Bihar from left to 
right).
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A substantial portion of the country generally exhibited a pronounced and stat-
istically significant increasing trend in ET/ET

0
. This trend was particularly prom-

inent in winter, especially in western and central India. Notably, this increasing  
ET/ET

0
 trend was consistent in both datasets during the winter season, suggesting  

that these regions are experiencing an increase in ET/​PET, likely due to increased  
irrigation.

FIGURE 3.3  Trends in ET/ET
0
 from the ensemble (a),(b) and GELAM (c),(d) ET products 

during monsoon [(a) and (c)] and winter [(b) and (d)] seasons. The polygons show four states 
within the IGP (Punjab, Haryana, Uttar Pradesh, and Bihar from left to right).
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3.4.3 �ET /​PET Trends, Warming Temperatures, and Groundwater 
Depletion in India

Based on CRU monthly datasets, the IGP and western and southern India have 
experienced a significant increasing trend in seasonal temperatures, particu-
larly in the winter season (Figure 3.4). The rise in ET/​PET during the winter 
season suggests that agricultural systems across most of these regions can miti-
gate the adverse effects of warming temperatures through intensified irrigation 
from groundwater. This finding aligns with recent findings (Zaveri and Lobell, 
2019; Bhattarai et al., 2023) and the fact that seasonal precipitation during this 
period does not exhibit an increasing pattern (figure not shown). Consequently, 
the increased irrigation, both in terms of extent and intensity, is likely to have 
contributed to a decline in groundwater tables in India across these regions. The 
reduction in ET/​PET observed in the eastern IGP may indicate increased crop 
water stress resulting from rising temperatures (Figures 3.3–​3.4).

The spatial distribution of the ET/ET
0
 trend aligns closely with the critically  

groundwater-​depleted zones in India, as characterized by the CGWB (Figure 3.5).  
Notably, regions in northwestern and western India are exhibiting an increasing ET/
ET

0
 trend, which coincides with areas marked as critically depleted or overexploited  

zones by the CGWB. This alignment strongly implies that a potentially higher water  
usage rate, particularly during the dry season (winter), is a significant factor contrib-
uting to the overexploitation of groundwater in these regions. Notably, while climate  
change is expected to negatively impact most parts of India by reducing water supply,  
these specific regions are anticipated to experience an even more pronounced decline  
in groundwater levels as temperatures warm and farmers increase irrigation to meet  
the increased demand for water by crops (Bhattarai et al., 2023).

FIGURE 3.4  Increasing trends (blue color) in mean seasonal temperature (1991–​2015) 
during monsoon and winter growing seasons in India.
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Notably, regions in the east are displaying a decreasing ET/​PET trend that  
aligns with areas designated as safe groundwater zones (Figure 3.5). Specifically,  
the eastern IGP exhibits a significant declining trend in monsoon season ET/​ 
PET. This can imply an increase in crop stress, changes in cropping patterns, or  
a reduction in ET due to a decrease in water application. Various climate models  
indicate an anticipated rise in monsoon precipitation for these regions (Bhattarai  
et al., 2023), albeit with more intense dry and wet spells (Mukherjee et al., 2018).  
However, increased pumping rates can constrain the benefits of increased mon-
soon precipitation (Dangar and Mishra, 2023). Nonetheless, groundwater levels  
in this region are projected to remain stable in the future (CGWB, 2022). Our  
findings indicate a consistent pattern where a higher ET/​PET trend is typically  
associated with depleted groundwater zones in India.

FIGURE 3.5  Characterization of groundwater depletion zones in India (CGWB, 2011).
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3.5 � CONCLUSION

We investigated the spatiotemporal distribution and trends of monsoon and winter 
season ET/ET

0
 across agricultural lands in India, identifying that ET/ET

0
 is generally 

higher in the IGP, suggesting higher irrigation rates in these areas. Except for certain 
parts of the western IGP, ET/ET

0
 mostly remained stable in the IGP. Specifically, ET/

ET
0
 is decreasing in the eastern IGP during the monsoon season, where groundwater 

is anticipated to not be overexploited, according to the CGWB. While seasonal ET/
ET

0
 is lower in the western non-​IGP region, including areas classified as critically 

depleted zones, a noticeable increasing trend was observed during the 2001–​2015 
period. Crop production in this region is expected to encounter significant challenges 
in the future due to increased water demand resulting from climate change. Future 
studies should establish a linkage between ET/ET

0
 trends and observed groundwater 

levels at the field scale. A key limitation of the study was the inability of the 1 km 
MODIS pixels to capture water use patterns at the field scale, limiting our analysis 
to a regional level. Hence, future studies should derive ET at a much finer spatial 
resolution (<=​10 m) to track water use from smallholder farmers. This is imperative 
because ensuring the responsible and efficient utilization of India’s crucial ground-
water resources demands continuous monitoring of irrigation water use and avail-
ability at a much finer scale than currently available datasets.
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4.1 � INTRODUCTION

Dry tropical forests account for approximately 40% of all tropical forest land area 
and are extensive across Africa, Latin America, and Eurasia. These forests support 
livelihoods for millions of people and provide ecosystem services, including carbon 
storage, watershed protection, non-​timber forest products, and habitat for biodiver-
sity. Dry tropical forests are particularly threatened compared to other forest biomes 
due to high rates of land use conversion, dependence of local populations on forest 
resources, and climate change. Yet research to understand dry tropical forests’ eco-
logical and socio-​economic dimensions is sparse compared to humid tropical forests. 
Additionally, policy and management attention lags behind humid tropical and tem-
perate forests. These dry tropical forests are often overlooked in national policies and 
development plans (Siyum, 2020).

Although definitions of dry tropical forests vary (see Table 1 in Siyum, 2020), 
they are loosely defined as “forests in frost-​free regions with 500-​2000 mm of pre-
cipitation annually and a pronounced dry season of 4 to 7 months” (Miles et al., 
2006). They play a significant role in the livelihoods and daily needs of forest-​
dependent rural populations by providing fuelwood, timber for construction, food 
items, and non-​timber forest products for income. Because many of these products 
support subsistence, informal generation of cash income, and “free” ecosystem ser-
vices, contributions of dry tropical forests to national incomes and well-​being remain 
underappreciated.

In addition to deforestation from land conversion, degradation of dry tropical 
forests is prevalent. Degradation results in loss of biomass with trees still present. 
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It rivals deforestation as a source of carbon emissions (McNicol et al., 2018) and 
reduces other ecosystem services. Degradation can take many forms and is difficult 
to define. It can be caused by logging, over-​harvesting of forest products, or over-
grazing, among other anthropogenic activities. Eurasia’s Dry tropical forests are more 
exposed to these threats than other regions (Miles et al., 2006). Standard methods for 
remote sensing of degradation have been elusive due to the patchiness, lack of con-
sistent signature in satellite images, and the many processes leading to degradation.

With dense populations in rural areas, forests in India are particularly subject to 
high anthropogenic pressure. India houses diverse forest types, including dry tropical 
and subtropical deciduous forests (Reddy et al., 2021). This forest type is extensive 
in central India, the focus for the studies synthesized in this chapter (see description 
of the study region). Forests are critical to local communities in this landscape for 
fuelwood, timber, fodder, and non-​timber forest products. This chapter summarizes 
research carried out under the South Asia Regional Initiative within the NASA Land 
Use/​Cover Change program aimed at applying remote sensing tools to monitor deg-
radation and analyzing socio-​economic data to identify anthropogenic influences on 
these forests.

A key question in this research is whether a forest transition could occur as 
pressures on the forest reduce as dependence on local communities lessens. In other 
parts of the world, an initial decline in forest cover at a national level passes an inflec-
tion point, and forest cover begins to increase, a process known as the forest transition 
(Mather, 1992; Meyfroidt and Lambin, 2011; Rudel et al., 2005). Forest transitions 
have occurred in multiple places due to forest regeneration on abandoned land or tree 
planting following the depletion of forest resources. In the context of degraded dry 
tropical forests, conceivably, a transition to reverse degradation for healthier, higher 
biomass forests ensues with reduced pressure on forest resources. Research to test 
this hypothesis depends on methodologies to quantify degradation and combine it 
with socio-​economic data on the use of forests.

4.2 � STUDY REGION

The landscape for this study region covers the agroecological region designated as 
the Central Indian Highlands (Gajbhiye and Mandal, 2000) (Figure 4.1). It covers 32 
administrative districts spread across Madhya Pradesh, Maharashtra, and Chhattisgarh. 
The region is within the country’s tribal belt, with approximately 22 percent of the 
population belonging to officially recognized Scheduled Tribes, predominantly Baiga 
and Gond tribes (Choksi et al., 2021).

The landscape is composed of forests, villages, and small towns. Approximately 
37 percent of the villages are within 8 km of forests, and nearly 70 percent of the 
population belongs to Scheduled Tribes in these forest-​fringe villages (Baquie et al., 
2020). The people in these villages rely on forests for fuelwood for cooking and 
heating (though increasingly using alternatives (Khanwilkar et al., 2021)), non-​
timber forest products for income, and fodder for grazing. For beams, houses are 
generally made from mud, grass, and local timber. Other livelihood strategies include 
small-​scale, mostly rain-​fed agriculture, daily labor, and seasonal migration as labor 
in urban centers (Choksi et al., 2021).
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The region is also a globally important conservation area for tigers (Schoen et al.,  
2022). It houses a network of Tiger Reserves and other types of protected areas.  
Landscape connectivity between these protected areas is critical to the genetic health  
of populations of tigers and other wide-​ranging species, with fragmentation occurring  
from development pressures from road expansion, railroads, mining, and energy  
infrastructure.

Forests in the region are dry, tropical, and deciduous, with leaf fall occurring in 
the dry summer months. Dominant trees include Sal (Shorea robusta) and Terminalia 
species. Analysis of regenerating tree species indicates that forest grazing and human-​
caused fire are altering the species composition, with the increased prominence of 
tree species with traits that confer resistance to trampling and fires (Agarwala et al., 
2016). Signs of degradation are prevalent in the forest, with visible signs of narrow 
trails and lopping.

4.3 � DATA

4.3.1 �R emote Sensing Data

To quantify the degradation of dry tropical forests in central India, we devised an  
indicator of forest health using very-​high-​resolution data (Khanwilkar et al., 2023).  
The indicator is based on an algorithm to quantify exposed bare ground within forests  
as a sign of human use. First, we used a Random Forest classifier to derive a thematic 
land cover map of tree cover and bare ground from 3-​meter resolution Planet’s  
PlanetScope data. We used field data and polygons identified from Google Earth  

FIGURE 4.1  Location of the central India landscape study region from Khanwilkar et al. 
(2023).
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imagery as training data. We then aggregated the land cover data to 90-​meter reso-
lution to derive a Bare Ground Index (BGI), a normalized index of bare ground rela-
tive to tree cover within forested areas (defined as greater than 10% tree cover). The  
BGI ranges from –​1.0 (all forest) to +​0.8 (all bare ground). Higher values indicate  
more degraded forest. Validation with field data indicates that the BGI is a proxy for  
the intensity of human use.

The BGI was derived from data acquired in the winter to minimize cloud cover 
(February 28 to March 28, 2018). The time period also coincided with the collection 
of socio-​economic data. The data set is publicly available through the LCLUC data 
portal, and the code is available as cited in Khanwilkar et al. (2023). The algorithm 
can be applied to additional years to monitor changes in degradation (Figure 4.2).

4.3.2 � Socio-​Economic Data

To assess patterns of forest use by forest-​fringe communities, we surveyed approxi-
mately 5000 households in 500 villages within 8 km of forest from January to April 
2018. The villages were randomly selected based on a sampling design accounting for 
distance to road and distance to town. We surveyed 10 randomly selected households 
in each village. The survey included basic demographic information, migration 
patterns within the last 5 years, and the use of forest resources (Baquie et al., 2020).

The surveys revealed that, within the time frame of the surveys, very few 
households (<0.5%) emigrated permanently from their village with the whole family. 
Approximately 18 percent of surveyed households had a member who migrated sea-
sonally in the previous 5 years. People were migrating seasonally to many urban 
destinations in the country for industry jobs and daily labor contracts. The main 

FIGURE 4.2  Two examples of the land cover classification were derived from the Bare 
Ground Index from Khanwilkar et al. (2023).
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reasons for migration were income and better opportunities than those available in 
the village. Migrants generally send remittances to their families in the villages.

Livestock ownership and adoption of liquefied petroleum gas (LPG, an alternative 
to fuelwood) were not significantly different between households with and without 
members who migrated. In addition, the time spent collecting fuelwood, grazing, 
or collecting non-​timber forest products was not significantly different (Baquie 
et al., 2020).

4.4 � IMPLICATION OF RESULTS FOR A FOREST TRANSITION

Combining the satellite-​derived Bare Ground Index and socio-​economic data from 
5000 households in the central Indian landscape offers an opportunity to assess 
hypotheses about potential forest transitions in this dry tropical forest. A forest tran-
sition would improve health, increase biomass, and promote ecosystem services such 
as carbon sequestration and watershed protection in these forests. Importantly, a sus-
tainable forest transition mandates that local livelihood needs for household cooking, 
heating, construction, and fodder for livestock are satisfied while reducing pressure 
on forests.

Based on patterns observed in other parts of the world, one pathway to a forest 
transition could occur through migration as people leave the landscape or provide 
additional income that alleviates reliance on forest resources. A second complemen-
tary pathway could occur if demands for forest resources are reduced with substitutes 
for fuelwood, fodder, and construction.

4.4.1 �D oes Migration Foster a Forest Transition in Central India?

Analysis of the BGI in conjunction with data on migration indicates that landscape 
migration does not generally promote a transition towards healthier forests, at least 
over the short term (Baquie et al., 2020). No difference in forest use for cattle grazing 
or collection of non-​timber forest products was observed for households with and 
without members who migrate seasonally for employment. Pressure on forests is 
likely to stay constant despite migration. Migration in this landscape is generally 
seasonal, with only one or a few members migrating to urban areas for a few months.

Contrary to the forest transition pathway from migration associated with land 
abandonment, we observed a weak but positive relationship between BGI (higher 
degradation) and the proportion of households with migrants in a village below a 
threshold of approximately 40 percent of households with migrants. While causality 
cannot be assumed, this relationship suggests that seasonal migration is necessary as 
a livelihood strategy where forests are more degraded. In the few villages with greater 
than 40 percent of households with migrants (10% of surveyed villages), the rela-
tionship with BGI is weakly negative, indicating that forest pressure might decline at 
very high levels of migration. Overall, however, the land abandonment pathway from 
migration is not likely to be a strong driver of a forest transition in this landscape, at 
least in the short term.

Seasonal migration in the period of the surveys was primarily associated with 
investments in mobile phone adoption and housing improvements. Further analysis 
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of the relationship between climate variability and migration indicated that migration 
occurred regardless of climate in any particular year for households in the lowest-​
income districts. These households are dependent on migration for their survival. 
For households in higher-​income districts, first-​time migration was more likely in 
drier years (Choksi et al., 2021). These observations suggest that, despite the standard 
narrative that the poorest are most sensitive to climate variability, in this landscape, 
the poorest are heavily reliant on remittances from migration despite climate vari-
ability. Higher-​income agriculturally-​based households are more sensitive to climate 
variability and are more likely to send a member to migrate in drier years.

4.4.2 �D o Increased Living Standards Foster a Forest Transition in 
Central India?

A second pathway towards a forest transition relies on reducing pressure on forests 
through reduced dependence on forests. Analysis of the BGI in conjunction with 
data on forest dependence in 500 villages indicated that improved living standards, 
specifically LPG as an alternative to fuelwood for cooking and non-​forest-​based 
housing materials from concrete instead of timber, were significantly associated with 
less forest degradation (lower BGI) in 1 km buffers around the villages. The effect 
was lower with increasing distance from villages, as would be expected (DeFries 
et al., 2022).

The results suggest that development and improvements in living standards are 
potential pathways to a forest transition in this landscape, with the dual benefits of 
reducing forest degradation and alleviating poverty.

4.5 � CONCLUSIONS

Dry tropical forests have received less attention from researchers, policymakers, and 
managers than other forest biomes. Tropical humid forests are widely recognized for 
their ecosystem services for carbon sequestration and biodiversity and for the need 
to reduce deforestation that has stubbornly persisted in South America, Southeast 
Asia, and increasingly in central Africa. Over the last century, temperate forests that 
were once deforested have regenerated owing to urbanization, land abandonment, and 
forest restoration.

Many of the world’s lowest-​income people live in or near degraded, dry tropical 
forests. The example from dry tropical forests in central India illustrates that pathways 
to forest transitions differ from those observed in other types of forests. In such a dry 
tropical forest landscape, where forest dependence and poverty are prevalent, a forest 
transition from urbanization and land abandonment cannot be assumed, at least on a 
short time scale. Intentional efforts to improve living standards and reduce depend-
ence on forests through alternatives to forest resources for daily needs potentially 
foster a transition to healthier forests.

Results also indicate that very high-​resolution satellite data can be used to monitor 
forest degradation in dry tropical forests. However, the methods need to be context-​
specific for the type of degradation. In the central Indian landscape, heavy forest use 
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for grazing and collecting forest products generates bare patches within the forest 
that serve as a proxy for degradation. Application of the algorithm to a time series 
can monitor future forest health and the potential impacts of interventions to reduce 
pressure on these forests.
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5.1 � INTRODUCTION

Remote sensing may be a powerful tool for studying landscapes, yet it is not a neu-
tral instrument (Bennett et al., 2022). Remote sensing empowers people with access 
to certain kinds of data and skills to analyze that data and values certain elements of 
landscapes (e.g., those that can be observed from the sky) over other elements that can 
only be observed on the ground. In this chapter, we examine how remote sensing in 
India has reinforced ineffective and counterproductive policies in the forest sector and 
provide suggestions for moving forward. In particular, we argue that remote sensing 
has reinforced a tendency in Indian policy-​making to focus on the area of tree cover 
as a key metric of success in forestry, to the detriment of other measures of ecosystem 
function or social benefit. The result has been several highly prominent Indian for-
estry schemes, such as CAMPA and the new Green Credits Scheme, which empha-
size changes in forest cover –​ i.e., what can be observed from a satellite –​ while 
ignoring nearly all social and ecological relationships that make forests essential and 
valuable. At the same time, we argue that remote sensing, mainly when used with 
carefully collected data from the ground on social and ecological relationships, can 
be a powerful tool for rethinking the management of Indian landscapes. The oppor-
tunity to use remote sensing to facilitate positive outcomes depends on robust funding 
for on-​the-​ground social and ecological research to ensure that what can be measured 
from the air can be studied in combination with knowledge about people, places, and 
ecological systems. While our essay primarily aims to engage an audience interested 
in improving the use of remote sensing in Indian policymaking, it also aims to offer 
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broader lessons on the risks of the uncritical application of technology to solving 
complex social-​ecological problems.

Remote sensing became an essential tool for the governance of Indian forests in 
the 1980s, as the availability first of foreign satellite data (e.g., from LANDSAT) and 
later India’s domestic remote sensing capabilities (e.g., from ISRO) made remote 
sensing of India’s land cover technically and economically feasible. The first “State 
of India’s Forests” report was published in 1987 by the Forest Survey of India, based 
on LANDSAT data from 1981–​1983 (Government of India, Ministry of Environment 
and Forests, Forest Survey of India 1987), and follow-​up reports have been published 
every 2 years since then. These reports have been highly influential with policymakers 
and occasionally even used to determine budget allocations (Busch and Mukherjee, 
2018; Busch et al., 2020; Chaturvedi 2016). They rely on satellite-​based remote 
sensing of tree cover, initially conducted using visual interpretation of Landsat 
imagery, but moving by the mid-​1990s to the digital interpretation of imagery from 
ISRO satellites, combined with some ground-​truthing (which has rarely been clearly 
described in State of Forest Reports). Over the years, greater availability of satellite 
data combined with the increased on-​the-​ground technical capacity has led Indian 
forestry agencies towards increased reliance on remote sensing to understand forest 
conditions on the ground.

As measured by satellite, forest cover is a very poor measure of the diverse values 
in nature–​society relationships in any place in the world, particularly in India. For 
example, the focus on forest cover has led to an ongoing misunderstanding and deg-
radation of a wide variety of ecosystems that are native to India but do not feature 
dense tree cover, including grasslands, shrublands, and savannas (Gopalakrishna 
et al., 2024; Lahiri et al., 2023; Madhusudan and Vanak 2023). These ecosystems pro
vide vital services and protect many of India’s most endangered wildlife. The focus 
on tree cover, as seen from the satellite, has also obscured the values lost and gained 
as native forests have been converted to plantations (Puyravaud et al., 2010a, 2010b; 
Davidar et al., 2010) and sizeable old agroforestry trees have been lost (Brandt et al. 
2024). Furthermore, a focus on forest cover as a seemingly static stock obscures the 
ways that Indian ecosystems might be mobilized to support the thriving of people, 
animals, and plants who depend on forests for their well-​being as forests produce 
ecological dynamics and flows of goods and services that may not be captured effect-
ively by satellites.

The net result of the entrenched reliance on satellite-​based forest cover 
measures is that India’s environmental policy framework has been largely inef-
fective. There are two elements of this ineffectiveness. First, where policies are 
successful at conserving or increasing tree cover, they often do so in ways that 
provide limited value to people and nature because those trees that can be grown 
or conserved most effectively to maximize tree cover are not necessarily the 
same as those which provide the most significant benefit to people and nature. 
For example, in the western Himalayas, native pines are the most effortlessly 
and widely propagated tree, however, native oaks are more beneficial for both 
people and nature (Das et al. 2021; Shahabuddin et al. 2021), and many Indian 
ecosystems are most ecologically and economically beneficial when tree cover 
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is sparse rather than dense (Lahiri et al., 2023; Madhusudan and Vanak 2023; 
Gopalakrishna et al., 2024). Second, focusing on tree cover has led governments 
to deprioritize the on-​the-​ground conservation work that is necessary to under-
stand why people make landscape management decisions and to adopt one-​
size-​fits-​all policies that are often ineffective at encouraging conservation and 
regeneration because they do not correspond to local drivers of land use change.

Remote sensing has been widely adopted in forestry partly because it appears 
inexpensive relative to other forms of measuring and understanding forests. This 
is a false appearance. Building a capacity for remote sensing of forests has taken 
decades of investment in building satellites, purchasing computers, and training 
technicians. Scientists have long recognized that remote sensing is only valid 
when accompanied by intensive on-​the-​ground knowledge of ecosystems, human 
dynamics, and political institutions (Moran and Ostrom 2005; National Research 
Council et al. 1998). This combination differs from “ground-​truthing,” which pri
marily aims to anchor and verify satellite-​based knowledge. It seeks to measure 
the invisible social and ecological dynamics from space, not merely verify that an 
algorithm for analyzing remote sensing data is performing correctly. Yet once the 
infrastructure for remote sensing has been built, it appears expedient to measure 
forest cover from Earth Observing satellites. In contrast, it is expensive to measure 
humans’ diverse values for diverse kinds of nature. They cannot be measured except 
by engagement with local communities and intensive site-​based measurements 
using complex combinations of social and ecological measurements. This also 
requires substantial training and, importantly, political will to engage with com-
munities and face community questions of state accountability and forest rights. 
Instead, as a straightforward measurement, forest cover has facilitated a type of 
governance that obscures the complex relationships between people, nature, and 
well-​being in India and simplifies it into one metric.

In presenting this story, we aim to illustrate how alternative uses of remote  
sensing technology may be harnessed to aid in a broader and deeper understanding  
of people and nature in South Asia and beyond. Understanding the limitations of  
the technology and its application in India can unlock new ways of seeing, guiding  
analysts towards uses of the technology that could aid in broader understanding and/​ 
or challenge narrow-​minded visions embodied in Indian policies. In addition, the  
dramatic improvements in earth observing satellites since the 1980s mean that more  
kinds of values can be incorporated into satellite-​based studies of India, which can,  
in turn, lead to improvements in policy. We begin by outlining the pre-​remote sensing  
history of natural resource management in India, pointing to how the pre-​existing  
policy framework favored a focus on forest cover over other measures of human–​ 
environment interactions. We then show how the introduction of remote sensing  
reinforced this view and how remote sensing continues to support and critique nature  
conservation in India (Figure 5.1). A key idea in this section is that while remote  
sensing has numerous potential applications, the simplest ones have tended to be used  
to develop simple measures of forest cover change that do not reflect the complexity  
of natural values in India. We conclude with a call to do better research and policy-
making, drawing on examples from recent research, with a focus on transparency,  
a clear understanding of technological limitations, and partnership between remote  
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sensing and other research techniques to undo the harms of the past and improve  
human well-​being and nature in India.

5.2 � VALUING TREES IN COLONIAL AND POST-​COLONIAL   
INDIA

India’s current natural resource policy landscape builds on a legacy set by the colonial 
era. The British colonial state set up forestry agencies in the middle of the 19th cen-
tury in an effort to make better use of seemingly unproductive forest resources while 
also securing timber crucial for the construction of railways needed to shore up colo-
nial power (Gadgil and Guha 1992; Guha 1983; Roy and Fleischman 2022). These 
agencies prioritized the needs of the colonial state, particularly with regards to priori-
tizing the provision of timber, initially for railroads and later to serve a variety of other 
needs of the British, but also were forced to accommodate local demands for access to 

FIGURE 5.1  India with states.

 

 

   

 



80 Remote Sensing of Land Cover and Land Use Changes, Volume 2

forest resources that were integral parts of the livelihoods of rural people (Guha 1989; 
Rangarajan 1996b; Skaria 1999; Sivaramakrishnan 1999; Rangarajan 1994, 1996a). 
These accommodations were the source of consistent struggle and contestation, and 
the formal rights of forest-​dependent peoples were greatly limited by colonial policy. 
Much of India’s natural wealth remained outside of the direct control of the state, on a 
variety of private lands and zamindari estates, and under the control of princely states. 
Still, these landowners were encouraged to follow policy frameworks derived from 
British imperial practices (Abdul Thaha 2009). Furthermore, forestry was often seen 
as secondary to broader goals of encouraging agriculture, providing direct revenue 
to the colonial state, and providing benefits to farmers and the rural poor (Saberwal 
1999; Guha 1983; Gadgil and Guha 1992).

Because of the commercial, industrial, and political nature of the British Empire, 
the diverse values present in natural systems were viewed through a highly simpli-
fied lens. Natural areas with fertile soils and access to water were prioritized for the 
expansion of agriculture, which could be taxed to the benefit of the state. In contrast, 
areas with timber were reserved for the production of wood products. Some small 
areas were set aside as hunting reserves due to the symbolic and recreational value 
of hunting for the Indian and British ruling classes (Rangarajan 2001). Other areas 
were viewed as “wastes” –​ i.e., lands that were not productive for the state. This ter-
minology continues to be used today to refer to lands that are not farmed and do not 
have dense tree cover despite the now widespread recognition that ecosystems such as 
wetlands and deserts are indeed very valuable, even on purely economic terms (Baka 
2019; Baka 2013, 2014, 2017; Lahiri et al., 2023).

This framework was reinforced with Indian independence. The developmental 
state that wished to improve the welfare of its citizens focused on industrial and 
agricultural development with little attention to natural landscapes or the people who 
depended on them (Gadgil and Guha 1995; Guha 2007). Forest-​dependent peoples 
played a role in the struggle for an independent India (Baker 1984), so they might 
have expected to receive benefits as newly independent India moved from a state that 
sought to benefit a distant colonial power to one that aimed to develop and uplift its 
people. Yet, newly independent India moved in the opposite direction. Not only was 
the punitive 1927 Forest Act kept in place by the newly independent government 
(in fact, it is still on the books), but in the early 1950s, India developed a new forest 
policy (Government of India 1952), which sought to prioritize the use of forests for 
national needs, primarily understood as industrial production but also soil conserva-
tion and water security for high productivity agricultural areas.

The 1952 forest policy not only continued the colonial focus on forests as drivers 
of industrial activity, it also introduced the first quantitative targets for India’s forest 
land cover: overall, one-​third of India’s land area was to be forested, including 60% in 
“mountainous tracts” such as the Himalayas, and 20% in plains areas. These numbers 
were not based on a systematic analysis of India’s current land uses or areas needed 
to fulfill different goals within the broader frame of economic development and social 
uplift, nor on the availability of land. Instead, the panel developing the policy based 
these goals on analyzing the current land area devoted to forests in wealthy coun-
tries in Europe and North America (Joshi et al. 2010). This approach appears to have 
been based on the assumption that these relative areas were somehow contributing to 
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national wealth (Joshi et al. 2010) instead of being reflections of the areas in those 
countries most suitable for different ecosystems and land uses or historical accidents 
as a snapshot of the rapidly changing forest cover of Europe and North America 
in the 20th century (Joshi et al. 2010; Mather and Needle 1998). No quantitative 
targets were established for the area of India that might be devoted to other natural 
ecosystems, such as mangroves, wetlands, deserts, savannas, or grasslands, despite 
these ecosystems’ potential to provide essential ecosystem services.

Between 1952 and 1980, India pursued five important policy initiatives related to 
the management of nature. First, India nationalized natural areas, including forests, 
under the control of princely states, zamindars, and other private landowners and 
placed these under the control of state forest departments (Sarin 2005). This meant 
not only that there would no longer be private forests and natural areas but also 
that all of these natural areas, including the deserts of Rajasthan, the alpine areas 
of the Himalayas, or the remaining terai and shola grasslands, would be managed 
by agencies that were organized around the industrial production of wood fiber. 
Second, India developed a new national civil service, the Indian Forest Service, 
which provided national supervision to state-​run forestry agencies. It was based on 
the Imperial Forest Service, discontinued in 1935 (Forest Research Institute Dehra 
Dun 1961). The high prestige afforded the Indian Forest Service ensured that local, 
regional, and national governments had advocates for commercially oriented “sci-
entific” forestry. Still, no similar prestige was given to the conservation of wildlife 
or the natural systems they depended on, nor to the integration of rural people and 
forests, nor the management of other kinds of natural systems, such as grasslands, 
savannas, wetlands, or deserts. Third, in the 1970s, wildlife conservation laws created 
protected areas and outlawed hunting. These laws were to be enforced by state forest 
departments in addition to their work as forest managers, and little consideration was 
given in these laws to people who depended on protected areas or wildlife hunting 
for their well-​being. Fourth, national studies noted an apparent low productivity of 
Indian forests (National Commission on Agriculture 1976). Although this report was 
probably mainly in error because it focused on the production of commercial round-
wood and ignored the very substantial role forests played in the rural economy, it 
spurred a strong interest on the part of the state in increasing forest cover and prod-
uctivity through plantation activity (Roy and Fleischman 2022). Finally, and perhaps 
most importantly for both policy development and nature, vast areas of India’s nat-
ural lands were converted to agriculture and other non-​forest land uses. Indian states 
were eager to bring “land to the tiller” and thus quickly regularized such agricultural 
expansion (Guha and Gadgil 1989; Chhatre 2000; Government of India, Ministry of 
Environment and Forests, Forest Survey of India 1987).

5.3 � THE EMERGENCE OF THE FOREST COVER REGIME IN 
THE 1980S

In 1972, Indian Prime Minister Indira Gandhi delivered a highly influential speech 
at the UN Environment Conference in Stockholm, which led her to be recognized 
globally as a leading environmentalist (Mudaliar and Kashwan 2024). As a polit
ician, Gandhi spearheaded several environmental initiatives, including the wildlife 
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protection laws of the 1970s referred to above (Mudaliar and Kashwan 2024). Still, her 
most significant contribution to this essay was the Forest Conservation Act of 1980, 
which is the first of the three major policy shifts of the 1980s that worked alongside 
remote sensing to create a tree-​cover-​focused policy. The Forest Conservation Act 
responded directly to the widespread loss of forest land to agriculture in the decades 
since independence by requiring that any diversion of forest land for a “non-​forest 
purpose” be approved by the Central Government. “Non-​forest purpose” was defined 
to mean “the breaking up or clearing of any forest land or portion thereof for (a) the 
cultivation of tea, coffee, spices, rubber, palms, oil-​bearing plants, horticultural crops 
or medicinal plants; (b) any purpose other than reafforestation.”

Notably, the law did not define the term “forest land.” The English word “forest” has 
several meanings, but some specifically refer to tree cover. For example, the Oxford 
English Dictionary (“Forest, n. Meanings, Etymology and More” 2023) provides 
three definitions of the use of “forest” as a noun:

1.	 “An extensive tract of land covered with trees and undergrowth, sometimes 
intermingled with pasture. Also, the trees collectively of a ‘forest’.”

2.	 “Law. A woodland district, usually belonging to the king, set apart for hunting 
wild beasts and game, etc. (cf. quotes. 1598, 1628), having special laws and 
officers of its own.

3.	 “A wild, uncultivated waste, a wilderness.”

Notably, the second definition is described as being the legal definition, does not 
refer to a defined amount of tree cover, and is consistent with the historical legal use 
of the term in India, which followed the British in using the term forest to refer to 
reserved natural areas, regardless of the extent of tree cover. Both other definitions 
include areas without trees as part of “forests” –​ as in the reference to pastures and 
wildernesses. India’s legally defined forest land area includes extensive tracts of 
land that lack heavy tree cover due to aridity, altitude, flood regimes, as well as the 
effects of herbivory and fire (Gopalakrishnan et al., 2024; Roy and Fleischman, 2022; 
Madhusudan and Vanak 2023; Ratnam et al. 2011). In many other countries, respon
sibilities for areas such as publicly owned desert and grazing land, wildlife protection 
areas, and national parks are delegated for better or worse to specialized agencies that 
are separate from the government’s forestry agency. Still, in India, all of these roles 
are managed by the state forest departments, thus making all or most lands managed 
for wildlife habitat, publicly available grazing, desert, or other non-​agricultural 
purposes “forest” land despite these lands not having forest land cover. Due to the 
historical legacy of an emphasis on timber production in Indian forestry, there has 
been little public or governmental recognition of the fact that many of India’s nat-
ural areas that contain trees do not naturally have dense tree cover (Joshi et al., 2018; 
Ratnam et al. 2016).

Eight years later, in 1988, a committee of senior government officials revised 
India’s forest policy. They retained the emphasis on forest cover. However, they 
revised the purposes for which forests were intended to serve. Under the 1988 forest 
policy, forests were no longer intended primarily for industrial production –​ instead, 
a new priority was given to ecological integrity and the needs of forest-​adjacent 
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communities. This shift was accompanied by the development of a new set of 
programs to protect and regenerate forests through collaboration with local communi-
ties. “Joint Forest Management” appeared, at least at first, to be a revolutionary devel-
opment (Poffenberger and McGean 1996; Joshi 2000), but over time, was subjected 
to much criticism for failing to meaningfully engage with local views and priorities 
(Springate-​Baginski and Blaikie 2013).

The final shift in Indian forest policy in the 1980s is the one most relevant to this 
essay: the emergence of remote sensing as a tool for understanding forests. While 
neither remote sensing nor forest surveys were new to India in the 1980s, the wide-
spread availability of satellite imagery of forests facilitated the creation of the first of 
what became the Forest Survey of India’s biannual “State of the Forest” reports. It 
is notable what these reports did and did not include: Although India had a long and 
distinguished history of developing techniques for forest mensuration based on in situ 
measurements (Stebbing 1922; Barton and Bennett 2008; Barton 2002), the Forest 
Survey of India did not establish a national network for in situ forest measurements. 
The first State of the Forest report, like all such reports that were to follow, was pri-
marily a report on forest cover as measured by satellite imagery, with a small amount 
of ground truthing. Forests were ranked by their density, with higher-​density forests 
presumably considered better. Little to no information was provided on aspects of 
forests such as their biodiversity, contribution to ecosystem services, historical or 
potential state, or their contribution to the well-​being of local people. To this day, 
there is no regularly occurring survey of India’s forests to understand what species of 
plants and animals they contain, or how local people use them.

5.4 � TODAY’S FOREST COVER REGIME AND THE USE OF REMOTE 
SENSING IN INDIAN POLICY

Although there have been significant changes in forest policy since the 1980s, the 
trends of the past described here continue to shape the relationship between remote 
sensing and Indian forests. The Indian government continues to use remote sensing 
to measure forest cover with little regard for other aspects of forests, and the Forest 
Survey of India does not provide, nor have governments demanded, data on other 
aspects of forest, with the notable exceptions of surveys of the populations of 
endangered charismatic megafauna such as tigers and elephants. The Forest Survey 
of India uses a set of arbitrary classifications for forest density, which do not reflect 
the complexity of India’s highly varied natural land covers (Madhusudan and Vanak 
2023; Gopalakrishna et al. 2024; Ratnam et al. 2016) and differ from the widely 
varied classifications used to define forest and forest density globally (Savilaakso 
et al. 2023). The standard classification of forest types used by the Forest Survey of 
India and other agencies (Champion and Seth 1968) does not incorporate new know
ledge about forest types nor savanna and open land cover types (Bahuguna et al. 
2016; Madhusudan and Vanak 2023).

While policies, such as the Forest Rights Act, have aimed to improve engagement 
between forest-​dependent peoples, numerous other laws and policies have placed an 
emphasis on quantitative measurements of forest cover with little concern for other 
aspects of forests.
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The most prominent such policy is Compensatory Afforestation, often referred 
to as CAMPA. The genesis of Compensatory Afforestation was the Forest 
Conservation Act of 1980, discussed above. A series of regulatory decisions and 
court rulings in the 1990s set up a framework under which the central government 
would approve diversions of forest land for “non-​forest purposes” if money was 
deposited to support reforestation elsewhere (Menon and Kohli 2021; Rosencranz 
et al., 2007; Thayyil 2009; Upadhyay et al., 2009). These rulings were eventually 
organized under the aegis of the Compensatory Afforestation Fund Act of 2016, 
which provided an organized system for receiving funds and investing them in 
reforestation activities.

The judgments and laws surrounding CAMPA can only be understood if one 
begins from the false premise that a forest is nothing more than tree cover as seen by a 
satellite. CAMPA aims to replace diverted forest land, meaning land that *either* has 
tree cover *or* is legally designated as forest land (and does not necessarily have tree 
cover for reasons discussed above), and replace them with newly planted trees. The 
requirement is not to replace equivalent land or a similar ecosystem. Instead, CAMPA 
envisions planting new trees elsewhere on the landscape, a replacement that can only 
be understood as equivalent if one assumes (incorrectly) that all forests consist only 
of trees and that any tree can be substituted for any other tree anywhere. Such a 
view makes sense only from the abstraction of satellite imagery used to measure tree 
cover. It makes no sense to examine ecological, economic, or social relationships 
between people, trees, and the several meanings of the word forest. Stripped of con-
text, the trees envisioned by CAMPA can only be justified through a remote sensing 
perspective that excludes all other sources of knowledge about nature and human–​
environment interactions.

Interest in using trees for environmental benefits is not exclusive to India. Since 
the 1990s, there has been global interest in the potential for ecosystems to miti-
gate climate change by absorbing carbon, and trees are often seen as the primary 
tool to accomplish this goal. This has led to the emergence of carbon markets, in 
which carbon emitters, such as industries, pay those who have the means to sequester 
carbon to do so. The earliest such large-​scale scheme was the Clean Development 
Mechanism developed under the Kyoto Protocol to the United Nations Framework 
Convention on Climate Change, which was envisioned as both a technology and 
financial transfer from wealthy to poor countries. Although most Clean Development 
Mechanism projects were developed outside of the forest sector, some projects were 
developed to sequester carbon in forests: evaluations of these projects have mostly 
been negative (Aggarwal 2021, 2012, 2020).

Nonetheless, there is a growing interest in developing carbon sequestration 
projects in India. Measuring carbon sequestered in forests is technically complicated 
and requires accounting not only for above-​ground carbon (i.e., stored in the visible 
parts of trees) but also below-​ground carbon, for which dynamics are complicated, 
poorly understood, and require expensive in situ measurements (Oldfield et al. 2022; 
Pan et al. 2022; Smith et al. 2020). Furthermore, carbon projects require estima
tion of additionality –​ i.e., the carbon stored that is additional to what would have 
occurred without the project. There are substantial questions about whether and how 
additionality can be measured, as well as evidence that it is not being measured well in 
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existing carbon projects (Wunder et al. 2024; West et al. 2023; Gill-​Wiehl, Kammen, 
and Haya 2024; Stapp et al. 2023). Nonetheless, the development of various forms 
of carbon projects, many tied to the voluntary carbon market, has emerged in India. 
Because existing protocols are lax in terms of many of the measurement issues 
highlighted in the literature, in practice, many of these carbon projects rely primarily 
on remotely sensed images of land cover change tied to allometric equations to make 
carbon estimations. The most promising areas for the voluntary carbon market in 
India are probably not in the forest sector (DeFries et al. 2022), and many of the most 
promising locations for more trees in India are on agricultural land as opposed to nat-
ural forests (Gopalakrishna et al. 2022); nonetheless, the interest in remote sensing 
to play into carbon markets remains prominent and is often used as a justification for 
investing in better remote sensing capabilities that could, for example, improve meas-
urement of trees outside of forests for carbon market benefits. Although improved 
measurement of tree canopies outside of forests may have various benefits, it will 
not overcome the fundamental technical constraints on measurements for incorpor-
ating forests into carbon markets since it neither addresses below-​ground carbon nor 
enables measurement of additionality.

The flawed perspectives of CAMPA and the carbon market have recently been 
extended under the aegis of the Government of India’s new “Green Credit Scheme” 
(Sethi 2024). This scheme extends a CAMPA-​derived framing of the benefits of 
tree planting to allow companies to derive credits for supposedly beneficial “green” 
actions (primarily understood as tree planting) to compensate for various environ-
mentally harmful activities. Most of these environmentally harmful activities do not 
have harms that can be undone or compensated for in a meaningful sense through tree 
plantations; moreover, there are a wide variety of reasons why tree planting activ-
ities can fail to deliver intended benefits even in circumstances where they might 
represent appropriate compensatory activities (Holl and Brancalion 2020; Brancalion 
and Holl 2020; Fleischman, Basant, et al. 2020). Again, such a view can only be jus
tified through the abstraction of the remotely sensed image of a forest, where trees 
appear to be infinitely substitutable, and, as per the framework laid out in Indian law, 
trees are seen as synonymous with environmental benefits.

Can we blame remote sensing for these flawed visions? On the one hand, they are 
partially the result of conditions that long pre-​date the existence of remote sensing, 
such as the regressive laws and focus on lumber productivity that are legacies of the 
colonial era and the 1952 forest policy’s arbitrary delineation of a target for “forest 
cover.” On the other hand, the continuation and extension of these legacies were a 
choice, and one can clearly see that other countries with similar legacies have made 
different choices. For example, forestry in Nepal was practiced in a manner quite 
similar to India from the 1950s until the 1980s but subsequently has seen a dramatic 
shift towards community-​based management, with much less focus on trees for tree’s 
sake (Ojha and Hall 2023; Poudyal et al. 2023). The heavy investment in remote 
sensing by India and the subsequent large-​scale availability of remotely sensed data, 
which can speak to the presence of trees on the landscape but not to social-​ecological 
relationships, makes trees highly visible in both the Indian public imagination and 
policymaking. This has reinforced the pre-​existing tendency to miss the forest for 
the trees.
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5.5 � MOVING FORWARD: HOW REMOTE SENSING CAN BE MORE 
PRODUCTIVELY APPLIED TOWARDS BETTER FOREST SCIENCE 
AND POLICY DESIGN

Of course, remote sensing remains a powerful tool for understanding the world. 
Although remote sensing has reinforced unfortunate policy choices in India, the 
expense of establishing advanced remote sensing capabilities to study land cover in 
India has already been made, and it does not need to be abandoned. Instead, remote 
sensing scientists, including both independent scientists and those working in the 
forest department and related agencies, can play a leading role in helping Indian 
society and policy develop a more complex understanding of land cover and land 
use dynamics that both utilize the capabilities of remote sensing and overcome their 
limitations. We propose that three broad principles should apply to such efforts:

1.	 Integrate remote sensing information with knowledge about ecosystems and 
social systems to develop understanding through collaboration with scientists 
and practitioners with relevant expertise.

2.	 Disclose methodological limitations consistently using language that non-​
scientists can understand.

3.	 Release data and methods to encourage public discussion and independent 
error-​checking.

To understand how a program utilizing remote sensing-​derived knowledge might 
enhance the management of nature in India, we draw on two examples from our 
research. We intend these examples to illustrate potential uses, and we know that 
many other potential uses may exist.

Partly because of its preoccupation with forest cover, Indian forest departments 
have a long tradition of planting trees. While such plantings have been criticized for 
leading to the displacement of native land covers with plantation forestry (Puyravaud 
et al., 2010a, 2010b; Davidar et al. 2010), there has been little evaluation of the 
impacts of tree plantings. To remedy this, we evaluated the effects of tree planting on 
forest cover and rural livelihoods in the Kangra District of Himachal Pradesh. Our 
evaluation began with mapping the boundaries of all plantations we could locate in 
60 randomly selected panchayats in the district. Mapping required us to locate local 
informants who had been closely involved with past plantation activities and walk 
the boundaries of plantations they remembered (not all of which had obvious visual 
evidence of plantation –​ as in the case of past failed plantations). This expensive 
and time-​consuming step illustrates the value of open data: if the Himachal Pradesh 
forest department had mapped and publicly released the boundaries of plantations 
as they were planted, our evaluation would have been substantially cheaper, and the 
cost to the department would have been minimal as in any case, mapping is already 
undertaken in planning plantations on government land. Unfortunately, attempts to 
force greater data transparency, such as the requirement to post CAMPA plantations 
on the E-​Greenwatch website, have often met with resistance from field foresters 
(Comptroller and Auditor General of India 2024). We then located a time series of 
cloud-​free LANDSAT images that covered these plantations dating back to the 1980s. 
Although tree planting has occurred throughout Indian history (Roy and Fleischman 
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2022), it accelerated in the 1970s (Government of India, Ministry of Environment and 
Forests, Forest Survey of India 1987; Ravindranath et al. 2007), and thus the avail
ability of LANDSAT imagery since the 1980s allows for before and after comparisons 
of land cover for most of the plantations. We conducted extensive ground-​truthing for 
the recent images and compared older images with available higher resolution data 
sources to estimate the accuracy of the images.

Our comparison of areas before and after planting showed little impact on overall 
forest cover, but planting did shift tree cover from broadleaf towards needleleaf 
trees (Coleman et al. 2021). Combining this with household survey data, we found 
that although needle leaf trees tend to be less helpful to people than broadleaf trees, 
potential adverse livelihood effects from tree planting were muted because overall 
forest dependence in the region was low (Coleman et al. 2021; Ramprasad et al., 
2020), although effects were more substantial for certain vulnerable social groups 
(Ramprasad et al., 2020). Win-​win outcomes (i.e., where increased forest cover and 
improved livelihoods co-​occurred) were associated with more decisive local collective 
action and a consolidated local institutional space (Rana et al. 2024). We found that 
a large percentage of tree planting activity was targeted towards areas where planting 
did not seem to be necessary and/​or tree survival probability was low (Rana et al. 
2022), and also that the total potential tree cover for the state of Himachal Pradesh 
was only about 30% –​ far below the established target of 60% in mountainous areas 
(Rana and Varshney 2023).

Overall, these studies relied on remote sensing to establish tree cover but relied 
on extensive assessment of on-​the-​ground conditions to understand the implications 
of that tree cover for people and nature. For example, we used data drawn from a 
variety of government records and our mapping processes to understand how tree 
cover related to government programs to plant trees, demonstrating that although 
there had been changes in tree cover over time, these could not be attributed to 
planting programs, which had no net effect and were often targeted to the wrong 
areas. Similarly, we used data from an extensive household survey (Coleman et al., 
2021) and community-​based mapping (Fleischman et al., 2020) to understand the 
implications of tree planting for people. Our ongoing research aims to tie changes 
in tree cover and forest composition to changes in biodiversity, carbon storage, and 
other ecosystem functions and services while also attempting to understand better 
how these changes in nature may be related to changes in the social and political 
changes ongoing in the human communities near the forest areas. Through this 
integration, we gave remotely sensed images meaning that could be used for more 
effective policy design. Recent government orders in Himachal influenced by this 
work have restricted plantations in areas crucial for migration routes for vulnerable 
pastoral people while also emphasizing the need to more carefully select sites for 
plantations where they can be most beneficial to people.

Recent studies in Central India also highlight the need for a combination of 
remotely sensed tree cover products, fine-​scale vegetation measurements, and social 
surveys to make locally relevant natural resource management decisions. Choksi 
et al. (2023) leveraged remotely sensed tree cover data to create a matched sample 
of restored and unrestored forest patches using a propensity score. The authors used 
fine-​scale land cover classifications from Planet Lab data for the year restoration took 

 

 

 

 

 

 

 

 

 



88 Remote Sensing of Land Cover and Land Use Changes, Volume 2

place (2018) to match the restored and unrestored sites using a propensity score and 
create a balanced sample. In this case, forest cover data was a starting point for delin-
eating restored patches by removing Lantana camara in the understory and those 
that remain unrestored where no such intervention was made. Once these patches 
were matched on forest cover and several other geographic and socio-​economic 
characteristics, the authors matched the sites based on overstory characteristics (such 
as density of trees of a particular size class, species diversity of trees, etc.). This 
secondary matching process highlights the importance of including fine-​scale vege-
tation measurements and remotely sensed tree cover data to create a balanced set 
of sampling sites. Several potential unrestored sites were discarded at this stage, as 
their inclusion would have led to an imbalance of restored and unrestored sites. This 
study is an example of a robust study design that draws on a combination of remotely 
sensed forest cover data and fine-​scale vegetation measurements to isolate the effects 
of restoring the understory. Choksi et al. (2023) find that even though these forest 
patches appear to be no different from each other when the overstory is observed as 
a forest pixel, differences in the understory have a significant effect on biodiversity, 
such as insects, illustrating the importance of fine-​scale measurement of features that 
cannot be observed through remote sensing.

Choksi et al. (2023) used household surveys around these same matched forest 
patches to determine the socio-​economic impact of restoring these forest patches. In 
this case, the overstory characteristics, which most remotely sensed tree and forest 
cover products measure, were comparable. However, household surveys revealed 
that restoration through removing Lantana camara in the understory significantly 
changed the impact these forests had on the livelihoods of local human communities. 
For example, with a clearer understory in the absence of large thickets of Lantana 
camara, respondents reportedly traveled shorter distances to graze their cattle than 
people living around unrestored sites. Again, this social information about how 
people used the land and how those uses were valued was unavailable without boots-​
on-​the-​ground survey research.

5.6 � CONCLUSION

The problem with remotely sensed data in India is that it is too easy to use cheaply 
available data to reinforce widely held preconceptions about how forests should be 
managed. In retrospect, it seems unfortunate that some of the vast sums of money 
used to send satellites into orbit, develop earth-​observing sensors, and train scientists 
in the interpretation of images was not used to develop similarly robust on-​the-​ground 
capabilities to monitor biodiversity, the delivery of essential ecosystem services, and 
the social conditions in rural villages. After all, remote sensing only appears cheap to 
the users who are not paying for the costs of developing remote sensing infrastruc-
ture, and on-​the-​ground monitoring looks expensive when one ignores the tremen-
dous money wasted on ineffective public programs. Improved management requires 
knowledge about the conditions and benefits flowing from nature, and remote sensing 
can only provide a small, albeit significant, portion of the needed information. In 
the future, more effective management and policies can emerge through better 
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integrating different types of data to understand and improve the delivery of govern-
ment programs.

REFERENCES

Abdul Thaha, S. 2009, Forest Policy and Ecological Change: Hyderabad State in Colonial 
India, Foundation Books, New Delhi.

Aggarwal, A. 2012, ‘How sustainable are forestry clean development mechanism projects?—​A 
review of the selected projects from India’, Mitigation and Adaptation Strategies for 
Global Change, vol. 17, no. 5, pp. 1–​19.

Aggarwal, A. 2020, ‘Revisiting the land use assumptions in forest carbon projects through a 
case from India’, Journal of Environmental Management, vol. 267, no. 8, p. 110673.

Aggarwal, A. 2021, ‘“Carbon” in forest carbon projects: Evidence from India’, Climate and 
Development, vol. 14, no. 2, pp. 1–​10.

Bahuguna, V.K., Swaminath, M.H., Tripathi, S., Singh, T.P., Rawat, V.R.S. & Rawat, R.S. 
2016, ‘Revisiting forest types of India’, International Forestry Review, vol. 18, no. 2, 
pp. 135–​145.

Baka, J. 2019, ‘Do wastelands exist? Perspectives on “productive” land use in India’s rural 
energyscapes’, RCC Perspectives, vol. 2, pp. 57–​64. Available from: www.jstor.org/​sta​
ble/​26631​562

Baka, J. 2013, ‘The political construction of wasteland: Governmentality, land acquisition 
and social inequality in South India’, Development and Change, vol. 44, no. 2, pp. 
409–​428.

Baka, J. 2014, ‘What wastelands? A critique of biofuel policy discourse in South India’, 
Geoforum: Journal of Physical, Human, and Regional Geosciences, vol. 54, pp. 315–​323.

Baka, J. 2017, ‘Making space for energy: Wasteland development, enclosures, and energy 
dispossessions’, Antipode, vol. 49, no. 4, pp. 977–​996.

Baker, D. 1984, ‘“A serious time”: Forest satyagraha in Madhya Pradesh, 1930’, The Indian 
Economic and Social History Review, vol. 21, no. 1, pp. 71–​90.

Barton, G.A. 2002, Empire Forestry and the Origins of Environmentalism, Cambridge 
University Press, Cambridge.

Barton, G.A. & Bennett, B.M. 2008, ‘Environmental conservation and deforestation in British 
India 1855–​1947: A reinterpretation’, Itinerario, vol. 32, no. 2, pp. 83–​104.

Bennett, M.M., Chen, J.K., Alvarez León, L.F. & Gleason, C.J. 2022, ‘The politics of pixels: A 
review and agenda for critical remote sensing’, Progress in Human Geography, vol. 46, 
no. 3, pp. 729–​752.

Brancalion, P.H.S. & Holl, K.D. 2020, ‘Guidance for successful tree planting initiatives’, 
Journal of Applied Ecology, vol. 57, no. 8, pp. 1–​7.

Brandt, M., Gominski, D., Reiner, F., Kariryaa, A., Guthula, V.B., Ciais, P., Tong, X. et al. 
2024, ‘Severe decline in large farmland trees in India over the past decade’, Nature 
Sustainability, vol. 7, no. 1, pp. 1–​9.

Busch, J., Kapur, A. & Mukherjee, A. 2020, ‘Did India’s ecological fiscal transfers incen
tivize state governments to increase their forestry budgets?’, Environmental Research 
Communications, vol. 2, no. 3, p. 031006.

Busch, J. & Mukherjee, A. 2018, ‘Encouraging state governments to protect and restore forests 
using ecological fiscal transfers: India’s tax revenue distribution reform’, Conservation 
Letters, vol. 11, no. 2, pp. 57–​64. https://​doi.org/​10.1111/​conl.12416

Champion, H.G. & Seth, S.K. 1968, A Revised Survey of the Forest Types of India (Spine 
Title: Forest Types of India), Manager of Publications, New Delhi.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.jstor.org/stable/26631562
http://www.jstor.org/stable/26631562
https://doi.org/10.1111/conl.12416


90 Remote Sensing of Land Cover and Land Use Changes, Volume 2

Chaturvedi, R. 2016, ‘India’s forest federalism’, Contemporary Southeast Asia, vol. 24, no. 1, 
pp. 1–​18.

Chhatre, A. 2000, ‘Forest co-​management as if history mattered: The case of Western Himalayan 
forests in India’. Available from: https://​epri​nts.excha​nge.isb.edu/​id/​epr​int/​998/​.

Choksi, P., Kotian, M., Biniwale, S. & Mourya, P. 2023, ‘Listening for change: Quantifying 
the impact of ecological restoration on soundscapes in a tropical dry forest’, Restoration, 
vol. 4, no. 11, pp. 997–​1004. Available from: https://​online​libr​ary.wiley.com/​doi/​abs/​
10.1111/​rec.13864.

Choksi, P., Kotian, M., Burivalova, Z. & DeFries, R. 2023, ‘Social and ecological outcomes 
of tropical dry forest restoration through invasive species removal in Central India’, 
Ecological Indicators, vol. 155, no. 11, pp. 1–​11. Available from: www.scienc​edir​ect.
com/​scie​nce/​arti​cle/​pii/​S14701​60X2​3011​962.

Coleman, E., Schultz, B., Ramprasad, V., Fischer, H., Rana, P., Filippi, A.M., Güneralp, B. 
et al. 2021, ‘Limited effects of tree planting on forest canopy cover and rural livelihoods 
in Northern India’, Nature Sustainability, vol. 4, no. 11, pp. 997–​1004.

Coleman, E., Schultz, B., Ramprasad, V., Fischer, H., Rana, P., Filippi, A. & Güneralp, B. et al. 
2021, ‘Data for Decades of tree planting in Northern India had little effect on forest 
canopy cover and rural livelihoods’. Available from: https://​doi.org/​10.13020/​j6sj-​jw18.

Comptroller and Auditor General of India, ed. 2024, ‘Chapter IV: Detailed compliance audit 
on state compensatory afforestation fund management and planning authority’, in Report 
of the Comptroller and Auditor General of India (Compliance Audit) for the Year Ended 
March 2022: Government of Odisha, Report No. 2 of the Year 2024, Comptroller and 
Auditor General of India, New Delhi.

Das, A., Menon, T., Ratnam, J., Thadani, R., Rajashekar, G., Fararoda, R. & Shahabuddin, 
G. 2021, ‘Expansion of pine into mid-​elevation Himalayan oak forests: Patterns and 
drivers in a multiple-​use landscape’, Forest Ecology and Management, vol. 497, October, 
p. 119491.

Davidar, P., Sahoo, S., Mammen, P.C., Acharya, P., Puyravaud, J.P., Arjunan, M., 
Garrigues, J.P. & Roessingh, K. 2010, ‘Assessing the extent and causes of forest 
degradation in India: Where do we stand?’, Biological Conservation, vol. 143,   
no. 12, pp. 2937–​2944.

DeFries, R., Ahuja, R., Friedman, J., Gordon, D.R., Hamburg, S.P., Kerr, S., Mwangi, J., 
Nouwen, C. & Pandit, N. 2022, ‘Land management can contribute to net zero’, Science, 
vol. 376, no. 6598, pp. 1163–​1165.

Fleischman, F., Basant, S., Chhatre, A., Coleman, E.A., Fischer, H.W., Gupta, D., Güneralp, B. 
et al. 2020, ‘Pitfalls of tree planting show why we need people-​centered natural climate 
solutions’, Bioscience, vol. 70, no. 11, pp. 947–​950.

Forest Research Institute Dehra Dun 1961, 100 Years of Indian Forestry: Issued on the 
Occasion of the Celebration of Indian Forest Centenary, 2 vols, Government of India 
Press, New Delhi.

Gadgil, M. & Guha, R. 1992, This Fissured Land: An Ecological History of India, Oxford 
University Press, New Delhi.

Gadgil, M. & Guha, R. 1995, Ecology and Equity, United Nations Research Institute for Social 
Development, New York.

Gill-​Wiehl, A., Kammen, D.M. & Haya, B.K. 2024, ‘Pervasive over-​crediting from cookstove 
offset methodologies’, Nature Sustainability, vol. 7, no. 2, pp. 191–​202.

Gopalakrishna, T., Lomax, G., Aguirre-​Gutiérrez, J., Bauman, D., Roy, P.S., Joshi, P.K. & 
Malhi, Y. 2022, ‘Existing land uses constrain climate change mitigation potential of 
forest restoration in India’, Conservation Letters, vol. 15, e12867. https://​doi.org/​
10.1111/​conl.12867

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://eprints.exchange.isb.edu/id/eprint/998/
https://onlinelibrary.wiley.com/doi/abs/10.1111/rec.13864
https://onlinelibrary.wiley.com/doi/abs/10.1111/rec.13864
http://www.sciencedirect.com/science/article/pii/S1470160X23011962
http://www.sciencedirect.com/science/article/pii/S1470160X23011962
https://doi.org/10.13020/j6sj-jw18
https://doi.org/10.1111/conl.12867
https://doi.org/10.1111/conl.12867


91Remote Measures and Remote Policies

Gopalakrishna, T., Rifai, S., Ratnam, J., Oliveras Menor, I., Stevens, N. & Malhi, Y. 2024, ‘The 
distribution and drivers of tree cover in India’, Communications Earth & Environment 
Vol 5 399. https://​doi.org/​10.21203/​rs.3.rs-​3777​003/​v1

Government of India 1952, ‘1952 National Forest Policy’, Ministry of Food and Agriculture, 
New Delhi. Available from: http://​for​est.ap.nic.in/​for​est%20pol​icy-​1952.htm

Government of India, Ministry of Environment and Forests, Forest Survey of India 1987, ‘The 
State of Forest Report 1987’. Available from: https://​fsi.nic.in/​docume​nts/​sfr​_​198​7_​hi​
ndi.pdf

Guha, R. 1983, ‘Forestry in British and post-​British India: A historical analysis’, Economic and 
Political Weekly, vol. 18, nos. 44–​45, pp. 1882–​1896, 1940–​1947.

Guha, R. 1989, The Unquiet Woods: Ecological Change and Peasant Resistance in the 
Himalaya, Oxford University Press, Oxford.

Guha, R. 2007, India After Gandhi, Harper Collins, New York.
Guha, R. & Gadgil, M. 1989, ‘State forestry and social conflict in British India’, Past & Present, 

vol. 123, no. 1, pp. 141–​177.
Holl, K.D. & Brancalion, P.H.S. 2020, ‘Tree planting is not a simple solution’, Science,    

vol. 368, no. 6491, pp. 580–​581.
Joshi, A.K., Pant, P., Kumar, P., Giriraj, A. & Joshi, P.K. 2010, ‘National forest policy in 

India: Critique of targets and implementation’, Small-​Scale Forestry, vol. 10, no. 1, 
pp. 83–​96. https://​doi.org/​10.1007/​s11​842-​010-​9133-​z

Joshi, A. 2000, Roots of Change: Front Line Workers and Forest Policy Reform in West Bengal, 
Massachusetts Institute of Technology, Massachusetts, USA. Available from: http://​proqu​est.
umi.com/​pqd​web?did=​727775​181&Fmt=​7&clien​tId=​12010&RQT=​309&VName=​PQD

Joshi, A.A., Sankaran, M. & Ratnam, J. 2018, ‘“Foresting” the grassland: Historical manage
ment legacies in forest-​grassland mosaics in southern India, and lessons for the conserva-
tion of tropical grassy biomes’, Biological Conservation, vol. 224, pp. 144–​152.

Lahiri, S., Roy, A. & Fleischman, F. 2023, ‘Grassland conservation and restoration in India: A 
governance crisis’, Restoration Ecology, vol. 31, no. 4, p. e13858. Available from: https://​
online​libr​ary.wiley.com/​doi/​abs/​10.1111/​rec.13858

Madhusudan, M.D. & Vanak, A.T. 2023, ‘Mapping the distribution and extent of India’s semi-​
arid open natural ecosystems’, Journal of Biogeography, vol. 50, no. 8, pp. 1377–​1387.

Mather, A.S. & Needle, C.L. 1998, ‘The forest transition: A theoretical basis’, Area, vol. 30, 
no. 2, pp. 117–​124.

Menon, M. & Kohli, K. 2021, ‘The judicial fix for forest loss: The Godavarman case and the 
financialization of India’s forests’, Journal of South Asian Development, vol. 16, no. 3, 
pp. 414–​432.

Moran, E.F. & Ostrom, E. 2005, Seeing the Forest and the Trees: Human-​Environment 
Interactions in Forest Ecosystems, MIT Press, Cambridge, Mass.

Mudaliar, P. & Kashwan, P. 2024, ‘Poverty and pollution’, Environment: Science and Policy for 
Sustainable Development, vol. 66, no. 1, pp. 7–​18.

National Commission on Agriculture 1976, Report of the National Commission on Agriculture, 
Part IX: Forestry, Ministry of Agriculture and Irrigation, Government of India, New Delhi.

National Research Council, Division of Behavioral and Social Sciences and Education, Board 
on Environmental Change and Society & Committee on the Human Dimensions of 
Global Change 1998, People and Pixels: Linking Remote Sensing and Social Science, 
National Academies Press, Washington, DC.

Ojha, H. & Hall, A. 2023, ‘Transformation as system innovation: Insights from Nepal’s five 
decades of community forestry development’, Innovation and Development, vol. 13,   
no. 1, pp. 109–​131.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.21203/rs.3.rs-3777003/v1
http://forest.ap.nic.in/forest%20policy-1952.htm
https://fsi.nic.in/documents/sfr_1987_hindi.pdf
https://fsi.nic.in/documents/sfr_1987_hindi.pdf
https://doi.org/10.1007/s11842-010-9133-z
http://proquest.umi.com/pqdweb?did=727775181&Fmt=7&clientId=12010&RQT=309&VName=PQD
http://proquest.umi.com/pqdweb?did=727775181&Fmt=7&clientId=12010&RQT=309&VName=PQD
https://onlinelibrary.wiley.com/doi/abs/10.1111/rec.13858
https://onlinelibrary.wiley.com/doi/abs/10.1111/rec.13858


92 Remote Sensing of Land Cover and Land Use Changes, Volume 2

Oldfield, E.E., Eagle, A.J., Rubin, R.L., Rudek, J., Sanderman, J. & Gordon, D.R. 2022, 
‘Crediting agricultural soil carbon sequestration’, Science (New York, N.Y.), vol. 375,   
no. 6586, pp. 1222–​1225.

Pan, C., Shrestha, A., Innes, J.L., Zhou, G., Li, N., Li, J., He, Y., Sheng, C., Niles, J.-​O. & 
Wang, G. 2022, ‘Key challenges and approaches to addressing barriers in forest carbon 
offset projects’, Journal of Forestry Research, vol. 33, no. 4, pp. 1109–​1122.

Poffenberger, M. & McGean, B. 1996, Village Voices, Forest Choices: Joint Forest Management 
in India, Oxford University Press, New Delhi.

Poudyal, B.H., Khatri, D.B., Paudel, D., Marquardt, K. & Khatri, S. 2023, ‘Examining forest 
transition and collective action in Nepal’s community forestry’, Land Use Policy,   
vol. 134, November, p. 106872.

Puyravaud, J.-​P., Davidar, P. & Laurance, W.F. 2010a, ‘Cryptic destruction of India’s native 
forests’, Conservation Letters, vol. 3, no. 6, pp. 390–​394.

Puyravaud, J.-​P., Davidar, P. & Laurance, W.F. 2010b, ‘Cryptic loss of India’s native forests’, 
Science, vol. 329, no. 5987, p. 32.

Ramprasad, V., Joglekar, A. & Fleischman, F. 2020, ‘Plantations and pastoralists: Afforestation 
activities make pastoralists in the Indian Himalaya vulnerable’, Ecology and Society,   
vol. 25, no. 4. https://​doi.org/​10.5751/​ES-​11810-​250​401

Rana, P., Fischer, H., Coleman, E. & Fleischman, F. 2024, ‘Using machine learning to uncover 
synergies between forest restoration and livelihood support in the Himalayas’, Ecology 
and Society vol. 29, no. 1, p. 32. https://​doi.org/​10.5751/​es-​14696-​290​132

Rana, P., Fleischman, F., Ramprasad, V. & Lee, K. 2022, ‘Predicting wasteful spending in tree 
planting programs in Indian Himalaya’, World Development vol. 154, 05864. Available 
from: www.scienc​edir​ect.com/​scie​nce/​arti​cle/​pii/​S03057​50X2​2000​547

Rana, P. & Varshney, L.R. 2023, ‘Exploring limits to tree planting as a natural climate solu
tion’, Journal of Cleaner Production, vol. 384, January, p. 135566.

Rangarajan, M. 1994, ‘Imperial agendas and India’s forests: The early history of Indian 
forestry, 1800-​1878’, The Indian Economic and Social History Review, vol. 31,   
no. 2, p. 147.

Rangarajan, M. 1996a, ‘Environmental histories of South Asia: A review essay’, Environment 
and History, vol. 2, no. 2, pp. 129–​143.

Rangarajan, M. 1996b, Fencing the Forest: Conservation and Ecological Change in India’s 
Central Provinces 1860-​1914, Oxford University Press, New Delhi.

Rangarajan, M. 2001, India’s Wildlife History: An Introduction, Permanent Black in associ
ation with Ranthambhore Foundation, New Delhi.

Ratnam, J., Bond, W.J., Fensham, R.J., Hoffmann, W.A., Archibald, S., Lehmann, C.E.R., 
Anderson, M.T., Higgins, S.I. & Sankaran, M. 2011, ‘When is a ‘forest’ a savanna, and 
why does it matter?’, Global Ecology and Biogeography: A Journal of Macroecology, 
vol. 20, no. 5, pp. 653–​660.

Ratnam, J., Tomlinson, K.W., Rasquinha, D.N. & Sankaran, M. 2016, ‘Savannahs of 
Asia: Antiquity, biogeography, and an uncertain future’, Philosophical Transactions of 
the Royal Society of London. Series B, Biological Sciences, vol. 371, no. 1703. https://​
doi.org/​10.1098/​rstb.2015.0305

Ravindranath, N.H., Murthy, I.K., Chaturvedi, R.K., Andrasko, K. & Sathaye, J.A. 2007, 
‘Carbon forestry economic mitigation potential in India, by land classification’, 
Mitigation and Adaptation Strategies for Global Change, vol. 12, no. 6, pp. 1027–​1050.

Rosencranz, A., Boenig, E. & Dutta, B. 2007, ‘The Godavarman case: The Indian Supreme 
Court’s breach of constitutional boundaries in managing India’s forests’, Environmental 
Law Reporter, vol. 37, pp. 100342–​100042.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.5751/ES-11810-250401
https://doi.org/10.5751/es-14696-290132
http://www.sciencedirect.com/science/article/pii/S0305750X22000547
https://doi.org/10.1098/rstb.2015.0305
https://doi.org/10.1098/rstb.2015.0305


93Remote Measures and Remote Policies

Roy, A. & Fleischman, F. 2022, ‘The evolution of forest restoration in India: The journey from 
precolonial to India’s 75th year of independence’, Land Degradation & Development. 
Available from: https://​online​libr​ary.wiley.com/​doi/​abs/​10.1002/​ldr.4258

Saberwal, V.K. 1999, Pastoral Politics: Shepherds, Bureaucrats, and Conservation in the 
Western Himalaya, Studies in Social Ecology and Environmental History, Oxford 
University Press, New Delhi; New York.

Sarin, M. 2005, ‘Laws, lore and logjams: Critical issues in Indian forest conservation’, IIED 
Gatekeeper Series, vol. 116, pp. 1–​24. Available from: http://​pubs.iied.org/​9543I​
IED.html

Savilaakso, S., Lausberg, N., Waeber, P.O., Hillgén, O., Isotalo, A., Kleinschroth, F., Djenontin, 
I.N.S., Boul Lefeuvre, N. & Garcia, C.A. 2023, ‘Whose perspective counts? A critical 
look at definitions of terms used for natural and near-​natural forests’, One Earth, pp. 
1–​14. Available from: https://​doi.org/​10.1016/​j.one​ear.2023.10.003

Sethi, P. 2024, ‘[Commentary] Green credit rules: Death by trees?’, Mongabay India, 15 
July. Available from: https://​india.monga​bay.com/​2024/​07/​com​ment​ary-​the-​green-​cre​
dit-​rules-​death-​by-​trees/​

Shahabuddin, G., Goswami, R., Krishnadas, M. & Menon, T. 2021, ‘Decline in forest bird 
species and guilds due to land use change in the Western Himalaya’, Global Ecology and 
Conservation, vol. 25, p. e01447.

Sivaramakrishnan, K. 1999, Modern Forests: Statemaking and Environmental Change in 
Colonial Eastern India, Stanford University Press, Stanford, CA.

Skaria, A. 1999, Hybrid Histories: Forests, Frontiers and Wildness in Western India, Oxford 
University Press, New Delhi.

Smith, P., Soussana, J.F., Angers, D., Schipper, L., Chenu, C., Rasse, D.P., Batjes, N.H. et al. 
2020, ‘How to measure, report and verify soil carbon change to realize the potential 
of soil carbon sequestration for atmospheric greenhouse gas removal’, Global Change 
Biology, vol. 26, no. 1, pp. 219–​241.

Springate-​Baginski, O. & Blaikie, P. 2013, Forests People and Power: The Political Ecology of 
Reform in South Asia, Routledge, London, United Kingdom.

Stapp, J., Nolte, C., Potts, M., Baumann, M., Haya, B.K. & Butsic, V. 2023, ‘Little evidence 
of management change in California’s forest offset program’, Communications Earth & 
Environment, vol. 4, no. 1, pp. 1–​10.

Stebbing, E.P. 1922, The Forests of India Vols. I-​III, Dodley Head, London.
Thayyil, N. 2009, ‘Judicial fiats and contemporary enclosures’, Conservation and Society,   

vol. 7, no. 4, pp. 268–​282.
Upadhyay, S., Chohan, S. & Vaidya, A. 2009, India’s Forests and the Judiciary: The 

Godavarman Story, Enviro-​Legal Defence Firm and WWF-​India, New Delhi.
West, T.A.P., Wunder, S., Sills, E.O., Börner, J., Rifai, S.W., Neidermeier, A.N., Frey, G.P. & 

Kontoleon, A. 2023, ‘Action needed to make carbon offsets from forest conservation 
work for climate change mitigation’, Science, vol. 381, no. 6660, pp. 873–​877.

Wunder, S., Schulz, D., Montoya-​Zumaeta, J.G., Börner, J., Frey, G.P. & Betancur-​Corredor, 
B. 2024, ‘Modest forest and welfare gains from initiatives for reduced emissions from 
deforestation and forest degradation’, Communications Earth & Environment, vol. 5, no. 
1, pp. 1–​11.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://onlinelibrary.wiley.com/doi/abs/10.1002/ldr.4258
http://pubs.iied.org/9543IIED.html
http://pubs.iied.org/9543IIED.html
https://doi.org/10.1016/j.oneear.2023.10.003
https://india.mongabay.com/2024/07/commentary-the-green-credit-rules-death-by-trees/
https://india.mongabay.com/2024/07/commentary-the-green-credit-rules-death-by-trees/


94 DOI: 10.1201/9781003396260-6
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Assessment of Spatial 
Variables Influencing 
the Urban Heat Island 
Effect in Bangalore, India

Anindita Dasgupta and Uttam Kumar

6.1 � INTRODUCTION

The 21st century is a period marked by the rise of urban development, and urban 
areas, including cities and towns, are the home to most of the global population (UN-​
Habitat, 2008). As the urban population continues to grow in the coming decades, 
expanding cities will transform the Earth into a much more urbanized planet. City 
expansion has posed several challenges to city dwellers and led to the overutilization 
of natural resources. Cities impact areas within their boundaries and regions out-
side their borders, influencing the local and regional climate (Marcus and Colding, 
2011). For example, the absorption of heat from the sun and re-​radiation from the 
dark surfaces of different objects in an urban environment interact with rising summer 
temperatures, creating heat waves called urban heat islands (UHI) (Stone, 2012). 
Urban form, surface properties, vegetation cover, and many other factors influence 
the urban climate. It differs from the surrounding rural areas, and one causal factor 
for UHI is ongoing developmental activities in the city. As such, there is an adverse 
impact on the surroundings, affecting urban people acutely due to environmental 
degradation. As an increasing urban population demands new settlements, this, in 
turn, requires the conversion of natural permeable land surfaces to built-​up areas. The 
UHI effect is witnessed more evidently in compact urban structures with high-​density 
populations.

Previous studies, including Aslan and Koc-​San (2021), have explored the rela
tionship between UHI and various urban land uses using Landsat-​7 ETM+​, Landsat-​
8 OLI, MODIS (Moderate Resolution Imaging Spectroradiometer), and other 
remotely sensed data. For instance, analysis of parameters like built-​up, popula-
tion, socioeconomic, geo-​morphological factors, etc., rendered a better perspective 
to understand the land surface temperature (LST) pattern and its spatial variation 
resulting in UHI (Fan and Wang, 2020). The adverse impact of urban environmental 
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degradation—​often in the name of developmental activities—​on its people has been 
realized at a large scale (Haldar et al., 2021). Therefore, the mitigation strategy for 
urban climate should include urban green spaces (UGS) that are well known for 
maintaining the urban environment sustainably. UGS consists of unsealed and per-
meable soft surfaces, benefitting the city’s residents ecologically and socially. Green 
space affects the quality of the environment, helps in stress relieving, renders feelings 
of social well-​being (Maas et al., 2009), and is also considered a sustainable solu
tion to unplanned developed cities (Gupta et al., 2012). They act like the lungs of the 
city, and therefore, parks, playgrounds, and recreational spaces should be promoted 
to uplift the quality of life of residents, reduce the urban heat effects, and promote 
ecological balance.

The above review revealed that earlier research on UHI mostly focused on data 
sources, methodology of analysis, driving factors, measures of mitigation, etc. 
However, it is also equally important to choose appropriate analytical units and 
seasons for studying UHI. This study uses spatial autocorrelation and a spatial metric 
model to identify and quantify spatial patterns and variability in UHIs and local envir-
onments in the summer season in Bangalore City. Therefore, in this work, we ana-
lyze the spatial patterns and effects of various spatial variables such as VIIRS, NDBI 
(Normalized Difference Built-​up Index), DEM (digital elevation model), slope, and 
percentage of water and vegetation on LST to understand the dynamics between UGS 
and local temperature. Subsequently, the influence of increasing population on the 
local and regional climate as a result of urban expansion was examined at the smallest 
administrative unit/​boundary of the city (wards) so as to provide inputs for planning 
and green space development.

The objectives of this paper are as follows:

(i)	 To explore the relationship between LST and other spatial indicators.
(ii)	 To perform an ecological evaluation of Bangalore City at the smallest admin-

istrative unit (ward).
(iii)	To frame mitigation strategy at the ward level in terms of planning for green 

space development.

6.2 � STUDY AREA

Bangalore is a metropolitan city situated in the state of Karnataka, India, and is popular  
for its favorable climate, despite changes in local climatic conditions (Nalini, 2021).  
The cosmopolitan City of Bangalore is also known as the Silicon Valley of India. It  
is an intellectual and scientific powerhouse with renowned educational institutions,  
information technology, and biotechnology companies, many governments and private 
research and development organizations, a large number of pharmaceutical  
industries, aerospace manufacturing centers, and several micro, small, and medium  
enterprises. It is an electronic and electrical manufacturing nucleus and currently  
hosts one of the largest concentrations of start-​up companies in the world with huge  
foreign direct investment and a favorable business growing culture. The presence of a  
large number of water bodies and vegetation coined it a “city of lakes and gardens”, a  
moniker that has grown less applicable as such features have decreased considerably  
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and been depleted in the last several decades (Dasgupta and Kumar, 2021). Figure 6.1  
shows 198 wards in Bangalore City and the geographical/​spatial center or the “City  
Center” corresponding to the Sampangiriram Nagar and Shantala Nagar wards (i.e.,  
wards no. 100 and 111) that were used as spatial reference points to interpret the  
results.

6.3 � MATERIAL AND METHODS

Landsat-​8 OLI/​TIRS data, dated April 19, 2021, was used as basic data for calculating 
LST and determining the UHI effect. VIIRS (The Suomi Visible Infrared and Imaging 
Radiometer Suite) day and night band (DNB) dataset, which consists of global daily 
measurements of nocturnal visible and near-infrared (NIR) light was used as one of 
the spatial variables. These imagery datasets are available with radiance composite at 
a monthly average of 450 m spatial resolution. Road density was calculated for each 
ward from the road length obtained from the Open Street Map (OSM). Other derived 
datasets, which were computed as indices from the Landsat satellite bands, were also 
used. NDBI uses satellite data to calculate the imperviousness intensity. It focuses 
on the distribution of impermeable areas, which are defined by a higher shortwave 
infrared reflectance in comparison to the near-​infrared band. Normalized Difference 
Vegetation Index (NDVI) is a commonly used Vegetation Index (VI) to distinguish 
vegetation from non-​vegetative classes. The spectral interactions between green 
vegetation and the red and NIR portions of the electromagnetic spectrum determine 
NDVI. It was added to create a spectral VI that distinguishes green vegetation from 
the brightness of the adjoining Earth’s surface. A land use land cover (LULC) map 
was obtained using a Random Forest (RF) classifier from where four categories were 
obtained, namely, built-​up, vegetation, water, and bare soil (including open areas and 
fallow land). Percentages of each of these classes were also derived on a ward level 
and used as independent variables.

FIGURE 6.1  Ward level map of Bangalore with the LULC map of Bangalore.
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The methodology consisted of three main steps:

(i)	 Computation of LST from Landsat-​8 Thermal band (band 10).
(ii)	 Performing spatial regression of LST with selected spatial variables.
(iii)	Derivation of UTFVI index and ecological evaluation of the city (by dividing 

the city area into six zones/​regions).

6.3.1 � LST Estimation

(i)	 Spectral radiance –​ LST values were derived using the LANDSAT-​8 Data 
Users Handbook. The digital numbers (DN) of the pixels of the imagery were 
converted to spectral radiance ( Lλ ) as per equation (6.1):

	 L M Q A
L Lλ = +

cal
	 (6.1)

  

where, Q
cal

 is the pixel value (DN) and M
L

 and A
L

 are the rescaling 
coefficients obtained from the metadata of respective satellite data.

(ii)	 Calculation of emissivity –​ Emissivity was computed using proportional vege-
tation ( P

v
), i.e., the vegetation proportion as given by equation (6.2).

	 ε = +0 004 0 986. .P
v

	 (6.2)
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where, NDVI  gives the distribution of vegetation in the given area. NDVI
min

 
is normally the value of water or bare soil and NDVI

max
 is the value 

corresponding to dense vegetation.
(iii)	LST computation –​ Brightness temperature ( T k( ) ) was calculated from the 

obtained Lλ  in equation (6.1), where Lλ  is the spectral radiance.
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The calibration constants k
1

 and k
2

 were obtained from the meta-
data of the satellite. Absolute zero (–​273.15 K) was added to the above 
equation to obtain results in °Celsius (°C). LST was computed as shown 
in equation (6.5):
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1
1

λ ε
λ ε 	 (6.5)

where, T  is the derived brightness temperature, λ  =​ wavelength of emitted 
radiance, s  =​ Boltzmann constant, and c  =​ velocity of light.

6.3.2  Regression
Regression was used to find the relationship of the dependent variable (LST) with 
other independent spatial variables using ordinary least squares (OLS) and the spatial 
error model (SEM).

(i)	 Spatial variables: The percentage of artificial surfaces, such as built-​up areas,  
and natural surfaces, such as vegetation and water bodies, at 30 m spatial  
resolution was produced by the RF algorithm. Additionally, data from SRTM,  
slope, altitude, and the area’s geomorphology (Zanter, 2019) were taken. The  
social indicators included VIIRS nighttime light data and road density infor-
mation. The average of these spatial variables for each ward was computed for  
the analysis. Figures 6.2 and 6.3 show the spatial variables used in this study.

FIGURE 6.2  Spatial variables used against LST in regression.
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(ii)	 Spatial cluster analysis: Spatial cluster analysis detects non-​randomness of  
events in space and time and unusual concentrations. Moran’s I is one of the  
most common indicators of clustering and is used to examine similar or dis-
similar attributes of nearby areas, as given by equation (6.6).
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where n is the total number of observations (points or polygons), i and j  
represent different locations, x

i
 and x

j
 are values of the variable in the ith and  

FIGURE 6.3  Spatial variables used against LST in regression.
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jth locations, and x is the mean of the variable. w
ij
 is a measure of spatial  

proximity for pairs i and j. Moran’s I value ranges between –​1 to 1, where –1  
means negative autocorrelation, implying that nearby locations have dis-
similar values, and 1 means positive autocorrelation indicating clusters. 	  
  A highly clustered spatial pattern is indicated by a high positive local 
Moran’s I score, while a highly dispersed spatial pattern is indicated by a low, 
negative local Moran’s I score (Fan and Wang, 2020).
  Figure 6.4 explains spatial autocorrelation. In this work, Moran’s I value for 
LST was 0.63, indicating a positive correlation in terms of spatial distribution.

(iii)	Ordinary least squares (OLS), spatial regression model, and spatial error 
model (SEM)
An OLS regression model is a statistical method based on the assumption that 
the error terms are independent of each other. If there is spatial interaction 
(i.e., if spatial autocorrelation exists), spatial regression models (see equation 
(6.7)) are used to capture these effects.

	 LST = +Xβ ε 	 (6.7) 

where, LST  is the dependent variable, X  denotes a N × k vector of inde-
pendent variables, β  denotes a vector of parameters, and ε are normally 
distributed errors. The spatial error model (SEM) is given as in (6.8):

FIGURE 6.4  Demonstration of various cases of spatial autocorrelation (SA).
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	 y X W= + +β λ µµ 	 (6.8)
  

where, λ  is the spatial error coefficient, Wµ is the spatial weight matrix, β  is 
the regression coefficient, µ is a vector of the error terms and X  is the inde-
pendent variable.

Variance Inflation Factor (VIF) is a measure of collinearity among predictor  
variables within multiple regression. To avoid multicollinearity in the selected  
variables, VIF tests were conducted in the R statistical software (Ramachandran and  
Tsokos, 2020). Only the spatial variables with VIF lower than 5, like VIIRS, NDBI,  
DEM, slope, percentage of water, and vegetation, were considered in the regression.  
Considering the effect of spatial autocorrelation, SEM was implemented in GeoDa  
1.18 software (Anselin et al., 2022). In this study, SEM showed improvement over the  
original OLS model. The results of regression models were compared using the coef-
ficient of determination (R2), Akaike Information Criterion (AIC), Log Likelihood  
(LogL), and Schwarz Criterion (SC). Higher R2 and LogL values and lower AIC and  
SC values decide a better model (Li et al., 2010; Guo et al., 2020).

FIGURE 6.5  Correlation between various spatial variables.
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Figure 6.5 shows the correlation matrix between various spatial variables. Here the 
correlation between LST and NDBI was highest, indicating that with an increase in 
impervious surfaces, the surface temperature also tends to rise.

6.3.3 �U rban Thermal Field Variance Index (UTFVI)

UTFVI thermal comfort index (see equation (6.9)) was used to evaluate the UHI 
impact on the quality of urban life (Sobrino and Irakulis, 2020) in different zones 
of the city, as shown in Table 6.2. This index evaluates each pixel located within the 
urban area with respect to the whole urban area (Guha et al., 2018).

	 UTFVI mean

mean

=
−T T

T
S 	 (6.9)

where UTFVI =​ Urban Thermal Field Variance Index, T
S
 is the LST (℃), and T

mean
 is  

the mean LST (℃). Ecological evaluation of Bangalore City was done using UTFVI  
values by dividing it into six zones (Table 6.2). Figure 6.6 gives the outline of the  
methodology followed in this study.

FIGURE 6.6  Flowchart of the overall methodology.

 

 

 

 

 

 



103Variables Influencing the Urban Heat Island Effect in Bangalore

6.4 � RESULT AND DISCUSSION

SEM rendered a high R-​squared value of 0.89 and a log-​likelihood of –​20; therefore, 
it was a suitable model for this study. LST maps were generated from the remotely 
sensed thermal band as shown in Figure 6.7(a).

The LST map indicated that the wards located on the outskirts of the city, away 
from the city center, showed higher LST with more impervious surfaces. Figure 6.7(c) 
shows the frequency of wards lying in different temperature zones. Table 6.1 highlights 
the descriptive statistics of the spatial variables used in this study.

UTFVI values were generated and divided into six zones by specific ecological 
evaluation indices (see Figure 6.7(b) and Table 6.2), each of which corresponds to the 
degree of UHI presence and its impact on eco-​environmental quality or thermal com-
fort in the area (Sobrino and Irakulis, 2020). The wards with high vegetation showed 
relatively lower temperatures. The presence of green spaces in the city center is the 
reason for better thermal comfort.

Table 6.2 shows the percentage area coverage of the EEI into six zones. Here, the 
city was divided into two extremes: (i) the region where the optimum thermal com-
fort is < 0, and (ii) relatively high-​temperature areas or pockets where UTFVI > 0.02.

Approximately half of the study area (36082.8 ha) spatially located towards  
the city center showed excellent EEI, including Malleshwaram, Tippasandara,  
Garudachar Playa, Doddanekkundi, Chamrajapet, Hanumanth Nagar, and Gali  
Anjenaya Temple (wards no. 45, 58, 82, 85,140, 155, 157), while 32.44% of the total  
area was categorized as a very poor EEI zone. The wards with the highest LST were  

FIGURE 6.7  (a) Land surface temperature (LST) map in ℃. (b) Ward wise EEI distribution 
in Bangalore. (c) Ward level average LST in ℃ (April 2021). (d) Mean LST in different 
concentric ring buffers with 1 km radius originating from the city center.
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also rated as in the very poor category in EEI. Five wards (namely, Rajagopal Nagar,  
Dodda Bidarakallu, Peenya Industrial Area, Jakkuru, and Atturu, with corresponding  
ward numbers 70, 40, 41, 5, and 3) exhibited the highest average LST (31.43, 31.36,  
31.12, 31.08, and 31.05℃, respectively). The same wards also showed poor EEI with  
increased levels of thermal discomfort. On the other hand, Aramane Nagara (ward  
35) and Halsoor (ward 90) showed the lowest LST.

Multiple concentric ring buffers generated at a radius of 1 km from each other ori-
ginating from the center of the city were used for the depiction of variations in LST. 
As we moved from the city center towards the periphery, LST also increased grad-
ually, as depicted in Figure 6.7(d). Increased LST is the consequence of unplanned 
urbanization in the outskirts, which further exacerbated urban temperature with the 
rapid rise in the number of impervious surfaces. This fueled a decrease in vegeta-
tion cover and open ground and an increase in waste heat emission from industries, 
vehicles, etc. (Zhang and Gu, 2001).

There is a noteworthy positive influence of green space (urban forests, parks, gar-
dens, etc.) and blue space (wetlands, lakes, rivers, and ponds) on heat islands. UGS is  

TABLE 6.2
Ecological Evaluation Index in Bangalore

UTFVI EEI Area(in ha) Percentage

–​0.22–​0 Excellent 36082.8 50.71
0–​0.005 Good 3151.44 4.43
0.005–​0.010 Normal 3066.12 4.31
0.010–​0.015 Bad 2962.35 4.16
0.015–​0.020 Poor 2814.3 3.95
0.020–​0.234 Very Poor 23082.39 32.44

TABLE 6.1
Descriptive Statistics of the Spatial Variables

Min Max Q1 Median Q3 IQR Mean SD

LST 27.23 31.43 28.95 29.43 30.08 1.13 29.49 0.76
NL 22.22 113.53 51.16 63.34 75.72 24.55 63.1 16.37
RD 0.26 1.38 0.39 0.46 0.56 0.17 0.51 0.16
NDBI -​0.08 0.034 -​0.03 -​0.018 -​0.003 0.03 -​0.019 0.024
NDVI 0.08 0.24 0.13 0.15 0.17 0.04 0.15 0.03
DEM 799.50 934.85 899.64 901.35 910.19 20.54 897.41 21.04
Slope 74.90 89.99 89.38 89.60 89.76 0.375 89.36 1.30

Note: � LST –​ Land Surface Temperature, NL –​ Night Light, RD –​ Road Density, NDBI –​ Normalized 
Difference Built-​Up Index, NDVI –​ Normalized Difference Vegetation Index, DEM –​ Digital 
Elevation Model.

 

  

 

 

 



105Variables Influencing the Urban Heat Island Effect in Bangalore

integral for the maintenance of the city’s environmental quality and its sustainability.  
The importance of urban vegetation in improving a city’s environmental quality and  
in several other services to humankind, such as in maintaining water level in aquifers  
through groundwater recharging, biodiversity enhancement, health and recreation,  
climate change mitigation, building stronger communities, etc., is well known for  
its impacts on the surrounding area, and for the social wellbeing of the residents.  
Urban vegetation is also a way to abate the effects of climate change (Liu and Zhang,  
2011). Moreover, the presence of vegetation increases soft, permeable surfaces,  
which in turn allows rainwater penetration and helps in restoring groundwater levels.  
Environmental sustainability and social interactions can be maintained by preserving  
the existing parks and gardens and aspects such as lakes and wetlands. Therefore, the  
integration of both green and blue spaces lessens the effect of thermal heat islands to  
create a healthy environment.

Four groups were established for the entire study area: (i) Very high-​quality green, (ii) 
high-​quality green, (iii) moderate-​quality green, and (iv) low-​quality green. The evalu-
ation of urban green areas was conducted using a grid, with each cell containing 75–​100% 
vegetation classified as very high quality, 50–​75% as high quality, 25–​50% as moderate 
quality, and 0–​25% as low-​quality green (Figure 6.8 and Table 6.3). To understand the 
relationship between urban green space and local temperature in the study area, spatial 
patterns derived from LST and Green Index (GI) maps were utilized.

This analysis provided input for local/​regional green space development planning 
for urban environmental sustainability. From the results of this analysis, we see a 
higher concentration of greenery in the central part of the city, while there should be a 
uniform distribution of green vegetation throughout the city to accommodate the eco-
logical benefits and to avail the ecosystem services by the city’s population (Nowak, 
and Greenfield, 2018). More attention should be given to increasing vegetation near 
the built-​up land to reduce the UHI effect. A major mitigation strategy should be 
adopted at the planning stage by taking into account building materials, sky view, 
better roof designs, and other factors.

In future studies, variations in LST in different seasons will explore the relation-
ship between LST and other driving factors. Vegetation affects the urban surface  

FIGURE 6.8  (a) 100 × 100 m grid overlaid on the study area, (b) Green Index (GI) map of 
Bangalore (April, 2021) and (c) Bangalore Parks more than 2.5 hectares in size shown at a ward level.

 

 

 

 



106 Remote Sensing of Land Cover and Land Use Changes, Volume 2

temperature; therefore, integrating green spaces in urban planning is an essential step  
toward mitigating UHI (Andersson-​Skold et al., 2015; Xiao et al., 2018).

6.5 � CONCLUSION

Built-​up areas showed a high correlation of 0.76 with LST, and therefore, the warming 
effect of the built-​up area was evident from this study. As agricultural lands are being 
converted into built-up areas during urbanization, increasing green space should 
be among the top priorities for mitigating the heat effect. Rajagopal Nagar, Dodda 
Bidarakallu, Peenya Industrial Area, Jakkuru, and Atturu (corresponding to wards 70, 
40, 41, 5, and 3) had the highest average LST with average NDVI of 0.12, 0.15, 0.14, 
0.16, and 0.17, respectively. The same wards also showed poor EEI with increased 
levels of thermal discomfort. In the future, seasonal influence and the effects of other 
driving factors on surface temperature will be explored. To study the relationship of 
clustered impervious patches on local LST, spatial metrics will also be utilized.
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7.1 � INTRODUCTION

The countries in South and Southeast Asia (S/SEA) are among the most rapidly urban-
izing regions in the world, experiencing rapid population growth, economic trans-
formation, and infrastructural expansion (Jones, 2002; Li et al., 2023). The region is 
home to nearly half of the world’s population (www.world​omet​ers.info). As millions 
of people migrate from rural to urban areas in search of better livelihoods and oppor-
tunities, cities across South and Southeast Asia are expanding at an unprecedented 
pace, with significant implications for the surrounding environment (Sugiyarto, 2014; 
Fong and Shibuya, 2020).

In South Asia, countries like India, Pakistan, and Bangladesh have experienced 
substantial urban growth driven by industrialization, the rise of the service economy, 
and population pressures (Kim and Wood, 2020). Mega-​cities such as Delhi, Mumbai, 
Dhaka, and Karachi have become centers of economic activity, fueled by local and 
global demands, drawing millions of people. Similarly, Southeast Asia—​comprising 
nations like Indonesia, Thailand, Vietnam, and the Philippines—​has seen robust urban 
expansion fueled by export-​driven economies, foreign investments, and infrastructure 
development. Cities such as Jakarta, Bangkok, Ho Chi Minh City, and Manila are at 
the forefront of this transformation, becoming regional hubs for trade, technology, 
and tourism (Wahab et al., 2023; Nguyen, 2024).

Urbanization in both South and Southeast Asia presents opportunities and 
challenges (Justice et al., 2015; Arfanuzzaman and Dahiya, 2019; Qayyum et al., 
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2021). On the positive side, urbanization has led to economic growth, improved access 
to education and healthcare, and enhanced connectivity through better infrastructure. 
However, rapid urbanization also presents significant challenges. Many cities face 
issues such as overpopulation, inadequate housing, traffic congestion, pollution, and 
strain on public services. In several South and Southeast Asian countries, informal 
settlements and slums are typical, as urban development often struggles to keep 
pace with population growth (Boanada-​Fuchs et al., 2024). Environmental degrad
ation, including deforestation, air and water pollution, and rising carbon emissions, 
is another primary concern (Zafar et al., 2020). Additionally, the urban-​rural divide 
remains distinct, with rural areas often lagging in development (Kanbur and Zhuang, 
2013; Barbier, 2023). Understanding urbanization trends in S/​SEA is critical for the 
region’s development and management and for global efforts to achieve sustainable 
and inclusive growth in an era of rapid change.

In particular, forests in South and Southeast Asia are not only hotspots of biodiversity 
but also crucial for ecosystem services, such as carbon sequestration, water regulation, 
and cultural significance (Prasad et al., 2001, 2008; Vadrevu et al., 2018). Countries 
like India and Sri Lanka in South Asia and Indonesia, Malaysia, Myanmar, and 
Thailand in Southeast Asia boast extensive forest cover that supports local livelihoods 
and contributes to global ecological balance (Sodhi et al., 2010; Ashton et al., 2014). 
However, rapid settlement growth and infrastructure development—​including road 
construction, mining, and urban sprawl—​have led to large-​scale deforestation and 
fragmentation of these critical habitats (Ma, 2023). The expansion of settlements into 
forested areas often stems from economic imperatives, such as agricultural intensifi-
cation, logging, or industrial development, all fueled by increasing population density 
and regional economic policies. While such growth can generate economic opportun-
ities, it also brings significant challenges (De Jong et al., 2017), including biodiversity 
loss, changes in local climate patterns, displacement of indigenous communities, and 
heightened vulnerability to natural disasters like floods and landslides. These challenges 
are particularly acute in South and Southeast Asia, where many forested regions overlap 
with high poverty areas, making sustainable development and environmental preserva-
tion critical and complex (Shivakoti et al., 2017). The interplay between urbanization 
and forest loss has thus become a pressing concern, highlighting the need for practical 
monitoring tools to understand the scale and drivers of these changes.

This study addresses urban sprawl into natural areas, particularly forests. Although 
urbanization contributes significantly to regional development, it is no longer confined 
to traditional metropolitan centers or peri-​urban areas (Vu et al., 2023). Human 
settlements and economic activities are increasingly encroaching upon forested 
regions, driven by the demand for agricultural land, natural resources, and space for 
industrial and residential development. This trend is reshaping the physical and eco-
logical landscapes of the region, with profound implications for biodiversity, climate 
resilience, and the well-​being of local communities.

Understanding and quantifying the dynamics of urbanization and settlement 
growth in forested regions is essential for balancing economic and environmental 
objectives. Nighttime satellite datasets have emerged as a valuable resource for 
tracking these trends in an area where on-​the-​ground monitoring is often hindered by 
logistical and financial constraints (McAvoy and Vadrevu, 2024). By analyzing night 
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light data, we explore the extent of human encroachment into forested areas across 
South and Southeast Asia. The results highlight hotspots of forest degradation driven 
by development, as captured by satellite-​derived nighttime lights from 2017 to 2023.

7.2 � STUDY AREA

The study’s area of interest includes a total of 17 countries in S/​SEA (Figure 7.1). The 
study focused on the forested areas covering these countries (Figure 7.2). Afghanistan 
in South Asia and Singapore and Timor-​Leste in Southeast Asia contain only a very 
small amount of forest in terms of absolute area and the percentage of the country 
covered by it. Generally, South Asian countries were less proportionally forested than 
Southeast Asian ones, though Bhutan (72% forest) is an exception. Indonesia, the 
second-​largest country in the region, contains the largest forest.

7.3 � DATASETS

We used two different datasets as input, both accessed through the Google Earth  
Engine Data Catalog. The first, “MCD12Q1.061 MODIS Land Cover Type Yearly  
Global 500m,” consists of one image per year, where the value of each 500-​meter pixel  
represents the predominant land cover type (https://​dev​elop​ers.goo​gle.com/​earth-​eng​ 
ine/​datas​ets/​cata​log/​MODIS_​061_​MCD1​2Q1). Each image has multiple bands, each  

FIGURE 7.1  Study area location map depicting South/​Southeast Asian (S/​SEA) countries.
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corresponding to a different classification scheme. We used the “LC_​Type1” band  
based on the Annual International Geosphere-​Biosphere Programme (IGBP) classifi-
cation for our analysis. The 2017 image was selected as the starting point, as it is the  
earliest year with reliable data in the nighttime lights dataset. The second dataset used  
was “VIIRS Stray Light Corrected Nighttime Day/​Night Band Composites Version  
1,” a collection of monthly composited images depicting the brightness of nighttime  
lights (NTL) worldwide at a resolution of 463.83 meters (https://​dev​elop​ers.goo​gle.
com/​earth-​eng​ine/​datas​ets/​cata​log/​NOAA_​VI​IRS_​DNB_​MONT​HLY_​V1_​V​CMSL​ 
CFG). The earliest image is from 2015; however, the first two years of data suffer  
from airglow overcorrection, which produces inaccurately low (and sometimes  
impossibly negative) values. This issue was corrected in 2017, so only data from 2017  
to 2023—​the most recent complete year in the dataset was used.

7.4 � METHODOLOGY

We used the open-​source Google Earth Engine (GEE) for data processing (Figure 7.3).  
First, the 2017 forest image was reprojected to a 1-​km resolution, then processed  
using the ee.Image.lte(5) method reclassified all pixels classified as forest (land cover  

FIGURE 7.2  Forested areas of South and Southeast Asia as retrieved from the MODIS 
land cover product (500 m). The following classes were merged and denoted as forest in the 
current study: (1) Evergreen Needleleaf forest; (2). Evergreen Broadleaf forest; (3) Deciduous 
Needleleaf forest; (4) Deciduous Broadleaf forest; (5) Mixed forest.
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types 1–​5, including any terrain with more than 60% tree cover and a canopy height  
greater than 2 meters) to 1 and all other pixels to 0. This image was then exported  
from GEE to be used later in ArcGIS. Simultaneously, the forest image was reduced  
over the borders of the 17 countries using ee.reducer.sum(). The result was a table  
listing the number of pixels classified as forests in each country, which was then  
exported. Next, each monthly NTL image was reprojected to a 1 km resolution and  
masked using the aforementioned land cover image so that all pixels outside the  
forest areas would be ignored. The 12 images for each year were then reduced using  
ee.ImageCollection.mean(), creating seven annual average images, in which each  
pixel’s value represented its mean NTL brightness for that year. These seven annual  
images were then exported individually. Additionally, they were combined into seven  
bands of a single image, which was subsequently reduced using ee.Reducer.sum()  
across the 17 countries of South and Southeast Asia to create a table showing the total  
brightness of each country’s forested areas for each year.

The land cover image and the seven annual average NTL images were further 
analyzed to assess forest cover changes and visualize the results. First, the 2017 
image was subtracted from the 2023 image to produce a different image, where 
each pixel’s value represented its net change in brightness over the 7 years. Next, 
the land cover image was converted into a collection of two multipart polygons: one 
encompassing all forested areas and the other encompassing everything else. The 
latter was promptly deleted, while the former was used to clip the annual average 
images to include only forest areas.

FIGURE 7.3  Flowchart of data processing and analysis methodology.
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7.5 � RESULTS

The results obtained from merging MODIS land cover classes 1–​5 for different coun-
tries are shown in Figure 7.4. Among the countries analyzed, Indonesia, Myanmar, 
India, and Malaysia had the highest forest cover.

FIGURE 7.4  Total area in forest by merging MODIS land cover classes (1–​5). Indonesia, 
Myanmar, India, and Malaysia had the highest forest cover.

TABLE 7.1
Brightness of a Specific Pixel in the Dehing Patkai 
National Park (Marked with an X in Figure 7.8) Over 
the Years. Notice an Increase in Brightness from 2018 to 
2021, Followed by a Decline

Year Brightness of Marked Pixel (nw/​sr/​cm2)

2017 2.227704
2018 1.364792
2019 1.4825
2020 1.535
2021 1.762292
2022 1.436667
2023 1.383958
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A country’s change in the total NTL brightness of forested areas suggests urban  
sprawl or development driven by infrastructure activities. Temporal trends in nighttime  
lights brightness for different countries are presented in Figure 7.5. Compared to  
South Asian countries, we observed relatively more significant changes in forested  
areas in Southeast Asian countries as captured by the NTL. Furthermore, among  
the countries analyzed, the most significant change in forest areas, as indicated by  
NTL brightness, was noted in Indonesia, followed by India, Myanmar, Malaysia,  
and others (Figure 7.6). The change in the total nighttime lights brightness of all  
forested areas in each country from 2017 to 2023, in increasing order, is given in  
Figure 7.7, with Laos being the highest, followed by the Philippines, Thailand, Nepal,  
Bangladesh, and others. As always, the almost-​completely urbanized Singapore is an  
outlier; it is the only country where the total brightness of its forested areas (such as  
the Central Catchment Nature Reserve depicted in Figure 7.3) decreased over the 7-​ 
year study period.

Initially, the change map was difficult to interpret. Almost every pixel in a forested 
area showed an increase in brightness from 2017 to 2023, but in nearly all of these 
cases, the increase was minimal, less than 1 nW/​sr/​cm². To highlight the areas where 
notable changes had occurred, the layer’s symbology was adjusted so that any pixel 
whose 2023 brightness was within 0.5 nW/​sr/​cm² of its 2017 brightness appeared as 
a dark green “background” color. Pixels that increased in brightness by more than 
0.5 were displayed in red, while those that decreased by more than that amount were 
shown in yellow.

FIGURE 7.5  Change in total nighttime lights brightness of all forested areas in each country, 
2017–​2023.
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FIGURE 7.6  Change in total nighttime lights brightness of all forested areas in each country 
from 2017–​2023 with increasing order.

FIGURE 7.7  Change in net nightlight (NTL) brightness in forested areas of South/​
Southeast Asia.
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In many places, especially in Indonesia, clusters of dozens of red pixels appeared  
far from any large city or other apparent cause of forest development (Figure 7.8a).  
Compared to satellite images on Google Earth, these clusters were identifiable as  
locations of surface mines, where natural forests had been replaced by exposed earth,  
bright lights, and metal mining equipment. As expected, the development of forested  
land typically occurs along the edges of expanding cities in forested countries, such  

FIGURE 7.8  (a)–​(d) Areas of particular interest on the change map (Figure 7.8) compared 
with satellite imagery of the same locations, taken from the ArcGIS imagery basemap. (a) Asmin 
Bara Bronang open-​pit coal mine in Central Kalimantan, Indonesia; (b) Fragmented forests in 
Laos experiencing scattered development across the region; (c) The Central Catchment Nature 
Reserve in Singapore; (d) Dehing Patkai National Park in Assam, India.
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as Kuala Lumpur in Malaysia. However, this effect is not very apparent on the map,  
as most cities’ immediate surroundings consist of cropland or other non-​forest land  
cover types.

In the mountainous inland regions of Southeast Asia (Laos, eastern Myanmar, 
and northern Thailand), the forests are highly fragmented, with small clusters of 
increasing brightness scattered throughout. These spots can even be found in Laos’s 
Phou Khao Khouay National Park (visible in the bottom right corner of Figure 7.8b), 
despite its protected status. Sanjay Gandhi National Park, located on a mountain north 
of Mumbai, has suffered similarly. Singapore’s Central Catchment Nature Reserve 
(Figure 7.8c) appears to have fared much better, but it is difficult to say for sure; 
the brightness of Singapore as a whole has decreased over time, possibly due to the 
large-​scale replacement of incandescent lights with LEDs, which are less visible to 
the VIIRS. If this is the case, the decrease in brightness within the Central Catchment 
Nature Reserve may be due to the dimming of lights at places like the Singapore 
Zoo, Night Safari, River Safari, and other public installations. This inference needs 
validation.

We noted one example of definite forest improvement on this map: Dehing Patkai 
National Park in India (Figure 7.8d). The NTL brightness of the park has been 
decreasing since 2021, following a well-​documented conservation effort. The Dehing 
Patkai Landscape comprises over 500 km² of contiguous rainforest, the largest such 
forest in Assam and the Brahmaputra Valley. Since at least the 1990s, it has been 
threatened by encroachment from the coal and timber industries, strongly opposed 
by environmental groups such as Nature’s Beckon (“Dehing Patkai National Park,” 
2024). This opposition achieved some early conservation victories. In 2003, 937 km² 
of land, including Dehing Patkai and several nearby forests, was designated as an 
elephant reserve by Project Elephant (Lone et al., 2023). The following year, 111 
km² of the forest was designated a wildlife sanctuary due to its high biodiversity 
(Mohammed, 2020). However, coal mining continued within the elephant reserve 
despite the expiration of the mining company’s lease in 2003. The situation escalated 
in 2020 when a new mining permit was issued within the wildlife sanctuary. Nature’s 
Beckon organized large-​scale protest campaigns both online and in person, and 
their efforts were successful. In June 2021, more than 200 km² of Dehing Patkai 
was officially designated as a national park, with all the legal protections that entails 
(Chakraborty, 2021). As mining ceased and the threatened forest recovered, the NTL 
brightness of the area would be expected to decrease, which is precisely what was 
observed.

7.6 � DISCUSSION

The analysis of forest cover changes in South and Southeast Asia, based on MODIS 
land cover classifications and nighttime lights (NTL) data, offers valuable insights 
into the dynamic landscape of forested areas across the region. Our findings highlight 
varying patterns of forest change across different countries, with notable differences 
between South Asia and Southeast Asia and within specific countries, including 
Indonesia, India, and Malaysia.
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From the analysis, it is evident that forested areas in Southeast Asia, particularly in 
Indonesia, Myanmar, and Malaysia, experienced the most significant changes in NTL 
brightness, suggesting urban sprawl and development due to infrastructure activities. 
For instance, the clusters of red pixels observed in Indonesia were identifiable as 
surface mines, where natural forests had been replaced by exposed earth, mining 
equipment, and bright lights. This is consistent with the well-​documented trends of 
deforestation driven by resource extraction, particularly mining and logging, which 
have been prevalent in Southeast Asia.

In contrast, South Asian countries like India and Bangladesh showed relatively 
smaller changes in forest NTL brightness, though still notable. The overall pattern 
indicates that Southeast Asian countries may be undergoing more rapid urbanization 
and development compared to their South Asian counterparts. The greater variability 
in forested area change within Southeast Asia could be attributed to the complex inter-
play of rapid industrialization, population growth, and large-​scale land use changes 
driven by agriculture and infrastructure development.

Interestingly, our analysis also revealed areas of forest improvement, such as in 
Dehing Patkai National Park in India. The decreasing NTL brightness in this region 
since 2021 might be the result of successful conservation efforts following significant 
protests against illegal mining activities. Similarly, the Central Catchment Nature 
Reserve in Singapore showed little to no increase in NTL brightness, suggesting that 
the area has remained relatively stable. However, this stability is potentially due to 
changes in lighting infrastructure rather than a true absence of development. The 
adoption of energy-​efficient LED lights, which are less detectable by VIIRS sensors, 
may account for the observed decrease in brightness across Singapore, including 
within protected forested areas. Thus, the impact of lighting technologies on nighttime 
brightness should be considered when interpreting NTL data, especially in urbanized 
regions.

The use of NTL data for monitoring forest cover change provides a unique per-
spective on the ongoing transformation of landscapes in regions where traditional 
monitoring methods may be challenging or resource-​intensive (Elvidge et al., 2022). 
NTL brightness changes offer a proxy for identifying urban expansion, deforestation, 
and the development of infrastructure. However, the method also has limitations. The 
subtle brightness changes within forested areas, particularly those under 0.5 nW/​sr/​
cm², suggest that much of the development occurring in these regions is minor or 
incremental, making it difficult to detect meaningful changes without appropriate 
thresholds. Furthermore, the use of NTL data must be complemented with other 
datasets, such as high-​resolution satellite imagery, to distinguish between different 
types of land use and to verify the causes of brightness changes. While surface mining 
activities can be clearly identified through NTL data, other forms of deforestation or 
degradation, such as logging or agricultural expansion, may not produce sufficiently 
high brightness changes to be readily detectable using this method.

7.7 � CONCLUSION

This study highlights the complexity of forest dynamics in South and Southeast 
Asia, revealing both negative and positive trends in forest cover and nighttime lights 
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brightness. While the increasing NTL brightness in many countries suggests widespread 
urbanization and deforestation, examples like Dehing Patkai demonstrate that conserva-
tion efforts can result in tangible improvements. The use of NTL data offers an effective 
tool for monitoring large-​scale forest changes, though it should be integrated with other 
methods to improve accuracy and provide a more comprehensive understanding of forest 
dynamics. As S/​SEA continues to face rapid urbanization and development, effective 
forest management and conservation strategies will be critical in balancing the region’s 
economic growth with the preservation of its vital natural resources.
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8.1 � INTRODUCTION

Rapid and irreversible urban growth coupled with climate change has become a prom-
inent worldwide concern in recent decades. This trend is particularly pronounced in   
India, the most populous country, and poses substantial challenges. Urbanization 
in India is characterized by the expansion of impermeable surfaces and an increase 
in population density (Bharath et al., 2018). This demographic shift contributes to 
the vulnerability resulting from the depletion of natural resources in urban and peri-​
urban areas (Ramachandra et al., 2012, 2015). According to research published by 
the UNDRR, India’s urban population has almost doubled since 1950, reaching 33% 
in 2015, and it is anticipated to increase further to 42% by the year 2035. This phe-
nomenon of urban growth, combined with climate change, has been one of the factors 
causing heat stress. Rising temperatures, increasing faster than the global average, 
contribute to more frequent and severe heat waves, creating a substantial public health 
risk. These conditions have a significant impact by contributing to an increase in heat-​
related mortality. There was a considerable increase in heat-​related deaths, with 3014 
deaths recorded between 2001 and 2005 (Kumar & Singh, 2021) to 5157 from 2011 
to 2015 (Singh et al., 2023). These figures likely understate the actual toll, as many 
heat-​related fatalities go unreported. Various factors such as climate change, urban-
ization, and population change all contribute to the incidence of heat stress and its 
health consequences in India.

8.1.1 � Land Cover and Local Climate Zone Classification

Urbanization changes city landscapes, land cover, and the dynamics of the city envir-
onment. Land use (LU) changes due to urbanization present innumerable challenges 
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for urban management. These changes must facilitate sustainable urban design and 
enhance the overall quality of urban life (Pradhesta et al., 2019). Remote sensing 
technologies can assist in tracking these changes by providing precise and continuous 
data (Justice et al., 2015). These technologies allow us to observe the effects of urban
ization on land cover patterns (Chandan et al., 2019). Among these advances, the LCZ 
classification system provides a more advanced approach to examining urban-​related 
climatic studies on a local scale (Kotharkar & Bagade, 2018). Initially, Stewart & 
Oke (2012) established a climate-​related classification of homogenous urban struc
ture, thermal behavior, and land cover. It is found that urban areas are distinguished 
by a range of land cover types and building forms, which can substantially impact 
energy balance and microclimate (Xu et al., 2017). Based on this understanding, 
the LCZ mapping is classified into 10 built-​type areas. These range from Class 1 to 
Class 10, which represent built-​up areas, namely compact high-​rise, compact mid-​
rise, compact low-​rise, open high-​rise, open mid-​rise, open low-​rise, lightweight low-​
rise, large low-​rise, sparsely built, and light industry, respectively. Furthermore, LCZ 
mapping also includes seven land cover type areas from Class A to Class G, which 
consist of dense trees, scattered trees, bush/​scrub, low-​plant, bare rock/​paved, bare 
soil/​sand, and water, respectively (Stewart & Oke, 2012). This classification system 
offers a comprehensive framework for analyzing the thermal behavior of urban areas 
by integrating buildings and natural land cover types. In Bechtel et al. (2015), this 
system was presented by a supervised classification method using remote sensing 
satellite data at level 0 with satisfactory accuracy, successfully implemented through 
the World Urban Database and Access Portal Tools (WUDAPT). Researchers world-
wide have used the LCZ classification approach for urban mapping, incorporating 
local expert knowledge. Xu et al. (2017) used Landsat and ASTER data within the 
WUDAPT framework, obtaining kappa values of 0.65 to 0.85. To map land cover 
zones, Pradhesta et al. (2019) used a Random Forest classifier to examine land sur
face temperature (LST) differences. Similarly, Saxena and Agrawal (2023) utilized 
the WUDAPT classification to investigate the link between LST and LCZs in four 
Indian cities. These investigations highlight the importance of satellite-​based LCZ 
classification as a practical approach for investigating urban geometry and its climate 
interactions at the city scale.

8.1.2 �T hermal Comfort and Urban Thermal Climate Index (UTCI)

Rapid urbanization has resulted in more than 50% of the world’s population cur-
rently residing in urban areas, leading to substantial transformations in their daily 
lives (Wu et al., 2022). Previous studies suggest that the impact of global warming 
(Grimm et al., 2008), rapid urban expansion, and the urban heat island phenomena 
(Chen & Ng, 2012) is causing a decline in urban climates, influencing the percep
tion of heat, and increasing the susceptibility to heat-​related health issues. Thus, 
it is vital to comprehend the thermal comfort state within the city to assess indi-
viduals’ perspectives of the urban thermal environment (Wu et al., 2022). Thermal 
comfort is a subjective experience impacted by air temperature, wind speed, radiant 
heat, and humidity. It is a condition of mind in which people experience content-
ment with their thermal environment. When the human body is in an optimal thermal 
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environment, it develops a balance between heat production and heat loss. However, 
when the environment is too hot or too cold, the body must work to maintain its 
internal temperature. In a hot environment, the body increases sweat production to 
cool down, while the body shivers and constricts blood vessels to conserve heat in 
a cold environment (Fiala et al., 2012). It is possible to attain and assess the urban 
thermal comfort of a given population through a calibrated thermal comfort index 
assessment, which should be selected according to the local climate (Potcher et al., 
2018; Silva & Hirashima, 2021). Recent studies include several thermal indices, and 
some initiatives provide for adjusting their ranges to account for regional populations. 
The assessment scale of these indices can be calibrated to forecast the thermal com-
fort category and identify realistic periods of thermal perception (Hirashima et al., 
2018; Silva & Hirashima, 2021).

For assessing the thermal environment in urban areas, four important indices are 
used: Physicological Equivalent Temperature (PET), Perceived Temperature (PT), 
UTCI, and Standard Effective Temperature (SET). Among these indices, the UTCI 
is especially useful for urban areas and incorporates a novel approach that addresses 
urbanization factors (Staiger et al., 2019; Silva & Hirashima, 2021). The UTCI is a 
physiological index that quantifies how air temperature, humidity, wind speed, and 
mean radiant temperature on human thermal comfort. It is a more comprehensive 
measure than traditional temperature-​based indices such as the Heat Index or the 
Wet Bulb Globe Temperature (WBGT), as it considers the effects of multiple envir-
onmental factors (Bröde et al., 2012). Previous research, including Kumar & Sharma 
(2020) and Setiawati et al. (2021), highlights its relevance in studying urban thermal 
dynamics and land use change and shows that urbanization increases UTCI hazard 
levels.

Due to high population densities that increase the risk of heat stress, cities are 
significantly influenced by the urban heat island effect (UHI) and frequently record 
higher temperatures than rural locations. According to Aithal et al. (2019) urban 
variables that contribute to higher UHI and its effects on local climatic regimes, for 
instance, can raise temperatures by as much as 12°C (20°F), which has a detrimental 
impact on human health by obstructing natural cooling and increasing the risk of 
heatstroke. Additionally, the UTCI, which is critical to evaluating urban heat stress, 
indicates that urban design components such as high-​rise structures could worsen 
this effect by creating a ‘canyon effect’ that absorbs more heat, potentially raising 
temperatures by an extra 2°C (3.6°F) (Singh et al., 2023). Hence, this study aims 
to assess urban heat stress and its relation to urban geometry in Bangalore, a trop-
ical city, and address the urgent need for spatial heat stress mapping. The objectives 
include assessing the urban spatiotemporal change through local climate zones, pre-
paring UTCI maps, and analyzing the correlation between LCZ classifications and 
UTCI levels to understand urban heat dynamics better.

8.2 � STUDY AREA

Bangalore, commonly referred to as Bengaluru, is the state of Karnataka. It has a  
tropical savanna climate with distinct wet and dry seasons and is also located on  
the Deccan Plateau at 921 meters (3,020 feet) above sea level. This study area,  
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which includes the Greater Bengaluru region, is delineated by the Bruhat Bengaluru  
Mahanagara Palika (BBMP) borders, chosen due to its notable infrastructural  
improvements and fast urbanization in recent decades. In this, the hottest month is  
typically April, with an average high temperature of 34.1°C (93.4°F), while January is  
the coolest month, with an average low temperature of 15.1°C (59.2°F). The highest  
temperature ever recorded in Bengaluru is 39.2°C (103°F), recorded on April 24,  
2016, and the lowest ever recorded is 7.8°C (46°F) in January 1884, as per the Indian  
Metrological Department (IMD). Geographically, Bengaluru spans from 12°39’00“N  
to 13°13’00”N latitude and 77°22’00”E to 77°52’00”E longitude (Figure 8.1). The  
total area of the Greater Bangalore region, as per the BBMP boundary, is around  
741 km2. Known as the “Silicon Valley of India”, it is one of the fastest-​growing  
cities, with a population of over 12.3 million in 2021. Urbanization, migration, and  
economic expansion are the main drivers of the region’s rapid expansion (Bharath  
et al., 2018). However, the city also faces challenges due to unplanned growth. Its  
primary challenge is its highly populated urban layout, which results from spontan-
eous and unforeseen urbanization and mixes limited natural areas with constructed  
surroundings. The city lacks three-​dimensional built data and high-​resolution tempera-
ture data despite many studies on the effects of UHI.

8.3 � DATA AND METHODS

8.3.1 �D ata

The meteorological data such as air temperature ( T
a

), relative humidity ( R
h
), and 

wind speed ( W
s
) are availed from the ground stations located in the area of interest 

managed by the Indian Meteorological Department (IMD) and the Karnataka State 
Pollution Control Board (KSPCB). To synchronize with the time of Landsat passage 
over the area of interest, the average hourly meteorological data between 9 am and 12 
pm is calculated. This averaged dataset is subsequently utilized in our study.

FIGURE 8.1  Study area map of the Greater Bangalore region.

 

 

 

 



125Urbanization’s Effects on Heat Dynamics in Bangaluru City

8.3.2 � Satellite Data

The study primarily utilizes temporal satellite data from Landsat 5, Landsat 8, and 
Landsat 9 from the USGS Earth Explorer public repository. For April and May of 2009 
and 2011, all Thematic Mapper (TM) bands from Landsat 5 were obtained. Data were 
collected for Landsat 8 in April 2021 and 2022 using the Thermal Infrared Sensor 
(TIRS) bands and Operational Land Imager (OLI) bands (except Panchromatic and 
Cirrus). For April 2023, data were acquired from repositories of Landsat 9. This data 
was resampled to 100 m for analysis, with a spatial resolution of 30 m. Furthermore, 
Google Earth was utilized to train samples to classify local climate zones (LCZs).

8.3.3 � Approach

8.3.3.1 � Local Climate Zone Classification
The LCZ classification for 2011 and 2023 was conducted using high-​resolution his-
torical imagery from Google Earth and Landsat data by following the established 
WUDAPT approach from 2009 and 2023. The approach began with the creation of 
a composite of chosen Landsat data. Training samples for various LCZ classes were 
manually created with Google Earth images from both years. Using the supervised 
classification technique, these samples and composite band data were then utilized to 
construct the LCZ maps. This study includes all standard LCZ classes, as Bangalore 
encompasses a diverse land use and cover range. The class distribution of LCZs 
within the city is depicted in Figure 8.2. Throughout the study period, training 
samples for each of the 17 LCZ classes were constructed with the utmost by manu-
ally identifying them with experts. The Random Forest algorithm, renowned for its 
high accuracy (Pradhest et al., 2019), was selected for the classification. The created 
training samples acted as input, and the algorithm is configured with 128 trees and a 
depth of 30 trees, thereby facilitating the categorization and mapping of local climate 
zones within the study area. The images were resampled to a resolution of 100 m as 
specified by WUDAPT. Classification accuracy has been validated using the confu-
sion matrix method by creating random points in the area of interest and matching 
them with the ground data.

8.3.3.2 � Universal Thermal Climate Index
The Universal Thermal Climate Index is the function of four climatic variables: air 
temperature ( T

a
), mean radiant temperature ( T

mrt
), relative humidity ( R

h
), and wind 

speed ( W
S

). The equation of UTCI defined by (eq. 8.1) (Błazejczyk et al., 2013) is 
as follows:

	 UTCI offset= + ( )T T T R W
a a mrt h S

, , , 	 (8.1)

UTCI can be estimated using ground-​based data at a local site scale or a larger  
regional scale. However, this is ineffective in studying the city scale variations due  
to complex structures and the requirement of high-​resolution data. Hence a method  
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based on remotely sensed data can be of greater help for such studies (Wang et al.,  
2020). Variables such as air temperature, mean radiant temperature, and relative  
humidity can be derived from the satellite data at the required spatial resolution,  
whereas wind speed shall be derived from ground-​based measurements. For this  
study, the average data of all the selected dates from 2009 to 2011 are considered  
data for 2009, and the average data of all the selected dates from 2021 to 2023 are  
considered data for 2023. The entire study is performed using the raster data of 100  
m resolution, and a resampling technique is used wherever required to match the  
resolution with 100 m.

8.3.3.2.1 � Air Temperature (Ta) and Relative Humidity (Rh)
Air temperature and relative humidity are the two most important variables in esti-
mating the UTCI index. Ground observations rather than satellite data can accur-
ately measure these climatic variables. However, as the requirement is spatial data 
with good resolution, here we have used the average hourly data from ground 
stations (refer to Section 8.3.1) and established a function of T

a
 (eq. 8.2) and R

h
 

(eq. 8.3) with satellite-​based variables (refer to Section 8.3.2) such as LST, Surface 
Albedo, Digital Elevation Model (DEM), Normalized Difference Vegetation Index 
(NDVI), and other variables using multiple linear regression (MLR) models. The 
following is the function of T

a
 and R

h
 with the selected independent variables and 

constants.

	

T Albedo a DEM a NDVI a LST a
DDL a a

a
= + + +

+ + +
* * * *
* * *

1 2 3 4

5 1 6 2
       X X aa C

7 1
+

	
(8.2)

FIGURE 8.2  Sample LCZ classes in Bangalore.
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R Albedo b DEM b NDVI b LST b
DDL b b

h
= + + +

+ + +
* * * *
* * *

1 2 3 4

5 1 6 2
       X X bb C

7 2
+ #

	
(8.3)

Here, a a a a a a a b b b b b b b
1 2 3 4 5 6 7 1 2 3 4 5 6 7
, , , , , , , , , , , , ,  are the coefficients and C C

1 2
,  are 

the intercepts.

	• Surface Albedo (Albedo) is spatially calculated following the method proposed 
by (Ramachandra et al., 2021) using the Landsat band data of selected dates.

	• A Digital Elevation Model (DEM) for Bangalore city is acquired from the 
ASTER satellite and clipped to the required area of interest.

	• Normalized Difference Vegetation Index (NDVI) is calculated using the 
(eq. 8.4).

	 NDVI
NIR Red

NIR Red
=

−
+

	 (8.4)

LST is calculated using the thermal band 6 of Landsat 5 and 10 of Landsat 9. The 
procedure is given by Avdan & Jovanovska (2016) is followed to retrieve LST from 
Landsat 8 and 9 whereas the LST was retrieved from Landsat 5 following the method 
proposed by Govind & Ramesh (2020).

	• Duration Day Length (DDL) is an independent variable calculated based on 
(eq. 8.5).

	 DDL *arccos tan *= 



 ( )





24

180

23 45

180À
ϕ π π δtan

.
sin 	 (8.5)

where ϕ  is local latitude and δ  is the declination angle which is equal to 

2 284

365

π +( )DY
; DY =​ Day of the Year (Al-​Anbari et al., 2019).

	• X
1
 and X

2
 are the variables Liu et al b., 2021( )  based on the day of the year 

and LST where X
1

2
200= −( )DY , X X

2 1
= *LST  (Liu et al., 2021).

The coefficients are calculated by the MLR model and the equations of T
a

, R
h
 

achieved a root mean square error (RMSE) of 0.52 (°C) and 3.76 (%), respectively. 
Then the raster images of spatially distributed T

a
 and R

h
 at 100 m are generated 

using the raster calculator function in ArcGIS Pro.

8.3.3.2.2 � Mean Radiant Temperature (Tmrt)
The mean radiant temperature is the quantification of the exchange of radiant heat 
between a human and their surrounding environment based on long and short-​wave 
radiation. The human thermal comfort largely depends on T

mrt
. This can be quantified 
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using satellite data based on the Man Environment Heat Exchange (MENEX) model, 
using the following (eq. 8.6) (Wang et al., 2020).

	 T
S L

mrt
w w

p

 C
*

( ) =
+







 −

ε σ

0 25

273 15

.

. 	 (8.6)

where S
w

 is shortwave radiation, L
w

 is long-​wave radiation, ε
p

 is human body 

emissivity, which is taken as 0.97 and σ  is Stefan Boltzmann constant.
The shortwave radiation S

w
 is estimated using the SolAlt model proposed by 

Blazejczyk (2001).

	 S h a IRC
w c

= − + ( )( ) −( )1 4 100 428 73 981 1. . .* *ln * * 	 (8.7)

where h  is sun altitude in degrees (taken from the metadata of Landsat bands), a
c

 
is skin albedo (set as 0.5 for Indian regions), IRC  is the reduction coefficient of heat 
transfer through clothing. The (eq. 8.7) is used in the case of h  > 4° and cloud cover 
less than 20%.

The longwave radiation L
w

 is based on two factors, l
a

, which is atmospheric 

emitted radiation and l
g

 is the ground emitted radiation and it can be written as 

the following eq. 8.8 (Wang et al., 2020).

	 L l l
w p a g

= +( )0 5. * *ε 	 (8.8)

where l T
a sky a

= ε σ* * 4  and l LST
g g

= ε σ* * 4 ; here ε
g

 is surface emissivity 

calculated based on the proportion of vegetation and ε
sky

 is the emissivity of the sky, 

calculated as follows

ε ε
sky a

vp= −( )−* . . * . *0 82 0 25 10 0 094  where ε
a

 is atmosphere emissivity set at 0.97 

and vp  is vapour pressure, which is estimated using R
h
 and LST as per Chakraborty 

et al. (2015).

8.3.3.2.3 � Wind Speed (Ws)
As the wind speed is impossible to estimate from the remotely sensed data, the spatial 
wind speed at 100 m resolution is estimated using the Kriging interpolation method 
with the available ground station data.

8.3.3.2.4 � Calculation of Spatial UTCI
Once the above-​mentioned variables are derived in the form of 100 m resolution 
raster files, the UTCI look-​up table method (Bröde et al., 2012) is used with the 
help of the pythermal package in python (Tartarini & Schiavon, 2020) to calculate 
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the spatial UTCI. The UTCI raster images are prepared for both the 2009–​2011 and 
2021–​2023 periods. These are divided into five categories of UTCI classes as per 
stress levels (Blazejczyk et al., 2014).

8.4 � RESULTS AND DISCUSSION

8.4.1 � Local Climate Zone Classification

LCZ maps for the years 2011 and 2023 were produced for the area within the BBMP 
boundaries, as shown in Figure 8.3. In the maps, red tones depict the compactly built 
classes ranging from high-​rise to low-​rise buildings, and orange tones represent the 
open-​built classes from high-​rise to low-​rise. Vegetation is marked in green shades, 
and water bodies are shown in blue. Figure 8.4 presents the area and changes in area 
for each LCZ class across both years.

In 2011, the area of LCZ 9, sparsely built typology, was 106 sqkm, and it was the  
biggest LCZ in terms of area, followed by LCZ 5, open mid-​rise, with 76.5 sqkm area  
and LCZ 6, open low-​rise, with 75 sqkm. These three LCZs contribute 37.5% of the  
total area. These are the classes that can be found along the outer periphery of the city  
while the city is expanding. The city’s inner core mainly consists of compact build  
typologies that are the LCZ classes 1, 2, 3, and LCZ A, dense trees, which are part of  
the natural classes. The area of LCZ G, water bodies, is 14.15 sqkm and is distributed  
over the entire region, mainly consisting of the lakes that are present. Also, LCZ F,  
bare soil, covers 37.6 sqkm and is located in the region’s peripheral part. Figure 8.4  
for 2023 shows that the largest LCZ is the compact mid-​rise, covering an area of 120  
km2. The area classified as sparsely built has decreased by nearly 50% from 2011,  
down to 57.4 km2, primarily due to increased settlements on the city outskirts. There  
has been a significant expansion in the compact high-​rise category, increasing from  
9.7 km2 in 2011 to 31.6 km2 in 2023, a growth of over 200%. Additionally, there is a  
50% reduction in heavy industry areas as industrial facilities have moved beyond city  
limits. A 150% increase in paved areas reflects more roads and impervious surfaces.

FIGURE 8.3  LCZ map of Bangalore (a) 2011, (b) 2023.

 

 

 

 

 



130 Remote Sensing of Land Cover and Land Use Changes, Volume 2

The sectoral ring approach is used to analyze LCZ growth over the period.  
From the geometric center of the city, the concentric circles are marked with a 4  
km incremental radius, and then these circles are divided into four sectors in four  
directions: North, East, South, and West. This gives a total of 20 sectors which are  
named N1, N2, N3, N4, N5, E1, E2, and so on, as shown in Figure 8.5. This process  
has been done on both the LCZ maps from 2011 and 2023. Then, the statistics of LCZ  
classes in each sector are calculated for both years. The percentage share of each LCZ  
among the different sectors in both 2011 and 2023 is presented in Table 8.1.

FIGURE 8.5  LCZ maps with sectoral ring divisions.

FIGURE 8.4  Graph showing change in area of LCZ classes.
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The sectoral ring analysis shows that in sector W2, the compact mid-​rise class 
accounts for up to 50% of its total area in 2023, up from 38% in 2011. Similarly, 
sector S2 has the majority of its area in the form of the compact mid-​rise class with 
41%, previously at 26% in 2011. The increase in compact mid-​rise can be attributed 
to the conversion of open mid-​rise to the compact class over the decade (refer to 
Table 8.1). The inner core of the city, ring 1 (N1, E1, S1, W1), does not see any sig-
nificant change in the LCZ classes apart from a slight increase in the high-​rise devel-
opment from open and natural classes. In ring 3, there has been a notable increase in 
compactly built classes and a decrease in open-​built classes with compact mid-​rise 
predominating, illustrating the urban sprawl. Similarly, ring 4 experienced a rise in 
built classes over the decade, transitioning from sparsely built to more open and com-
pact classes. Specifically, the sparsely built class reduced from 16% to 3% in ring 3 
and 24% to 15% in ring 4. Across all rings, there was a decline in vegetation classes, 
with the inner rings showing more reduction than the peripheral rings. All these 
findings show the growth of impervious classes in every direction. The central core 
majorly experienced a transformation from open to compactly built classes, while 
the outer rings shifted from sparsely built and bare soil to more compact and open 
classes. For detailed data on the changes in individual classes within each section 
from 2011 to 2023, refer to Table 8.1.

8.4.2 �U niversal Thermal Climate Index

The UTCI maps of 2009 and 2023 are produced for the area of interest as detailed in 
section 8.3.3.2, with results in Figure 8.6. In 2009, UTCI values ranged from 26°C 
to 31°C, whereas in 2023, there was a slight increase from 27°C to 32°C. The spatial 
change of UTCI over the region can be seen in Figure 8.6, illustrating a rise in UTCI 
over many parts of the city.

Figure 8.7 displays the UTCI change map over the past decade, showing an 
increase of up to 3.5°C in certain parts of the city, while most areas experienced a 
rise of 1°C to 1.5°C. The mean UTCI index was also calculated across different LCZ 
classes for relational analysis.

Figure 8.8 illustrates the graph in the sectorial area of LCZs and the variation 
of the mean UTCI of each LCZ class. It is observed that there is a more significant 
increase in mean UTCI for built classes than the natural classes with around 2°C. 
This can be attributed to the increase of area in the decade for built classes and the 
reduction of natural courses. The sizeable low-​rise and sparsely built classes show 
the highest mean UTCI for both years. This is due to the exposure to the direct sun, 
higher LST, and less green cover in these classes. The compactly built classes show 
a lesser mean UTCI of about 1°C than the considerable low rise due to the protection 
by the green cover and the mild climate of Bangalore city.

8.5 � CONCLUSION

In the past few decades, urban areas such as Bangalore have experienced significant  
urbanization and a notable surge in migration. Despite the high density of growth  
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within the confines of the BBMP, notable changes have occurred in land utilization, 
building classifications, and infrastructure. Nevertheless, this expansion has  
presented environmental obstacles that impact the thermal well-​being of inhabitants,  
heightening their susceptibility to heat waves. This research investigates the correl-
ation between past alterations in land use and the level of comfort in terms of tem-
perature utilizing the LCZ classification and the UTCI index. Specifically, it focuses  
on the urban geometry of cities and also addresses the challenges possessed by the  
complexity of urban forms. LCZ classification relied on free available 30 m reso-
lution Landsat data. While higher resolution data and expert local knowledge could  

TABLE 8.1
Statistics of LCZ Classes Based on Sectoral Ring Approach

Sectoral Ring Approach LCZ 2011 vs 2023 (% percentage of the class in the sector)

Open High 
Rise

Open Mid 
Rise

Open Low 
Rise

Sparsely 
Built

Compact High   
Rise

Compact Mid   
Rise

Compact  
Low   
Rise

Dense 
Trees

Scattered 
Trees Bush Bare Soil Water Others

2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023

N1 3.07 6.14 20.93 14.48 14.87 17.86 4.09 10.70 15.11 10.86 8.42 8.42 3.93 4.88 7.47 5.43 7.55 7.87 1.020.94 2.122.36 0.31 0.24 11.09 9.83
E1 4.44 5.63 13.49 15.24 6.03 5.00 3.73 9.13 18.10 8.25 9.21 11.75 4.60 9.05 10.08 6.43 13.17 13.49 3.101.67 1.431.59 2.86 3.17 9.76 9.60
S1 4.26 8.20 21.86 30.87 15.19 14.23 6.99 8.04 12.78 4.26 5.71 8.68 1.93 3.54 7.23 3.70 7.96 6.19 2.731.29 0.320.40 0.08 0.40 12.94 10.21
W1 4.39 9.09 20.89 20.97 8.77 17.38 5.18 10.45 13.16 2.87 5.02 5.10 1.67 2.63 11.24 8.69 4.23 6.86 2.310.88 0.000.64 0.08 0.16 23.05 14.27
Total 1 4.04 7.27 19.29 20.39 11.22 13.62 5.00 9.58 14.79 6.56 7.09 8.49 3.04 5.02 9.01 6.06 8.23 8.60 2.291.19 0.971.25 0.83 0.99 14.21 10.98

N2 1.08 5.40 17.25 17.30 15.32 24.58 4.81 6.96 21.06 9.52 12.67 8.31 5.85 3.23 5.87 4.55 5.21 5.05 1.301.69 1.061.67 1.77 1.61 6.75 10.13
E2 2.54 5.45 12.10 13.19 7.12 10.88 5.69 7.73 16.34 10.96 8.18 8.55 7.04 6.72 7.97 2.38 8.71 11.36 6.063.39 1.092.99 3.76 0.48 13.40 15.91
S2 5.71 7.67 26.33 41.17 7.80 11.41 6.37 8.97 22.25 2.89 5.84 8.02 2.04 2.18 5.26 3.48 4.65 3.80 2.041.51 1.250.85 2.57 2.68 7.88 5.36
W2 3.58 5.89 38.56 49.67 18.14 23.36 3.53 5.89 12.70 1.30 4.85 4.03 1.25 0.58 1.88 1.17 2.55 1.22 0.480.13 0.370.29 0.21 0.32 11.91 6.15
Total 3 3.23 6.10 23.56 30.33 12.10 17.56 5.10 7.39 18.09 6.17 7.89 7.23 4.04 3.18 5.25 2.89 5.28 5.36 2.471.68 0.941.45 2.08 1.27 9.98 9.39

N3 0.44 3.15 2.74 8.56 4.15 7.70 2.16 7.43 8.35 15.23 15.76 16.69 22.28 10.35 2.84 2.17 10.43 6.31 7.933.83 9.544.04 1.87 2.61 11.51 11.94
E2 1.03 9.74 3.45 7.01 8.45 15.94 7.90 13.17 12.42 11.59 14.96 9.87 14.12 5.64 2.00 1.24 7.72 4.43 5.471.46 4.423.27 4.47 1.44 13.59 15.20
S2 1.29 5.69 9.70 28.84 12.64 13.96 5.35 9.25 16.82 9.35 13.31 10.90 16.97 4.79 2.88 1.13 4.39 1.39 3.633.29 2.161.33 2.44 2.33 8.42 7.72
W2 0.48 3.62 9.69 31.64 15.36 17.21 1.42 4.99 11.57 6.47 12.81 9.67 12.71 4.52 1.13 2.68 6.44 3.22 6.233.03 1.451.15 0.65 0.18 20.07 11.65
Total 3 0.81 5.55 6.39 19.01 10.15 13.70 4.21 8.71 12.29 10.66 14.21 11.78 16.52 6.33 2.21 1.80 7.24 3.84 5.812.90 4.392.44 2.36 1.64 13.40 11.63

N4 0.69 2.06 1.90 5.36 3.40 5.32 1.75 8.46 7.17 11.94 11.90 17.36 23.03 13.98 2.26 3.12 11.09 5.18 9.482.67 12.965.22 2.02 3.85 12.35 15.47
E4 0.85 4.90 1.40 2.37 2.95 6.33 2.87 13.40 4.01 12.20 9.67 10.10 16.21 10.64 2.99 3.01 15.38 2.73 12.893.86 10.667.00 4.31 1.30 15.82 22.16
S4 0.51 2.25 0.97 6.39 3.47 7.49 1.79 7.31 4.86 10.54 10.72 17.10 28.42 21.04 2.56 1.41 14.70 4.40 13.927.18 7.823.23 1.24 0.84 9.02 10.81
W4 0.12 1.69 1.10 12.65 5.70 7.78 0.41 7.18 5.34 17.80 11.26 19.00 30.66 13.67 1.51 1.70 10.48 4.36 11.522.93 7.711.65 1.17 0.64 13.01 8.95
Total 4 0.54 2.73 1.35 6.69 3.88 6.73 1.70 9.09 5.34 13.12 10.89 15.89 24.58 14.83 2.33 2.31 12.91 4.17 11.954.16 9.794.28 2.19 1.66 12.55 14.35

N5 0.26 1.58 0.13 0.53 0.92 1.84 1.19 8.56 2.37 11.99 9.75 12.78 24.24 22.00 0.40 2.11 15.55 9.88 13.182.50 21.345.14 0.13 1.19 10.54 19.89
E5 0.00 2.75 0.31 1.46 1.09 4.94 0.42 7.12 2.75 11.85 10.40 9.88 13.93 8.42 5.93 3.07 17.26 1.14 10.974.42 16.224.89 1.30 0.26 19.44 39.81
W5 0.00 0.85 0.85 0.64 1.06 6.17 0.85 1.28 0.43 7.02 2.55 14.47 26.81 26.81 0.64 0.85 13.83 6.60 20.434.04 10.009.36 1.70 2.77 20.85 19.15
Total 5 0.09 1.73 0.43 0.87 1.03 4.32 0.82 5.65 1.85 10.29 7.57 12.37 21.66 19.08 2.30 2.01 15.54 5.87 14.863.65 15.856.46 1.04 1.40 16.94 26.29
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enhance accuracy, preliminary results show significant LCZ shifts from 2011 to 2023,  
with central areas remaining unchanged but adjacent areas becoming more dense.  
The outskirts have transformed considerably, converting natural areas into built-​up  
regions with more impervious surfaces. The UTCI calculation involves multiple  
steps, but this study demonstrates that it can be accomplished using open-​source sat-
ellite and ground data. The major challenge in generating the UTCI map is the avail-
ability of spatio-​temporal meteorological data. However, this can be tackled with  
specific models, like Menex for mean radiant temperature, based on the satellite data.  
The accuracy of UTCI calculations is influenced by the availability and resolution  
of the data utilized in the process. The findings reveal a noticeable upward trend  

TABLE 8.1
Statistics of LCZ Classes Based on Sectoral Ring Approach

Sectoral Ring Approach LCZ 2011 vs 2023 (% percentage of the class in the sector)

Open High 
Rise

Open Mid 
Rise

Open Low 
Rise

Sparsely 
Built

Compact High   
Rise

Compact Mid   
Rise

Compact  
Low   
Rise

Dense 
Trees

Scattered 
Trees Bush Bare Soil Water Others

2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023 2011 2023

N1 3.07 6.14 20.93 14.48 14.87 17.86 4.09 10.70 15.11 10.86 8.42 8.42 3.93 4.88 7.47 5.43 7.55 7.87 1.020.94 2.122.36 0.31 0.24 11.09 9.83
E1 4.44 5.63 13.49 15.24 6.03 5.00 3.73 9.13 18.10 8.25 9.21 11.75 4.60 9.05 10.08 6.43 13.17 13.49 3.101.67 1.431.59 2.86 3.17 9.76 9.60
S1 4.26 8.20 21.86 30.87 15.19 14.23 6.99 8.04 12.78 4.26 5.71 8.68 1.93 3.54 7.23 3.70 7.96 6.19 2.731.29 0.320.40 0.08 0.40 12.94 10.21
W1 4.39 9.09 20.89 20.97 8.77 17.38 5.18 10.45 13.16 2.87 5.02 5.10 1.67 2.63 11.24 8.69 4.23 6.86 2.310.88 0.000.64 0.08 0.16 23.05 14.27
Total 1 4.04 7.27 19.29 20.39 11.22 13.62 5.00 9.58 14.79 6.56 7.09 8.49 3.04 5.02 9.01 6.06 8.23 8.60 2.291.19 0.971.25 0.83 0.99 14.21 10.98

N2 1.08 5.40 17.25 17.30 15.32 24.58 4.81 6.96 21.06 9.52 12.67 8.31 5.85 3.23 5.87 4.55 5.21 5.05 1.301.69 1.061.67 1.77 1.61 6.75 10.13
E2 2.54 5.45 12.10 13.19 7.12 10.88 5.69 7.73 16.34 10.96 8.18 8.55 7.04 6.72 7.97 2.38 8.71 11.36 6.063.39 1.092.99 3.76 0.48 13.40 15.91
S2 5.71 7.67 26.33 41.17 7.80 11.41 6.37 8.97 22.25 2.89 5.84 8.02 2.04 2.18 5.26 3.48 4.65 3.80 2.041.51 1.250.85 2.57 2.68 7.88 5.36
W2 3.58 5.89 38.56 49.67 18.14 23.36 3.53 5.89 12.70 1.30 4.85 4.03 1.25 0.58 1.88 1.17 2.55 1.22 0.480.13 0.370.29 0.21 0.32 11.91 6.15
Total 3 3.23 6.10 23.56 30.33 12.10 17.56 5.10 7.39 18.09 6.17 7.89 7.23 4.04 3.18 5.25 2.89 5.28 5.36 2.471.68 0.941.45 2.08 1.27 9.98 9.39

N3 0.44 3.15 2.74 8.56 4.15 7.70 2.16 7.43 8.35 15.23 15.76 16.69 22.28 10.35 2.84 2.17 10.43 6.31 7.933.83 9.544.04 1.87 2.61 11.51 11.94
E2 1.03 9.74 3.45 7.01 8.45 15.94 7.90 13.17 12.42 11.59 14.96 9.87 14.12 5.64 2.00 1.24 7.72 4.43 5.471.46 4.423.27 4.47 1.44 13.59 15.20
S2 1.29 5.69 9.70 28.84 12.64 13.96 5.35 9.25 16.82 9.35 13.31 10.90 16.97 4.79 2.88 1.13 4.39 1.39 3.633.29 2.161.33 2.44 2.33 8.42 7.72
W2 0.48 3.62 9.69 31.64 15.36 17.21 1.42 4.99 11.57 6.47 12.81 9.67 12.71 4.52 1.13 2.68 6.44 3.22 6.233.03 1.451.15 0.65 0.18 20.07 11.65
Total 3 0.81 5.55 6.39 19.01 10.15 13.70 4.21 8.71 12.29 10.66 14.21 11.78 16.52 6.33 2.21 1.80 7.24 3.84 5.812.90 4.392.44 2.36 1.64 13.40 11.63

N4 0.69 2.06 1.90 5.36 3.40 5.32 1.75 8.46 7.17 11.94 11.90 17.36 23.03 13.98 2.26 3.12 11.09 5.18 9.482.67 12.965.22 2.02 3.85 12.35 15.47
E4 0.85 4.90 1.40 2.37 2.95 6.33 2.87 13.40 4.01 12.20 9.67 10.10 16.21 10.64 2.99 3.01 15.38 2.73 12.893.86 10.667.00 4.31 1.30 15.82 22.16
S4 0.51 2.25 0.97 6.39 3.47 7.49 1.79 7.31 4.86 10.54 10.72 17.10 28.42 21.04 2.56 1.41 14.70 4.40 13.927.18 7.823.23 1.24 0.84 9.02 10.81
W4 0.12 1.69 1.10 12.65 5.70 7.78 0.41 7.18 5.34 17.80 11.26 19.00 30.66 13.67 1.51 1.70 10.48 4.36 11.522.93 7.711.65 1.17 0.64 13.01 8.95
Total 4 0.54 2.73 1.35 6.69 3.88 6.73 1.70 9.09 5.34 13.12 10.89 15.89 24.58 14.83 2.33 2.31 12.91 4.17 11.954.16 9.794.28 2.19 1.66 12.55 14.35

N5 0.26 1.58 0.13 0.53 0.92 1.84 1.19 8.56 2.37 11.99 9.75 12.78 24.24 22.00 0.40 2.11 15.55 9.88 13.182.50 21.345.14 0.13 1.19 10.54 19.89
E5 0.00 2.75 0.31 1.46 1.09 4.94 0.42 7.12 2.75 11.85 10.40 9.88 13.93 8.42 5.93 3.07 17.26 1.14 10.974.42 16.224.89 1.30 0.26 19.44 39.81
W5 0.00 0.85 0.85 0.64 1.06 6.17 0.85 1.28 0.43 7.02 2.55 14.47 26.81 26.81 0.64 0.85 13.83 6.60 20.434.04 10.009.36 1.70 2.77 20.85 19.15
Total 5 0.09 1.73 0.43 0.87 1.03 4.32 0.82 5.65 1.85 10.29 7.57 12.37 21.66 19.08 2.30 2.01 15.54 5.87 14.863.65 15.856.46 1.04 1.40 16.94 26.29
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FIGURE 8.6  The spatial change of UTCI over the region.

FIGURE 8.7  Map showing UTCI change from 2009 to 2023.
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in UTCI, particularly in the peripheral regions of the city characterized by built-​up  
areas. This trend is closely linked to urbanization patterns in these areas. The expan-
sion of impervious surfaces and decreased natural features such as vegetation and  
water bodies contribute to this phenomenon. The findings of this study will aid in  
formulating planning strategies, such as recommendations for the Floor Space Index  
(FSI), placement and maintenance of vegetation and water bodies, and policy-​making  
for urban planners and local bodies. Additionally, this will assist in disaster planning,  
including for events like heat waves, by facilitating prompt assessment of vulner-
ability and risk, thereby contributing to resilient cities.
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9.1 � INTRODUCTION

Land use change due to anthropogenic activities has led to the drastic decline of 
populations of several species of animals (Newbold et al., 2015; Di Minin et al., 
2016; Sales et al., 2020), including habitat generalists and commensal species 
(Erinjery et al., 2017). On the other hand, it has been observed that some native 
generalists could become hyperabundant and cause problems for both humans and 
nature (Moore et al., 2023). However, since most of the habitat generalist species 
occur in large numbers and can adapt to multiple habitats, they are generally under-
studied and usually considered “least concern” species, receiving less conservation 
attention (Erinjery et al., 2017). Habitat loss due to land use change can lead to more 
human–​animal contact, increasing zoonotic spillover incidences across the globe 
(White and Razgour, 2020; Goldstein et al., 2022). Such spillover events have been 
found especially between mammals such as bats, primates, rodents, ungulates, etc., 
and humans, and it is critical to assess the changes/​loss in habitats due to land use 
change. It is important to assess whether these species are declining or becoming 
abundant, and assessing the habitats of such habitat generalist species from a conser-
vation and health perspective is critical (Erinjery, Kavana and Singh, 2014; Moore 
et al., 2023).

Bats provide several ecosystem services, including pollination and dispersal of 
seeds and control of pests in agricultural landscapes (Shilton et al., 1999; Kessler 
et al., 2018), serving critical ecosystem functions such as regeneration of forest and 
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economic trees. However, their natural foraging and roosting habitats are severely 
degraded significantly for plant-​dependent bats belonging to Family Pteropodidae 
(Old World Fruit Bats), forcing them to shift their habitats closer to human habitations 
such as gardens, plantations, and urban areas (Kessler et al., 2018; Tsang, 2020). 
Remotely sensed satellite images confirmed that the populations of Black Flying Fox 
(Pteropus alecto) in Australia move closer to urban areas after the loss of winter for-
aging habitat (Baranowski and Bharti, 2023). A study based on historical land use 
change patterns in Bangladesh has shown that Indian Flying Fox (P. medius) bats can 
shift their habitats closer to human habitations due to loss of habitats, and such bat 
colonies closer to human habitations may have a lesser number of individuals in the 
colony than colonies in the wilderness (McKee et al., 2021). Shifting of bat colonies 
nearer to human habitations has led to zoonotic spillovers of Hendra virus in Australia 
and of Nipah virus in South/​Southeast Asia (Plowright et al., 2014).

The Indian Flying Fox, belonging to the family Pteropodidae, is widely distributed 
in south Asia, and is observed to use multiple habitats, significantly closer to human 
habitations (McKee et al., 2021). They are often seen roosting as colonies in large 
numbers (usually hundreds to thousands of individuals/​roost). They are generally 
found roosting in tall trees with large diameters at breast height (Devi and Kumar, 
2024). They are listed as “least concern,” and their populations are found to be 
decreasing across their distribution range (IUCN, 2021). The major threats are the 
destruction of their habitats, both roosting and foraging, electrocution, hunting, and 
other anthropogenic activities linked to urbanization (Pandian and Suresh, 2021). 
They have been linked to causing Nipah in Bangladesh, eastern India, south India, 
Malaysia, and Singapore (CDC, 2024), and the presence of Henipaviruses in the bats 
has been reported from many regions in south India (Sudeep et al., 2021). Raman 
et al. (2023) have identified 52 roosting sites of Indian Flying Fox in the Western 
Ghats, and Madala et al. (2022) have studied roosting tree characteristics from 11 
roosting sites from Northern Kerala. Although the species is medically important, 
little is known about the species populations and ecology, mainly from northern 
Kerala.

Satellite remote sensing provides an excellent opportunity to continuously assess 
and monitor the habitats of various species of animals. Remotely sensed NDVI can 
be used to monitor regular vegetation changes (Van Leeuwen et al., 2006; Kinyanjui, 
2011), and since flying foxes mainly prefer vegetation, in particular tall trees, for 
their roosting and foraging NDVI change can be used to detect changes in their 
roosting and foraging habitats. In the present study, we mainly focus on the roosting 
habitats of Indian Flying Foxes in four districts of northern Kerala, i.e., Kozhikode, 
Kannur, Wayanad, and Kasaragod, and assess the utility of Landsat-​derived NDVI in 
monitoring the roosting site loss of the Indian Flying Fox. Nipah has been previously 
reported from one of the districts (Kozhikode) selected for the present study in 2018 
(17 deaths), 2021 (1 death), and 2023 (2 deaths) with a case fatality rate of 89.4% 
in 2018 (CDC, 2024). Populations of Indian Flying Foxes with the prevalence of 
Henipaviruses were also detected from the locality (Sudeep et al., 2021). Also, a high 
rate of development is seen within these regions, probably leading to the destruction 
of bat habitats (Shimod et al., 2022).
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Here, we would like to report our analyses on the roosting habitat use of Indian 
Flying Foxes. In particular, we focus on the degrees of habitat degradation for roosting 
sites for the known populations across four Northern Kerala, India districts. Further, 
we test whether remotely sensed satellite images NDVI can be used to detect roosting 
site loss in the known locations of roosting site loss of these species. Since remotely 
sensed satellite images are frequently captured for earth observation, our study can 
offer insights for effectively monitoring known bat populations in these districts and 
other regions worldwide.

9.2 � MATERIALS AND METHODS

9.2.1 � Study Area

The current study was carried out in four northern districts of Kerala (11°7’ -​12°47’ 
N, 74°51’ -​76°26’ E), namely Kasaragod, Kannur, Wayanad, and Kozhikode. These 
districts are part of one of the significant bat hotspots in India, the Western Ghats, 
which comprise 63 species (Raman and Hughes, 2021). The landscape included ever
green and moist-​deciduous forests, rubber monocultures, agroforestry plantations, 
orchards, and human settlements (Deshpande and Kelkar, 2015).

Kasargod, Kerala’s northernmost district, lies between the Western Ghats to the 
east and the Arabian Sea to the west, having a tropical to subtropical climate with an 
annual average rainfall of 3350 mm. Covering an area of 2966 sq. km, Kannur dis-
trict has humid weather with an intense hot season from March to May and an annual 
rainfall of 3438 mm. Moving southward, Kozhikode district stretches approximately 
80 km along the southwest coast, featuring an annual rainfall of 2540 mm (https://​
spb.ker​ala.gov.in/​). Considering the landscape and climate, Kannur, Kozhikode, and 
Kasaragod are similar, with all three districts having coastal regions, midlands, high-​
altitude Western Ghats region, and typical tropical weather with monsoons. Wayanad 
District, nestled within the Western Ghats, spans altitudes ranging from 700 meters to 
2100 meters above sea level, characterized by an annual rainfall of around 2921 mm 
and an average annual temperature of 22.3°C (Madhu, Namboodiri, and Vijay, 2021).

9.2.2 �R oosting Site Locations and Sites of Loss

We used different survey sampling methods to obtain the locations of roosting sites 
and sites of loss. Sampling was conducted from December 2021 to September 2022, 
and data was collected using Volunteered Geographic Information (VGI) sources, 
field-​based surveys, and community-​based wildlife surveys. Additionally, data on 
previous locations of bats were collected from already published reports to check the 
loss of roosting sites (Saritha, 2015).

Preliminary information about roosting site locations was collected through 
VGI sources (Cui et al., 2021), particularly utilizing social media platforms like 
WhatsApp. A write-​up was prepared and circulated to inquire about potential roosting 
site locations near users’ houses or any other premises. This resulted in active partici-
pation from users (N =​ 62) in the form of replies regarding the roosting site locations. 
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The roosting site locations were also collected from a comprehensive review of pre-
viously published reports, scholarly articles, newspapers, and other media sources. 
Furthermore, roosting site locations were gathered by traveling through major and 
minor roads in these districts, covering almost all places, and inquiring with local 
people, drivers, shopkeepers, etc.

Following that, we conducted field surveys at these potential locations to verify 
the presence of roosting sites of Indian Flying Foxes. We collected data on the 
characteristics of the roosting sites. A total of 3060 km was traveled in all these 
districts during our survey, with the length of the traversed roads in the respective 
districts as follows: Kasargod –​ 635 km, Kannur –​ 604 km, Kozhikode –​ 1170 km, 
and Wayanad –​ 650 km. During our surveys, we obtained geospatial coordinates of 
the roosting sites, approximate number of roosting fruit bats, habitat type, species and 
number of roosting trees, roosting tree characteristics (height, canopy width, and diam-
eter at breast height), and any nearby disturbance to the roosting site. Additionally, 
during our field visits to previously documented roosting sites, we documented the 
loss of roosting sites from our present visit.

Finally, a community-​based wildlife survey (Lunney and Matthews, 2001) was 
conducted with residents in the neighborhood living close to the roosting locations/​
previous roosting locations. This involved using an open-​ended questionnaire with a 
central emphasis on gathering information about bat species, location of roosting sites 
(geospatial coordinates), age of roosting sites, disturbances to the sites, any loss of 
roosting sites (whether seasonal or permanent), the emergence of new roosting sites, 
and attitudes of people towards bats, with individual respondents (N =​ 233). The age 
of respondents ranged from 15 to 60 years. The entire survey was conducted following 
the Code of Ethics of the International Society of Ethnobiology (2006), obtaining 
participants’ free, prior, and informed consent before conducting interviews. From 
the survey, we mainly used the information on the loss of roosting sites for the present 
study. Further, for the analysis of loss of roosting sites, we categorized the roosting 
sites into four categories: (1) roosting site loss due to highway development/​drying 
of trees, (2) roosting site loss due to habitat loss (loss of habitats around roosting 
site, mainly due to urbanization and other developmental activities), (3) roosting site 
shifts due to other unknown reasons, (4) the present roosting site locations of Indian 
Flying Fox.

9.2.3 � Satellite Data Used and Approach

The primary objective of our study was to test the efficacy of NDVI changes derived 
from Landsat for monitoring and assessing roosting site loss of Indian Flying Foxes. 
As mentioned in the previous section, from the field, we observed the loss of several 
roosting sites of Indian Flying Foxes, and we categorized them into four categories. 
Based on the locations of four categories, we extracted the NDVI values from the 
exact locations of roosts. Further, we created a buffer of 1 km around the roosting site 
locations to analyze the changes in NDVI occurring around a roosting site. The NDVI 
changes were calculated from the derived NDVI between 2014 and 2023 (as the pre-
viously published report of roosting site location was from 2015; Saritha, 2015).

 

 

 



143Assessment of Indian Flying Fox (Pteropus medius) Roosting Sites

9.2.4 �NDVI  Derivation from Landsat Satellite Data

We downloaded the Landsat 8 (for 2014) and 9 (for 2023) satellite images (surface 
reflectance product) from the USGS Earth Explorer website (https://​earthe​xplo​rer.
usgs.gov/​) for calculating NDVI. We ensured that the images downloaded were cloud-​
free and were less than one month apart (the images downloaded were from November 
and December months for consistency of NDVI values). Further, we mosaicked the 
images of the region using ArcGIS version 10.2 and made image composites with 
band 5 (0.845–​0.885 µm), band 4 (0.630–​0.680 µm), band 3 (0.525–​0.600 µm), and 
band 2 (0.450–​0.515 µm). The equation for calculating NDVI for Landsat 8 and 9 is

	 NDVI =​ (Band 5 –​ Band 4) /​ (Band 5 +​ Band 4) 	 (9.1),

where band 5 is the near-​infrared band and band 4 is the red band.
We calculated the NDVI of respective years using this equation in ArcGIS 

version 10.2.

9.2.5 �H uman Footprint Analyses at Roosting Sites

We examined whether human footprint (a proxy for anthropogenic activities (Venter 
et al., 2016)) can explain the reason for roosting site loss. The loss of roosting sites 
is expected to be more likely in locations where human pressure is higher, which 
reflects the fact that anthropogenic activities are leading to the loss of roosting sites 
of bats. Therefore, we extract the value of the ‘human footprint’ in locations where 
current flying fox roosting sites are present and historically used as roosting sites but 
then abandoned. The human footprint data provides the cumulative human pressure at 
1 km resolution, which provides the aggregated values of the eight human activities, 
including built-​up environments, population density, electric power infrastructure, 
crop lands, pasture lands, roads, railways, and navigable waterways with the data 
value between 0–​50 (Venter et al., 2016). The human footprint data was downloaded 
from the SEDAC website (https://​sedac.cie​sin.colum​bia.edu/​data/​set/​wildar​eas-​v3-​
2009-​human-​footpr​int), and the values of human footprint data were extracted for 
each location of the study region.

9.2.6 �D ata Analysis

We performed non-​parametric statistics to compare the NDVI values between 
different categories of roost site loss, as sample sizes were low for some categories. 
Wilcoxon’s signed rank test was performed to find the differences in the NDVI values 
between 2014 and 2023 for each location. Kruskal–​Wallis H test was performed 
to compare the human footprint between different categories and districts. For the 
vegetation change analysis, we created a distribution based on the NDVI values of 
the current locations in 2023 and a distribution of NDVI values below those values. 
After creating the distribution, we reclassified them into two classes for 2014 and 
2023 and calculated the change in ArcGIS 10.2. The tests performed are given in 
parentheses after each test in the result section. The significance value was kept 
at 0.05.
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9.3 � RESULTS

9.3.1 �R oosting Sites in Each District

We recorded 118 roosting sites (71 479 individuals; 606 individuals/​roosting site)  
of Pteropus medius bats in four districts of Northern Kerala (Figure 9.1). Kozhikode  
district had higher roosting sites (53), followed by Kannur (24), Kasaragod (23), and  

FIGURE 9.1  Locations of bat roosts in four districts of Northern Kerala. Inset: Map of south 
India with location of Kerala (green) and four districts (yellow) of our present study.
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Wayanad (18). Within these districts, the most abundant bats were in Kozhikode (36  
217 individuals), followed by Kannur (17,138 individuals), Kasargod (9,340 individ-
uals), and Wayanad (8,784 individuals).

9.3.2 �R oosting Site Decline

We observed a loss of 54 roosting sites across these districts. In 88.8% (48 sites), 
the bats permanently shifted their roosting sites, mainly due to habitat loss, highway 
development/​tree cutting/​drying of trees, and the colony shift due to unknown reasons. 
In the remaining 11.1% (six sites) sites, bats temporarily shifted their roosting sites, 
such as seasonal shifts during the rainy season (Table 9.1).

In Wayanad district, there was no loss of roosting sites. However, in Kozhikode 
district, habitat loss (73.7%) was identified as the primary cause for the decline in 
roosting sites, with 14 sites lost. In comparison, 26.3% of the decline was attributed to 
colony shifts for unknown reasons, resulting in five lost sites. In Kannur, 62.5% of the 
declines were temporary due to colony shifts during monsoons, resulting in five lost 
sites, while 37.50% were due to habitat loss, leading to three lost sites. In Kasargod 
district, roosting site declines due to colony shifts for unknown reasons accounted 
for 44.4% (12 lost sites), followed by road widening/​cutting of trees (37.0%; 10 lost 
sites), habitat loss (7.40%, two lost sites), drying of trees (7.40%; two lost sites), and 
seasonal shifts (3.70%; one lost site).

9.3.3 �NDVI  Change and Roosting Site Decline

We could detect NDVI changes at the lost roosting sites due to highway development/​ 
drying of trees (median =​ 0.08, Figures 9.2, 9.3). Most sites with highway develop
ment showed significant declines in NDVI (Wilcoxon’s signed rank test: Z =​ –​2.6,  
p =​ 0.01). The locations with habitat loss (0.03; Z =​ –​3.4, p<0.001, Figure 9.5) and  
the present locations (0.02, Z =​ –​6.5, p<0.001) of bat roosts also showed a decline  
in NDVI values. In the sites of habitat loss, some sites showed higher NDVI loss  
than others. The locations with other reasons did not show a decline in NDVI values  

TABLE 9.1
Potential Causes for the Loss of Roosting Sites in Four Districts: Kasargod, 
Kannur, Kozhikode, and Wayanad

Reason for Roosting Site Decline

District (Number of Lost Sites)

TotalKannur Kasargod Kozhikode Wayanad

(a) Permanent shift
Highway development/​Drying of trees 0 12 0 0 12
Habitat loss 3 2 14 0 19
Colony shifts due to Unknown reason 0 12 5 0 17

(b) Temporary shift
Seasonal shift 5 1 0 0 6
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FIGURE 9.2  The boxplot showing the change of NDVI values (exact locations) of different 
categories at locations of roosting site loss and the present locations.

FIGURE 9.3  The NDVI images derived from Landsat showing the changes in NDVI between 
2014 and 2022 at the example sites of roosting site loss due to highway development/​drying 
of trees.
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(0.01, Z =​ –​1.4, p =​ 0.17). The NDVI values of the buffer regions also showed similar  
trends, with the highest NDVI change at lost sites due to highway development/​tree  
cutting (0.10), habitat loss (0.03), other reasons (0.01), and present locations (0.02;  
Figures 9.4, 9.5). Overall, potentially suitable habitats for roosting sites (vegetation  
based on NDVI/​also probably foraging sites) declined by 183 km2 in the study region  
between 2014 and 2022 (Figure 9.6).

9.3.4 �H uman Footprint and Roosting Site Decline

We found that there are differences in human footprint values at sites of roosting decline 
due to highway development/​drying of trees, habitat loss, roosting site loss due to other 
reasons, and current roosting sites (Figure 9.7; Kruskal–​Wallis H =​ 8.1, P =​ 0.045). More 
human footprint values were present in the sites of roosting site decline due to highway 
development/​drying of trees and habitat loss than in other locations. Among the current 
roosting site locations, Kozhikode (median =​ 18), Kasaragod (17), and Kannur (16.5) 
had more human pressure than Wayanad district (9; Figure 9.8). In Kozhikode district, 
several high outlier values indicated high human pressure in those sites.

9.3.5 � Land Use Preference for Selecting Roosting Sites

Within the selected four districts, Indian Flying Foxes were observed to prefer sacred  
groves, roadsides, private and government properties, temple premises, mosques,  
school properties, sacred trees, riversides, and mangroves as their primary roosting  
sites (Table 9.2). It was observed that fruit bats were notably more prevalent in sacred  
groves (20,208 bats), constituting approximately 30.2% of the total population.  

FIGURE 9.4  The boxplot showing the change of NDVI values (buffer regions around the 
location) of different categories at locations of roosting site loss and the present locations.
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This was followed by private property, where 18,976 bats were recorded (28.4%).  
Mangroves housed 13,600 bats (20.3%), while the lowest count was observed on  
school property, with only 190 bats, amounting to 0.3%.

When comparing the four districts, bats primarily opt for sacred groves in Kasargod 
and Kozhikode, whereas in Kannur and Wayanad, they prefer private property over 
other sites. Across all four districts, their preference for government properties was 
less. Bats that inhabit school premises are exclusively located in the Kannur district, 
while those inhabiting riverside areas are observed solely in the Kozhikode district. 
Similarly, bats roosting in sacred trees are only found in the Kasargod district.

9.3.6 �T ree Preference for Roosting

Indian Flying Foxes were observed roosting in 32 distinct tree species, with Holigarna 
grahamii (11.1%), Terminalia bellirica (10.86%), and Caryota urens (10.8%) 
standing out as the most highly preferred trees across all districts (Table 9.3). Within 
the districts, Terminalia bellirica (32.4%) was notably preferred by bats in Wayanad, 
Ficus religiosa and Holigarna grahamii (each 12.3%) emerged as the highly pre-
ferred tree species in Kasargod, Caryota urens (10.8%) stood out prominently in 
Kozhikode, and Kannur. Artocarpus heterophyllus, Ficus religiosa, and Caryota 
urens (each 9.3%) were identified as the most preferred tree species.

FIGURE 9.5  The NDVI images derived from Landsat showing the changes in NDVI between 
2014 and 2022 at the example sites of roosting site loss due to habitat loss.
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FIGURE 9.6  The NDVI change (purple color) showing the decline of vegetation in the four 
districts of northern Kerala between 2014 and 2022.

FIGURE 9.7  The boxplot showing the distribution of human footprint values (exact locations) 
at different categories of roosting site loss and the present locations.
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FIGURE 9.8  The boxplot showing the distribution of human footprint values (exact locations) 
at present locations of roosting sites at different districts of Northern Kerala.

TABLE 9.2
Different Habitats Preferred by Pteropus medius Bats for Roosting

Habitat
No. of 
Sites

Abundance (in Numbers)

Mean
Kasargod 
(23 sites)

Kannur
(24 sites)

Wayanad
(18 sites)

Kozhikode
(53 sites)

Sacred Grove 34 5975
(10 sites)

621
(3 sites)

0 13612
(21 sites)

594.4

Road Side 11 675
(4 sites)

700
(1 site)

0 3740
(6 sites)

465.0

Private Property 42 1330
(5 sites)

4444
(12 sites)

6382
(14 sites)

6820
(11 sites)

451.8

Government Property 3 0 133
(1 site)

1117
(1 site)

500
(1 site)

583.3

Temple Premise 5 0 450
(2 site)

0 1125
(3 sites)

315.0

Mosque 4 0 600
(1 site)

1285
(3 sites)

0 471.3

School Property 2 0 190
(2 sites)

0 0 95.0

Sacred tree 4 1360
(4 sites)

0 0 0 340.0

Riverside 10 0 0 0 6820
(10 site)

682.0

Mangrove 3 0 10000
(2 sites)

0 3600
(1 sites)

4533.3
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9.4 � DISCUSSION

It is critical to continuously monitor and assess the habitats of Indian Flying Foxes 
as their habitats are declining, and their numbers are decreasing throughout their dis-
tribution range. The current study found that Landsat-​derived NDVI can continu-
ously monitor bat roosting sites. We also observed that roosting and possibly foraging 
habitats of Indian Flying Foxes have declined in our study region due to human-​
induced land use change.

9.4.1 �NDVI  Change and Bat Roosting Site Loss

From this study, we observed that NDVI change can be a good indicator of the roosting 
site loss of Indian Flying Foxes in south India. Once the roosting sites are identified 
through surveys like ours, we can continuously monitor the habitats of Indian Flying 
Fox using remotely sensed NDVI. Our study found considerable differences in NDVI 
values at all highway development/​tree loss sites. In the case of habitat loss, at some 

TABLE 9.3
Tree Species Preferred by Indian Flying Fox Bats for Roosting

Tree Species

Tree Species Preferred by Indian Flying Fox (in %)

Kasargod Kannur Wayanad Kozhikode Total

Holigarna grahamii 12.3 2.3 21.6 8 11.1
Terminalia bellirica 7 0 32.4 4 10.9
Caryota urens 7 9.3 8.1 18.6 10.8
Mangifera indica 10.5 7 8.1 12 9.4
Ficus religiosa 12.3 9.3 0 8 7.4
Strychnos nux-​vomica 8.8 7 0 5.3 5.3
Delonix regia 1.8 7 10.8 0 4.9
Artocarpus heterophyllus 3.5 9.3 0 6.7 4.9
Alstonia scholaris 3.5 9.3 0 5.3 4.5
Tectona grandis 5.2 4.7 0 6.7 4.1
Adenanthera pavonina 7 4.7 0 2.7 3.6
Artocarpus hirsutus 0 0 10.8 1.3 3
Swietenia mahagoni 0 7 0 2.7 2.4
Abrus precatorius 1.8 4.7 0 1.3 1.9
Hevea brasiliensis 0 2.3 2.7 2.7 1.9
Mangrove sps. 0 4.7 0 1.3 1.5
Ficus benghalensis 3.5 2.3 0 0 1.4
Cocos nucifera 1.8 2.3 0 1.3 1.4
Bambusa sps. 0 0 5.4 0 1.4
Pongamia pinnata 3.5 0 0 1.3 1.2
Tamarindus indica 3.5 0 0 1.3 1.2
Terminalia paniculata 1.8 2.3 0 0 1.0
Schleichera oleosa 1.8 0 0 1.3 0.8
Others 3.5 4.6 0 8 4.0
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locations, we found considerable differences in the values of NDVI, and in some 
places, we could only find a slight decline in values. In the case of current habitats, 
we also found a decline in values, indicating that the current roosting habitats of the 
Indian Flying Fox may be declining and reducing in quality. However, we did not find 
any change in NDVI values due to site shift due to other reasons. We deduce that the 
site shift of the bats at these locations might not be due to habitat loss or degradation 
but might be for foraging purposes. Since most of the foraging trees of the Indian 
Flying Fox may have similar values of NDVI to that of the roosting trees, it is possible 
that the foraging habitats of these species would be declining as well. Remote sensing 
has been previously used to observe the winter foraging habitats of Pteropus species 
in Australia (Baranowski and Bharti, 2023), and here we show that remote sensing 
can be an excellent alternative for observing roosting habitats of Pteropus species 
as well. Also, Vleut et al. (2015) have shown that canopy openness and tree height 
can influence Pteropus abundance in Mexico. The occurrence of bats belonging to 
another genus is also associated with a specific range of NDVI values (Perimyotis 
subflavus: Meierhofer et al., 2019, 2022), and using NDVI could be favorable for 
disease spillover modeling (Escobar et al., 2015). Such satellite remote sensing 
monitoring and prevention strategies can save money invested towards biodiversity 
conservation and healthcare systems (Baranowski and Bharti, 2023). However, not 
all Pteropus species (P. lylei) abundances show a correlation with NDVI, and a cor-
relation between bats and NDVI needs to be first established before such monitoring 
exercises (Chaiyes et al., 2020).

9.4.2 �C onservation of Indian Flying Fox in South India

Most of the habitats of Indian Flying Foxes we found were closer to urban habitats/​
human settlements, which was also confirmed using human footprint data. McKee 
et al. (2021) observed that Indian Flying Foxes shifted their roosting sites from 
forests and other rural landscapes to urban areas and human settlements due to the 
historical land use change over the past decades. From our study, the most important 
habitats for flying foxes were sacred groves, roadsides, mangrove habitats, and pri-
vate properties, indicating that these could be preferred roosting site habitats of Indian 
Flying Foxes in Northern Kerala. Sacred groves are important sites of biodiversity 
conservation (Decher, 1997; Mgumia and Oba, 2003; Bhagwat et al., 2005), and in 
Kerala, sacred groves have been found to host roosting sites of different bat species 
(Aiswaryalakshmi et al., 2023). Erinjery et al. (2017) have shown that roadsides with 
continuous vegetation and canopy connectivity can provide suitable habitats for many 
habitat generalist species. The mangrove habitats that we found the bats to inhabit 
were undisturbed continuous mangrove forests. Also, the private properties inhabited 
by bats had huge land areas with many trees (not just a house, but home gardens; JJE 
pers. Obs.). Similarly, riversides with many trees are considered significant habitats 
of bats across the region (Pandian and Suresh, 2021). Over the past few decades, all 
these habitats have been declining due to urbanization, and it is vital to protect, con-
serve, and manage these habitats with the help of local communities.

It has been observed that even in urban habitats, flying foxes prefer trees with con-
siderable height and canopy width for their roosting (Madala et al., 2022). Our study 
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also shows that flying foxes prefer specific tree species over others, possibly due to 
the trees’ height and canopy width. Protecting these, especially native trees, is critical 
for conserving flying foxes. Further, it was noted recently that exotic species of trees 
are planted in home gardens, especially rambutan, sapota, lychee, avocado, mango-
steen, etc., which could attract bats to the home gardens and induce physiological 
stress (Neethu, 2022). Future studies should also concentrate on the foraging habitats 
of Indian flying foxes in the region.

Further, we observed that land use changes over the past decades, significantly road 
widening and habitat loss, have led to the decline of permanent bat roosting sites in 
the study districts. Previously, although these areas were closer to human settlements, 
they had a good amount of vegetation, which has now declined due to urbanization 
(JJE pers. obs). The presence of Indian Flying Foxes closer to human habitations will 
increase the contact/​negative interactions between Indian Flying Foxes and humans. 
It could pose a conservation challenge to these species.

9.4.3 �Z oonotic Spillover

Proximity to bat feeding sites and roosting sites, high human population density, low 
precipitation/​temperature, forest fragmentation, poor housing, and seasonal patterns 
are a significant reason for the spillover of zoonotic diseases such as Nipah in south 
Asia (Durrance-​Bagale et al., 2021). After the outbreak of Nipah, especially in 
Kozhikode district, we have found that people are afraid of bats, and many do not 
feed on fruits fed by bats (Neethu, 2022). Also, people feel bats provide more eco
logical disservices than services (Neethu, 2022). This change in attitude of people 
has led to more human–​bat conflict in the region. This has led to detrimental activ-
ities such as cutting down the trees where bats roost, chasing them away by bursting 
crackers, etc. (Neethu, 2022). Such detrimental activities can only bring flying foxes 
and humans closer. Human footprint and population density have been positively 
associated with Nipah Zoonotic spillover in South/​South East Asia (Walsh, 2015; 
Epstein et al., 2020). We found the human footprint in Kozhikode, Kasaragod, and 
Kannur to be high in the areas where the present bat roosting locations are located. 
Hence, mitigation and prevention measures for zoonotic spillover need to be strong in 
these districts. Also, studies suggest that extreme stress due to the loss of habitats and 
urbanization in flying foxes could lead to increased viral shedding, leading to more 
cases of zoonotic diseases such as Nipah (Plowright et al., 2017; Epstein et al., 2020). 
Bats also could have other parasites, bacteria, and viruses, which could potentially 
spill over to humans (Dovih et al., 2019; Khan et al., 2022; Devnath et al., 2023), 
including coronaviruses (Ruiz-​Aravena et al., 2021), and this could lead to several 
new emerging diseases (Wang and Anderson, 2019).

9.5 � CONCLUSION

We observed that, due to land use change and zoonotic spillover potential, the 
populations of Indian Flying Foxes could be in peril. Protecting and restoring 
sacred groves, sacred trees, mangrove habitats, riverside habitats, and roadside 
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trees are crucial for conserving Indian Flying Foxes in South India. Awareness 
should be provided to people on how to protect the bat roosting sites in their private 
properties and other land uses, as well as how to minimize contact with bats. Bat 
gardens can also be a good alternative for the conservation of bats (Callas et al., 
2024). Netting fruit trees and preventing bats from entering the gardens is a good 
solution for reducing human–​bat contact (Russo and Fenton, 2024). On the other 
hand, altered diet, behavior, and roosting site shifts can increase zoonotic spillover 
from these bats and are critical to protecting the remnant habitats. Central, state, 
and local governments should take steps to manage both the populations and zoo-
notic spillover of diseases from these bats in these districts from an ecological and 
social science perspective and a health perspective. More research should aim to 
understand this species’ roosting and foraging ecology in these districts and other 
districts of the Kerala state and other states in India. Landsat-​derived NDVI can 
aid in such activities as protecting bat habitats and preventing global zoonotic 
spillover.
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10.1 � INTRODUCTION

Aerosols have direct and indirect effects on climate patterns and climate variability 
(Ramanathan et al., 2001, Chen et al., 2014, 2018; Sridhar et al., 2013). The direct 
effect of aerosols is interacting with incoming solar radiation, which in turn can 
impact the surface energy and water budgets (Sridhar and Wedin, 2009; Sridhar et al., 
2009; Sridhar, 2013; Sridhar and Anderson, 2017; Valayamkunnath et al., 2018; Kant 
et al., 2019). The indirect effect of aerosols is on the optical and macro-​physical 
properties of clouds (Sheng et al., 2019; Misumi et al., 2022). Also, aerosols can 
influence cloud lifetime by increasing the cloud condensation nuclei (CCN) and ice 
nuclei (Twomey 1977; Koren et al., 2010; Kusensica et al., 2012; Liu et al., 2020). 
The amount of water vapor gets distributed over many cloud droplets in the presence 
of large CCN concentrations. This results in smaller sizes of cloud, higher albedo 
(Twomey 1977), and less precipitation (Rosenfeld et al., 2008), which in turn impacts 
the partitioning of net radiation into latent, sensible, and ground heat fluxes (Jaksa 
et al., 2013) and variability in rainfall (Setti et al., 2020a, 2020b).

The impact of AOD on cloud lifetime and precipitation has been extensively 
studied in recent years (Balakrishnaiah et al., 2012; Liu et al., 2020). Furthermore, 
the type of aerosols had a strong influence on the forcing phenomenon. For example, 
carbonaceous aerosols resulted in positive forcing, whereas sulfate aerosols resulted 
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in negative forcing at the top of the atmosphere (Grandey et al., 2013). The previous 
analysis of the relationship between AOD and CF was based on humidity and sta-
bility conditions in low and polluted regions (Remer et al., 2002; Koren et al., 2005). 
MODIS provides the aerosol index, calculated as the product of the angstrom expo-
nent and the AOD. Previous research on the effect of aerosols used the aerosol index 
as the primary parameter. However, some researchers have stated that the aerosol 
index was unreliable over land (Kourtidis et al., 2015; Liu et al., 2020). Existing 
conditions in a region, such as biomass burning and anthropogenic emissions, may 
alter the relationship substantially.

Therefore, it is recognized that the impact of AOD on CF can offer new insights 
into various atmospheric stability states (K-​index). The amount and vertical extent of 
low-​level moisture in the atmosphere, along with the vertical temperature lapse rate, 
are the two factors that determine thunderstorm potential, which is measured by the 
K-​index.

The study is intended to understand better the effects of AOD on CF for the light, 
moderate, and heavy rain regimes for different atmospheric stability states across 
Peninsular India. The study is carried out on the data from the south-​west monsoon 
season for 15 years from 2005–​2019. The satellite products are initially aggregated to 
a single resolution for better analysis. The AOD is divided into 11 bins based on pixel 
values ranging from 0 to 1.5. Higher values of AOD are not considered in the analysis 
to avoid ambiguity in mixed pixels. The correlation analysis is then performed using 
R statistical software for 11 AOD bins with the accumulated data. Finally, spatial 
variations in AOD and CF are evaluated over Peninsular India.

The objective of this study is to observe the changes in AOD and CF for the rainfall 
regimes in Southern India. Currently, the stability of the atmosphere and the behavior 
of related variables are only partially understood based on correlation studies. Also, 
previous studies rarely discuss the research on AOD and CF in Southern India. This 
study aims to develop a novel approach to obtaining a statistical relationship between 
the AOD and CF for different stability states of the atmosphere.

10.2 � STUDY AREA

The present study area encompasses several states, namely Maharashtra in Western 
India, Orissa in Eastern India, Chhattisgarh in Central India, as well as Goa, Andhra 
Pradesh, Telangana, Karnataka, Tamil Nadu, and Kerala in Southern India. Figure 10.1 
depicts the geographical scope of the research area. The region in Figure 10.1 was 
chosen as the study area because there has been little research on the statistical correl-
ation of AOD and CF in this region. Furthermore, the monsoon patterns in Southern 
India have changed significantly in recent years (Mishra et al., 2019).

The primary source of income in this region is agriculture. The southwest mon-
soon is the primary source of rainfall on which productivity is dependent in most 
of the study area. Every year, the southwest monsoon begins in June and lasts until 
September. As a result, the AOD, CF, and rainfall products for the southwest monsoon 
season, i.e., JJAS, are considered (June–​July–​August–​September).
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10.3 � DATA AND METHODS

10.3.1 � Satellite Data Used

The datasets used for the current study are obtained from the MODIS onboard Terra 
and Aqua Satellites. MODIS products have become widely used for a variety of 
analyses due to their broad spectral coverage and high spatial resolution (Liu et al., 
2020). The observation period constituted the monsoon season from 2005 to 2019. 
The data is averaged for cumulative 5-​, 10-​, and 15-​year periods. All three products 
were obtained from the NASA website. Details of the data products used in the pre-
sent study are given as follows:

MOD04_​L2 denotes the aerosol product the dark target/​deep blue algorithm 
generates. The parameter used is the Optical Depth of Land and Ocean, and the spatial 
resolution is 10 km × 10 km. MODIS aerosol retrievals are based on a look up table 
(LUT) procedure in which satellite-​measured radiances are matched to pre-​calculated 
values in the LUT and the values of the aerosol properties used to create the calculated 
radiances are retrieved (Kumar et al., 2013; Vijaykumar et al., 2018). The estimated 
satellite radiances at 470 and 670 nm wavelengths are used to calculate AOD at 550 nm 
using the Angstrom exponential law. The satellite product is validated against ground 
truth data, and the results are satisfactory (Gopal et al., 2016; Kotrike et al., 2021). The 
AOD data ranged from 0 to 1.5, and data above 1.5 were not included in the analysis to 
prevent cloud particles and aerosols from being misclassified (Liu et al., 2020).

MOD06_​L2: It refers to cloud data. The macro-​physical cloud parameters used 
in the study are Cloud Top Pressure (CTP), Cloud Top Temperature (CTT), and CF 
(CF). All three parameters are measured at 5 km × 5 km spatial resolution. CTP and 

FIGURE 10.1  Location map of study area covering nine states in India.
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CTT are measured using infrared and CO
2
 absorption bands, respectively, whereas 

CF is collected using visible bands (Platnick et al., 2015; Kumar et al., 2020).
MOD07_​L2: It denotes the atmospheric profile data. The K-​index is the parameter 

used. It is a measure of thunderstorm potential based on vertical temperature lapse rate, 
lower atmosphere moisture content, and the vertical extent of the moist layer. The tem-
perature difference between 850 hPa and 500 hPa is used to parameterize the vertical 
temperature lapse rate. The dew point at 850 hPa indicates the moisture content of the 
lower atmosphere. The vertical extent of the moist layer is represented by the diffe-
rence between the 700 hPa temperature and 700 hPa dew point. This is called the 700 
hPa temperature-​dew point depression. The index is derived arithmetically. MODIS 
provides K-​index daily data when at least nine fields of view (FOV) are clear. The math-
ematical equation governing K-​index is given in equation (10.1) (Borbas et al., 2015).

	 K T T T T T
d d

= − + − −( )( )
850 500 700850 700

	 (10.1)

where T
850

 is the temperature at 850 hPa, T
700

 is the temperature at 700 hPa, T
500

 is the 

temperature at 500 hPa, T
d850

 is the dew point temperature at 850 hPa, and T
d700

 is the 

dew point temperature at 700 hPa.
The multi-​satellite precipitation product comes from the Integrated Multi-​satellite  

Retrievals for Global Precipitation Mission (IMERG). This dataset is the GPM  
Level 3 IMERG Final Daily 10 × 10 km (GPM_​3IMERGDF) derived from the  
half-​hourly GPM_​3IMERGHH. The derived result represents the final estimate of  
daily accumulated precipitation. PrecipitationCal, also known as complete calibrated  
precipitation, is the parameter used in this study. It displays the daily accumulated  
precipitation in millimeters. Table 10.1 displays the datasets. Note: Data source for  
1–​5: https://​lads​web.mod​aps.eos​dis.nasa.gov/​ 6: (https://​disc.gsfc.nasa.gov/​).

TABLE 10.1
Details About the Satellite Data, Parameters, and Spatial Resolution Used in 
this Study

S.No Data Parameter
Spatial 
Resolution

1 Moderate Resolution Imaging Spectrometer 
(MODIS) Terra MOD04_​L2

Optical Depth 
Land and Ocean

10 km × 10 km

2 Moderate Resolution Imaging Spectrometer 
(MODIS) Terra MOD06_​L2

Cloud Fraction 5 km × 5 km

3 Moderate Resolution Imaging Spectrometer 
(MODIS) Terra MOD06_​L2

Cloud Top 
Pressure

5 km × 5 km

4 Moderate Resolution Imaging Spectrometer 
(MODIS) Terra MOD06_​L2

Cloud Top 
Temperature

5 km × 5 km

5 Moderate Resolution Imaging Spectrometer 
(MODIS) Terra MOD07_​L2

K-​Index 5 km × 5 km

6 GPM IMERG Final Precipitation L3 Precipitation 10 km × 10 km
(GPM_​3IMERGDF)
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10.3.2 � Approach

Figure 10.2 depicts the methodology used in the current study. Cloud formation 
begins with the activation of cloud condensation nuclei (CCN). Aerosols are essential 
in the formation of CCN. The present study used AOD as the primary parameter to 
characterize aerosols.

Cloud parameters are used to identify low-​warm clouds. Low, warm clouds were 
defined as pixels with CTP greater than 680 hPa and CTT greater than 0°C. MODIS 
products are available in a variety of spatial resolutions (Wang et al., 2015). Using 
R statistical software, all cloud parameters and atmospheric stability data were 
resampled to a resolution of 10 km × 10 km. The files were cropped to the required 
size for the study.

The atmospheric stability states are classified into four categories based on 
the values: isolated thunderstorms (20<K<25), widely scattered thunderstorms 
(20<K<25), scattered thunderstorms (30<K<35), and numerous thunderstorms 
(K>35). Rainfall is classified into three types based on intensity: light, moderate, and 
heavy (Soni et al., 2020). Equal value plots represent the changes in CF for each bin 
of AOD. The Pearson correlation method performs the spatial correlation between 
cumulative AOD and CF for different K-​index classes. The R code is scripted to 
identify the parametrical data corresponding to pixels of each rainfall regime and to 
average the corresponding cloud parameters for 11 AOD bins. AOD bins range from 
0 to 1 with an increment of 0.1.

Also, the significance of the correlation was evaluated using the p-​value. If the  
p-​value is less than 0.05, the correlation is said to be significant at a 95% confidence  

FIGURE 10.2  Flow chart showing the methodology adopted for study.
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level. The analysis is performed for three cumulative datasets, namely 5, 10, and  
15 years of data. The cumulative 5 years indicate the dataset from 2015 to 2019, the  
10 years indicate the dataset from 2010 to 2019, and the 15 years indicate the dataset  
from 2005 to 2019. To comprehend the behavior of AOD and CF for various atmos-
pheric stability states as the number of samples increases, the cumulative periods for  
the analysis are taken into account.

Theoretically, higher AOD refers to a hazy atmosphere, and lower AOD refers to 
a clear atmosphere. The spatial distribution of AOD for the three cumulative datasets 
in light, moderate, and heavy rain conditions is investigated by categorizing the study 
area into three classes based on the pixel values: 0–​0.5 (low polluted), 0.5–​1 (moder-
ately polluted), and greater than 1 (highly polluted) (David et al., 2018). This classifi
cation is followed so that the current study can interpret the results explicitly.

The temperature change is related to the state of atmospheric stability. As tem-
perature is a primary climate parameter, the study area was divided into five cli-
mate zones concerning Koppen’s world climate classification. Accordingly, the 
study area is divided into five climate zones of the study area are classes namely 
monsoon climate (Am), tropical savanna climate (Aw), warm semi-​arid climate 
(BSh), humid subtropical climate (Cwa), subtropical oceanic highland climate 
(Cwb). The tropical monsoon climate (Am) region has a mean temperature greater 
than 180°C every month of the year. In this region, the driest month has an average 
precipitation of less than 60 mm but more than the precipitation obtained as per 
the equation (10.2). The tropical monsoon climate regions have fewer temperature 
variations.

	 Precipitation = −
( )

100
25

Total Annual Precipitation mm
	 (10.2)

Because tropical savannas are located within tropical latitudes, their climates are 
generally warm. The average monthly temperature rises above 18°C throughout the 
year. Temperatures in the wet season range from 25 to 30°C. The year’s dry season 
sees temperatures in between 20 and 25°C. Daytime temperatures are higher than 
nighttime temperatures. The driest month of the tropical savanna climate (Aw) region 
experiences an average precipitation of less than 60 mm and less than the precipita-
tion obtained as per equation (10.2). The warm semi-​arid climate (BSh) sees hot to 
extremely hot summers and warm to cool winters. The mean annual temperature in 
this region is 18°C. The humid subtropical climate (Cwa) region witnesses an average 
precipitation of 80–​165 cm. The region has a mean temperature in between 0°C to –​
3°C in the coldest month and more significant than 22°C in the warmest month. The 
sub-​tropical oceanic highland climate (Cwb) region tends to have dry winters and wet 
summers (Kottek et al., 2006; Adam et al., 2021; Anil et al., 2021).

Given the diverse climatic conditions across Southern India, it is essential to ana-
lyze land use changes and precipitation during the monsoon period based on these 
climatic conditions. This study analyzed the impact of land use changes on precipita-
tion in Southern India during the monsoon period from 2005 to 2019. Landsat-​based 
GLAD (Global Land Analysis and Discovery) data was used to analyze land use 
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changes. Land use maps are provided every 5 years (2005–​2020) and have a spatial 
resolution of 30 m.

10.4 � RESULTS AND DISCUSSION

10.4.1 �C omprehensive Effect of AOD on CF

The CF changes for different AOD ranges are analyzed by means of equal-​value 
plots. The AOD data is divided into 30 bins. The data ranges from 0 to 1.5, and each 
bin is incremented by 0.05. The average of AOD and CF data corresponding to each 
bin is calculated. A min-​max scale normalizes the data. The expression used for the 
normalization of the data is as follows:

	 X
X X

X X
i

n

i=
−( )
−( ) = …min

max min

, , , ..1 2 3 30 	 (10.3)

Where X
n
 is the normalized data, X

i
 is the existing data, X

min
 is the minimum value, 

and X
max

 is the maximum value. The AOD and CF are normalized by using equation 
(10.3). The scatterplot of normalized data with reference line is then plotted to obtain 
the equal value plot between AOD and CF. The reference line is the 1:1 line obtained 
by joining the corresponding minimum and maximum of AOD and CF. Although the 
equal value plots are prepared for each cumulative dataset of three rainfall regimes, 
the plots with points closer to the reference line are shown in the manuscript.

The analysis using equal value plots for different rainfall regimes, which possess 
points closer to the reference line, suggested that the cumulative 10-​year dataset for each 
of the three rainfall regimes performs better. The scaled values of CF are significantly 
concentrated in the range of 0.4–​0.6 for the light rain regime, whereas the scaled values 
of AOD are widely distributed in the range of 0–​1. When the CF value is more than 0.5, 
and the AOD falls between 0.6 and 0.8, the plot seems to move closer to the reference line.

The scaled values of CF are in the range of 0.2–​0.4 for a moderate rain regime, 
which means that the vertical development of clouds does not influence the intensity 
of moderate rain. The plot shows that the points with AOD and CF in the range of 0.2–​
0.4 are much closer to the reference line, and the CF appears to be staggered with an 
increase in AOD. Low AOD might result in low CF, and an increase in AOD does not 
influence the formation of clouds for a moderate rain regime. The AOD and CF are 
in the 0.2–​0.6 range for the cluster of points that is closer to the reference line for the 
heavy rainfall regime. After the AOD crosses 0.6, the CF does not exhibit any pattern. 
During moderate and heavy rainfall, evaluating the formation of clouds at different 
AOD ranges more significant than 0.6 is challenging.

10.4.2 �O bserved Relationship Between AOD and CF Based on 
Atmospheric Stability

Theoretically, the likelihood of heavy rain increases with the K-​index value. However,  
lower K values may also lead to precipitation. Since the K-​index incorporates the  
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dewpoint depression (i.e., the difference between the temperature and dewpoint  
temperature) at 700 mb, the chance of occurrence of rain is also likely with low K  
values. But strong thunderstorms and even a lot of rain can still happen when there  
is moisture below 700 mb due to unstable air and a lifting mechanism. Scattered  
diurnal convection can produce a brief but powerful downpour in an area with high  
K values.

Table 10.2 gives the number of samples for each intensity of rainfall and cumu
lative period that satisfied the low-​warm cloud condition. The spread of CF over 
the range of AOD for different classes of K is analyzed by means of a heat map 
representation. The AOD is divided into 11 bins starting from 0 to 1.5. Heat maps, 
not shown here, are prepared for each cumulative period of study and suggest a 
strong correlation.

A CF in the range of 0.3–​0.7 has been observed in the isolated thunderstorm state 
(20°C < K <25°C) in the light rain regime for the cumulative 15-​year dataset. For 0 < 
AOD < 0.7, it is found to consistently increase. For AOD > 0.7, the rise in CF does 
not exhibit a specific pattern. The CF is found to decline when AOD is less than 0.6 
and increases further in a widely scattered thunderstorm state (25°C < K <30°C). 
The fall in CF has followed the same pattern in scattered thunderstorm states (30°C 
< K <35°C). For 0.6 < AOD < 0.9, CF did not follow a particular pattern, but later, 
for AOD >0.9, CF was found to increase consistently. The CF is almost the same for 
0 <AOD <0.9 in numerous thunderstorm states (K > 35°C). For AOD > 0.9, the CF 
is found to increase rapidly. The potential of aerosols to act as cloud condensation 
nuclei and form new clouds or form additional smaller droplets in the existing clouds 
may cause the initial decrease in CF for all four atmospheric stability states. These 
smaller droplets could delay the cloud’s lifetime, prevent collision-​coalescence, and 
even deepen the cloud due to stronger updrafts produced by the condensation process 
(Koren et al., 2005; Small et al., 2011).

From the analysis of the observed relationship between AOD-​CF for moderate 
rain regime for the cumulative 15-​year dataset, for pixels with 0.1 < AOD <0.2, the 
CF is found to increase and later decrease for 0.2 < AOD <0.9. A sharp rise in CF is 
observed for 1 < AOD <1.5 for isolated thunderstorm state (20°C < K <25°C). The 
CF is almost the same for 0 < AOD <1 in a widely scattered thunderstorm state (25°C 
< K <30°C) and then rises abruptly. For 0 < AOD < 0.4, the CF is almost the same in 

TABLE 10.2
Number of Samples Used for Analysis

Intensity 
of Rainfall Light Moderate Heavy

K-​index 5 year 10 year 15 year 5 year 10 year 15 year 5 year 10 year 15 year

20<K<25 39 827 1598   4 675 1452 70 173 339
25<K<30 57 1564 3148 –​ 1356 2904 145 411 755
30<K<35 71 2083 4420 –​ 1962 4457 219 794 1303
K>35 257 4151 7663 35 4006 7685 628 1645 2507
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a scattered thunderstorm state (30°C < K <35°C). A rise in CF is observed for 0.4 < 
AOD <0.7 and a fall for pixels with 0.7< AOD<1. For numerous thunderstorm states 
(K > 35°C), the relationship between AOD-​CF is almost the same for 0 < AOD <0.7 
and then found to decrease consistently. The increase in CF for AOD>1 might be 
due to contamination of AOD pixel data with clouds. The data analysis shows that 
the 0.7 < AOD <0.9 has invigorated the formation of fresh clouds, resulting in the 
fall of CF.

The observed relationship between AOD-​CF for heavy rain regime for a cumula-
tive 15-​year dataset implied that the CF has its peak for 0.6 < AOD <0.7 and is found 
to decrease abruptly for AOD > 0.7 in isolated thunderstorm state (20°C < K <25°C). 
In a widely scattered thunderstorm state (25°C < K <30°C), CF appears to be the 
same for 0 < AOD <0.9 and is found to rise for AOD > 0.9. The CF is found to have 
its peak for 0.4 < AOD <0.7 but does not follow a specific pattern in scattered thun-
derstorm states (30°C < K <35°C). Corresponding to numerous thunderstorm states 
(K >35°C), the CF is found to increase for two bins of AOD and decrease in the con-
secutive bin of AOD. Overall, the CF is in the range of 0.4–​0.6 for 0 < AOD <0.9 for 
all the atmospheric stability states. It can be said that aerosols help in the formation 
of clouds, but further studies are required to know whether the clouds are supported 
by updrafts such that they result in precipitation.

Table 10.3 shows the correlation between AOD and CF at different K-​indices for  
cumulative datasets. There is a positive significant correlation between AOD and  
CF regardless of atmospheric stability (Varpe et al., 2022; Zhang et al., 2022). This  
indicates that aerosol influences the cloud development process, which may result  
in precipitation. Table 10.3 shows that the correlation between AOD and CF has  
become stronger as the number of samples increased, regardless of atmospheric sta-
bility. There is a noticeable increase in cloud cover during the light rain regime, as  
evidenced by the strongest and most significant correlation between AOD and CF  
in isolated thunderstorm states. The correlation is almost the same but not statistically 
significant for scattered thunderstorm states and numerous thunderstorm states  
in light rain regimes. This describes how clouds form vertically and whether they  
produce precipitation (Constantino et al., 2013; Liu et al., 2020).

TABLE 10.3
Correlation Coefficients between AOD and CF for Various Atmospheric 
Stability States

K-​index

Light rain Moderate rain Heavy rain

5 years 10 years 15 years 5 years 10 years 15 years 5 years 10 years 15 years

20<K<25 –​0.35 0.669 0.653   0.878 0.200 0.703 –​0.422 –​0.383 –​0.464
25<K<30 0.628 0.386 0.351 –​ 0.540 0.476 0.764 0.596 0.662
30<K<35 0.131 0.287 0.509 –​ 0.080 0.633 0.28 0.306 0.283
K>35 0.401 0.208 0.499 –​0.250 –​0.711 –​0.555 0.385 0.083 –​0.061

Note:  Bold values indicate statistically correlated values at 5% level of significance.
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In the moderate rain regime, AOD and CF have a negative correlation when K>35 
for all cumulative datasets. For cumulative 15-​year data, the correlation was strongest 
and most significant for isolated thunderstorm states and widely scattered thunder-
storm states. This indicates that the atmospheric stability conditions influenced cloud 
formation. For isolated thunderstorm states, the correlation between AOD and CF 
for heavy rain regimes is found to be negative. Widely scattered thunderstorm states 
(250°C< K < 300°C) were correlated with maximum and significant values for all 
three cumulative datasets in the heavy rain regime. As the duration lengthens, the 
correlation becomes less significant for both widespread and isolated thunderstorm 
states in the heavy rain regime. In both the light and moderate rain regimes within the 
isolated thunderstorm state, the thorough analysis shows a strong correlation between 
AOD and CF. Likewise, a significant correlation is observed between AOD and CF 
in the heavy rainfall regime within the widely scattered thunderstorm state (250°C < 
K < 300°C).

10.4.3 � Spatial Distribution of AOD and CF

The distribution of AOD and CF in the study area’s light rain regime suggested 
that most of the study area is classified as low polluted. A tropical savanna cli-
mate covers nearly 173 lakh ha of low-​polluted land, while a warm semi-​arid cli-
mate covers 107 lakh ha. The cumulative 10-​year and 15-​year data show a similar 
pattern. The distribution of AOD increased with the number of samples collected 
in low-​polluted areas. In contrast, AOD distribution has decreased in moderately 
polluted areas. According to the Koppen climate classification, the AOD distribu-
tion corresponding to the low polluted region has nearly quadrupled in the humid 
subtropical region. However, in the moderately polluted region, AOD has decreased 
by 50% over a 15-​year period.

Nearly 182 lakh ha of the region in tropical savanna climate had moderate CF 
based on 5-​year data. Conversely, the CF has a moderate to high distribution in most 
tropical savanna regions, followed by warm semi-​arid regions. For a cumulative 10-​
year analysis, nearly 427 lakh ha of the study area is classified as a tropical savanna 
climate region, followed by 220 lakh ha classified as a warm semi-​arid climate 
region. Most of the humid subtropical and tropical savanna region has lower AOD. 
Nonetheless, some areas in the monsoon region have seen low and high distributions 
of AOD and CF, respectively. Overall, it can be concluded that as the number of 
samples increased, most of the study area exhibited AOD in the range of 0–​0.5. 
Similarly, the CF was in the 0.8–​0.9 range.

From the spatial distribution of AOD and CF in the moderate rain regime, it was 
clear that in 5 years, most of the tropical savanna region of 158 lakh ha experienced 
low pollution, followed by humid and subtropical oceanic highland climates. The 
cumulative 10-​year and 15-​year time periods were treated in the same manner. For all 
three cumulative time periods, moderate pollution was observed in tropical savanna 
climate and humid subtropical climate regions. It was also clear that the area with low 
pollution for cumulative 10-​year and 15-​year data has increased, while the area with 
moderate pollution has decreased significantly. The main reason for changes in AOD 
distribution can be attributed to mitigation and adaptation measures implemented by 
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the Indian government, as mentioned in the IPCC climate change reports from 2001 
and 2014. (Metz et al., 2001; Edenhofer et al., 2015; Kotrike et al., 2021) The mod
erate CF was nearly the same for all climate regions with 10-​year and 15-​year data.

The tropical savanna climate has the lowest AOD distribution across all three 
cumulative datasets, followed by the subtropical oceanic highland climate. For all 
five climate regions corresponding to heavy rain, the area with a moderate AOD dis-
tribution was the smallest. In the spatial distribution, the higher range of CF was 
limited. The majority of the population in the study area had moderate CF and low 
AOD. For all three cumulative datasets, the distribution of CF was most noticeable in 
the tropical savanna region, followed by the humid subtropical climate region.

Table 10.4 depicts the area under each climate region corresponding to light rain 
for cumulative data analysis. For low AOD distribution, the tropical savanna climate 
experienced an 11% and 13% increase in distribution for cumulative 10-​ and 15-​year 
data, respectively. On the other hand, the tropical savanna climate has decreased by 
47% and 75% distribution for cumulative 10-​year and 15-​year data, respectively, for 
the moderate distribution of AOD. For both cumulative periods, the increase in mod-
erate CF is on the higher end of the order of 35% for warm, semi-​arid climates. In 
contrast, the higher CF range has seen a decline of the order of 13% and 19% for 
cumulative 10-​ and 15-​year data, respectively.

The areal distribution of AOD and CF in the study area for moderate rain is shown 
in Table 10.5. For cumulative 10-​year and 15-​year data, the tropical savanna climate 
has seen an increase in lower AOD of about 50% and 70%, respectively. Moderate 
AOD has decreased by 35% and 39% for the same climate region, respectively. Lower 
AOD has increased by 26% and 42% for cumulative 10-​year and 15-​year datasets in 
the humid subtropical climate region. The moderate AOD is expected to decrease by 
40% and by 55%, respectively. The cumulative 10-​year and 15-​year datasets revealed 
a 35 percent increase in moderate CF in the tropical savanna climate region. The 
higher end of CF, on the other hand, has declined by approximately 8%. On the other 
hand, the humid subtropical climate region has seen a 1% and a 20% decrease in the 
cumulative 10-​year and 15-​year datasets, respectively.

Table 10.6 shows the areal distribution of AOD and CF in the study area’s heavy 
rain regime. For the cumulative 10-​year and 15-​year datasets, the tropical savanna 
climate has seen three and five times lower AOD, respectively. For the cumulative 
10-​year and 15-​year datasets, the humid subtropical climate has increased twice and 
nearly three times. A similar observation was made for the moderate distribution 
of AOD. Lower CF in the tropical savanna climate region increased by 72% over 
10 years. Lower CF have increased by 56% and 89% in the humid subtropical climate 
region. When compared to a cumulative 5-​year dataset, moderate CF increased nearly 
threefold in all climate regions.

10.4.4 � Analysis of Monsoon Precipitation Trends Based on Land 
Use Change

As of 2020, the land use composition in Southern India consists of 40.3% cropland, 
23.9% forest, 23.9% grassland, 6.2% urban areas, 2.5% water, and 2.2% pasture. 
Cropland, which occupies the largest portion of land use, has steadily increased from 
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TABLE 10.4
Areal Distribution of AOD and CF for Each Climatic Region Under Light Rain in 100,000 ha

Climatic 
region

AOD CF

Low Moderate Low Moderate High

5 year 10 year 15 year 5 year 10 year 15 year 5 year 10 year 15 year 5 year 10-​year 15-​year 5-​year 10-​year 15-​year

Aw 5.023 11.302 11.302 1.159 0.290 0.290 0.000 0.000 0.000 1.159 0.193 0.193 11.205 11.592 11.592
Am 173.006 356.252 406.966 103.070 93.313 73.028 38.736 4.443 19.416 181.604 427.734 449.469 79.017 20.479 13.524
BSh 107.610 193.388 219.566 76.216 48.878 20.672 28.593 21.058 37.190 120.844 220.049 200.730 71.289 2.222 2.995
Cwa 15.745 54.867 60.180 21.348 12.075 6.762 15.069 5.892 3.961 22.121 61.146 63.078 0.097 -​ -​
Cwb 1.256 –​ –​ –​ –​ –​ 0.869 –​ –​ 0.386 -​ -​ -​ -​ -​
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TABLE 10.5
Areal Distribution of AOD and CF for Each Climatic Region Under Moderate Rain in 100,000 ha

Climatic 
region

AOD CF

Low Moderate Low Moderate High

5 year 10 year 15 year 5 year 10 year 15 year 5 year 10 year 15 year 5 year 10 year 15-​year 5-​year 10-​year 15-​year

Aw 39.315 185.274 165.858 105.871 336.256 19.609 32.747 31.298 44.918 89.739 178.609 133.788 157.068 10.626 8.018
Am 0.966 35.065 36.707 0.097 1.835 1.352 0.000 0.000 0.000 0.483 4.443 4.540 28.786 34.292 34.582
BSh 14.393 5.892 4.347 24.149 3.961 0.097 7.341 3.381 4.057 29.076 6.375 0.386 34.389 0.097 0.000
Cwa 34.389 60.760 56.799 26.468 6.472 5.892 53.225 38.156 30.525 12.364 30.428 33.519 8.984 0.193 0.193
Cwb 17.871 43.566 56.799 0.290 0.000 5.892 5.796 5.120 10.529 13.620 33.036 30.718 18.160 5.409 2.318
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TABLE 10.6
Areal Distribution of AOD and CF for Each Climatic Region Under Heavy Rain in 100,000 ha

Climatic 
region

AOD CF

Low Moderate Low Moderate High

5 year 10 year 15 year 5 year 10 year 15 year 5 year 10 year 15 year 5 year 10-​year 15-​year 5-​year 10-​year 15-​year

Aw 41.827 123.838 200.826 23.570 47.719 36.128 29.269 50.327 81.239 33.519 117.173 152.334 2.898 4.250 3.381
Am 2.029 10.626 11.688 –​ 0.483 0.290 –​ –​ –​ 0.193 2.125 2.608 1.835 8.984 9.370
BSh 4.057 23.473 44.628 10.433 18.740 14.393 9.660 21.831 33.713 4.637 19.996 25.212 0.193 0.386 0.097
Cwa 15.456 29.076 40.474 6.569 8.018 7.631 17.291 27.144 32.747 4.830 10.143 15.552 -​ -​ -​
Cwb 17.194 30.332 34.679 –​ –​ –​ 8.211 7.824 10.626 8.790 21.155 23.473 0.193 1.352 0.580
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35.7% in 2000 to 40.3% in 2020. Similarly, urban areas have grown from 3.3% in 
2000 to 6.2% in 2020. In contrast, grassland has decreased from 30.3% in 2000 to 
23.9% in 2020, primarily due to the increase in cropland and urban development. The 
analysis also showed that the rainfall trends in the study area during the monsoon 
period have exhibited a slight decreasing trend since 2005.

Figure 10.3 shows the changes in land use and precipitation across the five climate 
zones of the study area. The primary land use type in the monsoon (Am) region  
is forest. Although more than 1000 mm of rainfall was recorded in 2010, the high  
percentage of forest cover remained stable, indicating minimal changes in land use  
despite fluctuations in rainfall. This suggests that forests may play a buffering role in  
land-​atmosphere feedback against rainfall variability (Sridhar and Valaymkunnath,  
2018). In the tropical savanna (Aw) region, more than 30% of the land is cropland,  
which has been steadily increasing since 2005. The annual rainfall during the mon-
soon period ranges from 880 mm to 1090 mm, with the highest rainfall recorded in  
2010. The abundant rainfall in 2010 likely contributed to the increase in cropland.  
The warm semi-​arid (Bsh) region, which experiences relatively low rainfall during  
the monsoon period, also has over 50% of its land as cropland. Similar to the Aw  
region, cropland is increasing while grassland is decreasing. This indicates that agri-
cultural land management in semi-​arid areas is adapting to changes in rainfall. In the  
humid subtropical (Cwa) region, higher rainfall was recorded in 2020 than in 2010.  
The majority of land use comprises cropland (32–​36%), forest (31%), and grassland 
(25–​31%). There is a trend of increasing cropland and decreasing grassland. In  
the subtropical oceanic highland (Cwb) region, cropland and forest are the primary  
land use types, with grassland also occupying a significant portion. Following high  

FIGURE 10.3  Land use and precipitation change of study area with an example of monsoon 
(Am) climate.
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rainfall in 2010, the percentage of grassland gradually decreased, while urban areas  
increased. Across all five regions, urban areas have steadily increased over the past  
15 years.

The land cover and land use analysis reveals that the monsoon (Am) region, pre-
dominantly composed of mountainous areas, exhibited the highest CF across all rain-
fall regimes. This suggests that the forest areas in this region contribute to higher 
rainfall amounts compared to other regions. The subtropical oceanic highland (Cwb) 
region also showed high CF in the moderate and heavy rain regimes, indicating that 
the significant cropland and forest areas in the Cwb region lead to higher rainfall. 
The decreasing trend in rainfall in the study area could be associated with increased 
urban development. The decrease in grassland and the increase in urban areas can 
reduce evapotranspiration, leading to reduced rainfall. While Southern India, with its 
primarily consisting of cropland, grassland, and forest, appears to be less affected by 
land use changes, unregulated conversion of cropland and urban development reduces 
grassland areas, making it challenging to respond to sudden rainfall changes during 
the monsoon period. Therefore, strategic measures are needed to address these issues.

10.5 � CONCLUSION

The effect of atmospheric stability and AOD on the macrophysical properties of warm 
clouds in southern India was studied from 2005 to 2019. The effect of AOD on pre-
cipitation was also studied for cumulative 5-​year, 10-​year, and 15-​year data.

The results of the cumulative data show a positive relationship between AOD and 
CF. The correlation is lower for cumulative 10-​year data and higher for cumulative 
15-​year data. Although there is a positive relationship for all atmospheric stability 
states, a significant correlation is observed in cumulative 10-​year and 15-​year data 
for isolated thunderstorm states. The widely scattered thunderstorm state showed a 
significant correlation over 5 years. This could be due to emissive aerosols. Emissive 
aerosols do not absorb solar radiation, amplified by their presence in clouds. This 
effect slows cloud droplet evaporation and increases cloud coverage in the study area.

The spatial distribution of AOD and CF in light, moderate, and heavy rain regimes 
is also plotted for cumulative 5-​year, 10-​year, and 15-​year data for various Koppen-​
classified climatic regions. The distribution of AOD in the study area is found to be 
low to moderate. In addition, for cumulative 10-​year and 15-​year data, there is an 
increase in the overall distribution of lower AOD in light rain areas of about 12% and 
16%, respectively. In contrast, the moderate distribution of AOD decreased by 28% 
and 60% for the cumulative datasets. Similarly, in the moderate rain regime, there 
was an increase of 32% and 47% in lower AOD and a decrease of 36% and 42% in 
moderate AOD.

For cumulative 10-​year and 15-​year data, the overall CF corresponding to 
light rain regimes in the moderate range increased by 9% and 16%, respectively, 
while the higher range decreased by 2% and 14%. As a result, moderate CF in the 
moderate region increased by 17 percent, while higher CF decreased by 8 per-
cent and increased by 4 percent. The distribution of AOD and CF in light rain is 
most visible in the tropical savanna region, followed by the warm semi-​arid cli-
mate region, whereas in moderate rain, the tropical savanna climate region and 

 

 



175Relationship Between Cloud Fraction and Aerosol Optical Depth

the humid subtropical climate region were most visible. The lower AOD found a 
threefold increase in value when compared to the cumulative 5-​year dataset in the 
heavy rain regime. The moderate AOD in heavy rain has increased by 84% and 
44% for cumulative 10-​year and 15-​year datasets, respectively. Under heavy rain, 
there was also a noticeable increase in low and moderate CF for the entire study 
area. The rise in AOD and CF could be attributed to emissions from industries that 
produce a lot of sulfates and nitrate aerosols. The consideration of atmospheric 
stability for establishing a relationship between AOD and CF is achieved for 
different rainfall regimes of peninsular India. Also, the current study contributes 
to a better understanding of cloud behavior for various AOD loadings in each cli-
mate region. The moderate and heavy loading of AOD has a significant impact on 
cloud fraction and, thus, indirectly on precipitation of the study area. The research 
can be expanded to understand the type of aerosol that influences cloud formation 
and precipitation in a specific climatic region.

The analysis of land use changes and precipitation trends in Southern India from 
2005 to 2020 has provided significant insights into the region’s climatic dynamics. 
As observed, cropland and urban areas have consistently increased, while grassland 
areas have decreased. This shift in land use is primarily driven by agricultural expan-
sion and urban development. The monsoon (Am) region, predominantly covered by 
forests, has shown minimal land use changes despite fluctuations in precipitation. 
This indicates that forests play a crucial role in buffering against precipitation vari-
ability. In contrast, regions like the tropical savanna (Aw) and warm semi-​arid (Bsh) 
have seen substantial increases in cropland at the expense of grassland, reflecting 
adaptive agricultural management practices in response to precipitation patterns. 
The observed decrease in precipitation since 2005 can be partially attributed to the 
increase in urban areas, which reduces evapotranspiration and rainfall. This trend 
underscores the need for strategic land use planning and management to mitigate the 
adverse effects of urbanization on regional precipitation patterns.
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11.1 � INTRODUCTION

As the scientific community’s ability to map and monitor land cover and land use 
change (LCLUC) has advanced, so too has our ability to understand the complex 
interactions between LCLUC and the environment including weather and climate, 
hydrology, carbon and nutrient cycling, habitat loss and fragmentation, biodiversity, 
and other Earth systems (Bergen et al., 2020; de Beurs & Henebry, 2004; Chen et al., 
2014; Justice et al., 2015; Nakalembe et al., 2022; Rappaport et al., 2018; Shevade 
et al., 2017; Thieme et al., 2020; Zalles et al., 2021, among others). Land cover and 
land use have been recognized as prominent factors impacting human health world-
wide for decades (McFarlane et al., 2013; Myers, 2012; Orlov et al., 2023), and they 
are known to play a dominant role in outbreaks of various vector-​borne and zoonotic 
diseases (Morand & Lajaunie, 2021). In malaria risk assessments, LCLUC signifi
cantly impacts vector habitat suitability and host availability (Debebe et al., 2018; 
Munga et al., 2009). For example, ecological disturbances such as forest loss have 
been shown to alter existing host–​vector–​parasite relationships (Rice et al., 2018; 
Sutherst, 2004), including the creation of new habitats for parasites and their vectors 
(Patz et al., 2008). Land use patterns have also been used to describe how humans 
are exposed to pathogenic vectors (Hoffman-​Hall et al., 2023; Vanwambeke et al., 
2007). For example, human modification of natural landscapes can bring humans dir
ectly into areas of high vector prevalence, dramatically increasing the risk of disease 
transmission, both immediately and delayed, when seasonal migrant workers return 
to populated areas (Tilaye et al., 2022). However, land use is often not prominently 
featured in disease ecology (Vanwambeke et al., 2019) and is generally considered an 
external factor influencing malaria transmission (Fornace et al., 2021). This omission 
could be partially explained by the exceptional complexity of human–​environment 
interaction and the lack of knowledge about the spatially-​ and culturally-​explicit 
interactions between people and their surrounding landscape. While extensive spa-
tially representative socio-​demographic surveys of land use are prohibitively time-​
consuming and expensive, maps derived from satellite earth observations can serve as 
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clear indicators for human activities on the landscape, increasing the ability to assess 
exposure successfully (Hoffman-​Hall et al., 2020; Wimberly et al., 2021).

The relationship between LCLUC and malaria is particularly complex and, at 
times, appears to have contradictory impacts on the occurrence of malaria. Early 
research observed a reduction of the malaria vector Anopheles nili alongside defor-
estation in Africa (Guerra et al., 2006). However, during a rapid land use change in 
Rondônia, Brazil, de Castro et al. (2006) explored the complicated phenomenon of 
“frontier malaria,” determining that malaria risk varies significantly with LCLUC 
across spatiotemporal scales. During an initial frontier expansion phase of rapid 
deforestation, the resulting ecosystem transformations increased larval habitats of 
Anopheles darlingi, one of the significant mosquito species responsible for malaria 
in the Amazonian region. Rapid deforestation has been continually demonstrated to 
lead to favorable conditions for other malaria vectors, such as Anopheles gambiae, 
Anopheles funestus, and others (Burkett-​Cadena & Vittor, 2018).

As the vector populations surge, mosquito–​human interactions spike, dramat-
ically increasing malaria incidence. Such patterns have been observed globally 
in frontier regions experiencing large-​scale land-​use transformations, including 
East Africa (Himeidan & Kweka, 2012; Lindblade et al., 2000; Rice et al., 2018), 
Amazonia (Basurko et al., 2013; de Castro et al., 2006; MacDonald & Mordecai, 
2019), and Southeast Asia (Grigg et al., 2017; Tangena et al., 2016; Yasuoka 
& Levins, 2007). However, as time progresses and land use advances toward 
establishing agriculture and urban development, malaria transmission is substan-
tially reduced (de Castro et al., 2006; Laporta et al., 2021; Valle & Clark, 2013). 
Reduction is not elimination, however, and new infection risk remains, primarily 
driven by land use behavioral factors. As the World Health Organization aims to 
eradicate malaria globally, understanding the relationship between LCLUC and 
malaria remains a high priority.

The country of Myanmar (Figure 11.1) connects South and Southeast Asia. The 
country is currently experiencing land use transformations similar to those regions 
described previously. Between 2002 and 2014, Myanmar’s intact forests declined 
at a rate of 0.94% annually, totaling more than 2 million ha of forest loss due to the 
combined pressures of severe logging, conversion to agriculture and plantations, and 
general degradation due to human encroachment (Bhagwat et al., 2017). However, a 
history of diplomatic isolation has resulted in little research concerning how this rapid 
development and land conversion may impact malaria in the country.

In 2012, Myanmar improved its international relations, leading to fruitful 
collaborations between international research teams and the Myanmar National 
Malaria Control Programme. During this time, Myanmar’s government achieved 
incredible malaria reduction success, reducing malaria cases by a staggering 95% 
from 2012 to 2020 (WHO, 2021). However, as of 2023, Myanmar bears the highest 
malaria burden in the Greater Mekong Subregion, experiencing a nearly sixfold 
increase in the malaria mortality rate from 2021 to 2022, likely related to the political 
upheaval that occurred in 2021 (WHO, 2023). Much of the work described in this 
paper was completed before this most recent political turmoil. While the observed 
malaria increase in 2022 is disheartening, the work presented here on investigating 
the role of LCLUC in malaria transmission represents tools and insights that can be 

  

 

 

 

  

  

   

  

 

 

 

 



181Role of Land Cover/Land Use in Malaria Transmission in Myanmar

FIGURE 11.1  Myanmar.
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applied to malaria intervention in-​country to regain some of the lost ground in the 
fight against malaria in Myanmar.

11.2 � RECENT ADVANCES IN LCLUC MAPPING IN MYANMAR

Remote sensing technologies have dramatically advanced data availability in 
Myanmar, increasing the ability to determine the relationship between LCLUC and 
malaria. Myanmar is considerably data-​poor, coinciding with a long history of pol-
itical and economic isolation (Hoffman-​Hall et al., 2019). However, this isolation 
has resulted in some of the most expansive swaths of intact forests across the globe. 
Following the desire to determine the level of intact forests in-​country, early LCLUC 
mapping attempts focused on forests. The earliest systematic assessment of forest 
cover was conducted by Leimgruber et al. (2005), and further forest change was 
investigated by Bhagwat et al. (2017). Both studies identified increasing deforest
ation hotspots, particularly as diplomatic isolation began to end and political and eco-
nomic reforms led to increases in large-​scale resource extraction, timber production, 
and commercial plantations, placing more significant pressures on remaining forests 
(Rao et al., 2013).

Data on other land cover types, particularly human settlements, remained sparse. 
Myanmar has attempted four recent censuses (1973, 1983, 2014, 2023), each plagued 
by political instability, civil wars, and boycotts (RFA Burmese, 2023). However, 
satellite earth observations have allowed significant success in mapping population 
distribution across other countries –​ previously unattainable without conducting a 
resource-​intensive census –​ especially for urban areas. Nevertheless, considerable 
gaps still exist for rural and remote populations globally, which experience a dispro-
portionate share of adverse health outcomes (Suwonkerd et al., 2013) and can serve 
as the main drivers of infectious disease transmission, such as malaria, into previ-
ously disease-​free regions (Martens & Hall, 2000). The United Nations estimates that 
70% of Myanmar’s population lives in rural areas (“Country profile,” 2016), with 
the most remote areas of Myanmar, typically the mountainous border regions, home 
to minority ethnic groups such as the Shan, Rohingya, and Chin, where vague land 
tenure policies result in dynamic settlements, which are constantly moving to locate 
work. Accurately and consistently mapping the population is critically important but 
nearly impossible via census under current conditions.

Developing a cost-​effective approach to mapping and monitoring the population 
distribution and engagement with the land, with a previously un-​emphasized focus 
on rural areas, was critical in identifying people at risk of malaria. Hoffman-​Hall 
et al. (2019) used satellite remote sensing to address this data gap in a cost-​effective 
and repeatable way. Previous global coarse-​resolution mapping attempts (Bartholomé 
& Belward, 2005; Elvidge et al., 2001), combined satellite and auxiliary data sets 
(Dobson et al., 2000; Doxsey-​Whitfield et al., 2015; Frye et al., 2018; Gaughan et al., 
2013), and moderate-​resolution human settlement grids (Pesaresi et al., 2015) are 
helpful in studies conducted at sub-​continental to global scales, especially in urban 
areas, but, it was determined that their output resolutions limit their ability to map 
small, isolated rural settlements with fine spatial precision. Similarly, very high 
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resolution (VHR) satellite data was limited due to a lack of a VHR dataset with a 
high repeat frequency and free public availability, limiting the usability of VHR in 
resource-​poor Myanmar. Hoffman-​Hall et al. (2019) argued that moderate spatial 
resolution remote sensing data (10–​90 m) could offer a compromise between the fine 
spatial resolution of VHR data and the frequent temporal resolution of coarse spatial 
resolution data.

However, at the moderate resolution, settlements will present a mixed spectral 
signal of roof material, trees, bare ground, and other minor signals. For this reason, 
Landsat and other moderate-​resolution datasets had previously been considered 
insufficient to map small human settlements (particularly those < 30 m across in size, 
smaller than the dimensions of a Landsat pixel). Indeed, mapping structural proper-
ties (such as metal roofs vs. thatched roofs) remains challenging due to these spectral 
constraints. Hoffman-​Hall et al. (2019) took advantage of long-​standing archaeo
logical methods, where ancient human settlements are most often discovered in areas 
with modern-​day favorable settlement conditions, such as areas of shallow slopes 
close to fresh water. Applying this framework to contemporary settlements, spectral 
signatures were combined with contextual human behavior information to bolster the 
limited spectral separability of the fine-​scale built environment signal within 30 m 
pixels for a remote region in Myanmar, Ann Township, which houses a highly mobile 
population of isolated rural communities. Auxiliary geospatial data that describes 
relationships common to human settlements were incorporated, for example, dis-
tance to roads, distance to water sources, elevation, and distance to recent active fire 
as mapped by either the Moderate Resolution Imaging Spectroradiometer (MODIS) 
(Giglio et al., 2016) or Visible Infrared Imaging Radiometer Suite (VIIRS) active fire 
products (Schroeder et al., 2014). Active fire detection via satellite was identified as 
a highly valuable data source due to the widespread slash-​and-​burn land clearing and 
management practices (taungya) (FAO, 2020). Although Myanmar has considerable 
wildfire occurrence, nearly all fires are ignited by people (Lay, 2022) and, therefore, 
serve as a strong indicator of human presence in the landscape since fire is other-
wise not natural in deciduous tropical forests (Murphy & Lugo, 1986). This fusing 
of moderate-​resolution satellite earth observations with auxiliary geospatial datasets 
successfully located settlements across Ann Township, significantly increasing the 
number of rural settlements over previous census results.

Building on the successful mapping of Ann Township settlements, the method-
ology was refined and expanded to identify settlements across the country. Chen 
et al. (2021) developed a land cover classification map for all of Myanmar, expli
citly supporting malaria research and interventions. Therefore, the classification 
scheme prioritized land cover classes related to human exposure to malaria vectors 
and classes associated with the habitat suitability of the malaria vector. Through the 
implementation of a hierarchical classification scheme alongside the locally signifi-
cant village algorithm, a land cover classification was produced that offered a more 
spatially comprehensive representation of classes related to human presence than 
other similar datasets, such as the SERVIR Mekong land cover dataset (Saah et al., 
2020), Global Human Settlement Layer (Corbane et al., 2019), and Global Human 
Built-​up and Settlement Extent (Wang, 2017).
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11.3 � CONNECTING LCLUC TO MALARIA

Several human behaviors and activities have been linked to increased exposure to 
vector-​borne diseases across the globe. In French Guiana, mining has been associated 
with leptospirosis, logging with cutaneous leishmaniasis, and slash-​and-​burn agri-
culture with hantavirus pulmonary syndrome (de Thoisy et al., 2021). In Belgium, 
forest and farm workers have an increased risk of nephropathia epidemica and Lyme 
borreliosis (Barrios et al., 2012). For malaria in the Greater Mekong Subregion spe
cifically, forest work and staying in the forest overnight have been shown to increase 
the risk of malaria in Vietnam (Erhart et al., 2005), while short-​ and long-​term forest 
workers were a high-​risk group in Lao PDR (Kounnavong et al., 2017). Similarly, 
rubber farmers and tappers in Thailand have increased exposure to malaria vectors 
(Bhumiratana et al., 2013). Narrowing further to Myanmar, forest-​related activ
ities, including agriculture, wood, and bamboo cutting, have been associated with 
an increased risk of malaria (Soe et al., 2017; Zaw et al., 2017). However, collecting 
this type of occupational and activity data is generally cost-​prohibitive. Therefore, 
capturing potential occupation-​ or livelihood-​related malaria exposure is desirable 
through satellite-​based LCLUC mapping. LCLUC maps can be used as a proxy for 
human activity on the landscape, allowing for incorporating livelihood exposure 
metrics into malaria models.

Recent work in Myanmar (Chen et al., 2021; Hoffman-​Hall et al., 2023; 
Hoffman-​Hall et al., 2020; Li et al., 2023; Shevade et al., 2021) has sought to con
textualize moderate-​resolution remotely sensed land cover data using survey data 
that questions how people live, work, and travel through their landscape, to define 
criteria for easy-​to-​implement remote sensing methodologies that can increase the 
efficiency of targeted malaria elimination strategies. Participants were surveyed on 
the frequency, duration, and timing of six land use activities: (1) attending to crops/​
farming; (2) working at plantations; (3) working at mining areas; (4) traveling to 
refugee camps; (5) conducting household chores that involve trips to the water; and 
(6) conducting household chores that involve trips to the forest (e.g., hunting, fire-
wood and construction material collection, fruit gathering). Participants were also 
asked how far they traveled to work and what times of day they conducted this travel. 
Each participant provided their primary occupation, indicating if that occupation was 
primarily indoor or outdoor and if it was seasonal. Lastly, all participants provided a 
blood sample to reveal the presence of malaria parasites in their blood.

To determine which land covers are most significantly linked with malaria, a 2 km 
radius surrounding the participants’ village center was selected to be the spatial unit 
analyzed, consistent with the flight range of Anopheles dirus, the principal malaria 
vector in Myanmar (Oo, 2003). For residents of Ann Township, Myanmar, the odds of 
malaria infection increased by 1.96 per 1 square kilometer increase in natural forest 
cover near their village of residence (OR: 1.96, 95% CI: 1.60–​2.41) (Hoffman-​Hall 
et al., 2020). Conversely, villagers living near croplands experienced decreased mal
aria risk unless they were directly engaged in farm work. However, it was surmised 
that the “protective” effect of croplands is due to the minimizing of the “riskier” LC, 
natural forest, and not necessarily an indication that croplands are “safe” (Hoffman-​
Hall et al., 2020).
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Following the increased risk of malaria for participants living near an area of 
high natural forest land cover, the land use factors that contributed most signifi-
cantly to increased malaria risk were those that put people in direct contact with 
forests, including conducting forest chores, having an outdoor job, and having a pri-
mary occupation in the logging and plantation industry (Hoffman-​Hall et al., 2023). 
Beyond participating in forest work, forest workers also encountered the highest mal-
aria exposures in their daily travel patterns (Li et al., 2023). However, participants 
engaged in a wide diversity of land use activities outside of their primary occupation, 
with many participants who did not claim forest-​related occupations interacting with 
the forest environment in other ways, such as through chores (Shevade et al., 2021). 
For the non-​working population, day-​to-​day chores constituted their primary land-
scape interaction, with survey respondents identifying as students and dependents 
also engaged in land use activities through water –​ and forest-​related household 
chores in addition to farming and plantation work. In regions with high levels of indi-
vidual land use behavior diversity, remote sensing is a powerful tool for identifying 
areas where people may come into contact with land cover types not immediately 
apparent from their primary occupation title.

These results naturally point to a potential link between deforestation and malaria. 
Similar to the high deforestation rates between 2002–​2014 (Bhagwat et al., 2017), the 
study region experienced significant forest cover loss as mapped by the Global Forest 
Change dataset (Hansen et al., 2013) from 2014–​2018. Notably, one village lost 
3.86 sq km of forest out of the 12.56 sq km village analysis area during this period 
(Hoffman-​Hall et al., 2023). However, no significant association between the amount 
of local deforested land and malaria was found, except for a substantial decrease in 
the risk of malaria for villagers living in an area with high amounts of deforestation 
within the year of blood sample data collection (2018).

These results could be explained by the differential vector abundances in the 
future land use of a deforested area. For example, the land cover results indicate 
that forested landscapes allow for higher malaria exposure than croplands; there-
fore, if the deforested site is later converted to croplands, it could lower the risk of 
malaria for that area. However, a high amount of forest conversion in Myanmar is 
clearing natural forests for conversion to plantation. A study from along the China-​
Myanmar border found that the pupation rate of Anopheles minimus increased from 
3.8% in natural forest (tropical rainforest) to 12.5% in banana plantations to a sub-
stantially higher 52.5% in deforested areas (X. Wang et al., 2016). To our knowledge, 
no such study exists for the natural bamboo and mixed deciduous forests of Ann 
Township, nor the rubber and teak plantations that dominate. However, it is highly 
likely that these factors greatly influence vector abundance. A study that quantifies 
vector species abundance along the continuum of forest, to clear, to cropland, or plan-
tation would be a welcome addition to the literature. The large number and diversity 
of Anopheles species (>20) known to transmit malaria in Southeast Asia (Van Dung 
et al., 2023) make it extremely difficult to develop a detailed understanding of the 
impact of LCLUC on malaria-​transmitting vectors and their populations. However, 
this understanding is critical for the malaria elimination agenda as new evidence 
emerges of changes in mosquito biting behavior and, subsequently, the effectiveness 
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of existing protective interventions. Satellite remote sensing lends itself well to pro-
curing the necessary land cover time series analysis to assess this relationship.

11.4 � CONCLUSIONS

Advances in LCLUC mapping via satellite remote sensing have significantly 
contributed to understanding malaria transmission in Myanmar. Amidst the recent 
political turmoil in Myanmar, employing remote sensing in land cover mapping 
has become even more critical for malaria elimination. The unrest has disrupted 
healthcare systems and hindered on-​the-​ground efforts to combat malaria and obtain 
data. As described here, remote sensing technologies have been pivotal in identifying 
and monitoring land cover and land use factors contributing to the spread of malaria. 
By utilizing remote sensing, health practitioners and researchers can gather essential 
data for accurate risk assessments, allowing for targeted interventions and resource 
allocation even in areas that may be difficult to access due to political instability. 
This technological approach becomes imperative for supporting the ongoing efforts 
to eliminate malaria, ensuring that public health initiatives can adapt to and address 
the challenges presented by the complex socio-​political landscape in Myanmar.
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12.1 � INTRODUCTION

The capacity of the Thai government to manage natural and environmental resources 
has dramatically improved with the advent of remote sensing technology. Thai citi-
zens, who regularly watch television, are becoming increasingly familiar with using 
GIS maps to display forest fire hotspots and the scope of flooding. In meeting rooms, 
GIS maps are relied upon to show areas where paddy rice is grown during the dry 
season despite opposition from irrigation officials. Risk mitigation measures, such 
as crop insurance, are being developed based on the growth levels of crops before 
damage occurs. Additionally, fishing boats in the open ocean are monitored to ensure 
compliance with European Union regulations. The authors are convinced that remote 
sensing technology can improve the lives of ordinary people—​provided that better 
information is placed in the hands of agencies that are mandated to take action upon 
receiving new, validated information from the ground.

Geo-​Informatics and Space Technology Development Agency (GISTDA), 
Thailand’s space agency, is at the forefront of remote sensing technology, human 
resources, and access to GIS resources in the country. As part of the plan stemming 
from the launch of the THEOS-2 satellite, which was placed into orbit in October 
2023, GISTDA developed a tool to enable stakeholder engagement in regulatory 
policy formulation, thus promoting legitimacy and compliance. The tool called the 
Actionable Intelligence Policy (AIP) Platform, was designed to support area-​based 
development, with two pilot sites selected. One site is in the northern Thai province 
of Nan, where upland agriculture is under pressure to be converted back to forest. 
Still, there is also a need to generate enough livelihoods to win over current occupants 
of formerly encroached forest land. The other site focuses on deepening the devel-
opment of the manufacturing industry in the Eastern Economic Corridor (EEC) to 
develop new industries and escape the middle-​income trap.
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The unique lessons learned from the introduction of AIP Nan and AIP EEC are 
crucial for the country to better utilize remote sensing to its full potential. One of the 
biggest lessons learned is that when information generated from space is combined 
with ground-​level data, it can better inform public decision-​making. Ground-​level 
data, generated for in-​house use, can be administrative data that is increasingly avail-
able as agencies digitize their operations. However, the process of data sharing, 
mainly through the synchronization of ground-​level data with data from space, is 
delicate. GISTDA’s experiment with AIP has succeeded in the EEC and is still a work 
in progress in Nan. When it was successful, it was almost an accident, as the agency 
that adopted the AIP EEC tool was not initially tasked with synchronizing industrial 
development in the EEC. Instead, it was the water resource agency that had a closely 
related coordination function and a strong incentive to use GISTDA’s AIP EEC tool 
to improve how it carried out its mandate.

The purpose of this study is to share the story that emerged from interviews 
with developers and stakeholders, as well as field research for data validation. The 
story highlights Thailand’s recent experience in applying remote sensing tech-
nology through developing and adopting its Actionable Intelligence Policy (AIP). 
Section 12.2 begins by discussing what has become familiar to Thailand’s television 
viewers—​the use of remote sensing technology for monitoring forest fires. It raises 
the question of whether and to what extent these fires are accompanied by forest 
clearing. The study was not successful in answering this question directly because the 
forest clearing data is highly sensitive, so maize was used as a proxy to illustrate the 
challenges in data availability. A remedy for this issue is recommended. Section 12.3 
introduces the technology behind AIP, while Section 12.4 discusses the ecosystem 
that enables the effective use of data from space. It also outlines priority actions for 
policy audiences to maximize the benefits of remote sensing technology. Section 12.5 
concludes the study with a summary and final thoughts.

12.2 � WHAT DO FIRE STATISTICS TELL US, IF ANYTHING, ABOUT 
FOREST COVER LOSS?

Data on fire statistics for Thailand from 2001 to 2023, courtesy of Dr. Krishna 
Vadrevu from NASA’s Marshall Space Flight Center in Huntsville, Alabama, USA, 
was obtained from the MODIS MCD54A1 (version 6.1) dataset, with a resolution 
of 500 m (Figures 12.1(a)–​(b), 12.2(a)–​(d)). The total burnt area over the 23 years 
is shown on the left-​hand side panel, with a slight declining trend. The data is fur-
ther broken down into three different land cover types: cropland (green), grassland 
(brown), and forest fires (red).

In Figure 12.2, panels (a), (b), and (c) show the 23-​year trends for land scars 
caused by forest fires, cropland fires, and grassland fires, respectively. The burnt areas 
due to grassland and cropland fires are showing declining trends, while the trend for 
forest fires is slightly increasing. The pie chart in panel (d) indicates that, on average, 
burnt areas under forest fires account for 35% of the total, while cropland and grass-
land fires account for 59% and 6%, respectively.

Time series data on forest cover loss for 2001–​2023 was obtained from Thailand’s  
Royal Forestry Department. A correlation test was performed between the fire  
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FIGURE 12.1  (a) Total burnt areas in Thailand (ha) and (b) burnt areas in Thailand by land 
cover types.

FIGURE 12.2  (a), (b), (c) 23-​year trend of land scar for each land cover types and (d) burnt 
area percentage.
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statistics and the forest cover loss data. Still, the result suggested that the correl-
ation is statistically insignificant, meaning no significant relationship between the  
two datasets was detected. Therefore, the forest cover loss data is not shown here.

A closer examination at the provincial scale revealed that forest cover loss is 
concentrated in northern Thailand, particularly in the headwaters of the Chao Phraya 
River, which feeds into the central plain. Forest cover loss is a significant issue in land 
cover and land use change in Thailand, often driven by unsustainable agricultural 
practices, mainly maize and corn cultivation. Addressing this challenge requires well-​
informed and targeted policies. However, even when such information is available, 
agencies are sometimes subject to self-​censorship.

One exception is the data in Table 12.1, which suggests the cropped area for 
maize. Researchers at CMU’s GISTNORTH conducted this analysis for Greenpeace, 
showing that the maize-​growing area in eight provinces of upper northern Thailand 
increased from 621,279 rai (with 6.25 rai equaling one hectare) in 2002 to 2,430,419 
rai in 2022, a growth over 20 years. Nan has the largest maize-​growing area, though 
the trend is declining.

The rise in maize cultivation is likely due to a reduction in other forest cover 
types. It is unlikely that virgin forests will be converted into maize-​growing areas; 
instead, shifting cultivation fields and secondary forests will be replaced, according 
to Agrawal and Lumpkin (2024). However, Nan is one of the areas in northern 
Thailand that has experienced communist insurgency against the government since 
the late 1960s. By the mid-​1970s, the military adopted a new tactic to win over 
sympathizers, investing in constructing a road network and allowing the local popu-
lation to access land, which was subsequently turned into farmland. This fits with 
the pattern of land use conversion linked to improved market access, supported by 
Von Thünen’s model, and the experience of road networks and ranchland replacing 
forest cover in Brazil.

TABLE 12.1
Maize Cultivation Area (Rai)

Provinces\Year 2002 2007 2012 2017 2022

Chiang Mai 36,080 180,103 175,273 184,166 286,816
Lamphun 47,654 80,684 97,728 83,439 78,627
Lampang 21,849 169,358 189,462 232,444 276,475
Phrae 56,900 318,666 250,604 286,537 221,384
Nan 182,414 798,567 786,581 637,231 608,923
Phayao 133,974 318,054 347,567 271,571 220,410
Chiang Rai 117,899 457,247 565,471 387,449 336,014
Mae Hong Son 24,509 67,338 89,778 71,477 101,770
Total 621,279 2,390,017 2,502,464 2,154,314 2,430,419

Source:  Greenpeace and GISTNORTH.
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12.3 � TECHNOLOGY FOR INTERVENTION: GISTDA’S ACTIONABLE 
INTELLIGENCE POLICY (AIP) PLATFORM

GISTDA (Geo-​Informatics and Space Technology Development Agency) is a public 
organization owned by the Thai government and tasked with developing and applying 
geoinformatics, space technologies, and geographic information systems (GIS). This 
section introduces the Actionable Intelligence Policy (AIP) Platform as both a policy 
tool and an outcome-​based approach to policy development. The AIP platform is 
built on an integrated data system that combines remotely sensed data from space 
with ground-​level data. This solution leverages the information and communication 
technology (ICT) infrastructure available in Thailand, along with the country’s new 
satellite, THEOS-​2, which has been in orbit since 2023.

12.3.1 �W hat is AIP?

The Actionable Intelligence Policy (AIP) platform, developed by GISTDA in 2018, 
enhances policymaking in Thailand by providing concrete, evidence-​based insights 
using Earth Observation (EO) data. The concept behind AIP is rooted in “Actionable 
Intelligence” (Fantuzzo and Culhane, 2015), which emphasizes how integrated data 
systems can drive more effective and efficient decision-​making, particularly within 
government sectors.

As shown in Figure 12.3, the AIP Ecosystem begins with integrating multi-​source 
data, primarily EO data from satellite imagery. This raw data is processed into 
various geospatial products, such as land use and land cover (LULC) maps, Digital 
Elevation Models (DEM), flood maps, and urban maps. These products are crucial 
for policymakers to monitor, analyze, and make data-​driven decisions. AIP serves two 
key functions: (1) identifying problems in specific areas using measurable and quanti-
tative insights known as ‘indicators,’ and (2) simulating the effects of different policy 
interventions on these indicators. By doing so, AIP enables the design of policies that 
align with local, national, and future priorities, allowing policymakers to foresee both 
positive and negative outcomes before implementation.

The AIP development process can be broken down into the following steps:

FIGURE 12.3  AIP ecosystem.
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(a)	 Problem Statement
		 The initial step involves defining an apparent problem to be addressed and 

the geographic scope, typically at the provincial level. The problem statement 
should align with local or national policies, and a comprehensive list of 
stakeholders should be identified. These stakeholders may include those 
interested in the results, users of the AIP, and those affected by or contrib-
uting to the policy (e.g., through data provision). Early engagement with 
stakeholders is essential to ensure their requirements are met.

(b)	 Indicators Design
		 The second step involves identifying indicators that represent the magnitude 

and location of the problem. These indicators are often linked to established 
measures such as the Sustainable Development Goals (SDGs) and The Human 
Development Index (HDI). Some indicators may consist of sub-​indicators 
that support a more significant measure. The designed indicators should be 
reviewed and confirmed by stakeholders.

(c)	 Identify Data Sources
		 Once the indicators are identified, the next task is determining which data 

sources are needed to develop them. For AIP, EO data products are prioritized. 
These products have been created by GISTDA to serve specific missions and 
are categorized into six dimensions as follows:
	• Mapping –​ such as satellite-​based maps and other basic products like 

Digital Elevation Models (DEM) and land use and land cover (LULC).
	• Agriculture –​ such as crop classification, crop health monitoring, and 

yield predictions.
	• Water Management –​ such as surface water monitoring.
	• Urban –​ such as urban maps, building footprints, urban green areas, and 

3D building models.
	• Disasters –​ such as flood monitoring, historical floods, fire hotspots, 

PM2.5, and other aerosol data.
	• Natural Resources –​ such as forest areas, mangrove areas, and carbon 

credit maps.
	   However, EO data alone may be insufficient to cover some issues. 

External data sources, such as surveys and public records, may also be 
necessary, with stakeholder input helping to identify relevant data.

(d)	 Indicators Development
		 After gathering the necessary data, the next step is to develop the indicators. 

Some indicators, like population density, can be derived directly from the 
data, while others may require more complex scientific methodologies, as will 
be described below for AIP-​NAN and AIP-​EEC.

(e)	 Dashboard Development
		 The final step is creating a visualization dashboard to present integrated 

geomatics information and other data results. This dashboard gives decision-​
makers a comprehensive view of the indicators, helping them simulate action 
plans, assess potential outcomes, and make informed policy decisions before 
implementation.
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12.3.2 � AIP to Support Policymaking

Policymaking is a complex process often involving multiple stakeholders, diverse 
interests, and various contextual factors. AIP addresses these complexities by pro-
viding objective, data-​driven insights that guide decision-​making throughout the 
policy cycle. Drawing from the five stages of the policy cycle (Howlett and Ramesh, 
1995), AIP supports each stage as follows:

	• Agenda Setting: The policy agenda overview is the primary input for 
developing the AIP. Additionally, the AIP can strengthen agenda setting by 
providing relevant indicators that emphasize the issue’s importance.

	• Policy Formulation: Policymakers can develop multiple policy options based 
on the observed indicators and other supporting data.

	• Decision Making: AIP provides scenario-​based simulations for each policy 
option. Policymakers can see the potential impacts, both positive and nega-
tive, before launching the policy, which allows them to select the most appro-
priate option for implementation.

	• Policy Implementation: AIP provides an evidence-​based rationale to align 
stakeholders at all levels and ensure coherent implementation.

	• Policy Evaluation: After implementing the policy, AIP monitors actual outcomes 
and compares them with the simulations, suggesting adjustments if necessary.

To demonstrate the feasibility of using geospatial data to support policy decision-​
making, GISTDA has developed proof-​of-​concept AIP platforms in two key areas: Nan 
province and the Eastern Economic Corridor (EEC) of Thailand. These platforms, 
AIP-​NAN and AIP-​EEC, exemplify how the AIP ecosystem can be applied to real-​
world policy challenges, following the policy cycle and contributing to evidence-​
based governance.

12.3.3 � AIP-​NAN: A Bottom-​Up Approach

AIP-​NAN addresses specific regional development challenges in Nan province 
by leveraging EO data to support local policymaking and sustainable develop-
ment. Deforestation has become a chronic issue in Nan province, driven by a lack 
of arable land, limited agricultural knowledge and practices, poverty, and agricul-
tural expansion, particularly maize cultivation. Standard deforestation practices, 
including logging and slash-​and-​burn techniques, transform forested areas into maize 
plantations. A previous study by Agarwal and Lambin (2024) highlighted this issue 
of forest loss from swidden cultivation. Additionally, the intensive use of chemicals 
in maize cultivation leads to land degradation, water pollution, and soil contamin-
ation. Local communities grow maize primarily for animal feed, creating a “vicious 
cycle” of low incomes and ecological damage, including deforestation, increased CO

2
 

emissions, water pollution, and soil erosion. Therefore, the primary challenges in Nan 
province include reforestation, environmental restoration, and increasing local com-
munity income. Improving regional income strategies must consider land limitations, 
and poverty alleviation remains a key policy objective.
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While forest management policies are crucial, they remain under-​researched. The 
absence of precise mechanisms to manage conflicts over forest land between local 
communities and authorities in Nan province has led to strong resistance from local 
people against relocation and continued use of forest areas. The Thai government 
aims to end deforestation and reclaim forest land from local communities. One ini-
tiative, the Nan Sandbox, is a public–​private partnership to end deforestation in the 
province. It promotes a land policy model known as “72-​18-​10,” in which 72% of 
the area is preserved forest, 18% is designated for reforestation with economic crops 
grown under tree cover, and 10% is fully permitted for crop cultivation. Understanding 
forest change patterns is crucial for policymakers in developing effective land use 
plans for Nan province.

AIP-​NAN supports local policymakers in balancing forest ecosystem manage-
ment with the economic needs of the local population. The indicators used in AIP-​
NAN are categorized into two main aspects: Natural Resources and Economics. The 
indicators and sub-​indicators were developed through interview workshops with 
local stakeholders, including community leaders, local government agencies, and 
representatives from educational institutions. This step is a critical component of AIP 
development, as the indicators reflect the current status of Nan province. Selecting the 
appropriate indicators ensures that the AIP aligns with the priorities and concerns of 
local stakeholders, accurately representing their interests.

The Natural Resources indicators include four main sub-​indicators: Good Soil, 
Good Forest, Good Water, and Disaster Security. Each sub-​indicator is derived from 
different EO data sources and other secondary data, as described below.

	• Good Soil: This indicator consists of two sub-​indicators. The first is soil 
erosion, which reflects the erosion occurring in agricultural areas, calculated 
using the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 
1978). It considers rainfall, soil texture (e.g., the relative content of silt, clay, 
loam, and sand), crop management, soil conservation practices, and topog-
raphy (e.g., slope length and steepness). The second sub-​indicator is land suit-
ability, calculated from rainfall, temperature, soil properties, and topography.

	• Good Forest: This indicator includes three sub-​indicators: forest area, the 
ratio of agricultural land to reserved forest, and cohesion of the forest. The 
cohesion of the forest reflects the overall health of the forest by assessing 
its fragmentation within the landscape, which indicates habitat connectivity 
(Laurance et al., 2011).

	• Good Water: This indicator primarily focuses on the availability of water 
resources within the area, emphasizing surface water, which can be directly 
measured using EO data.

	• Disaster Security: This indicator assesses flood and drought risks, derived 
from historical flood and drought records.

The economic indicator primarily measures land productivity for each parcel. 
It is calculated by considering the suitability score of the grown crop (obtained from 
the Land Development Department), crop yield (derived from literature review and 
Thai statistical records), and crop price (from the Office of Agricultural Economics).
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	 Land Productivity =​ Suitability × Crop Yield × Price	

Once these indicators are calculated, they are visualized on the AIP dashboard, 
allowing policymakers to understand the overall characteristics of Nan province at 
the sub-​district (Tambon) level. Figure 12.4(a) shows the Natural Resources Indicator 
at the sub-​district level, highlighting that the central area of Nan province, predom-
inantly residential, has lower scores for natural resources. However, some reserved 
forest areas also show low natural resource scores, indicating deforestation issues. 
Figure 12.4(c) displays the Economic Indicator for Nan province, derived from land 
productivity data. A comparison reveals that areas with higher economic scores gen-
erally have lower natural resource scores, reflecting the common practice of using 
land for agriculture without regard for the ecosystem. However, some areas with 
high economic scores also have medium to high natural resource scores, indicating 
effective practices of cultivating ‘forest-​friendly’ crops that sustain forest ecosystems 
while generating adequate income for local communities.

Once AIP identifies the current status of Nan province through various indicators,  
the next step is to develop strategies to solve existing problems –​ specifically,  

FIGURE 12.4  (a) Natural resources indicator in Nan province, (b) reserved forest in Nan 
province, (c) economic indicator in Nan province, represented by the Land Productivity Index.
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improving the forest ecosystem without negatively impacting the local economy.  
One extreme solution would be to reclaim all forest areas from local communities  
to comply with the 72-​18-​10 policy. However, this would severely impact the local  
economy. After recalculating the economic and natural resource indicators following  
the reclamation of forest areas, land productivity in Nan province would decrease by  
54%, while natural resources would improve by 24.5%. This is not an optimal solu-
tion. A more practical approach involves a ‘bottom-​up’ strategy: if converting some  
agricultural land back to forest is necessary, what is the best alternative? One possible 
solution is to reduce agricultural land while transitioning to higher-​value crops,  
considering the land’s suitability and the local population’s skills.

The previously mentioned land suitability analysis was used to identify alternative 
crops for replacing maize. Key attributes of each land parcel, including rainfall,  
temperature, soil properties, and topography, were calculated and matched with crop  
profiles provided by the Land Development Department. As illustrated in Figure 12.5,  
the AIP dashboard provides recommendations for crops suitable for specific areas,  
enabling policymakers to promote environmentally sustainable and familiar options  
to local farmers. By selecting a crop parcel (e.g., an orange area representing corn),  
the AIP system displays alternative crop options along with their suitability scores.  
For instance, Figure 12.5 indicates that vegetables, with a suitability score of 0.71,  
are the best alternative to replace the selected corn parcel. While additional factors  
such as the landowner’s skills, market demand, and economic viability must also be  
considered, the AIP serves as an initial guideline. This empowers local policymakers  
to collaborate with communities to facilitate a transition from corn and maize to more  
forest-​friendly crops.

FIGURE 12.5  Alternative crops recommended by AIP for the selected land parcel. The 
higher number of scores, the more suitable of the crops.
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By integrating earth observation data with local survey data, AIP-​NAN provides a 
comprehensive overview of the region. This unified dashboard allows all stakeholders 
to access essential information in one place. Residents can see how their agricul-
tural activities affect forest areas, while policymakers can identify regions suitable for 
‘forest-​friendly’ crops. Although the dashboard alone cannot drive policy implemen-
tation, it is a critical starting point, enabling policymakers to make informed decisions 
based on scientific evidence.

12.3.4 � AIP-​EEC: A Top-​down Approach

The Eastern Economic Corridor (EEC) encompasses three provinces in 
Thailand: Chachoengsao, Chonburi, and Rayong. It is set to become a vital hub for 
trade, investment, tourism, and regional transportation, serving as a modern gateway 
to Asia. The AIP-​EEC initiative aims to foster economic growth in this region by util-
izing Earth Observation (EO) data to monitor and optimize various aspects of devel-
opment. With the introduction of the Thailand 4.0 policy, the government is focusing 
on developing new growth hubs, starting with the EEC, to support and accelerate 
economic expansion. Water management in the EEC has been recognized as a critical 
factor due to its essential role in daily life, economic progress, and environmental 
sustainability.

The AIP-​EEC platform enables the comparative analysis of conditions before and 
after the implementation of the EEC initiatives, incorporating insights from surveys 
of the public and various stakeholders in the region.

A study by the Office of the National Water Resources (ONWR) predicts that 
water demand in the EEC will increase by nearly 30% by 2037 compared to 2017, 
potentially leading to water shortages (OECD, 2022). To address this issue, ONWR 
has developed a comprehensive plan that includes several large-​scale projects, such 
as constructing reservoirs, initiating water diversion programs, and implementing 
other measures to mitigate the anticipated water scarcity. However, these projects 
have faced objections due to concerns about their potential environmental impacts 
and skepticism about their overall effectiveness and value.

To reconcile these differing perspectives, AIP-​EEC provides scientific evidence 
to visualize future water scarcity. By integrating hydrological and geospatial data, 
AIP-​EEC can accurately identify areas at risk of water shortages in the future. Like 
AIP-​NAN, AIP-​EEC uses specific indicators derived from EO and other data to char-
acterize and identify regional challenges. For the EEC, the Water Stress Index (WSI) 
has been developed as a primary indicator of water scarcity in the area and given as

	 WSI
Demand

Supply
%( ) = ×100 	

Earth observation data, such as land use and land cover (LULC), is critical for calcu-
lating water demand and supply. LULC data helps identify supply sources, such  
as water bodies, and various demand sources, including agricultural (based on agri-
cultural land use), domestic (from urban land use), and industrial (from industrial  
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land use). Table 12.2 outline the core data required for WSI calculations. In addition  
to EO data, secondary data from relevant organizations such as the Royal Irrigation  
Department (RID) is also necessary.

Various established scientific models are used to calculate water demand and 
supply, such as the Soil and Water Assessment Tool (SWAT) for water supply 
calculations and the Blaney–​Criddle method (Blaney and Criddle, 1950) for agri
cultural water demand calculations. These models allow for estimating the current 
Water Stress Index (WSI). However, the challenge for the EEC lies in forecasting 
future water stress amid the development of multiple mega-​projects and a growing 
population.

Future data are essential to estimating future WSI. The Eastern Economic Corridor 
Office of Thailand (EECO) has provided projections for future land use and land 
cover (LULC). However, some assumptions are required, such as maintaining the 
types of crops currently grown. Additionally, future population estimates have been 
studied and provided by the EECO. Figure 12.6 illustrates the projected WSI in 2037 
at the sub-​basin level, with critical areas marked in red.

Recognizing the severity of future water scarcity in the EEC, proactive mitigation  
plans must be initiated. The ONWR, Thailand’s national policymaker for water  
management, has proposed several projects, including reservoir upgrades, new water  
diversion systems, and the construction of additional reservoirs and water sources.  
These initiatives aim to enhance water storage capacity during the rainy season,  
when excess water often leads to flooding, and to ensure sufficient water availability  
during the dry season. The AIP-​EEC platform supports this effort by simulating  
“what-​if” scenarios, allowing policymakers to evaluate these proposed projects’  
potential impacts and effectiveness. The data on future projects are sourced from  
ONWR. Figure 12.7 demonstrates the improvement in water scarcity, represented  
by the WSI in the EEC area in 2037, following the implementation of Action Plan 1  
(comprising 13 projects) and Action Plan 2 (comprising 29 projects). This simula-
tion enables policymakers and stakeholders to visualize the benefits of these projects  
and determine whether they are sufficient or if further measures are needed. Thus,  

TABLE 12.2
Core Data for Water Demand and Water Supply Calculations

Indicators Sub-​indicators Data

Water Demand Agriculture water demand LULC, Crop coefficient (Kc), Rainfall, 
Temperature

Industrial water demand LULC, water requirement for each 
industrial type

Domestic water demand LULC, population data, water consumption 
per capita

Water Supply Natural flow LULC, Topography, Soil types, Rainfall, 
Temperature

Reservoirs Reservoir data, Waterway infrastructure, 
Water transfer pump data
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AIP-​EEC provides a holistic view, facilitating a comprehensive understanding of  
the area’s water management challenges and enabling more effective problem-​ 
solving. EO data plays a crucial role by offering scientific evidence of the area’s  
characteristics.

However, AIP-​EEC also faces certain limitations. First, the level of engagement 
with local stakeholders is relatively lower compared to AIP-​NAN. This is a critical 
aspect, as implementing some projects must account for their broader impacts on 

FIGURE 12.7  Water Stress Index of the EEC area in 2037, from left to right: without any 
intervention, with Action Plan 1 (13 projects), and with Action Plan 2 (29 projects).

FIGURE 12.6  Water scarcity levels in the EEC area in 2037.
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local communities beyond the immediate benefits of water management. Second, 
the platform does not fully represent the potential impacts on regions adjacent to 
the EEC. For instance, provinces like Chanthaburi, which border the EEC, could be 
affected by initiatives that redirect water resources to support the EEC area, poten-
tially leading to unintended consequences in those regions.

In contrast to AIP-​NAN, AIP-​EEC utilizes a ‘top-​down’ approach for policy 
implementation. As the primary authority responsible for water management policy 
in Thailand, ONWR can use AIP-​EEC as a powerful tool to support evidence-​based 
policymaking and develop practical strategies to address potential water shortages in 
the future.

12.3.5 � Lessons Learned

After several years of implementing the AIP platform, two critical factors have been 
identified that determine its success.

The first factor is the importance of a clear problem statement. Defining the spe-
cific issue that AIP aims to address is crucial. For instance, the Eastern Economic 
Corridor (EEC) region faces multiple challenges, including economic growth, mega-​
project implementation, education, social issues, environmental concerns, and water 
management. Initially, the strategy was to simultaneously tackle as many of these 
problems as possible. However, after a few years of designing the AIP, it became 
apparent that this approach was too complex to implement effectively. Consequently, 
the focus was narrowed to a single problem: water management, which was identified 
as a core resource underpinning all development in the EEC.

The second critical factor is securing buy-​in from key stakeholders, who are the 
primary users of AIP. In the development of AIP-​EEC, strong support was received 
from key stakeholders, such as ONWR and the Royal Irrigation Department (RID). 
This support enabled the translation of insights from AIP into concrete policy actions. 
In contrast, in Nan province, key stakeholders were not fully engaged because it 
remained unclear who should lead the reforestation efforts and reallocating land 
policy. While AIP-​NAN was presented to local authorities, such as the governor, 
local forest department, and community leaders, many limitations persisted because 
these stakeholders lacked the authority to implement the recommendations effect-
ively. Therefore, it is vital to carefully identify AIP’s appropriate users—​those with 
the power and authority to act as policymakers.

When these conditions are met, AIP can be expanded to support policymakers in 
other areas or on different issues. For example, ONWR now intends to extend AIP-​
EEC to support water management policies in other regions.

In conclusion, the AIP platform is an essential tool for developing and man-
aging area-​based policies. By integrating Earth Observation (EO) data and scien-
tific modeling, AIP provides clear and accurate insights through relevant indicators. 
These insights help bridge the gap between the perspectives of various stakeholders, 
enabling evidence-​based decision-​making and ensuring sustainable and balanced 
development.
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12.4 � INSTITUTIONS: MANAGEMENT IMPACTS THROUGH 
ADOPTION OF AIP AT NAN AND EEC

12.4.1 �R eflection from Developers’ Focus Group Discussion

The initial development phase of AIP, associated with the advent of THEOS-​2, has 
already been completed. According to a recent focus group discussion with AIP 
developers, the current status is as follows. First, out of the two versions of AIP 
developed, only one has been practically implemented at the EEC. This is because 
GISTDA continuously updates remotely sensed data. However, the Eastern Economic 
Corridor Office of Thailand (EECO), which is responsible for industrializing the 
three coastal provinces with the best infrastructure, has not been the adopter. Instead, 
the EECO prioritizes attracting foreign direct investment and mega infrastructure 
projects. The Office of National Water Resources (ONWR) stepped in as a partner of 
GISTDA, using remotely sensed data from space technology alongside ground-​level 
data from the agencies linked with ONWR to pursue water management goals.

In contrast, land management in the upland part of Nan has not seen the same out-
come. GISTDA had expected the formation of an organization similar to the EECO 
to coordinate policy actions for reforestation, but this did not materialize. Instead, a 
policy process for managing forest land was conducted under the “Nan Sandbox,” 
which involved private philanthropy from Mr. Bantoon Lamsam, the former CEO of 
Kasikorn Thai Bank. However, government agencies felt marginalized, and the pri-
vate sector did not receive broad popular support. As a result, the experiment did not 
progress far.

Without a single organization with a strong administrative mandate to coordinate 
field actions, the feedback system—​linking ground-​level data to remotely sensed data 
and, importantly, analyzing the data—​was not established. Consequently, unlike in 
the EEC, GISTDA’s data is not continuously updated in the Nan case.

Second, the data interface between GISTDA and AIP users is currently operating 
at around 50% capacity. In Nan province, specific land holdings cannot be obtained 
through remote sensing and require ground surveys. For instance, the boundary of 
a plot of land can only be established by recognizing the adjacent claimant’s plot. 
Additionally, ground surveys is required to show how a specific plot of land is used, 
its history of land clearing, and how long it has been in the possession of the current 
owner. These surveys were funded through private donations, and this information is 
not integrated into the AIP system. As a result, it is impossible to determine whether 
a specific plot of land has received authorization based on how long the current 
claimant has held possession.

It is tempting to explain the data system’s fragmentation by the absence of a data-​
sharing protocol. However, data hoarding may also result from an agent seeking a 
strategic advantage in land management negotiations.

Third, in a world with growing interest in open government and open data 
ecosystems, GISTDA developers do not consider themselves threatened by compe-
tition, especially from agencies involved in data integration. Moreover, in servicing 
clients, GISTDA characterizes its relationship as akin to a tailor creating customized 
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AIP solutions based on the client’s needs. However, a client must have a clearly 
defined problem and the mandate to obtain links to data from other organizations, 
especially for non-​remote sensing data. They also need strong scientific know-
ledge based on socio-​economic impacts to facilitate ground-​level surveys and data 
collection.

Currently, the crop types included in land use calculations are limited to con-
ventional crops such as upland rice, vegetables, and some fruits. These crops pro-
vide smaller profits than maize, the preferred replacement. Higher margins can be 
obtained from growing crops for herbal medicine or ecotourism. However, estimating 
land suitability for these crops is more complicated. The omission of these crops may 
contribute to the failure to find a win-​win solution, suggesting significant room for 
improvement in the further development of AIP Nan.

12.4.2 �D iscussion

A research team from Chiang Mai University (CMU) conducted field research to val-
idate the predictions made by AIP Nan. They identified two shortcomings. First, the 
government’s policy to close land frontiers is in flux. Nan has adopted the 78-​12-​10 
policy for allocating upland land into three categories: conservation, restricted use, 
and free use, with the latter category eventually granting land titles. This policy is 
considered a steady state. In Nan, the target is set, and a specific form of land gov-
ernance is being explored using AIP Nan, under an experiment called the “Sandbox.” 
This experiment was intended to be free from existing legal obligations but has not 
progressed. On other sides, Chiang Mai relies on a different model, which is more 
lenient and allows current occupants—​viewed by the government as encroachers—​to 
continue staying and negotiating for eventual land title recognition. This approach 
keeps both the forest occupants and government officials engaged, with third-​party 
investors in carbon credit-​related businesses potentially being involved. These 
investors represent distant stakeholders who benefit from carbon sequestration ser-
vices provided by the trees to be planted. The author believes that Nan’s approach is 
relatively extreme, making acceptance by current occupants unlikely.

Second, spontaneous land use changes have been ongoing, as revealed during 
the field trip. Ecotourism offers alternative livelihoods, and land previously used for 
maize cultivation has been converted back into forest. However, the trend toward a 
decline in land under maize cultivation remains unclear due to conflicting data from 
two agencies. The Nan provincial agricultural office suggests that the area under 
maize this year is about 357,014 rai, while GISTDA projects the area to be around 
502,000 rai.

As discussed above, such data discrepancies were weeded out 10 years ago when 
each province was tasked with bottom-​up estimations of gross provincial products 
(GPP). Staff from the northern branch of the Bank of Thailand and the National 
Economic and Social Development Board (NESDB) worked with the provincial 
treasury department to synchronize and analyze data. Unfortunately, when the GPP of 
all provinces was combined, it did not add up to the country’s gross domestic product 
(GDP), leading to the abandonment of the bottom-​up approach. The authors argue 
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that the bottom-​up approach should be revived because AIP Nan cannot function 
effectively without reliable information at the ground level.

12.4.3 �P riority Action for Policy

During the research, an economist on the team had the opportunity to consult with a 
lawyer from the Office of the Council of State, the major organization responsible for 
introducing new laws. The immediate topic of discussion was the regulatory impact 
assessment law introduced in 2019. Philosophically, the intention is to make laws 
outcome-​oriented, which aligns with AIP’s goals. The conversation led to an obser-
vation that almost all government decision-​making in Thailand occurs in Bangkok. 
The centralization of administrative decision-​making has roots in the reform of the 
local system of government. In the “Thesaphiban” era, Thailand began sending gov-
ernors from Bangkok to replace the former system, in which provinces had a certain 
degree of self-​rule. The reorganization of local administration aimed to consolidate 
control in Bangkok during the threat of Western colonization. For over 120 years, 
the centralization of decision-​making has remained unchanged, only being waived 
in exceptional cases, such as the development of the EEC. A reader may wonder 
why the ONWR is a viable alternative to link up with GISTDA. This is due to water 
law and the functioning of the water agency, which follows the principle of cen-
tralization in times of crisis and decentralization in normal times. The 2011 Great 
Flood changed public attitudes, leading to the development of water law in 2018. 
Subsequent developments in water administration, organized by the river basin, and 
the promotion of stakeholder engagement have led to the agency’s partnership with 
GISTDA in the Eastern Economic Corridor.

ONWR’s water law was reviewed under the regulatory impact assessment law in 
June 2024. The results revealed that ministerial regulations addressing water quality 
and headwater area protection, which were supposed to be introduced, have been 
delayed. It is hoped that headwater protection can eventually be carried out under 
the water law since the agency is technically the most capable of tracking and meas-
uring the hydrological consequences of forest cover loss and restoration. However, 
the multidimensional benefits of forest land make building a broad-​based platform for 
stakeholder engagement difficult. As a result, the efforts championed by the pioneers 
of AIP still have a long way to go.

12.5 � SUMMARY AND CONCLUSION

This study provides an overview of land cover and land use change issues in Thailand, 
including fire scar statistics and introducing the Actionable Intelligence Policy (AIP) 
platform as a policy support tool. It also examines the experiences of agencies utilizing 
AIP and highlights gaps that require further development. The chapter emphasizes 
the need for continued advancements by GISTDA, coupled with strong government 
support, to fully realize AIP’s potential. The authors posit that AIP is a valuable tool 
for advancing policymaking in Thailand by leveraging remote sensing technologies. 
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By identifying potential challenges, especially those caused by land cover and land 
use changes, and simulating various policy interventions, AIP facilitates engagement 
with diverse stakeholders, promotes mutual benefits, and helps policymakers select 
optimal courses of action. However, AIP alone cannot guarantee successful policy 
implementation. The challenge lies in choosing a balanced and community-​friendly 
approach, as past experiences, such as the “72-​18-​10” policy in Nan, have shown 
that rigid enforcement measures are unlikely to succeed. Collaboration between 
policymakers, technology providers, and local stakeholders is key to delivering sus-
tainable policies that address the challenges of land cover and land use change in 
Thailand.
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13.1 � INTRODUCTION

How do we understand the landscapes that we see?

This is a bold question but the overarching goal of this work. This project sought 
to understand both the physical and human landscape of a community in Đồng 
Tháp Province, Vietnam, that is adjacent to Tràm Chim National Park. The project 
sought to describe agricultural land use change, identify the drivers of that change, 
and understand the community members’ perceptions of that change by employing 
remote sensing, social science, and humanities methodologies. At the beginning of 
this work, we hypothesized that the built environment and current landscape would 
reflect human histories and human values. Therefore, in order to understand observed 
land cover/​land use (LCLU) changes in the satellite record, it was necessary also to 
understand those histories and those values.
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Of importance is the recognition that the study area is a historically contentious 
and post-​conflict environment that has undergone radical transformation. This part 
of the Mekong Delta has not been rice paddy since immemorial, as it was previ-
ously covered by a vast Plain of Reeds wetland ecosystem. For example, in 1879, 
major hydrological projects aimed at developing colonial plantation agriculture by 
colonial powers in France and Japan occupying forced and navigable waterways 
broke ground and were completed (Biggs, 2012). After persistent conflict and war 
in the mid-​twentieth century, market liberalization reforms launched in 1986 led to 
the intensification of agriculture (Chu, 2019). Đồng Tháp Province is an environ
ment highly vulnerable to the impacts of climate change and upriver hydroelectric 
dam projects (Shaw, 2006; Kondolf et al., 2014). Our study area further represents a 
unique cultural-​political subset within Vietnam, as the province is majority Hòa Hảo 
Buddhist, a form of Buddhism that emerged in the early twentieth century and was 
frequently in conflict with state actors. These actors included the French colonists and 
both Saigon-​ and Hanoi-​based Vietnamese states, and these conflicts continue up to 
the present (“Hoa Hao follower arrested again in Vietnam,” 2023).

13.1.1 � Study Aims

Remote sensing and GIS technologies specifically identify the extent and rate of 
LCLU changes; however, they do not explain the underlying causes of these dynamics 
on the landscape (Kindu et al., 2013). This study aimed to compare the expectation of 
changes claimed by local communities through semi-​structured interviews completed 
in person in 2018 and 2019 and monitor those changes using the moderate resolution 
30 m classifications for 2015 to 2019 for the communities surrounding Tràm Chim 
National Park in Đồng Tháp, southern Vietnam. Further, it aims to identify local-​scale 
drivers of LCLUC through discourse analysis using local interviews, public-​facing 
press, and government publications.

13.1.1.1 � Research Questions
Our overarching research questions in this work were as follows:

1.	 Do perceptions of land use change observed and explained by the local 
populations accord with actual land use change as observed by remote 
sensing?

2.	 How do people explain the drivers of landscape change?
3.	 What are the drivers of landscape change?

13.1.1.2 � Research Site
This study focuses on areas around Tràm Chim National Park in Tam Nông District. 
Specifically, it includes Phú Thọ commune and Tràm Chim Commune-​level Town in 
Đồng Tháp Province, Southern Vietnam (Figure 13.1(a),(b)). Phú Thọ has a popula
tion of approximately 10,000 people and an area of 63.76 km² (Niên Giám Thống Kê 
2022, 2023), while the district it occupies, Tam Nông, has a population of 100,144 
people and 474 km² of area (including 33,810 ha of agricultural land and 7,518 ha 
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FIGURE 13.1  (a) District map of Đồng Tháp, Vietnam. (b) Inset map of Phú Thọ and Tràm 
Chim Communes.
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of forest). Tràm Chim Town has an area of 12.28 km²; the population in 2019 was 
10,761 people (Niên Giám Thống Kê 2022, 2023).

Tràm Chim National Park covers approximately 7,313 hectares and is roughly 
located at 10.4249°N and 105.3012°E. Tràm Chim is one of the last remnants of the 
Plain of Reeds wetland ecosystem, which previously covered some 700,000 ha of the 
Mekong Delta in southwestern Vietnam. The site is one of the few places in the region 
where the Brownbeard Rice (Oryza rufipogon) communities survive (https://​rsis.ram​
sar.org/​ris/​2000). The Tràm Chim National Park is a Ramsar-​designated wetland and 
a popular domestic tourism spot (https://​rsis.ram​sar.org/​ris/​2000). It is a habitat for 
the culturally essential flagship species Sarus Crane (Grus antigone) and hosts around 
20,000 water birds.

13.1.2 � Social Science and Humanities Approaches to Remote Sensing

Satellite imagery and remote sensing give a clear view of LCLUC. It does not, how-
ever, explain observed changes; as noted by Wood and Skole (1998), discussing their 
own on deforestation in the Amazon, “a fundamental limitation” of remote sensing is 
“the inability to explain the reasons for the observed outcomes in land-​cover change” 
(71). Some changes observed will result from natural phenomena, but many changes 
will result from human activity. Built environments reflect the values of the inhabitants 
of those environments, or at least the individuals with the capacity, through polit-
ical, economic, or other types of power, to act upon it (Lewis & Kuttler, 1978; Pratt, 
2009; Spalding, 2017). Understanding the drivers of LCLUC means grappling with 
the complexities of the social world and the intersection of worldviews, systems of 
values, land tenure regimes, economics, and, as our research discovered, local history, 
particularly economic history (Rindfuss & Stern, 1998).

The relationship of the social sciences to remote sensing has been well explored 
over the previous two decades (Liverman et al., 1998; Crews and Walsh, 2009; Joyce 
et al., 2022). In addition to social science approaches, this project utilized approaches 
more at home in the humanities, such as documentary historical research and engage-
ment with religious and cultural texts related to environmental and agricultural values. 
It sought to articulate LCLUC in the epistemic, ontological, and ethical setting of the 
inhabitants of the landscape and the historical and socio-​economic setting, context-
ualizing the changes observed within the cultural, social, and political realities of the 
inhabitants occupying that space. This work builds on current scholarship linking 
remote sensing to digital humanities (Trevisani and Omodeo, 2021).

13.1.2.1 � Critical Remote Sensing
This research was informed by the practices of critical remote sensing, particularly 
to foreground the social science and humanities approaches to attempt to capture 
better the entire story given from local knowledge and experiences and not solely rely 
on “neutral” satellite imagery (Bennett et al., 2024). Critical geography and critical 
remote sensing/​GIS are undertakings that are aware of the operations of powers in 
both the landscapes and people they observe, in the structures that make observations 
and research possible, and in the researchers’ embeddedness in historical processes 
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and structures of power (Pickles, 1995). Additionally, it is the use of these technolo
gies to address injustices in society (Wilson, 2015). Bennett et al. (2022) identify 
two additional practices of critical remote sensing: “engaging local, Indigenous, and 
other knowledge typically perceived as situated, and, in so doing, acknowledging 
remote sensing’s own subjectivities” and “seeking to empower marginalized actors 
with remote sensing data and skills [sic]” (732).

The project engaged deeply in autochthonous knowledge systems primarily 
through the engagement with the Hòa Hảo community through ethnographic methods 
both in-​country and among American diaspora communities, careful study of the 
sect’s religious canon, and conferring with religious and community leaders, allowing 
us to frame issues and questions with greater ontological resonance (Hinton, 2005; 
Nygren, 1999). Co-​investigator and lead author Brown has been visiting the area for 
over a decade and has long-​standing social, familial, and research connections in 
the community. Researchers relied on local public discourses throughout to inform 
understanding of the area. Datasets and findings were made available to in-​country 
collaborators, and annual reports were provided to in-​country partners. In-​country 
collaborators were offered training using QGIS, although this was declined. It remains 
an open question how this research will be consumed and used by the communities in 
which it was conducted. It has, however, opened up new perspectives and approaches, 
pointed in new directions for more critically aligned remote sensing projects, and 
better equipped the researchers to work in the region. Ultimately, we hope this work 
was improved by and can contribute to the growing field of critical remote sensing.

13.1.3 �T he Đồng Tháp Agricultural Landscape

The Mekong Delta has restructured agriculture towards climate-​change adaptation 
and market demand by establishing specialized farming areas for its key agricul-
tural products, growing other crops on ineffective rice fields, or rotating rice with 
other crops on the same field (Vietnam Plus, 2019). Paddy prices in the Mekong 
Delta have fallen sharply, and what has happened with the tra fish (Pangasius court) 
is no better, with prices dropping steadily. In 2018, farmers in Đồng Tháp began to 
use more than 3,000 ha of low-​yield rice fields for growing fruits and other crops, 
mainly growing corn, sesame, soybean, sweet potato, lotus, mango, longan, orange, 
and dragon fruit. Farmers growing fruits and other crops have seen their incomes 
double or even triple, according to local authorities (Niên Giám Thống Kê 2022, 
2023). Those growing corn have average yields of 8–​12 tonnes per hectare per crop 
and each time earn 7–​10 million VND (300–​430 USD) higher than rice. Provincial 
authorities have encouraged farmers to use infertile paddies to grow corn and estab-
lish concentrated areas for the crop in Hồng Ngự, Thanh Bình, Tam Nông, Lấp Vò, 
and Lai Vung districts (Vietnam Economic News, 2018). Đồng Tháp province, which 
was the country’s first locality to implement restructuring agriculture 5 years ago, 
has chosen rice, flowers and ornamental plants, mango, tra fish, and ducks as key 
products for restructuring (Viêt Nam News, 2019).
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The impacts of climate change on Đồng Tháp are increasingly evident. Storms, 
floods, irregular tornados, thunderstorms, and lightning create serious risks (Ministry 
of Natural Resources and Environment, 2016). Many localities in Đồng Tháp face a 
riverbank erosion situation that is very dangerous; there is an estimated annual loss of 
30 to 50 hectares of land due to erosion along the river (Tri et al., 2023). Agriculture 
faces trouble because cultivated areas tend to be acidified, especially in Đồng Tháp 
Mười. Biodiversity is also severely affected in wetland ecosystems in Tràm Chim 
National Park (Duong et al., 2015). Under climate change scenarios, the water level in 
Đồng Tháp province will increase by 20 cm and 48 cm by 2050 and 2100, respectively 
(Ministry of Natural Resources and Environment, 2016), flooding current farmlands. 
The water level rise will cause deep flooding in some areas, such as Tan Hong, Hồng 
Ngự, Hồng Ngự township, and a part of Tam Nông district. Areas affected by river 
erosion will be Sa Đéc city, Hồng Ngự township, Thanh Bình and Hồng Ngự districts. 
Areas affected by drought will be Tràm Chim National Park, Tháp Mười, and Tam 
Nông districts. Climate change will also increase pollution, decline the quality and 
quantity of the aquatic ecosystem, and change the purpose of use of water resources 
(Ministry of Natural Resources and Environment, 2016).

13.2 � DATA AND METHODS

13.2.1 � Analytical Framework

This study identified LCLU changes that occurred with remote sensing between 2015 
and 2019. This was combined with perceived changes that local people reported by 
conducting interviews. In addition, other governmental and media sources reporting 
LCLUC change and explanations of drivers of these changes were presented 
(Figure 13.2).

13.2.2 �I nterviews

In 2019, human subjects’ institutional review at two U.S. institutions of higher  
learning (Berea College and Miami University) and governmental review within  
Vietnam resulted in 11 approved questions for semi-​structured interviews, including  
verbal survey questions asked of each participant. Questions were translated into  
Vietnamese. The questions centered around the approximate amount of land worked,  
the crops and fruit grown, animals and fish raised, land use changes, and changes  
in roads, buildings, and construction practices (Table 13.1). Ten participants were  
interviewed in 2019; subsequent follow-​up interviews were not possible due to Covid-​ 
19 border closures. Participants ranged in age from early twenties to seventies, and all  
indicated they lived in the immediate area. Most of the conversations were in-​depth,  
ranging from 10 to 30 minutes. Both convenience and snowball sampling approaches  
were used to identify participants (Bernard, 2002). Interviewees were approached  
outside by going inside nearby establishments to ask about the owners of nearby  
land and through introductions by other participants. We also observed the families  
in their homes and, in some cases, on their land. Co-​author Touch administered the  
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questionnaire in Vietnamese, with follow-​up questions by Co-​authors Brown and  
Toops in a combination of English, Vietnamese, and Mandarin. Written notes were  
taken of interviews, and the locations were logged using a smartphone GPS applica-
tion. Outside images, if applicable, were taken using location-​enabled mobile  
phones to record landscapes and to document any changes being identified. These  
interviews were supplemented by informal conversations the previous year (2018)  
as we surveyed the research site and prepared for formal governmental review. The  
identity of the interviewees was not recorded, per the recommendations of the human  
subjects’ board; in this work, results are reported generically by “family” or by  
approximate but not exact location to protect privacy.

FIGURE 13.2  Analytical framework used in this analysis.
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13.2.2 �D iscourse Analysis

Initially, social media data collection was attempted using Twitter, Instagram, and 
Facebook social media networking platforms. However, there was a lack of geo-​
tagged postings for the research area. Therefore, we identified other accessible 
domains of public discourse regarding land use change. These were the province-​
level local government’s Vietnamese language website, Cổng Thông tin Điện Tử Tỉnh 
Đồng Tháp (dongthap.gov.vn), and its district-​level sub-​domain, Trang Thông tin 
Huyện Tam Nông (tamnong.dongthap.gov.vn). Posts were retrieved from January 1, 
2016, to July 1, 2021. A subset of 53 pages mentioning “Phú Thọ” was used for ana-
lysis. Data was also collected from the Vietnamese-​language provincial online news-
paper, Báo Đồng Tháp Online (baodongthap.vn), based in Cao Lãnh, Đồng Tháp 
province. A subset of pages was identified using mentions of “Phú Thọ” from January 
1, 2016, to July 1, 2021. 212 were returned. All pages were public-​facing, and trans-
lation was conducted by co-​authors Touch and Brown.

Retrieved web pages were human-​reviewed, sorted for relevance, and hand-​coded  
for impressionistic analysis (Schutt, 2015). This approach differs from work that  
‘scrapes’ text and qualitative data from the Internet and web-​based databases (Parvez  
et al., 2018), since all data was subjected to human analysis and review. Documents  
were then auto-​coded using Atlas.ti, a computer-​assisted qualitative data analysis soft-
ware, for keywords generated from interviews and a priori keywords related to land  
use (Friese et al., 2018; Guest et al., 2012). A list of 41 Vietnamese terms associated  
with land use and land use change was used. Auto-​coding was to ensure relevant  

TABLE 13.1
Questionnaire Used for Semi-​Structured Interviews; Note that the Same 
Questions Were Asked of Each Participant

1.	What crops and/​or fruit trees are produced? 
Has this changed from past years?

7.	What aquatic products (fish) are produced? 
Has this changed from past years?

2.	How much land do you farm? Has this 
changed from past years?

8.	How much fish are produced? Has this 
changed in past years?

3.	What animals are raised? Has this 
changed from past years?

9.	What changes in land-​use or land-​cover 
have you seen in the past years?

4.	How many animals have you raised? Has 
this changed from past years?

10.	What road improvements have you seen in 
the past years?

5.	What forest plants are produced? Has this 
changed from past years?

6.	How much forest (size) or windbreaks 
do you keep? Has this changed from past 
years?

11.	How many new buildings have you seen 
in the past years? How many renovated 
buildings have you see in the past years? 
Have you seen any new construction (for 
example medical, temples, mining, sluice 
gates/​dikes/​ponds) in the past years? In 
general, what are the sizes of these new 
constructions?
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information was not overlooked during hand-​coding. All auto-​coding was manually  
confirmed. Word frequency analysis was also generated for each subset using Atlas.ti  
(Paulus & Lester, 2016). Word-​frequency analysis identified emergent themes, most  
notably the Covid-​19 pandemic. The high frequency of one of the a priori terms (“cá  
lóc,” “snakehead fish”) led us to investigate the creation of an appellation d’origine  
contrôlée for Phú Thọ dried snakehead fish (primarily Channidae channa). This sub-
ject was significant and is discussed in the findings.

13.2.3 �R emote Sensing Approaches

Given extensive knowledge of the region from a decade of working in the region, 
in addition to the 2018 and 2019 field collects and interviews indicating LCLUC 
occurring at relatively rapid time steps, this analysis relied on the moderate reso-
lution University of Maryland’s Global Land Analysis & Discovery’s (GLAD) 30 
m Landsat Analysis Ready Data (ARD) collected from 1997 to 2019 at 16-​day 
intervals (Potapov et al., 2020). Previous work with very high-​resolution commer
cial data and high-​resolution synthetic aperture radar data had been successful in 
mapping changes in rice paddy field boundaries across several years (Thomas et al., 
2020) but not in determining more complex LCLUC changes across multiple land 
use types known to occur in Đồng Tháp intra-​ and inter-​annually. The GLAD 30 
m Landsat Analysis ARD product also features an observation quality flag layer 

TABLE 13.2
Output Land Cover Classes with Accompanying definitions

Pixel Value Class Description

1 Build-​up Landsat pixel includes build-​up area or paved road
2 Permanent water Permanent water (Landsat pixel covered with water 

>=​75% of the year)
3 Tree cover Tree canopy cover >=​50% of a pixel. The class 

includes forests, tree plantations, and orchards.
4 Cropland Annually/​seasonally rotating crops (rice, corn, sweet 

potato, other). May include non-​crop grasslands 
and intensively managed pastures

5 Intermittent water Non-​crop treeless area covered with water >=​25% of 
the year. This class includes aquaculture, wetlands, 
and mangroves.

6 Other Mixed land cover pixels (rural mosaic), unused lands, 
transitional land cover, specific agriculture types 
(some vegetables, dragon fruit plantations, mixed 
orchard/​crops and orchards with very small and 
sparse trees), natural wetlands/​grass, fresh logging 
sites, dry shrubs/​rocks on slopes, and other.
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(QF) to perform study region-​specific analysis (Potapov et al., 2020). The QF pixel 
value indicates the presence of clouds/​cloud shadows and land or water detection for 
clear-​sky observations (Table 13.3). For this research, there was a need to creatively 
adapt the standard GLAD Landsat ARD products to detect known local land uses and 
LCLUC, namely fine spatial scale changes in water permanence, built-​up trees, and 
croplands—​beyond just rice.

13.2.3.1 � Annual Water Permanence: Mapping Paddy and Fishponds
The annual water permanence is defined as the ratio of water detections to all clear-​sky 
observations within a year. Due to an inconsistent number of cloud-​free observations 
between years, water permanence has a high variation between years. To create a 
consistent time-​series, an annual water permanence (%) was converted into water 
permanence type. Various values are assigned to distinct criteria depending on the 
water percentage in different land types. Land with a water percentage equal to or 
less than 25% is given a value of 0. Areas featuring intermittent water, with a water 
percentage greater than 25% but less than 75%, are assigned a value of 1. A value of 
2 is reserved for land characterized by permanent water, where the water percentage 
equals or exceeds 75%. Then, two consecutive 7-​year median filters were applied to 
the water permanence type time series to reduce high-​frequency noise. The output 
layers represent the annual water permanence type, whereby the intermittent water 
may indicate paddy rice and certain types of aquaculture.

13.2.3.2 � Annual Built-​Up Area: Expanding Housing and Transportation
The built-​up area class includes buildings and transportation infrastructure. This class 
was mapped using Landsat annual phenological metrics (see Potapov et al., 2020 for 
details). Training sites were manually allocated. The output time series consists of 
annual class detection layers. The built-​up class is spectrally similar to other non-​
vegetated surfaces (sand bars, construction sites, fallow fields, or exposed ground). 
To reduce the presence of false detections, we implemented the temporal filtering of 
the annual built-​up class time series. We applied consecutively a 5-​year median and a 
7-​year median filter to class time series to reduce high-​frequency noise. Instances of 
the built-​up area loss were then removed. If the built-​up area loss was detected during 
the time series, but the area was classified as built-​up in 2000 and 2019, the built-​up 
class was assigned to all years; otherwise, we removed built-​up detections from the 
time series. The output layers represent the annual built-​up area presence.

13.2.3.3 � Annual Tree Cover
Tree cover is defined as the presence of trees within a 30 m Landsat data pixel. A pixel 
was included in this class if it has >=​50% of tree canopy cover. The tree cover class 
was detected visually, and the exact threshold may vary depending on tree cover 
type and other conditions. The class was mapped using Landsat annual phenological 
metrics (Potapov et al., 2020). Training sites were manually allocated. The output 
time series consists of class detection layers. To reduce high-​frequency noise in the 
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time series, we applied two consecutive 5-​year median filters. The output layers 
represent the annual tree cover area extent.

13.2.3.4 � Annual Crop Extent: Permanent Row Crops and Not Just 
Paddy Rice

Crop class is defined as row crops, with the annual and seasonal rotation including 
paddy rice, sweet potato, corn, and vegetables—​crop types noted during the 2019 
field collection in Đồng Tháp. This class does not include shrub/​tree or dragon fruit 
plantations, which have been extensively mapped by Jia et al. (2022). The Landsat 
pixels with crops occupying most of the pixel area are assigned to this class. Landsat 
annual phenological metrics were used, with the metric set for crop mapping spe-
cifically designed to map permanent agriculture. For each year, the data is collected 
from the current and three preceding years and aggregated using vegetation indices 
ranking. This way, we create a metric set that highlights the crop presence even if 
crops are intermittent by fallows. Training sites were manually allocated within the 
entire Southeast Asia. The output time series consists of class detection layers. To 
reduce high-​frequency noise in the time series, we again applied two consecutive   
5-​year median filters. The output layers represent the annual crop extent.

13.2.3.5 � Annual Land Cover
SERVIR-​Mekong Regional Land Cover Monitoring System data mask is used to 
limit land cover mapping (https://​ser​vir.adpc.net/​tools/​regio​nal-​land-​cover-​mon​itor​
ing-​sys​tem). The mask represents the land boundary (GADM V2.0) with a 10 km 
buffer to preserve shoreline and small islands. Land cover class was defined for each 
year using the hierarchy of the thematic layers. The following algorithm was used to 
define the land cover class:

if (data mask=​=​1) {
if            (built-​up=​=​1)        {LC =​ 1;}
else if    (water=​=​2)            {LC =​ 2;}
else if    (tree=​=​1)               {LC =​ 3;}
else if    (crops=​=​1)            {LC =​ 4;}
else if    (water=​=​1)            {LC =​ 5;}
else                                      {LC =​ 6;}

}
else {LC =​ 0;}

The output land cover classes are reported in Table 13.2.

13.3 � RESULTS AND DISCUSSION

13.3.1 �R emote Sensing-​Based LCLUC

Remote sensing often involves the analysis of large-​scale data collected from satellite  
or aerial sources, and applying statistical approaches to ground-​level data may not  
yield accurate or meaningful results. A confusion matrix is a tool commonly used to  

 

 

 

 

 

 

https://servir.adpc.net/tools/regional-land-cover-monitoring-system
https://servir.adpc.net/tools/regional-land-cover-monitoring-system


221Observed Agricultural Landscape Change in Đồng Tháp Province

evaluate the performance of a classification algorithm; here we visualize this (lack  
of) directional change via a quilt plot. In the context of remote sensing, it would typ-
ically be used to assess the accuracy of land cover classifications. The data presented  
in Figure 13.3, depicting the confusion matrix, offers insights into the outcomes of  
land cover classification between the years 2015 and 2019. The analysis indicates that  
there were no significant LCLUC shifts across the main LCLUC types of permanent  
water, built-​up, crops, trees, and mixed-​use, as observed at the 30 m resolution in  
the GLAD Landsat ARD classifications created for this specific study region and  
study period. With this finding, we turned to official governmental statistics and local  
perceptions of change, in addition to field-​observed collects of the landscape.

13.3.2 � Agricultural LCLUC from the Đồng Tháp Statistical Yearbook

Tam Nông District experienced a change in agricultural land use as recorded in the 
Đồng Tháp Statistical Yearbook from 2005–​2019. In 2019, there was 70,959 ha 
of paddy, a decrease from 2015 with 72,416 ha of paddy and in 2010 with 60,193 
ha of paddy (Ha, 2020). However, in 2019, paddy yield was 66.02 quintals/​ha (the 
highest in the province), up from 58.58 quintals/​ha in 2015 and 58.77 quintals/​ha in 
2010. This indicates less area in paddy rice, but higher yields. Vegetables and flowers 
experienced an ebb and flow, with 728 ha in 2019, which was less than the 1,230 ha 
in 2015 but greater than the 590 ha of vegetables and flowers in 2010. Fruit trees, 
mainly mango and coconut with some orange and longan, showed an increase in area 
in 2019, with 117 ha, compared to 88 ha of fruit trees in 2015 and 97 ha in 2010. Corn 

FIGURE 13.3  Quilt plot showing the confusion matrix of land cover class changes between 
2015 and 2019.
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(maize) had decreased some in 2019, with 88 ha, compared to the high of 113 ha in 
2015. In 2010, only 7 ha of corn (maize) was grown. Sesame production decreased by 
over 100 ha in 2019 to only 6 ha of sesame, compared to 108 ha of sesame in 2015. In 
2019, there was 988 ha aquaculture, an increase from 2015, with 881 ha aquaculture, 
but a slight decrease from 2010, with 1,046 ha aquaculture. As of 2019, Tam Nông 
District was planted mostly with rice with some aquaculture, vegetables, and flowers, 
as well as fruit trees.

What is surprising is the decrease in aquaculture area from 2010 to 2015, although 
from 2015 to 2019, 107 ha of aquaculture was added. However, the gross output 
of aquaculture per ha in Tam Nông increased from 391 million VND in 2005 to 
456 million VND in 2010 to 1,348 million VND in 2015 (Thông tin, báo cáo thống 
kê năm 2015, 2015). Production increased from 42,857 tons in 2015 to 76,057 tons 
in 2019 (Ha, 2020, 385). So, despite the falling area of aquaculture between 2010 
and 2015, the gross value of the product nearly tripled. While productivity in tonnes 
was not available between 2005 and 2010, tonnage nearly doubled from 2015 to 
2019. This suggests a shift from 2005 onward to higher-​value products and more 
productive ponds, possibly from a combination of more intensive aquaculture and 
improved fishery management. In 2013, a fish drying plant was opened focused on 
snakehead fish, and production then at 60 ha was expected to increase to 200 ha 
over the coming years—​although that number could include existing ponds being 
transitioned to snakehead fish production given that snakehead is a higher-​value 
product despite market fluctuations (“Chế Biến Khô Cá Lóc Bằng Hệ Thống Sấy,” 
2013; Sinh et al., 2014).

13.3.3 �I ndividual Perceptions of Change and Drivers of Change

The field interviews and collected field data reveal significant shifts in LCLUC 
across the study period years, as reported by nine farming families interviewed in 
2018 and 2019 in the vicinity of Tràm Chim National Park. The predominant vegeta-
tion includes Melaleuca cajuputi, a member of the myrtle family. The continuity of 
these features over the past 5 years suggests a commitment to environmental pres-
ervation. However, the changes in the Phú Thọ Commune in 2019 present a more 
dynamic picture. Family 1, for example, transitioned from solely growing sticky rice 
to engaging in aquaculture activities. Family 2 diversified their agricultural activ-
ities, transitioning from cultivating melons on dikes to managing a variety of crops 
such as lotus, coconuts on dikes, and freshwater shrimps and catfish. Such land-​use 
transformations highlight the adaptability and diversification strategies employed by 
local farmers and represent LCLUC from predominantly rice paddy to more complex 
hyperspatial resolution changes.

From the 2019 interviews of ten participants, respondents had between 0.5 and 4.0 
cong of land (or approximately 0.05 hectares to 0.4 hectares). Crops included sticky 
rice, rice, lotus, melon, vegetables, bamboo, and medicinal herbs. Animals included 
chicken and geese, with fish being mainly shrimp and catfish. Jackfruit and coconut 
were commonly grown. Some respondents built new fishponds circa 2014 on for-
merly rice and lotus lands. One respondent built a fishpond circa 2000. Many tables 
of drying fish were observed on the roadside, with another party grinding up spoiled 
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fish from the market into fish food. Another had a fishpond that went bad and is now 
stagnant.

The data from 2018 also provides insights into land use changes. Phú Thọ 
Commune, for instance, witnessed alterations in crops, with a shift from rice and water 
lotus to a focus on sticky rice (or glutinous rice) cultivation. Similarly, Tràm Chim 
Town underwent noticeable changes, with some properties appearing abandoned or 
overgrown, signaling potential migration trends. Economic pressures were mentioned 
in the Hòa Hảo Temple area, underscoring the complex interplay between tradition 
and economic necessities, leading to changes in the way of life.

People are aware of visible changes in their surroundings, but individuals’ reports 
of change were often not reliable predictors of change observed from the remote 
sensing method or the reported official agricultural statistics. During interviews, indi-
viduals could indicate changes had occurred. For example, individuals were aware 
of visible changes, such as the installation of a new bridge and canal dredging that 
was observed by our team, and were able to recollect road paving work. However, 
recollections of transitioning an aquaculture pond from one product to another were 
not reported.

People primarily attributed land change on privately held land to individuals’ eco-
nomic decisions. Fluctuations in the rice market, in the price of fish, or other agri-
cultural products were often given as reasons for their own or observed changes to 
the landscape. Infrastructure changes, like a new bridge, road, or canal dredging, 
were assigned to the state. During interviews, individuals were unaware of how such 
changes were being financed or why—​and never mentioned the private sector or 
development partners’ role in the changes or specific policies. Therefore, individuals 
interviewed were unable to identify drivers of change outside of agricultural price 
fluctuations and state activity.

13.3.4 � Linking the Local-​Scale Remote Sensing Observed Change to 
Perceived Drivers

Tables 13.3–​13.5 show the perceived and mapped changes for each study location in 
2019 and 2018, with GLAD Landsat ARD product mapping LCLUC in both 2015 
and 2019. In Location 1 for 2019, the interview highlighted a continuation of built-​
up activities, which aligns with the remote sensing data showing sustained built-​
up. Location 2 witnessed an increase in shrimp and catfish production, along with 
coconut, lotus, and vegetable cultivation; the remote sensing data suggests some simi-
larity in land cover patterns between 2015 and 2019, encompassing mixed land cover 
pixels and specific agriculture types. Similarly, Location 3’s perception of lotus and 
chicken cultivation aligns with the remote sensing data depicting mixed land cover 
pixels with specific agriculture types. Location 4 reported a cessation of fish farming, 
leading to land use shifting towards built-​up activities, consistent with the remote 
sensing data. Location 5 exhibited a change from rice, lotus, jackfruit, and bamboo 
cultivation to shrub leaves for drinks. The remote sensing data indicated a transition 
from tree cover in 2015 to mixed land cover pixels in 2019, emphasizing alterations 
in vegetation types. Location 6 reported rice, turmeric, and herb cultivation, con-
sistent with the remote sensing data showing built-​up and mixed land cover pixels in 
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TABLE 13.3
Perceived and Mapped Change for Each 2019 Study Location (road 1–​7)

Location
Perceived LCLUC from 
Interview Remote Sensing LCLUC

Location 1 Sticky rice and small fish 
pond between buildings

2015: Build-​up
2019: Build-​up

Location 2 Increasing shrimp and 
catfish production, with 
coconut, lotus, and 
vegetables

2015: Mixed land cover pixels (rural mosaic), 
specific agriculture types (some vegetables, 
dragon fruit plantations, mixed orchard/​crops 
and orchards with very small and sparse trees), 
natural wetlands/​grass, fresh logging sites, dry 
shrubs/​rocks on slopes, and others.

2019: Mixed land cover pixels (some vegetables, 
dragon fruit plantations, mixed orchard/​crops 
and orchards with very small and sparse trees), 
natural wetlands/​grass, fresh logging sites, dry 
shrubs/​rocks on slopes, and others.

Location 3 Lotus and chicken
Coconut, veg

2015: Mixed land cover pixels specific agriculture 
types (some vegetables, mixed orchard/​crops 
and orchards with very small and sparse trees)

2019: Mixed land cover pixels specific agriculture 
types (some vegetables, mixed orchard/​crops 
and orchards with very small and sparse trees)

Location 4 Fish died, not using pond 2015: Build-​up
2019: Build-​up

Location 5 rice, lotus, 
jackfruit, bamboo

Shrub leaves for drinks

2015: Tree Cover
2019: Mixed land cover pixels (Orchards and 

Crops)
Location 6 Rice, turmeric, herbs 2015: Build up and Mixed land cover pixels (rural 

mosaic)
2019: Build up and Mixed land cover pixels (rural 

mosaic)
Location 7 Rice to big fish pond 

(catfish)
2015: Mixed land cover pixels (rural mosaic), 

Wetlands
2019: Mixed land cover pixels (rural mosaic), 

Wetlands

TABLE 13.4
Perceived and Mapped Change for Each Study Location 2019 (canal 8–​10)

Location Interview LCLUC Change

Location 8 Rice, lotus to fish ponds 2015:Cropland
2019:Cropland

Location 9 Rice to fish ponds 2015:Cropland
2019:Cropland

Location 10 Rice to fish ponds 2015:Cropland
2019:Cropland

 

 

 



225Observed Agricultural Landscape Change in Đồng Tháp Province

TABLE 13.5
Perceived and Mapped Change for Each 2018 Study Location

Location Perceived LCLUC from Interview Remote Sensing LCLUC

Location 1 -​	 Water Lotus (Seeds and Roots)
-​	 Chicken, Ducks and Cows
-​	 Fish pond adjacent

2015: Cropland
2019: Cropland

Location 2 -​	 Sticky rice (tripled-​crop per year) 2015: Mixed land cover pixels (rural 
mosaic), specific agriculture types 
(some vegetables, dragon fruit 
plantations, mixed orchard/​crops and 
orchards with very small and sparse 
trees), natural wetlands/​grass, fresh 
logging sites, dry shrubs/​rocks on 
slopes, and others.

2019: Mixed land cover pixels (some 
vegetables, dragon fruit plantations, 
mixed orchard/​crops and orchards with 
very small and sparse trees), natural 
wetlands/​grass, fresh logging sites, dry 
shrubs/​rocks on slopes, and others.

Location 3 -	​ Regular Rice and Sticky Rice
-​	 Several properties look 

abandoned/​overgrown
-​	 people have moved away 

to Saigon
-​	 road improved in the last 

few years
-​	 Things have not changed much in 

last ten years

2015: Mixed land cover pixels (rural 
mosaic), specific agriculture types 
(some vegetables, dragon fruit 
plantations, mixed orchard/​crops and 
orchards with very small and sparse 
trees), natural wetlands/​grass, fresh 
logging sites, dry shrubs/​rocks on 
slopes, and others.

2019: Mixed land cover pixels (some 
vegetables, dragon fruit plantations, 
mixed orchard/​crops and orchards with 
very small and sparse trees), natural 
wetlands/​grass, fresh logging sites, dry 
shrubs/​rocks on slopes, and others.

Location 4 -​	 Rice
-	​ Contains small fish enclosures

2015: Mixed land cover pixels (rural 
mosaic) and Intermittent Water

2019: Mixed land cover pixels (rural 
mosaic) and Intermittent Water

Location 5 -​	 Hoa Hao Temple established 
1961, built 1962, 2007 remodel

-​	 Way of life is changing due to 
economic pressures.

-​	 fishing is not allowed inside even 
if land cannot be cultivated

-​	 Acknowledges special place rice 
farming has in Hoa Hao but now 
too many people and not enough 
land to be farmers

2015: Build-​up
2019: Build-​up

(continued)
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a rural mosaic pattern. Location 7 experienced a shift from rice cultivation to a large 
fishpond (catfish), with the remote sensing data showcasing mixed land cover pixels 
and wetlands.

Table 13.4 also depicts changes in locations adjacent to canals (Locations 8–​10). 
These areas transitioned from rice and lotus to fishponds, as indicated by the inter-
view and remote sensing data classifying them as cropland in 2015 and 2019.

Additionally, Table 13.5 details the perceived and mapped changes in 2018 for 
various study locations. For instance, Location 1 reported water lotus, chicken, 
ducks, cows, and an adjacent fishpond, corresponding with the remote sensing data 
showing cropland in both 2015 and 2019. Similarly, Location 2’s perception of sticky 
rice aligns with the remote sensing data depicting mixed land cover pixels and spe-
cific agriculture types. Location 3 indicated regular rice and sticky rice cultivation, 
acknowledging abandoned properties and economic pressures leading to changes in 
the way of life. The remote sensing data supports these findings by showcasing mixed 
land cover pixels in both 2015 and 2019.

13.3.5 �N arrative of Change From Media and Public-​Facing   
Government Document Analysis

The provincial-​level Vietnamese language website (dongthap.gov.vn) posts for the 
time period of January 1, 2016–​July 1, 2021, and the district-​level website (tamnong.
dongthap.gov.vn) posts for the time period of January 1, 2016–​July 1, 2021, were 

Location Perceived LCLUC from Interview Remote Sensing LCLUC

Location 6 -​	 Rice fields adjacent
-​	 Some sticky rice

2015: Mixed land cover pixels specific 
agriculture types

2019: Mixed land cover pixels specific 
agriculture types

Location 7 -​	 Big and small fish ponds
-​	 Sugar cane field growing 

adjacent to pond
-​	 Coconut palms
-​	 Mango trees

2015: Mixed land cover pixels (rural 
mosaic), specific agriculture types 
(some vegetables, dragon fruit 
plantations, mixed orchard/​crops and 
orchards with very small and sparse 
trees), natural wetlands/​grass, fresh 
logging sites, dry shrubs/​rocks on 
slopes, and others.

2019: Mixed land cover pixels (some 
vegetables, dragon fruit plantations, 
mixed orchard/​crops and orchards with 
very small and sparse trees), natural 
wetlands/​grass, fresh logging sites, dry 
shrubs/​rocks on slopes, and others.
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used to analyze state discourse. These government portals generally discussed three 
drivers of change: agricultural economics and agricultural policy; development and 
development policy, and environmental policies, particularly water and water man-
agement. Development and development policy was discussed specifically in the 
context of The National Target Program for New Rural Development (NTP-​NRD) 
and the World Bank Mekong Delta Integrated Climate Resilience and Sustainable 
Livelihoods Project (MD-​ICRSL/​WB9, or simply WB9), which both focus on sus-
tainable and climate resistant development.

NTP-​NRD supported “initiatives towards climate-​resilient agriculture or 
environment-​friendly agriculture and/​or livelihoods [and] adapt rural infrastructure 
quality specifications to address climate variability issues” (New Rural Development 
and Sustainable Poverty Reduction Support Program, 2017). Infrastructure 
developments (bridge construction, road repairs, canal dredging) were largely 
associated with policies like NTP-​NRD. The WB9 Project, which will run until 
30 June 2024, seeks to “improve climate resilience of land and water management 
practices in selected provinces of the Mekong Delta in Vietnam” and is reportedly 
being used in the district to fund sustainable development focusing on converting 
low-​efficiency paddy fields into more productive crops, including orchards, soybeans, 
and aquaculture; repairing fishery infrastructure; and the piloting of dual cropping of 
rice and fish products (Mekong Delta Integrated Climate Resilience and Sustainable 
Livelihoods Project, 2023; Project Report, 2020). Therefore, while the provincial-​ 
and district-​level government portals did not offer a narrative of land use change per 
se, they were instrumental in identifying policies impacting land use and land use 
change.

The Báo Đồng Tháp Online was analyzed, with pages mentioning “Phú Thọ” 
[138], seeking drivers or descriptions of land use change. The news source largely 
attributed the change to government policies aimed at economic and infrastruc-
ture development and policy as the driver of change and closely aligned with state 
pronouncements. The major issue [setting aside Covid-​19] associated with Phú Thọ 
was the development over 2020–​2021 of an appellation d’origine contrôlée certifica-
tion for dried snakehead fish (Channa striata) and various mechanisms, like a ““Phú 
Nông Hội Quán” (PNHQ), an assembly hall for snakefish farmers, to create/​expand 
the local market for “Phú Thọ Dried Snakehead Fish.” Using the Báo Đồng Tháp 
Online, we were able to construct a micro-​history of Phú Thọ that helped context-
ualize the emphasis on aquaculture development in Phú Thọ and particularly snake-
head fish production.

13.3.5.1 � The Development of the Dried Snakehead Fish Industry   
in Phú Tho∙

In 1961, Nguyen Van Dinh immigrated with his family from An Giang, near Châu 
Đốc, to Phú Thọ to escape wartime conditions there. They raised some rice and 
some vegetables, fished, and collected snails, investing their earnings in reclaiming 
“swampland” for agriculture (Trung, 2012). They endured extreme hardships due 
to wartime conditions and disruptions. “By 1990, too many people were fishing … 
Fisheries were exhausted,” reported Nguyen. “In April 1992, I began to collect fish fry 
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in the wild to bring home and raise in the ponds around my house” (Trung, 2012). His 
efforts were very successful: After 8 months, he harvested 20,000 snakeheads from a 
700 m2 pond. This harvest earned Dinh the equivalent of $8,300–​$8,600 adjusted for 
inflation (the average per capita income was $137) (World Bank World Development 
Indicators, n.d.). Encouraged, Nguyen began experimenting with fish breeding and 
different fish foods, reinvesting part of his income into further ponds. By 2004, he 
was raising 200 tonnes of snakehead each year (Trung, 2012). Dinh’s success inspired 
neighbors, and in 2006, he was awarded a “Model Farmer” award. His fish farm was 
used as a showcase farm, with individuals brought to his farm in order to learn more 
about the techniques he had pioneered (Trung, 2012).

In 2013, the Tu Quy Joint Stock Company opened a commercial fish drying 
and packing facility devoted, at the time of its opening, exclusively to processing 
snakehead fish (“Chế Biến Khô Cá Lóc Bằng Hệ Thống Sấy,” 2013). At that time, 
according to Mr. Do Cong Binh, director of the company, the company had invested 
300 million VND to build a factory and install a drying system; the facility could pro-
cess up to 500 kg of fresh fish (140 kg of dried fish) per day, and by December 2014 
had invested a total of over 4 billion VND (about $164,700 USD), partially funded by 
the state (“Chế Biến Khô Cá Lóc Bằng Hệ Thống Sấy,” 2013; Nhật, 2014).

It was reported in 2013 that 60 ha in the district of Tam Nông were devoted to 
snakehead fish production, with plans to expand the farming area to 200 hectares 
(“Chế Biến Khô Cá Lóc Bằng Hệ Thống Sấy,” 2013). That may have included 
transitioning existing ponds from other species to snakehead production. By 2015, 30 
households and some 300 individuals were involved in dried snakehead production. 
By 2017, there were 40 households involved in production. While outside our ana-
lysis timeline, by 2022, it was reported that 200 households were involved in snake-
head fish production, a fivefold increase in just 5 years (Chí, 2022).

In 2017, a “Snakehead Farmers Assembly Hall” was constructed to encourage 
training and development for farmers (Khánh, 2017). By that time, there were a total 
of 15 processing facilities for drying snakehead fish (Dương, 2017). By January 2021, 
that number had at least doubled, with the Tu Quy Joint Stock Company alone oper-
ating more than 30 establishments for processing and selling dried aquaculture goods 
(Mẫn, 2021). The industry’s growth was tied in part to the well-​developed infra
structure of roads and waterways that connected the commune to outside markets 
and the strong brand recognition (Mẫn, 2021). In 2019, “Phú Thọ Dried Snakehead 
Fish” (“Khô Cá Lóc Phú Thọ”) received an appellation of origin from the Vietnamese 
government, designating it an official geographical origin product, and in 2021, the 
Department of Agriculture and Rural Development developed a certification process 
for regulating and managing products with the designation (Mỹ, 2021).

Hence, the analysis of public-​facing news sources allowed for the construction of a 
local economic history that greatly informs understanding of the combination of local 
conditions that have fueled the expansion of aquaculture, first snakehead fish produc-
tion, and subsequently other products such as Pangasius bocourti or species of fresh-
water crustaceans. A single entrepreneurial farmer in 1992 helped establish a local 
industry of snakehead fish production; his success served as a model for subsequent 
farmers. As development funds became available, this pre-​existing industry, with its 
regional recognition, was invested in by both the state, using in part development 
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funds from the World Bank, and private companies to encourage and capitalize on 
its growth. From this narrative, one can expect to see shifts from other forms of agri-
culture to aquaculture and the continuing growth of infrastructure, like processing 
and packing plants and the accompanying power and transportation infrastructure, 
required to support the industry’s continued growth and development. Given these 
investments and the supporting infrastructure emphasizing aquaculture and snake-
head fish production, it can be expected that additional lands will be transitioned to 
aquaculture around Phú Thọ.

13.4 � CONCLUSION

The study employs established remote sensing techniques (Potapov et al., 2020) to 
understand between-​year LCLU changes of the Đồng Tháp agricultural landscape. 
Our work acknowledges the limitations of applying statistical methods to ground-​
level data, as it may not yield precise or meaningful results or understanding across a 
landscape. Thus, the combination of social science and humanities approaches with 
remote sensing provided a more complete picture of the changes themselves and 
the drivers of the LCLUC. The analysis concludes that, according to remote sensing 
data, no significant changes in classification outcomes were observed between 2015 
to 2019 for the larger region, but when looking at site-​specific examples, the 30 m 
Landsat-​based analysis did concur with what was reported by individual farmers. 
This work benefitted from the rich archive of analysis-​ready 16-​day Landsat imagery. 
Future work would benefit from mapping high temporal LCLUC occurring at sea-
sonal time steps in this complex agricultural system via fusion products like the 
Harmonized Landsat and Sentinel-​2 (HLS) product to shorten the 16-​day temporal 
resolution to nearly weekly. Further, weekly to monthly tasks of very high resolution 
(< 10 m) commercial satellite imagery, like Planet or MAXAR Digital Globe, may 
reveal the complex LCLUC noted by the local populations at spatial resolutions 
necessary to map different crop types, expand aquaculture in real-​time, and poten-
tially expand snakehead fish processing into built-​up areas. Finally, it should be noted 
that much of this work (~2015–​2019) represents pre-​Covid market and landscape 
change conditions, meaning that observed changes happening now may not align 
with drivers identified in this study.

Additionally, while we found interviews with individuals could identify local 
changes, these were often not significant enough to be detectable by the moderate 
remote sensing methods used here. Individuals identified the prices of agricultural 
products and economics as the reasons for private land change and assigned infra-
structure projects to state actors. They were unable to articulate local, regional, or 
national policies impacting these observed changes. Discourse analysis of a local 
news source and local government publications identified policies and initiatives, 
in part funded by development partners and including private–​public partnerships, 
impacting both local economic and infrastructure changes. Furthermore, discourse 
analysis enabled the production of an economic micro-​history of the district that, 
in part, explained statistical information regarding the increase of district-​level 
aquaculture’s value and productivity. This easily replicable approach can be deployed 
in other geographies to help identify drivers of LULC. While significant increases in 
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aquaculture acreage were not observed in Phú Thọ commune, it is likely that existing 
ponds have transitioned to snakehead fish production—​especially given the invest-
ment by private and state actors noted in the sources used for the discourse analysis, 
snakehead fish production will continue as a major industry in Phú Thọ. This research 
went beyond mapping the landscape into understanding the individuals inhabiting 
it, equipping the authors to conduct future and culturally sensitive research in the 
Mekong Delta of Vietnam and to expand the application of critical remote sensing to 
better characterize drivers of LCLUC at local to regional scales.
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14.1 � INTRODUCTION

Thailand is a leading global rice exporter, with a value estimated at approximately 
$7.4 billion in 2018, making rice a cornerstone of its economy. The country boasts 
a production output of around 20.3 million metric tons, solidifying its status as the 
world’s largest milled rice producer. Key production areas encompass the central, 
northeastern, and northern regions, with the central region leading in terms of output.

The rice sector contributes significantly to Thailand’s GDP, accounting for about 
3.3%, and employs approximately 10 million people, representing roughly 20% of the 
nation’s workforce. For many smallholder farmers, rice farming is a crucial income 
source, often constituting up to 60% of their earnings. Pursuing higher rice yields 
remains imperative in the face of global population growth. However, achieving this 
goal is fraught with challenges, including environmental conditions and changes in 
land use that impact productivity. Climate change and alterations in land use pose 
significant threats, affecting crop yields through extreme weather events and changes 
in resource availability (Change, 2014). Natural disasters such as droughts and floods 
intensify these challenges, further disrupting rice production and livelihoods.

Moreover, Thailand, characterized by its tropical climate, frequently grapples 
with droughts, resulting in prolonged dry spells and water scarcity. A report indicated 
that in 2021, approximately 3.8 million hectares of land in Thailand were affected 
by prolonged drought conditions, with forecasts suggesting an annual escalation 
in severity. Measuring crop yield in vast agricultural areas presented challenges 
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due to time, budget, and surveyor limitations. A recent data-​driven remote sensing 
approach offered an efficient means of assessing crop conditions and predicting yield 
remotely (Ju et al., 2021; Johnson et al., 2021; Faisal et al., 2020; Faisal et al., 2019). 
Utilizing various sensors and platforms, such as satellites, enables data collection 
on land usage, vegetation, and weather patterns (Justice et al., 2015). Numerous 
studies leveraged remote sensing data to forecast agricultural production (Vadrevu 
et al., 2019; 2022). Weather variables, including land surface temperature (LST), 
enhanced vegetation index (EVI), and normalized difference vegetation index 
(NDVI), alongside machine learning (ML), improved yield predictions (Ju et al., 
2021). For example, ML techniques like eXtreme Gradient Boosting (XGBoost) 
integrated remote sensing and weather data to enhance cereal yield forecasts, redu-
cing prediction errors (Tan et al., 2021). Additionally, derived indices from remotely 
sensed data, such as the vegetation health index and temperature condition index, 
combined with machine learning, outperform traditional methods in predicting crop 
production (Joshi et al., 2023).

Accurate prediction of crop yields was crucial for sustainable food security and 
agriculture, aiding farmers in decision-​making and enabling policymakers to miti-
gate potential food shortages. Traditional regression methods were surpassed by ML 
and deep learning, offering precise statistical forecasts. Recent studies evaluated 
ML algorithms like SVR, RF, and XGBoost for local crop production prediction. 
Notably, SVR, RF, and GPR emerged as top performers, exhibiting an R-​squared (R2) 
value > 0.75. While ML approaches generally excelled in crop yield prediction, evi-
dence suggested that multivariate ordinary least squares may yield lower error rates 
for soybean yield prediction compared to RF and LSTM (Schwalbert et al., 2020). 
Hyper-​validation of ML models, facilitated by grid search cross-​validation, could be 
complex. Additionally, some studies attempted regional agricultural yield forecasting 
using remote sensing data alone, disregarding meteorological factors crucial for 
accurate predictions (Memon et al., 2019). The RMSE based on remote sensing 
varied considerably, indicating uncertainty in solely relying on this data (Pang et al., 
2022). The combination of remote sensing and climatic data remained unexplored, 
particularly in tropical regions. Thus, this study aimed to provide input datasets and 
model methods to minimize crop production forecast errors.

This study significantly advanced crop yield prediction by integrating cli-
matic and remote sensing data, providing a comprehensive understanding of the 
climatic drivers influencing production and enhancing precision through novel 
remote sensing indicators. By innovatively utilizing crop phenological phases, the 
study identified factors influencing yield, thus enhancing our understanding, and 
informing agricultural and policy strategies. Moreover, the study’s findings offered 
a foundational system to support informed decision-​making for farmers and govern-
ment entities based on the identified factors influencing yield. This report presented 
results to assess the predictive capability of MLR models and machine learning 
algorithms (RF, XGBoost, and SVR) using various satellite-​derived indices and cli-
mate variables. Variable selection preceded model training, and different combin-
ations of predictors were tested. Model performance was evaluated using metrics 
like R2 and RMSE, and the most effective model was applied to predict crop yields 
at the provincial scale.
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14.2 � STUDY AREA

The Chi basin, located in central Thailand between 15°13′ and 17°40′ N latitude and 
101°14′ and 104°46′ E longitude. It encompasses an elevation range of 104 to 1060 
meters above sea level (Figure 14.1), spanning approximately 4.91 million hectares. 
Approximately 3.22 million hectares are designated as cropland. The prevailing cli-
mate is characterized by humid, tropical conditions, with temperatures averaging 
between 27 to 32°C. The region experiences two distinct monsoon seasons: the 
Southwest Monsoon prevailing from May to October and the Northeast Monsoon 
from November to April. The rainy season typically extends from May to October, 
with an average annual precipitation of 1380 mm. Crop cultivation predominantly 
occurs from June to November, culminating in harvest during December (Boonwichai 
et al., 2018).

14.3 � DATA AND METHODS

14.3.1 �C rop Yield Data and Their Phenology

This study analyzed historical crop yields at the provincial level from 2011 to 2019  
using data sourced from the Office of Agricultural Economics for 14 provinces (www.
oae.go.th/​, accessed on July 25, 2022), as detailed in Table 14.1. Field observations  
were conducted across 24 areas covering Thailand, with each sample represented by  
a square box. Rice milling was employed to estimate production, converting it into  
units (ton/​ha). Additionally, annual crop production was calculated by dividing total  

FIGURE 14.1  Study area.
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TABLE 14.1
The Rice Milling Data for 14 Study Areas in the Chi Basin, Measured in Tons per Hectare (ton/​ha)

No. Province Acronym 2011 2012 2013 2014 2015 2016 2017 2018 2019

1 NAKHON RATCHASIMA NS 2.59 2.25 2.31 2.24 2.26 2.22 2.26 2.22 2.27
2 SI SA KET SK 2.51 2.30 2.45 2.28 2.26 2.27 2.29 2.28 2.17
3 UBON RATCHATHANI UR 2.16 2.15 2.15 2.06 2.06 2.09 2.18 2.27 2.25
4 YASOTHON YT 2.54 2.27 2.28 2.31 2.21 2.23 2.22 2.27 2.25
5 CHAIYAPHUM CP 2.46 2.36 2.39 2.21 2.19 2.25 2.32 2.29 2.32
6 NONG BUA LAMPHU NL 2.41 2.33 1.97 2.01 1.98 2.11 2.16 2.07 2.08
7 KHON KAEN KK 2.16 2.09 2.11 2.12 2.11 2.15 2.14 2.02 1.98
8 UDON THANI UD 2.47 2.32 2.24 2.32 2.34 2.37 2.40 2.28 2.23
9 LOEI LO 2.41 2.42 2.46 2.34 2.31 2.43 2.46 2.33 2.11

10 MAHA SARAKHAM MK 2.37 2.32 2.33 2.30 2.28 2.30 2.23 2.18 2.25
11 ROI ET RT 2.37 2.32 2.33 2.34 2.38 2.39 2.37 2.21 2.15
12 KALASIN KS 2.32 2.26 2.26 2.29 2.30 2.32 2.30 2.31 2.33
13 MUKDAHAN MH 2.40 2.24 2.26 2.40 2.40 2.40 2.38 2.47 2.19
14 PHETCHABUN PB 3.54 3.54 3.61 4.37 4.36 3.46 4.33 3.53 4.40
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production by harvested area, resulting in annual crop yields ranging from 1.97 to 4.4  
tons/​ha, varying by region.

According to the crop calendar period (Sujariya et al., 2020), crops in this region 
were typically transplanted between June and July, flowered from late October to 
November, and harvested around December. In Thailand, rice underwent several 
stages of growth, including nursery, vegetative, reproductive, and maturity stages, 
lasting approximately 5–​6 months (Ramadhani et al., 2021), subject to environ
mental conditions and crop variety (Figure 14.2) (Chaiyana et al., 2024). Throughout 
these stages, changes in rice growth affected its reflectance at different wavelengths. 
Previous studies indicated that indices like NDVI effectively monitored rice growth 
(Guo et al., 2021, Son et al., 2014). Initially, NDVI was low during the early vege
tative stage due to limited vegetation cover but increased as chlorophyll content and 
foliage developed (Peñuelas and Filella, 1998). However, as the plant matured, NDVI 
decreased due to biomass reduction, chlorophyll decline, and grain filling increase 
(Mosleh et al., 2015).

14.3.2 �R emote Sensing and Climate Data Integration

The research leveraged remote sensing (RS) data sourced from the MODIS sensor 
to delineate crop areas within the Chi basin, Thailand, drawing upon land use data 
provided by the Land Development Department (LDD) of Thailand for the year 2020. 
Vegetation indices, notably EVI, NDVI, and LST daytime and nighttime products, 
were instrumental in the monitoring process. Moreover, the study factored in variables 
such as drought and climate, utilizing indices like TCI, VCI, and VHI (Zeng et al., 
2022, Hashemzadeh Ghalhari et al., 2022, Alahacoon et al., 2021) derived from NDVI 
and temperature metrics (Xie and Fan, 2021, Bento et al., 2020). All remote sensing 
datasets were aggregated into monthly mean data points. Concurrently, essential cli-
matic variables encompassed monthly mean rainfall, T

min
, T

mean
, and T

max
 spanning 

from June to November. For ease of reference, Table 14.2 provides a concise sum
mary of the variables integral to the study.

FIGURE 14.2  Mean temporal NDVI profile of crops across growth stages in the Chi basin 
region from 2011 to 2019. SOS, POS, and EOS represent the start, peak, and end of the season, 
respectively. (Chaiyana et al., 2024.)
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TABLE 14.2
The Predictors to be Applied for Modeling and Predicting Crop Production

Data Type Product Variable Spatial Resolution Temporal Resolution Acquisition Date Data Source

Yield recorded Crop yield Provincial level Annual 2011–​2019 www.oae.go.th/​ , (accessed 
on July 20, 2022).

RS data MOD13Q1 NDVI 250 m 16-​day interval 2011–​2022 https://​lpd​aac.usgs.gov/​
produ​cts/​mod1​3q1v​006/​,   
(accessed on July 20, 
2022).

EVI 2011–​2022

MOD11A2 LST daytime 1 km 8-​day interval 2011–​2022 https://​lpd​aac.usgs.gov/​
produ​cts/​mod1​1a1v​006/​,   
(accessed on July 20, 
2022).

LST nighttime 2011–​2022

Climatic data ERA5 Rainfall 27.83 km Monthly 2011–​2022 www.ecmwf.int/​en/​foreca​
sts/​data​set/​ecmwf-​rea​naly​
sis-​v5, (accessed onJuly 
20, 2022).

T
mean

2011–​2022

T
min

2011–​2022

T
max

2011–​2022

All RS and climatic data were averaged into the crop growth season from June to November.
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14.3.3 � Feature Selection: Correlation Analysis (CA) and Variance 
Inflation Factor

Various techniques could be employed to mitigate overfitting, such as eliminating one  
of the correlated variables, merging correlated ones, and utilizing principal component 
analysis (PCA). However, in the context of predicting crop yield based on limited  
indicators, removing, or merging correlated variables might not align with the procedure.  
Alternatively, PCA offered a method to consolidate multiple correlated variables into  
a single predictor (Uddin et al., 2021). Nevertheless, a constraint of this study was the  
number of variables involved, necessitating the adoption of an appropriate approach.  
On another note, multiple linear regression commonly encountered multicollinearity  
issues, where certain variables exhibited high correlations. To address this, correlation  
analysis (CA) was utilized for variable selection, helping to identify and potentially  
remove highly correlated variables (Guechi et al., 2021; Boori et al., 2021; Guha and  
Govil, 2020). Additionally, the variance inflation factor (VIF) served as a tool in multiple  
regression analysis to gauge multicollinearity among independent variables. Excessive  
multicollinearity could yield unstable and unreliable regression coefficients (Hamzehpour  
et al., 2019, Kang et al., 2018). Previous research has proposed integrating the VIF as an  
indicator to mitigate multicollinearity (VIF < 5–​10) (Browning et al., 2018, Alsharif and  
Pradhan, 2014). In this study, a VIF score threshold of 5 was applied, indicating moderate  
to considerable correlation. Both CA and VIF were employed as statistical methods to  
analyze influential factors in crop yield prediction, with significance determined by a p-​ 
value < 0.05 and VIF < 5 (Maya and Bhargavi, 2019) (refer to Figure 14.3). The selected  
variables from this stage would serve as predictor variables for subsequent analysis.

FIGURE 14.3  Research framework for predicting crop production. (Chaiyana et al., 2024.)
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14.3.4 �C rop Yield Prediction Models

Regression models, including multiple linear regression (MLR), random forest (RF) 
regression, XGBoost regression, and SVR, were applied to investigate the rela-
tionship between independent variables and a dependent variable. These models 
estimated the effect of independent variables, assuming a specified functional 
form such as linear or nonlinear. Model parameters were estimated using statistical 
techniques, and goodness of fit was assessed using metrics like R2 and RMSE. The 
crop yield dataset, comprising 126 samples, was divided into training (98 samples, 
2011–​2017) and testing (28 samples, 2018–​2019) datasets. Hyperparameters for 
each ML model were optimized using grid search cross-​validation (GridSearchCV) 
from the sci-​kit-​learn library in Python (Yu and Zhu, 2020). GridSearchCV evaluated 
different hyperparameter combinations to find the optimal set according to a chosen 
metric (Dong et al., 2020). RMSE and R2 were used to evaluate model performance, 
implemented in Python using the scikit-​learn library. The predictive model was used 
to forecast crop yield at the provincial scale, aiding farmers, and policymakers in 
decision-​making. Additionally, analyzing future trends was crucial for informed agri-
cultural practices and resource allocation.

14.4 � RESULTS AND DISCUSSION

14.4.1 �V ariable Selection

This study employed CA and VIF to eliminate redundant variables, preserving essen-
tial ones to enhance model accuracy and prevent overfitting. Results revealed six  
significant variables from RS data—​TCI, NDVI, LST

nighttime
, VCI, VHI, and EVI, all  

with p-​values under 0.05 (Table 14.3). Climatic data retained only T
mean

 after VIF  

TABLE 14.3
The Statistical Metrics of Correlation Analysis 
(CA) and the Variance Inflation Factor (VIF)

Data Type Variable p-​Value VIF

RS data TCI 0.001 ** 1.31
NDVI 0.023 * 1.22
LST

nighttime
0.001 ** 2.17

VCI 0.001 ** 15.49
VHI 0.001 ** 65.2
EVI 0.035 * 20.67
LST

daytime
0.37 11.19

Climate data Tmean 0.001 ** 2.05
Rainfall 0.213 1.76
T

max
0.24 13.44

T
min

0.051 5

Note: � * and ** refer to the confidence interval for p-​values < 0.05 
and 0.01, respectively.
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assessment, resulting in four remaining variables (Table 14.3). Thus, for training  
and testing the model, variables with VIF values below 5—​TCI, NDVI, LST

nighttime
  

for RS data, and T
mean

 for climatic data—​were selected, ranging from 1.31 to 2.17  
(Table 14.3).

14.4.2 �R egression Model Predictions for Province-​Level Crop Yield 
Prediction in the Chi Basin

This study utilized 126 samples to analyze provincial-​scale crop yield production, 
split into two periods: 2011–​2017 (98 samples) and 2018–​2019 (28 samples). Three 
categories of data, including remote sensing (RS), climatic, and a fusion of both, 
were subjected to four regression models (MLR and machine learning techniques) 
(Table 14.3). The MLR model using RS data exhibited the lowest R2 value of 0.42 
in the training dataset, whereas the XGBoost model using fusion data demonstrated 
the highest R2 value of 0.95 (Table 14.4), aligning with previous findings (Bouras 
et al., 2021). Regarding validation (RMSE), the XGBoost model with combined 
data showed the lowest RMSE of 0.18 ton/​ha, followed by the support vector regres-
sion (SVR) model using climatic data with an RMSE ranging from 0.18 to 0.3 ton/​
ha, within acceptable error thresholds for European agro-​statistics (Genovese et al., 
2006). Overall, the XGBoost model emerged as the most dependable for predicting 
crop yield production, boasting the highest R2 and lowest RMSE (Table 14.4).

14.4.3 �T emporal Trend of Crop Production Measurement and Changes 
of Crop Production Validation

To further elaborate on the findings presented in Figure 14.4, it is vital to assess  
both observed and predicted crop yield data using four distinct approaches: three  
non-​parametric (RF, XGBoost, SVR) and one parametric (MLR). These methods  
forecasted crop yield one month before harvest. Despite fluctuations in variables  

TABLE 14.4
Training and Testing of Each Model and Data Type for Predicting Crop Yield 
Production

Category

R-​Square (Training: 2011–​2017)

MLR RF XGBoost SVR

RS data 0.42 0.74 0.89 0.64
Climatic data 0.55 0.94 0.93 0.88
Combination 0.63 0.92 0.95 0.81

RMSE (Testing: 2018–​2019) (ton/​ha)

RS data 0.36 0.42 0.45 0.4
Climatic data 0.3 0.23 0.21 0.18
Combination 0.26 0.19 0.18 0.29
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and models, peak yields in 2011 and 2017 led to reduced yields in 2018. Evaluation  
during validation periods (2018 and 2019) revealed MLR’s strong performance  
across most predictors, with minimal differences in yields. Conversely, XGBoost and  
RF showed negligible discrepancies between observed and predicted data in 2019.  
Overall, non-​parametric and parametric approaches effectively forecasted crop yield,  
with MLR and XGBoost standing out. Notably, while MLR performed well with  
testing data, its training statistical results suggested caution. MLR assumes linear  
correlations, whereas XGBoost, a non-​parametric technique, employs boosting  
with decision trees for predictions, offering flexibility for non-​linear relationships  
but with higher complexity and resource requirements. Consequently, XGBoost was  
chosen for provincial-​scale yield prediction due to its adaptability and accuracy with  
diverse data.

14.4.4 �C rop Yield Prediction Between 2018 and 2022

XGBoost, a selected machine learning algorithm, forecasts crop yield production,  
as previously mentioned. Employing the XGBoost model, the crop yield ratio (tons/​ 
ha) across 14 provinces from 2018 to 2022 (Table 14.5) was determined. In 2018 and  
2019, PB province exhibited the highest crop yield ratio at 3.77 tons/​ha, contrasting  
with NL province, which recorded the lowest at 2.23 tons/​ha. By 2020, PB province 
maintained the highest ratio at 3.60 tons/​ha, marking a decrease of 4.5% and  
2.9% from 2018 and 2019, respectively. Notably, CP and KK provinces boasted  
the most extensive areas suitable for crop production, with 0.699 million hectares  
and 0.683 million hectares, respectively. By 2022, PB province’s crop yield ratio  
decreased by 11.9% compared to 2021 and 2018. These results highlight the effect-
iveness of the XGBoost model in provincial-​level crop outcome prediction and stress  

FIGURE 14.4  Comparison of annual average crop yield prediction (ton/​ha) and average 
historical data for (a) the MLR model, (b) the RF model, (c) the XGBoost model, and (d) the 
SVR model; the bar chart represents the average historical crop yield production; the red, blue, 
and black dot lines represent the combination, RS, and climatic data, respectively.
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TABLE 14.5
Changes of the Crop Yield Validation Relative to the Historical Values of Each Model

Model Year
Mean Actual 
Yield (ton/​ha)

Variable Change

Combination RS Climate

ΔCombination ΔRS ΔClimate
Mean Predicted 
Yield (ton/​ha)

Mean Predicted 
Yield (ton/​ha)

Mean Predicted 
Yield (ton/​ha)

Linear 2018 2.34 2.37 2.35 2.34 0.03 0.01 0.01
2019 2.36 2.45 2.51 2.45 0.10 0.15 0.09

RF 2018 2.34 2.28 2.32 2.26 −0.05 −0.01 −0.07
2019 2.36 2.35 2.45 2.35 0.00 0.10 −0.01

XGBoost 2018 2.34 2.28 2.36 2.27 −0.06 0.02 −0.07
2019 2.36 2.35 2.50 2.35 −0.01 0.14 −0.01

SVR 2018 2.34 2.31 2.30 2.31 −0.02 −0.04 −0.02
2019 2.36 2.41 2.45 2.36 0.05 0.10 0.00
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the importance of considering both yield and production area in forecasts. Conversely,  
crop yield prediction in CP province ranged from 1.61 to 1.74 million tons annually  
between 2018 and 2022, while KK province, the second-​largest region, produced  
yields ranging from 1.55 to 1.62 million tons per year. Predicted crop yield produc-
tion in the Chi basin region ranged from 7.33 to 7.88 million tons annually from 2018  
to 2022. The total predicted crop yield production maps for 2020–​2022 at the provin-
cial scale are depicted in Figure 14.5, providing insights into the country’s economic  
performance and the standard of living for Thailand’s citizens.

14.4.5 �D iscussion on Accuracy and Implications

Monitoring, mapping, and predicting crop production across vast regions aid farmers 
and policymakers in making sustainable management decisions, crucially benefiting 
the Chi basin region, a key crop producer in Thailand. This is particularly critical 
now, given the frequent impact of natural hazards on tropical monsoon areas and 
the looming challenge of climate change in global agriculture. Since crop yield sig-
nificantly affects global food security, timely and accurate monitoring of threats to 
production is imperative. Early and precise estimation of crop production facilitates 
effective trade and food management strategies. While various methods exist for 
estimating crop yield (Sakamoto et al., 2014; Doraiswamy et al., 2005), predictive 

FIGURE 14.5  Total predicted crop yield production at the provincial scale for (a) 2020, 
(b) 2021, and (c) 2022.
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models leveraging remote sensing data and machine learning techniques have 
emerged (Mkhabela et al., 2011). Nonetheless, the accuracy of these approaches can 
vary. For instance, a study by Mkhabela et al. (2011) utilizing NDVI to forecast crop 
production in the Canadian Prairies yielded R2 values between 0.8 and 0.9. Similarly, 
research by Dong et al. (2020), employing MODIS EVI and LAI data to predict 
rice crop production in Vietnam’s Mekong Delta, demonstrated maximum correlation 
coefficients of 0.70 and 0.74 during crop growth stages, respectively.

Agricultural production is closely related to environmental factors such as cli-
mate data (rainfall, temperature, humidity, solar radiation) (Lin, 2007; Nguyen and 
Drakou, 2021). Integrating climatic and remote sensing data for crop yield pre
diction (Ju et al., 2021; Medina et al., 2021), aligns with this study’s conclusions. 
Evaluating various methods and predictors for provincial-​scale crop yield prediction 
in Thailand’s Chi basin before harvest, this research discovered that combining sat-
ellite imaging with climatic data enhances accuracy. Notably, employing LST

nighttime
, 

NDVI, TCI, and T
mean

 data with the XGBoost algorithm yielded an R2 value of up 
to 0.95 and improved RMSE to 0.18 ton/​ha. Similarly, previous research by Bouras 
et al. (2021) found that integrating remote sensing-​based drought, climate, and wea
ther indicators with XGBoost enhanced cereal yield forecasting accuracy. Although 
XGBoost’s temporal crop yield predictions closely matched actual data, deviations 
occurred in 2018 due to natural hazards, resulting in a difference of 0.05 tons/​ha.

Recent research by Kheir et al. (2024) reported the fusion of remote sensing, soil, 
and weather datasets for estimating smallholder crop yields in Egypt, with the result 
showing that the NDVI, EVI, GCVI, GNDVI, and WDRVI indices gained the highest 
R2 of 0.70. Future research entails exploring the potential of remote sensing to esti-
mate smallholder crop yields at the individual plot level by fusing data from satellite 
and UAV imagery (Cheng et al., 2024; Sangjan et al., 2024), which can be combined 
with climate data in the area.

In 2018, floods ravaged 66 provinces and 420 districts, devastating agricultural 
regions, particularly lowland rice areas. Our study forecasts a gradual decline in 
rainfed rice production, contrary to previous projections, with an estimated annual 
reduction of 0.078 million tons from 2020 to 2022 (Table 14.6). Drought effects, 
with an expected 5% mean absolute percentage error (MAPE) (Raksapatcharawong 
et al., 2020), are linked to El Niño southern oscillation (Anderson et al., 2017), further 
complicating yield forecasts in Thailand. Despite fluctuating crop yield predictions, 
climate change threatens to exacerbate agricultural challenges, potentially raising 
temperatures by 1.4 to 5.8°C by 2100 (Change, 2014), intensifying crop water 
requirements, and impacting production (Astuti et al., 2022). However, our study 
offers reliable crop yield predictions useful for policymaking at both national and 
provincial levels. The methodology presented herein could serve as a template for 
crop yield forecasting in similar contexts, aiding economic management, given rice’s 
pivotal role in Thailand’s economy as a primary staple and key export.

Thailand’s rice crop yield significantly influences regional trade and industry per-
formance, contributing notably to the GDP. This is driven by modern agricultural 
practices like hybrid seeds and precision agriculture, alongside enhanced irrigation 
and fertilization methods. Despite robust infrastructure support, including roads, 
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TABLE 14.6
Estimation of Crop Yield Prediction Over Crop Area in the Chi Basin Between 2018 and 2022

Area Crop Yield Area (ha)

Crop Yield Ratio (ton/​ha) Total Crop Yield (Mton)

Validation Period Predicting Period Validation Period Predicting Period

2018 2019 2020 2021 2022 2018 2019 2020 2021 2022

NS 81,076 2.29 2.26 2.9 2.31 2.36 0.19 0.18 0.23 0.19 0.19
SK 16,562 2.29 2.29 2.36 2.26 2.45 0.04 0.04 0.04 0.04 0.04
UR 44,155 2.27 2.27 2.36 2.26 2.42 0.1 0.1 0.1 0.1 0.11
YT 125,803 2.29 2.26 2.36 2.38 2.36 0.29 0.28 0.3 0.3 0.3
CP 699,264 2.3 2.26 2.72 2.27 2.49 1.61 1.58 1.9 1.59 1.74
NL 216,043 2.23 2.23 2.27 2.66 2.2 0.48 0.48 0.49 0.57 0.48
KK 683,868 2.28 2.26 2.34 2.36 2.36 1.56 1.55 1.6 1.61 1.62
UD 256,024 2.29 2.26 2.3 2.36 2.32 0.59 0.58 0.59 0.6 0.59
LO 61,150 2.31 2.24 2.7 2.6 2.6 0.14 0.14 0.16 0.16 0.16
MK 247,999 2.28 2.28 2.32 2.32 2.45 0.56 0.56 0.58 0.57 0.61
RT 366,514 2.29 2.28 2.36 2.38 2.45 0.84 0.83 0.86 0.87 0.9
KS 418,757 2.29 2.28 2.32 2.36 2.26 0.96 0.95 0.97 0.99 0.95
MH 1254 2.32 2.26 2.36 2.66 2.33 0.01 0.01 0.01 0.01 0.01
PB 11,195 3.77 3.66 3.6 3.77 3.32 0.04 0.04 0.04 0.04 0.04
Sum 7.40 7.34 7.89 7.65 7.73
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ports, and storage facilities, crop yield remains susceptible to factors like droughts 
and market fluctuations. Additionally, shifts in market demand may prompt farmers 
to adjust their crop choices. Reduced yields could escalate chemical usage, posing 
environmental risks. Thus, proactive measures for early yield prediction and sustain-
able development policies are crucial to mitigate adverse impacts.

14.5 � CONCLUSION

Predicting crop yields is vital for farmers to enhance management techniques and 
increase production before harvest. Here, we present methods to forecast crop pro-
duction using remote sensing (RS) and climate data, focusing on Thailand’s Chi basin 
from 2011 to 2019. By analyzing various RS and meteorological variables, we iden-
tified key factors using correlation analysis and variance inflation factor. Four regres-
sion models (MLR, RF, XGBoost, and SVR) were trained, with XGBoost exhibiting 
superior performance, achieving a minimum root-​mean-​square error of 0.18 ton/​
ha. Applying the XGBoost model to predict total crop production for 2020–​2022 in 
the Chi basin yielded estimates of approximately 7.88, 7.64, and 7.72 million tons. 
Our study demonstrates the effectiveness of using satellite-​based drought indicators, 
vegetation indices, and meteorological data in conjunction with machine learning 
algorithms for timely yield predictions. These findings can aid decision-​making 
during the growing season and inform agricultural planning at provincial levels in 
Thailand and neighboring countries. However, addressing land use changes is crucial 
for refining prediction models and reducing errors in future studies.
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15.1 � INTRODUCTION

Burning biomass, which involves the open or partially open combustion of organic 
materials from plants and animals, has historically played a crucial role in meeting 
energy needs, managing agricultural lands, and preserving cultural traditions in 
various societies (Cole, 2001). However, its importance has come under increased 
scrutiny from both the general public and scientific communities due to its substantial 
contributions to air pollution and its association with climate change (Wang et al., 
2018). Biomass burning has been identified as a significant source of global climate 
indicators, with human activities responsible for 90% of the planet’s fires, resulting in 
the release of carbon dioxide (CO

2
) and other pollutants (Trewin et al., 2021; Yadav 

& Devi, 2018). This process of burning releases a complex mixture of pollutants, 
including carbon monoxide (CO), volatile organic compounds (VOCs), and fine par-
ticulate matter (PM

2.5
), posing health risks to respiratory systems (Le et al., 2014; 

Biswas et al., 2015; Alabar et al., 2018; Yin et al., 2019).
From a climate perspective, biomass burning impacts the Earth’s radiative balance, 

releasing CO
2
 and gases that contribute to global warming while emitting aerosols 

that have cooling effects (Jacobson, 2000; Levy, 2004; Yadav & Devi, 2018). Over 
time, the warming effect from CO

2
 surpasses the cooling effect, resulting in an 

overall net global warming impact. The practice of biomass burning in the northern 
ASEAN (nASEAN) region, encompassing countries such as Thailand, Myanmar, 
Laos, Cambodia, Vietnam, and the Philippines, is significant and driven by agricul-
tural activities like slash-​and-​burn for land clearance (Yin et al., 2019a). The tropical 
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climate of this region, characterized by distinct wet and dry seasons, creates favorable 
conditions for biomass burning, particularly during dry periods (Huang et al., 2013; 
Yin et al., 2019b).

The effects of biomass burning in the nASEAN region are wide-​ranging, impacting 
air quality, atmospheric chemistry, climate, economy, and public health (Harris et al., 
2016; Chen et al., 2017). Emissions from this process introduce active trace gases 
and greenhouse gases, exacerbating global warming (Akagi et al., 2011). Particulate 
matter (PM) generated by biomass burning poses health risks and contributes to haze 
events, influencing air quality indices and respiratory health (Lee et al., 2018; Ho 
et al., 2014). Moreover, the transboundary air pollution from biomass burning affects 
neighboring countries, notably China and Taiwan, as pollutants are transported over 
long distances via prevailing wind patterns and atmospheric circulation, carrying par-
ticulate matter, gases, and other emissions across borders (Huang et al., 2013).

Having emission inventories is crucial for comprehending the impacts of biomass 
burning on the Earth system, offering valuable data on pollutants released into the 
atmosphere (Mangino, 1997; Gupta et al., 2001; Prasad et al., 2002; Vadrevu et al., 
2018; Bond & Scott, 2022). This study seeks to provide estimates of the true scale 
of greenhouse gases, particulate matter, and other emissions released into the atmos-
phere, illuminating the region’s role in global climate change and air pollution. It 
aims to contribute to a more precise understanding of the environmental and health 
consequences of biomass burning. As concerns about climate change and air quality 
mount, having comprehensive emissions’ data from this source enables more effective 
policy-​making and the development of targeted strategies to combat climate change, 
reduce air pollution, and protect local ecosystems.

15.2 � STUDY AREA

The Northern Association of Southeast Asian Nations (nASEAN) holds significant 
importance within Southeast Asia, encompassing a vast land area of approximately 
2,238,768 km2 (Chaisse & Hsieh, 2023). nASEAN comprises six countries: Myanmar, 
Thailand, Cambodia, Laos, Vietnam, and the Philippines. The inclusion of the 
Philippines in this investigation is justified by its climatic similarities with mainland 
Southeast Asia (MSEA), resulting in a comparable burning season (Miettinen et al., 
2014). The physical geography of nASEAN showcases a wide variety of terrains, 
including forests, mountains, valleys, rivers, deltas, and coastlines, with a predom-
inant mountainous feature. Emerging from the Tibetan plateau, the Himalayan 
foothills lend nASEAN a distinctive geography distinct from other continental Asian 
regions (Frederick & Leinbach, 2018). Situated between India to the east and China 
to the west, nASEAN is bordered by the Pacific Ocean on the east and the Indian 
Ocean on the west. Falling mainly within the tropical zone, it experiences a tropical 
climate characterized by two seasons influenced by monsoon winds (Keane, 2017). 
Similarly, the Philippines lies entirely within the tropical zone. The Philippines, an 
archipelago encompassing the entire northeastern section of nASEAN, is a complex 
group of over 7,000 islands formed through geological shifts and tectonic movements 
(Boquet, 2017). These islands are commonly divided into three main groups: Luzon in 
the north, Visayas in the center, and Mindanao in the south (Matsumoto et al., 2020).
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The climate of nASEAN is influenced by the shift between the southwest (SW)  
monsoon prevailing from May to September, marked by summer downpours and  
intense storms brought about by moisture-​laden clouds carried by winds originating 
from the Indian Ocean, often culminating in typhoons during the late summer  
season. As the southwest monsoon transitions to the northeast (NE) monsoon from  
November to April, the area encounters milder and drier winters, characterized by dry  
conditions and calm winds. The period of transition between these monsoons, typic-
ally occurring from March to April, ushers in warmer temperatures (Keane, 2017;  
Matsumoto et al., 2020).

Regarding vegetation, Southeast Asian flora is generally divided into tropical 
rainforests or tropical evergreen rainforests, further categorized into wet evergreen 
forests, semi-​evergreen forests, freshwater swamp forests, and evergreen montane 
forests. However, under this classification, there are forests with distinctive attributes, 
and the climate of nASEAN sustains a diverse array of tropical evergreen and 
deciduous forests housing various tree species (Rundel, 1999).

15.3 � DATA AND METHODS

The methodology for evaluating biomass burning emissions in the nASEAN region 
primarily relies on combining remote sensing and geographical information system 
(GIS) techniques to generate maps and collect necessary data regarding burned 

FIGURE 15.1  Map of northern Association of Southeast Asian Nations (nASEAN).
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biomass mass and land cover types. Each country analyzes the data in subsequent 
sections. The pollutants under scrutiny in this study include key contributors to 
air pollution from biomass burning, such as CO

2
, CO, CH

4
, NO

x
, PM (Particulate 

Matter), NMVOC (Non-​Methane Volatile Organic Compounds), SO
2
, NH

3
, and car-

bonaceous aerosols.
To obtain information on land cover and burned areas, the study utilizes the 

Moderate Resolution Imaging Spectroradiometer (MODIS), favored for continental-​
scale research as it provides images twice daily (Lu & Weng, 2007). Significantly, 
MODIS applies surface reflectance correction to land, which is crucial for ensuring the 
accuracy of the data (Mccullough et al., 2013). The emissions’ inventory development 
involves various essential processes, such as processing activity data and parameters, 
determining emission factors (EF), deciding on spatial and temporal distribution, and 
specifying details related to PM

2.5
 and NMVOCs. This study focuses on open bio-

mass burning from human-​made and natural sources, excluding domestic burning 
activities. Furthermore, the research compares emission inventories from 2013 and 
2021 to identify temporal variations and trends in biomass burning emissions. This 
comparative analysis enhances the understanding of how biomass burning dynamics 
have changed in the nASEAN region over time.

15.3.1 � Land Cover

The data collection process for land cover is guided by the methodology outlined 
by Sulla-​Menashe and Friedl (2018). This study employs the IGBP land classifica
tion because it offers superior remote-​sensing data quality compared to other global 
land cover databases (Thenkabail, 2018). The MCD12Q1, a MODIS product that 
integrates Aqua and Terra supervised classification data, provides high-​quality global 
land data (Friedl & Sulla-​Menashe, 2019). The MCD12Q1 legacy classification of 
IGBP includes 17 types of land cover. However, due to the variation in land cover 
types across different regions, reclassification of land cover is necessary. This adapta-
tion from the original 17 classes ensures the accuracy of describing the land cover to 
prevent misclassification. The reclassified IGBP land classes for the suitability of the 
nASEAN region are detailed in the table provided below.

Determining the annual rate changes for each land use and land cover (LULC) 
class is conducted using the formula established by Puyravaud (2003) and Batar et al. 
(2017):

	 r
t t

ln
A

A
=

−






× 





× −
1

2 1

2

1
100 	 (15.1)

Where,

r  =​ annual change for each specific LULC class (%)
t  =​ number of years spanning
A1  =​ area of land class at the beginning
A2  =​ area of land class at the end
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This formula, denoted as ‘ r ,’ calculates the annual variation for each LULC class. 
It considers the respective areas of the class at the beginning ( A1) and end ( A2 ) of 
the assessment period spanning. ‘t ’ years. This formula plays a pivotal role in ana-
lyzing the annual changes in various land use and land cover classes, providing valu-
able insights into the evolving dynamics that influence the environmental landscape 
of the study area.

15.3.1.1 � Statement of Land Cover Accuracy
The validation of the MODIS Collection 6 Land Cover product, explicitly 
focusing on the International Geosphere-​Biosphere Programme (IGBP) layer 
within MCD12Q1, has reached stage 2, with a validation process yielding a global 
accuracy estimate of around 73.6%. It is important to note that there is currently 
no universally comprehensive dataset based on independent probability samples 
available for validation. Therefore, this accuracy estimate is supported through 
a quantitative analytical approach that involves cross-​validating a training site 
database. This validation status highlights the reliability of the data included in 
this product despite the lack of a universally standardized validation dataset. It 
emphasizes the usability of this data for use in various environmental research and 
studies, positioning it as a valuable asset for scientific investigations and analyses 
(NASA MODIS Land, 2021).

15.3.2 �B iomass Burning Emission Inventory

The mapping of burned areas for the emission inventory relied on MCD64A1 as the 
primary data source, offering data in 500 × 500 m2 grids for 2013 and 2021 (Yin et al., 
2019a, b). The estimation of biomass burning emissions (E

i
) was conducted using 

equation (15.2):

	 E
EF

i

j i j
A x

= Σ ,

1000
	 (15.2)

Where,

E: annual typical pollutant emission (Mg/​year)
i: type of pollutant
j: biomass burning source
A: annual amount of dry biomass burned (Mg/​year)
EF: Emission factor (g/​kg)

For the annual amount of biomass burned (A), equation (15.3) was used:

	 A BA FL CF
x j x j j

= ∑ × × ) × −( ]
, ,

10 6 	 (15.3)
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Where,

j: land cover type
x: location

BA
x,j

: burned area (m2/​year) of land cover type j at x FL
x j,

: fuel loading of land 
cover type j at x (g/​m2)

CF
j
: combustion factor of land cover type j

The values for fuel loading ( FL ) in each land class are as follows: forests: 7184.80 g/​m2;   
shrublands: 2196.16 g/​m2; savannas: 133.87 g/​m2 (Michel, 2005); wetlands: 1100 g/​m2;   
croplands: 60 g/​m2 (Song et al., 2009). The combustion factor ( CF ), also known 
as burning efficiency, represents the ratio of available fuel exposed to the fire to the 
portion that actually burns. The CF values obtained for each land cover category are 
as follows: forests 0.25, shrublands 0.40, savannas 0.95 (Michel, 2005), wetlands 
0.30, and croplands 0.6 (Song et al., 2009). The emission factor signifies the quan
tity of pollutants released per kilogram of biomass burned (Akagi et al., 2011). EF is 
typically expressed in g/​kg, calculated by dividing the mass of pollutants by the mass 
of biomass burned. The EF values used in this study, as outlined in Table 15.1, are 
sourced from various literature references.

15.3.2.1 � Burned Area Identification and Measurement
The land cover type and amount of biomass burned are essential factors in deter-
mining the pollutants released in biomass burning emissions. This study utilized  
a burn scar methodology to estimate total emissions, with the burned area in the  
nASEAN region being a key factor in this calculation. Burned areas were identified 
and measured using data from the MCD64A1 Collection 6, which incorporates  

TABLE 15.1
Emission factors (EF) (g/​kg) from different biomass sources

CO2 CO CH4 NOx NH3 SO2 PM10 PM2.5 EC OC NMVOC

Evergreen 
Forests

1643a 92a 5.1a 2.6a 0.76a 0.45a 12.8c 10.2c 0.5a 4.7a 24a

Deciduous 
Forests

1630a 102a 5a 1.3a 1.5a 1b 12.8c 12.3c 0.6a 9.2a 11a

Mixed 
Forests

1630a 102a 5a 1.3a 1.5a 1b 12.8c 12.3c 0.6a 9.2a 14a

Shrublands 1716a 68a 2.6a 3.9a 1.2a 0.68a 8.5c 7.9c 0.5d 6.6d 4.8a

Savannas 1692a 59a 1.5a 2.8a 0.5a 0.68a 9.9c 6.3c 0.4a 2.6a 9.3a

Wetlands 1765.5c 94c 1.5c 2.1c 0.6c 0.8c 12.5c 11.2c 0.52c 6.3c 6.8c

Croplands 1353.5c 76.1c 2.8c 2.9c 1.4c 0.4c 6.3c 5c 0.63c 2c 9.8c

Others -​ -​ -​ -​ -​ -​ -​ -​ -​ -​ -​

Sources:  a(Akagi et al., 2011); b(Andreae & Merlet, 2001); c(Song et al., 2009); d(McMeeking, 2008)

 

 

 

 

 



258 Remote Sensing of Land Cover and Land Use Changes, Volume 2

daily surface reflectance and active fire input data for detection. The enhanced  
MCD64A1(C6) algorithm has reduced errors from data gaps and is more effective in  
detecting small fires, as demonstrated by Giglio et al. (2016, 2018).

15.4 � RESULTS AND DISCUSSIONS

15.4.1 � Land Cover of nASEAN

The land cover data for the nASEAN region in 2013 and 2021 was obtained from the 
MODIS Land Cover Satellite, MCD12Q1, and classified according to IGBP legends. 
Subsequently, they were reclassified from the 17 land classes in the IGBP classifica-
tion to eight classes, as shown in Figures 15.2 and 15.3.

Significant shifts in land cover have been observed in the nASEAN countries,  
which include Cambodia, Laos, Myanmar, Thailand, Vietnam, and the Philippines,  
from 2013 to 2021. In 2013, evergreen forests covered 29.96% of the region, followed  
by croplands (23.17%), shrublands (18.31%), and savannas (18.03%). By 2021, ever-
green forests remained the dominant land cover, occupying 28.44% of the area, while  
croplands maintained their share at 23.17%. Similarly, shrublands (18.31%) and  
savannas (18.03%) retained their significance. Evergreen forests, noted for their per-
petual green canopy, play a crucial role in biodiversity preservation, carbon seques-
tration, and environmental services provisioning. The persistence of evergreen forests  
underscores their ecological importance (Brockerhoff et al., 2017). In the nASEAN  
context, croplands hold pivotal importance due to the region’s heavy dependence on  

FIGURE 15.2  Land cover of nASEAN in 2013 derived from MODIS MCD12Q1 data.
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agriculture as a key driver of economic growth. The substantial expansion of the  
agricultural sector from the 20th century to 2010 corresponds to the increasing food  
demand fueled by population growth (Booth, 2018). Southeast Asia plays a vital role  
in global agriculture, ensuring food security and nutritional sufficiency on a world-
wide scale (Takeshima & Joshi, 2019).

Savannas, prominently present in Cambodia, Vietnam, the Philippines, and 
Thailand, exhibit a range of compositions ranging from grasslands with sparse trees 
to open canopy forests with grassy undergrowth. These ecosystems often arise from 
forest degradation attributed to human-​induced mismanagement practices (Puri, 1989; 
George & Seth, 2005). Human interventions such as logging, forest fires, and shifting 
cultivation have resulted in the transformation of forests into savannas (Miettinen 
et al., 2014). Savannas utilizing C4 photosynthetic pathways function as transitional 
zones that fill the voids created by tree mortality driven by factors like fire and drought. 
Nonetheless, the expansion of C4 savannas can intensify conditions of drought and 
fire, leading to the development of adverse feedback loops (Beerling & Osborne, 
2006). Land cover in the nASEAN region has undergone changes from 2013 to 2021. 
In 2013, evergreen forests made up 29.96% of nASEAN, with croplands (23.17%), 
shrublands (18.31%), and savannas (18.03%) in close succession. By 2021, evergreen 
forests remained dominant, covering 28.44% of the area, while croplands held steady 
at 23.17%. Shrublands (18.31%) and savannas (18.03%) also remained significant 
during this period.

Evergreen forests maintain their green foliage throughout the year, unlike 
deciduous forests that undergo leaf color changes or lose their leaves (Dreiss & Volin, 

FIGURE 15.3  Land cover of nASEAN in 2021 derived from MODIS MCD12Q1 data.
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2014). The prevalence of evergreen forests underscores their significance in pre
serving biodiversity, storing carbon, and offering environmental benefits (Brockerhoff 
et al., 2017). Croplands play a vital role in the nASEAN region, given that agricul
tural activities are a primary driver of economic advancement in Southeast Asia. The 
substantial expansion of the agricultural sector, particularly between the 1900s and 
2010, correlates with the heightened food demand resulting from population growth 
(Booth, 2018). Southeast Asia plays a crucial role in global agriculture, providing 
essential food sources and nutritional sustenance (Takeshima & Joshi, 2019).

In Cambodia, Vietnam, the Philippines, and Thailand, savannas are a prominent 
component of land cover. Savannas can encompass various landscapes, ranging from 
grasslands with scattered trees to dense open canopy forests with grassy undergrowth 
(Sankaran et al., 2005; Hirota et al., 2011; Staver et al., 2011; Lehmann et al., 2014). 
These ecosystems are typically the result of forest degradation due to human misman-
agement practices (Puri, 1989; George & Seth, 2005), with human activities such as 
logging, forest fires, and shifting cultivation playing a role in the conversion of forests 
into savannas (Miettinen et al., 2014). Savannas utilizing C4 photosynthetic pathways 
serve as transitional areas that fill the voids left by tree mortality following events 
like fire and drought. However, the expansion of C4 savannas can exacerbate drought 
and fire conditions, leading to the creation of negative feedback loops (Beerling & 
Osborne, 2006).

Agricultural cultivation plays a vital role in the nASEAN region, given the area’s 
heavy dependence on agriculture for sustenance and economic progress. Agriculture 
serves as the primary engine of economic advancement in Southeast Asia, with 
marked growth witnessed in the agricultural sector from the early 1900s to 2010, 
aligning with the rising food demand due to population expansion (Booth, 2018). 
Southeast Asia is a significant contributor to global agriculture, serving as a crit-
ical source of food and nutritional provisions (Takeshima & Joshi, 2019). The fertile 
soils and favorable climate conditions in the nASEAN region support agricultural 
productivity, leading to the expansion of cropland areas to meet the increasing need 
for food and agricultural goods (Lim et al., 2023). In 2013, Thailand’s croplands 
covered 41% of the land, making it the most extensive land cover category, followed 
by Cambodia at 27% and Myanmar at 20%, the second most significant land cover 
type in these nations. Vietnam had 21% of croplands, placing it third in terms of 
coverage. By 2021, the extent of cropland areas had expanded to 42% in Thailand, 
29% in Cambodia, 21% in Myanmar, and 21% in Vietnam.

Thailand holds a pivotal position in agriculture, particularly in the production of 
rice, standing as one of the leading global exporters in this sector (Titapiwatanakun, 
2012; Wongchai & Ngamsomsuke, 2015). Similarly, Vietnam, Myanmar, and 
Cambodia, among other nASEAN countries, are noteworthy players in rice produc-
tion and exportation (Workman, 2019). Data from the USDA (2023) indicates that 
from 2019 to 2022, Vietnam (5th), Thailand (6th), the Philippines (7th), Myanmar 
(8th), and Cambodia (12th) ranked among the top 15 rice-​producing nations world-
wide. In the Philippines, the diverse geography and unique land formations give rise 
to three distinct agroecological zones (AEZ) designated as the wet zone, moist zone, 
and dry zone (Dikitanan et al., 2017). The majority of cultivated areas are dedicated 
to rice, coconut, and maize cultivation, with rice serving as the primary staple crop 
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(Mamiit et al., 2021). The Philippines holds a prominent position in global coconut 
production and is a leading exporter of mangoes, ranking this fruit as the fourth most 
exported, alongside bananas, coconuts, and pineapples. This highlights the country’s 
thriving agricultural sector and export industry (Dikitanan et al., 2017).

The assessment of changes in land use and land cover (LULC) is of paramount 
importance in analyzing environmental shifts on a global, regional, and local scale. 
This has become a foundational element of sustainability research, providing crucial 
insights into ecosystem dynamics and the effects of human activities on the environ-
ment (Seyam et al., 2023). By comparing changes in LULC over time, we can better 
understand the interactions between human behaviors and the environment, enabling 
evidence-​based decision-​making to ensure the responsible and sustainable manage-
ment of natural resources for both current and future generations. As illustrated in 
Figure 15.4, there was a significant decrease in the area of evergreen and mixed forests 
by 32,551.27 km2 and 21,018.35 km2, respectively, along with a corresponding reduc-
tion in savannas by 11,475.93 km2. In contrast, there was an expansion in the area of 
deciduous forests and croplands, with increases of 21,811.52 km2 and 22,106.97 km2, 
respectively.

Forest compositions are heavily influenced by climatic elements such as tempera-
ture and precipitation (Yang et al., 2005; Bagaria et al., 2021). As temperatures rise 
and rainfall patterns shift in Southeast Asia, forecasts suggest a drier Indo-​Burma 
region and a wetter Sundaland (Zhuang, 2009; Namkhan et al., 2022), leading to 
the transition of evergreen forests into deciduous forests within the span of 8 years. 
Ongoing temperature and precipitation variations could further convert deciduous 
forests into savanna woodlands, presenting notable consequences, particularly in 
Thailand and Vietnam (Zhuang, 2009). Nevertheless, the increase in deciduous forest 
cover fails to offset the decline in evergreen and mixed forest areas, which might be 
attributed to the unregulated exploitation of forest resources and the conversion of 
forests into commercially driven landscapes (Ansori, 2021).

The rapid expansion of urban areas and infrastructure development, influenced by 
economic integration policies, has significantly impacted land use, resulting in the 
decline of vegetated regions and an increase in the classification of ‘others’ in land 
use categories (Hurni et al., 2017). Government initiatives aimed at transforming the 
livelihood practices and strategies of small-​scale farmers have spurred heightened 
agricultural activities over the past two decades, leading to conflicts between agricul-
ture and the natural environment (Fox & Castella, 2013; Tanentzap et al., 2015; Hurni 
et al., 2017). These conflicts, particularly notable from 1990 to 2020, have resulted in 
substantial deforestation as forests are converted into croplands, underscoring signifi-
cant agricultural expansion within the nASEAN region (Zhai et al., 2022).

15.4.2 �T otal Emission in nASEAN

15.4.2.1 � Burned Area of nASEAN
The biomass burning data for the nASEAN region in 2013 and 2021 is obtained from  
MODIS data, specifically MCD12Q1 version 6 for land cover classifications and  
MCD64A1 for burned area delineations. MCD64A1 provides valuable information  
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on the location, timing, and intensity of active fires, serving as a pivotal resource for  
comprehending fire behavior, trends, and their impacts on ecosystems and landscapes.  
This dataset is extensively employed in fire management, ecological studies, and envir-
onmental surveillance. The determination of burned areas in nASEAN, categorized  

FIGURE 15.4  Comparisons of area and percentage change of each land cover of nASEAN 
in 2013 and 2021.
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according to respective land cover types, involves estimations and computations  
within the ArcGIS software. This process is essential for evaluating the annual dry  
biomass burned, as depicted in Figures 15.5 and 15.6 are critical for estimating the  
emissions of various pollutants generated annually from each land cover type. The  
calculation of the annual dry biomass burned entails multiplying the burned area by  
the combustion efficiency and fuel loading specific to each land cover classification.

The scale of the burned area does not always correspond to a higher quantity of  
biomass burned, as the mass of dry biomass burned is influenced by both fuel loading  
and combustion efficiency. Fuel loading refers to the amount of available fuel present 
during biomass burning, or the density of biomass situated above the ground  
surface, while combustion efficiency represents the proportion of burned fuel, specif-
ically the biomass above the ground surface (Shi & Yamaguchi, 2014; Zhou et al.,  
2017). Despite exhibiting a high combustion factor, savannas display a lower burned  
mass due to their reduced fuel loading. In contrast, evergreen forests, characterized  
by a low combustion factor, harbor higher fuel loading, resulting in a greater amount  
of dry mass burned. The combustion triangle—​comprising oxygen, heat, and fuel—​ 
significantly influences the quantity of dry mass burned (Asian Development Bank,  
2001). Forests, notably dense evergreen forests, contain abundant oxygen, which  
impacts the combustion process. Various fire types lead to differing levels of fuel  
consumption, including burning on the surface and below ground (Hungerford  
et al., 1990). Additionally, meteorological conditions such as humidity, temperature, 
and precipitation can affect the intensity of burning (Toh et al., 2013). Upon  

FIGURE 15.5  Burned area and land cover types of nASEAN in 2013.
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visual examination of the fires in 2013 and 2021, as depicted in the figure, it is evident 
that extensive fire activity occurred across the ASEAN region in 2013, with  
fewer incidents in Myanmar and Laos, while heightened burning was observed in  
Cambodia by 2021. In 2013, significant portions of evergreen, deciduous, and mixed  
forests were affected by fires in terms of burned areas and associated biomass burned,  
indicating the susceptibility of these forest types to fire events. Savannas also played  
a significant role in the total biomass burned, emphasizing their vulnerability to  
wildfires. However, there was a decrease in burning activities for nearly half of the  
total burned area when comparing data between 2013 and 2021. A noticeable shift  
in the distribution of burned areas and biomass burned among different land cover  
types is evident from 2013 to 2021. There is a substantial increase in burned areas  
and biomass burned in deciduous forests, along with a notable decrease in burned  
areas and biomass in evergreen forests. This shift could have implications for carbon  
sequestration and greenhouse gas emissions (Li et al., 2020). Deciduous trees pri
marily store carbon in their woody biomass, whereas evergreen forests allocate only  
70% of their net ecosystem production (NEP) to woody components, releasing the  
remainder into the soil and other carbon reservoirs (Holtmann et al., 2021). Storing  
carbon in woody biomass makes deciduous forests more effective at carbon seques-
tration due to superior carbon capture efficiency and longer residence time in biomass  
compared to evergreen forests. However, the burning of deciduous forests results in  
greater carbon emissions into the atmosphere than from evergreen forests, contrib-
uting to increased greenhouse gas emissions (Baccini et al., 2019).

FIGURE 15.6  Burned area and land cover types of nASEAN in 2021.
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15.4.2.2 � Sources of Biomass Burning Emission
The Biomass Burning Emission Inventory data outlined in Tables 15.2 and 15.3 
for ASEAN countries in 2013 and 2021 offer valuable insights into the release of 
various air pollutants. Deciduous forests emerge as the primary contributors in both 
years, with evergreen forests, mixed forests, and shrublands following closely. The 
noticeable variation in emissions originating from evergreen forests compared to 
deciduous forests in 2021 may be attributed to climate change-​induced alterations 
in land classifications, resulting in a higher proportion of CO

2
 and CO emissions 

from deciduous forests. CO
2
 stands out as the most prevalent pollutant emitted across 

all land cover types, followed by CO, which is generated when carbon in biomass 
reacts with oxygen to produce CO

2
 during complete combustion. Additionally, a 

corresponding amount of sequestered CO
2
 from biomass is released through photo-

synthesis, while incomplete combustion of organic matter yields CO.
Deciduous forests were the main source of emitted pollutants in both 2013 and 

2021, while evergreen forests were responsible for NO
x
 and NMVOC emissions in 

2013. However, by 2021, emissions of NO
x
 and NMVOC had decreased slightly 

due to a reduction in the proportion of evergreen forests and a decrease in burned 
area. Evergreen forests release higher levels of NO

x
 and NMVOC due to their high 

photosynthesis and metabolic rates. On the other hand, deciduous forests, which 
have higher moisture content, can lead to incomplete combustion and increased 
VOC emissions. Various factors, such as temperature differentials, tree heat toler-
ance, and atmospheric conditions, can influence emissions from both types of forests. 
Additionally, shrublands also contribute significantly to NO

x
 emissions due to high 

emission factors.
The smoke produced by burning biomass contains a wide range of compounds 

that can have harmful effects on human health, causing chronic or acute respiratory 
problems and, in severe cases, even death, especially affecting vulnerable populations. 
Human activities such as clearing land for agriculture and urban expansion are major 
contributors to forest fires. In Southeast Asia, peatlands are often burned for agri-
cultural purposes, leading to the conversion of organic-​rich peatlands into farmland 
or for urban development. In countries within the nASEAN region where extensive 
agricultural practices are common, swidden agriculture is practiced, resulting in 
a decrease in forested areas. Additionally, the different topographies in the region 
cause variations in the composition of biomass, influencing the emission patterns of 
pollutants and the intensity of fires.

Upon examining the relationship between changes in land cover area and emitted 
pollutants, interesting patterns are revealed. Evergreen forests show a positive correl-
ation with various pollutants like CO

2
, CO, CH

4
, NO

x
, NH

3
, SO

2
, PM

10
, PM

2.5
, EC, 

OC, and NMVOC, indicating reduced emissions in line with decreased forest area, 
while deciduous forests exhibit a negative correlation, suggesting a lesser impact on 
emissions. Mixed forests, savannas, wetlands, and croplands demonstrate positive 
correlations, whereas other land cover types show negative correlations with most 
pollutants, indicating that emissions increase with expanded land coverage. These 
findings provide valuable insights for policymakers and conservationists regarding 
the environmental effects of changes in land cover on biomass burning emissions in 
the nASEAN region.
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TABLE 15.2
Area of each land cover class in nASEAN in 2013

Classes

Division (km2)

Total Percentage (%)Cambodia Laos Myanmar Thailand Vietnam Philippines

Evergreen Forests 40210.43 134018.2 216887.8 89597.63 84322.61 98471.21 663507.88 29.96
Deciduous Forests 10172.06 2134.975 36322.48 16870.39 1537.804 166.8399 67204.5489 3.03
Mixed Forests 4067.442 2254.927 81523.15 5030.51 1719.602 22.14944 94617.78044 4.27
Shrublands 13910.71 53555.32 111467.8 85321.06 65639.13 75628.52 405522.54 18.31
Savannas 58249.85 32581.24 71402.3 92552.7 86881.59 57495.04 399162.72 18.03
Wetlands 1944.835 463.6999 7338.367 5533.619 11907.48 7860.748 35048.7489 1.58
Croplands 48472.17 3808.264 136328.3 210100.6 67299.48 47142.91 513151.724 23.17
Others 4254.13 1036.421 6782.042 8542.49 8432.894 7081.203 36129.18 1.63
Total 181281.63 229853.05 668052.24 513549 327740.59 293868.62 2214345.12224 100
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TABLE 15.3
Area of each land cover class in nASEAN in 2021

Classes

Division (km2)

Total Percentage (%)Cambodia Laos Myanmar Thailand Vietnam Philippines

Evergreen Forests 31704.72 122468.9 214089.1 86850.17 86654.18 89189.54 630956.61 28.44
Deciduous Forests 7912.65 2466.03 49445.5 27437.29 1622.665 131.9311 89016.0661 4.01
Mixed Forests 1045.503 1151.691 67206.48 2324.445 1866.635 4.680483 73599.43448 3.32
Shrublands 13682.22 58421.79 110625.9 80888.99 62699.75 78426.77 404745.42 18.24
Savannas 67635.33 38054.96 68875.66 81359.09 81275.13 50486.62 387686.79 17.47
Wetlands 1970.484 397.8411 7443.724 5469.73 11981.16 6672.029 33934.9681 1.53
Croplands 52452.13 5957.963 141766.9 217314.3 69372.08 48395.32 535258.693 24.12
Others 4954.877 962.4244 9821.409 12403.28 12910.24 22501.42 63553.6504 2.86
Total 181357.914 229881.5995 669274.673 514047 .295 328381.84 295808.3106 2218751.632 100
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In terms of biomass burning emissions by country, Myanmar had the highest 
burned area in 2013, followed by Cambodia, Thailand, Vietnam, Laos, and the 
Philippines. However, when considering the burned area as a percentage of the total 
land area, Cambodia had the highest percentage in both years. By 2021, Cambodia 
saw an increase in the percentage of burned area compared to 2013, while other 
countries experienced a decrease in burning activities. Cambodia remained the leader 
in burned areas in 2021, followed by Myanmar, Vietnam, Thailand, Laos, and the 
Philippines. Particularly noteworthy is that Cambodia had the largest percentage 
increase in burned area compared to the total land area.

When examining the annual typical emissions of nASEAN countries, emission 
patterns varied among the nations between 2013 and 2021. In 2013, Myanmar had 
the highest emissions, but by 2021, Cambodia had become the leading emitter, 
with noticeable reductions observed in Myanmar and Laos. Vietnam and Thailand 
also saw decreased emissions, while the Philippines consistently maintained lower 
emission levels in both years. Overall, emissions for each pollutant decreased in 2021 
compared to 2013, which can be attributed to the implementation of enhanced pol-
icies and regulations such as the ASEAN Transboundary Haze Pollution (ATHP), 
Asia-​Pacific Forestry Commission (APFC) of FAO, Sustainable Use of Peatland 
and Haze Mitigation in ASEAN (SUPA), ASEAN Peatland Management Strategy 
(APMS), Asian Forest Cooperation Organization (AFoCo) fire management and 
training initiatives, among others, as highlighted in studies by Muhammad (2021), 
AFoCo (2022), and Charusombat (2023). Alternatively, the decrease in emissions 
may also be linked to global lockdown measures during the COVID-​19 pandemic, 
which restricted daily activities, including burning practices, leading to a reduction in 
human-​induced emissions, as noted in research by Kanniah et al. (2020).

Forests play a crucial role in driving biomass burning emissions in Cambodia, par-
ticularly with deciduous forests experiencing a concerning increase in burning activ-
ities from 2013 to 2021. Additionally, shrublands and savannas also make significant 
contributions to these emissions. It is important to note that agriculture plays a vital 
role in Cambodia’s economy, as emphasized by the Food and Agriculture Organization 
(FAO, 1999), contributing to 35% of the country’s GDP, with crop production con
tributing 54% to the agricultural sector’s GDP. Cambodia is a major rice exporter 
and also cultivates other crops such as corn, beans, and fruits. However, during the 
early 2010s, the expansion of the rubber industry led to extensive deforestation in 
Cambodia, followed by a decline that prompted a shift to alternative plantations, 
as discussed in studies by Mermoz et al. (2021). In the dry season, characterized 
by intense wildfires in Cambodia, farmers burn crop residues and grasses for land 
preparation, as highlighted in research by Sim et al. (2023). Being the least densely 
populated country in ASEAN, with a majority of the population living in rural areas 
and limited access to electricity, wood, and charcoal remain the primary sources of 
energy for households and industries, as noted by NIS (2009) and Yadav and Devi 
(2018). Wood is extensively used for domestic cooking, with approximately 98% of 
the population relying on it, as indicated by Top et al. (2004). This heavy dependence 
on wood is correlated with research findings linking deforestation to an increase in 
fire incidents. Fire activities are particularly concentrated in regions like Battambang 
and Pailin in the northwest, as well as Kartie and Kampong Thom in the east of 
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Cambodia, according to research by Sim et al. (2023). Despite designating 40% of 
its land area as protected zones across 69 sites, Cambodia has faced significant forest 
disturbances, which have escalated to around 55% from 2018 to 2020, highlighting 
the challenges in implementing effective forest conservation policies, as discussed in 
studies by Mermoz et al. (2021).

In Laos, evergreen forests, shrublands, and savannas have been identified as 
the main sources of biomass burning emissions. Forests play a crucial role in the 
economy of Laos, with wood fuel and non-​wood forest products serving as important 
sources of income. However, unchecked logging practices and shifting cultivation 
have significantly contributed to extensive deforestation in the country over the past 
few decades, as discussed by Yadav and Devi (2018). An analysis of the percentage of 
forest area loss in Laos has revealed a notable deforestation trend linked to the expan-
sion of plantation crops, including rubber in the northern region and various crops 
such as pulp trees, sugarcane, coffee, and rubber in the southern part of the country. 
There is also a focus on commodities in northwestern Laos. Particularly, the most 
substantial deforestation was observed in northern Laos between 2018 and 2021, as 
indicated in studies by Mermoz et al. (2021). Laos reportedly has the lowest number 
of protected areas, with only 31 designated sites covering a small portion of the total 
land area, amounting to 18.7%, highlighting deficiencies in policies and regulatory 
frameworks, as highlighted in research by Mermoz et al. (2021).

Myanmar stands out for having the highest area of land burned among the six coun-
tries in nASEAN, which can be attributed to its extensive geographical size. Emissions 
in Myanmar primarily stem from forests, followed by shrublands, savannas, and 
croplands, although there has been a decrease in contributions observed from 2013 
to 2021. Myanmar is predominantly an agrarian society, with 70% of the population 
involved in agriculture, where biomass serves as a crucial source of energy, making 
up 64% of their energy mix, according to Yadav and Devi (2018). Logging activities 
and the collection of fuelwood hold significant importance in the country. Despite 
Myanmar having nearly half of its land covered by forests, it ranked among the top 
ten in terms of deforestation rates from 2010 to 2015. Illegal logging continues to be 
a prevalent issue, despite existing laws against forest exploitation, as highlighted by 
Kyaw et al. (2016) and Miettinen et al. (2014). Analysis has shown that deciduous 
and mixed forests are significant sources of emissions due to timber production, with 
evergreen forests having the largest area coverage. Mixed and deciduous forests are 
important sources for timber harvesting, as they contain robust and durable wood 
species, as discussed by Kyaw et al. (2016). Additionally, crop cultivation plays a 
vital role in Myanmar’s economy, with the country being well-​known for its produc-
tion of rice, sugarcane, and dry beans, as mentioned by Moore (2020).

In Thailand, biomass burning emissions are primarily linked to the burning of gar-
bage, crops, and forests, as indicated by Yadav and Devi (2018). Croplands represent 
the largest burned area in Thailand, largely due to the extensive coverage of croplands 
throughout the country. This is followed by forests, which account for a significant 
burned area, and then by savannas, shrublands, and wetlands. Despite shrublands 
having a smaller burned area compared to forests, savannas, and croplands, they con-
tribute significantly to emissions due to their elevated fire load (FL) and emission 
factor (EF). Like Myanmar, Thailand is known as an agricultural nation with diverse 
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forest reserves, as discussed in research by Ohara et al. (2007) and Streets et al. 
(2003). Approximately two-​thirds of the land is utilized for agricultural activities, 
with 25% covered with forests, according to Yadav and Devi (2018). The remainder 
is designated for non-​agricultural purposes, with over 50% dedicated to paddy fields, 
25% for other crops, and 14% for fruit tree plantations.

Vietnam, on the other hand, demonstrates the second lowest biomass-​burning 
emissions compared to other countries in the region. Forests, particularly ever-
green and deciduous forests, are highlighted as the main sources of biomass burning 
emissions in Vietnam. The burned areas are predominantly concentrated in the 
southern region of Vietnam, notably around the Mekong River Delta. Vietnam holds 
a significant position as one of the world’s top rice exporters, ranking third in 2013, 
as reported by Maierbrugger (2015). The Mekong River Delta, known for its agri
cultural profitability, has attracted migrants seeking new land for cultivation, espe-
cially smallholders, as highlighted by Smith (2014). In 2015, the Mekong River Delta 
contributed to 57% of Vietnam’s annual rice production, and in 2011, it accounted for 
41% of the country’s annual GDP, as mentioned by Smith (2014).

The Philippines demonstrated the lowest levels of biomass burning emissions 
among ASEAN countries in both 2013 and 2021, despite having a larger land area 
compared to Cambodia and Laos. Savannas and croplands are notable areas where 
biomass is burned, with emissions primarily originating from evergreen forests and 
shrublands. Like many Southeast Asian nations, the Philippines allocates a significant 
portion of its land for croplands to support agriculture, which plays a key role in the 
country’s economy and food production, as discussed by Madayag and Estanislao 
(2021). The diverse topography of the Philippines, with its tall mountains, hilly 
upland regions, flat plains, fertile volcanic soils, seasonal monsoons, abundant rain-
fall, and high temperatures, offers favorable conditions for cultivating a variety of 
crops across its diverse islands, according to the World Bank (2016).

The traditional land-​use practice of shifting cultivation, locally known as “kaingin,” 
is widespread in the Philippines, aligning with agricultural traditions and the subsist-
ence farming practices of indigenous communities, as highlighted by Mukul et al. 
(2016). This practice contributes to the burning of savannas and croplands, as well as 
the initial stages of deforestation in the agricultural sector. Agricultural expansion and 
illegal logging were significant issues in the early 1990s, but the agricultural sector 
has gradually declined since 2018 (Madayag & Estanislao, 2021). Deforestation in 
the Philippines has been linked to activities such as mining and urbanization, resulting 
in changes in land use for recreational areas, road construction, and dam projects.

The Greater Mekong Subregion (GMS) has been identified as a significant hotspot 
for forest loss, with Vietnam undergoing the most drastic change in primary forest 
cover, as noted by Mermoz et al. (2021). By the year 2020, only 0.5% of Vietnam’s 
total forest area remained as primary forests. Countries in the GMS region are 
confronted with substantial deforestation resulting from activities like forest conver-
sion and development, such as dam construction, with current laws, policies, and 
regulations proving insufficient in addressing illegal logging practices. When com-
paring the biomass burning and emissions of nASEAN countries from 2013 to 2021, 
notable improvements are seen in all nations except for Cambodia. The COVID-​19 
pandemic likely played a role in these positive trends, as many countries enforced 
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strict measures to limit movement and travel, potentially reducing human-​induced 
pressures on natural ecosystems. Given that a majority of fires in Asia stem from 
human activities, the temporary decline in fire incidents in 2020, in comparison to 
2019, can be attributed to COVID-​related travel restrictions. It is important to note 
that agricultural fires, mainly used for clearing agricultural residues post-​harvest, are 
prevalent in both South Asia and Southeast Asia. The lockdown measures imposed 
due to COVID-​19 had impacts on the agricultural sector, affecting the availability of 
labor for various activities such as planting, harvesting, transportation, marketing, 
and processing. Additionally, the forest-​related tourism industry and visits to nat-
ural areas may have slowed down due to COVID-​19 travel restrictions in multiple 
countries, potentially leading to a decrease in accidental fires, according to Vadrevu 
et al. (2022). Furthermore, the La Niña event in 2021, which brought about a global 
cooling effect, likely contributed to the downward trend observed in emissions during 
that time period.

15.5 � CONCLUSION

The profound effects of climate change present a significant global challenge that 
is reshaping environmental, social, and economic landscapes. Climate-​related 
hazards, ranging from extreme heat to coastal flooding, are becoming more fre-
quent, highlighting the urgent need to address the root causes of these changes. 
The build-​up of greenhouse gases, mainly from human activities, is the primary 
driver behind climate change, resulting in increasing global temperatures and a wide 
array of environmental repercussions. Amidst the intricate array of climate-​related 
challenges, biomass burning is a prevalent practice with broad environmental and 
health implications. Despite the critical need to limit temperature increases globally, 
biomass burning continues to be a widespread practice in developing regions, making 
a significant contribution to emissions. In Southeast Asia, where biomass burning is 
common, countries face significant challenges concerning air quality and health. 
The development of biomass-​burning emission inventories and robust emissions 
modeling is crucial in gaining insight and addressing the extensive impacts of this 
practice.

This study utilized remote sensing and GIS techniques to evaluate biomass burning 
emissions in the nASEAN region by analyzing crucial data on burned biomass mass 
and land cover types. The research examines the different pollutants produced by 
biomass burning, such as CO

2
, CO, CH

4
, NO

x
, PM, NMVOC, SO

2
, NH

3
, and carbon-

aceous aerosols. The initial phase involved generating a comprehensive land cover 
map using GIS tools and MODIS data, ensuring accuracy through surface reflectance 
correction. The process of developing an emissions inventory included processing 
activity data, determining emission factors, and outlining the spatial and temporal 
distribution, focusing specifically on open biomass burning while excluding domestic 
burning from the study scope. Additionally, this study offers valuable insights by 
contrasting emission inventories from 2013 to 2021 with a spatial resolution of 
500 m × 500 m, highlighting temporal fluctuations and patterns in biomass burning 
emissions within the dynamic nASEAN region.
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The analysis of land cover patterns in the nASEAN region during the years 2013 
and 2021 reveals significant trends. Evergreen forests, croplands, shrublands, and 
savannas dominate both in 2013 and 2021, with a notable decrease in evergreen 
(1.52%) and mixed (0.95%) forests and an increase in deciduous forests (0.98%) and 
croplands (0.95%) in 2021 compared to 2013. This shift indicates intricate interactions 
involving climatic conditions, changes in land use, and human activities. The preva-
lence of croplands underscores the region’s dependence on agriculture, especially 
in countries like Thailand, where it represents the largest land cover class at 42%. 
The decline in evergreen forests raises concerns regarding biodiversity conservation 
and the provision of environmental services. The change in biome patterns points to 
the potential impacts of shifting temperatures and rainfall patterns, highlighting the 
importance of implementing sustainable land management strategies. Furthermore, 
urbanization and infrastructure development contribute to the reduction in vegetated 
areas, underscoring the delicate balance between economic progress and environ-
mental preservation in the nASEAN region.

Conversely, the examination of biomass burning across nASEAN nations uncovers 
the intricate connections among environmental, socio-​economic, and policy elem-
ents. The changes in burned areas, biomass consumption, and emissions between 
2013 and 2021 illustrate the dynamic nature of these phenomena. While certain coun-
tries have shown progress, Cambodia stands out for the escalation in burning activ-
ities, rising from 14% to 15.98% of the country’s total area. The complex interplay 
between land cover categories, economic practices, and emissions underscores the 
importance of tailored policy interventions. Analyzing the impact on carbon seques-
tration, greenhouse gas emissions, and public health highlights the pressing need 
for comprehensive strategies to tackle biomass burning. The observed discrepan-
cies among countries underscore the significance of accounting for regional nuances 
when devising effective mitigation strategies. In addressing these challenges, ongoing 
initiatives like the ASEAN Transboundary Haze Pollution initiative and others are 
crucial, yet a collaborative and region-​specific approach is imperative to navigate 
the complexities of biomass burning within the continually evolving landscape of 
nASEAN.

This study significantly advances our comprehension of the environmental and 
health ramifications arising from biomass burning, providing invaluable data for 
global concerns regarding climate change and air quality. The enhanced emission 
inventory focused on the nASEAN region informs evidence-​based policies for man-
aging climate and air quality and enables nASEAN governments to craft targeted 
strategies. The cross-​border aspect of the issue underscores the necessity for regional 
collaboration, potentially fostering cooperative climate and air quality agreements. 
Additionally, this research is a vital repository for evaluating future climate trends 
in the nASEAN region. The refined modeling and analysis of emitted pollutants and 
biomass-​burning activities contribute to more efficient policy development, ultim-
ately enhancing regional air quality. Overall, the outcomes of this study underscore 
the significance of ongoing monitoring and strategic interventions to address the intri-
cate dynamics of land cover alterations and their repercussions for environmental 
sustainability and human well-​being.
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However, the utilization of GIS and remote sensing techniques presents certain 
constraints. The accuracy of GIS analyses heavily relies on the quality of input data 
as well as the software used for data generation. Inaccuracies or outdated informa-
tion in land cover or other GIS layers could propagate into the emission inventory, 
impacting overall reliability. Given the spatial constraints inherent in MODIS data, 
with a resolution of 500 m × 500 m, fine-​scale variations in biomass burning may not 
be captured, particularly in diverse landscapes. The monthly temporal resolution of 
the data may overlook short-​term fluctuations, potentially affecting data accuracy. 
Moreover, satellite data is contingent on clear atmospheric conditions, and issues 
like cloud cover could introduce uncertainties or data gaps, influencing the preci-
sion of the emissions inventory. The reliance on remote sensing and GIS techniques 
may lack extensive ground validation, introducing uncertainties regarding the actual 
alignment between satellite data and ground-​truth classifications.

On the other hand, equations derived from the literature review may involve 
assumptions or simplifications, potentially introducing uncertainties, as the conditions 
under which these equations were formulated differ from the study area. Equations 
from the literature may be generalized and not tailored to the specific conditions of 
the nASEAN region. Local factors’ variability, such as vegetation types and burning 
practices, could impact the applicability and accuracy of these equations.
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Southeast Asia
Utilizing Fengyun-​3D Fire 
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Yusheng Shi, Yajun Wang, and Yang Liu

16.1 � INTRODUCTION

In recent years, fires caused by nature or humans have become the focus of public 
attention, such as bushfires in Australia (Celermajer et al., 2021) and wildfires in 
Canada (Metsaranta et al., 2023). Increasingly frequent fires directly cause severe air 
pollution, which has a huge impact on climate change, human health, etc., and has an 
increasing impact on developing countries, especially those in South and Southeast 
Asia (SSEA) (Reddington et al., 2021; Singh et al., 2021; Irfan, 2024). Extensive 
Open Biomass Burning (OBB) occurs year-​round, leading to widespread exposure 
to trace gases (CO, NO

X
, NMVOC, SO

2
, and NH

3
), particulate matter (PM

2.5
) levels 

surpassing World Health Organization (WHO) guidelines (Linh Thao et al., 2022). 
These burning activities release substantial carbon emissions, negatively affecting not 
only global climate dynamics but also the health of local inhabitants. Forest clearing, 
accidental fires, firewood burning, agricultural residue burning, peatland burning, 
and straw burning are among the significant fire types worldwide (Xu et al., 2022). 
Moreover, particulate matter and organic carbon emitted from biomass burning 
adversely affect human health (Yin, 2020). It is an urgent mission to construct an 
OBB inventory to quantify the local biomass burning’s contribution to regional and 
global carbon emissions, offering a foundation for devising emission reduction pol-
icies and strategies.

Previous studies have explored numerous methods for estimating biomass 
burning emissions (Shi et al., 2021; Pereira et al., 2022; Liu and Popescu, 2022). 
Globally, several OBB emission datasets have been developed, including the Global 
Fire Emissions Database (GFED), Global Fire Assimilation System (GFAS), and 
Fire Emissions and Energy Research (FEER). However, these methods heavily rely 
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on fire detection precision, particularly for small fires. Additionally, the activity data 
used to calculate emissions carries significant uncertainties, resulting in limitations 
and unreliability (van Wees et al., 2022). All these methods rely on MODIS active 
fire products. Equipped with the MEIRSI-​2 instrument, the Fengyun-​3D (FY-​3D) 
satellite offers spatial resolutions of 250 and 1000 m at the nadir (Yin et al., 2020), 
when compared to MODIS, which significantly enhances its capacity to detect 
and analyze various phenomena, including fires, aerosols, and changes in land and 
ocean surfaces (Zheng et al., 2021). Furthermore, the Global Fire Monitoring (GFR) 
product with FY-​3D employs optimized automatic identification algorithms for 
fire spots (Chen et al., 2022), improving fire point detection accuracy. It resulted 
in an impressive overall accuracy rate of 79.43% and an exclusion omission error 
accuracy of 88.50%, surpassing the capabilities of MODIS satellite products (Xian 
et al., 2021; Chen et al., 2022). Therefore, employing the FY-​3D GFR product and 
allocation approaches for small fires is expected to yield reliable estimates of OBB 
emissions.

In this study, we endeavor to create a high-​resolution daily inventory of OBB 
emissions in SSEA, based on the burned area method, and to scrutinize various fire 
events and their emission patterns. To estimate OBB emissions from forest, savanna/​
shrubland, grassland, and other areas, we use the updated FY-​3D GFR product. This 
product incorporates continuous spatiotemporal dynamics of aboveground biomass 
(AGB), spatiotemporally varying combustion efficiency, and specific emissions 
factors for different land types. Our comprehensive, high-​resolution OBB emissions 
inventory serves as a valuable resource for applications in air quality modeling, 
atmospheric transport simulation, and biogeochemical cycle studies. It provides 
a robust framework for in-​depth understanding and analysis of the environmental 
impact of OBB in SSEA.

16.2 � STUDY AREA

South and Southeast Asia (SSEA) is a region with a complex and diverse geograph-
ical environment, consisting of many islands and peninsulas. In the past 30 years, due 
to the continuous growth of population and limited land resources, the fallow period 
of traditional slash and burn agriculture has been shortened, resulting in the destruc-
tion and degradation of large forests, endangering biodiversity and climate change 
(Yin et al., 2019). With the earth getting hotter, dry soil and vegetation conditions will 
put more areas at risk of both human and natural wildfires (Kim et al., 2015).

On average, about 20 million fires occur globally each year (Li et al., 2020a,b),  
with a total burning area of 350 million hectares (Giglio et al., 2013; Chuvieco et al.,  
2016; Fu et al., 2023). SSEA is one of the regions with the most severe fire activity in  
the world (Li et al., 2020), contributing nearly 30% of global fires along with Brazil  
and the Democratic Republic of Congo. This has a significant impact on local devel-
opment (Celermajer et al., 2021), human health (Anita et al., 2024), and regional  
and even global air quality and climate (Yin et al., 2019). OBB emissions brought  
a large amount of PM

2.5
, which could cause significant harm to human health (Shi  

et al., 2015). Exposure to PM
2.5

 in 2015 resulted in 4.2 million deaths worldwide,  
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with approximately 59% of deaths occurring in South Asia (1.36 million) and East  
Asia (1.14 million) (Cohen et al., 2017), where daily PM

2.5
 emissions far exceed  

WHO safety standards. Moreover, the drought caused by climate change also leads  
to the death of a large number of vegetation, causing a rapid increase in flammable  
and combustible materials and further increasing the frequency and severity of  
fires. Nowadays, there are very few fire-​resistant forests in Indonesia’s peatlands,  
which means that fires in Indonesia may become more frequent and dangerous in  
the future (Adam et al., 2021). Therefore, in the context of sustained global warming  
and frequent forest fires, it is crucial to construct a high-​resolution OBB combustion  
emission inventory in SSEA.

In order to facilitate the calculation and subsequent analysis in SSEA, we 
have divided the study area into two distinct regions: Southeast Asia (SEAS) 
and Equatorial Asia (EQAS) (Figure 16.1). The SEAS includes Pakistan, India, 
Bangladesh, Myanmar, Cambodia, Laos, Thailand, and Vietnam, and the EQAS 
includes Indonesia, Malaysia, the Philippines, etc.

16.3 � DATA AND METHODS

16.3.1 � Approach

The SSEA emissions inventory from Open Biomass Burning (OBB) (1 km daily) 
was estimated using the burned area method based on the framework defined by 
Wiedinmyer et al. (2006) and Shi et al. (2015). We utilized burned area data derived 
from active fire data obtained from the FY-​3D satellite, available biomass data 
from satellite and ground measurements, CF adjusted by tree cover and NDVI, and 
emission factors based on land cover, then multiplied these data using the following 
formula to estimate the OBB emissions from SSEA.

FIGURE 16.1  Geographic zone results for South-​Southeast Asia and its abbreviations. 
SEAS: Southeast Asia; EQAS: Equatorial Asia.
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	 Emissions B F CF EF
i

n

= × × ×
=
∑

1

	 (16.1)

where i represents the type of land cover; B is the burned area (km2); F signifies the 
available biomass fuel (kg m-​2); CF conveys the combustion factor, defined as the 
ratio of actual burned fuel to the available amount; and EF is the emission factor, 
indicating the amount of species per kg dry matter burned (g kg-​1).

16.3.1.1 � FY-​3D Global Fire Spot Monitoring Data Based Burned Area (B)
We used the FY-​3D GFR product to determine the location and timing of the fire 
events. The Fengyun-​3 series of satellites are China’s second-​generation polar-​
orbiting meteorological satellites. The FY-​3D satellite is the fourth satellite in the 
Fengyun-​3 series of satellites. It was launched on November 15, 2017, with an orbit 
altitude of 836 kilometers (Li et al., 2017). FY-​3D completes 14 global Earth sur
face orbital observations twice in one day. The MERSI-​2 instrument carried has been 
highly enhanced on the basis of the MERSI-​1 carried by the FY-​3C, equipping it with 
high-​precision space-​borne and lunar calibration capabilities. Compared to MODIS, 
MERSI-​2 offers superior spatial resolution across the visible (0.4–​0.7 µm) and near-​
infrared spectral bands (0.7–​1.0 µm), thus rendering it particularly well-​suited for 
precise meteorological and environmental applications (Abbasi et al., 2020). The 
GFR product integrated with the MERSI-​2 instrument shows superior judgment 
accuracy in terms of fire detection results (Dong et al., 2022). The location and timing 
of the fire events used in the OBB from SSEA were defined using the FY-​3D GFR 
product (Chen et al., 2022). It is available to get these processed fire event detec
tion data from the Fengyun Satellite Remote Sensing Data Service Network of the 
China National Satellite Meteorological Center. These data cover daily fire location, 
time, and confidence level of fire detection at a confidence level greater than 20%, 
with a 1-​km spatial resolution (Liu and Shi, 2023). Additionally, the same fire may 
be counted multiple times in a single day, resulting in a repetition of data. To tackle 
this issue, we conducted global identification and removed multiple detections of the 
same fire pixels daily. Specifically, we removed single daily fire detections within a 1 
km2 radius of another fire detection. Thus, only one fire per 1 km2 of a hotspot can be 
counted per day, and it will be reset the next day (Liu and Shi, 2023).

16.3.1.2 � Fuel (F)
In previous studies about emission inventories built upon wildfire areas, F is gen-
erally defined by different fire types in different zones (Wiedinmyer et al., 2011). 
There is a certain discontinuity in the data generated by this method, which may lead 
to large deviations at the boundaries of different regions. It is unreasonable, and it 
cannot reflect the spatial distribution pattern of F. Ground observation data shows 
obvious merit in accuracy and reliability, but they are incapable of comprehensive 
global coverage, restricted by the sparse distribution of observation stations. In com-
parison, satellite data not only reaches global coverage but also provides rich earth 
parameters to achieve biomass estimation. Nonetheless, its accuracy and usability are 
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affected by some factors, such as temporal and spatial resolution and cloud cover. 
Therefore, it is an effective way to combine ground observations with satellite data. 
This fusion approach integrates high-​precision ground observation data with widely 
available satellite data, yielding reliable and precise global biomass products. Using 
this method, the limitations of relying solely on a single data source can be overcome, 
thus enhancing the accuracy and reliability of biomass estimation.

In this study, we used multi-​source satellite data, including the Normalized 
Vegetation Index (NDVI), Tree Cover (TC), and Aboveground Biomass (AGB), to 
assess terrestrial biomass. The NDVI data were obtained using the MODIS Combined 
16-​Day NDVI fusion product available on the Google Earth Engine (GEE) plat-
form. TC data were derived from the MOD44B product generated based on MODIS 
onboard the Terra satellite, which provides a continuous global vegetation field at 250 
m resolution for each year from 2000 to the present. The AGB data during 2020–​2022 
is based on Global Aboveground and Belowground Biomass Carbon Density Maps 
for the Year 2010 (Spawn and Sullivan, 2020). They are remotely sensed maps of 
woody, grassland, cropland, and tundra biomass at a 300 m spatial resolution, and 
annual TC and NDVI data to calculate F as,

	 F
NDVI

NDVI

TC

TC
AGB= +







now now

2010 2010

* 	 (16.2)

where NDVI
now

 is the mean value of the month before a single fire event, NDVI
2010

 
is the average value of NDVI in 2020, TC

now
 is the tree coverage in the year of the 

fire, TC
2010

 is the tree coverage in 2010, and AGB is the Above Ground Biomass data 
in 2010.

16.3.1.3 � Combustion Factor (CF)
The CF is primarily defined as the percentage of fuel consumed in a single fire event, 
which is always affected by fuel type and local humidity conditions. CF is often 
treated as a constant, which may inevitably cause biases in emission estimations and 
bring some uncertainties. Some studies have used TC to measure CF and elucidate 
its spatial and temporal changes (Bray et al., 2018; Lasslop et al., 2020), but these 
research studies mainly focus on areas covered by herbaceous vegetation, where TC 
is usually in the range of 40% to 60%. They also assumed that the CF is in line with 
other land types, consistently, such as farmland, forest, and grassland.

A major influence on fire discharge in the framework is the condition of the subsur-
face at the location of the fire event. Different types of subsurface have different  
biological qualities and correlates. In GEIOBB, we used IGBP categorized data from  
MODIS LCT (Friedl and Sulla-​Menashe, 2022). To match LCT types with subsequent 
assignments on biomass and related factors better, we reclassified the original  
17 classifications into seven categories (Table 16.1), including grassland and savanna  
(V1), woody savanna or shrub (V2), tropical forest (V3), temperate forest (V4), boreal  
forest (V5), temperate evergreen forest (V6), and crop (V7). Therefore, when estimating  
OBB in SSEA, the CF for all fires in each grid cell was determined as a function of TC,  
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fire types, and NDVI (Ito and Penner, 2004). Then, the CF calculations are divided into  
four categories based on the reclassification results. Briefly, we combined the reclassifi-
cation outcomes of V3, V4, V5, and V6 into a forest type category, designated V1 as  
grasslands type, V2 as woodlands type, and V7 as crop.

For woodland, the CF was highly correlated with TC  

	 CF EXP TC
woodland

= − ×( ).0 013 	 (16.3)

For grassland, the change of NDVI is often associated with fire occurrence, especially 
during dry seasons or in areas prone to wildfires. In general, a decrease in vegetation 
NDVI may indicate deteriorating vegetation health, which increases fire risk because 
dry or dead vegetation is more likely to burn. Therefore, we introduced the vegeta-
tion condition index (VCI), a factor that measures vegetation drought conditions, to 

TABLE 16.1
Reclassification method

IGBP LCT Description LCT Value Method and Value

Evergreen Needleleaf Forest 1 If latitude>50, then V5; else V6
Evergreen Broadleaf Forest 2 If latitude>-​23.5 and <23.5, then V3; 

else V4
Deciduous Needleleaf Forest 3 If latitude >50, then V5; else V4
Deciduous Broadleaf Forest 4 V4
Mixed Forest 5 If latitude >50, then V5; if 

latitude>-​23.5
and <23.5, then V3; else V4

Closed Shrubland 6 V2
Open Shrubland 7 V2
Woody Savanna 8 V2
Savanna 9 V1
Grassland 10 V1
Permanent Wetland 11 V1
Cropland 12 V7
Urban and Built-​up Land 13 If tree cover < 40, then V1; if tree 

cover >40
and <60, then V2; if tree cover 

>60 then
assign to Mixed Forests.

Cropland/​Natural Vegetation Mosaic 14 V1
Permanent Snow and Ice 15 -​
Barren 16 V1
Water Bodies 17 -​

Where V1 is grassland and savanna, V2 is woody savanna or shrub, V3 is tropical forest, V4 is temperate 
forest, V5 is boreal forest, V6 is temperate evergreen forest, and V7 is crop.
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ascertain the fuel moisture conditions. We utilized the VCI as a metric to determine 
fuel moisture levels as a means to evaluate the contemporaneous state of vegetation 
(Shi et al., 2019). The VCI was calculated using the NDVI with a 16-​day time interval 
at a spatial resolution of 1 km from 2020 to 2022.

	

VCI
NDVI NDVI

NDVI NDVI
=

−
−

now min

max min 	

(16.4)

	
CF VCI

grassland
= × − × +( )1

100
213 138

	
(16.5)

where NDVI
now

 is the average value of the month before a single fire event, NDVI
max

 
is the maximum value of NDVI in the same period in the previous 3 years of the fire 
events, and NDVI

min
 is the minimum value of NDVI in the same period in the previous 

3 years of the fire events.
For forest, we employed moisture category factors (MCF) to gauge forest moisture 

level, and based on the MCF values (very dry: 0.33, dry: 0.5, moderate: 1, moist: 2, 
wet: 4, very wet: 5) provided by Anderson et al. (2004). Then, we used VCI as a 
standard for judging humidity and dryness and found that it approximately conforms 
to the power function distribution characteristics in VCI. Subsequently, function fitting 
was performed (R2 =​ 0.94), allowing us to further determine the CF based on MCF as,

	 MCF e VCI= × ×
0 1759

3 5181
.

.

	 (16.6)

	
CF e

MCF

forest
= −( )−
1

1

	
(16.7)

For crops, we set the CF to 0.98, the upper limit proposed by Wiedinmyer et al. 
(2006), because most fires on croplands are artificially active fires, resulting in a com
bustion process tailored for non-​woody fuels.

16.3.1.4 � Emission Factor (EF)
EF is used to convert dry matter burned into emissions of trace gases and aerosols, 
representing the number of pollutants discharged per unit of fuel burned. In this study, 
EF values were assigned based on the seven reclassified categories (Akagi et al., 
2011), including grassland and savanna, woody savanna or shrub, tropical forest, tem
perate forest, boreal forest, temperate evergreen forest, and crop. We employed the 
reclassification of the LCT product to assign each fire pixel land type and its EF. Due 
to significant variations among measured values, we computed the average emission 
factor within each reclassification type for areas with multiple measurements. 
Subsequently, we updated the EF values of Carbon Content (C) for the seven land 
types. The EF values of C of grassland and savanna, woody savanna or shrub, tropical 
forest, temperate forest, boreal forest, temperate evergreen forest, and crop are 488.31 
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(g/​kg), 489.41 (g/​kg), 491.77 (g/​kg), 468.31 (g/​kg), 478.88 (g/​kg), 493.18(g/​kg), and 
437.18 (g/​kg), respectively.

16.3.2 �V alidation Data

In our study, we used the following widely used OBB emission datasets to validate 
our experimental results.

GFED4.1s combines satellite information on fire activity and vegetation product-
ivity to estimate gridded monthly burned area and fire emissions. It provides monthly 
burned area, monthly emissions, and fractional contributions of different fire types at 
a global scale, as well as scalars that can be used to calculate emissions at higher tem-
poral resolutions. The current version is 4, with a spatial resolution of 0.25 degrees, 
and has been available since 1997.

GFAS1.2, provided by Copernicus, assimilates fire radiative power (FRP) 
observations from the NASA Terra MODIS and Aqua MODIS to produce daily 
estimates of emissions from wildfires and biomass burning. On the grid of longi-
tude and latitude, it has a resolution of 0.1°, with data available from 2003 to the 
present.

FEER1.0 is a site dedicated to the research of fire energetics and emissions. It 
provides the MODIS Fire Radiative Power Product and FEER Emission Coefficients 
and Inventory, with the main motivation of better understanding the strengths and 
effects of fires on the environment and climate. It has been available every day since 
2003 and has a spatial resolution of 0.1°.

16.4 � RESULTS AND DISCUSSION

16.4.1 � Spatial Map of OBB Emission Estimates

The spatial distribution of annual OBB emissions from 2020 to 2022 and average 
OBB emissions in SSEA were presented (Figure 16.2). On the whole, OBB emissions 
exhibited distinct spatial patterns and strong changes throughout the study area. The 
annual and average OBB emissions from Indochina, including Myanmar, Thailand, 
Laos, Cambodia, and Vietnam, were higher than other regions from 2020 to 2022. 
Specifically, the OBB emission level in the entire Laos was the highest, greater 
than 400 (g C/​m2/​year), and some areas even reached 1,000 (g C/​m2/​year). The 
western parts of Myanmar and Thailand and the northern part of Cambodia followed 
closely, with OBB emission values greater than 200 (g C/​m2/​year). Additionally, 
other areas with high OBB emissions were mainly in central Indonesia, western 
Malaysia, eastern Papua New Guinea, northern Philippines, eastern and northwest 
India, and Nepal.

The average OBB emission in SSEA from 2020 to 2022 was 210.49 Tg.  
Additionally, the annual OBB emissions from 2020 to 2022 were 234.27, 267.54,  
and 129.68 Tg, respectively. From a geographical perspective, the OBB emissions in  
SEAS totaled 217.46 (2020), 255.15 (2021), and 119.27 (2022) Tg, each accounting  
for more than 90% of the total emissions. And there was a clear increasing tendency  
in SEAS from its west to east. The emissions in EQAS only accounted for less than  
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10% of the total emissions, and the high-​concentration areas were relatively evenly  
distributed in all directions.

The distribution of average OBB carbon emissions caused by different fire types 
from 2020 to 2022 in SSEA was displayed (Figure 16.3). It was obvious that OBB 
carbon emissions resulting from crops were mainly in India and southern Thailand; 
while emissions caused by forests were mainly in Myanmar, Laos, the Philippines, 
central Indonesia, and Papua New Guinea. The emissions from grassland were mainly 
in Cambodia and the Indian Peninsula, while the emissions caused by wood were 
mainly in Nepal, Myanmar, northern Thailand, and Indonesia. The variation could be 
associated with the ecological and climatic conditions unique to each region (Santana 
et al., 2016; Sahu et al., 2021).

Then, we quantified the SSEA total OBB carbon emissions from different regions 
and fire types from 2020 to 2022 (Table 16.2). SEAS was found to be the primary 
source of annual average SSEA OBB carbon emissions from 2020 to 2022 (589.05 Tg, 
93.71%). Additionally, the contributions of each fire type to the SSEA OBB carbon 
emissions were also quantified. In SEAS, woody savanna/​shrub was the largest con-
tributor (296.16 Tg, 50.28%), followed by forest (205.16 Tg, 34.83%). This result 
was consistent with EQAS, for carbon emissions from woody savanna/​shrub reached 
21.23 Tg (53.77%) and that from forest leveled 13.72 Tg (34.76%). Therefore, it was 
obvious that OBB emissions from woody savannas/​shrubs and forests are the main 
source of SSEA.

FIGURE 16.2  Spatial distributions of annual and average OBB emissions in SSEA from 
2020 to 2022.
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16.4.2 �T emporal Variations in OBB Carbon Emissions

Figure 16.4 illustrates the monthly carbon emissions at regional levels. Overall, 
OBB carbon emissions in SSEA experienced notable shifts, with considerable 
monthly variations from 2020 to 2022. Peak emissions were observed in March 2021 
(131.79 Tg).

OBB carbon emissions in SSEA were 234.27 Tg in 2020, rising slightly to  
267.54 Tg in 2021, but showing a significant decline to 129.68 Tg in 2022. Monthly  
emissions for the two regions showed significant differences. EQAS’s OBB monthly  
carbon emissions exhibited two annual peaks, occurring in March and August,  
respectively, and the first peak was lower than the second one, primarily due to the  

TABLE 16.2
Total carbon emissions from SSEA OBB in different regions during   
2020–​2022 (Unit: Tg)

Different Region Woody Savanna/​Shrub Forest Savanna grassland Crop Total

SEAS 296.16 205.16 60.77 26.96 589.05
EQAS 21.23 13.72 4.32 0.21 39.48
SSEA 317.38 218.88 65.09 27.17 628.53

FIGURE 16.3  The distribution of mean OBB carbon emissions by fire type from 2020 to 
2022 in SSEA.
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El Niño-​Southern Oscillation and associated droughts (Kim et al., 2015; Hu et al.,  
2021). The maximum emissions demonstrated a pattern of initially decreasing and  
then increasing, dropping from 4.18 Tg in 2020 to 2.80 Tg in 2021, before rising to  
3.53 Tg in 2022. While in SEAS, monthly carbon emissions displayed noticeable  
cyclicality during these 3 years, with the peak consistently appearing in March, pri-
marily due to changes in forestry practices (Shi et al., 2014). Throughout the entire  
study duration, the peak values exhibited an initial rise followed by a decline, escal-
ating from 112.45 Tg in 2020 to 131.03 Tg in 2021, then rapidly dropping to 52.50 Tg  
in 2022. In the broader study area, OBB carbon emissions predominantly originated  
from the SEAS region, with EQAS contributing only a minor fraction (<10%).  
Consequently, the monthly carbon emission curve for the entire study area closely  
mirrored that of the SEAS region, with peak emissions reaching 131.79 Tg in March  
2021 and the minimum value occurring in July 2020 (0.91 Tg).

The differences in spatiotemporal fluctuations of OBB emissions not only reflected  
the diversity of ecosystems and climate conditions in different geographical locations  
(Fagre et al., 2003), but also reflected the impact of human activities and natural fire  
regimes to some extent (Jones et al., 2022). For example, Southeast Asia had vast  
tropical forests, which often resulted in high levels of OBB emissions due to the  
prevalence of natural and anthropogenic fire activities (Wiggins et al., 2020; Williams  
et al., 2019). As per the Global Natural Disaster Assessment Report, 2021 witnessed  
record-​high temperatures, increasing the chance of droughts. Specific meteorological  
conditions such as high temperatures and low humidity foster heightened biomass  
flammability, leading to a peak in carbon emissions (Russell-​Smith et al., 2021).  
But in 2022, natural disaster levels were generally low, with a reduced frequency  
of extreme temperature events, consequently resulting in a sharp decrease in carbon  
emissions. The reduction in carbon emissions from SEAS OBB may be related to the  

FIGURE 16.4  SSEA OBB carbon emissions in different regions during 2020–​2022.
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assistance provided by the Food and Agriculture Organization (FAO) in implementing  
comprehensive forest fire management methods in some countries, such as Cambodia  
and Myanmar.

More importantly, we quantified the carbon emissions caused by different fire 
types daily in SSEA from 2020 to 2022 (Figure 16.5). This analysis revealed the 
main sources of carbon emissions from SSEA fires on a daily scale and obtained 
the main fire types burning in different regions. Emission patterns in different areas 
of the region varied both temporally and spatially. SEAS was the main emission area 
in the study area, and its emission pattern was closely related to the SSEA emission 
trend, especially the emission peak in March. Over the three years, OBB conditions 
in the SEAS had been relatively stable, with a daily peak of 5.17 Tg. But August to 
October was dominated by EQAS burning activities, which may be due to the com-
bination of dry weather, strong winds, and specific meteorological conditions (Li 
et al., 2023). Together, these factors increased the flammability of biomass, making 
combustion more likely.

In general, distinct regional disparities existed in the monthly distribution of active  
fires in EQAS and SEAS. Influenced by El Niño, active fires in the Indian Peninsula  
and Indochina concentrated during the dry season from February to April, while those  
in the Malay Archipelago peaked from August to October (Li et al., 2020). During the  
El Niño cycle, particularly from August to October, the likelihood of triggering active  
fires in tropical Asia increased significantly, resulting in Southeast Asia experiencing  

FIGURE 16.5  OBB emissions for different fire types in different regions (averaged over a 
15-​day window) from 2020 to 2022.
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its peak fires (Wang and Ma, 2024). This variability is reflected in our daily and  
monthly carbon emissions.

Figure 16.6 shows the distribution of OBB carbon emissions by fire type from 
2020 to 2022. Emissions in the SEAS region could be divided into two parts: one 
was the emissions from crops in the Indian Peninsula, and the other was the 
emissions from forests and wood in the Indochina Peninsula. The Indian peninsula 
was one of the major food-​producing areas in the world, and agriculture in coun-
tries such as India, Bangladesh, and Pakistan was mainly based on food planting. 
Most of the agriculture here relied on traditional farming and planting methods and 
lacked modern agricultural technology and equipment. To quickly clear fields for 
planting the next crop, local people more often choose field burning methods to 
save time and costs, thus causing a large amount of carbon emissions (Dutta et al., 
2022). Peatlands are unique and rare ecosystems that store one-​third of the world’s 
soil carbon despite covering only 3–​4% of the Earth’s land surface. Indonesia had 
the largest share of tropical peatland area (47%) (Page et al., 2011), and previous 

FIGURE 16.6  The distribution of OBB carbon emissions by fire type from 2020 to 2022.
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studies have demonstrated that Indonesia’s carbon emissions were dominated by 
peatland degradation (Miettinen et al., 2017; Lu et al., 2022). From a spatial per
spective, the high emission areas of OBB carbon were consistent with the distribu-
tion of peatlands; high emissions here were related to the destruction of peatlands. 
Therefore, emissions from forest and wood accounted for a large proportion of 
SSEA. However, in EQAS, forest constituted the vast majority, followed by woody 
savanna/​shrub. There was the third-​largest tropical rainforest in the world, with high 
forest coverage and rich biodiversity. Studies indicated that forest fires and human 
activities, such as deforestation and land use changes, were the main drivers of 
increased carbon emissions from OBB in this place (Chandra and Bhardwaj, 2015; 
Sannigrahi et al., 2020). In conclusion, when considering the different regions, the 
primary sources of pollutants from OBB varied. Fire events in woody savannas/​
shrubs and forests were the primary sources in SEAS and EQAS, whereas crop-​
related fire events mainly occurred in SEAS.

16.4.3 �C ross-​Verification in Different Databases

In order to compare our results with published data such as GFED, GFAS, and FEER,  
and considering the different resolutions of the datasets, we resampled them all to  
0.5°×0.5°. Figure 16.7 shows the comparison of our results with these datasets of  
OBB carbon emissions in SSEA from 2020–​2022. Spatially, our results were highly  
consistent with the distribution of these datasets. In SEAS, OBB high emission areas  

FIGURE 16.7  Comparison between this study and other emission inventories during 2020–​
2022 average emissions at 0.5° resolution.

 

 

  

 

 

 



294 Remote Sensing of Land Cover and Land Use Changes, Volume 2

were in Myanmar, Thailand, and Vietnam (>100 g C/​m2/​year); in EQAS, high emission  
areas were in central Indonesia and eastern Papua New Guinea. Then in terms of  
numerical values, it could be seen from Table 16.3 that the numerical values obtained  
by our method were consistent with the existing datasets to a certain extent. In SEAS,  
our result (591.88 Tg) was highly consistent with the value of FEER (585.53 Tg),  
but much greater than GFED’s 280.14 Tg and GFAS’s 248.61 Tg. In EQAS, GFED’s  
35.22 Tg was more consistent with our 39.61 Tg. The GFAS (75.06 Tg) was nearly  
twice ours, and the FEER (163.54 Tg) was three times more than ours. Our research  
results showed that the correlation coefficient with FEER in SSEA is 0.99 (p < 0.01).  
There was a strong positive correlation and consistency in the data trends between our  
data and the three inventories in SEAS.

Previous studies have investigated numerous methods for estimating biomass 
burning emissions (Ito and Penner, 2004; Wiedinmyer et al., 2006). The burned area 
method demonstrated good accuracy in quantifying larger fire events. For instance, 
Shi et al. (2021) estimated OBB emissions in tropical continents from 2001 to 2017 
using widely used inventory data, such as the GFED (Jiang et al., 2012; van Wees 
et al., 2022). However, this method heavily relied on fire detection precision, par
ticularly for small fires. The methods based on the fire radiative power could effect-
ively enhance the assessment of small fire events, thereby addressing this issue 
to some extent. Similar approaches have been employed in FEER and GFAS (Di 
Giuseppe et al., 2017). However, this approach had a drawback in that it tends to 
overestimate emissions during localized fire events. From this point of view, our 
results are relatively reasonable. On the one hand, we can better identify small fires 
in SEAS, and on the other hand, we avoid overestimates of EQAS emissions (Pan 
et al., 2020).

Our findings aligned closely with existing emission inventories such as GFAS, 
GFED, and FEER, albeit with some disparities attributable to methodological 
variations and resolution disparities. But our result, boasting a high spatial resolution 
of 1 km × 1 km, offered a finer-​grained analysis compared to the coarser resolutions 
(0.1° × 0.1°, 0.25° × 0.25°, and 0.1° × 0.1°) employed by others.

Furthermore, all these used datasets relied on MODIS active fire products. 
Our reliance on FY-​3D GFR data enhanced accuracy and enabled the detection of 
smaller fires, offering a distinct advantage over MODIS satellite data used by GFED. 

TABLE 16.3
OBB emissions in the SSEA region from 2020 to 2022 based on the results 
obtained from FY-​3 and used datasets (Unit: Tg)

FY-​3 GFED GFAS FEER

SEAS EQAS SEAS EQAS SEAS EQAS SEAS EQAS

2020 217.46 16.81 115.83 13.51 96.14 24.59 208.80 56.43
2021 255.15 12.39 107.98 11.86 99.98 28.53 233.73 53.21
2022 119.27 10.41 56.32 9.84 52.49 21.94 143.00 54.00
Total 591.88 39.61 280.14 35.22 248.61 75.06 585.53 163.54
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Discrepancies arose from differences in satellite data and parameter definitions 
adopted during inventory compilation. Notably, we augmented our estimates with 
locally measured emission factors and refined correlation coefficients, enhancing the 
reliability and precision of our emissions assessments. This meticulous approach sig-
nificantly bolstered the accuracy of local emission estimates, setting our inventory 
apart in terms of reliability and robustness (Spawn et al., 2020).

Furthermore, emission estimates during GFAS, GFED, and FEER were generated 
using data from the Terra and Aqua satellites, which captured data at 10:30 and 13:30 
LT, respectively. Therefore, GFED’s burned area algorithm is not effective in detecting 
small, short-​lived agricultural fires that occur briefly between satellite passes due to 
their intermittency (Giglio et al., 2010). However, using FY-​3D, which captures data 
at 14:00, is very effective in capturing such events.

16.5 � CONCLUSION

We have developed a daily high-​resolution (1 km × 1 km grid) emission inventory 
focusing on OBB in SSEA. Our inventory used the updated satellite-​based burned 
area product (FY-​3D GFR), observational and satellite-​based AGB, and vegetation 
index-​based spatiotemporally variable combustion efficiency data to estimate OBB 
carbon emissions in SSEA.

We segmented the study area into two regions: SEAS and EQAS, and found 
that SEAS contributed significantly more to OBB emissions than EQAS. The peak 
emissions occurred in March across all years, with 2020 registering the highest at 
115.50 Tg. Notable high-​emission zones were northern India, Myanmar, Thailand, 
Laos, central Indonesia, and eastern Papua New Guinea. We further differentiated 
emissions by fire types, with woody savanna/​shrub fires contributing the most 
(50.5%), followed closely by forest fires (34.82%). And seasonal trends in emissions 
were evident, with SEAS exhibiting a single peak in March, while EQAS displayed 
two peaks in March and August. Carbon emissions fluctuated over time due to local 
policies and climate conditions, underscoring the impact of both human intervention 
and natural factors. By comparing with other emission inventories, we found that our 
approach has the stronger detection capability, particularly in identifying smaller fires 
undetectable by MODIS satellite data.

Our comprehensive emission inventory and spatiotemporal analysis provide cru-
cial insights for carbon emission policies, climate assessments, and environmental 
health considerations. Effective management of tropical forests and savanna/​shrub 
fires holds promise for substantial OBB emission reduction. Additionally, our data 
support regional biogeochemical modeling and atmospheric chemistry studies, show-
casing the potential of integrating bottom-​up and top-​down approaches for future 
research enhancements.
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Index
A 

Aboveground biomass (AGB) index, 284
Actionable Intelligence Policy (AIP) Platform, 

196–​197
adoption, 206–​207
bottom up approach, 198–​201, 208
crop omission, 207

data sharing, and, 206–​207
disaster security, 199

Eastern Economic Corridor (EEC), 202–205 
economic scores, 199–​200
ecosystem, 196

indicators
design, 196
development, 197
selection, 199

land productivity, 199
Nan province project, 198–​201

policymaking, and, 197–​198, 209
public decision-​making, 193
simulations, 204–​205

top down approach, 202–​205
Adult Male Equivalent (AME) concept, 5
Aerosol Optical Depth (AOD) 

atmosphere, and, 164
cloud fraction, and, 160, 165–​168, 174
heavy rain, under, 172
impact, 159–​160
light rain, under, 170
moderate rain, under, 171
spatial distribution, 168–​169, 174

Aerosols 
impact of, 28, 159; see also Aerosol Optical 

Depth (AOD)
types, 159–​160

Agricultural land use 
accuracy assessment, 37–​38
change monitoring, 33–​38
classification method, 35–​37
colonial expansion, 80
crops, see Crops
data pre-​processing, 34–​35
development outcomes, 33–​53
Đồng Tháp, Vietnam, 214–​215, 221–​222
driver and impact analysis, 46–​50
Earth Observation data collection and 

processing, 33–​34
estimating, 50–​51

farm system change analysis, 40–​42
farmland loss, 39–​40
fishing, see Fishponds
future prediction, 39
historical construction, 39, 210–​211; see also 

Landscape change
integrated tradeoff analysis, 51–​52
InVEST-​NDR model, 46–​50
land use model, 29–​31
LULC mapping, 34–​37
methodology, 27–​33, 41
natural land conversion, 81
nitrogen application, 31
Northern Association of Southeast Asian 

Nations (nASEAN), 260–​261
post-​classification process, 36–​37
remote sensing-​based assessment, 27–​29
seasonal changes modelling, 46–​50
seasonal-​spatial optimization model, 31–​33
socioeconomic data, 46–​49
time-​series LCLU maps, 37

Aquaculture, 40, 222–​223, 227–​230
ASEAN Transboundary Haze Pollution initiative, 

272
Atmospheric stability 

Aerosol Optical Depth (AOD) and cloud 
fraction (CF) relationship, 165–​168, 174

rainfall patterns, 160, 163
temperature change, and, 164
tropical climates, 164, 168–​169

B 

Bangalore, 94–​95, 123–​124
ecological evaluation index, 104
local climate zone classification, 126, 129

Bangladesh 
agricultural land use, 30
crop intensity, 43–​45
farm size, 50
fishery industry, 40
land ownership, 50
migration, 50–​51
seasonal land use/​crop area allocation model,  

50
shocks, 50

Bare Ground Index (BGI), 71
Biomass burning 

area measurement, 257–​258

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



302 Index

302

average emission, 287–​288
burned areas 

identification, 257–​258
nASEAN, in, 261–​264
South/​Southeast Asia, in, 283

combustion factor, 283–​286
combustion triangle, 263
cross-​verification in databases, 293–​295
data, 254–​257, 282–​287

emissions, 281–​282
distribution, average, 288
factor, 286–​287
fire type, by, 292, 295
inventory, 253, 256–​257, 265, 271, 282, 

294–​295
sources, 257, 265–​271
spatial map, 287–​289
total in nASEAN area, 261–​264

energy needs, 252 
estimation, 280–​281, 294
fuel, 263, 283
land cover, 255–​256
meteorological conditions, and, 263–​264, 290
methods, 254–​257, 282–​287
nASEAN region, in, 252–​253

smoke production, 265
temporal variations, 289–​293

validation data, 287

C 

Cambodia 
agriculture, 268
biomass burning emissions, 268, 287
escalation of burning, 272
forests, 268
land cover, 258
savannas, 259–​260

Carbon emissions 
biomass burning, and, 253, 271, 280, 287–​293
burning activities, 280
deforestation, and, 68–​69
degradation of forest, 68–​69
fire types, by, 291–​292, 295
sequestration, 84–​85
food security, 8–​12

Central Indian Highlands, 69–​70
Clean Development Mechanism projects, 84
Climate change 

biomass burning, and, 252, 271, 280
carbon emissions, see Carbon emissions
crop changes, 214
Đồng Tháp, impacts on, 215
food insecurity, and, 1–​2

impact, 271
public health risks, 121
rice yields, 234

Cloud condensation nuclei (CCN) 
aerosol influence, 159
cloud formation, 163

Cloud fraction (CF) 
Aerosol Optical Depth (AOD), and, 160,  

165–​168, 174
changes, 165
heavy rain, under, 172
light rain, under, 170
moderate rain, under, 171
monsoon regions, 174
spatial distribution, 168–​169, 174
thunderstorms, 166, 174

Colonialism, 79–​81
human histories, and, 211

Compensatory Afforestation (aka CAMPA) 
scheme, 76, 84–​85

Continuous Change Detection and Classification 
(CCDC) algorithm, 6

Critical geography, 213–​214
Crops 

allocation model, 50–​51
cropping seasons, 29

cultivation, 31
drought, 246

ecological impacts, 31
economic-​environmental performance, 51, 54

intensity 
change analysis, 42–​45
crop frequency identification, 43
data pre-​processing, 42 
harmonic regression, 43
mapping, 42–​45
nitrogen-​use efficiency, 51
optimization, 52
rice, 234; see also Rice cultivation
seasonality, 19
Thailand, 236
type, changes in, 214, 222–​223; see also 

Maize cultivation
yield prediction 

accuracy, 245–​248
climate data, 238–​239

correlation analysis (CA), 240
models, 241–​242
principal component analysis (PCA), 240
regression model, 242
remote sensing, 235, 238–​239
research framework, 240
temporal trends, 242–​243
variance inflation factor (VIF), 240–​241
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303

D 

Data transparency, 78, 86
Deciduous forests 

biomass burning, 264
emitted pollutant source, 265
Northern Association of Southeast Asian 

Nations (nASEAN), 258–​259
Deforestation 

disease vectors in, 185
dry tropical forests, 68–​69
fire incidents, and, 268
infrastructure development, and, 108
malaria, and, 180, 185
Nan province, 198
Philippines, the, 270
tropical humid forests, 73

Digital elevation models (DEM), 31, 46, 95,  
126–​127, 196–​197

Disease ecology, 179
Drought 

crop yield, and, 246, 248
fires, 281

risks, 199, 234
savannas, 259–​260
temperatures, and, 290
vegetation, and, 282, 285

Dry tropical forests 
definition, 68
degradation, 68–​69, 73
extent, 68
forest transition, 69; see also Forest transition
quantifying degradation, 70
threats to, 68–​69

E 

Earth Observation (EO) data 
data collection, 33–​34
Thailand, 196, 202

Enhanced vegetation index (EVI), 235
Entitlement concept, 2
Environmental sustainability 

biomass burning, 272
food security, and, 51–​52

green spaces, 105
water management, 202

Evapotranspiration (ET) 
groundwater depletion, and, 63–​64
irrigation water use, and, 56–​57
potential, see Potential evapotranspiration (PET)
rainfall, and, 174; see also Rainfall patterns
seasonal derivation, 59
spatial distribution, 60
surface energy balance (SEB) models, 58

trends across India, 60–​62
warming temperatures, and, 63–​64

Evergreen forests 
biomass burning, 264
emitted pollutants, 265
Laos, 269
Northern Association of Southeast Asian 

Nations (nASEAN), 258–​260
eXtreme Gradient Boosting (XGBoost), 235, 246, 

248

F 

Fine-​scale measurement, 87–​88
Fire Emissions and Energy Research (FEER), 280
Fires 

biomass burning, and, 263; see also Biomass 
burning

COVID-​19 impact, 271
drought, and, 281
forest hotspots, 192
global incident, 281
human activities, 271, 280
remote sensing monitoring, 193
sub-​surface condition, and, 283
Thai statistics, 193–​195

Fishponds 
logistic regression (LR) model, 42
mapping, 40–​42, 219

Floods 
impact, 215, 246
maps, 192, 196
monitoring, 197
public attitudes, 208
rainfall, 30, 204
risks, 109, 199, 234, 271
seasonal, 44

Food security 
assessments, 2

balance sheets, 2
causal modelling, and, 8–​12
climate change, and, 1–​2

consumption, 2
crop yield prediction, and, 235
data collection, 3–​4
definition, 2
eco-​geographic factors, 8
environmental sustainability, and, 51–​52
goodness of fit, 17
India, 1–​3
land cover change, 6–​7, 12–​13
land cover classes, 7–​8, 13
latent variables, 13–​15
manifest variables, 17
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measures, 5
methods, 3–​8
national metrics, 2, 20
off-​farm resources, 11, 19
on-​farm resources, 11, 18–​19
path diagram, 16
path model, 13–​16
population needs, 1, 26
regional metrics, 2–​3, 20
socioeconomics, 11–​12, 19

indicators, 5–​6, 15
spatial variations, and, 3, 20
utilization metrics, 2

Forest Conservation Act, 82
Forest cover 

changes in South/​Southeast Asia, 117
current regime, 83–​85
emergence, 81–​83
fires, and, 193–​195
implications, 87
Myanmar, assessment in, 182
remote sensing, and, 83–​85
tree planting, and, 86

Forest health 
high-​resolution satellite data, 73–​74
indicator, 70

Forest land use 
community needs, 82, 88
ecological integrity, 82, 86–​87
forest land, definition, 82
national needs, for, 80–​81
productivity, 81

Forest loss 
Greater Mekong Subregion (GMS), 270
hotspots, 110, 182, 192

loss in Thailand, in, 195
Forest Rights Act, 83
Forest Survey of India, 83
Forest transition 

data, 70–​72
living standards, and, 73
migration, and, 72–​73
pathways, 72–​73
process, 69
remote sensing data, 70–​71
socioeconomic data, 71–​72
study region, 69–​70

FY-​3D Global Fire Spot Monitoring Data, 283, 
295

G 

Ganges Basin 
breadbasket, as, 26–​27
land use, 27

LULC types, distribution of, 37
population, 26

Geo-​Informatics and Space Technology 
Development Agency (GISTDA),  
192–​193, 196

Geographical information system (GIS) 
accuracy, 273
techniques, 254

Global Fire Assimilation System (GFAS), 280
Global Fire Emissions Database (GFED), 280
Global Fire Monitoring (GFR), 280
Global Land Cover Facility (GLCF), 36
Globeland30 classification, 34–​35
Google Earth Engine (GEE), 34, 110–​111
Grain security, 2; see also Food security
Green Credits scheme, 76, 85
Groundwater depletion, 56, 63–​64

H 

Habitat loss 
bats, 139–​140; see also Indian Flying Fox bats
land use changes, and, 139, 153
mangrove forests, 152–​153
monitoring, 151, 154
Normalized Difference Vegetation Index 

(NDVI) changes, and, 151–​152
satellite remote sensing, and, 140
urban habitats, and, 152–​153

Harmonic ANalysis of Time Series (HANTS) 
method, 43

Heat waves, 94, 121, 132, 135
Household Dietary Diversity Score (HDDS), 5
Household Food Insecurity Access Scale (HFIAS), 

5–​6, 18
Human footprint analysis, 143, 147, 149

zoonotic implications, 153–​154

I 

India 
agriculture, role of, 56
CAMPA scheme, 76, 84–​85
carbon sequestration projects, 84–​85
climatic conditions, 164
Dehing Patkai National Park, 113, 117
Delhi area changes, 38–​39
districts of food security study, 3, 9–​10, 12,  

18
ET/​PET distribution, 60–​64
food insecurity, 1–​3
forest types, 69
grain insecurity, 2
Green Credits scheme, 76, 85
irrigation water use, 57, 60–​62
nature management policies, 81
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rainfall patterns, 160–​161; see also Rainfall 
patterns

remote sensing tool, use in, 77, 83–​85
states, 79
two-​level land use model, 50
valuing trees, 79–​81

Indian Flying Fox bats 
causes of site decline, potential, 145–​147
conservation, 152–​153
data analysis, 143
field surveys, 142
foraging habits, 152
habitat preferences, 150
human footprint analysis, 143, 147, 149
Normalized Difference Vegetation Index 

(NDVI), 143, 145–​147, 149, 151–​152
roosting 

patterns, 140
site decline, 145–​147
sites, 141–​142, 144–​145

threats, 140, 153–​154
tree preferences, 148, 151
zoonotic spillover, 153

Indian Forest Service, 81
Indo-​Gangetic Plains (IGP) 

seasonal changes, 60–​61, 64
irrigation water use, 63, 65

Information dissemination 
Actionable Intelligence Policy (AIP) Platform, 

206–​207; see also Actionable 
Intelligence Policy (AIP) Platform

functionalities, 53
methodological limitations, and, 86

portal, 33, 53
Integrated Multi-​satellite Retrievals for Global 

Precipitation Mission (IMERG),  
162

Integrated tradeoff analysis 
food security and environmental sustainability, 

51–​52
International Geosphere-​Biosphere Programme 

(IGBP) land classification, 255
InVEST’s Nutrient Delivery Ratio (NDR) model, 

31, 46
calibration, 46
seasonal changes, 46–​50

Irrigation water use 
approach, 59–​60
climate information, 59–​60
data, 8, 57–​59
ET/​PET distribution across India, 60–​62
groundwater depletion, 63–​64
India, 57, 60–​62
pixel-​scale trend analysis, 60
seasonal changes, 60–​62

seasonal ET/​PET derivation, 59–​60
spatiotemporal patterns, 56, 65
warming temperatures, 63–​64

L 

Land cover and land use change (LCLUC) 
agricultural land use, 29–​31, 33–​38
animal decline, 139
biomass burning areas, 255–​256
drivers, 213
environmental shifts, 261
food security, and, 6–​7, 12–​13, 19; see also 

Food security
human activities, as proxy, 184
human health, and, 179, 186
malaria, and, 180, 184–​186; see also Malaria 

transmission
mapping 

accuracy assessment, 37–​38
agricultural land use, 33–​38
artificial surface class, 36
classification method, 35–​37
crop intensity, 42–​45; see also Crop intensity
data pre-​processing, 34–​35, 42
forest cover, 36–​37
Indian districts, 9
Myanmar, 182–​183
post-​classification process, 36–​37
time-​series, 37
validation, 37–​38

monsoon regions, 169–​174
perceived drivers, and, 223–​226, 229
perceptions of change, 211
projections for future, 202–​203
water supply/​demand, 202

Land surface temperature (LST) 
computation, 97–​98
crop yield prediction, and, 235
emissivity calculation, 97
Landsat data, and, 97–​98
local climate zone classification, and, 122
maps, 97–​98, 103
ordinary least squares (OLS) model, 100–​102
regression, 98–​102
spatial cluster analysis, 99–​100

error model, 100–​102
regression model, 100–​102

spectral radiance, 97
urban areas, in, see Urban heat island (UHI)

Landsat data 
availability, 77
estimating land surface temperature (LST), 

97–​98
habitat monitoring, 143, 146
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landscape change, 218
urban heat island (UHI) effect, 96

Landscape change 
agricultural LCLUC, 221–​222

analytical framework, 215–​216
built-​up areas, 219
crop extent, 220
discourse analysis, 217–​218
diversification, 222
Đồng Tháp, 214–​215
dried snakehead fish industry, 227–​228, 230
drivers, 222–​223
economic reasons, 223
ethnographic methods, 214
human histories, and, 210–​211
LCLUC and perceived changes, 223–​226
local economic history, 228–​229
perceptions, 222–​223, 229
remote sensing 

approaches, 218–​220
based LCLUC, 220–​221

research questions, 211
tree cover, 219–​220
water permanence, 219

Laos 
biomass burning emissions, 268, 287
evergreen forests, 269
land cover, 258

Local climate zone classification, 121–​122
Bangalore, 126, 129
change in classes, 130, 133
sectoral ring approach, 130–​133
urban heat dynamics, 125, 128–​131

Logistic regression (LR) model, 42

M 

Machine learning (ML) 
algorithms, 54, 243
crop yield prediction, and, 235, 242, 246

Maize cultivation 
crop replacement, 200
deforestation, and, 198
fires, and, 193–195
spontaneous land use changes, 207–​208
Thai areas, 203

Malaria transmission 
activities increasing exposure, 184

deforestation, and, 180, 185
eradication, 180
high natural forest land cover, 184–​185
host–​vector–​parasite relationships, 179
human–​environment interactions, 179–​180
land cover and land use change (LCLUC), 

and, 184–​186

Myanmar, in, 180–​182
risk assessments, 179
vector abundances, 185

Markov-​Cellular Automata (CA) model, 39–​40
Migration 

forest transitions, and, 72–​73
seasonal, 72–​73
urban centers, and, 69, 71–​72

Moderate Resolution Imaging Spectroradiometer 
(MODIS) 

active fire, 294
aerosol index, 160, 161
atmospheric profile data, 162
biomass burning, 255, 281
cloud data, 161–​162
crop water use, 59–​60
crop yield prediction, 238
land cover accuracy, 256
nighttime light, and, 114, 117

Myanmar 
Ann Township settlement, 183
area of burned land, 269
biomass burning emissions, 268, 287
land use activities, 184–​185
LCLUC, in, 180, 182–​183, 258
malaria, and, 180–​182
population distribution, 182

N 

Nationalization of natural areas, 81
Natural disaster management, 192, 234
Nitrogen use 

ecological impacts, 31
efficiency gains, 51
seasonal-​spatial optimization model,  

31–​33
Normalized Difference Built-​up Index (NDBI), 

34, 94
Normalized Difference Vegetation Index  

(NDVI) 
agricultural land use changes, 34
biomass burning, 284
changes, in, 151–​152
crop yield prediction, and, 235
habitat monitoring, 143, 145–​147, 149

Northern Association of Southeast Asian Nations 
(nASEAN), 252–​253

biomass emissions, 261–​264
burned area, 261–​264
land cover, 258–​261, 266–​267, 272

O 

Open Biomass Burning (OBB) see Biomass 
burning

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



307Index

307

P 

Paddy fields, 219–​220
Partial least squares (PLS) approach, 10–​11,  

13–​16, 20
Path modeling (PLS-​PM), 10–​11, 13–​16, 20
Peatlands, 265, 282, 292–​293
Philippines, the 

biomass burning emissions, 268, 270
cultivation shifts, 270
fruit production, 261
geography, 253–​254, 260
land cover, 258
savannas, 259–​260
urban expansion, 108, 114

Policy-​making 
72-​18-​10 model, 199, 201, 207

Actionable Intelligence Policy (AIP) 
Platform, 197–​198, 209

air quality, 272
crop yield prediction, 245–​248
dry tropical forests, 68, 73
food security interventions, 18, 20
forest management, 198
nature management, 79, 81
policy cycle, 198
remote sensing, and, 76, 85
shifts in forest, 82–​83

Population 
Bangladesh, 41

Central Indian Highlands, 69
density, 50, 69, 122
Ganges Basin, 27
growth, 26–​27, 38, 104
heat, and, see Urban heat dynamics
India, 57, 121
land use change, and, 39
monitoring, 182
Myanmar distribution, 182
proximity to bats, and, 153
South/​Southeast Asia, 108
urban, 94, 104

Potential evapotranspiration (PET) 
estimation, 59
groundwater depletion, and, 63–​64
irrigation water use, and, 56–​57
seasonal derivation, 59
spatial distribution, 60
trends across India, 60–​62
warming temperatures, and, 63–​64

Potential Food Availability (PFA), 5
Poverty indicators, 3
Precipitation, see Rainfall patterns
Prevalence of Moderate and Severe Food 

Insecurity (PMSFI) measure, 1

R 

Rainfall patterns 
approach, 163–​165
cloud formation, and, 159
heavy regime, 167, 169, 175
intensity, 166
land use changes, and, 164–​165, 169–​175
light regime, 166, 168, 174
moderate regime, 166–​168, 175
monsoon trends, 169–​174
satellite data, 161–​162

Rapid Household Multiple Indicator Survey 
(RHoMIS) tool, 3

Remote sensing technologies 
advancements, 83, 179, 182, 186
agricultural land use, 29–​31
crop yield prediction, 235, 238–​239
evapotranspiration, and, 56–​57; see also 

Evapotranspiration (ET)
forest fire monitoring, 193
forestry, in, 78
habitat monitoring, 140, 142
humanities approach, 213–​214
integration with other data, 86, 235
land use/​cover assessment, 27–​29
policymaking, and, 76, 85
problems with, 28–​29, 76, 78, 85, 88
productive application, 86–​88
social science approach, 213–​214
urban areas, 121–​122
use in India, 77, 83–​85

Rice cultivation 
crop calendar, 238
prediction, see crop yield prediction
Thailand, 234, 246

S 

Satellite data 
atmospheric conditions, 273
auxiliary geospatial data, and, 183
emissions inventory, and, 295
ground-​truthing, 78, 87
moderate solution, 183
MODIS, see Moderate Resolution Imaging 

Spectroradiometer (MODIS)
nighttime light, 109, 118
precipitation, 162
rainfall patterns, 161–​162
urban heat dynamics, 125
usability in poorer countries, 183

Savannas 
biomass burning, 264
fire events, 293
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Northern Association of Southeast Asian 
Nations (nASEAN), 259–​260

Seasonal-​Spatial Optimization Model, 31–​33
Socioeconomic data 

agricultural land use, 46–​49
food security, 11–​12, 19
forest transition, 71–​72

Soil and Water Assessment Tool (SWAT),  
202

South and Southeast Asia (SSEA) 
geography, 281
population, 108

Spatial error model (SEM), 100–​102
Spatial filtering, 41
Spectral filtering, 41
State of India’s Forests reports, 77, 83
Structural equation model (SEM) 

food security, 8–​11
Surface soil moisture, 8
Sustainable Development Goals, 18, 196

T 

Thailand 
agriculture, 260, 269–​270
biomass burning emissions, 268–​269, 287
Chi basin, 236
climate, 234
cropland, 269
Eastern Economic Corridor (EEC), 202
GIS maps, 192
land cover, 258
laws, 208
priority policy actions, 208
rice exports, 234, 246
savannas, 260
urban expansion, 108, 114

Tree Cover (TC) index, 284
Tree planting, 86
Tropical Livestock Units (TLUs), 5

U 

United Nations Committee on World Food 
Security, 2

Urban encroachment 
brightness measurements, 113
Dehing Patkai National Park, 113, 117
forested regions, 114–​116, 118
land cover images, 112
mountainous regions, 117
nighttime light brightness changes, 114–​117

Urban green spaces 
heat islands, and, 104–​106

Urban heat dynamics 
approach, 125–​131
heat stress, 121
land use changes, and, 132
local climate zone classification, 125, 129–​131
thermal comfort, 122–​123, 132
Urban Thermal Climate Index (UTCI),  

125–​129, 131, 133; see also Urban 
Thermal Climate Index (UTCI)

urbanization patterns, and, 135
Urban heat island (UHI) 

causal factors, 94
ecological evaluation index, 104, 106
green spaces, and, 104–​106
land surface temperature maps, and, 97–​98, 103; 

see also Land surface temperature (LST)
urban land use, and, 94
Urban Thermal Field Variance Index, 102
vegetation distribution, 105–​106

Urban land use, see Urbanization
Urban Thermal Climate Index (UTCI), 122–​123, 

125–​129
accuracy of calculations, 139
air temperature, 126–​127
changes in, 131, 133–​135
changes in LCZ class, and, 131
mean radiant temperature, 127–​128
relative humidity, 126–​127
wind speed, 128

Urban Thermal Field Variance Index (UTFVI), 
102

Urbanization 
challenges, 109
climate impact, 94
deforestation, and, 73
development of, 94
farmland loss, 38–​40
forest loss, and, 109; see also Urban 

encroachment
heat, and, see Urban heat dynamics
impact on people, 122
land use, and, 1, 53, 121–​122
migration, and, 69, 71–​72
nighttime light data, 118–​119; see also Urban 

encroachment
South/​Southeast Asia, 108–​109
urban heat island (UHI), and, 95

USDA Cropland Data Layer classification, 27–​28

V 

Vietnam 
biomass burning emissions, 268, 270, 287
district map, 212
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Đồng Tháp agricultural landscape, 214–​215, 
221–​222

land cover, 258
landscape change, 211–​213
National Target Program for New Rural 

Development (NTP-​NRD), 227
savannas, 259–​260
Tràm Chim National Park, 213
urban expansion, 108, 114

W 

Waste lands, 80
Water Indexes (WI), 40
Water management 

Eastern Economic Corridor (EEC), 202
projects, 203–​204

Water Stress Index (WSI), 202
Wildlife conservation laws, 81–​82
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